
User Interface
Extensible
Markup
Language

Adrien Coyette,
David Faure,

Juan González-Calleros,
Jean Vanderdonckt (Eds.)

Proceedings of the
2nd International Workshop on
User Interface eXtensible Markup Language
September 6, 2011 - Lisbon, Portugal

UsiXML’2011





- 2 - 

 

 

 
 
 
UsiXML 2011 

Proceedings of the 2nd International Workshop on 

USer Interface eXtensible Markup Language 
 
 
Sponsored by: 

UsiXML, ITEA2 project #08026 

ITEA2 Program of the European Commission 

Eureka Project #3674 

 
Also sponsored by: 

ACM’s Special Interest Group on Computer-Human 

Interaction (ACM SIGCHI), Belgium division (SIGCHI.BE) 
 

Supported by: 

Thales Research & Technology France, Paris (France) 

Université catholique de Louvain, Louvain-la-Neuve (Belgium) 

 



- 3 - 

 

 

Foreword 
 

UsiXML'2010, the 1st International Workshop on User Interface eXtensible Markup Language, was held in Ber-
lin, Germany (June 20, 2010) during the 2nd ACM Symposium on Engineering Interactive Computing Systems 
EICS’2010 (Berlin, 21-23 June, 2010). This workshop is aimed at investigating open issues in research and de-
velopment for user interface engineering based on User Interface eXtensible Markup Language (UsiXML), a 
XML-compliant User Interface Description Language and at reviewing existing solutions that address these is-
sues. In particular, the “µ7” concept is explicitly addressed by discussing how and when each dimension can be 
supported: multi-device, multi-user, multi-linguality, multi-organisation, multi-context, multimodality, and multi-
platform. Twenty-three papers have been accepted by the International Program Committee for this edition. 

UsiXML’2011, the 2nd International Workshop on User Interface eXtensible Markup Language, was held in Lis-
bon, Portugal (September 6, 2011) during the 13th IFIP TC 13 International Conference on Human-Computer In-
teraction Interact’2011 (Lisbon, 5-9 September 2011). This second edition was dedicated to “Software Support for 
User Interface Description Language” (UIDL’2011) in order to investigate what kind of software we need to 
properly support the usage of any User Interface Description Language. Twenty-seven papers have been accepted 
out of thirty-seven sumissions by the International Program Committee for this edition. Questions addressed by 
this workshop include the following ones, but not limited to: 

What are the major challenges (e.g., conceptual, methodological, technical, organizational) for software support 
for a UIDL? 

• For which kinds of systems or applications are UIDLs appropriate, efficient, and desirable? 

• When and how could we measure the effectiveness, the efficiency of UIDLs and their software support? 

• How could we measure the quality of the user interface resulting from a development method based on a 
UIDL and supported by some software? 

• In which ways will UIDL affect HCI practice in the future and how will they evolve? 

• What kinds of software support are particularly desirable for a UIDL and what kind of implementation re-
veal themselves to be the most appropriate, efficient for this purpose? 

We also wish to thank our corporate sponsor Thales Research & Technology France and the support of our aca-
demic sponsor: Université catholique de Louvain. 

 

Adrien Coyette, David Faure, Juan Manuel Gonzalez Calleros, and Jean Vanderdonckt 

Workshop General Co-Chairs 

 

 

 

 

 

Permission to make digital or hard copies of portions of this work for personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copy-
right for components of this work owned by authors must be honored. Abstracting with credits permitted. To copy otherwise, to republish, 
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permission to republish has to be ob-
tained from Thales Research & Technology France, Paris (France). Request permission to republish a specific article has to be obtained 
from the authors. 

 

Published by Thales Research and Technology France, September, 2011. 

ISBN: 978-2-9536757-1-9 



- 4 - 

 

	

Enhancing user interface design: Model-based approach ensures greater versatility in 
multiple contexts 
 

The UsiXML project is developing an innovative model-driven language to simplify and improve user in-
terface design for the benefit of both consumer and industrial end-users. It will provide particular benefits 
for industry in term of productivity, usability and accessibility by supporting the ‘μ7’ concept of multiple 
device, user, culture/language, organisation, context, modality and platform applications. 

While the European Union offers a huge market for European companies, the many different languages 
and cultures, multiple organisations and numerous contexts remain strong constraints to the wide distribu-

tion of nationally developed products.  

This is a particular problem in software-based and software-intensive systems. Here the key challenge for human-system in-
teraction is the design of simple and natural multimodal user interfaces – such as voice command, text to speech and gesture 
recognition – with enough features for users of different levels of expertise and capabilities. 

More Efficient Model-Based Approach 
New ways are needed to design such user interfaces efficiently to cope with increased complexity and the evolution of opera-
tional use – including robustness to organisational changes, devices and modalities. To achieve this objective, a more effi-
cient model-driven approach is needed.  

A large proportion of today’s infrastructure tools, software tools and interactive applications are implemented on top of XML 
platforms. This ITEA 2 project therefore proposes to enhance the XML-based user interface extensible mark-up language 
(UsiXML) by adding versatile context-driven capabilities that will take it far beyond the state of the art and lead to its stand-
ardisation.  

UsiXML will define, validate, and standardise an open user interface description language (UIDL), increasing productivity 
and reusability, and improving usability and accessibility of industrial interactive applications using the μ7 concept.  

The seven ‘μ7’ dimensions offer a powerful new approach to cope with technological advances and environmental variations 
such as: new input/output devices; users evolving over time and new user profiles appearing constantly; applications submit-
ted to internationalisation with new languages, markets and cultures; applications that need to be extended to multiple organ-
isations; and new contexts and constraints imposed to use various modalities depending on context and platform. This is a 
major breakthrough as it will no longer be necessary to develop individual unique interface solutions for each application. 

Helping Address the Whole European Market 
Development of a standard language and a universal engineering framework will provide benefits in terms of time-to-market, 
productivity, reuse, propagation-of-change and usability/accessibility guarantees. UsiXML will help industries address the 
European market as a whole, instead of remaining in local niche markets. The results will improve the competitiveness of 
European industries and enable the needs of European citizen to be better satisfied.  

The market relevance also relates to the strong increase in demand for new types of user interface, driven by sectors such as 
the home, healthcare and mobility – and device heterogeneity. The complexity of user-interface design and the associated 
costs are increasing. Thus, a dramatic improvement in design efficiency is required, particularly to meet tough US competi-
tion. 

Adding Versatile Context-Driven Capabilities 
The success of the ITEA 2 project will reduce total application costs and development time by enhancing the UsiXML inter-
face modelling language through the addition of versatile context-driven capabilities.  

UsiXML is an XML-compliant mark-up language that describes a user interface for multiple contexts such as character, 
graphical, auditory or multimodal interfaces. Thanks to UsiXML, non-developers can shape the user interface of any new in-
teractive application by specifying it in UsiXML, without requiring the programming skills usually found in mark-up and 
programming languages. 

This project offers a practical application of model-driven architecture (MDA) and engineering (MDE) that will show imme-
diate benefits in day-to-day software engineering. The impact of UsiXML on European technological and commercial ad-
vancement will be mainly found in:  

 Advancement of European state-of-the-art in modelling and model transformation techniques for human-computer 
interaction;  



- 5 - 

 

 Technological transfer from the academic partners to large and small industries;  
 Stronger positioning in the standardisation bodies; and 
 The very high performance/price ratio of the UsiXML solution as no hardware investment will be needed – giving 

the companies marketing it a strong edge.  

Demonstrating Real Benefits in Use 
Innovations in UsiXML will help European software vendors and industrial systems makers to increase productivity in soft-
ware development and reduce development costs. The three major outcomes will be: 

1. A development methodology for multi-target user interfaces integrating the whole μ7 concept; 
2. A software environment for developers guaranteeing the quality and usability of the resulting user interfaces; and 
3. A UsiXML language release under standardisation and XML compliant. 

These results will reduce time to market, speed-up productivity, improve factorisation, speed change propagation and better 
assess usability and accessibility.  

While one of the main goals is standardisation, companies need to be shown that there is a real benefit for them, in their do-
main and with the constraints they face in their everyday business. The ITEA 2 project will validate the UsiXML User Inter-
face Description Language (UIDL) and framework in a wide range of applications offering a broad spectrum of characteris-
tics. This will encourage the build-up of the momentum required for the adoption of UsiXML as a general-purpose user-
interface definition language throughout Europe. 

UsiXML Project technical data 
Project start: October 2009 

Project end: September 2012 

Partners 
Thales Research & Technology, Université catholique de Louvain, Bilbomatica, Vector Software Company, PY Automation, 
Defimedia, See & Touch, Namahn, ProDevelop, Baum Engineering, Aérodrones, W4 S.A., SymbiaIT, Institut Télécom, In-
stitutul National de Cercetare-Dezvoltare in Informatica, Université Joseph Fourier, Laboratoire d’Informatique de Paris 6, 
Université de Troyes,  University of Namur, DAI-Labor, University of Rostock, Universidad Politecnica de Valencia, Uni-
versity of Castilla-La Mancha, University of Madeira, Agence Wallonne des Télécommunications. 

Countries 
Belgium, France, Germany, Portugal, Romania, Spain. 

Contacts 
Project Leader: David Faure, Thales Research & Technology, France 

David.Faure@thalesgroup.com 

Scientific Coordinator: Jean Vanderdonckt, Université catholique de Louvain, Belgium 

Jean.Vanderdonckt@uclouvain.be 

Project website: 

UsiXML Language Web Site: http://usixml.org 

UsiXML project web site: http://www.usixml.eu 

Support 
ITEA2 is the EUREKA program #3674 and supports UsiXML project.  

  

 

 

 



- 6 - 

 

 

UsiXML 2011 Workshop Organization 
 
 General Co-Chairs: Adrien Coyette (Université catholique de Louvain, Belgium) 

  David Faure (Thales Research & Technology, France) 

  Juan Manuel Gonzalez Calleros (Benemérita Universidad Autónoma de Puebla, Mexico) 

  Jean Vanderdonckt (Université catholique de Louvain, Belgium) 

 

 Program Committee: M. Abed (Université de Valenciennes, France) 
  C. Aguéro (Thales Research & Technology, The Netherlands) 
  D. Akoumianakis (Technological Education Institution of Crete, Greece) 
  M. Ph. Armbruster (Technical University of Berlin, Germany) 
  M. Blumendorf (DAI Labor, Germany) 
  B. Bomsdorf (University of Fulda, Germany) 
  P. Bottoni (University of Rome “La Sapienza”, Italy) 
  K. Breiner (University of Kiel, Germany) 
  G. Calvary (Université Joseph Fourier, France) 
  J. M. Cantera Fonseca (Telefonica, Spain) 
  K. Coninx (University of Hasselt, Belgium) 
  A. Coyette (Université catholique de Louvain, Belgium) 
  J. Creissac Campos (University of Minho, Portugal) 
  A.-M. Dery-Pinna (Ecole Polytechnique Universitaire de Sophia-Antipolis, France) 
  S. Dupuy-Chessa (Université Joseph Fourier, France) 
  D. Faure (Thales Research & Technology, France) 
  P. Forbrig (University of Rostock, Germany) 
  E. Furtado (University of Fortaleza, Brazil) 
  J. Gallud (University of Castilla-La Mancha, Spain) 
  J. Garcia-Molina (University of Murcia, SpainI 
  J. M. González Calleros (Benemérita Universidad Autónoma de Puebla, Mexico) 
  P. Gonzalez (University of Castilla-La Mancha, Spain) 
  G. Gronier (Centre de Recherche Public Henri Tudor, Luxembourg) 
  J. Guerrero Garcia (Benemérita Universidad Autónoma de Puebla, Mexico) 
  H. Kaindl (Univeristy of Vienna, Austria) 
  S. Kanai (University of Hokudai, Japan) 
  Ch. Kolski (Université de Valenciennes, France) 
  J. Leite (Campus Universitário – Lagoa Nova, Brazil) 
  V. M. Lopez Jaquero (University of Castilla-La Mancha, Spain) 
  M.D. Lozano (University of Castilla-La Mancha, Spain) 
  K. Luyten (University of Hasselt, Belgium) 
  I. Marin (Fundacion CTIC, Spain) 
  F.J. Martinez (University of Zapatecas, Mexico) 
  G. Meixner (DFKI, Germany) 
  F. Montero (University of Castilla-La Mancha, Spain) 
  J. Muñoz-Arteaga (Universidad Autónoma Aguascalientes, Mexico) 
  Ph. Palanque (IRIT, France) 
  O. Pastor (Polytechnic University of Valencia, Spain) 
  H. Paulheim (University of Darmstadt, Germany) 
  V. Penichet (University of Castilla-La Mancha, Spain) 
  J. Plomp (VTT, Finland) 
  S. Praud (Thales R&T, France) 
  J.C. Preciado (Universidad de Extremadura, Spain) 
  C. Pribeanu (ICI, Romania) 



- 7 - 

 

  G. Rossi (University of La Plata, Argentina) 
  A. Seffah (Université de Troyes, France) 
  R. Tesoriero (Université catholique de Louvain, Belgium and 
  University of Castilla-La Mancha, Spain) 
  Ph. Thiran (University of Namur, Belgium) 
  D. Tzovaras (Center for Research & Telematics - Hellas, Greece) 
  J. Vanderdonckt (Université catholique de Louvain, Belgium) 
  K. Van Hees (Katholieke Universiteit Leuven, Belgium) 
  M. Winckler (IRIT, France) 
  J. Ziegler (University of Duisburg Essen, Germany) 



- 8 - 

 

Table of contents 
Keynote papers 
3D Digital Prototyping and Usability Assessment of User Interfaces based on  
 User Interface Description Languages: Lessons learned from UsiXML and XAML ........................  1 

 Kanai, S. 

UsiXML Extension for Avatar Simulation Interacting within Accessible Scenarios ................................  21 

 Serra, A., Navarro, A., Naranjo, J.-C. 

 

Full papers 

Methodological aspects 

Support Tool for the Definition and Enactment of the UsiXML Methods ................................................  27 
Boukhebouze, M., Ferreira, W.P., Koshima, N.A., Thiran, Ph., Englebert, V. 

Towards Methodological Guidance for User Interface Development Life Cycle .....................................  35 
Cano Muñoz, F.J., Vanderdonckt, J. 

Improving the Flexibility of Model Transformations in the Model-Based Development of 
Interactive Systems ............................................................................................................................  46 
Wiehr, Ch., Aquino, N., Breiner, K., Seissler, M., Meixner, G. 

Towards Evolutionary Design of Graphical User Interfaces .....................................................................  53 
Guerrero-García, J., González-Calleros, J.M., Vanderdonckt, J. 

Challenges for a Task Modeling Tool Supporting a Task-based Approach to User Interface Design ......  63 
Pribeanu, C. 

A Model for Dealing with Usability in a Holistic Model Driven Development Method ..........................  68 
Panach, J.I., Pastor, O., Aquino, N. 

Proposal of a Usability-Driven Design Process for Model-Based User Interfaces ...................................  78 
Montecalvo, E., Vagner, A., Gronier, G. 

Towards a new Generation of MBUI Engineering Methods: Supporting Polymorphic Instantiation 
in Synchronous Collaborative and Ubiquitous Environments ...........................................................  86 
Vellis, G., Kotsalis, E., Akoumianakis, D., Vanderdonckt, J. 

Multi-target user interfaces 

Technique-Independent Location-aware User Interfaces ..................................................................................  96 
Tesoriero, R., Vanderdonckt, J., Gallud, J.A. 

Adaptive User Interface Support for Ubiquitous Computing Environments ....................................................... 107 
Desruelle, H., Blomme, D., Gionis, G., Gielen, F. 

Supporting Models for the Generation of Personalized User Interfaces with UIML ........................................... 114 
Bacha, F., Marçal de Oliveira, K., Abed, M. 

Architecture for Reverse Engineering of Graphical User Interfaces of Legacy Systems ...................................... 122 
Ramón, O.S., Cuadrado, J.S., Molina, J.G. 

Model-based Reverse Engineering of Legacy Applications User Interfaces ....................................................... 128 
Montero, F., López-Jaquero, V., González, P. 

 



- 9 - 

 

 

UsiXML Concrete Behaviour with a Formal Description Technique for Interactive Systems .............................. 134 
Barboni, E., Martinie, C., Navarre, D., Palanque, Ph., Winckler, M. 

An Abstract User Interface Model to Support Distributed User Interfaces ......................................................... 144 
Peñalver, A., López-Espín, J.J., Gallud, J.A., Lazcorreta, E., Botella, F. 

 

Software support for UIDLs 

A Graphical UIDL Editor for Multimodal Interaction Design Based on SMUIML ............................................. 150 
Dumas, B., Signer, B., Lalanne, D. 

FlexiXML, A Portable User Interface Rendering Engine for UsiXML .............................................................. 158 
Campos, J.C., Alves Mendes, S. 

Model-Driven Engineering of Dialogues for Multi-platform Graphical User Interfaces ...................................... 169 
Mbaki, E., Vanderdonckt, J., Winckler, M. 

Inspecting Visual Notations for UsiXML Abstract User Interface and Task Models .......................................... 181 
Sangiorgi, U., Tesoriero, R. Beuvens, F., Vanderdonckt, J. 

Adaptive Dialogue Management and UIDL-based Interactive Applications ...................................................... 189 
Honold, F., Poguntke, M., Schüssel, F., Weber, M. 

 

UIDLs for Specific Domains of Activity 

An Extension of UsiXML Enabling the Detailed Description of Users Including Elderly and Disabled ............... 194 
Kaklanis, N., Moustakas, K., Tzovaras, D. 

Issues in Model-Driven Development of Interfaces for Deaf People ................................................................. 202 
Bottoni, P., Borgia, F., Buccarella, D., Capuano, D., De Marsico, M., Labella, A., 
Levialdi, S. 

Concurrent Multi-Target Runtime Reification of User Interface Descriptions .................................................... 214 
Van Hees, K., Engelen, J 

User Interface Description Language Support for Ubiquitous Computing ......................................................... 222 
Miñón, R., Abascal, J. 

A Theoretical Survey of User Interface Description Languages: Complementary Results ................................... 229 
Guerrero-Garcia, J., González-Calleros, J.M., Vanderdonckt, J., Muñoz-Arteaga, J. 

Automated User Interface Evaluation based on a Cognitive Architecture and UsiXML ...................................... 237 
Osterloh, J.-P., Feil, R. Lüdtke, A.,González-Calleros, J.M. 

User Interface Generation for Maritime Surveillance: An initial appraisal of UsiXML V2.0 ............................... 242 
Robinson, Ch. R., Cadier, F. 

 

 



- 1 - 

 

3D Digital Prototyping and Usability Assessment of 
User Interfaces based on  

User Interface Description Languages: 
Lessons learned from UsiXML and XAML 

 

Satoshi Kanai 

Div. of Systems Science and Informatics, Graduate School of Information Science and Technology 
Hokkaido University, Kita-14, Nishi-9, Kita-ku, Sapporo, 064-0807 (Japan) 

kanai@ssi.ist.hokudai.ac.jp – http://www.sdm.ssi.ist.hokudai.ac.jp/ 

ABSTRACT 
Usability-conscious design while shortening the lead time 
has been strongly required in the manufactures of infor-
mation appliances in order to enhance their market compet-
itiveness. Prototyping and user-test of their user interfaces 
at early development stage are the most effective method to 
fulfill the requirements. However, fabricating the physical 
prototype costs much, and they become available only in 
late stage of the design. To solve the problem, advanced 
tools for UI prototyping were proposed and developed 
where a UI-operable 3D digital prototype can be fabricated 
in a less-expensive way based on user interface description 
languages (UIDLs), and where the user test and usability 
evaluation can be performed in more systematic and effi-
cient way than in the physical prototype. In the tools, two 
conventional UIDLs were adopted: UsiXML and XAML. 
And their specifications were expanded to support not only 
declarative description of static structures and dynamic be-
haviors of the UI, but 3D geometric model of appliance 
housings and physical UI objects placed on them. Case 
studies of the automated user tests, usability assessments 
and UI redesigns utilizing our developed tools are shown. 

Author Keywords 
Prototyping, usability-conscious design, UIDL, UsiXML, 
XAML, user test, information appliances. 

General Terms 
Design, Experimentation, Human Factors, Verification. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H5.2 [Information interfaces and 
presentation]: User Interfaces – Ergonomics; Graphical 
user interfaces (GUI); Prototyping. J.6 [Computer Appli-
cations]: Computer-aided Engineering. 

INTRODUCTION 
With stiffer global market competition of information ap-
pliances, usability-conscious design while shortening the 
lead time have been required in the manufactures. The 

manufactures are placing a premium on increasing efficien-
cy and consciousness of usability in the UI software devel-
opment of their appliances. The “usability” is defined as 
“the extent to which a product can be used by specified us-
ers to achieve specified goals with effectiveness, efficiency 
and satisfaction in a specified context of use”.  

There are several methods of evaluating usability [6]. 
Among the methods, the “user test” is recognized as the 
most objective and effective one where end users are di-
rectly involved in the evaluation. 

In the user-test, designers make end users operate a work-
ing“prototype” of the appliance, observe the user’s opera-
tional situation, and closely investigate ergonomic issues of 
the UI design.  

However in the current UI software development for the 
prototype, its specifications are still described by written 
documents, and the software is implemented based on the 
documents. This makes the prototype implementation pro-
cess inefficient if a redesign of the UI is needed after the 
user test. 

Moreover, the “physical” prototypes of the appliances are 
mostly used in the user-tests. However, fabricating the 
physical prototypes costs much. For example, as shown in 
Figure 1, a working physical prototype of a compact digital 
camera costs a few thousand dollars which is around one 
hundred times more expensive than the final product. The-
se prototypes also become available only in late stage of 
the design.  

(a) User test (b) Physical prototype  
Figure 1. User test and a physical prototype. 



- 2 - 

 

Results of the user-test must be analyzed manually by the 
usability engineers, and a long turnaround time is needed 
before finding major usability problems. If problems of the 
UI design appear at this time, it is often too late for changes 
within their development schedule. 

To solve the problems, digital prototyping of the UI has 
been introduced in the user-test. A digital prototype is 
software substitute where its UI functions can work almost 
in the same way as those in the physical prototype while it 
can be built in much inexpensive way. 

RELATED WORK 
2D and 3D digital prototypes 
So far, as shown in Figure 2, both 2D and 3D digital proto-
types have been proposed and used for simulation and user-
test of UI operations in the information appliances. Com-
mercial digital prototyping tools have been already availa-
ble such as [17,21,22] as shown in Figure 2-(a). And those 
for conceptual UI design were also studied in [14,15]. 

(a) A 2D digital prototype (b) A 3D digital prototype  
Figure 2.  2D and 3D digital prototypes. 

However, since 2D digital prototypes could only be built in 
these tools and its UI simulation were only limited to 2D 
and lacked reality, the user performance obtained from the-
se prototypes were not necessarily the same as those of 
physical prototypes. Former studies including ours [11, 20] 
showed that operation time and missed operation patterns 
in a 2D digital prototype were very different from those of 
the physical prototype and serious usability’s problems 
were overlooked in 2D case.   

On the other hand, “3D” digital prototypes allows users to 
manipulate UI elements placed on 3D housing models of 
the appliances and to perform more realistic UI simulation 
than 2D ones. In our former study [11], the missed opera-
tion patterns in a 3D digital prototype were also highly cor-
relative to those of the real product.   

Unfortunately, there have been few dedicated tools of 3D 
digital prototyping for information appliances [8,11,20]. In 
[8], they added a logging function to a VRML player and 
applied it to the user test of mobile phones. In [20], they 
developed a tool for 3D augmented prototyping for some 
hand held information appliances with state-based UI simu-
lation.  

Issues of current 3D digital prototypes  
To assure reliability of the user test results to some extent 
in the early design stage, 3D digital prototypes are more 

likely to be suitable for testing and evaluating the logics of 
the UI, and for clarifying the weaknesses and what needs 
improvement in the UI design.   

Model of the 3D
housing geometry

Menu List

Model of 
the UI system

Button 
Pressed

(a) Static Structure  
model

(b) Dynamic Behavior 
model

 
Figure 3.  Modeling constituents of the UI operable 3D 

digital prototype. 

As shown in Figure 3, the modeling of UI operable 3D dig-
ital prototypes consists of two parts; the model of the UI 
system and of the 3D housing geometry. Moreover the 
model of the UI system is divided into the static structure 
model and the dynamic behavior model. The static struc-
ture model of UI describes graphical properties of individ-
ual 2D components displayed on the UI screen such as 
menu-list, button, list-box, slider and image component, 
and also describes containers for the component layout 
such as window and tabbed dialog-box. While the dynamic 
behavior model of UI describes how graphical properties of 
the 2D components of the UI change in interaction and en-
ables us to simulate the state change of the UI part in the 
appliance.  

Conventional UI operable 3D digital prototypes were built 
and run using the Web3D authoring tools and their players 
[8,25,26,27]. However, the following technical issues re-
main when we use the Web3D as the UI operable 3D digi-
tal prototype for user test and usability assessment; 

Lack of the static structure model of the UI  
The static structure of the 2D components displayed on a 
UI screen such as menu list or icon placements cannot be 
directly modeled in the Web3D formats. So a huge number 
of digital image files representing snapshots of the UI 
screen must be built using the 2D drawing or painting tools 
before the UI simulation and the user test. This preparatory 
work makes the simulation turn-around very slow. 

Lack of the dynamic behavior model of the UI 
The Web3D formats usually provide script-based control 
function which enables 3D kinematic animations, change 
of the graphical properties of 3D objects and texture map-
ping etc. But the function cannot simulate the dynamic be-
haviors of the 2D components displayed inside the UI 
screen.  The We3D formats do not also provide any declar-
ative dynamic behavior model of the UI system which is 
based on state-based or event-based formalisms. These 
formalisms of the UI fit to the screen transition diagrams in 
early UI design stage [4,13], and are indispensable to the 
specification. The lack of the declarative dynamic behavior 
model forces UI designers to code the behavior using pro-



- 3 - 

 

gramming language. But the designers are not necessarily 
programming professionals, and the task makes the cost of 
UI simulation and user testing expensive. 

Lack of user test and usability assessment functions 
The Web3D formats do not provide any functions of user 
test execution and usability assessment based on the opera-
tional logs. Doing these works manually on the digital pro-
totype makes the usability assessment time-consuming and 
the assessment results inaccurate. 

To solve these issues, the dedicated functions of modeling 
the static structure of the UI-screens, of modeling the 
event-based or state-based dynamic behavior of the interac-
tion, and of supporting the computer-aided test execution 
and the usability assessment must be added to the tradition-
al Web3D authoring tools and players.  

To achieve them, our research group has been developing 
advanced tools for UI prototyping were proposed and de-
veloped where a UI-operable 3D digital prototype can be 
fabricated in a less-expensive way based on user interface 
description languages (UIDLs), and where the user test and 
usability evaluation can be performed in more systematic 
and efficient way than in the physical prototype. In the 
tools, two conventional UIDLs were adopted for UI speci-
fication and implementation in the final development stage; 
UsiXML [24, 28, 29] and XAML [18, 31]. And their speci-
fications were expanded to support not only declarative de-
scription of static structures and dynamic behaviors of the 
UI, but 3D geometric model of appliance housings and 
physical UI objects placed on them.  

In the following sections, the functions and features of the 
two developed tools each of which is respectively based on 
UsiXML or XAML are introduced. Case studies of the au-
tomated user tests, usability assessments and UI redesigns 

utilizing our developed tools when applied to UI prototyp-
ing of digital cameras on the market are shown. 

UsiXML-BASED 3D DIGITAL PROTOTYPING AND  
USABILITY ASESSMENT 
An Overview 
As the first approach, the 3D digital prototyping and usa-
bility assessment tools based on Usi-XML were developed 
by our group [11]. Figure 4 shows the functional overview 
of the tools. The features of the tools are summarized as 
follows:  

(1) The model-based specification of UsiXML, which is 
one of the XML-compliant UI description languages, 
was extended to enable the UI designer to specify the 
declarative model not only of the logical UI elements 
displayed on the screen but of the physical UI elements 
such as buttons and dials placed on appliance’s hous-
ings.  

(2) 3D UI prototyping and simulation functions were de-
veloped where the extended UsiXML was combined 
with the 3D CAD models of the housings and where 
the UI interaction were simulated based on the declara-
tive model of the UI behavior described by the 
UsiXML.  

(3) The automated usability assessment functions were 
developed which in such a way that they were tightly 
connected to the declarative model of the UI and to the 
simulation functions.  

(4) An example of the usability assessment and the UI re-
design using the 3D digital prototype of a digital cam-
era using our tool was shown the effectiveness and re-
liability of our proposed tool. 

UsiXML 
Editor

3D
CAD

3D UI 
operable

Prototyping
Function

User‐test
Execution 
Function

Usability 
Assessment 
Function

Test Task Model
(XML Document)

Declarative 
Model of UI

(extended  UsiXML,
XML Docment )

•Operation Log
• Results of 
questionnaires

Product 
Designers

UI Designers

Test 
subjects

3D UI 
operable
prototype

3D CAD model 
of housing

Defines

•Static 
Structure 
Model

•Dynamic 
Behavior 
Model 

Design 
Change 
Request 

Defines

Usability
Professionals

(XML Text editor)

•User Performance Measures
•Operational Log Analysis Chart
•Summary of questionnaires

Defines

Executes 
test to complete 
a task  

Figure 4.  An overview of the UsiXML-based prototyping, user-test and usability assessment tools. 



- 4 - 

 

UsiXML and its extensions 
UsiXML 
Several XML-based user interface mark-up languages have 
been recently proposed to make UI prototyping of PC ap-
plications reduced and structured: UIML [23], XUL [30], 
and UsiXML [24]. Each of them specifies models for de-
fining the UI and allows us to describe the UI model in de-
clarative terms. They enable the UI designers or UI pro-
grammers to specify what elements are to be shown in the 
UI and how should they behave in XML documents. This 
concept becomes an advantage for defining 3D digital pro-
totypes of handy information appliances from the following 
standpoints:  

(1) The static structure of the 2D component objects dis-
played on the UI screen is explicitly and declaratively 
modeled and described by the XML document. The 
snapshot of the UI screen can be automatically drawn 
in the simulation based on the static structure model if 
we realize the real-time rendering function for the 
model. It can eliminate the preparatory work of the UI 
simulation, and makes its turn-around efficient.  

(2) The dynamic behavior of the UI interaction has to be 
described by script or ordinary programming language 
in most the of UI mark-up languages (UIML, XUL and 
XAML). However, in the UsiXML, the behavior can 
also be explicitly described as an event-based model. 
The model can eliminate the coding of UI dynamic be-
havior simulation if an execution function of the be-
havior model in the simulator of the 3D digital proto-
type is realized. 

(3) The user test and the usability assessment can be au-
tomated if the static structure and the dynamic behav-
ior models of the 3D digital prototype are reused for 
analyzing the property of the subject’s operations in 
the usability assessment functions. It can make the cy-
cle of prototyping-testing-redesigning very efficient. 

Therefore, we introduced UsiXML to our study, because it 
can describe the dynamic behavior model of the UI in a de-
clarative way and model the UI at a different level of ab-
straction. UsiXML was originally proposed by Vander-
donckt et al. [16, 28]. It aims at expressing a UI built with 
various modalities of interaction working independently. 
The UI development methodology of UsiXML is based on 
the concept of MDA (Model Driven Architecture).  

Issues of the UsiXML from the aspect of 3D digital proto-
types. 
The concept and specification of UsiXML is advanced in 
UI prototyping, but it has still the following issues when 
we directly use it for developing UI operable 3D digital 
prototypes and for the usability assessment; 

(1) As shown in Figure 5-(a), the CUI of UsiXML speci-
fies the static structure model of 2D UI component ob-
jects displayed on the UI screen, but the current CUI 
only specifies the static structure model for WIMP 

(Windows-Icons-Menus-Pointers)-type GUI. In 
UsiXML, there are no specifications for the physical 
UI elements such as buttons, dials, lumps and dials 
placed on the information appliance’s housing shown 
in Figure 5-(b), which are essential for modeling the 
UI operable 3D digital prototypes. 

(2) Many experimental automated tools have been devel-
oped for UsiXML. However, there is no 3D UI proto-
typing and simulation tool available to UsiXML at pre-
sent. The event-based dynamic behavior model is 
specified in the CUI, but it has not been reported yet 
how the dynamic behavior of the UI is described con-
cretely, nor how the model of the CUI should be im-
plemented on a particular Web3D format.  

(3) UsiXML has been originally developed for UI proto-
typing, but at present there is no specification and no 
supporting tool concerning user testing and usability 
assessments which utilize the UI prototype. Therefore, 
we cannot incorporate the functions of user testing and 
usability assessment into UI prototyping based on 
UsiXML. 

Extensions of the CUI model of UsiXML 
The current specifications of the CUI in UsiXML mainly 
consist of the static structure model of the objects displayed 
on the UI screen and the dynamic behavior model of the in-
teractions of the UI. The static structure model further con-
sists of the UI object model and the object container model. 
The UI object model expresses the individual GUI compo-
nent object displayed on the UI screen such as buttons, list-
boxes, image components, etc., while the object container 
model does the whole-part relationships among the multi-
ple GUI objects such as a window and a tabbed dialog box.  
The dynamic behavior model consists of the event-based 
rewriting rules of the UI screen in interaction and of the 
procedures and variables to refer to the internal data of the 
device.    

(a) Static structure model of  WIMP-based UI objects 

Lens Cover & Power Switch

ListBox

window

textBox

Tabbed
DialogBox

ComboBox

Slider

Button

CheckBox

RadioButton

ButtonIndicator
Lump

4 Directional
cursor button

Switch 3 state button

LCD 

(b) Static Structure model of Physical UI objects   
Figure 5. Types of UI component objects modeled in the 

static structure model. 



- 5 - 

 

PhysicalCio

PhysicalButton

PhysicalIndicatorPhysicalButtonArray

PhysicalContainer

housing

PhysicalSwitch

PhysicalInputComponent

PhysicalScreen

PhysicalOutputComponent

CuiModel

CIO

graphicalCio

graphicalContainer
graphicalIndividual

Component
PhysicalIndividualComponent

Physical3statesButton

window

TabbedDialogBox

ListBox

Button

imageComponent

Container class of describing the
part‐whole relationship among GUI objects

Super class of all GUI object classes

Super class of concrete individual 
GUI object classes

Examples of graphicalCio objects  
Figure 6.  UML class diagram and its example of the 

original CUI model of UsiXML. 

In this research, we extended this static-structure-model 
part of UsiXML so as to fit it to the UI operable 3D digital 
prototyping. Figure 6 indicates the UML class diagram and 
its example which expresses a part of the original CUI 
model structure in the UsiXML. In the structure, graph-
icalCio is the super class of all GUI object classes in the 
model, and graphicalContainer is the container class for 
the GUI objects.  The concrete classes of the GUI objects 
and the object containers of UI are defined as a subclass of 
these two classes.   

On the other hand, Figure 7 indicates the class diagram and 
its example of our extension of the CUI model. We extend-
ed the class structure of the CUI model to express the phys-
ical UI objects such as physical buttons, dials and lumps 
placed on the 3D geometric model of the appliance’ hous-
ing.  First, we added a new class physicalCio to the same 
class hierarchy level as one of the graphicalCio class. Then 
we further created two new classes of PhysicalIndividual-
Component and PhysicalContainer as subclasses of the 
graphicalCio. The Physical-IndividualComponent class 
expresses the one for modeling each the physical UI object, 
and the PhysicalContainer class does the physical housing 
of the appliances which play a role of the virtual container 
in aggregating the physical UI objects. Moreover, as the 
subclasses of PhysicalIndividualComponent, we added a 
PhysicalButton class and PhysicalScreen class to the sub-
classes of PhysicalIndividualComponent in order to ex-
press concrete buttons and LCDs placed on the housing.  
Figure 6 shows the correspondence between the physical 
UI objects in a digital camera and the classes describing 
them. 

Design of the XML document structure of the extended CUI 
model  
The current version of the UsiXML does not specify the 
explicit XML encoding rule of the CUI model. Therefore, 
we specified a tag structure of the XML document of our 
extended CUI model independently. This tag structure is 
imported to the 3D UI operable prototyping functions and 
is used for the 3D UI simulation. Figure 8 shows an exam-
ple of the tag structure in XML document and their presen-
tations in the UI screen image.  

PhysicalCio

PhysicalButton

PhysicalIndicatorPhysicalButtonArray

PhysicalContainer

housing

PhysicalSwitch

PhysicalInputComponent

PhysicalScreen

PhysicalOutputComponent

CuiModel

CIO

graphicalCio

graphicalContainer

graphicalIndividualComponent
PhysicalIndividualComponent

Physical3statesButton

window

TabbedDialogBox

Menu

Button

imageComponent

既存のUsiXMLクラスの一部

Examples of 
PhysicalCio
objects

Super class of all 
physical UI object classes

Container class of describing the 
part‐whole relationship among 

physical UI objects

Super class of concrete 
individual physical UI object 
classes

 
Figure 7. UML class diagram and its example of our ex-

tended CUI model of UsiXML. 

 

<CuiModelPresentati
on><housing・・・>
<PhysicalButton id 

=“LeftButton” />
</></>

<window ・・・>

<imageComponent ・・・
isVisble = “False” ・・・/>

<window/>

<window ・・・>
<imageComponent ・・・

isVisble = “True” ・・・/>
<window/>

<CuiModel‐Behavior><TransformationRule・・・>
<PhysicalButton id = “LeftButton”・・・>

<lhs><imageComponent isVisble = “False” ・・・/></lhs>
<rhs><imageComponent isVisble = “True” ・・・/></rhs>

</TransformatonRule ></PhysicalButton></PhysicalButton>

LeftButton
clicked

Rewriting

Current Window status
Window status 
after transition

Matching

Condition of 
the transition

Action of 
the transition

Rewriting Rule of 
the UI screen

Tags for physical 
UI objects

Screen transition

Source of 
event

Tags in <CuiModel‐Behavior> Tags in <CuiModel‐Behavior>

 
Figure 8. UI screen transition rule described in XML 

document of the extended UsiXML. 

The structure consists of a <CuiModel-Presentation> tag 
and a <CuiModel-Behaviour> tag. The former represents 
our extended static structure model of the CUI which ex-
press the objects displayed in the UI screen, while the latter 
does the dynamic behavior model which corresponds to the 
UI screen transition. And concrete CUI objects are de-
scribed inside these two tags in our XML document.  

To describe the UI screen transition, we set up a <Trans-
formationRule> tag inside the <CuiModel-Behaviour> tag 
which describes the general graph rewriting rule mecha-
nism defined in the original UsiXML specification. As 
shown in Figure 8, in the <CuiModel-Behaviour> tag, we 
put the pair of a condition tag <lhs> and an action tag 
<rhs> together by each tag corresponding to the subclass of 
PhysicalInputComponent class. The condition tag express-
es a condition where the screen transition occurs because of 
an event coming from the physical UI objects. And the ac-
tion tag expresses the state of the UI screen after the screen 
transition occurs.  

In the user-test execution function, if an event occurs in an 
object belonging to any subclass of the PhysicalInputCom-
ponent class, the function tries to find a <Transfor-
mationRule> tag which has the same tag id as the source of 
the event from all tags inside the <CuiModel-Behavior> 



- 6 - 

 

tag. And if the current tag and its attribute values in the 
<CuiModel-Presentation> tag are exactly identical to the 
ones written in the <lhs> tag in the <TransformationRule> 
tag, then these attribute values are overwritten as the one in 
the <rhs> tag.  This overwriting mechanism implements the 
UI screen transition on the 3D UI operable prototype based 
on UsiXML. 

3D UI operable prototyping function 
2D CUI object renderer 
We developed a 3D UI operable prototyping function 
where the extended UsiXML is combined with the 3D 
CAD models of the housings and the UI interaction were 
simulated based on the dynamic-behavior model of the 
UsiXML. The 3D UI operable prototyping function con-
sists of the 2D CUI object renderer and the 3D UI operable 
simulator which is a remodeling of Web 3D player (Vir-
tools [27]). 

2D CUI 
object

renderer

Concrete spec. of the UI
described by  the extended 
UsiXML （ＸＭＬ Document）

Visual Basic

Platform dependent
UI presentation Spec.
(XML Document)

2D UI Prototype

2D UI screen Image
based on UsiXML spec.

<window  ・・・>
<imageComponet

・・・/>
</window>

Usi XML 
Documents

Dummy physical 
UI  objects

Reference model of
the extended UsiXML

<Box  boxType = “fix” x = 
“464” y =“12” ref 

=“image_Component08”/>

 
Figure 9.  Functions of 2D CUI object renderer. 

The 2D CUI object renderer is a VisualBasic application 
developed by ourselves. Figure 9 shows the function of the 
renderer. The renderer interprets the XML document of the 
extended UsiXML and accepts another XML document 
which defines the platform dependent UI presentation spec-
ification such as the concrete position of each GUI object 
and object containers on the UI screen. It renders the 2 di-
mensional UI screen image on the fly according to the UI 
screen transition rule described in the XML document. It 
also renders the dummy physical UI objects on the same 
2D UI screen.  So the renderer also enables the UI designer 
to do the 2D UI software prototyping when the renderer is 
used alone. The 2D CUI object renderer is executed during 
the 3D UI simulation cooperating with the Web 3D player 
to provide the main function for the UI simulation.  

The 2D CUI object renderer enables UI designers to elimi-
nate their preparatory works of generating a huge number 
of snapshot images of the UI screen, and makes the turn-
around time of the 3D UI simulation short. 

3D UI operable prototype simulator 
Figure 10 shows the 3D UI operable prototyping function. 
The function consists of the 2D CUI renderer and the 3D 
UI operable prototype simulator which is a commercial 
Web 3D player (Virtools [27]). We remodeled the players 

so that the Web 3D player runs with the CUI renderer sim-
ultaneously, and they exchange events via socket commu-
nication during the 3D UI simulation for the user-test.  

3D‐CAD data of 
the housing

<CuiModel‐Behavior＞
<PhysicalButton =id = “menu”   ・・・
><transformationRule>
<lhs><menu isVisible= “True”・・・
/></lhs><rhs></rhs>

<CuiModel‐Behavior＞
<PhysicalButton =id = “menu”   ・・・
><transformationRule>
<lhs></lhs><rhs><menu isVisible= 
“True”・・・/></rhs><

1)

2)

Socket 
Communication

Visual Basic

Web 3D player( Virtools）

Screen 
Image File

<CuiModel‐Presentation>・・・
<window・・・><menu ・・・isVisible

=“False”・・・/></window>
<CuiModel‐Presentation>

遷移の前の画面

<CuiModel‐Presentation>・・・
<window・・・><menu ・・・isVisible

=“True”・・・/></window>
<CuiModel‐Presentation>

UsiXML 
after rewriting

Operation of 
a physical UI 
objects

Sending the message 
of the input event

Rewriting Rule

Finding the 
matched tag

3D UI operable 
prototyping simulator

2D CUI object renderer

Test 
subjects

3)Updating the tag’s 
attribute values

4)

Rendering of a 
new UI screen

5)

Sending the message 
of the redrawing screen

6)

Loading the new 
screen image

7)

8) Indicating the 
updated UI screen 

 
Figure 10. 3D UI simulation function based on 

UsiXML. 

In the preliminary step of the 3D UI simulation, 3D CAD 
data of the housing is imported to the Web 3D player from 
3D-CAD systems (CATIA, Solidworks, etc.) in the format 
of 3D-XML[1]. The 3D-XML is a universal lightweight 
XML-based format for the sharing of 3D CAD models. 
The format includes the assembly and each part has its own 
unique part-name. In the model, a 3D object which is the 
source of an event or the destination of an action is mod-
eled as a single part. A button, a switch knob, an LCD 
screen and an LED are typical examples of these objects.  

In the Virtools player, a UI designer links an event and an 
action described in the  <lhs> tag and the  <lhs> tags in the 
<TransformationRule> tag in the dynamic behavior model 
of UsiXML to messages of the Virtools player. A message 
consists of a unique event-name, part-name and event-type. 
For an example, an event of “button_1_pushed” in the 
UsiXML model is tied to a message consisting of “mes-
sage-1” (event-name), “button-part-1” (part-name) and 
“on_clicked” (button-type). Consequently this linking op-
eration builds all logical links between the messages in the 
Virtools and events or actions in dynamic behavior model 
of UsiXML. 

As shown in the processing sequence in the Figure 10, the 
3D UI simulation is executed as the following procedure: 

(1) The user manipulates the 3D housing model of the 
appliances and operates a physical UI object such as 
a 3D button placed on the housing model using the 
mouse on the player. 

(2) The operation of the physical UI object is recog-
nized as an event in the player and it sends a unique 
message of the event to the 2D UI object renderer 
via socket communication. 

(3) The renderer analyses the incoming message to pick 
up the event, and tries to find a <Transfor-
mationRule> tag which has the same tag id as the 



- 7 - 

 

source of the event from all tags in the <CuiModel-
Behavior> tag. 

(4) If the current tag and its attribute values in the 
<CuiModel-Presentation> tag are identical to the 
ones written in the <lhs> tag in the <Transfor-
mationRule> tag, then these attribute values are up-
dated to the new ones according to the content of the 
<rhs> tag.   

(5) The renderer then redraws a new UI screen image 
after the screen transition in a scratch file according 
to the updated attribute values. 

(6) The renderer sends another message of the screen 
redraw event to the player. 

(7) The player loads the new screen image from the up-
dated scratch file. 

(8) The texture rendered on the face in the 3D housing 
model which corresponds to the UI screen changes 
to the new screen image. 

By repeating the procedure, the 3D UI simulation on the 
3D housing model which cooperates with the 2D UI simu-
lation is realized in the prototyping function. The UI simu-
lation rule is completely described in the XML document 
of UsiXML in declarative way, and the simulation execu-
tion is completely managed in the developed renderer. 

User test execution function 
Test task and task model 
In the user test, a subject is asked to complete a set of tasks 
by operating the UI, and actual operations for the task are 
analyzed to evaluate the usability. In our tools, we designed 
a “test task model” and made a logical link between the 
task model and the dynamic behavior model of the UI to 
automate the usability assessment. Figure 11 shows the test 
task model. This task model is originally developed for the 
“state-based” dynamic behavior model of the UI screen [9].  

Start_state Goal_state

State 1 State 2

State 3

State 5

State 4

State 6

Task Route 
1

Task 
Route 2

Check Point 2

Check Point2

Check Point 1

 
Figure 11.  Test task model. 

A task consists of a start state, goal state and a list of task 
routes. And a task route consists of a list of checkpoints. A 
checkpoint is a state where a correct sequence of UI opera-
tion must pass. A start state and a goal state refer to the 
state in the UI behavior model.  

Generally multiple correct operations of the UI exist in or-
der to achieve a goal. Therefore multiple task routes can be 
allowed for one task in the model. Moreover, lower and 

upper bounds for the number of operations or an allowable 
elapsed time between every two neighboring checkpoints 
can be also defined. If the elapsed time of a subject’s oper-
ation stays within these bounds, the operation is judged to 
be correct. In this way, usability professionals can adjust a 
range of correct operations in the task when determining 
the number of error operations and the task completion.  

State evaluation and operation logging  
The dynamic behavior model of the UsiXML is expressed 
by a set of transformation rules which describe how the at-
tribute values of the objects displayed in the UI screen have 
to be changed in response to the input event. Therefore it is 
the “event-based” dynamic behavior model, and the model 
does not have the explicit notion of “state” of the UI.    

However, in the user test, the task model was originally de-
signed for the “state-based” dynamic behavior model of the 
UI system [9]. And the notion of the state is indispensable 
for defining test task, recording user operation logs and 
identifying missed operation. Without the notion of the 
state, it is very difficult for the usability professionals to 
capture the situations of user operations. 

To solve the problem, we added the state evaluation func-
tion in the user test execution function. In this function, a 
set of conditions which describes attribute values of a CUI 
object to be taken in a particular “state” are defined in an 
XML document in advance. And the function always eval-
uates whether the condition holds or not in the UI simula-
tion of the user test. If a set of attribute values of the dis-
played CUI object is perfect match for the condition, then 
the function reports that the UI transits to the certain prede-
fined state.  

In some cases, there might be several different modes with 
a same set of attribute values in the behavior model. In this 
case, our state evaluation function cannot identify these 
modes as different states. Inserting an extra attribute for 
distinguishing one mode from others into the original set of 
attributes can solve this problem. 

Using this mechanism, the user test execution system can 
recognize which state the UI is in during the simulation. 
We also developed the operation logging function based on 
the state evaluation function. The logging function records 
all subject’s operations in the form of the combination of a 
time, a previous state, a next state and an input event com-
ing from the user interaction. The function saves these logs 
in a XML document. We integrated the state evaluate func-
tion and the operation logging function with the user test 
execution function, and enabled the usability professionals 
to manage the user operation log for every task during the 
user test.  

Test execution  
Shown in an example of Figure 12, at the beginning of eve-
ry new test session, the user test execution function indi-
cates a goal of each task in the form of an imperative sen-
tence. “Switch shooting mode from still to video” and “set 



- 8 - 

 

the self-timer for 20sec” are the typical examples of the 
goal. The goal is indicated on the other window just above 
the 3D digital prototype.  

Change shooting mode from  “Still Picture 
Mode” to “Video  Mode”

Test task displayed

3D UI operable prototype
 

Figure 12. 3D digital prototype under user-test. 

The subject is asked to complete the task by operating the 
UI of the 3D digital prototype in the session. The subject 
manipulates the 3D prototype by rotating, translating and 
enlarging it and operates the physical UI objects on the 
prototype by clicking or dragging them with a mouse in the 
virtual space. If the physical UI objects, such as buttons, 
are located on a different surface that cannot be seen from 
the 2D UI screen such as LCD, the subject have to rotate 
the prototype so as to make these objects face him/her.  

During the UI operation, the operation logging function 
records a sequence of state-transitions of the UI as a list of 
combinations of state and event together with the time 
stamps.  

At the end of the every test session, the operation logging 
function compares the actual sequence of state-transitions 
with all pre-defined task routes, allowable number of oper-
ations and elapsed time between checkpoints. Then the 
logging function judges whether the subject’s operation of 
the session for this task was correct or not, and identify 
which checkpoint state the subject made mistakes in his/her 
operation.  

Did you soon notice  
this switch ?

Questionnaire

A part 
indicated in
questionnaire

Rating button

 
Figure 13. Digital questionnaire on the prototype. 

If the operation is judged to be wrong, a set of digital ques-
tionnaires are progressively popped up on another screen at 
the end of the test session. One questionnaire is displayed 
corresponding to one checkpoint state at which the subject 
made a mistake.  A portion on the UI object in the 3D digi-
tal prototype related to each questionnaire is automatically 
pointed by the tool as shown in Figure 13.  

The subject is asked to answer to each questionnaire by 
choosing his/her impression from five grades.  For exam-
ple, when the questionnaire is “Did you soon notice this 
button?”, the rating is the one of “Strongly agree: 5”, 
“Agree: 4”, “Yes and No: 3”, “Disagree: 2” and “Strongly 
disagree: 1”. The subject answers this rating only by click-
ing one of the radio buttons placed on the questionnaire as 
shown in Figure 13. The rating is stored to clarify what 
needs improvement in the design in the usability assess-
ment function. The detail of this digital questionnaire is ex-
plained in the next section. 

Usability assessment function 
User performance measures  
The usability assessment function investigates the opera-
tion log data by comparing it with the test task and the dy-
namic behavior model of the UI. The function outputs the 
measures of usability assessment as a result of the analysis. 
The analysis can be automatically processed, and the func-
tion outputs measures of the user performances.  

We adopted the following three measures based on three 
basic notions of usability (effectiveness, efficiency and sat-
isfaction) defined in [7];  

1) The number of user events inputted in each task and 
in each subject,   

2) Elapsed time in each task and in each subject,  

3) Personal task achievement ratio, and 

4) Scores for SUS questionnaire [2]. 

Operational log analysis chart  
An actual sequence of operations is compared with one of 
the correct task routes defined in the test task, and the re-
sult of the comparison is graphically displayed in the form 
of “operational log analysis chart” on the lower part of the 
screen.  

Figure 14 shows the notation of this operational log analy-
sis chart.  Each rectangle shows a state, and a line between 
two rectangles does a transition between states. A left-most 
rectangle in the chart indicates a start state, and a right-
most rectangle does a goal state.  The upper most horizon-
tal white straight line indicates transitions on a correct task 
route, and every rectangle with orange edges on this line 
except both ends corresponds to each checkpoint. While 
the blue rectangles and blue lines indicate actual operation 
sequence of the subject. If a subject does UI operations 
whose elapsed time or number of events between two 
neighboring check points exceeds the predefined bounds, 
the tool judges that a subject did a wrong operation on the 



- 9 - 

 

UI, and draws additional blue rectangles and blue lines in 
downward direction corresponding to these wrong opera-
tions.   

Start 
state

Check 
Point 1

Check 
Point 2

Blue line & Blue box：
Actual sequence of 

operation

Box and lines 
downward：

Missed operation and 
its state transitions

Goal
state

Correct task route

 
Figure 14.  Operational log analysis chart. 

Therefore, as the depth of the chart becomes larger, the us-
ability professionals can easily recognize at a glance which 
states the subject did more missed operation in the task. 

Digital questionnaires 
The operational log analysis chart can clarify particular 
states in the UI screen transition where many subjects made 
errors in the UI operations. However, the chart cannot pro-
vide enough information to enable UI designers to find the 
cause of missed operations and to redesign the UI in order 
to improve the user’s performance.  

To solve this problem, the digital questionnaire execution 
function has been developed to identify the causes of the 
missed operations. The structure of the digital question-
naires is built based on an extension of the cognitive 
walkthrough method which is dedicated by the HCI (Hu-
man Computer Interaction) model.   

To construct the digital questionnaires, we first introduced 
the extended HCI (Human-Computer-Interaction) model. 
The extended HCI model [3] is an extension of the CW 
method whose questionnaire is formulated based on an ex-
tended model of Norman’s HCI[19] that explicitly distin-
guishes between object and action, and between perceiving 
and understanding. The questionnaires were originally used 
for the usability evaluation of Web sites. The question-
naires based on the extended HCI model are easier to un-
derstand for end users (Table 1).  

However, as shown in Table 1, the questionnaires based on 
the extended HCI model still have abstract expressions. We 
further make them more straightforward and concrete when 
using them in the user tests of information appliances so 
that the end users can understand them more easily as 
shown in Table 1. For example, a questionnaire of the ex-
tended HCI model which examines the perception of the 
object to be manipulated is expressed as “Will users be able 
to perceive the object to be manipulated?”. We changed it 
to more plain one; “Did you soon notice this button?” when 
applying it to the test of a digital camera.  

Moreover, we also implemented a function that automati-
cally points to a 3D object which corresponds to “this but-
ton” or “here” on the 3D digital prototype when indicating 
a certain portion in the questionnaire as shown in Figure 
14. This function enables end users involved in the test to 
understand each item of the questionnaire more easily, and 
also enables usability professionals to save a quite bit of 
manpower for constructing the questionnaire.  

The proposed digital questionnaire enables many end users 
to take part in the cognitive walkthrough evaluation and to 
answer the questions by actually manipulating the 3D digi-
tal prototype whose UI can work as same as the final appli-
ance does. This feature can greatly increase the reliability 
of the user test’s results.  

Cognition 
Process of 
Extended 
HCI Model

Items of questionnaires 
based on Extended HCI
[Hori & Kato 2007]

Items of questionnaires used 
in our system

Formation of 
Intension of 
manipulation

Does the user try to 
accomplish the correct 
action ?

Did you easily understand what 
you should do for the appliance 
by reading the task ?

Perception of 
objects

Can the user perceive the 
object to be manipulated ?

Did you soon notice this [input 
element name]?

Interpretation
of objects

Can the user understand  that 
the perceived object  is the 
correct object ?

Did you soon understand that 
you should operate this  [input 
element name] ?

Perception of 
actions

Can the user perceive his/her
actions of manipulation ?

Did you soon understand how 
you should operate this [input 
element name] ?  (by pushing,  
sliding etc.)

Interpretation
of actions

Can the user come up with 
actions of manipulation which 
should be applied to the 
object ?

N.A.

Execution of 
actions

Can  the user certainly 
execute the correct action? 

N.A.

Perception of 
the effect

Can the user notice the 
change of the state ?

Did you soon notice that the 
state of this [output element 
name]changed by your 
operation?

Interpretation
of the results

Can the user understand what
state the system is after the 
state change ?

Did you easily understand how 
the state of the appliance 
changed as a result of the 
operation by observing the state 
change of [input element 
name] ?

Evaluation of 
the results

Can the user understand that 
he/she advances toward the 
solution of the task by 
observing  the system state ?

Did you soon understand 
whether your operation is 
correct or not by observing the 
state change of [input element 
name] ?

 
Table 1.  Extended HIC model and the questionnaires. 

For defining the digital questionnaire, as shown in the Fig-
ure 15, the usability professionals assign one questionnaire 
to a check point in the test task model. The professional al-
so specifies a particular portion of the UI screen image or 
the 3D model of the housing which should be indicated on 
the 3D prototype. The standard template of the question-
naire is predefined as a stencil with standard properties in 
the Visio, and the usability professionals can paste the 
stencil to the particular task, which is graphically displayed 
in the Visio, and input the sentence of a question in the 
property value [10].  



- 10 - 

 

Parameter

Parameter

Parameter

Q1
Q2

Q3

Q4

Q7 Parameter

Questionnaire

<Property>
Pointing 
Portion

<Property>
pointing
portion

Task 1PowerOFF MovieMode

PowerOFF MovieModePowerON

Goal StateCheck PointStart State

Task

<Property>
Goal Text ：Change shooting 

mode from “Still picture mode” to 
“Video mode”

<Property>
Upper bound # 

of operation ：1

<Property>
Upper bound 

# of operation ：2

Items of questionnaire
<Property> (example)

Question test：Did you soon notice that 
the state of this icon changed by your 
operation?  

Figure 15. Association of the digital questionnaire with 
the test task model. 

Lens

Strobe light

Lens cover
with power switch

Self timer lamp

DISP/BACK 
button

4 directional Cursor button

MENU/OK button

Photo mode (F) button

LCD
play button

Indicator lamp

Zoom
button

Shutter button

Picture/movie mode switchMicrophone

 
Figure 16. The appliances for the user test. 

Task goal
Setting a self timer to10 sec

from power-off state.

Minimum
# of operation 2

Physical UI objects
to be operated 

Objects indicated
in Questionnaires

• Front lens cover
• Downward cursor button
• Self time icon displayed in LCD

 
Figure 17. The task of the user test. 

A case study of usability assessment and redesign 
Task Setting 
A case study was done which consisted of the user test, the 
usability assessment and the UI redesign based on the re-
sults of the assessment. A compact digital camera (Fuji 
FinePix-Z1) on the market shown in Figure 16 was selected 
for the user test.  

The goals of the case study were:  

- to investigate whether the UI operable 3D digital pro-
totype and our tool can clarify the weaknesses in the 

UI design where many subjects often make mistakes 
in their UI operation, 

- to investigate whether the digital prototype and the 
tool can clarify why many subjects often make mis-
takes in the operation and what needs improvement in 
the UI design, 

- to investigate how small the differences in the as-
sessment results are between the digital prototype and 
the real product, and 

- to evaluate how efficiently the redesign of the UI can 
be done using the UsiXML and our tool. 

A UI operable 3D digital prototype of this camera was built 
as shown in Figure 12 and used for the assessment.  For the 
digital prototype, we modeled the dynamic behavior model 
of the camera UI which has 34 states and 224 transitions 
including neighboring transitions of correct operation se-
quences of the task. A real product was simultaneously 
used for the assessment, and the result was compared with 
that of the 3D digital prototype.  

The prototype was operated by 14 subjects (male and fe-
male students of age 20-29) who had not used the same 
model. 7 subjects took part in the test using the UI operable 
3D digital prototype, and the other 7 subjects used the real 
camera. 

We defined the task of “Setting a self-timer to 10 seconds 
from power-off state” in the test which is one of the occa-
sionally-used operations. In the task, as shown in Figure 
17, first the user has to turn on the power switch by sliding 
the front lens cover, and then to switch the mode from  the 
manual shooting to the self-timer setting with 10 seconds 
by pushing a downward cursor button once. If the camera 
reaches to this goal state (self-timer 10 seconds), a small 
circular white icon which symbolizes the self timer appears 
on the top of the LCD. The subject has to notice that this 
icon indicates the goal state and that he/she completed the 
task.  

Analysis of operational patterns 
To investigate the subjects’ actual operational patterns both 
of the 3D digital prototype and the real product, actual se-
quences of operations including missed operations of each 
subject are put together. The sequences are schematically 
drawn as a “summarized operational log analysis chart”.   

This chart can be made by superimposing an operational 
log analysis chart for one subject shown in Figure 14 onto 
ones of the other subjects. 

In this summarized chart, the notation of correct and 
missed operations is the same as the one in the personal 
version described in the previous section. But the width of 
a directed path on the chart is proportional to the number of 
subjects who passed over the transition corresponding to 
the line. Therefore, a wider directed path indicates that 
more subjects passed over the routes of operation to com-
plete the task.  



- 11 - 

 

PowerOff RecMode
Timer
10sec

Timer
2sec

Shooting
mode

EXP.
COMPENSATION

White
Balance

High‐Speed
Shooting

AF Mode

Set‐Up

No_Text

Framing
Guideline

Post shot
Assist 
window

Movie
Mode

QualityMANUAL

AUTO

NATURAL
LIGHT

PORTRAIT

LANDSCAPE

SPORT

Flash
Redeye

ISO

FinePix
Color

NIGHT

(a) Operational Patterns of
the 3D Digital Prototype

(# of subjects: 7)  

PowerOff RecMode
Timer
10sec

Shooting
mode

EXP.
COMPENSATION

White
Balance

High‐Speed
Shooting

AF Mode

Set‐Up

No_Text

Framing
Guideline

Post shot
Assist 
window

Set‐Up
Menu

Brightness

MANUAL

AUTO

NATURAL
LIGHT

PORTRAIT

LANDSCAPE

SPORT

Preview
Mode

Flash
Forced

Flash
Suppressed

Flash
Slow

Flash
Redeyeslow

NIGHT

Movie
Mode

Flash
Redeye

Quality

ISO

FinePix
Color

Timer
2sec

(b) Operational Patterns of
the Real Product

(# of subjects: 7)  
Figure 18.  Comparison of the summarized operation 

log analysis charts of the user test. 

Figure 18 shows the two summarized operational log anal-
ysis charts; the chart for the subjects who operated the 3D 
digital prototype (Figure 18(a)) and the other for the ones 
who did the real product (Figure 18(b)).  

 Both analysis charts show the clear facts that;  

-at the “Rec_Mode” state, many users stepped into the 
wrong path aiming to the “Shooting mode” state instead 
of the correct path to the “Time_10sec” state,   

-even at the “Timer_10sec” state which is a goal of the 
task, many users went past the state and continue operat-
ing to reach the “Time_2sec” state, and 

-the pattern of missed operations of subjects who operat-
ed the 3D digital prototype is very similar to that of the 
real product.  

From this comparison, the differences of the operational 
patterns were small between the UI operable 3D digital 
prototype and the real product.  It was also shown that the 
3D digital prototype could find the weakness in the UI de-
sign where many subjects often take missed operations 
similar to the those missed operations performed by the 
ones using the real product.  

Analysis of digital questionnaires 
When reading only from the summarized operational log 
analysis chart, we could not discover the reasons why so 
many subjects made mistakes in those particular states and 
what needs improvement in the UI design. So we further 
analyzed the rating from the subjects in the digital ques-
tionnaires indicated on the 3D digital prototype. Moreover, 
the ratings obtained in the digital prototype were compared 
with those in the real product.  To the subjects who used 
the real product, the questionnaires were manually indicat-
ed to them, and the ratings were written by themselves. 

The average ratings from the subjects for the digital ques-
tionnaires indicated at the “Rec_Mode” state and the “Tim-
er_10 sec” state were shown in Figure 19. “Rec_Mode” 
state means that the camera is in the manual shooting 
mode, and “Timer_10 sec” state that it is in the self-timer 
setting mode with 10 seconds and is the goal state.    

The ratings at the “Rec_Mode” state from the 3D digital 
prototype suggest that many subjects could recognize a 
down cursor button itself, but could not notice that they 
could move to the self-timer setting mode from the manual 
shooting mode by pushing this cursor button. Therefore, 
from the rating analysis, we found that the small symbol 
indicating the self-timer printed on the housing surface 
near the cursor button needs to be changed to a new one 
which can give us the self-timer function at a glance. 

PowerOff RecMode
Timer
10sec

Timer
2sec

Shooting
mode

EXP.
COMPENSATION

White
Balance

High‐Speed
Shooting

AF Mode

Set‐Up

No_Text

Framing
Guideline

Post shot
Assist 
window

Movie
Mode

QualityMANUAL

AUTO

NATURAL
LIGHT

PORTRAIT

LANDSCAPE

SPORT

Flash
Redeye

ISO

FinePix
Color

NIGHT

RecMode

Did you notice this button ? 4.33

Did you soon understand that 
you should operate this button ?

2.67

Did you soon understand how 
you should operate this button ?

3

Subjects who made 
missed operation:

6 personsSelf timer 
Symbol

Down 
Cursor

No_Text

Framing
Guideline

Post shot
Assist window

Quality

ISO

FinePix
Color

Did you soon notice that the state 
of this icon changed by your 
operation?

4.67

Did you easily understand how the 
state of the appliance changed as a 
result of the operation by 
observing the state change of this 
icon ?

2.33

Did you feel that you could operate 
the appliance as you intended by 
observing the state change of  this 
icon ?

3

Subjects who made 
missed operation:

3 persons

Self timer 
Icon

 
Figure 19. Average rating for the digital questionnaires 

at 2 states in question in the original UI design. 

On the other hand, the ratings at the “Timer_10sec” state 
suggest that the subjects could notice the change of the sys-
tem status caused by their operations, but could not under-
stand what occurred in the camera and whether they cor-
rectly accomplished the task. This means that this white 
icon displayed on the LCD in Figure 19 could be noticed 
by many subjects, but did not enable them to notice that the 
self-timer settings had already been set to 10 seconds. 
Therefore, from the rating analysis, we finally found that 
the small timer icon indicated on the LCD in the original 
UI design need to be improved to the new on which can 
give us the setting value of the self-timer at a glance.   



- 12 - 

 

# Subjects: 6

回答者：6名

回答者：3名

Real Product

3D Digital Prototype

Did you soon notice 
this sw? 

0     1      2      3     4      5
Average Rating

Did you soon notice 
how you should 
operate this sw? 

Did you soon understand 
how you should operate 
this sw? 

Power switch operation  

Did you soon 
understand how you 
should operate this 
button ? 

Did you soon notice 
this sw? 

Did you soon notice 
how you should 
operate this sw? 

Self‐timer button (down cursor )operation    

#Subjects: 6

Physical Prototype

3D Digital Prototype

Icon perception  
Did you soon understand 
whether your operation 
is correct  from the icon 
change ?

Did you easily 
understand what 
occurred in the appliance  
from the icon change?

Did you soon notice 
that the state of this 
icon changed ?

#Subjects: 3

Real Product

3D Digital Prototype

実製品

3Dデジタルプロトタイプ
0     1      2      3     4      5

Average Rating

0     1      2      3     4      5
Average Rating

Real Product

3D Digital Prototype

 
Figure 20. The differences in the ratings in three ques-

tionnaires between the 3D digital prototype 
and the real product. 

Figure 20 shows the difference in the ratings in three ques-
tionnaires between the subjects who used the UI operable 
3D digital prototype and the ones who used the real prod-
uct.  There are strong correlations of the ratings between 
the digital prototype and the real product in all three cases. 
Therefore, the combination of the UI operable 3D digital 
prototype and the digital questionnaires enables the UI de-
signers to reveal what needs improvements in the UI and 
how they should be improved as minutely as a real product 
does.  

UI redesign based on the digital questionnaires 
The rating analysis in the digital questionnaires revealed 
that there are two candidates which should be redesigned in 
the original UI design; a small symbol indicating the self-
timer printed on the housing, and the small self-timer icon 
indicated on the LCD shown in Figure 19.  

Based on the analysis, we evaluated how efficiently the re-
design of the UI can be done using the UsiXML and our 
tool. In this study, only the second redesign candidate was 
implemented.   

Did you soon notice that the state 
of this icon changed by your 
operation?

4

Did you easily understand how the 
state of the appliance changed as a 
result of the operation by 
observing the state change of this 
icon ?

4

Did you feel that you could operate 
the appliance as you intended by 
observing the state change of  this 
icon ?

3.5

Subjects：
2 persons

Redesign of 
the Timer Icon

 
Figure 21. Improved average rating for the digital 

questionnaires at “Time 10sec” state 
in the modified UI design. 

As shown in the Figure 21, we redesigned the shape and 
color of the timer icon to the new ones so that the back-
ground color becomes conspicuous and the timer setting 
value is explicitly drawn in the icon.  An additional test 
was executed for the new four subjects who used the 3D-
digital prototype with the redesigned icon.  The result of 
the test showed that two of four subjects could complete 
the task without wrong operations. And the rest could also 
complete the task with small wrong operations.  Moreover, 
the result of the ratings of the digital questionnaire of the 
redesigned icon indicates that more subjects could easily 
find that the self-timer settings had already been set to 10 
sec.  

In this redesign work, it only took 10 minutes to redraw the 
icon image and 1 minute to rewrite a small part of the tag 
contents in the XML document of the UsiXML.  

From the whole results of the case study, we obtained the 
following conclusions; 

- The summarized operational log analysis chart based 
on the 3D digital prototype enabled UI designers to 
discover the weakness in the UI design where many 
subjects make mistakes, and also that the digital ques-
tionnaires enabled them to clarify what needs im-
provement and who they should be improved in the 
design.   

- There was a strong correlation of the operational log 
analysis chart and the ratings in the questionnaire be-
tween the 3D digital prototype and the real product. 
Therefore, the UI operable 3D digital prototype could 



- 13 - 

 

replace a real product or a physical prototype while 
keeping the ability to discover the usability problems 
of the UI logic. 

- The UI operable 3D digital prototype based on the 
UsiXML and the automated usability assessment 
functions can complete the works of prototyping-test-
redesign more efficient than the current manual based 
assessment can. 

XAML-BASED 3D DIGITAL PROTOTYPING AND  
USABILITY ASESSMENT 
Issues in UsiXMl-based prototyping  
Usi-XML-based 3D prototyping and usability assessment 
tools in the previous sections enabled us to achieve the re-
alistic simulation fidelity of the UI, to declaratively and ex-
plicitly describe the static structure and dynamitic behav-
iours and to execute the very efficient and systematic usa-
bility assessments. However, in these tools, there were still 
the following technical issues to be improved in terms of 
prototyping; 

(1) The UI simulation environments of 2D and 3D were 
not fully integrated. Structure of 2D UI components 
such as menus and icons could not be directly rendered 
in the UI simulation function. As a result, every UI 

screen had to be rendered on-the-fly as a texture-
mapped image on the 3D prototype, and huge number 
of UI screen snapshots had to be rendered every time 
the UI screen changes. This causes the simulation exe-
cution very inefficient.  

(2) Due to the texture-mapping and the limited image 
resolution, the appearance of the UI screen in the 3D 
became much degraded when the 3D model is zoomed 
up. It might let the test subjects feel unmotivated for 
the simulation-based user test. 

(3) An expensive commercial Web3D player (Virtools) 
was needed for the 3D UI simulation. This forced the 
manufacturers to make an additional investment for the 
prototype and hindered widespread use of the pro-
posed technology.  

(4) So far, there is no sophisticated or commercial visual 
authoring tool or editor which can help UI designers 
easily build and modify the extended UsiXML models 
in a visual way. 

(5) The tools did not support simulation of touch sensitive 
interface which becomes very common in recent appli-
ance UIs such as i-Pod and digital cameras.  

UI デザイン

UI Prototyping

Action

Our developed 
system

Commercial 
system

XAML-B
Execution System

(C#)

Gesture 
Recognition

Engine

General 
Event

Finger 
Gesture 
Event

Finger Gestures

Integration  System
(Expression Blend)

User Test
Execution System

(VB)

Test Task &  Correct Operation Sequence (XML) Usability Analysis
System(VB)

• Performance 
Measure

• Operational 
Log Analysis 
Chart

3D UI Simulation
System(C#)

Touch Panel LCD

• Five grade answers of 
questionnaires

• Operational log file

• Task statement
• Questionnaires

Prototype
Contents

• Test Task
(XML)

Test Task
Definition System

(Visio +VB)

UI Design

Dynamic Behavior 
Modeling System 

(Visio +  VB)

Draw Tool
(Illustrator, etc.)

UI Behavior 
Data

(XAML-B)

UI Component 
Data (XAML)

UI Screen
Data (XAML)

3D CAD
(Solidworks, etc.)

3D Housing
Data (XAML)

User Testing and Usability Assessment
 

Figure 22. An overview of the XAMLS-based prototyping, user-test and usability assessment tools. 



- 14 - 

 

In order to solve these problems, our group developed the 
second version tools for user interface prototyping and us-
ability assessment [12]. As shown in Figure 22, the new 
systems enabled 3D digital prototyping of information ap-
pliances with touch sensitive interfaces and also enable au-
tomated user test and usability assessment. The 3D digital 
prototype is defined by the combination of XAML and 
XAML-B which is our original extension of XAML.  

The technical features of the proposed systems are summa-
rized as the followings: 

- XAML allows UI designers to declaratively describe 
static structures both of 2D UI components and 3D 
housing, and its vector-graphic rendering engine can 
generate high-quality UI images on-the-fly. So, gener-
ation of snapshot images of UI screen becomes unnec-
essary during the execution.  

- The proposed XAML-B enables UI designers to de-
claratively describe dynamic behaviors as a set of 
event-based rules. It can eliminate their programming 
works and state explosion in the UI behavior model-
ing. 

- Several commercial tools were already available for 
defining and integrating the 2D UI static structure. 
They could be used even for 3D prototyping.  

- A standard PC environment is only needed for 3D UI 
simulation. Any special commercial Web3D player is 
unnecessary.   

- The processes of the user test and the usability assess-
ment are fully automated along with the 3D digital 
prototype. 

- Gesture recognition function enables the users to ma-
nipulate touch-sensitive UI on the 3D digital proto-
type.  

XAML-based 3D UI Prototyping 
XAML  
XAML (eXtensible Application Markup Language) was 
developed by Microsoft [18,30] as a UI specification tar-
geted for Windows applications. XAML is an XML based 
mark-up language which specifies the static structure of a 
UI running on the WPF (Windows Presentation Founda-
tion). WPF is a UI framework to create applications with a 
rich user experience, and combines applications UIs, 2D 
graphics and 3D graphics and multimedia into one frame-
work. Its vector-graphic rendering engine makes the UI 
implementation fast, scalable and resolution independent. 
WPF separates the appearance of an UI from its behavior. 
The static structures of 2D UI screen appearances is declar-
atively specified in XAML, while the behavior has to be 
implemented in a managed programming language like C#.  

XAML-B for dynamic behavior modeling  
Modeling Concept of XAML-B. We extended XAML 
specification so that the UI designers can declaratively de-
fine dynamic behavior only by writing a XML document 

with simple syntax. This extension part of the XAML is 
named XAML-B (XAML-Behavior). We also proposed a 
two-stage modeling process of dynamic behaviors both of 
which is supported by XAML and XAML-B.  

Event-based Model

State-based 
Model

XAML-B  
Figure 23. UML class diagram of XAML and XAML-B. 

In these stages, two sub-models of XAML-B were respec-
tively used to define the dynamic behavior; the state-based 
model for early design stage and the event-based model for 
detailed design stage.  The UML diagram describing class 
structures of XAML-B is shown in Figure 23.  The specifi-
cation of the XAML-B includes both state-based model, 
event-based model and the reference to the original XAML 
specifications. The details of these two models are ex-
plained as the following sub-sections.  

State-based model for early design stage. At the early 
design stage, the dynamic behavior of the UI is modeled as 
a state-based model, because the number of states is rela-
tively small and the state-based model enables UI designers 
to capture a flow of user interactions at a glance. Rough in-
teraction flows of the UI are initially captured as a state-
based model. 

Figure 24-(a) shows an example of the state-based model in 
case of the power-on UI behavior in a digital camera. A set 
of the classes of XAML-B included inside the state-based 
model in Figure 23 is used.  The state-based model consists 
of the classes of State, Event, Behavior and Action.   

A State expresses unique combination of attribute values 
which expresses an appearance of the UI. An Event is an 
incoming phenomenon to the UI such as “button-pushed” 
or “icon-tapped”. An Action is a process triggered by an 
event that causes a state change such as change in an icon 
on the screen or mechanical motion of the appliance. A Be-
havior means a notion of state-transition composed of 
Source_State, Destination_State, Event and Action.  



- 15 - 

 

Ｃ ｖ

State: 
Power On, Rec mode

State: 
Power Off

Power button Lump1
LCD

(a) State-based model

State
(Current_state)

Power
off

Power_On

Rec
mode

Parent_state

State
(Next_state)

Power 
button 
pushed

Event

Action

Behavior

(b) Event-based model in XAML-B

Static Structure (XAML)

Dynamic Behavior (XAML-B)

Event

UI Element

Housing Design 
properties

Screen Design 
properties

Action

Behavior

Event-based Model
State-based 

Model

(property 
updating

conditions)
Lhs

( properties
to be updated)

Rhs

Power
off

Turn on LCD & 
Turn on Lump 1

Power button pushed /
Turn on LCD & 
Turn on Lump 1

Next_state

Current_state

Writing Rec
mode

Reading

(c) Implementation

Behavior

 
Figure 24. Examples of state-based modeling and event-

based modeling of UI behaviors in XAML-B. 

Event-based model for detailed design stage. Once the 
UI design enters the detailed design stage, the number of 
states tends to explode when using the state-based model. 
So, an event-based model is used at the detail design stage. 
The event-based model enables the designers to describe 
the detail control of UI components indicated on the screen 
whose notion is originally included in XAML specifica-
tion.  

Figure 24-(b) shows an example of the event-based model 
which is described based on the state-based model example 
of Figure 24-(a).  The event-based model was made up on 
the basis of UsiXML [16, 28], which is the other XML-
compliant UI description language and has declarative de-
scription of event-based dynamic behavior. A set of the 
classes of XAML-B included inside the event-based model 
in Figure 23 is used.  

The event-based model consists of Behavior, Lhs, Action 
and Event. Notions of Behavior, Action and Event are the 
same as those in the state-based model. 

An Lhs expresses the conditions under which each Action 
become executable. An Action consists of the combination 
of MethodCall and Rhs. 

An Rhs specifies how the attribute values of XAML should 
change corresponding to the change of UI appearance. 

A MethodCall specifies an external procedure such as an 
animation clip or a sound clip. A pair of an Lhs and an Rhs 
describes a state-transition rule. 

And a RuleTerm expresses a condition that attribute values 
in XAML must fulfill before and after an Action occurs.  

Power_Off

AF_Mode

Rec_Mode

State‐based model
(XAML‐B)

Power_Off

Rec_Mode
<State id =

“Power_Off”>
<Screen = “Off” ・・・/>
<imageA =  “Off” ・・・/>
<・・・/>

</ State  >

<State id =“

Rec_Mode”>
<Screen = “On” ・・・/>
<imageA =  “Off” ・・・/>
<・・・/>

</ State  >

(1) Capturing Rough 
Interaction Flows

<State  id =“Rec_Mode”>
<Screen = “On” ・・・/>
<imageA = “Off” ・・・/>
<Screen = “On” ・・・/>
<imageA = “Off” ・・・/>
<Screen = “On” ・・・/>
<imageA = “Off” ・・・/>
<Screen = “On” ・・・/>
<imageA = “Off” ・・・/>
<・・・/>

</ State >

State
Assignment 
Data (XML)

Early Design Stage

Detailed Design Stage

State-transition 
Editor (Visio +VB)

(2) Assigning XAML tags and 
attribute values to each state

(3) Extracting change rules in 
the attribute values of XAML

at a screen transition

(4)  Reformatting the 
change rules to XAML-B

Dynamic Behavior model 
expressed only by event‐based model

(XAML‐B)

<Screen = “On” ・・・/>
<imageA = “Off” ・・・/>
<Screen = “On” ・・・/>
<imageA = “Off” ・・・/>
<Screen = “On” ・・・/>
<imageA = “Off” ・・・/>
<Screen = “On” ・・・/>
<imageA = “Off” ・・・/>
<・・・/>

UI Screen
Data  (XAML)

 

Figure 25. Dynamic behavior modeling process in the 
XAML-based system. 

Dynamic behavior modeling system and the modeling pro-
cess 
We developed a prototype of dynamic behavior modeling 
system which was implemented by the combination of Vi-
sio and Visual Basic. Figure 25 shows the functions of the 
modeling system. It can support both of the state-based and 
event-based modeling processes.   

The modeling flow of the system is also shown in Figure 
25. In the early design stage, as in the upper part of Figure 
25, rough interaction flows are initially captured as a state-
based model. 

In order to support efficient modeling work in this stage, a 
state-transition editor was implemented. In the editor, state, 
event and action can be graphically created and edited on 
the Visio by UI designer. This modeling result is stored in 
a XAML-B document. 

In the detailed design stage, as shown in the lower part of 
Figure 25, first a set of tags and their attribute values of one 
UI screen which has been modeled as XAML document in 
the integration tool are assigned to one state. A new state 
tag is created in the XAML-B document, and a set of the 
XAML tags and their attribute values representing the state 
of the UI is packed inside the state tag.  

Two different sets of these tags and the attribute values 
each of which is assigned to a source or a destination state 
are then compared to each other. Taking XOR between 
these tags and attribute values automatically makes the 
change in attribute values of an Action tag in the event-
based model. Finally reformatting the rule of change to an 
XML document makes a final XAML-B description corre-
sponding to this state-transition.  



- 16 - 

 

Building process of 3D digital prototype 
According to the process described in the previous section, 
a 3D digital prototype is built in the following processes 
shown in Figure 22: 

(1) A 3D housing model is created in a commercial CAD 
system (Solidworks 2008) and is exported to a model 
integration system (Expression Blend) as a XAML 
document.  

(2) Each graphical component (text, icon, etc.) of the UI is 
defined in a draw tool (Illustrator etc.) and is exported 
to an integration tool as a XAML document.  

(3) In the integration tool, a set of the graphical compo-
nents are combined to make one XAML document 
which defines each UI screen. And the 3D location of 
the UI screen is also specified onto the 3D housing 
model by this XAML document. 

(4) The XAML document is imported to a dynamic behav-
ior modeling system. The behavior of the UI is defined 
by a UI designer according to the process described in 
2.3, and is outputted as a XAML-B document from the 
system. 

(5) Finally, the XAML-B execution system reads this doc-
ument and drives UI simulation on the 3D housing 
model responding to input events coming from the us-
er of the digital prototype.  

Gesture recognition function 
Gestural interfaces become available in current information 
appliances with touch sensitive interfaces. So a gesture 
recognition function is installed in our prototyping system. 
Several types of user finger gestures inputted from a UI 
screen of a 3D digital prototype can be recognized as 
events, and can be processed in the XAML-B execution 
system. 

In the XAML-B specification, several gesture types that the 
function can recognize are described in the “Gesture_Type” 
attribute placed inside the “Event” tag.  

Real-time gesture recognition is needed for smooth opera-
tion of UI simulation. InkGesture engine [5] is being used 
in the system. Four types of finger gestures of “Leftward”, 
“Rightward”, “Upward” and “Downward” can be recog-
nized as Events in our system. The recognized gesture can 
then be processed as one of the events in XAML-B execu-
tion system. 

This recognition function enables the users to operate touch 
sensitive interfaces modeled on the 3D digital prototype us-
ing not only mouse gestures but direct finger gestures.  

User test and usability assessment systems in XAML-
based system 
In our system, user test and usability assessment can be 
done on the 3D digital prototype. The test and assessment 
processes are as same as the ones described in the previous 
sections of the UsiXML-based assessment system. 

 

(a) Real Product (b) 3D Digital Prototype

Touch
sensitive 
screen

 
Figure 26. A digital camera and its digital prototype. 

 
Figure 27. User-test situation with touch sensitive screen 

where a digital prototype is displayed. 

A case study of user test 
An example of the 3D digital prototype 
(6) A digital camera (Nikon-S60) with a touch-sensitive 

screen shown in Figure 26-(a) was adopted as an ex-
ample of   prototyping, user test and usability assess-
ment.  As shown in Figure 26-(b), the 3D housing 
model of the camera was modeled in Solidworks 2008. 
Over 60 states and 100 state transitions were modeled 
in the dynamic behavior model described by XAML-
B. The sound of finger touch is also emulated in the 
digital prototype to avoid missed-operations.  

As shown in Figure 27, a 19-inch touch sensitive LCD 
monitor shown was used in the test, and the user can direct-
ly input by finger touch and finger gesture on the touch 
screen displayed as a part of the 3D digital prototype which 
is displayed on the touch sensitive LCD monitor. This ena-
bled the users to operate the UI on the 3D digital prototype 
as realistically as the one on the real camera.  

User test settings 
The user test was done using the 3D digital prototype and 
the operational log analysis chart and five grade evaluation 
results were compared to those obtained from the one using 
the real camera. 35 subjects who had no experience of us-
ing this camera attended the test. Among them, 17 subjects 
operated the 3D digital prototype and 18 subjects the real 
camera.  

Two tasks shown in Figure 28 which include the basic UI 
operations were given to the subjects. In task 1, they asked 
to set the self-timer duration for 10 sec from the power-off 
state. In task 2, they asked to enter the preview mode state 
from a power-off state and to indicate the first picture by 
turning over the pictures indicated on the touch screen. 



- 17 - 

 

Task
description

# of 
correct 
routes

Correct operation sequence and 
states at which digital questionnaires appear

Task1

Set the self‐
timer 
duration for 
10 sec from 
power‐off 
state

1

State Power off   Shooting Timer Select Timer_10s

Correct
operati
on

Push power 
button

Push timer icon Push 10s icon

Task2

Enter preview 
mode from a 
power‐off 
state, and 
display the 
pre‐specified 
picture on 
the touch 
screen using 
finger gesture

1

State Power off   Shooting Play_Mode Play_First

Correct
operati
on

Push power 
button

Push playback 
icon

Slide a finger 
horizontally

2

State Power off   Shooting Home Play_Mode

Correct
operati
on

Push power 
button

Push home icon Push  playback 
icon

Slide a finger 
horizontally

 
Figure 28.  The test tasks and their correct operations. 

In the task 2, two correct sequences of operations exist as 
shown in Figure 28; the one of pushing an up-arrow or a 
down-arrow icon indicated at the corner of the touch 
screen, or the one of directly sliding the finger leftward or 
rightward on the touch screen. 

The five grade evaluation results for the questionnaires 
were also obtained from the subjects who took a missed 
operation. 

Usability assessment results 
The operational log analysis charts and 5 grade evaluation 
results for the questionnaires at a state of missed-operation 
in case of the real product and the digital prototype in task 
1 are shown in Figure 8.  

From Figure 29, it was found that many subjects (12/18 in 
case of real camera, and 9/17 persons in case of digital pro-
totype) took missed operations at the “Shooting” state. In 
this state, they should push the small timer icon indicated 
lower left of the touch screen, but they found themselves 
lost deep in the menu hierarchy toward incorrect states.  
Two missed-operation patterns in Figure 29-(a) and (b) 
were very similar to each other. Moreover, the results of 
the five grade evaluation for the questionnaire at the 
“Shooting” state showed that most of the missed subjects 
did not notice the icon to be pushed and did not understand 
that they should operate it. This figure also showed that 

same tendencies of the evaluation results were observed 
both in the digital prototype and in the real camera. 

While in case of the task 2, as shown in Figure 30, most of 
the subjects (8/10 in the real camera and in the digital pro-
totype) did not complete the task using the finger gestures, 
but could it by taking alternative correct operation (pushing 
the icons). The five grade evaluation results for the ques-
tionnaire at the “Play_Mode” state also showed that the 
subject who took this alternative operation (“Play_Mode” -
> “Play_Detail” -> “Play First”) did not notice that the 
camera could accept direct finger gestures and that they 
should make them to complete the task.   

These test results showed the following clear facts: 

- In the “Shooting” state and the “Play_Mode” state, 
the icon indicated on the UI screen could not ade-
quately make most users think of the correct input op-
erations intended by the designers. So, these icons 
should be strongly redesigned to improve usability.  

- There were strong correlations of user operation se-
quence and the ratings of the questionnaires between 
the 3D digital prototype and the real product. This 
suggests that the 3D digital prototype with touch sen-
sitive interface could replace a physical prototype 
while keeping the ability to find usability problems 
from the prototype.  



- 18 - 

 

(a) Analysis Chart of Real Product 

(b) Analysis Chart of 
3D Digital Prototype

Average Grading for Questionnaires

Did you soon notice this icon ? 2.25

Did you soon understand that 
you should operate this icon ?

2.25

# of Subjects: 18

Task Completion Rate 94.4%

# of Subjects who answered 
Questionnaires 

12

Average Grading for Questionnaires

Did you soon notice this icon ? 2.4

Did you soon understand that 
you should operate this icon ?

3.2

# of Subjects: 17

Task Completion Rate 100%

# of Subjects who answered 
Questionnaires 

9

 

Figure 29. The operational log analysis charts and five 
grade evaluation results in Task1. 

Average Grading for Questionnaires

Did you soon notice the gesture 
input ?

1.75

Did you soon understand that 
you should input finger gestures?

2

Did you soon understand how  
you should make finger gestures?
(ex. slide a finger horizontally etc.)

2.75

# of Subjects: 10

Task Completion Rate 100%

# of Subjects who answered 
Questionnaires 

8

(a) Operational Log Analysis Chart of
Real Product and 3D Digital Prototype

Average Grading for Questionnaires

Did you soon notice the gesture 
input ?

2

Did you soon understand that 
you should input finger gestures?

2

Did you soon understand how  
you should make finger gestures?
(ex. slide a finger horizontally etc.)

2

# of Subjects: 10

Task Completion Rate 100%

# of Subjects who answered 
Questionnaires 

8

(b) Average Grading for 
Questionnaires in Real Product  

(c) Average Grading for 
Questionnaires in 3D Digital Prototype   

Figure 30. The operational log analysis charts and five 
grade evaluation results in Task2. 

The effect of UI redesign on the digital prototype 
The result of task 2 revealed that the icons indicated on the 
UI screen at “Play_Mode” state could not make the users 
think of direct finger gesture to turn over the indicated pic-
tures. To solve the problem, a reciprocal motion animation 
of a finger icon was newly added on the screen when enter-
ing this state. After this redesign, an additional user test for 
the task 2 was done by 7 new subjects, and the results were 
analyzed. Figure 31 shows the operational log analysis 
charts and five grade evaluation results for this new test. 

(a) Operational Log Analysis Chart 
of the redesigned 3D Digital Prototype

Average Grading for Questionnaires

Did you soon notice the gesture 
input ?

5.0

Did you soon understand that 
you should input finger gestures?

4.0

Did you soon understand how  
you should make finger gestures?
(ex. slide a finger horizontally etc.)

4.0

# of Subjects: 5.0

Task Completion Rate 100%

# of Subjects who answered 
Questionnaires 

1

(b) Average Grading for  Questionnaires in the redesigned 3D Digital Prototype  

Added 
animation

 

Figure 31. The operational log analysis charts and five 
grade evaluation results in Task2 after UI redesign. 

Six of the seven subjects could take direct finger gestures 
to turn over the pictures this time. Also from the grade 
evaluation, one subject who took a missed operation could 
even notice the finger gesture input at this state and actual-
ly inputted the gesture.  

Only 10 minutes were needed for creating and inserting 
this animation file name into the original XAML-B docu-
ment in the redesign. This fact showed that our proposed 
systems enabled UI designers to realize very rapid turna-
round of design-test cycle compared to the one of physical 
prototypes.   

CONCLUSION 
UsiXML-based and XAML-based systems of prototyping, 
user testing and usability assessment were proposed which 
enabled 3D digital prototyping of the information applianc-
es. To declaratively describe the static structure and the dy-
namic behavior of the user interface of the appliances with 
physical user interface elements, Usi-XML and XAML 
were originally extended, and its UI simulation system 
were developed. Gesture recognition function enabled the 
subjects to manipulate the touch-sensitive UI of the 3D dig-
ital prototype in the user test. User test execution and anal-
ysis of missed operations could be fully automated. The re-
sults of the user test and usability assessments for the digi-
tal camera showed that major usability problems appearing 
in real product could be fully extracted even when using 
the digital prototype, and that the proposed systems ena-
bled rapid turnaround time of design-test-redesign-retest 
cycle.   

The user test and usability assessment could be fully auto-
mated by the proposed system. But there are still open-
problems to be solved in our research.  The major one is 
whether the proposed two-stage modeling process of UI 
behaviors is actually understandable and accessible for 
most interaction designers compared to the current proto-
typing tools like Flash.  

As a result of the development of our two XML-based 
computer-aided prototyping and usability assessment tools 
for UI, we are concluding that, so far, it is the best way to 
combine the UsiXML-based model-driven hierarchical de-



- 19 - 

 

velopment framework with XAML-based implementation. 
UsiXML provides clarity in capturing and describing the 
UI system ranging from the conceptual design to the con-
crete stage in declarative way, while XAML does excellent 
ability and fidelity of the 2D and 3D integrated UI simula-
tion in much inexpensive environments.  

At this moment, the dynamic behavior modeling system is 
still a prototype phase, and “usability” of the system itself 
is still not fully considered and improved. Therefore our fu-
ture research should include the usability evaluation on the 
proposed dynamic behavior modeling method and system 
by interaction designers themselves. Statechart-based mod-
eling process [4] which was adopted in our research can 
inherently offer interaction designers an ability of state-
based step-by-step hierarchical modeling process of UI. 
The process also enables a good compatibility of UI code 
generation process. Confirming the effectiveness of this 
concept by experiments will be included in our future re-
search. 

ACKNOWLEDGMENTS 
We gratefully acknowledge the supports of the Grant-in-
Aid for Scientific Research under the Project No.19650043 
(Term: 2007-2008) and No.21360067 (Term: 2009-2011) 
funded by the Japan Society for the Promotion of Science, 
and of the Grant-in-Aid for Seeds Excavation (Term: 2009) 
funded by Japan Science and Technology Agency. 

REFERENCES 
1. 3D XML:  www.3ds.com/3dxml. 

2. Broak, J. SUS: a ‘quick and dirty’ usability scale, Usa-
bility Evaluation in Industry. Taylor and Francis (1996). 

3. Hori, M. and Kato, T. A Modification of the Cognitive 
Walkthrough Based on an Extended Model of Human-
Computer Interaction (in Japanese). Trans. Information 
Processing Society Japan 48, 3 (2007), pp. 1071–1084. 

4. Horrocks, I. Constructing the User Interface with 
Statecharts. Addison-Wesley, Harlow (1999). 

5. Microsoft.Ink Gesture class, http://msdn.microsoft.com/ 
en-us/library/microsoft.ink. gesture(v=VS.85).aspx 

6. ISO13407 Human-centred design processes for interac-
tive systems. International Standard Organization, Ge-
neva (1999). 

7. ISO9241-11 Ergonomic requirements for office work 
with visual display terminals (VDTs) – Part 11: Guid-
ance on usability. . International Standard Organization, 
Geneva (1998) 

8. Kuutti, K., ?. Virtual prototypes in usability testing. In 
Proc. of the 34th Hawaii Int. Conf. on System Sciences 
HCCISS’2001, 5, 2001. 

9. Kanai, S., Horiuchi, S., Shiroma, Y. and Kikuta, Y. 
Digital usability assessment for information appliances 
using User-Interface operable 3D digital mock-up. Re-

search in Interactive Design, 2, Springer: 
VC_HUCEID2006 (2006), p. 235. 

10. Kanai, S., Horiuchi, S., Shiroma, Y., Yokoyama, A. and 
Kikuta, Y.An Integrated Environment for Testing and 
Assessing the Usability of Information Appliances Us-
ing Digital and Physical Mock-Ups. Lecture Notes in 
Computer Science, vol. 4563. Springer, Berlin (2007), 
pp. 478-487. 

11. Kanai, S., Higuchi, T. and Kikuta Y. 3D digital proto-
typing and usability enhancement of information appli-
ances based on UsiXML. International Journal on In-
teractive Design and Manufacturing 3, 3 (2009), pp. 
201–222. 

12. Kanai, S., Higuchi, T. and Kikuta Y. XAML-Based Us-
ability Assessment for Prototyping Information Appli-
ances with Touch Sensitive Interfaces. Research in In-
teractive Design, 3, Springer: PRIDE-P189, 2010. 

13. Kerttula, M. and Tokkonen, T.  K. Virtual design of 
multi-engineering electronics systems. IEEE Computer, 
34, 11 (2001), pp. 71–79. 

14. Landay, J.A.? Sketching Interfaces: Toward more hu-
man interface design. IEEE Computer 34, 3 (2001), pp. 
56–64. 

15. Lin, J., ? DENIM: Finding a tighter fit between tools 
and practice for web site design. In Proc. of ACM Conf. 
on Human Factors in Computing Systems CHI’2000. 
ACM Press, New York (2000), pp. 510–517. 

16. Limbourg, Q. and Vanderdonckt, J. UsiXML: A User 
Interface Description Language Supporting Multiple 
Levels of Independence. In Engineering Advanced Web 
Applications, M. Matera, S. Comai, S. (Eds.). Rinton 
Press, Paramus (2004), pp. 325-338. 

17. Cybelius Maestro, http://www.nickom.co.jp/product 
_English.html 

18. MacVittie, L.A. XAML in a Nutshell. O'Reilly Media, 
(2006). 

19. Norman, D. A. Cognitive engineering. In User Centered 
Systems Design: New Perspectives in Human-Computer 
Interaction. D.A. Norman and S.W. Draper (Eds.). 
Lawrence Erbaum Associates, Hillsdale (1986), pp. 31–
61. 

20. Park, H., Moon, H.C. and Lee, J.Y. Tangible augment-
ed prototyping of digital handheld products. Computers 
in Industry 60, 2 (2009), pp. 114–125. 

21. Protobuilder, http://www.gaio.co.jp/product/dev_tools/ 
 pdt_protobuilder.html. 

22. RAPID PLUS,     http://www.e-sim.com/products/  
rapid_ doc/index-h.htm. 

23. UIML, User Interface Markup Language v3.1 Draft 
Specification, http://www.uiml.org/ (2004) 

24. UsiXML, http://www.usixml.org/ 



- 20 - 

 

25. Viewpoint, http://www.viewpoint.com/pub/technology/ 

26. VRML97, Functional specification and VRML97 Ex-
ternal Authoring Interface (EAI). ISO/IEC 14772-
1:1997 and ISO/IEC 14772-2 (2002) 

27. Virtools,  www.virtools.com 

28. Vanderdonckt, J. A MDA-Compliant Environment for 
Developing User Interfaces of Information Systems. In 
Proc. of 17th Conf. on Advanced Information Systems 
Engineering CAiSE'05 (Porto, 13-17 June, 2005). O. 
Pastor & J. Falcão e Cunha (Eds.). Lecture Notes in 
Computer Science, vol. 3520. Springer-Verlag, Berlin 
(2005), pp. 16-31.  

29. Vanderdonckt, J. Model-Driven Engineering of User In-
terfaces: Promises, Successes, and Failures. In Proc. of 
5th Annual Romanian Conf. on Human-Computer In-
teraction ROCHI’2008 (Iasi, September 18-19, 2008), 
S. Buraga, I. Juvina (eds.). Matrix ROM, Bucarest 
(2008), pp. 1–10. 

30. XML User Interface Language (XUL) 1.0, http://www. 
mozilla.org/projects/xul/xul.html (2001) 

31. Extensible Application Markup Language (XAML), 
http://msdn.microsoft.com/en-us/library/ ms7471 22. 
Aspx (2008). 

 



- 21 - 

 

UsiXML Extension for Avatar Simulation 
Interacting within Accessible Scenarios 

 
Abel Serra, Ana Navarro, Juan Carlos Naranjo 
ITACA-TSB Polytechnic University of Valencia 

Edificio G8 - Camino de Vera s/n, 46022 Valencia (Spain) 
{absersan, annacer, jcnaranjo}@itaca.upv.es – http://www.tsb.upv.es 

 
ABSTRACT 
Nowadays the design of products which make our life more 
comfortable is increasing however this is not an easy task. 
The simulation is presented as a very good option to 
achieve this purpose due it allows economize design costs. 
For that reason, it is important implement mechanisms that 
allow analyzing in an early stage of the design whether a 
product is accessible and easy-used, especially by our tar-
get group of population (people with disabilities and el-
ders). After investigation, UsiXML is defined as an ac-
ceptable language to represent the simulation models, how-
ever within UsiXML a lack exists when is needed to host 
avatar models with a structure which be capable to repre-
sent elders and users with any kind of disability (physical, 
cognitive or behavioral). This paper defines the proposed 
extension of the UsiXML language to fulfill the need be-
fore mentioned and then support both static models (Ontol-
ogy or less structured information) as XML based model 
definition in order to achieve the representation of physical, 
cognitive and psychological & behavioral attributes of the 
human according to a disability. 

Author Keywords 
Model-based approach, User Centered Design, User model, 
User Interface Description Language. 

General Terms 
Accessibility, Human Factors, User models, Simulation. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H5.2 [Information Systems]: Mis-
cellaneous H4.m [Simulation and modeling]: Model De-
velopment. I.6.5 

INTRODUCTION 
Due to the ageing of the population, the research towards 
improving the quality of life of elderly and disabled people 
is being a far-reaching trend and it is becoming important 
within the research community [1]. For doing so is neces-
sary to use techniques those increase the effectiveness of 
the products as well as also save costs in the process of de-
sign. At this point the Virtual Reality Simulation comes up 
to satisfy this premises, thanks to it the designers can eval-
uate the developing product in an early stage of the pro-

cess. There are human behavior simulation models which 
are capable to represent Human-Computer Interaction [3], 
however, now emerges the need of implement a model that 
allow represent the three main faces of the human (physi-
cal, cognitive and behavioral) [10]. In order to achieve this 
objective it is necessary to find a language which is capable 
to host all these human models.  

Since the simulation will run elicitations of the three mod-
els, a common description language that allows both a dy-
namic and structured definition of the models as well as the 
instantiation of the models is therefore needed. In addition, 
an optimal representation language for the physical, cogni-
tive and behavioral human facets and the tasks they per-
form should be:  

 Extensible.  
 Universal.  
 Easy to transfer.  
 Easy to parse.  

UsiXML [7,12] is the approach selected by FP7 VERITAS 
[15] project that satisfies the previous premises. UsiXML 
provides interoperability and reusability of human data, 
which in turn allows extending its applicability within vari-
ous research contexts. Within our scope, UsiXML (which 
stands for USer Interface eXtensible Markup Language) is 
a XML-compliant markup language is structured according 
to four basic levels of abstractions defined by the Camele-
on Reference Framework (CRF) [2] and describes the user 
User Interface (UI) [9] for multiple contexts of use such as 
Character User Interfaces (CUIs), Graphical User Interfac-
es (GUIs), Auditory User Interfaces, and Multimodal User 
Interfaces. UsiXML is considered as a User Interface De-
scription Language (UIDL). 

MATERIALS AND METHODS 
The UsiXML [12] UIDL will be used for describing the 
Generic Virtual User Models structure, which represent on 
one hand the disability and in the other the affected tasks 
by the disability. We will analyze this standard in order to 
see the potential and the limitations for describing our tar-
get models. 

Developing User Interfaces (UIs) [9,14] for interactive ap-
plications can be a very tricky a and complicated procedure 
because of the complexity and the diversity of existing de-
velopment environments and the high amount of program-
ming skills required by the developer to reach a usable UI, 



- 22 - 

 

i.e. markup languages (e.g., HTML), programming lan-
guages (e.g., C++ or Java), development skills for commu-
nication, skills for usability engineering. In the case of 
VERITAS [15], where the same UI should be developed 
for multiple contexts of use such as multiple categories of 
users (e.g., having different preferences, speaking different 
native languages, potentially suffering from disabilities), 
different computing platforms (e.g., a mobile phone, a 
Pocket PC, a laptop), and various working environments 
(e.g., stationary, mobile) the problem is even harder.  

UsiXML comes to fill the gap that has been created by the 
fact that the available tools for creating UIs are mainly tar-
get at the developers. To this end, UsiXML is a standard 
that can be equally used from experienced developers, as 
well as, from other experts as analysts, human factors ex-
perts, designers, or novice programmers, etc., also. Non-
developers can shape the UI of any new interactive applica-
tion by specifying and describing it in UsiXML, without 
requiring any programming skills usually demanded in 
markup languages (e.g., HTML) and programming lan-
guages (e.g., Java or C++).  

Among the benefits of using UsiXML is, that it supports 
platform independence, modality independence and device 
independence. Thus a UI can be described using UsiXML 
in a way that remains autonomous with respect to the de-
vices used in the interactions (mouse, screen, keyboard, 
voice recognition system, etc.), to the various computing 
platforms (mobile phone, Pocket PC, Tablet PC, laptop, 
desktop, etc.) and of any interaction modality (graphical in-
teraction, vocal interaction, 3D interaction, or haptcs). In 
UsiXML project, they have enriched this, by promoting the 
seven μ7 dimensions of the UsiXML, which covers the fol-
lowing μ7 dimensions:  

1. Multi-device  
2. Multi-user 
3. Multi-linguality  
4. Multi-organisation  
5. Multi-context  
6. Multi-modality  
7. Multi-platform 

After analyzing the UsiXML standard, we conclude that it 
is a powerful language that can be used for VERITAS pur-
poses. However we have noticed that the standard does not 
cover ontological description, structures and relationships 
amongst items, (these ontologies will represent the research 
performed), so it needs to be adapted or extended in order 
to satisfy the input received (the ontologies [9]). The exten-
sion will have to reflect the complete structure of the ontol-
ogies. 

RESULTS 
The objective is to develop a UIML [5,13] / UsiXML 
[7,12] interaction modeling framework that will be used for 
the representation of the physical, cognitive and behavioral 
attributes of the human according to a specific disabilities. 

The Physical, Cognitive and Psychological & Behavioral 
Abstract User Models previously developed are initially 
represented using OWL ontologies [6, 11]. However, the 
simulation platform uses a different approach, a XML rep-
resentation, based on UsiXML standard. This implies that 
the ontologies defined need to be transformed into 
UsiXML schemas. The methodology here presented will 
allow the automatic parsing of these two representations of 
knowledge. In this paper we present all the process, from 
the analysis of the problem up to the schema implemented. 

The first phase of the research was the study of the disabili-
ties, mainly how affect to the human, taking into account 
which capabilities are being damaged, and in which grade. 
The output of this work is a set of tables which contain all 
the information and parameters that will be used in the se-
cond state of the process, these tables are called the Ab-
stract User Models.  

The next task is very important due the quality of this re-
search will set the success of the study, since the data col-
lected are the input for the next step: the extraction of the 
data that is seemly relevant for simulation purposes, or 
what it’s the same, data that can be parameterized, focusing 
first on the quantitative information, since it can be imme-
diately represented by the simulation engine. It will allow 
us to represent an avatar with the characteristics of an el-
derly or disabled user. This avatar should be able to per-
form a task according to its level of capability as close as 
possible to reality.  

The data extracted need to be structured and ranked, that’s 
why in the following iteration, a parameterized user model 
based on the Abstract User Model previously defined needs 
to be developed, for doing so, this interaction receives as 
input all the data collected in the previous stage and then, it 
is proceed to the design of the ontologies, which will host 
all parameters and ranges of values, describing all kind of 
the target users. Within VERITAS, this is known as the 
Generic Virtual User Model. 

Once the ontologies are developed, the next phase of the 
process is the translation from the ontologies up to the 
schema UsiXML. The extension of the standard is per-
formed in this task, based on the ontologies, the goal is im-
plements the equivalent structure within the original sche-
ma (UsiXML), and following the same structure of it. This 
task is complicated due the lost of the information caused 
by the differences of the representations when the infor-
mation from the ontologies wants to be expressed in XML 
format. 

The UsiXML extension (which hosts the Generic Virtual 
User Model), is consisted of three main parts: Physical, 
Cognitive and Behavioral, all of them with its own hierar-
chy. The goal in this stage is achieves the optimal man-
agement of the data, since the simulator has to analyze and 
process it, in order to bring to the avatar the best perfor-
mance during the simulation. 



- 23 - 

 

Following the Veritas models are presented, describing the 
attributes and the hierarchy implemented and the reasons 
for choose each structure. The relations between them are 
also described cause is one of the main points of the model 
potential. 

The models are linked with the disability model with the at-
tribute “affected by”. This parameter will establish, for 
each limb, which disabilities could be affected, doing this 
way, the information about the disabilities and its conse-
quences are accessible within the model. 

Other important link which is needed to implement is that 
one that relate the task model with the user model, this 
connection is vital due provide important data about how 
the disabilities affect the performance of the tasks, the 
model express this information at low level, since the task 
model consist of primitive tasks, which are grouped setting 
complexes tasks, such as driving. This parameter is “affect-
ed task” which takes part of the disability model. Following 
the details of the models are presented: 

Disability model 
The disability model describes the disability details. This 
part is clearly relevant since it allows us to link the disabil-
ity with the body features. This model embraces all the dis-
abilities which the project is working on, all the attributes 
about the disability are accessible and structured in order to 
establish links between the disability and the tasks. This 
links give us valuable information about the disabilities 
from the point of view of the tasks. The parameter “disabil-
ity” is composed by: 

 Type: physical, cognitive or P&B. 
 Name: the name of the disability. 
 Age related: whether the disability appear due the age-

ing of the user. 
 Functional Limitations ICF Classification: the index 

within the ICF scale. 
 Short description: A brief explanation of the disability. 

The parameter “disabilityDetails” contains the detailed de-
scription of the disabilities acting as literature for the simu-
lator users. The schema described is presented in Fig. 1. 

 
Figure 2. Disability Model. 

Physical Model 
This model is the result of the study of the human’s body 
physiognomy, performed in the previous section. For our 
purpose, it is decided to structure the human body in six 
main parts: upper-limb, lower limb, neck, pelvis, gate and 
truck. These limbs are essential for representing the possi-
ble movements of a human body. With these body-limbs, 
basically all relevant movements of the human body can be 
simulated. Each limb is expressed in term of its capabili-
ties, each of them have three main attributes: “measure 
units”, “minValue” and “maxValue”. In Figure 2, we can 
see the schema of the finger, it is composed by its abilities, 
such as flexion. Their attributes describe the range of capa-
bilities and they will see modified according to the disabili-
ties.  

 
Figure 3. Schema of the finger. 

The schema shows the parameter “affectedBy” which con-
tain the relation between the human parameters and the 
disabilities. The schema was implemented following the 
point of view of the simulator, for that reason was neces-
sary structure the body in two main parts (upperLimb and 
lowerLimb) and then separate the following attributes: 
neck, pelvis, gait and trunk, due after research it is noticed 
that the disabilities analyzed affect mainly to this limbs, 
thus this approach has the efficiency needed for the simula-
tion engine. Figure 3 shows the schema implemented. 

Cognitive Model 
The cognitive model represents a set of cognitive processes. 
This model describes the human mind processes which can 
be categorized into basic functions such as reaction time, 
working memory, procedural memory and attention (and 
subcategories of each one) and high level cognitive pro-
cesses, such as decision making and orientation. The ap-
proach model a cognitive disability by the effects that the 
specific disability has on each cognitive process (how the 
disability affects on each function separately, for instance, a 
a person with Alzheimer, will have the memory affected in 
a certain degree). 



- 24 - 

 

 
Figure 4. Motor schema. 

Consequently, we have followed here the same approach.  
In Figure 5, we can see the Cognitive model developed. 
The schema represents the cognitive processes before men-
tioned. The parameter “Affected_by” will be use to indicate 
which disability affects on each cognitive attribute. Figure 
4 shows the schema implemented. 

 
Figure 5. Cognition description. 

Behavioral Model 
The approach followed was to model a P&B state by the 
effects that the specific state has on the human processes 
(specially cognition), for instance, how the psychological 
state affects on each function separately, for instance, a 
person with stress, will have the memory affected in a cer-
tain degree). Consequently, we have followed here the 
same approach. The P&B UsiXML model describes the 
dimensions of the 4 psychological and behavioral facets se-
lected in VERITAS: emotional states, fatigue, stress and 
motivation. This model allows us to link the P&B state with 
with the affected attributes.  

 
Figure 6. Physical & Behavioral Model. 

Emotional States 
This model allows us to represent the facets of the emotions 
and how they affect on a user and has six attributes:  

 Type: the type of emotion: positive and negative emo-
tions  

 Name: the name of the emotion: joy, sadness, fear  
 Description: Brief description of the state.  
 Emotional Scale: value with the emotional level that 

helps to indicate the type  
 Arousal: value that shows the arousal level of the emo-

tions  
 Valence: value that shows the valence of the emotions  

From emotional states there are several elements hanged:  

 AffectedTasks: tasks affected by this emotional state.  
 ICFClassification: set of functional limitations that have 

this state.  
 Responses: Responses triggered by the emotional state. 

They can be physiological, cognitive and behavior-
al/emotional.  

 Instigators: Stimuli that trigger the emotional states.  
 ageRelated: if this state is related with age or not.  

Figure 7 shows the schema with all the information within 
the emotional states facets. 

 
Figure 7. Emotional States model. 



- 25 - 

 

Stress 
This model allows us to represent the facets of the stress 
and how they affect on a user. It has 4 main attributes:  

 Type: the type of stress: Chronic, short term  
 Name: the name of the stress: chronic stress, acute 

stress, eustress  
 Description: Brief description of the state.  
 Level of Stress: value with the arousal level of stress  

From stress there are several elements hanged:  

 AffectedTasks: tasks affected by this emotional state.  
 ICFClassification: set of functional limitations that 

have this state.  
 Responses: Responses triggered by stress. They can be 

physiological, cognitive and behavioral/emotional.  
 Stressors: Stimuli that trigger the stress responses.  
 ageRelated: if this state is related with age or not.  

Figure 8 shows the schema with all the information of the 
stress dimensions. 

 
Figure 8. Schema of the Stress. 

Fatigue 
This model allows us to represent the facets of fatigue and 
how they affect on a user. It has 4 main attributes:  

 Type: the type of fatigue: mental, physical  
 Name: the name of the state.  
 Description: Brief description of the state.  
 Level of Fatigue: value with the level of fatigue. 

From fatigue there are several elements hanged:  

 AffectedTasks: tasks affected by fatigue.  
 ICFClassification: set of functional limitations that 

have this state.  

 Responses: Responses triggered by fatigue. They can be 
physiological, cognitive and behavioral/emotional.  

 Causes: Causes that trigger the fatigue responses.  
 ageRelated: if this state is related with age or not.  

Figure 9 shows the schema with all the information of the 
stress dimensions. 

 
Figure 9. Fatigue Schema. 

Motivation 
This model allows us to represent the facets of motivation 
and how they affect on a user. It has 6 main attributes:  

 Type: the type of motivation: intrinsical, extrinsical  
 Name: the name of the state.  
 Description: Brief description of the state.  
 Motivation Level: value with the level of fatigue  
 Expectancies: internal expectancies of the user  
 Valences: internal valences of the user.  

From motivation there are several elements hanged:  

 AffectedTasks: tasks affected by motivation.  
 ICFClassification: set of functional limitations that 

have this state.  
 Responses: Responses triggered by motivation. They 

can be physiological, cognitive and behavior-
al/emotional.  

 Causes: Causes that trigger the motivational responses.  
 ageRelated: if this state is related with age or not.  

Figure 10 shows the schema with all the information of the 
motivation dimensions. 



- 26 - 

 

 
Figure 10. Motivation Schema. 

CONCLUSIONS AND FUTURE WORK 
The main objective of the present work is to implement the 
optimal methodology for translating or mapping the Physi-
cal, Cognitive and Psychological & Behavioral Abstract 
User Models ontologies into consistent UsiXML models.  

With this aim, we have performed the following steps: (1) 
an analysis of the AUMs tables and existent ontologies, (2) 
definition of the methodology for translating the ontologies 
into UsiXML schemas, (3) implementation of the Generic 
Virtual Model schema (extension of the UsiXML) follow-
ing the methodology and (4) development of a tool that al-
lows the automatic generation of the Generic Virtual User 
Models. The analysis of the AUMs has let us to extract a 
high number of relevant features of the different models. 
These features have been included in the Generic Virtual 
User Model, resulting in a schema that represents with fi-
delity the different dimensions of the human being espe-
cially regarding motor abilities, cognitive functions and be-
havioral and psychological aspects. This parameterization 
of the main physical and cognitive disabilities and psycho-
logical states is one of the most important achievements of 
the work. This parameterization is reflected on the Generic 
Virtual User Model schema. One of the main challenges of 
the analysis process was to select the most relevant and un-
equivocal attributes and parameters, since the AUMs con-
tain a huge amount of information that cannot always be 
parameterized. The UsiXML has been extended to cover 
the needs of the Physical, Cognitive and P&B AUMs, since 
the generic version does not support VERITAS ontologies. 

REFERENCES 
1. AAL Web-Site, http://www.aal-europe.eu 
2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 

Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (2003), pp. 289–308. 

3. Fernandez-Llatas, C., Mocholí, J., Sala, P., and Na-
ranjo, J. Process Choreography for Human Interaction 
Computer-Aided Simulation Human-Computer Interac-
tion. In Proc. of 14th Int. Conf. on Human-Computer In-
teraction HCI International’2011 (Orlando, July 9-14, 
2011). Part I, Design and Development Approaches. 
Lecture Notes in Computer Science, Vol. 6761. Spring-
er, Berlin (2011), pp. 214–220. 

4. Heflin, J. (Ed.). OWL Web Ontology Language Use 
Cases and Requirements. W3C Recommendation, 
Online resource http://www.w3.org/TR/webont-req/ 

5. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., 
Abrams, M., Coyette, A., and Vanderdonckt, J. Human-
Centered Engineering with the User Interface Markup 
Language. In Seffah, A., Vanderdonckt, J., Desmarais, 
M. (eds.), “Human-Centered Software Engineering”, 
Chapter 7, HCI Series, Springer, 2009, pp. 141–173. 

6. Introduction to Ontologies, OpenStructs: TechWiki, 
http://techwiki.openstructs.org/index.php/Intro_to_Onto
logies 

7. Limbourg, Q. and Vanderdonckt, J. UsiXML: A User 
Interface Description Language Supporting Multiple 
Levels of Independence. In Matera, M., Comai, S. 
(eds.), “Engineering Advanced Web Applications”, 
Rinton Press, 2004, pp. 325–338. 

8. McGuinness, D.L. and van Harmelen, F. (Eds.) OWL 
Web Ontology Language Overview. W3C Recommen-
dation, 10 February 2004, http://www.w3.org/TR/2004/ 
REC-owl-features-20040210/. Latest version available 
at http://www.w3.org/ TR/owl-features/  

9. Patel-Schneider, P.F., Hayes, P., and Horrocks, I. 
(Eds.).  OWL Web Ontology Language Semantics and 
Abstract Syntax. W3C Recommendation, 10 February 
2004, Latest version available at http://www.w3.org/ 
TR/2004/REC-owl-semantics-20040210/. 
http://www.w3.org/TR/owl-semantics/.  

10. Serra, A., Navarro, A., and Naranjo, J. Accessible and 
Assistive ICT UIML/UsiXML task modeling definition. 

11. Smith, M.K., Welty, Ch., and McGuinness, D.L. (Eds.). 
OWL Web Ontology Language Guide. W3C Recom-
mendation, 10 February 2004, http://www.w3.org/TR/ 
2004/REC-owl-guide-20040210/ . Latest version avail-
able at http://www.w3.org/TR/owl-guide/ .  

12. User Interface eXtensible Markup Language (UsiXML) 
www.usixml.org  

13. User Interface Markup Language (UIML), http:// 
www.uiml.org/ 

14. Vanderdonckt, J. Model-Driven Engineering of User 
Interfaces: Promises, Successes, and Failures. In Proc. 
of 5th Annual Romanian Conf. on Human-Computer In-
teraction ROCHI’2008 (Iasi, September 18-19, 2008), 
S. Buraga, I. Juvina (eds.). Matrix ROM, Bucarest 
(2008), pp. 1–10. 

15. Veritas Consortium Web-Site: http://veritas-project.eu 
 



- 27 - 

 

Support Tool for the Definition and Enactment 
of the UsiXML Methods 

 
Mohamed Boukhebouze, Waldemar P. Ferreira, Neto Amanuel Koshima, 

Philippe Thiran, Vincent Englebert 
PReCISE Research Center, University of Namur, 

rue Grandgagnage, 21 – B-5000 Namur (Belgium) 
{mboukheb, waldemar.neto, amanuel. koshima, philippe.thiran, vincent.englebert}@fundp.ac.be 

 
ABSTRACT 
In this paper, we propose a supporting tool for UsiXML-
methods based on a new meta-model called SPEM4-
UsiXML. This meta-model relies on the OMG standard 
SPEM 2.0 meta-model, which uses a UML profile to define 
the elements of a method. SPEM4UsiXML allows express-
ing the core elements of the UsiXML methods (like devel-
opment path, development step, and development sub-
step). In addition, the meta-model separates the operational 
aspect of a UsiXML method (Method Content), from the 
temporal aspect of a method (Process Structure). Like 
SPEM, there is a lack of method enactments supporting in 
SPEM4UsiXML. To deal with this limitation, the proposed 
tool allows the enactment of the UsiXML methods by 
transforming a SPEM4UsiXML model to a BPEL model so 
that the a BPEL engine can be used to execute the trans-
formed SPEM4UsiXML models. 

Author Keywords 
BPEL, Method enactment, SPEM, User Interface Descrip-
tion Language. 

General Terms 
Theory. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D.2.8 
[Software Engineering]: Metrics|complexity measures, 
performance measures. H.4 [Information Systems Appli-
cations]: Miscellaneous. 

INTRODUCTION 
UsiXML (USer Interface eXtensible Markup Language) is 
a User Interface Description Languages (UIDL) [12] that 
describes the User Interface (UI) independently of any 
computing platform [14]. This independency is achieved by 
relying on the CAMELEON framework, which describes 
the UI at four main levels of abstractions: task & domain, 
abstract UI, concrete UI, and final UI. 

In UsiXML, the CAMELEON framework is realized by 
adopting a Model Driven Engineering (MDE) approach to 
specify a set of models representing the UI at different lev-
els of abstraction. Besides, UsiXML uses a set of transfor-
mations to derive a UI model from another model. For ex-

ample, a high-level model (e.g. task & domain model) can 
be transformed into low-level analysis or design model 
(e.g. concrete UI model) [9]. Another example of a 
UsiXML transformation is the extraction of high-level 
model from a set of low-level models or from code [9]. 

According to Limbourg et al. [9], UsiXML transformations 
may be combined to form a UsiXML method. A UsiXML 
method, which is also called development path [9], is the 
process to follow for developing a user interface based on 
UsiXML models. In a UsiXML method, transformations 
are considered as development steps that can be decom-
posed into nested development sub-steps. In turn, a devel-
opment sub-step realizes a basic goal assumed by a devel-
oper while constructing a UI. 

To reap all the benefits, a UsiXML method needs to be de-
signed and evaluated by describing formally its content (its 
semantics) and its form (its abstract/concrete syntax). For 
this reason, a UsiXML method needs to be compliant with 
a well-defined meta-model so that the core elements of 
UsiXML methods (e.g., development path, development 
step and development sub-step) can be formally defined. In 
addition, the enactment of UsiXML methods needs to be 
supported by a tool. By enactment of a UsiXML method 
we mean the ability of a tool to support the UsiXML mod-
els transformation according to the method specification. In 
order to achieve the UsiXML method enactment with a 
tool, the UsiXML method meta-model needs to be expres-
siveness to allow the execution of the UsiXML transfor-
mation. 

In this paper, we propose a support tool method that allows 
the definition and the enactment of UsiXML methods. The 
definition of a UsiXML method (in this tool) is based on a 
SPEM meta-model [11]. SPEM is an OMG standard that 
provides a great usability using UML profiles. In addition, 
it contains generalization classes that allow the refinement 
of the vocabularies used to describe the concepts or the re-
lationships between concepts. In order to support the spe-
cific key elements of the UsiXML methods (e.g. develop-
ment path, development step and development sub-step), 
our proposed tool uses a SPEM meta-model specific to 
UsiXML methods. This specific meta-model is called 
SPEM4UsiXML. 



- 28 - 

 

Like SPEM, the SPEM4UsiXML meta-model allows the 
description of a method process structure without introduc-
ing its own formalism to precisely describe the process be-
havior models. [11] argues that the separation of SPEM 
method structure from the behavior of the method opens up 
the possibility to reuse existing externally-defined behavior 
models. A method described with the SPEM 2.0 meta-
model can be enacted by mapping it to a business flow or 
an execution language such as BPEL [11] or XPDL [16] 
and then executing this representation of processes using 
enactment engine such as a BPEL engine [11]. 

In order to provide a flexible and independent transfor-
mation systems, this work implements UsiXML model 
transformation engine as Web services. Each Web service 
enacts a specific development sub-step by using associated 
transformation rules. 

In this way, a UsiXML method can be seen as a Web ser-
vices composition. Our method support tool allows the en-
actment of a UsiXML method by transforming a SPEM-
4UsiXML model to a BPEL based on a set of mapping 
rules and by executing it using a BPEL engine. 

The rest of the paper is organized as follows. Section 2 
gives an overview of UsiXML methods. Section 3 intro-
duces the SPEM4UsiXML meta-model. Section 4 presents 
the transformation of a SPEM4UsiXML model to a BPEL. 
Section 5 demonstrates the prototype of the support tool for 
the UsiXML methods. Finally, the paper ends with a con-
clusion and future works. 

USIXML METHODS 
In this section, the background definition for UsiXML 
methods is given. A UsiXML method is a process that 
transforms progressively the UsiXML models in order to 
obtain specifications that are detailed and precise enough to 
be rendered or transformed into code [9]. A UsiXML 
method is also used to synthesize abstract models from de-
tailed models. To achieve the UsiXML transformations, 
different types of transformation mechanisms can be used 
[9]:  

• Reification is a transformation of a high-level model in-
to a low-level model.  

• Abstraction is a transformation that extracts a high level 
model from a set of low-level models.  

• Translation is a same level models transformation 
based on a context of use change. In this work, the con-
text of use is defined as a triple of the form (U,P,E) 
where E is a possible or actual environments considered 
for a software system, P is a target platform, U is a user 
category.  

• Code generation is a process of transforming a concrete 
UI model into a source code.  

• Code reverse engineering is the inverse process of code 
generation.  

    
Figure 1. Transformation path, step and sub-step [9]. 

These different UsiXML transformation types are instanti-
ated by development steps [9]. These development steps 
may be combined to form a UsiXML method. The process 
of combining development steps into a UsiXML method is 
called a development path. Several types of development 
paths exist, for example [9,15]:  

• Forward engineering is a composition of reification(s) 
and code generation enabling a transformation of a 
high-level viewpoint into a lower level viewpoint.  

• Reverse engineering is a composition of abstraction(s) 
and code reverse engineering, which enables a trans-
formation of a low-level viewpoint into a higher-level 
viewpoint.  

• Context of use adaptation is a composition of a transla-
tion with another type of transformation that enables a 
viewpoint to be adapted in order to reflect a change of 
context of use of a UI.  

Figure 1 represents an overview of the UsiXML method 
meta-model. This meta-model assumes that the develop-
ment steps are decomposed into nested development sub-
steps. A development sub-step may consist of activities to 
select concrete interaction objects, navigation objects, etc. 
This could be realized by a transformation mechanism 
(e.g., graph transformation [3] and [13]) based on sets of 
transformation rules [13]. Composite Step is a generaliza-
tion class that is used to express a development path in a 
tree-structure. It represents a set of development sub-steps 
as leafs and a development step as root of a tree. 

Based on the meta-model shown in Figure 1, three major 
elements of the UsiXML method are considered such as 
work, product and producer:  

• The work represents what must be done. It is defined in 
terms of development step and development sub step. 



- 29 - 

 

 
Figure 2. Forward Transformational Development of UIs. 

• The product represents the artifact that must be manipu-
lated by a development step and a development sub step 
(i.e. created, used or changed). It can concern a UI 
model or a UI code. In turn, a model can be a UsiXML 
model that is used/generated by a development step or a 
sub-step model that is used/generated by a development 
sub-step.  

• The producer represents the agent that has the respon-
sibility to execute a work unit. It is defined in terms of 
person, role, team, tool, service, etc.  

Figure 2 shows an illustration of the forward engineering 
method. This method is fully explained in [13]. The start-
ing point of the forward engineering is a task and a domain 
model (products). These models are transformed into an 
abstract UI based on the transformation rules specified in 
works. Afterwards, the abstract UI model is transformed 
into a concrete UI model (products). Finally, the code is 
generated (products). In order to achieve these transfor-
mations, a sequence of development steps (sequence of rei-
fication and code generation) needs to be performed. Each 
development step may involve a set of development sub-
steps. For example, the first development step involves a 
development sub-step like identification of Abstract UI 
structure. This sub-step consists in the definition of groups 
of abstract interaction objects (an element of the abstract 
user interface). Each group of abstract interaction objects 
corresponds to a group of tasks (in task model), which are 
tightly coupled together. To achieve its work, the sub-step 
can use a sequence of rules. For example, identification of 
Abstract UI structure uses sequences of two rules; R1: for 
each leaf task of a task tree, create an Abstract Individual 
Elements; and R2: create an Abstract Container structure 
similar to the task decomposition structure. Indeed, each 
development step takes a UsiXML model(s) as input and 
transforms it to another UsiXML model(s) by involving a 
set of development sub-steps, which in turn manipulates 
sub-steps models by using a set of rules. Note that, each 
development step (and development sub-step) has a pro-
ducer responsible of their execution. For example, the first 

development step can have a human actor who verifies the 
transformation done in this step. Whereas a transformation 
tool can execute the rules sequence of the sub-step "identi-
fication of abstract UI structure". 

In the next section, we present our proposed meta-model 
for the UsiXML method, SPEM4UsiXML. 

SPEM4UsiXML 
UsiXML User interface designers need to rely on robust 
and well defined method meta-model in order to specify 
the elements of a UsiXML method. In the literature, several 
method standard meta-models have been introduced like 
SPEM [11], OPEN [4] and ISO 24744 [6]. These standards 
describe the core elements of a method in different ways. 
Each standard is built on different main principles. SPEM 
2.0 [11] is an OMG standard that reuses the UML diagrams 
to describe the elements of a method. Whereas OPEN [OPF 
2005] defines an industry-standard meta-model that pro-
vides a significant detail to describe different elements of a 
method. However, both SPEM and OPEN standards do not 
support the method enactment. ISO 72444 [6] uses a dual-
layer modelling to allow the method engineer to configure 
the enactment of the method from the meta-model level by 
using the Clabject and the Powerptype concepts. However, 
the object-oriented programming languages (like JAVA) 
do not support the dual-layer [5,8]. 

Although these standard meta-models can be adopted to 
describe the UsiXML methods, it is more suitable to define 
a specific method meta-model in order to support the spe-
cific key elements of the UsiXML methods (e.g., develop-
ment path, development sub-path). For this reason, we pro-
pose in this paper a new meta-model for the UsiXML 
methods. The proposed meta-model is based on SPEM 2.0. 
This choice is justified since SPEM 2.0 provides a great 
usability since it is a UML profile. Moreover, SPEM 2.0 
contains generalization classes that allow the refinement of 
the vocabularies used to describe the concepts or the rela-
tionships between concepts. These abstract generalization 
classes allow creating a UsiXML method meta-models spe-
cific to a certain domain (e.g., UI Development). 



- 30 - 

 

   
Figure 3. Structure of the SPEM4UsiXML meta-model. 

The goal of the proposed meta-model, SPEM4UsiXML 
(SPEM for UsiXML), is to define the elements necessary 
for the description of any UsiXML method. The SPEM-
4UsiXML extends the SPEM 2.0 ([11]) by adding new 
classes. In addition, like SPEM, SPEM4UsiXML separates 
the operational aspect of a UsiXML method from the tem-
poral aspect of a UsiXML method. This means that 
SPEM4UsiXML reuses the UML diagrams for the presen-
tation of various UsiXML method concepts. 

As depicted in Figure 3, the SPEM4UsiXML meta-model 
uses seven main meta-model packages inherited from 
SPEM: Method Content describes the operations aspect of 
a UsiXML method; Process Structure and Process Behav-
iour describes the temporal aspect of a UsiXML method, 
Process With Methods describes the link between these two 
aspects; Core provides the common classes that are used in 
the different packages; Method Plug-in describes the con-
figuration of a UsiXML method; Managed Content de-
scribes the documentation of a UsiXML method. 

SPEM4UsiXML extends the classes of the Method Content 
and the Process Structures. Indeed, SPEM4UsiXML adds 
new classes for the SPEM method content meta-model 
package in order to specify several development steps, sub 
sub-steps, products and producers. Moreover, SPEM-
4UsiXML adds new classes in the SPEM process structure 
package in order to specify the control flow of develop-
ment steps, sub-steps, products and producers that are used 
in the UsiXML method process. 

In this paper we focus only on the description and the en-
actment of the dynamic aspect of the method (i.e. method 
process). For this reason, we present the Process Structure 
package of SPEM4UsiXML in the next section. 

Process Structure Package 
As shown in Figure Error! Reference source not found., 
SPEM4UsiXML adds new classes to the SPEM Process 
Structure package. The white classes represent the classes 
of SPEM that are not modified, whereas the yellow classes 
represent the classes extended by SPEM4UsiXML. 

• Development Path: defines the properties of a UsiXML 
method.  

• Breakdown Element: is a generalization class that de-
fines a set of properties used by the element of a 
UsiXML method (Product, Development step and pro-
ducer).  

• Work Breakdown Element: provides specific properties 
for Breakdown Elements that represent a Development 
Step and a Development Sub-Step.  

• Step Use: is a generalization class that defines a set of 
properties used by the element of the Development 
Step, the Composite Step and the Development Sub-
Step.  

• Composite Step Use: is a generalization class that is 
used to define a tree-structure with a set of development 
sub-step as a leaf and a development step as the root.  

• Development Step Use: defines the transformation steps 
of the UsiXML method that are performed by Roles 
Use instances. A Development Step Use is associated to 
an input and an output Work Products Use.  

• Development Sub-Step Use: defines the sub-steps of a 
Development Step Use. As sub-step can be achieved 
using a autonomous component called service (Service 
Use), so that the enactment of the development sub-step 
is independent of any transformation system.  

• Role Use: represents a performer of a Development 
Step Use or a Development Sub-Step.  

• Work Product Use: represents an input and/or output 
type for a Development Step. It can concern a model 
(Model Use) or a code (Code Use). 

The SPEM4UsiXML Method process structure package 
contains also some useful elements inherited from SPEM 
2.0 like:  

• Process Responsibility Assignment: links Role Uses to 
Work Product Uses by indicating that the Role Use has 
a responsibility relationship with the Work Product 
Use.  

• Process Performer: links Role Uses to Development 
Step Use by indicating that these Role Use instances 
participate in the work defined by the Development 
Step Use.  

• Work Sequence: represents a relationship between two 
Work Breakdown Elements in which one Work Break-
down Elements depends on the start or finish of another 
Work Breakdown Elements in order to begin or end. 
Indeed, a Work Sequence has 5 types:  

 
 



- 31 - 

 

 
Figure 4. SPEM4UsiXML Process Structure package. StartToStart expresses that a Work Breakdown Element (B) 

cannot start until a Work Breakdown Element (A) start;  

1. StartToFinish expresses that a Breakdown Element 
(B) cannot finish until a Work Breakdown Element 
(A) starts;  

2. FinishToStart expresses that a Work Breakdown El-
ement (B) cannot start until a Work Breakdown El-
ement (A) finishes;  

3. FinishToFinish expresses that a Work Breakdown 
Element (B) cannot finish until a Work Breakdown 
Element (A) finishes.  

4. ConditionToStart expresses that a Work Breakdown 
Element can be started only if the condition is satis-
fied.  

Figure 5 gives an example of a forward engineering meth-
od expressed in SPEM4UsiXML. In this method, various 
development steps are represented by dashed rectangles. 
Each development step can be composed by a set of devel-

opment sub-steps. Development sub-steps are represented 
by pentagon (e.g. identification of an abstract UI structure, 
etc.) The development steps (and the development sub-
steps) can be assigned to a producer who has a responsibil-
ity to execute or control an execution of the different de-
velopment (sub)steps. 

This UsiXML method needs to be enacted by a tool in or-
der to allow supporting the transformation of the UsiXML 
models according to the method specification. However, 
the SPEM4UsiXML method meta-model provides a high 
level description, which is not precise enough to allow the 
execution of the UsiXML transformation. For this reason, 
the SPEM4UsiXML process needs to be mapped to an exe-
cution language. In the next section, we detail the mapping 
of SPEM4UsiXML process to a BPEL process. 



- 32 - 

 

 
Figure 5. UsiXML Forward Engineering method ex-

pressed in SPEM4UsiXML. 

UsiXML method Enactment 
SPEM4UsiXML process package allows the description of 
a method process structure, but it does not introduce the 
formalism for enacting a method process. It rather proposes 
to reuse an existing externally-defined an enactment model 
such as BPEL. For this reason, in the next section, we de-
tail how we can map SPEM4UsiXML process to a BPEL 
process. The separation of SPEM4UsiXML (like SPEM) 
method process structure from the behavior of the method 
process opens up the possibility to utilize enactment ma-
chines for many different kinds of behavior modeling ap-
proaches [11]. The motivation behind this separation is to 
give a method design options to choose process behavior 
models that fits his/her needs. 

Although, the separation provides a flexible way to repre-
sent the behavioral aspects of SPEM processes, it does not 
define the mapping rules to link the elements of SPEM 
process with the behavioral models. In the literature, sever-
al initiatives have been conducted to define mapping rules 
that allow automatically generating a specific executable 
model from a SPEM process [17] and [2]. For example, 
Feng et al. [17] propose a set of well-defined mapping 
rules to transform a SPEM process to a workflow ex-
pressed in XPDL [16]. Another example is the work pro-
posed by Bendraou et al. [2], which introduces transfor-
mation rules into BPEL. 

Because SPEM4UsiXML extends SPEM with additional 
classes that specify elements of a UsiXML method (e.g. 
development steps and sub sub-steps), a set of mapping 
rules should be defined in order to link the elements of 
SPEM4UsiXML process with the OASIS standard BPEL. 
Indeed, a UsiXML process can be considered as a Web 
service composition orchestration where each Web service 
enacts a specific development sub-step transformation so 
that the transformation will be flexible and independent to 
any transformation system. As a result, an enactment ma-

chine for BPEL models can be used to run a UsiXML 
method. In light of this, we propose a set of mapping rules 
between a subset of SPEM4UsiXML concepts and the 
BPEL language in Table 1. 

UsiXML method Support tool 
This section describes the UsiXML support tool that is ded-
icated to define and enact a UsiXML method. The tool is 
developed as an Eclipse plug-in that includes a SPEM-
4UsiXML model editor as well as a SPEM4UsiXML-to-
BEPEL transformer engine. Figure 6 shows a screenshot of 
the SPEM4UsiXML model editor that is build based on the 
Eclipse Graphical Modeling Framework (GMF) [10]. This 
framework provides a generative component and a runtime 
infrastructure for developing graphical editors based on a 
well-defined meta-model. 

  
Figure 6. The SPEM4UsiXML model editor. 

  
Figure 7. The BPEL Process of the UsiXML forward 

engineering method.



- 33 - 

 

 SPEM4USiXML BPEL Description 

Concept Development Path Process A development process in SPEM4USiXML can be mapped to pro-
cess in BPEL. 

 Development Sub Scope Activity Development step is a block which is composed of one or more de-
velopment sub-steps. It can be mapped to Scope in BPEL. 

 Development 
Sub-steps 

Invoke Activity A development sub-step is a concrete step where a service(s) is in-
voked, hence, it can be mapped to invoke acvtivity in BPEL. 

 Role Partner Links A role is an actor who executes an action(s). A role could be mapped 
to a parent link in BPEL. 

 Product Product Products of SPEM4USiXML are models and source codes which 
can be represented using variables in BPEL 

Relation-
ship 

Start to Start Flow Activity 
with Links 

In order to start development step A, development step B must start 
first. This relationship can be expressed using flows 

 Start to Finish Flow Activity 
with Links 

Development step A needs to start before development step B finish-
es its activity. This relation could also be expressed using flow and 
links. 

 Finish to Start Sequence Ac-
tivity 

A sequence represents the sequences of execution of development 
sub-steps. It can be mapped to a sequence in BPEL. 

 Finish to Start Flow Activity 
with Links 

This relationship can also be expressed using flow and links to speci-
fy development step A needs to be finished so as to B finish its activ-
ity. 

 Condition to Start If Activity Only the subsequent activities that the condition is true are started. 
This relationship can be expressed as an If  

Table 1. Mapping from SMEP4USiXML to BPEL. 

The UsiXML support tool is based on an ATL transfor-
mation language to specify the mapping between a 
SPEM4UsiXML method and a BPEL process. The map-
ping rules are described and executed using the ATL 
toolkit. The ATL toolkit [7] is a model transformation tool 
that allows generating a target model from a source model 
based on mapping rules. Figure 7 illustrates the generated 
BPEL process for the UsiXML forward engineering meth-
od that was explained above.  

CONCLUSION AND DISCUSSION 
In this paper, we proposed a support tool for the definition 
and the enactment of the UsiXML methods. The tool is 
based on a new meta-model for UsiXML method descrip-
tion, called SPEM4UsiXML. This meta-model is based on 
the OMG standard, SPEM 2.0, which uses a UML profile 
to define elements of a method. The core element of the 
SPEM4UsiXML is the development steps that are instances 
of transformation types. Development steps are decom-
posed into development sub-steps. A development sub-step 
can be executed by using a Web service. SPEM4UsiXML 
separates the operational aspect of a method (Method Con-
tent), from the temporal aspect of a methodology (Process 
Structure). This allows using any modeling language to de-
scribe the process behavior like BPEL. Unfortunately, the 
SPEM4UsiXML meta-model cannot support the enactment 
of a UsiXML method on a specific endeavor. To deal with 
this limit, the proposed support tool (for UsiXML methods) 

transforms a SPEM4UsiXML model to a BPEL process so 
that a UsiXML method is considered as a Web service 
composition where each Web service enacts a specific de-
velopment sub-step of the method. Consequently, a BPEL 
engine can be used to execute the SPEM4UsiXML models. 
However, BPEL language expresses a UsiXML method 
process in a fully automated way meaning that a human 
producer is not able to interact with the development sub-
steps until the end of the process execution. For example, a 
human producer is not able to monitor the input to a devel-
opment sub-step at runtime, s/he cannot cancel the process 
execution or s/he is not able to execute a development sub-
step. For this reason, in the future work, we plan to address 
this problem by extending BPEL with set of human interac-
tions points in order to allow a human producer to interact 
with the method execution. This extension should allow the 
generation of a user interface for the UsiXML method in 
order to help the human producer to interact with the meth-
od at runtime. In addition, in the future, we also plan to de-
velop a monitoring tool that allows to control the enact-
ment of the SPEM4UsiXML methods based a historic 
model. This historic model keeps trace of enactment opera-
tions whenever they occur so that problems in a method 
can be identified and corrected based on predefined pat-
terns (e.g. a delay in the execution of a step). 



- 34 - 

 

ACKNOWLEDGMENTS 
The second author would like to acknowledge of the 
ITEA2-Call3-2008026 USIXML (User Interface extensible 
Markup Language) European project and its support by 
Région Wallonne DGO6. 

REFERENCES 
1. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., 

Curbera, F., Ford, M., Goland, Y., Guнzar, A., Kartha, 
N., Liu, C.K., Khalaf, R., Koenig, D., Marin, M., Me-
hta, V., Thatte, S., Rijn, D., Yendluri, P., and Yiu, A. 
Web services business process execution language, ver-
sion 2.0 (OASIS standard). WS-BPEL TC OASIS, 
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html 
(2007) 

2. Bendraou, R., Combemale, B., Crégut, X., and Gervais, 
M.P. Definition of an executable SPEM 2.0. IEEE 
Computer Society (2007) 

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (2003), pp. 289–308. 

4. Consortium OPEN (2010), http://www.open.org.au/ 
5. Gutheil, M., Kennel, B., Atkinson, C. A systematic ap-

proach to connectors in a multi-level modeling envi-
ronment. In Proc. of 11th Int. Conf. on Model Driven 
Engineering Languages and Systems MoDELS’2008 
(Toulouse,  September 28 - October 3, 2008). Czar-
necki, K., Ober, I., Bruel, J.M., Uhl, A., Völter, M. 
(eds.). Lecture Notes in Computer Science, vol. 5301. 
Springer, Berlin (2008), pp. 843–857.  

6. International Standard Organization, International Elec-
trotechnical Commission, I.O.: ISO/IEC 24744. Soft-
ware Engineering - Metamodel for Development Meth-
odologies, JTC 1/SC 7 (2007). 

7. Jouault, F. And Kurtev, I. Transforming models with 
ATL. In Proc. of Satellite Events at the MoDELS 2005 
Conference, Bruel, J.M. (Ed.), Lecture Notes in Com-
puter Science, vol. 3844, pp. 128–138. Springer Berlin / 
Heidelberg (2006),  

8. Kuehne, T. and Schreiber, D. Can programming be lib-
erated from the two-level style: multi-level program-
ming with DeepJava. In Proc. of the 22nd Annual ACM 
SIGPLAN Conference on Object-oriented programming 
systems and applications OOPSLA’2007 (October 
2007). ACM Press, New York (2007), pp. 229–244.  

9. Limbourg, Q. and Vanderdonckt, J. Multipath trans-
formational development of user interfaces with graph 
transformations. In Human-Centered Software Engi-
neering, Seffah, A., Vanderdonckt, J., Desmarais, M.C. 
(Eds.). Human-Computer Interaction Series, Springer, 
London (2009), pp. 107–138. 

10. Moore, B. and Ebrary, I. Eclipse development using the 
graphical editing framework and the eclipse modeling 
framework. IBM, International Technical Support Or-
ganization (2004) 

11. Software Systems Process Engineering Meta-Model 
Specification version 2.0 (2008). Object Management 
Group Document Number: formal/08-04-02. Standard 
document, http://www.omg.org/spec/SPEM/2.0/PDF 

12. Souchon, N. and Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages. In 
Proc. of 10th Int. Conf. on Design, Specification, and 
Verification of Interactive Systems DSV-IS’2003 (Ma-
deira, 4-6 June 2003). J. Jorge, N.J. Nunes, J. Cunha 
(Eds.). Lecture Notes in Computer Science, vol. 2844, 
Springer-Verlag, Berlin (2003), pp. 377–391. 

13. Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Mi-
chotte, B., and Montero, F. A Transformational Ap-
proach for Multimodal Web User Interfaces based on 
UsiXML. In Proc. of 7th Int. Conf. on Multimodal Inter-
faces ICMI’2005 (Trento, 4-6 October 2005). ACM 
Press, New York (2005), pp. 259-266. 

14. UsiXML v1.8 Reference Manual, Université catholique 
de Louvain (February 2007). 

15. Vanderdonckt, J. Model-Driven Engineering of User 
Interfaces: Promises, Successes, and Failures. In Proc. 
of 5th Annual Romanian Conf. on Human-Computer In-
teraction ROCHI’2008 (Iasi, September 18-19, 2008), 
S. Buraga, I. Juvina (Eds.). Matrix ROM, Bucarest 
(2008), pp. 1–10. 

16. WFMC, Workflow management coalition workflow 
standard: Workflow process definition interface – XML 
process definition language (XPDL). Technical Report 
WFMC-TC-1025. Workflow Management Coalition, 
Lighthouse Point (2002). 

17. Yuan, F., Li, M., and Wan, Z. SEM2XPDL: Towards 
SPEM model enactment. In Software Engineering Re-
search and Practice, Arabnia, H.R., Reza, H. (Eds.). 
CSREA Press (2006), pp. 240–245. 



 35

Towards Methodological Guidance for 
User Interface Development Life Cycle 

Francisco Javier Cano Muñoz1, Jean Vanderdonckt2 
1Prodevelop S.L., 46001 Valencia, Spain – fjcano@prodevelop.es 

2Université catholique de Louvain, Louvain School of Management 
Louvain Interaction Laboratory, Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium) 

jean.vanderdonckt@uclouvain.be  – Phone: +32 10 478525 
 
ABSTRACT 
This paper describes how methodological guidance could 
be provided to user interfaces designers throughout user in-
terface development life cycle supported when a model-
driven engineering is involved. For this purpose, a method-
ologist firstly creates a dashboard model according to a cor-
responding meta-model in order to define a user interface 
development path that consists of a series of development 
tasks (that structure the development path into development 
actions) and dependencies (that serve as methodological 
milestones). Once created, a user interface designer enacts a 
previously defined user interface development path by in-
stantiating and interpreting a dashboard model while being 
provided with methodological guidance to conduct this de-
velopment path. This guidance consists of steps, sub-steps, 
cheat sheets, and methodological actions. 

Author Keywords 
Dashboard model, dependency, development path, method 
enactment, method engineering, methodological guidance, 
user interface development life cycle. 

General Terms 
Design, Experimentation, Human Factors, Verification. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H5.2 [Information interfaces and 
presentation]: User Interfaces – Prototyping. 
 
INTRODUCTION 
When User Interface (UI) designers, modelers, analysts, 
graphical designers, and developers are given the oppor-
tunity to rely on a Model-Driven Engineering (MDE) soft-
ware environment to produce a UI, they often complain on 
the lack of methodological guidance throughout the UI de-
velopment life cycle (UIDLC) provided by MDE: 

─ Although MDE explicitly relies on a structured trans-
formation process, namely involving model-to-model 
transformation (M2M) and model-to-code compilation 
(M2C), designers do not easily perceive where some 
degree of freedom suggests alternative choices in the 
UIDLC and where some degree of determinism con-
straints these choices. MDE is often considered as a 

straightforward approach, if not sequential, where little 
or no degree of freedom is offered, even when multiple 
development paths are possible [15]. 

─ Facing the multiplicity of models (e.g., task, domain, 
abstract UI, concrete UI, context) in a particular devel-
opment path (e.g., forward engineering, reverse engi-
neering, round-trip engineering), the designer is rarely 
provided with some guidance on when and how to pro-
duce such models [13]. 

─ When a particular step in the UIDLC should be con-
ducted, designers do not determine easily which soft-
ware should be used for this purpose, especially when 
different software support the same step, partially or to-
tally. When a particular software is selected, they often 
feel lost in identifying the right actions to execute in or-
der to achieve the step in the UIDLC [1]. 

─ The multiplicity of development paths conducted 
among or within various organizations, in particular 
software development companies [3], increases the feel-
ing of applying a UIDLC that remains not explicitly 
supported and that requires extensive training to be-
come effective and efficient. 

─ Although several standardization efforts (e.g., the inter-
national standard for describing the method of selecting, 
implementing and monitoring the software development 
life cycle is ISO 1220707) and official organizations 
promote the usage of process models in order to in-
crease the productivity of the development life cycle 
and the quality of the resulting software, they do not of-
ten rely on an explicit definition and usage of a method 
in these process models. 

The above observations suggest that MDE is often more 
driven by the software intended to support it, less by the 
models involved in the UIDLC, and even less by a method 
that is explicitly defined to help UI designers. Lao Tch’ai 
Tche, an old Chinese philosopher, expressed the need for 
method in the following terms: some consider it noble to 
have a method; other consider it noble not to have a meth-
od; not to have a method is bad; but to stop entirely at any 
method is worse still; one should at first observe rules se-
verely, then change them in an intelligent way; the aim of 
possessing method is to seem finally as if one had no meth-
od.  



 36

Therefore, we believe that a UIDLC according to MDE 
should rest on three pillars in a balanced way: models that 
capture the various UI abstractions required to produce a 
UI, a method that defines a methodological approach in or-
der to proceed and ensure an appropriate UIDLC, and a 
software support that explicitly supports applying the 
method. 

For this purpose, the remainder of this paper is structured as 
follows: Section 2 presents a characterization of these three 
pillars in order to report on some initial pioneering work 
conducted in the area of UI method engineering with the 
particular emphasis of methodological support. Section 3 
introduces the dashboard model as a mean to define a 
method that may consist of one or many development paths 
by defining its semantics and syntax. Section 4 describes 
how a method could be enacted, i.e. how a development 
path can now be applied for a particular UI project by in-
terpreting the dashboard model. Section 5 provides a quali-
tative analysis of the potential benefits of using this dash-
board model for method engineering in the UIDLC. Section 
6 discusses some avenues of this work and presents some 
conclusion. 

RELATED WORK 
In general in computer science, a Software Development 
Life Cycle (SDLC) is the structure imposed on the software 
development by a development method. Synonyms include 
software development and software process. Similarly, in 
the field of UI, a UI development life cycle (UIDLC) con-
sists of the development path(s) defined by a UI develop-
ment method in order to develop a UI (Fig. 1). Representa-
tive examples of include: the Rational Unified Process 
(RUP) or the Microsoft Solution Framework (MSF). 

Each development path is recursively decomposed into a 
variety of development steps that take place during the de-
velopment path. Each step uses one or several models (e.g., 
task, domain, and context) and may be supported by some 
software. All pieces of software, taken together support the 
development method. 

For instance, the development path "Forward engineering“ 
may be decomposed in to a series of development steps: 
building a task model, building a domain model, building a 
context model, linking them, producing a UI model from 
these model, then generate code according to M2C. Method 
engineering [1] is the field of defining such development 
methods so that a method is submitted to method configura-
tion [9] when executed.  

The meta-method Method For Method Configuration 
(MMC) [9] and the Computer-Aided Method Engineering 
(CAME) tool MC Sandbox [10] have been developed to 
support method configuration. One integral part of the 
MMC is the method component construct as a way to 
achieve effective and efficient decomposition of a method 
into paths and paths into steps and sub-steps and explain 
the rationale that exist behind this decomposition. Method 

engineering has already been applied to various domains of 
computer science such as, but not limited to: information 
systems [1], collaborative applications [12], and complex 
systems [6]. Typically, method engineering is based on a 
meta-model [7,8] and could give rise to various adaptations, 
such as situational method engineering [6] and method en-
gineering coupled to activity theory [10]. In Human-
Computer Interaction (HCI), we are not aware of any sig-
nificant research and development on applying method en-
gineering to the problem of engineering interactive systems. 
Several HCI development methods do exist and are well 
defined, such as a task-based development method [16], 
method-user-centered design [9], activity theory [10], but 
they are not expressed according to method engineering 
techniques, so they do not benefit from its potential ad-
vantages. 

Development path
User interface
development
life cycle

Development method

Development step

Model

Software

involves

1..n

is involved
in
1..n

defines
1..n 1..n

is defined
in

uses

is used in

1..n

1..n

supports

is supported by

1..n

0..n

 
Figure 1. Structure of a UI development life cycle. 

 

Probably the first one to address method engineering in 
HCI was the MIDAS (Managing Interface Design via Agen-
das/Scenarios) [11] environment. In this software, a meth-
odologist was able to define a method by its different paths 
that could be followed and the steps required for achieving 
each path. MIDAS was able to show at any time when a 
method is executed, what are the different paths possible 
(e.g., design alternatives, criteria) by looking at design in-
tentions stored in a library. MIDAS is tailored to the HU-

MANOÏD environment [11] and does not rely on a meta-
model for defining a method and to execute. But it was a 
real methodological help. 

User Interface Description Languages (UIDLs) do not pos-
sess any methodological guidance based on method engi-
neering because they mostly concentrate on the definition 
and the usage of their corresponding syntaxes and less on 
the definition of the method [4]. 

MUICSER [5] provides mechanisms for expressing scenarios 
with personas based on storyboards. As such, they also 
used models through storyboard software. Therefore, it 
could also benefit from the potential advantages of method 
engineering. A more recent effort used Service Oriented 
Architecture (SOA) to define and enact a method, but there 
was no real software for achieving the method engineering. 

In conclusion, very few works exist on applying method 
engineering to HCI, but several existing work could benefit 
from it. 

 



 37

 
Figure 2. The Moskitt meta-model for a methodological dashboard. 

A Meta-model for a Methodological Dashboard 
To adhere to method engineering principles, a meta-model 
is defined [8] that addresses its methodological concepts as 
outlined in Fig. 2. The dashboard is based on a metamodel 
that allows the description of development steps via their 
decomposition in Tasks, Resources required in Tasks and 
Dependencies between Tasks. This Dashboard metamodel 
has been expressed using Ecore/Eclipse Modelling Frame-
work (EMF) and implemented in the MOSKitt environment 
[14]. The complete metamodel can be found in this reposi-
tory URL open to the public at http://subversion. 
moskitt.org/gvcase-gvmetrica/dashboard/trunk/es.cv. 
gvcase.mdt. dashboard/model/. The main entities, i.e. Task, 
Resource, Dependency and Action, are structured as fol-
lows: 

NamedElement: consists of a common ancestor for all 
metamodel elements. With the experience of the definition 
of several metamodels (more than 10) in the MOSKitt envi-
ronment we have found very useful to have a common an-
cestor element that all other elements in the metamodel in-
herit from. It simplifies several tasks in the following steps 
in the MDE approach we follow, such as allowing to identi-
fy whether any given element belongs to this metamodel by 
checking its ancestry, and providing several properties we 

need in all elements of our metamodel, such as the 'name' 
property. 

◦ name: EString → this element's name. 

DashboardModel: represents a complete development path 
and at the same time is the root element of the metamodel. 
It holds the visual configuration to be used in the interpret-
er/enactment view. 

◦ lineWidth: EInt → border elements' width to be used 
when the dashboard model is shown in the interpret-
er/enactment view. 

◦  textGapOffset: EInt → gap between text when the 
dashboard model is shown in the interpreter/enactment 
view. 

◦  arrowLength: EInt → length of arrows when the dash-
board model is shown in the interpreter/enactment view. 

◦ dashboardBG: EString → background color to be used 
when the dashboard model is shown in the interpret-
er/enactment view. 

◦ dashboardFG: EString → foreground color to be used 
when the dashboard model is shown in the interpret-
er/enactment view. 



 38

◦ modelBG: EString → backgound color to be used in the 
interpreter/enactment view for tasks and dependencies. 

◦ RootTask: Task [0..1] → reference to the whole process 
that is represented as a task. 

Task: represents one development step of the development 
path. A Task will always be bounded by Dependencies, ex-
cept for the Tasks involving the first and last steps of the 
process. A Task can produce or consume zero or many Re‐
sources. As an ActionContainer, a Task can perform Ac‐
tions on selected Resources. 

◦ iconId: EString → identifier of the icon that represents 
this Task when seen in the interpreter/enactment view. 

◦ weight: EInt → this Task's weight in the development 
path (Process) in absolute value. 

◦ allowIterations: EBoolean → indicates whether this 
Task allows more than one iteration of it to be created. 

◦ iterable: EBoolean → indicates whether this Task can 
be iterated. 

◦ subTasks: Task [0..*] → Tasks representing the different 
steps to perform this Task. 

◦ resources: Resource [0..*] → Resources produced or 
consumed by this Task. 

◦ sourceDependencies: Dependency [0..*] → Dependen-
cies that must be clean before this Task can be started. 

◦ targetDependencies: Dependency [0..1] → Dependen-
cies that can be cleaned when this Task is complete. 

◦ subDependencies [0..1] → Dependencies that are con-
tained in this Task due to it having more than one inter-
nal development sub-steps. 

◦ statusFigure: StatusFigure [0..1] → figure to be shown 
in the interpreter/enactment view regarding the ad-
vancement of this Task. 

◦ Images: Image [0..*] → images contained in this Task to 
be shown in the interpreter/enactment view. 

Dependency: represents a milestone in the development 
path, which means that a series of development steps 
should be achieved before proceeding to the next develop-
ment step. The Milestone is here introduced as a straight-
forward mechanism to synchronize different types of de-
velopment steps, whatever their purpose is. Each Depend‐
ency is a step in the development path (Process) that forces 
the preceding Tasks to synchronize. A Dependency can re-
quire zero or more Resources from previous Tasks to be 
completed. As an ActionContainer, a Dependency can per-
form one or more Actions on selected Resources. 

◦ resources: Resource [0..*] → Resources this Depend‐
ency will produce or consume. Usually but not neces-
sarily these Resources will be ResourceTypeRefs refer-
encing Resources from previous Tasks. 

◦ sourceTasks: Task [0..*] → preceding Tasks that use this 
Dependency as their Milestone. 

◦ targetTasks: Task [0..*] → Tasks that need this Depend‐
ency to be cleaned before they can be performed. 

Resource: consists of a material or immaterial entity, pro-
duced or consumed by a Task or a Dependency of this de-
velopment path (Process). Resources represent from model 
definition files to metamodel, document to PDF files. 

◦ selectAction: EBoolean  → indicates whether the 'se‐
lect' action is available for this Resource in the Re‐
sourceManagement dialog in the interpreter/enactment 
view. 

◦ editAction: Eboolean → indicates whether the 'edit' ac-
tion is available for this Resource in the Re‐
sourceManagement dialog in the interpreter/enactment 
view. 

◦ removeAction: Eboolean → indicates whether the 're‐
move' action is available for this Resource in the Re‐
sourceManagement dialog in the interpreter/enactment 
view. 

◦ createAction: Eboolean → indicates whether the 'cre‐
ate' action is available for this Resource in the Re-
sourceManagement dialog in the interpreter/enactment 
view. 

ResourceType: represents the actual type of the Resource 
element, as in the kind of model file or file document for-
mat. 

◦ uri: EString → URI pointing to the real resource. 

◦ fileExtension: EString → extension of the files this Re‐
sourceType represents. 

◦ multiplicity: Eint → maximum multiplicity of real re-
sources this Resource can hold. 

◦ minimumMultiplicity: EInt → minimum multiplicity of 
real resources this Resource can hold. 

◦ createClassId: EString → identifier of the factory that 
will allow the creation of this kind of resource via the 
ResourceManager in the interpreter/enactment view. 

◦ editorId: EString → identifier of the editor that allows 
the edition of this kind of resource via the Re‐
sourceManager in the interpreter/enactment view. 

ResourceTypeRef: represents a reference to a Resource. It 
is to all effects equal to a Resource except that the Re‐
sourceManager in the interpreter/enactment view does not 
allow its modification in any way. 

◦ reference: Resource [0..1] → referenced Resource. 

Action: represents an action to be performed by the user 
when enacting the process. An Action can range from 
launching a transformation to opening a cheatsheet to visit-
ing a web page. 



 39

◦ label: EString → human readable label to be shown in 
the interpreted/enactment view. 

◦ hint: Estring → additional information to be given to 
the Action as a parameter, such as an identifier, a mes-
sage, etc. 

◦ classId: Estring → identifier of the factory that allows 
the creation and execution of this Action. 

ActionContainer: represents any element in the metamodel 
that can hold and perform Actions. 

CustomAction: represents a custom Action allows the 
methodologist to specify uncommon Actions with an exter-
nal specification of the Action. 

RunWizardAction: expresses a specialized Action that runs 
the wizard specified by the hint parameter of the Action. 

RunCheatSheetAction: expresses specialized Action that 
shows the user a guide or cheatsheet. 

◦ cheatSheetId: EString → identifier of the cheatsheet to 
show. 

StatusFigure: allows selecting an image to be shown in the 
interpreter/enactment view which provides the level of pro-
gress in the process. 

Image: represents a decorative image that will be shown in 
the interpreter/enactment view. 

Method Definition and Enactment 
In order to define a UI development method based on one 
or many UI development paths (e.g., simplified, enhanced 
forward engineering, forward engineering with loops) as 
defined in Fig. 1, the person who is responsible for defining 
such a methodology has to create one Dashboard model 
based on the meta-model outlined in Fig. 2. A Dashboard 
model therefore represents the definition of a particular de-
velopment path, but may also contain several development 
paths in one model thanks to the concept of milestone.  
 
A milestone consists of a synchronization points between 
tasks (e.g., development steps) involved in a development 
path and is attached to a synchronization condition. Such a 
condition governs the contribution of each task to the mile-
stone (e.g., AND, OR, XOR, NOT, n iterations). Once the 
synchronization condition is satisfied, the milestone is con-
sidered to be achieved and the development path can pro-
ceed to the next task (development step). 

Fig. 3 depicts in Moskitt how a Dashboard model is created 
for the development path “Forward Engineering” that con-
sists of the following development steps (that are represent-
ed as tasks to achieve to complete the development step): 

̶ Create Task Model: this task is aimed at creating a task 
model that is compliant with the task meta-model, 
whatever the task meta-model would be. This task ma-
nipulates three resources: 

 

 
Figure 3. The Dashboard model for the “Forward engineering” development path.



 40

 
Figure 4. Cheatsheet for providing methodological 
guidance on task model definition. 

 
1. One and only one task model that will result from 

this task. 
2. An optional document containing a documentation 

of the task modeled. 
3. An optional set of task formal specifications. 
A “task model definition guide” is a cheatsheet provid-
ed for giving methodological guidance on how to define 
a task model. Fig. 4 details some potential development 
steps and sub-steps for this purpose in a cheatsheet. A 
cheatsheet is hereby referred to as a methodological 
panel that is provided from the methodologist to the 
method applier with any rules, heuristics, principles, al-
gorithms, or guidelines that are helpful for achieving the 
associated task (here, creating a task model that is cor-
rect, complete, and consistent). An action “Generate 
Task Documentation” is added in order to specify a task 
model would ultimately result from it.  For this task, 
Fig. 5 shows the relevant parameters, including the file 
extension of the file to be created. In this case, we could 
specify one file extension (e.g., “.usi” for a UsiXML 
compliant file [15]) or “.CTT” for a task model ex-
pressed according to the ConcurTaskTree notation). In 
this way, when the method will be enacted, the Dash-
board will automatically launch the model editor corre-
sponding to the file extension by default or selected by 
the method applier (Fig. 6). 

̶ Validate Task Model: once the task model has been cre-
ated, its validity with respect to its corresponding task 
meta-model is checked by means of Eclipse model 
checking techniques. Therefore, only one action is trig-

gered: “Task 
model validation”. 
Note that this task 
serves as a mile-
stone: the method 
applier cannot 
proceed with the 
next tasks if the 

synchronization 
condition (here 
the availability of 
a valid task mod-
el) is not satisfied. 

̶ Create Domain 
Model: this task is 
aimed at creating 
a domain model 
that is compliant 
with the task me-
ta-model, whatev-
er the task meta-

model would be. It contains three resources, one cheat-
sheet and one action that are similar to those introduced 
for the task model. 

̶ Validate Domain Model: once the domain model has 
been created, its validity with respect to its correspond-
ing domain meta-model is checked by means of Eclipse 
model checking techniques. 

̶ Link Task and Domain models: this task is aimed at es-
tablishing a link from the nodes of a task model to the 
appropriate nodes of a domain model thanks to the set 
of mappings accepted between these two models (e.g., a 
task observes a domain class, a task supports in-
put/output of a set of attributes taken from different 
classes, a task triggers a method belonging to a class). 
Note that there is a dependency between this task and 
the two previous ones in order to ensure that the linking 
will be applied on two syntactically valid task and do-
main models. 

̶ Milestone: start the Abstract UI generation: when the 
task model has been linked to a domain model, we have 
all the elements in order to initiate a generation of an 
Abstract UI [15]. Again, this serves as a milestone. 

̶ Generate AUI: this task is aimed at (semi-)automatically 
generating an Abstract UI (AUI). For this purpose, an 
input resource “Task and domain models linked” (com-
ing from the previous milestone) will result into an out-
put resource “AUI model” by means of the action 
“Transform into AUI”. This action is related to a set of 
transformation rules that are automatically applied to 
the input resource in order to obtain the output resource. 
Again, the embedded transformation engine in Eclipse 
could be used for this purpose or a custom transfor-
mation engine could be specified based on a file exten-
sion. In this definition, only one set of transformations 



 41

is defined, but several 
alternative sets of trans-
formation rules could 
be considered, thus 
leaving the control to 
the method applier by 
selecting at run-time 
which set to apply. Fur-
thermore, this action is 
related to a transfor-
mation step (here, a 
M2M), but it could also 
be attached to an exter-
nal algorithm that is 
programmed in a soft-
ware. When all these 
alternatives coexist, a 
cheatsheet could be 
added to help the meth-
od applier in selecting 
an appropriate technique for ensuring this action (e.g., a 
transformation or an external algorithm) and parameters 
that are associated to this actin (e.g., a particular trans-
formation set). 

̶ Milestone “AUI to CUI”: this milestone serves as a 
synchronization point for initiating the next develop-
ment step through the task required for this purpose. 

̶ Generate CUI: this task is similar to the “Generate 
AUI” except that a CUI is produced instead of a AUI, 
but with parameters that govern the CUI generation. 

̶ Milestone “CUI to FUI”: this milestone serves for initi-
ating the last step. 

 
Figure 5. The file extension associated to a re-

source in the Dashboard model. 

Figure 6. Definition of file extension and associ-
ated software, e.g., through a cheatsheet. 

̶ Generate FUI: this task is aimed at transforming the 
CUI resulting from the previous task into code of the 
Final UI (FUI) by means of M2C transformation. 
Again, we may want to specify here that the transfor-
mation could be achieved by code generation or by in-
terpretation of the CUI model produced. In the first 
case, a code generator is executed while a FUI inter-
preter renders the CUI into a FUI in the second case. 
Again, one default interpreter could be specified or the 

method applier can pick 
another one from a list of 
potential interpreters or 
rendering engines. 

It is important to state that 
the dashboard model is in-
dependent of any method, 
any meta-model and any 
User Interface Description 
Language (UIDL). It could 
be used for defining any 
UIDLC, any method that 
supports UIDLC (such as 
[9,12,16] to name a few), 
any meta-model of a model 
involved in such a UIDLC, 
and any UIDL (see [4] for a 
list of some representative 
examples). The only re-
quirement is that each model 
should be explicitly linked to 

its corresponding meta-model in order to check its validity 
and conformity with respect to the meta-model as it is typi-
cally the case in MDA. Transformations gathered in trans-



 42

formation steps should satisfy the same requirement, unless 
they are executed outside the Eclipse platform. The ad-
vantage of this approach is that all models and transfor-
mations between are defined by their corresponding meta-
models in Eclipse, but forces to define them beforehand. 
Once one or several development paths of UI development 
method have been defined in a dashboard model, the meth-
od can be enacted [2] by instantiating the dashboard model. 
This instantiation results into a run-time representation of 
the Dashboard (Fig. 7) that depicts the progression of tasks 
already achieved, future and pending tasks, all with their 
associated resources. For instance, if a task requires to out-
put resources to be created, this task will only be consid-
ered finished when the corresponding actions will have 
been able to produce the required resources. The method 
enactment is then under the responsibility of the person 
who is in charge of applying the method defined, e.g. an 
analyst, a designer. In the next section, we review potential 
benefits brought by the MDA approach under the light of 
this dashboard approach. 

Figure 7. Definition of file extension and associated 
software, e.g., through a cheatsheet. 

Qualitative Evaluation 
Usually, potential benefits that can be expected from MDE 
can be summarized as: 

1. Benefits resulting from the existence of a design phase: 

─ Reducing the gap between requirements and imple-
mentation: A design phaseaims to ensure in advance 
that the implementation really addresses the custom-
er’s and user’s requirements. The dashboard largely 
contributes to this by explicitly defining the output of 
a development task that should serve as an input for a 

next development task, whatever the development 
steps are. 

─ Stakeholder coordination: Previous planning of the 
UIDLC enables the stakeholders (e.g., designers, de-
velopers, testers) to coordinate their work e.g. by di-
viding the system into several parts and defining 
mappings between them. 

─ Well-structured systems: A design phase provides ex-
plicit planning of the system architecture and the 
overall code structure. This facilitates implementation 
itself as well as maintenance. 

2. Benefits resulting from the use of visual abstract models: 

─ Planning on adequate level of abstraction: Modeling 
languages provide the developer concepts for plan-
ning and reasoning about the developed system on an 
adequate level of abstraction. The Dashboard is based 
on a meta-model (Fig. 2). 

─ Improved communication by visual models: The visu-
al character 
of modeling 
languages can 
lead to in-
creased usa-
bility (under-
standing, per-
ceiving, ex-
ploring, etc.,) 
of design 

documents 
for both au-
thor and other 

developers. 
The Dash-
board model 
is itself en-
tirely visual, 
which is par-
ticularly im-
portant for 

representing the progression of the method enactment. 
─ Validation: (Semi-)Formal modeling languages ena-

ble automatic validation of the design. 
─ Documentation: Models can be used as documenta-

tion when maintaining the system. 
─ Platform-independence: Platform-independent models 

can be reused or at least serve as starting point when 
implementing the system for a different platform. This 
includes development platforms like a programming 
language or component model, as well as deployment 
platforms like the operating system or target devices. 
As said, the dashboard based approach is independent 
of any method, model and UIDL, thus supporting any 
UIDLC in principle. 



 43

3. Benefits resulting from code generation: the benefits as-
sociated to this appear when the method is enacted. 

─ Enhanced productivity: Generating code from a given 
model requires often only a teeny part of time com-
pared to manual mapping into code. 

─ Expert knowledge can be put into the code generator: 
Expert knowledge – e.g. on code structuring, code op-
timizations, or platform-specific features – can once 
be put into the code generator and then be reused by 
all developers. 

─ Reduction of errors: Automatic mapping prevents 
from manual errors. 

4. Meta goals:  

─ Easier creation and maintenance of development 
support: the dashboard (rein)forces the method appli-
er to stick to the initial definition of the method. 
Therefore, if any deviation with respect to this defini-
tion should be recorded, it should be introduced as an 
exception of the method enactment. 

─ Knowledge about creation of modeling languages: 
MDE concepts and definitions reflect existing 
knowledge about modeling, modeling languages, and 
code generation. The dashboard does not escape from 
this since it is itself based on a meta-model that could 
be instantiated at any time. 

─ Frameworks and tools: Tools like Eclipse Modeling 
Tools provide sophisticated support for all steps in 
MDE like creating and processing metamodels, creat-
ing modeling editors, and defining and executing 
transformations. The Dashboard is implemented in the 
Moskitt environment [14] that is itself on top of 
Eclipse. 

5. Maintenance of modeling language and transformations:  

─ Systematic and explicit definition of metamodels and 
transformations facilitates 

─ Maintenance of modeling languages and code gener-
ators: modeling language, associated model-to-model 
transformations and model-to-code compilations can 
be maintained at a level of expressiveness that is 
higher than a traditional programming or markup lan-
guage. 

─ Reuse of metamodels and transformations: MDE 
compliant explicit metamodels and transformations 
can be understood and reused by others. 

 
One the one hand, the method defined in a dashboard can 
provide substantive and effective knowledge, such as 
methodological guidance, on how to enact the method. 

But on the other hand, once this method is defined, it is al-
most impossible to break the frontiers imposed by this 
method. The drawback of this is that any deviation triggers 
a round-trip engineering problem: the method that was en-
acted imposes modifying its corresponding dashboard mod-
el and propagating the changes in a new enactment of the 
new method, which is a hard procedure. This could be per-
ceived as a burden by stakeholders who could feel that they 
are forced to enter in the dashboard everything that is re-
quired to properly conduct the method. But this information 
is intrinsically expressed in a consistent format that could 
give rise to a library of method definitions. 
 
The dashboard approach has been applied to different real-
world case studies, including a large-scale project by the 
Conselleria de Infraestructuras y Transporte (Valencia, 
Spain, Figure 8).  

CONCLUSION 
In this paper, we presented the dashboard model as a way to 
to support the method engineering of a user interface devel-
opment life cycle. For this purpose, we first defined what 
such a development life cycle is and how to structure it ac-
cording to the principles of method engineering [1,2].  
 
This development life cycle is then expressed in terms of 
the following concepts: one or several development steps 
are defined in one single dashboard in order to create one 
development method, a development (sub-)step becomes a 
task to be achieved in the dashboard, the models involved in 
in a development step become resources to be created and 
consumed by a task in the dashboard, the software required 
to manipulate these models become associated to resources 
via their associated file extension and/or from a list of po-
tential software (e.g., model editor, model validator, model 
checker, transformation engine). 

The next step of this research will consider the forthcoming 
ISO 24744 standard on method engineering [2] that defines 
a set of concepts that support the definition and the enact-
ment of a method based on well-defined concepts along 
with a graphical notation that combines structural aspects 
(e.g., how a task is decomposed into sub-tasks) and tem-
poral aspects (e.g., how tasks are related to each other 
through dependencies and constraints). 
 
ACKNOWLEDGMENTS 
The second author would like to acknowledge of the 
ITEA2-Call3-2008026 USIXML (User Interface extensible 
Markup Language) European project and its support by 
Région Wallonne DGO6. 



 44

 
Figure 8. Dashboard model for Spanish Concil. 

REFERENCES 
1. Göransson, B., Gulliksen, J., Boivie, I. The usability 

design process - integrating user-centered systems de-
sign in the software development process. Software 
Process: Improvement and Practice, 8, 2 (2003), pp. 
111-131. 

2. Brinkkemper, S. Method engineering: engineering of 
information systems development methods and tools. 
Information and Software Technology, 38, 4 (1996), 
pp. 275–280. 

3. Gonzalez-Perez, C. and Henderson-Sellers, B. A work 
product pool approach to methodology specification 
and enactment. Journal of Systems and Software, 81, 
8 (2008), pp. 1288-1305. 

4. Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., 
Kennedy, J.B., Gray, P.D., Cooper, R., Goble, C.A., 
and Pinheiro da Silva, P. Teallach: a model-based user 
interface development environment for object data-
bases. Interacting with Computers 14, 1 (2001), pp. 
31-68. 

5. Guerrero-García, J., González-Calleros, J.M., 
Vanderdonckt, J., and Muñoz-Arteaga, J. A Theoreti-
cal Survey of User Interface Description Languages: 
Preliminary Results. In Proc. of Joint 4th Latin Ameri-
can Conference on Human-Computer Interaction-7th 
Latin American Web Congress LA-Web/CLIHC'2009 
(Merida, November 9-11, 2009). E. Chavez, E. Furta-

do, A. Moran (Eds.). IEEE Computer Society Press, 
Los Alamitos (2009), pp. 36-43. 

6. Henderson-Sellers, B. and Ralyté, J. Situational 
Method Engineering: State-of-the-Art Review. Jour-
nal of Universal Computer Science, 16, 3 (2010), pp. 
424-478. 

7. Hug, Ch., Front, A., Rieu, D., and Henderson-Sellers, 
B. A method to build information systems engineering 
process metamodels. J. of Systems and Soft. 82, 10 
(2009), pp. 1730-1742. 

8. Jeusfeld, M.A., Jarke, M., and Mylopoulos, J. Meta-
modeling for Method Engineering. The MIT Press, 
New York (2009). 

9. Karlsson, F. and Ågerfalkb, P.J. Method-User-
Centred Method Configuration. In: Ralyté, J., Åger-
falk, P.J., Kraiem, N. (Eds.), Proc. of Situational Re-
quirements Engineering Processes SREP’05 (Paris, 
August 29–30, 2005) 

10. Karlsson, F. and Wistrand, K. Combining method en-
gineering with activity theory: theoretical grounding 
of the method component concept. European Journal 
of Information Systems, 15 (2006), pp. 82–90. 

11. Luo, P. A Human-Computer Collaboration Paradigm 
for Bridging Design Conceptualization and Implemen-
tation. In Proc. of DSV-IS’94 (Carrara, June 8-10, 



 45

1994). Focus on Computer Graphics Series. Springer 
(1995), pp. 129–147. 

12. Molina, A.I., Redondo, M.A., and Ortega, M. A 
methodological approach for user interface develop-
ment of collaborative applications: A case study. Sci-
ence of Computer Programming 74, 9 (July 2009), pp. 
754-776. 

13. Sousa, K., Mendonça, H., Vanderdonckt, J.: Towards 
Method Engineering of Model-Driven User Interface 
Development. In Proc. of TAMODIA’2007. Lecture 
Notes in Computer Science, vol. 4849. Springer-
Verlag, Berlin (2007), pp. 112-125 

14. The Moskitt Environment, ProDevelop, Valencia, 
2010. Accessible at http://www. moskitt.org/eng/ 
proyecto-moskitt/ 

15. Vanderdonckt, J. Model-Driven Engineering of User 
Interfaces: Promises, Successes, and Failures. In Proc. 
of ROCHI’2008 (Iasi, September 18-19, 2008). S. Bu-
raga, I. Juvina (eds.). Matrix ROM, Bucarest, 2008, 
pp. 1–10. 

16. Wurdel, M., Sinnig, D., Forbrig, P.: Task-Based De-
velopment Methodology for Collaborative Environ-
ments. In Proc. of EIS‘2008. LNCS, Vol. 5247. 
Springer, Berlin (2008), pp. 118-125. 

 

 



 46

Improving the Flexibility of Model Transformations in the 
Model-Based Development of Interactive Systems 

 
Christian Wiehr1, Nathalie Aquino2, Kai Breiner1, Marc Seissler3, Gerrit Meixner4

 

1University of Kaiserslautern, Software Engineering Research Group,  
Gottlieb-Daimler Str. 42, 67663 Kaiserslautern, Germany,  

{c_wiehr, Breiner}@cs.uni-kl.de  
2Centro de Investigación en Métodos de Producción de Software, Universitat Politècnica de València,  

Camino de Vera s/n, 46022 Valencia, Spain,  
naquino@pros.upv.es  

3University of Kaiserslautern, Center for Human-Machine-Interaction,  
Gottlieb-Daimler Str. 42, 67663 Kaiserslautern, Germany,  

Marc.Seissler@mv.uni-kl.de  
4German Research Center for Artificial Intelligence (DFKI),  

Trippstadter Str. 122, 67663 Kaiserslautern, Germany,  
Gerrit.Meixner@dfki.de 

 
ABSTRACT 
A problem of approaches for model-based user interface 
development is related to the lack of flexibility in the kinds 
and varieties of user interfaces that can be generated. On 
the other hand, there are several approaches that propose 
maintaining system models at runtime in order to support 
runtime adaptations. In these cases, the user interface of a 
system can be adapted according to the context, on the fly. 
Flexibility problems are also present in these kinds of ap-
proaches. This paper briefly presents an approach for deal-
ing with flexibility at design time. Ideas from this approach 
have been extended for use at runtime and have been ap-
plied to SmartMote, a universal interaction device for in-
dustrial environments. 

Author Keywords 
Model-based development of interactive systems, MBUID, 
user interface, design, runtime, model transformation, 
model mapping. 

General Terms 
Design, Experimentation, Human Factors, Verification. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H5.2 [Information interfaces and 
presentation]: User Interfaces – Prototyping. 
 
INTRODUCTION 
As a result of ongoing technological progress, developers 
are faced with the problem of having to develop user inter-
faces (UIs) for a plethora of target devices and usage situa-
tions, which leads to enormous complexity. Model-based 
user interface development (MBUID) methodologies prom-

ise to reduce this complexity by leveraging different layers 
of abstraction, the respective models for expressing aspects 
of UIs on these levels, and transformation tools for the de-
velopment and semi-automatic generation processes of UIs 
[20, 10]. Frameworks, such as the Cameleon Reference 
Framework (CRF) [9], have been proposed, which define 
the different abstraction layers and models (e.g., task, dia-
log, and presentation model) to be used for the systematic, 
user-centered design of multi-target and context-aware UIs.  

Many of today’s approaches possess limited flexibility in 
the kinds and varieties of UIs that can actually be generated 
by current transformation engines as well as in the capabil-
ity of coping with UIs customized according to user prefer-
ences or context [23]. To overcome these shortcomings and 
to model context-aware and runtime adaptive UIs, new de-
velopment methodologies are called for.  

During the design phase, the stepwise refinement of the UI 
on different levels of abstraction enables clear separation of 
concerns (e.g., adding platform- or modality-specific as-
pects) and therefore supports the development process. If 
they are automated, all transformations between the levels 
need to be executed in order to react to adapted models at 
runtime. In terms of the flexibility of UIs, this does not on-
ly imply annotations within the models but also the con-
stant transformation of the models themselves, which is a 
challenge in the discipline of modeling. 

Another implication of this requirement is that the models 
need to be constantly available and must be interpreted dur-
ing runtime, which is not well supported by popular trans-
formation languages yet.  

Therefore, new transformation mechanisms are needed that 
support the explicit specification of model transformations 



 47

and manipulations in order to increase the flexibility of to-
day’s engineering processes for context-aware UIs. 

The remainder of this paper is structured as follows. Sec-
tion 2 describes related work in the field of transformations 
in MBUID approaches. In Section 3, we present the Trans-
formation Templates approach, which serves as the initial 
mapping concept for our transformation approach. In Sec-
tion 4, we extend our runtime generation approach to im-
prove the flexibility of its transformation process. In Sec-
tion 5, we discuss results and conclude. 

RELATED WORK 
With respect to the CRF, model transformations play an 
important role for the systematic refinement of the UI spec-
ification in the development process [15]. On the first three 
layers of the CRF, model-to-model transformations are 
used to transform abstract task models into abstract and 
concrete UI models. In the development of multi-platform 
UIs, model-to-text transformations are commonly used to 
derive the target code from the concrete UI specification 
for the final target platform.  

The overall flexibility of a MBUID approach can be affect-
ed by several criteria. For example, its underlying trans-
formational approach can use implicit or explicit transfor-
mations. In the first case, the logic of model transfor-
mations is fixed and hard-coded in the tools that implement 
the transformations. An example of these approaches is 
OO-Method [18]. Some problems of this kind of approach-
es are the limited diversity in the generated user interfaces 
during runtime, since the generation process is always the 
same, and the need to employ manual modifications on the 
generated code in order to deal with UI requirements that 
are not supported by the automated transformation process.  

In the second case, the logic of model transformations is 
externalized and can be expressed using transformation 
models or transformation languages. Examples of trans-
formation languages are Query View Transformation 
(QVT) [17], the Atlas Transformation Language (ATL) 
[13], and XSL Transformation (XSLT) [14]. While QVT 
uses a declarative mapping syntax, ATL relies on a hybrid 
language concept that supports declarative and imperative 
mapping rules. XSLT is a widely used standard of the W3C 
for the transformation of XML documents. XSLT is a func-
tional transformation language, able to transform XML 
documents into other XML documents, text-based docu-
ments, or binary files. For a comparison of different trans-
formation languages, we refer the reader to [21]. 

Although those transformation languages allow the explicit 
specification of transformations, they have not been very 
popular in the development of context-aware and runtime 
adaptive UIs. In concepts like Dynamic Model-bAsed user 
Interface Development (DynaMo-AID) [11] and the Multi-
Access Service Platform (MASP) [6], model transfor-
mation and adaptation during runtime are implemented in 
the underlying renderers, that is, using an implicit ap-
proach. While the MARIA language [19] uses XSLT for 

the model transformations, it is unclear how the model ad-
aptation during runtime is specified in this concept. 

Other works that have been conducted to develop a con-
text-aware and runtime adaptive user interface include [4] 
and [24]. The goal of [4] is to preserve the usability of a UI 
when changes of context, specifically changes of screen 
size, occur. Different possible UI presentations are de-
signed and finite state machines are used to specify the 
transitions between them. Unlike in our work, this ap-
proach requires all different UIs to be specified at design 
time. In [24] a layout model is used that constrains and 
eventually defines the presentation of the UI at runtime. 
The model contains statements about the orientation and 
size of the UI elements that generate a constraint system at 
runtime to calculate the layout of the interface. Like in our 
work, statements are able to refer to the different UI mod-
els available at runtime, however, instead of a constraint 
system, we base our approach in a repository of mapping 
rules which are executed at runtime.  

The problems discussed above clearly demonstrate that 
more flexibility is required in MBUID approaches with im-
plicit or explicit transformation logic so that UI developers 
can easily deal with customized UI requirements.  

FLEXIBILITY AT DESIGN TIME: TRANSFORMATION 
TEMPLATES 
A Transformation Template (TT) [2, 3] aims to explicitly 
specify the structure, layout, and style of a UI according to 
the preferences and requirements of the end users as well 
as in line with the different hardware and software compu-
ting platforms and environments in which the UI will be 
used. 

A TT is composed of parameters with associated values 
that parameterize the model-to-model or model-to-code 
transformations. Figure 1 illustrates the use of a TT when 
transforming UI models. A model compiler takes the 
source UI model and a TT as input. The TT provides speci-
fications that determine how to transform the source UI 
model into the target UI model. The specifications are ex-
pressed by means of parameters with values and selectors. 
Selectors define the set of elements of the source model 
that are affected by the value of the parameter. The model 
compiler follows the specifications to generate the target 
UI model.  

 

Figure 1. Parameters manipulating model transfor-
mations. 



 48

 
Figure 2. Main concepts of the TTs approach. 

The main concepts that characterize the TT approach are 
depicted in Figure 2. There are concepts related to context, 
to UI models, and to the TT themselves.  

Context refers to the context of use of an interactive sys-
tem. In accordance with CRF, a context of use is composed 
of the stereotype of a user who carries out an interactive 
task with a specific computing platform in a given sur-
rounding environment. Conceptualizing context, we can 
define TTs for different contexts of use.  

A user interface meta-element represents, in a generic way, 
any meta-element of a UI meta-model. A user interface el-
ement represents an element of a UI model. These generic 
representations allow the TT approach to be used with dif-
ferent MBUID approaches to specify transformations at de-
sign time. 

A parameter type represents a design or presentation op-
tion related to the structure, layout, or style of the UI. De-
fining a parameter type subsumes specifying the list of UI 
meta-elements that are affected by it, as well as its value 
type. The value type refers to a specific data type (e.g., in-
teger, URI, color, etc.) or to an enumeration of the possible 
values that a parameter type can assume. A parameter type, 
with all or a set of its possible values, can be implemented 
in different contexts of use. In order to facilitate decision-
making regarding these implementations, we propose that 
each possible value receive an estimation of its importance 
level and its development cost for different relevant con-
texts of use. In this way, possible values with a high level 
of importance and a low development cost can be imple-
mented first in a given context, followed by those with a 
high level of importance and a high development cost, and 
so on. Possible values with a low level of importance and a 
high development cost would not have to be implemented 
in the corresponding context. Furthermore, for each rele-
vant context of use, usability guidelines can be assigned to 
each possible value of a parameter type. These guidelines 

will help user interface designers in choosing one of the 
possible values by explaining the conditions under which 
the values should be used.  

A transformation template gathers a set of parameters for a 
specific context of use. Each parameter of a TT corre-
sponds to a parameter type and has both a value and a se-
lector. A value is an instance of a value type. The value of 
a parameter corresponds to a possible value of the corre-
sponding parameter type. A selector delimits the set of UI 
elements that are affected by the value of a parameter. We 
have defined different types of selectors that allow the de-
signer to choose a specific UI element; all the UI elements 
of a certain type; the first or last element contained in a 
specific type of UI element; or other options.  

Table 1 shows an example of the definition of a parameter 
type named grouping layout. This parameter type is useful 
for deciding how to present groups of elements. Four dif-
ferent possible values have been defined. The parameter 
type has been associated to two contexts of use: a desktop 
platform and a mobile one. For each context of use and 
each possible value, the importance level and development 
cost have been estimated. Table 1 also presents a list of us-
ability guidelines for the desktop context and each possible 
value of the parameter type. These usability guidelines 
have been proposed from an extraction from [12].  

TTs add flexibility in MBUID approaches because they ex-
ternalize the design knowledge and presentation guidelines 
and make them customizable according to the characteris-
tics of the project being carried out. TTs can then be reused 
in other projects with similar characteristics. Furthermore, 
TTs aim to diversify the kinds of UIs that a MBUID ap-
proach can generate. It is also important to note that TTs do 
not replace any implicit transformation logic or explicit 
transformation languages; instead, they provide a higher-
level tier for UI designers to specify UI transformations.  



 49

Table 1. Grouping layout parameter type. 

Parameter Type 

Name 
Possible values enumeration
Value Graphical description 

Grouping layout group box 
 

tabbed dialog box 

 
wizard 

 
accordion 

 

 Contexts 
SW: C# on .NET - HW: laptop or PC SW: iPhone OS - HW: iPhone 

Possible value Importance level Development cost Importance level Development cost 
group box high low high low 
tabbed dialog box high low medium medium 
wizard medium medium low high 
accordion low medium medium medium 
 

Possible value Usability guidelines (for desktop context)
group box Visual distinctiveness is important. The total number of groups will be small. 
tabbed dialog box Visual distinctiveness is important. The total number of groups is not greater than 10.  
wizard The total number of groups is between 3 and 10. The complexity of the task is significant. 

The task implies several critical decisions. The cost of errors is high. The task must be done 
infrequently. The user lacks the experience it takes to complete the task efficiently.  

accordion Visual distinctiveness is important. The total number of groups is not greater than 10.  
  

USING TRANSFORMATION TEMPLATES TO INCREASE 
FLEXIBILITY AT RUNTIME 
One of the most challenging problems of context-aware 
UIs is that they have to cope with unpredicted changes or 
changes that cannot be modeled due to the combinatorial 
explosion of possibilities. In practice, this is often imple-
mented by context manager components in the software, 
which are able to adapt the models with respect to the us-
age situation (e.g., tasks will be unavailable or restruc-
tured).  

In the following subsections, we will briefly describe the 
core models of our MBUID approach, which deals with the 
problem mentioned above. This is followed by a descrip-
tion of our underlying mapping model, and a feasibility 
study.  

Core Models for the Design of Runtime Adaptive Sys-
tems 
While we use several models to generate a fully functional 
UI [7], three core models can be identified for specifying 
the UI (as depicted in Figure 3). The Useware Markup 
Language (useML) [16] is used to structure the user’s 
tasks. Based on this model, a modality-independent dialog 
model is derived, which provides a behavioral view of the 
UI. For describing the dialog behavior of the UI, the Dialog 

and Interface Specification Language (DISL) [22, 5] is em-
ployed. The User Interface Markup Language (UIML) [1] 
is used to define how the content is presented to the user in 
terms of concrete interaction objects and their layout [16]. 
Consequently, this presentation model can then be directly 
rendered and displayed to the user.  

As tasks and their representation as interaction objects are 
central components of the models, they have to be linked 
across all levels of abstraction in order to combine their in-
formation. This is necessary due to the need for combined 
information from these models during the transformation 
process to keep the presented UI consistent with the under-
lying models. 

Mapping Model 
TTs have been extended to refer to dynamic, runtime mod-
el data, so the UI can be automatically generated and react 
to adjusted models.  

In addition to the models presented in the previous section, 
a contextual model (see Figure 3) was integrated in order to 
provide access to static context information (such as infor-
mation about the user or environment that may have a di-
rect influence on the interaction). 



 50

 
Figure 3. Reasoning process in our MBUID approach for runtime adaptive systems.

Mapping rules are provided as an extension to TTs to be 
able to refer to model data in addition to the fixed values 
that are available in the original TTs. To support the rea-
soning process in terms of reuse and performance, a reposi-
tory containing frequently occurring widgets and widget 
configurations can be used. Using the layout mapping 
model, the structure of the UI (in terms of containers) is de-
fined, with a hierarchical structure of UI containers and 
widgets, and using the widget mapping model, the map-
pings connecting abstract interaction objects to concrete 
widgets are described (see Figure 3). The mapping rules 
within the mapping models describe which UI template 
should be used under defined conditions. These conditions 
can be defined freely using all available model information. 
To avoid conflicting rules, priorities can be assigned to 
each rule. As an example, rules can be defined that map 
“select” actions by default to radio buttons, map them to a 
set of buttons if the environment requires touch input, or 
map them to a combo box if little space is available in the 
UI. 

Both the containers and the widgets are specified using 
UIML, meaning that a concrete design is defined for the 
components, and are available from the widget repository. 
Containers are defined here as a type of UI elements for 
grouping or separating other elements, like a frame con-
taining multiple radio buttons. Each container can contain 
other containers or widgets. This way, the UI can be as-
sembled like a model kit. To provide reusable components, 
the UIML templates feature parameters to customize their 
presentation (e.g. size, color, captions, etc.). The repository 
can be easily extended by adding new UI components.  

Feasibility Study 
In order to demonstrate the feasibility of our approach, we 
developed a functional prototype as an extension to the 
SmartMote approach [8]. The models have been imple-
mented and are connected using the Mapping Models to as-
semble the UI at runtime.  

A short description of the assembly process will now be 
given. Due to its hierarchical structure, the layout mapping 
model is evaluated recursively. In this process, containers 
describe the abstract layout of the elements in the current 
phase of refinement. Placeholders for further refinement 
will be integrated as slots within the containers, which can 
either be refined by a widget or by other containers (see 
Figure 4). Multiple options can be specified for a slot to 
provide the required flexibility in the UI generation pro-
cess. For each selected component, the corresponding 
UIML template is fetched and inserted into the slot of its 
parent component. The parameters of the templates are also 
set according to the mapping rules, using either fixed val-
ues or references to model data.  

Thus, all of the transformation specification previously 
coded in the generator software can be formalized using 
these mappings, which guarantee by definition that the 
generation will be successful. Instead of using a chain of 
model-to-model transformations to create the UI, different 
kinds of information from all core models is necessary and 
used at the same time. By retaining the specialization of the 
models and reducing the complexity, this improves the per-
formance of the reasoning process.  

DISCUSSION AND CONCLUSION 
In this paper, we presented a new mapping concept for im-
proving the flexibility of an approach for developing con-
text-aware UIs on the basis of UI models according to the 
levels of abstraction in the CRF. 

For the development of such UIs, the underlying models 
have to be automatically manipulated during runtime. The 
TT approach can serve as the underlying concept, but it had 
to be extended. An extended TT concept was developed 
that supports the interlinking and mapping of different 
models during runtime. Mapping rules can use model val-
ues as input and manipulate the UI generation process dur-
ing runtime. To test the feasibility of this concept, a first 
prototype was developed.  

Use Model
(useML)

Dialog Model
(DISL)

Core Models

Context
Model

Concrete UI 
(UIML)

Reasoner

Presentation
Model (UIML)

Widget
Repository

Layout
Repository

CUI

Context

Mapping
Model

Sensors

Situation Description

Adaptation Description

1

2

4

1 2 Situation Detection

3 4 UI Adaptation

Widget
Mapping

Layout 
Mapping

3



 51

 
Figure 4. Relationships of container, slots, and widgets based on an example.

ACKNOWLEDGMENTS 
This work has been developed with the support of MICINN 
under the project PROS-Req (TIN2010-19130-C02-02) co-
financed with ERDF, GVA under the project ORCA 
(PROMETEO/2009/015) and the BFPI/2008/209 grant. We 
also acknowledge the support of the ITEA2 Call 3 UsiXML 
project under reference 20080026, financed by the MITYC 
under the project TSI-020400-2011-20.  

Parts of the presented work are result of the GaBi project 
funded by the German Research Foundation (DFG) which 
is part of the AmSys research focus at the University of 
Kaiserslautern funded by the Research Initiate Rhineland-
Palatinate. 

REFERENCES 
1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Wil-

liams, S.M., and Shuster, J.E. UIML: An Appliance-
Independent XML User Interface Language 31 (1999), 
pp. 1695-1708. 

2. Aquino, N., Vanderdonckt, J., and Pastor, O. Transfor-
mation templates: adding flexibility to model-driven en-
gineering of user interfaces. In Proceedings of the 25th 
ACM symposium on applied computing, SAC’2010 
(Sierre, March 2010). ACM Press, New York (2010), 
pp. 1195–1202. 

3. Aquino, N., Vanderdonckt, J., Valverde, F., and Pastor, 
O. (2009) Using profiles to support model transfor-
mations in the model-driven development of user inter-
faces. In Proc. of 7th Int. Conf. on Computer-Aided De-
sign of User Interfaces CADUI’2008 (Albacete, June 
2008). V. López Jaquero, Montero Simarro F, Molina 
Masso JP, Vanderdonckt J (eds). Springer, Berlin, pp. 
35–46  

4. Benoît Collignon, Jean Vanderdonckt, and Gaëlle Cal-
vary. 2008. Model-Driven Engineering of Multi-target 
Plastic User Interfaces. In Proceedings of the Fourth In-
ternational Conference on Autonomic and Autonomous 
Systems (ICAS '08). IEEE Computer Society, Washing-
ton, DC, USA, 7-14.  

5. Bleul, S., Schäfer, R., Müller, W.: Multimodal Dialog 
Description for Mobile Devices. Gehalten auf der 

Workshop on XML-based User Interface Description 
Languages at AVI 2004, Gallipoli, Italy (2004). 

6. Blumendorf, M., Feuerstack, S., Albayrak, S. Multi-
modal user interfaces for smart environments: the multi-
access service platform. Proceedings of the working 
conference on Advanced visual interfaces. pp. 478-479 
ACM, Napoli, Italy (2008). 

7. Breiner, K., et al., 2009. Towards automatically inter-
facing application services integrated in a automated 
model-based user interface generation process. In Pro-
ceedings of MDDAUI'09. IUI '09, Sanibel Island, Flori-
da. 

8. Breiner, K., et al., 2011. Automatic adaptation of user 
workflows within model-based user interface generation 
during runtime on the example of the SmartMote. In 
Proceedings of the 15th International Conference on 
Human-Computer Interaction (HCII 2010), Orlando, 
FL. 

9. Calvary G, et. al. (2003) A unifying reference frame-
work for multi-target user interfaces. Interact Comput 
15(3):289–308. 

10. Cantera Fonseca, J. M., González Calleros, J. M., 
Meixner, G., Paternó, F., Pullmann, J., Raggett, D., 
Schwabe, D., Vanderdonckt, J.: Model-Based UI XG 
Final Report, W3C Incubator Group Report, 
http://www.w3.org/2005/Incubator/model-based-
ui/XGR-mbui-20100504, (2010). 

11. Clerckx, T., Luyten, K., Coninx, K. DynaMo-AID: a 
Design Process and a Runtime Architecture for Dynam-
ic Model-Based User Interface Development. In The 9th 
IFIP Working Conference on Engineering for Human-
Computer Interaction Jointly with the 11th International 
Workshop on Design, Specification and Verification of 
Interactive Systems. pp. 11–13 Springer-Verlag (2004). 

12. Galitz,W. O. The essential guide to user interface de-
sign: an introduction to GUI design principles and tech-
niques. Wiley, New York, (2002). 

13. Jouault, F., Kurtev, I. Transforming models with ATL. 
Proc. of MoDELS 2005 Workshops, vol. 3844 of Lec-



 52

ture Notes in Computer Science, Springer, Berlin. 
(2006), 128-138. 

14. Kay, M. XSLT 2.0 and XPath 2.0 Programmer's Refer-
ence. John Wiley & Sons, 4th edition, (2008). 

15. Limbourg, Q., et al., UsiXML: a Language Supporting 
Multi-Path Development of User Interfaces, Proc. of 9th 
IFIP Working Conference on Engineering for Human-
Computer Interaction. Lecture Notes in Computer Sci-
ence, Vol. 3425, Springer, Berlin, (2005), 200-220. 

16. Meixner, G., Seissler, M., Breiner, K. Model-Driven 
Useware Engineering. In Hußmann, H., Meixner, G., 
Zühlke, D. (eds.): Model-Driven Development of Ad-
vanced User Interfaces. 1-26 Springer, Heidelberg 
(2011). 

17. OMG, Meta Object Facility (MOF) 2.0 Que-
ry/View/Transformation (QVT), http://www.omg.org/ 
spec/QVT/index.htm, last visit: July 2011. 

18. Pastor, O., and Molina, J. C. Model-Driven Architecture 
in Practice: A Software Production Environment Based 
on Conceptual Modeling. Springer-Verlag, 2007. 

19. Paternó, F., Santoro, C., and Spano, L.D. MARIA: A 
universal, declarative, multiple abstraction-level lan-
guage for service-oriented applications in ubiquitous 
environments. ACM Trans. Comput.-Hum. Interact. 16, 
1-30 (2009). 

20. Puerta, A.R. und Eisenstein, J. Towards a General 
Computational Framework for Model-Based Interface 
Development Systems. IUI '99, (1999), 171-178. 

21. Schaefer, R., A survey on transformation tools for mod-
el based user interface development. Proceedings of the 
12th International conference on Human-Computer In-
teraction (HCII). Berlin, Heidelberg, Springer, (2007), 
1178-1187. 

22. Schaefer, R.: Model-Based Development of Multimodal 
and Multi-Device User Interfaces in Context-Aware 
Environments. PhD-thesis, Aachen: Shaker Verlag, 
(2007). 

23. Vanderdonckt, J. Model-Driven Engineering of User In-
terfaces: Promises, Successes, and Failures. In S. Bura-
ga and I. Juvina, Eds., Proc. of 5th Annual Romanian 
Conf. on Human-Computer Interaction ROCHI’2008, 
(Iasi, 18-19 September 2008), pp. 1–10. Matrix ROM, 
Bucarest, 2008.  

24. Veit Schwartze, Marco Blumendorf, and Sahin Albay-
rak. 2010. Adjustable context adaptations for user inter-
faces at runtime. In Proceedings of the International 
Conference on Advanced Visual Interfaces (AVI '10), 
Giuseppe Santucci (Ed.). ACM, New York, NY, USA, 
321-324. 



 53

Towards Evolutionary Design of Graphical User Interfaces 
Josefina Guerrero-García1,2, Juan Manuel González-Calleros1,2, Jean Vanderdonckt3 

1Universidad Autónoma de Puebla, Facultad de Ciencias Computacionales 
Ciudad Universitaria, PC. 72592 , Puebla (México) 

2R&D Unit, Estrategia 360 (México)  
{jguerrero, juan.gonzalez}@cs.buap.mx 

3Louvain Interaction Laboratory , Louvain School of Management, Université catholique de Louvain  
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium) 

Jean.vanderdonckt@uclouvain.be 

ABSTRACT 
In this paper we argue that user interface design should 
evolve from iterative to evolutionary design in order to 
support the user interface development life cycle in a more 
flexible way. Evolutionary design consists of considering 
any input that informs to  the lifecycle at any level of ab-
straction and its propagation  through inferior and superior 
levels (vertical engineering) as well as the same level (hor-
izontal engineering). This lifecycle is particularly appropri-
ate when requirements are incomplete, partially unknown, 
to be discovered progressively. We exemplify this lifecycle 
by a method for developing user interfaces of workflow in-
formation systems. The method involves several models 
(i.e., task, process, workflow, domain, context of use) and 
steps. The method applies model-driven engineering to de-
rive concrete user interfaces from a workflow model im-
ported into a workflow management system in order to run 
the workflow. Instead of completing each model step by 
step, any model element is either derived from early re-
quirements or collected in the appropriate model before be-
ing propagated in the subsequent steps. When more re-
quirements are elicited, any new element is added at the 
appropriate level, consolidated with the already existing el-
ements, and propagated to the subsequent levels. 

Author Keywords 
Model Driven Engineering, UsiXML, UIDL, User Inter-
faces, Evolutionary design, Workflow systems. 

General Terms 
Design, Experimentation, Human Factors, Verification. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H5.2 [Information interfaces and 
presentation]: User Interfaces – Prototyping. 

INTRODUCTION 
In Software Engineering (SE), evolutionary prototyping is 
a software development lifecycle (SDLC) model in which a 
software prototype is progressively created for supporting 
demonstration to customer and for elicitation of system re-
quirements elaboration [11]. Evolutionary prototyping 

model includes four main phases: 1) definition of the basic 
requirements, 2) creating the working prototype, 3) verifi-
cation of the working prototype, and 4) improvement of the 
requirements elicited.  

Evolutionary prototyping model allows creating working 
software prototypes faster and may be applicable to pro-
jects where: system requirements early are not known in 
advance, new software needs to be created, and developers 
are not confident enough in existing software development 
experience. 

Evolutionary design extends evolutionary prototyping in 
the sense that a system prototype, once it has been suffi-
ciently refined and validated, may go further in the soft-
ware development life cycle: from early to advanced de-
sign, if model-driven engineering is used as a method for 
the user interface (UI) development life cycle. 

The remainder of this paper is structured as follows: the 
next section introduces the concept of evolutionary design, 
its motivation, and its definition. Next, the full implementa-
tion of this concept is applied on a software tool, and ex-
emplified through two case studies. An experiment con-
ducted to determine what the superior factors of evolution-
ary design over a traditional SDLC are. Last, we provide 
some related work and our conclusions. 

EVOLUTIONARY DESIGN CONCEPT 
Evolutionary design consists of considering any input that 
informs to  the lifecycle at any level of abstraction and its 
propagation  through inferior and superior levels (vertical 
engineering) as well as the same level (horizontal engineer-
ing).  A propagation is defined by an operation type (i.e., 
creating, deleting, modifying), a source and a target (e.g., a 
model entity, a model attribute, a model relationship), and a 
direction (i.e., forward, backward or bidirectional). For in-
stance, creating a class in one model may propagate the 
creation of another class in another model. If there is con-
tinuous feedback between the evolving design representa-
tions, each design activity can benefit from information de-
rived in the other steps. For example, user interface design 
benefits from task analysis; problems in the task analysis 
can in turn be revealed during user interface design, allow-
ing benefit to be derived in both directions [1]. We give a 



 54

taxonomy of these propagations as model-to-model (M2M) 
transformations in HCI. A taxonomy of model transfor-
mations [16] showed that is important to consider horizon-
tal versus vertical transformations. A horizontal transfor-
mation is a transformation where the source and target 
models reside at the same abstraction level. 

A typical example is refactoring. A vertical transformation 
is a transformation where the source and target models re-
side at different abstraction levels. A typical example is re-
finement, where a specification is gradually refined into a 
full-fledged implementation, by means of successive re-
finement steps that add more concrete details. The remain-
der of this paper will focus only on creating operations as a 
systematic example for discussion propagations. Other op-
eration types are similar. 

UI DESIGN METHOD FOR WORKFLOW 
In this section, we briefly outline the steps of a method for 
designing GUIs of workflow information systems (WfIS). 
Since this paper is aimed at addressing the problem of 
propagation in evolutionary design, this outline is ex-
plained here only with a level of details that is useful for 
the rest of the discussion and for the sake of evolutionary 
design. For more details, please refer to [8]. We then pro-
vide a series of propagations that have been implemented 
in FlowiXML, a software that support evolutionary design 
based on the aforementioned method. The method is com-
posed on the following major steps: Workflow information 
system requirements, design and implementation. 

 

Figure 1. Methodology to develop workflow 
information systems 

In Figure 1, forward and backward arrows denote the prop-
agation of information from one model to another. For in-
stance, a new task model must make available a task for a 
process model and vice versa, a new task in a process mod-
el might be detailed with a task model. Jobs, user stereo-
types and organizational modeling just affect the workflow 
model. Then the workflow model makes them available for 
process modeling and task modeling. This particular aspect 
of concepts propagation was significantly useful for the 
software tools that support FlowiXML methodology [10]. 

“The process is iterative; once the implementation is done 
the system can be refined starting from the requirements or 
the design”. The modeling activities also are iterative. It is 
important to mention, the evaluation of the final imple-
mented system is not in the scope of this paper. As many 
methods exist for this purpose and depending of the context 
of use they are used, we just assumed that in some way the 
system will be tested and if there is a need to iterate then 
there is a point back into the requirements definition and 
the design of the workflow information systems. 

Identification Criteria 
One important and recurrent element that is of our interest 
is the concept of “task”. There are fundamental works that 
define workflow, processes, and tasks [23]. We established 
[5] a set of criteria to identify the concepts of: task, process 
and workflow. We looked at four dimensions surrounding 
the task execution (i.e., time, space, resources, and infor-
mation). Any variation of any of these four dimensions, 
taken alone or combined, thus generates a potential identi-
fication of a new concept. At first everything is classified 
as tasks. A task could be part of a process model or a task 
model. Existing knowledge on task identification criteria is 
again relevant to make such separation. Table 1 shows part 
of these identification criteria. 

 
Table 2. Identification criteria. 

A task model is composed of tasks performed by the same 
resource, in the same location and in the same time period. 
The reader must not be confused by the fact that during the 
execution of the task one of these properties might be 
changed. For instance, the task “insert client information” 
could be suspended during the execution of the task, for in-
stance, while answering the phone, consequently when the 
user resumes the execution of the task the time period 
changes, it is no longer the same. However, this does not 
affect the nature of the task and its time periodicity; these 
kind of external events are part of the task life cycle. 



 55

 
Figure 2. Evolutionary design of graphical user interfaces activity diagram. 

Location and change in user is something evident to identi-
fy but the time periodicity might be tricky to discover. If 
the designer confronts difficulties we propose the use of a 
timeline to gather tasks just to be sure that they are execut-
ed in the same time series. A process model is composed of 
tasks performed by one resource, or one or more group of 
resources; the location is the same; the time periodicity 
changes. Finally a workflow is composed of processes per-
formed by one or more group of resources; located in dif-
ferent organizational units (within the same or different or-
ganizations); and the time periodicity of the processes 
changes. 

EVOLUTIONARY DESIGN OF GUI 
Model-based user interface development environments 
(MB-IDEs) [22] seek to describe the functionality of a user 
interface using a collection of declarative models. The 
WfIS design is composed of several models (workflow, 
process and task) and several actors are involved (Wf de-
signer, end-user, domain expert and Wf manager). The first 
activity corresponds to the consolidation of the concepts 
identified in the elicitation of the scenario. In [13] we have 
investigated three different techniques for eliciting model 
elements from fragments found in a textual scenario in or-
der to support activities of scenario-based design.  The de-
sign process is depicted in Figure 2, the drawings used cor-
responds to the Software Process Engineering Meta-model 
(SPEM) notation, promoted by the OMG. 

The system design is an activity that can start from any 
model (Figure 2) except for the task allocation because it 
needs tasks and resources already defined. The design of a 
workflow permits designers to identify concepts freely and 
to start to detail based on their preferences. One designer 
may prefer to get into details of task modeling before de-
scribing a process model. Once the task models are ready, 

then it can model the processes that then are arranged to 
represent the workflow. Another designer might have a bet-
ter understanding of the problem with the workflow model 
(more abstract view of the problem) and then start to refine 
by adding process models and finished with task models. 
There is no constraint on the starting and end point for 
modeling, just to be sure keep the traceability of the con-
cepts that are shared in different models (task model is part 
of process and a process model is part of a workflow mod-
el). To support traceability, the transformation language or 
tool needs to provide mechanisms to maintain an explicit 
link between the source and target models of a model trans-
formation [15]. 

The end-user is the responsible of validating task models. 
Note by end-user we understand the person who actually is 
in charge of performing this task, i.e., the most qualified to 
say something about it. The process is validated by the do-
main expert. This is due to the fact that a process requires a 
higher level of understanding of the problem. In this view it 
could be any person in the organization that through the re-
quirements analysis has been identified to be most familiar 
with the whole process modeled. 

Finally the workflow model is validated by the Wf manag-
er, who is the person or group of persons with an under-
standing of the whole workflow when processes are 
grouped. It is also, the Wf manager who is in charge of al-
locating tasks in a process to resources. The final result is 
the Workflow Information Systems (WIS) design. All these 
design activities are also accompanied with guidance for 
the modeling activities. 

Progressing from one model to another involves transform-
ing the model and mapping pieces of information contained 
in the source model onto the target model [3]. 



 56

SYSTEM IMPLEMENTATION 
The implementation of the system refers to the UI genera-
tion of tasks. There is a plethora of user interface descrip-
tion languages that are widely used, with different goals 
and different strengths. A review of XML user interface 
description languages was produced [9] that compares a 
significant selection of various languages addressing dif-
ferent goals, such as multi-platform user interfaces, device-
independence, and content delivery. 

For instance, the global DISL structure consists of an op-
tional head element for Meta information and a collection 
of templates and interfaces from which one interface is 
considered to be active at one time. Interfaces are used to 
describe the dialog structure, style, and behavior, whereas 
templates only describe structure and style in order to be 
reusable by other dialog components. 

RIML semantics is enhanced to cover pagination and lay-
out directives in case pagination needs to be done, in this 
sense it was possible to specify how to display a sequence 
of elements of the UI. RIML is device independent and can 
be mapped into a XHTML specification according to the 
target device. 

No concepts or task models are explicitly used in See-
scoaXML. The entry point of this forward engineering ap-
proach is therefore located at the level of Abstract UIs. 

SunML presents a reduced set of elements that seems to be 
not enough, but the composition of widgets is used to spec-
ify more complex widgets. In TeresaXML the whole pro-
cess is defined for design time and not for run-time. At the 
AUI level, the tool provides designers with some assistance 
in refining the specifications for the different computing 
platforms considered. The AUI is described in terms of 
Abstract Interaction Objects (AIOs) that are in turn trans-
formed into Concrete Interaction Objects (CIOs) once a 
specific target has been selected. 

UIML is a meta-language, is modality-independent, target 
platform-independent and target language-independent. 
The specification of a UI is done through a toolkit vocabu-
lary that specifies a set of classes of parts and properties of 
the classes. Different groups of people can define different 
vocabularies: one group might define a vocabulary whose 
classes have a 1-to-1 correspondence to UI widgets in a 
particular language, whereas another group might define a 
vocabulary whose classes match abstractions used by a UI 
designer. UsiXML is structured according to different lev-
els of abstraction relying on a transformational approach to 
move among them. It ensures the independence of modality 
thanks to the AUI level. It is supported by a collection of 
tools that allow processing its format. 

WSXL is a Web services centric component model for in-
teractive Web applications. WSXL applications consist of 
one or more data and presentation components, together 
with a controller component which binds them together and 
specifies their interrelated behavior. 

XICL is a language to UI development by specifying its 
structure and behavior in an abstract level than using only 
DHTML. It also promotes reuse and extensibility of user in-
terface components. The developer can create new and more 
abstract UI components. XIML supports design, operation, 
organization, and evaluation functions; it is able to relate the 
abstract and concrete data elements of an interface; and it 
enables knowledge-based systems to exploit the captured 
data. 

Even that the model describe above can be incorporated to 
UIML, XICL or XIML languages, we have considered that 
UsiXML is the suitable language that could accommodate 
workflow concepts in a flexible way because its documen-
tation is available including its meta-models and deep anal-
ysis can be done, it has a unique underlying abstract for-
malism represented under the form of a graph-based syn-
tax, UsiXML allows reusing parts of previously specified 
UIs in order to develop new applications, It is supported by 
a collection of tools that allow processing its format, it al-
lows cross-toolkit development of interactive application 
thanks to its common UI description format. 

We rely on UI generation from task models techniques 
[14,17,18] for deriving UI. Some techniques apply task 
models, among other models, as a source to develop UIs, 
thus we model the allocation patterns with task models to 
derive Workflow User Interface Patterns (WUIPs). Finally 
we identify potential information relevant for the imple-
mentation of the workflow manager with the UI flow. After 
having defining the UIs involved in the workflow, we need 
now to link all the UIs: the one for the workflow manager 
and the ones for the workflow tasks. This will be achieved 
thanks to the user interface flow.  

During the execution of work, information passes from one 
resource to another as tasks are finished or delegated; in 
FlowiXML we use an agenda assigned to each resource to 
manage the tasks that are allocated/offered to him. The 
manager uses the work list to view and manage tasks that 
are assigned to each resource. By linking UIs we expect to 
solve the problem of synchronizing the communication 
among them. We introduce some rules that can be applied 
to facilitate the modeling of the UIs flow that is relevant for 
the implementation of a WfIS. 

Software Support 
The software support allows modeling the general WfIS 
defining workflow, process and task models, organizational 
units, jobs and resources involved, and allocation of task to 
resources. The software was developed based on the con-
ceptual modeling presented in [8]. It is the result of con-
stant improvements based on informal evaluations, inter-
views with the users after modeling a WfIS. The family of 
software tools is shown in Figure 3; we will explain them 
along with the description of some case studies. A video on 
YouTube illustrates the usage of the software tools 
(http://www.youtube.com/user/FlowiXML).  



 57

APPLYING THE METHODOLOGY ON REAL LIFE CASE 
STUDIES  

We have worked with several case studies applying our 
methodology. As the method does not force any sequence 
of steps, all case studies followed different development 
paths. This shows the flexibility of the proposed method. 

 
Figure 3. Software tool. 

To gather the case studies we asked some students to 
propose a real life case study with at least twenty complex 
tasks developed in four different organizational units, 
involving sufficiently diversity of resources. The students, 
under our supervision, developed the case studies by 
completing a report including: introduction to the problem; 
scenario where the problem takes place; working hypo-
theses; task identification; task modeling; organizational 
modelling; jobs and user modeling; process modeling; 
workflow modelling; UI definition; workflow simulation 
and implementation; workflow analysis. 

Students were free to select IdealXML or CTTE as the tool 
for task modeling.  We will use one case study to 
exemplify the methodology and the evolutionary design, 
the reader could find the other case studies published in 
FlowiXML website (http://www.usixml.org/index.php? 
mod=pages& id=40). 

The first task is about of how to extract WfIS concepts 
from textual scenarios describing the problem to be solved. 
The problem related to a library management, the whole 
process that makes new books and existing books available 
to borrow. A series of tasks have been identified: Insert 
book, correct notice, find mistakes, publish notice, insert 
notices, find book, among others. Once all tasks have been 
selected, grouped and described, a task model is construct-
ed accordingly to its order.  

Tasks are gathered in their corresponding organizational 
units and the selection and definition of jobs and users for 
the corresponding tasks are graphically selected (Figure 4). 
The next step consists on the definition of a process which 
indicates which tasks must be performed and in what order. 
Thus answering the question: what to do? After having 
identified tasks that are part of a process, then they have to 
be related to each other by means of process operators. 

 
Figure 4. Organizational modeling and resource alloca-

tion. 

Three concepts are relevant for a process model: place 
(process state), transition (task), and process operators, this 
is known as a WF-net [23]. In Figure 5 the workflow of the 
case study is represented. 

Task models do not impose any particular implementation 
so that user tasks can be better analyzed without implemen-
tation constraints. This kind of analysis is made possible 
because user tasks are considered from the point of view of 
the users need for the application and not how to represent 
the user activity with a particular system. For instance, let's 
consider the search notice task; the notice for a given book 
(if exists) can be searched using different parameters such 
as: ISBN, editor, keywords, title, authors, publication year; 
then the user validates its search information and launch 
the search; the system convey the results of the search; fi-
nally the user selects the code of the desired book. Figure 6 
shows the task modeling using the CTT graphical notation 
[17]. 

We rely on UI generation from task models techniques 
[14,17,18] for deriving UI from task models, thus the 
whole GUI is developed thanks to this methodology. For 
instance the GUI for the Check in task is shown in figure 7. 

Finally, it is worth to say that the workflow modeling al-
lows the users to identify portions of the workflow where 
some optimization could be introduced. 

 



 58

 Figure 5. Workflow modeling for the library management system.

In our example, the current workflow could be improved by 
adding some patterns to optimize the workflow by minimiz-
ing the number of possible freezes. Moreover we added 
some flexibility to the workflow by allowing several re-
sources to have the same job where it is not actually the 
case (such as for the librarian job which has only one re-
source associated currently). 

 
Figure 6. Task model. 

Another case study is SPORT-KIT project. SPORT-KIT is 
designed to be a training system like the Wii Fit® but more 
evolved and designed for elderly people. A battery of tests 
is run automatically with the users’ interactions to know 
his/her wellness and physical capabilities so that we can 
train them effectively to improve them. Also, SPORT-KIT 
involves a tactile interface, a board with pressure sensor 
and a webcam. Following the identification criteria, we 
identify 28 tasks: Start SPORT-KIT, Start test, Personal 
test, Ask size, Ask waist measurement, Ask weight Com-
pute BMI, Start EUROQUOL Test, 5 questions of the test, 

Scale test, Store EUROQUOL result, Start STAND test, 
STAND test 2 feet, STAND test 1 feet left, STAND test 1 
feet right, STAND test 1 feet eye closed, Store STAND test 
result, Start STEP Test, STEP Test, Store STEP Test result, 
Start FORCE Test, FORCE Test, Store FORCE Test result, 
Start SOUPLENESS Test, SOUPLENESS Test, Store 
SOUPLENESS Test result, Compare weight, Compute trai-
ning program. Some of them are shown in Table 2. As we 
can observe, the goal of the SPORT-KIT system is to com-
pute a training program. 

 

Figure 7. GUI for the Check in task. 



 59

We consider only the project SPORT-KIT, because the 
subject is deep enough with this single aspect of the final 
product. Here is the list of organizational units involved in 
this part: 

 Project leader. Gives the interface and architecture to 
programmers, controls the UI and interaction. 

 Programmers. Implement the solution; work with 
foundation server to share code amongst the project 
progression. 

 Testers. Test the software as it’s now, track bugs, give 
input on usability of the HMI. 

 Final testers. Test the final software, give feedbacks 
and input to project leader and programmers. 

 Physical trainer. Makes the training program, chooses 
the tests and helps to implement; reports to project 
leader. 

ID Task name Definition Nature 

1 Start 
SPORT-

KIT 

User starts the program. Interactive 

2 
 

Start Test No previous test was 
done by the user 

Automatic 

3 
 

Personal 
Test 

User introduce infor-
mation about himself 

Automatic 

4 Ask Size User introduce his size 
in meter 

Interactive 

5 Ask waist 
measure-

ment 

User introduce his waist 
measurement, if he 
doesn't know clothes 
size is proposed 

Interactive 

6 Ask weight User introduce his 
weight 

Interactive 

7 
 

Compute 
BMI 

Compute the body mass 
index and store it in the 
database 

Automatic 

8 
 
 

Start EU-
ROQUOL 

Test 

Explain to user what he 
has to do with this test: 
just touch the best an-
swer 

Automatic 

9 
 

5 questions 
of the test 

Ask the question about 
health status of the per-
son 

Interactive 

10 
 
 

Scale Test The user has to evaluate 
his health status on a 
scale from 0 to 100 

Interactive 

Table 3. Some identified tasks. 

 
Figure 8. Compute BMI task model. 

For each task we can have a task model following the CTT 
notation [17]. For instance, Figure 8 shows the subtasks 
needed in order to compute the body mass index and store 
it in the database (task 7). After, we can identify which jobs 
are in charge of a particular task; in most of the task the 
principal actor is the user, the helper collaborate in some of 
them with the user, and the physician participates just in 5 
tasks. User participates in the following tasks: Start Sport, 
Start Test, Personal Test, Ask Size, Ask waist measure-
ment, Ask weight, Compute BMI, Start EUROQUOL Test, 
5 Questions of the test, Scale Test, Store EUROQUOL re-
sult, Start STAND test, STAND test 2 feet, STAND test 1 
feet left, STAND test 1 feet right, STAND test 1 feet eye 
closed, Start STEP Test, STEP Test, Start FORCE Test, 
FORCE Test, and SOUPLENESS Test. Helper participates 
in the following tasks: Start STAND test, STAND test 2 
feet, STAND test 1 feet left, STAND test 1 feet right, 
STAND test 1 feet eye closed, STEP Test, and Start SOU-
PLENESS Test. Physician participates in the following 
tasks: Store STAND test result, Store STEP Test result, 
Store FORCE Test result, Store SOUPLENESS Test result, 
and Compare weight. 

Next step in this case study is producing the process model. 
The identification criterion was the ability to regroup tasks 
in a consistent sub-process of the whole process. Also, con-
sistency was automatically checked by the software we 
used, so we cannot break the rules. 

The frontiers of the processes are defined as follows: 

Process name Tasks 

Clique sur SPORT-KIT 1, 2 

Test papier 3  10 

Test pression 21, 22 

Test back scratch 24, 25 

Calcul IMC 7 

Test step 18, 19 

Test équilibre 12  16 

Sauve résultats dans la BD 11, 17, 20, 23, 26, 
27 

The complete workflow that uses the previously identified 
processes is shown in Figure 10, we use Petri net to model 
the workflow. 

Finally, UIs for the case study are derived using the model-
driven approach of UsiXML, a set of transformation rules 
were applied [see www.usixml.org for more information]. 
It is not the scope of this paper to address UI development 
but relies on existing work. UsiXML model-driven UI 
development uses as input a task model, enriched with our 
meta-description, and transform it into a user interface. 

Importance of the Evolutionary Design 
Adding/modifying a task, user or object attribute in the tex-
tual scenario results into creating/modifying an attribute in 
the corresponding model. Similarly adding/modifying a 
new task on a workflow model affects the task modeling, as 



 60

another task must find its place in an existing task model or 
a new task model must be designed.  

The propagation of these information impacts the different 
layers of the development process, without information 
traceability the evolutionary design would not be possible. 
In Figure 9 the methodological path editor is shown, where 
the different properties to use during the development pro-
cess.  

 
Figure 9. Methodological path editor. 

For instance, Milestones are used to get a methodological 
path reminder. The workflow editor user may model the 
workflow using many different step orderings. It is a prac-
tical way to note what you still have to do, telling you 
where you are (after a holiday break for example). 

RELATED WORK 
The multidisciplinary nature of system design can lead to a 
lot of different works in the literature which will allow de-
velopers to validate the quality of the system development 
in an efficient manner. In [20] some concepts for evolu-
tionary systems and some of the technology investigations 
that are felt to support those concepts are presented. It dis-
cusses the evolutionary design of complex software which 
objective is to provide economic methods for systems to 
keep up with changer requirements over their lifetimes by 
providing a strong information base for evolution, enabling 
analysis of impacts of intended changes, enabling design 
and implementation of more adaptable systems. 

The work of Chong Lee [2] draws from extreme program-
ming (XP), an agile software development process, and 
claims-centric scenario-based design (SBD), a usability en-
gineering process. Extreme programming, one of the most 
widely practiced agile methodologies, eschews large up-
front requirements and design processes in favor of an in-
cremental, evolutionary process. In [1] we can see how dif-
ferent user interface design artifacts can be linked to expose 
their common elements, facilitating the communication on 
which coevolutionary design is based. 

The Clock architecture language [6] was designed to sup-
port the evolutionary design of architectures for interactive, 
multi-user systems. In [24] authors discuss an approach for 
linking GUI specifications to more abstract dialogue mod-
els and supporting an evolutionary design process, which is 
supported by patterns. Additionally, a proposal is presented 
of how to keep connections between concrete user inter-
face, abstract user interface and a task model. Based on 
evolutionary character of software systems, Rich and Wa-
ters [19] have developed an interactive computer aided-
design tool for software engineering; it draws a distinction 
between algorithms and systems, centering its attention on 
support for the system designer. In [4] authors have argued 
that task and architecture models can be semi-automatically 
linked.  

They have developed a computer-based tool, Adligo, which 
generates links between the UAN as a task model and the 
Clock architecture as an architecture model. To support co-
evolutionary software development the linkage process be-
tween the models can be carried out at any stage in the de-
velopment cycle; none of the design artifacts has even to be 
complete. Krabbel et al. [12] adopted a variation of object-
orientedness for constructing application software as a 
product and combined it with an evolutionary development 
strategy based on prototyping.  The approach focuses on a 
close relationship between the tasks and concepts of the ap-
plication domain and the software model. In [21] an ap-
proach to developing systems which can be summarised as 
‘analyse top-down, design middle-out, and build bottom-
up’ is presented. The novelty of the approach lies in its use 
of task analysis to define an appropriate domain for the sys-
tem and then the use of a working prototype to grow a sys-
tem from the bottom up.  

Model-based user interface development environments 
show promise for improving the productivity of user inter-
face developers and possibly for improving the quality of 
developed interfaces. There are many MB-UIDEs that fol-
low a formalized method, but their supporting tools do not 
provide facilities to change the sequence of the method ac-
tivities, thus restricting the possibilities to adapt the meth-
od. The TEALLACH design process [7] aims to support the 
flexibility for the designer lacking in existing environments 
by providing a variety of routes in the process; from one 
entry point, the designer/developer can select any model to 
design independently or associate with other models. 

CONCLUSION AND FUTURE WORK 

Many existing software engineering processes are unable to 
account for continuous requirements and system changes 
requested throughout the development process. Evolution-
ary design has emerged to address this shortcoming. In this 
paper, a methodology to support evolutionary user interface 
development life cycle in a more flexible way was intro-
duced. The methodology supports the evolutionary lifecy-
cle including any level of abstraction to start the design. 



 61

 
Figure 10. Partial view of the workflow for the SPORT-KIT project. 

It is widely accepted that evolutionary design is a natural 
and preferred design process. A workflow editor was de-
veloped to support the method proposed in this paper. A 
collection of case studies is gathered to validate the meth-
odology. As future work we plan to consider to extent our 
work to support the development of Post-wimp UIs. Also 
we will apply the methodology to different context of use, 
such as: education, training, medicine. 

ACKNOWLEDGMENTS 
We acknowledge the support of the ITEA2 Call 3 UsiXML 
(User Interface extensible Markup Language – http://www. 
usixml.org) European project under reference #2008026 
and its support by Région Wallonne DGO6, and the support 
of the Repatriation program by CONACYT. We thank all 
UIDL reviewers for their fruitful feedback that contribute 
in the enhancement of this paper. 

REFERENCES 
1. Brown, J., Graham, N., and Wright, T. The Vista Envi-

ronment for the Coevolutionary Design of User Inter-
faces. In Proc. of CHI’98. ACM Press, New York 

(1998), pp. 376–383. 
2. Chong Lee, J. Embracing agile development of usable 

software systems. In Proc. of Extended Abstracts of 
CHI’2006. ACM Press, New York (2006), pp. 1767–
1770. 

3. Clerckx, T., Luyten, K, and Coninx, K. The Mapping 
Problem Back and Forth: Customizing Dynamic Models 
while preserving Consistency. In Proc. of TAMODIA’-
2004. ACM Press, New York (2004), pp. 33–42. 

4. Elnaffar, S. and Graham, N.C. Semi-Automated Linking 
of User Interface Design Artifacts. In Proc. of CADUI’-
99. Kluwer Academic Pub. (1999), pp. 127–138. 

5. Garcia, J.G., Vanderdonckt, J., and Lemaigre, Ch. Iden-
tification Criteria in Task Modeling. In Proc. of 1st IFIP 
TC 13 Human-Computer Interaction Symp. HCIS’2008. 
IFIP, Vol. 272, Springer, Boston (2008), pp. 7–20. 

6. Graham, T.C.N. and Urnes, T. Linguistic support for the 
evolutionary design of software architectures. In Proc. 
of ICSE’96, IEEE Computer Society, Los Alamitos 
(May 1996), pp. 418–427. 



 62

7. Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., 
Kennedy, J., Gray, P.D., Cooper, R., Goble, C.A., and 
Pinheiro, P. Teallach: a Model-based User Interface De-
velopment Environment for Object Databases. Interact-
ing with Computers 14, 1 (December 2001), pp. 31–68. 

8. Guerrero García, J., Lemaigre, Ch., González Calleros, 
J.M., and Vanderdonckt, J. Towards a Model-Based Us-
er Interface Development for Workflow Information 
Systems. Int. J. of Universal Comp. Science 14, 19 
(Dec. 2008), pp. 3236-3249. 

9. Guerrero-García, J., González-Calleros, J.M., Vander-
donckt, J., and Muñoz-Arteaga, J. A Theoretical Survey 
of User Interface Description Languages: Preliminary 
Results. In Proc. of LA-Web/CLIHC'2009 (Merida, No-
vember 9-11, 2009), IEEE Computer Society Press, Los 
Alamitos, 2009, pp. 36-43. 

10. Guerrero García, J., A Methodology for Developing 
User Interfaces to Workflow Information Systems. PhD. 
Thesis, UCL (2010). 

11. Hekmatpour, S. Experience with evolutionary prototyp-
ing in a large software project. ACM SIGSOFT Software 
Engineering Notes 12, 1 (Jan. 1987), pp. 38–41. 

12. Krabbel, A., Wetzel, I., and Züllighoven, H. On the in-
evitable intertwining of analysis and design: developing 
systems for complex cooperations. In Proc. of DIS’97. 
ACM Press, New York (1997), pp. 205–213. 

13. Lemaigre, Ch., Garcia, J.G., and Vanderdonckt, J. Inter-
face Model Elicitation from Textual Scenarios. In Proc. 
of 1st IFIP TC 13 Human-Computer Interaction Sympo-
sium HCIS’2008. IFIP, Vol. 272, Springer, Boston 
(2008) pp. 53–66. 

14. Limbourg, Q. and Vanderdonckt, J. Addressing the 
Mapping Problem in User Interface Design with 
UsiXML. In Proc. of TAMODIA’2004, ACM Press, 
New York (2004), pp. 155–163. 

15. Loia, V., Staiano, A., Tagliaferri, R., and Sessa, S. An 
evolutionary hybrid approach to the design of a decision 
support system. In Proc. of SAC’00, Vol. 1, ACM Press, 
New York (March 2000), pp. 524–528. 

16. Mens, T. and Van Gorp, P. A Taxonomy of Model 
Transformation. Electronic Notes in Theoretical Com-
puter Science 152 (2006), pp. 125–142. 

17. Paternò, F. Model-Based Design and Evaluation of In-
teractive Applications. Springer-Verlag, London (1999). 

18. Puerta, A.R. and Eisenstein, J. Towards a general com-
putational framework for model-based interface devel-
opment systems. Knowledge-Based Systems 12, 8 
(1999), pp. 433–442. 

19. Rich, Ch. and Waters, R.C. Computer aided evolution-
ary design for software engineering. ACM SIGART Bul-
letin 76 (April 1981), pp. 14–15. 

20. Salasin, J. and Shrobe, H. Evolutionary design of com-
plex software (EDCS). ACM SIGSOFT Software Engi-
neering Notes 20, 5 (December 1995), pp. 18–22. 

21. Seaton, P. and Stewart, T. Evolving task oriented sys-
tems. In Proc. of CHI’92, ACM Press (1992), pp. 463–
469. 

22. Szekely, P., Retrospective and Challenges for Model-
Based Interface Development. In Proc. of DSVIS’96, F. 
Bodart and J. Vanderdonckt (Eds.), Springer-Verlag, 
1996, pp. 1-27. 

23. van der Aalst, W. & van Hee, K., Workflow Manage-
ment: Models, Methods, and Systems. THE MIT Press, 
Cambridge. 2002. 

24. Wolff, A., Forbrig, P., Dittmar, A., and Reichart, D. 
Linking GUI elements to tasks: supporting an evolu-
tionary design process. In Proc. of TAMODIA’2005. 
Springer, Berlin (2005), pp. 27–34. 

 



 63

Challenges for a Task Modeling Tool Supporting 
a Task-based Approach to User Interface Design

Costin Pribeanu 
National institute for Research and Development in Informatics – ICI Bucharest 

Bd. Maresal Averescu Nr. 8-10, Bucharest, Romania 
+40 (0)213160736 - pribeanu@ici.ro 

ABSTRACT 
In a task-based approach to user interface development, the 
task model is given a leading role among other models. 
Task modeling is a key activity in the design of a usable us-
er interface. Task patterns that are based on both task and 
domain models are typical interaction structures that are 
capturing operations performed onto domain objects. This 
paper is discussing some key requirements for a task mod-
eling tool aiming to support model transformations in 
UsiXML: full computer-aided task decomposition, model 
validation, model simulation, operations with task patterns, 
and simultaneous access at task and domain model ele-
ments based on mapping rules. 

Author Keywords 
UsiXML, model transformation, task patterns. 

General Terms 
Design, Experimentation, Human Factors, Verification. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H5.2 [Information interfaces and 
presentation]: User Interfaces – Prototyping. 

INTRODUCTION 
Models are used to capture design knowledge needed for 
the construction of the future user interface (UI). Main con-
cepts abstracted into these models refer to users, tasks, ap-
plication domain, presentation and dialog. In a transforma-
tional approach to UI design the task and domain models 
are the main source models for the derivation of presenta-
tion and dialog models at various levels of abstraction [2], 
[3], [6].  

Model-based approaches which are giving the task model a 
leading role among the other models are also referred to as 
task-based approaches. There are several model-based ap-
proaches that are using the information from both the task 
and domain models in order to exploit task patterns associ-
ated with typical operations performed onto domain objects 
[10], [14]. A limitation of these approaches is the fact that 
they are exploiting only the last layer in the task models.  

A well known task modeling notation is CTT (Concur Task 
Tree) which was widely used in various interactive envi-
ronments such as CTTE (CTT Environment) and Teresa 

[8]. As pointed out by Luyten et al, CTT served as inspira-
tion for several tools aiming at supporting task modeling in 
UsiXML [7]. CTTE enables the designer to create task trees 
and to specify task properties such as task type, frequency, 
and estimated execution time. There are two important 
CTTE features that represent a first key requirement for a 
task modeling tool: the model validation and the model 
simulation.  

The goal of the UsiXML project is to develop an innovative 
model driven language supporting the “µ7” concept: multi-
device, multi-user, multi-cultural / language, multi-organi-
zation, multi-context, multi-modality and multi-platform. 
UsiXML will define a flexible methodological framework 
that accommodates various development paths as found in 
organizations and that can be tailored to their specific needs 
[5]. 

This paper is aiming to discuss some key requirements for a 
task modeling tool aiming to support the model transfor-
mations in UsiXML: full computer-aided task decomposi-
tion, operations with task patterns, and simultaneous access 
at domain and task model based on mapping rules.  

In order to explain our approach we will use as example a 
software assistant for formative usability evaluation that 
was previously developed in a task-based approach. We 
will focus on the relationships between objects and analyze 
the categories of tasks which are afforded by each type of 
relationship. Then we will look for mappings between the 
domain model and the task model with the aim of covering 
the whole task hierarchy.  

The rest of this paper is organized as follows. In section 2, 
we will briefly describe our task modelling framework and 
some general mappings between domain and task models. 
We will also present our example. In the next section we 
will discuss the difficulties associated with a transforma-
tional task-based approach and some limitations of the ex-
isting task modeling tools. The paper ends with conclusion 
in section 4. 

APPROACH 
The layered task model 
In our approach we distinguish between three decomposi-
tion layers, which are relevant in the task modeling for user 
interface design [11]: 
 A functional task layer that results from mapping ap-

plication functions onto user tasks. Each function cor- 



 64

responds to a business goal, which is accomplished by 
carrying on one or several user tasks. 

 A planning task layer that results from the decomposi-
tion of functional tasks up to the level of unit tasks, 
having a clear relevance for the user [4]. This layer 
shows how users are planning task performance by de-
composing a task in sub-tasks and giving an ordering 
preference for each of them.  

 An operational task layer that results from the decom-
position of unit tasks up to the level of basic tasks, 
showing how a unit task will be actually carried on by 
using various interaction techniques [13].  

In terms of a pattern language philosophy [1], domain and 
task models are the main forces driving the model-based 
design of a UI. In a previous work, we identified several 
task-domain mappings that are useful for the model-based 
derivation of the user interface [10]: 

 Unit tasks – domain objects: operations performed onto 
domain objects, such as create new, edit, display or de-
lete, are modeled as unit tasks in the task model. Unit 
tasks could have a simple operational structure or 
could be nested in a goal hierarchy. 

 Basic tasks – domain object attributes / available com-
mands: operations performed onto domain object at-
tributes are mapped onto information control basic 
tasks while available commands on the target platform 
are mapped onto function control basic tasks.  

In the same work, we presented a software tool exploiting 
these mappings between task and domain models in order 
to produce the operational task layer. A second key re-
quirement for a task modeling tool is to provide support for 
computer-aided task decomposition in a transformational 
approach. This means to cover also the decomposition at 
functional and planning levels by exploiting the mappings 
between the task and domain models, as shown in Table 1.  

Task model  Task goals Domain Model 

Functional layer Class and object 

management 

Classes and ob-

jects 

Planning layer 

Unit tasks 

Add, edit, display,  

delete objects and  

relationships 

Objects and re-

lationships 

Operational layer 

Basic tasks – info con-

trol 

Edit or display object 

attributes 

Object attributes

Operational layer 

Basic tasks – function 

control 

Commands (transac-

tions,  navigation 

Objects, rela-

tionships and at-

tributes 

Table 1. The task-domain mappings. 

Basic tasks for function control have as operational goals to 
start, confirm or cancel a transaction (e.g. add, edit, ok, 
cancel) over domain model elements or to navigate between 
interaction units. 

Example 
We will use as example a software assistant for formative 
usability evaluation that was developed in a task-based ap-
proach [12]. The purpose of formative usability evaluation 
is to identify and fix usability problems as early as possible 
in the development life cycle. There are two main catego-
ries of methods frequently used: inspection-based evalua-
tion (heuristic evaluation, guideline- based evaluation) and 
user testing. In each case, a heuristic and / or usability 
guideline is used to document the usability problem. Usa-
bility problems are recorded for each evaluation task.  

The main goal of the application is the management of usa-
bility problems (UP).  

The functional layer shows the business goals that should 
be accomplished with the target application. Each function 
is mapped onto a user task. In our example, the tasks are 
accomplishing the management of four classes of objects: 
evaluation tasks, usability problems, heuristics and guide-
lines. The task decomposition at functional level is present-
ed in Figure 1 using the CTT notation. 

 

Figure 1. The task ManUP – functional layer. 

Usability problems are the central class in this application. 
Heuristics are used to document a usability problem. 
Guidelines are used to detail a heuristic. The heuristics are 
displayed in a list box. When a heuristic is selected, its def-
inition is displayed in a text box bellow. Several heuristics 
could be associated to a usability problem.  

The user could consult the guidelines detailing a heuristic 
in a separate window (by pressing the ShowGuidelines but-
ton). In Figure 1, the interaction unit for editing a usability 
problem is presented. 

Ideally, it should be possible to create the user interface il-
lustrated in Figure 1 by applying transformation rules to the 
task and domain models.  

Tasks on the first decomposition level in Figure 1 are inter-
actively specified in CTTE since there is a simple one-to-
one mapping from application functions to user tasks. The 
abstract (complex) tasks are iterative (infinitely) and linked 
with the “|=|” temporal operator (could be performed in any 
order). 



 65

 

Figure 2. The user interface for editing 
a usability problem. 

The next decomposition level could be obtained automati-
cally, by performing a task to task transformation. This task 
pattern has four types of operations for each class: display, 
add, edit and delete. The four tasks are also iterative (infi-
nitely) and linked with t ‘|=|’ temporal operator (could be 
performed in any order) like their parent tasks. 

When simulating the task model, we experienced difficul-
ties since CTTE supports both task id and task name, but is 
using the task name in simulation. So we had to rename all 
similar tasks in order to get unique names (e.g. AddT, Ad-
dUP, AddH, AddGdln), which resulted in an extra work 
and reduced the specification readability. Therefore, a third 
key requirement for a task modeling tool is to automatically 
assign a task id, to use it for internal validation and model 
simulation and to display the task name (which should not 
be unique).  

This requirement is important since it makes possible to de-
fine task patterns and to perform operations with them easi-
er.  

TRANSFORMATION ISSUES 
The development path 
The flexibility principle of UsiXML methodology makes it 
possible to support different development paths. In our ap-
proach, the concrete interface model is produced by apply-
ing transformation rules from task and domain models. The 
rationale for this approach is explained bellow. 

According to Norman, changing the artifact is changing the 
nature of the task [9]. The change of platform is not only 
affecting the operational task layer but also the functional 
and operational layers. The task requirements are different 
for desktop computers and mobile devices. Although is 
possible to migrate from a desktop computer to a mobile 
device, this works well for some tasks that are likely to be 
performed in a particular context of use. For example, con-
sulting the heuristics – guidelines hierarchy could migrate 

to a mobile device. Otherwise, each platform is supporting 
specific interaction metaphors which are shaping the over-
all user interface design.  

Another problem is the change of modality. Some applica-
tion functions could support the change of graphic modality 
with voice. However, for a relatively large application is 
difficult to ensure an acceptable level of usability without 
radical changes in the task model, at least at planning level. 
For example, respecting accessibility guidelines only en-
sures that a disabled user could access the content. In order 
to make it usable, the interaction spaces should be tailored 
to the limitations of human working memory. In other 
words, the user interface should be structured differently 
for a blind user, in smaller interaction units.  

The choice of what to show into an interaction unit is an 
important design decision that sometimes is taken before-
hand. Many designers put forward an interaction concept or 
a metaphor that provide with a better user experience. This 
means that the choice of structuring the user interface in in-
teraction units could be a subjective human decision. In 
many cases, criteria like familiarity, consistency (with other 
applications or real life artifacts) prevail.  

The goal hierarchy in the task model, the relationships be-
tween   objects and the mappings between task and domain 
models could positively influence the design decision on 
structuring the user interface in a usable way but we con-
sider that these criteria should be used at the concrete inter-
face level.  

In all these cases (change of platform, change of modality, 
user interface structure) the task model is also changing be-
cause of the navigation tasks. When the user interface is 
split into several interaction units, the number of navigation 
tasks increases. Simulating the task model helps in structur-
ing the interface since it makes obvious the navigation tasks 
that are not needed.  

For example, the list of heuristics could be available in the 
same window or in a separate window opened when the us-
er wants to associate a heuristic to a usability problem. 
Since each usability problem is documented by at least one 
heuristic, the best is to have the list of heuristics permanent-
ly displayed in the editing window, like in Figure 1. From a 
methodological point of view, we advocate for a complete 
task specification at operational level (including naviga-
tional tasks) based on task and domain mappings as a pre-
requisite for the user interface derivation.  

Task & domain to task transformations 
We consider that transformation rules should be embodied 
in a set of tools that are producing UsiXML specifications.  

In order to make a UsiXML specification manageable with 
a reasonable effort, several functions are required for such a 
tool: opening a model, finding a model element, inserting 
the specification of a model element into the model, and 
combining small models into larger models. 



 66

Transformations from task and domain to task are produc-
ing the planning and operational layers in the task model. 
Actually, these transformation rules are producing task pat-
terns that could be further exploited in similar applications.  

The transformations producing the planning layer are ex-
ploiting the semantic relationships between objects. In our 
example, editing a usability problem is a complex task with 
several sub-goals: editing the attributes of the usability 
problem, displaying info about a heuristic, editing the asso-
ciated heuristics, and displaying the guidelines associated 
with a heuristic.  

Depending on the use of semantic relationships, the tasks 
on the second decomposition level in Figure 2 could have a 
specific degree of complexity. For example, the task 
“EditUP” has a hierarchical structure and is further decom-
posed in several sub-tasks corresponding to the aforemen-
tioned sub-goals.  

In Figure 3 the planning layer for the task EditUP is pre-
sented. There are three relationships between objects used 
in this task. The first is the relationship between the evalua-
tion tasks and usability problems (aggregation) which is 
visible (the task id is displayed). The second is the relation-
ship between a usability problem and the associated heuris-
tics (1...*) which is visible. The second is the relationship 
between a heuristic and the associated guidelines which 
could be made visible by pressing the “Show guidelines” 
button.  

When editing a usability problem, the user can change the 
UP attributes and the associated heuristics but can only 
consult the heuristics and associated guidelines. As it could 
be seen in Figure 3, the use of domain objects and their re-
lationship are structuring the task model at planning layer. 

 
Figure 3. The task EditUP – planning layer. 

A similar task pattern applies for adding a usability prob-
lem. The only difference is the task for selecting the usabil-
ity problem which is no longer needed. In this respect, a 
fourth key requirement for the task modeling tool is to pro-
vide with operations over a task patterns collection.  

The transformations rules are using attributes of the task in 
the source task model (such as canonical task type and task 
nature) and the information available in the domain model. 
In our approach, the source task is the parent task (which is 
decomposed).  

A fifth key requirement for a task modeling tool is to pro-
vide a way to specify a link between each task and the cor-
responding domain model element.  

In this respect, the corresponding element for each task 
could be an object class, a relationship, an object attribute 
or none (for navigational tasks). This mapping will be fur-
ther exploited for task decomposition, concrete user inter-
face derivation, and writing the code for event processing. 
Ideally, the task modeling tool should provide a model val-
idation that extends the CTTE feature (based on temporal 
operators) with checking the consistency of mappings be-
tween task and domain elements.  

If no relationship is involved, a simpler task pattern is 
needed for editing a domain object. The task decomposition 
for editing the evaluation tasks (EditT) is presented in Fig-
ure 4.  

 
Figure 4. The task EditT – planning layer. 

 (a) class management

 

The user is provided with typical 
operations performed onto the ob-
jects of a given class. Tasks are 
repetitive and could be performed 
in any order 

(b) edit complex 

 

The pattern applies for complex 
editing task that have several sub-
goals: change of attributes, change 
of relationships, displaying of oth-
er objects.  

(c) edit object attrib-
u
t
e
s

 

The user selects the object and 
then the edit command. A similar 
pattern applies for adding an ob-
ject (in this case the preliminary 
object selection is not needed). 

(d) delete object 

 

The user selects the object and 
then the command. The object at-
tributes are displayed together 
with a shield message asking to 
confirm / cancel the deletion.   

(e) display object  

 

The user selects the object and 
then the command. The object at-
tributes are displayed until the user 
confirms the visualization 

Table 2. Detailed mapping rules. 



 67

The unit tasks “EditUPAttr” and “EditTAttr” follow a simi-
lar task pattern at operational level. The transformation 
rules are exploiting the information in the domain model by 
creating a basic task for each object attribute that is visible 
in the interface.  

Since there are 4 classes of objects in this application a pat-
tern-based transformational approach is very useful and 
saves a lot of specification work.   

CONCLUSION 
In this paper, we investigated some task patterns at func-
tional and planning layer that extend and refine the set of 
patterns identified in a previous work. In Table 2, a set of 
mapping rules is presented that are based on the notation 
described in [10]. Each mapping rule is expressed as a task 
pattern having a prefixed part, a sequence of unit tasks and 
a post fixed part. 

We mentioned several key requirements for a task model-
ing tool supporting a transformational approach to user in-
terface design. The purpose of such a tool is to provide with 
a pattern language for task modeling including pattern defi-
nition based on task and domain mappings, and operations 
with task patterns over the UsiXML task model.   

We discussed several aspects influencing a transformational 
approach to user interface design. The relationships be-
tween domain objects and their centrality for the user tasks 
give a sort of directness of the user interface structure. 
There are also other aspects that are shaping a user inter-
face, like the platform and modality for which is primarily 
developed as well as the context specific requirements.  

Using a task modeling tool supporting the aforementioned 
requirements makes possible to produce more than a task 
model. In this respect we consider useful to include all the 
relevant information from the domain model in order to get 
an extended task+domain model. This extended 
task+domain model is the source model for the transfor-
mations from task and domain to the concrete user inter-
face. As such, it could serve as a sort of abstract user inter-
face that support model checking (including task – domain 
mappings), model simulation and reasoning about the user 
interface usability.  

ACKNOWLEDGEMENT 
This work was carried on in the framework of the Eureka 
Cluster ITEA2 European project UsiXML (08026) funded 
under the PNCDI II Innovation Project 294E. 

REFERENCES 
1. Alexander, C. The Timeless Way of Building. Oxford 

University Press, New York (1979). 

2. Aquino, N., Vanderdonckt, J., Valverde, F., Pastor, O. 
Using Profiles to Support Model Transformations in 
Model-Driven User Interfaces Development. In Proc. of 
CADUI’2008  (Albacete, 11-13 June 2008). Springer, 
Berlin (2008) 

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L, and Vanderdonckt, J. A unifying reference 
framework for multi-target user interfaces. Interacting 
with Computers 15, 3 (2003), pp. 289-308.  

4. Card, S.K., Moran, T.P., and Newell, A. The Psycholo-
gy of Human-Computer Interaction, Lawrence Erlbaum 
Associates, Mahwah (1993). 

5. Faure, D., Vanderdonckt, J. (Eds.). Proc. of 1st Int. 
Workshop on User Interface Extensible Markup Lan-
guage UsiXML’2010 (Berlin, 20 June 2010). Thales 
Research and Technology France, Paris (2010). ISBN 
978-2-9536757-0-2. 

6. Limbourg, Q., and Vanderdonckt, J. Multipath Trans-
formational Development of User Interfaces with Graph 
Transformations. In Human-Centered Software Engi-
neering, Human-Computer Interaction Series, Springer 
London, (2009). 

7. Luyten, K., Haesen, M., Degrandsart, S., Demeyer, S., 
Oestrowski, D., and Coninx, K. On stories, models and 
notations: Storyboard creation as an entry point for 
model-based interface development with UsiXML. In 
Proc. of UsiXML’2010. D. Faure, J. Vanderdonckt 
(Eds.), Thales Research, Paris (2010), pp. 1-9. 

8. Paternò, F., and Santoro, C. One Model, Many Interfac-
es. In Proc. of CADUI'2002, Kluwer Academics, Dor-
drecht (2002), pp. 143-154. 

9. Norman, D.A. Cognitive artifacts. In Designing Interac-
tion - Psychology at the Human-Computer Interface. 
J.M.Carroll (Ed.), Cambridge University Press, Cam-
bridge (1991). 

10. Pribeanu, C. Tool support for handling mapping rules 
from domain to task models. In Proc. of TAMO-
DIA’2006. K. Coninx, K., Luyten, K. Schneider (Eds.). 
Springer, Berlin (2007), pp. 16-23. 

11. Pribeanu, C. Task Modeling for User Interface Design – 
A Layered Approach. International Journal of Infor-
mation Technology 3,2 (2007), pp. 86-90. 

12. Pribeanu, C. A usability assistant for the heuristic eval-
uation of interactive systems. Studies in Informatics and 
Control 18, 4 (2009), pp. 355-362. 

13. Pribeanu, C., and Vanderdonckt, J. Exploring Design 
Heuristics for User Interface Derivation from Task and 
Domain Models. In Proc. of CADUI'2002. Kluwer, 
Dordrecht (2002), pp. 103-110.  

14. Tran, V., Kolp, M., Vanderdonckt, J., Wautelet, Y., and 
Faulkner, S. Agent based user interface generation from 
combined task, context and domain models. In Proc. of 
TAMODIA 2009. Springer, Berlin (2010), pp. 146-162. 
 



 68

A Model for Dealing with Usability in a Holistic 
Model Driven Development Method

Jose Ignacio Panach, Óscar Pastor, Nathalie Aquino 
Centro de Investigación en Métodos de Producción de Software 

 Universitat Politècnica de València 
Camino de Vera s/n, 46022 Valencia, Spain 
{jpanach, opastor, naquino}@pros.upv.es 

ABSTRACT 
Currently, the importance of developing usable software is 
widely known. For this reason, there are many usability 
recommendations related to system functionality (called 
functional usability features). If these functional usability 
features are not considered from the very early steps of the 
software development, they require many changes in the 
system architecture. However, the inclusion of usability 
features from the early steps in a traditional software de-
velopment process increases the analyst’s workload, who 
must consider not only features of the business logic but al-
so usability features. In the Software Engineering commu-
nity, holistic MDD methods are a solution to reducing the 
analysts’ workload since analysts can focus all their efforts 
on the conceptual model (problem space), relegating the 
architecture design and the implementation code (solution 
space) to automatic transformations. However, in general, 
MDD methods do not provide primitives for representing 
usability features. In this paper, we propose what we call a 
Usability Model that gathers conceptual primitives to rep-
resent functional usability features abstractly enough to be 
included in any holistic MDD method. 

Author Keywords 
Model-Driven Development, usability, conceptual model. 

General Terms 
Design, Experimentation, Human Factors, Verification. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H5.2 [Information interfaces and 
presentation]: User Interfaces – Prototyping. 

INTRODUCTION 
According to ISO 9126-1 [10], usability is a key issue in 
obtaining good user acceptance of the software [6]. Some 
authors have divided usability recommendations into two 
groups [11]: recommendations that only affect the interface 
presentation (e.g., a label meaning), and recommendations 
that affect the system functionality (e.g. a cancel function). 
This second type is called functional usability features, and 
it is the most difficult type to include in the software [11], 
since these features affect the system interface as well as 
the system architecture. For example, the feature Cancel 
aims to cancel the execution of a service. The implementa-
tion of this usability feature is not a single button in the in-

terface; on the contrary, this feature also affects data persis-
tency and functionality. 

There are several authors in the Software Engineering 
community that have identified functional usability features 
and have proposed methods to include them in software 
development [8]. All these works propose including func-
tional usability features from the early steps of the software 
development process, since they involve many changes in 
the system architecture if they are considered only when in-
terfaces are designed. However, these approaches have 
some disadvantages: 

 Cost/benefit ratio: The analyst must deal with usabil-
ity from the requirements capture step until the im-
plementation throughout the entire development pro-
cess. This increases the analyst’s effort and the 
cost/benefit ratio is not always favourable for features 
that are difficult to implement [11]. 

 Changeable requirements: Usability requirements 
(like other system requirements) are continuously 
evolving [12] and the adaptation to new requirements 
can involve a lot of rework in the system architecture. 

 Dependency on the implementation language: The 
architecture design depends on the language used in 
the implementation and on the target platform.  

Our research work is based on the idea that the Model-
Driven Development (MDD) method is a suitable solution 
for reducing all these disadvantages [21][20]. MDD pro-
poses that the analyst must focus all their efforts on build-
ing a conceptual model that represents all the system fea-
tures (a holistic conceptual model) [17]. What we mean by 
“holistic” is that the conceptual model must include all the 
relevant systems perspectives: class structure, functionality 
and interaction. While class structure and functional view 
are supported in almost all the existing MDD approaches, 
interaction view is usually designed once the architecture 
has been finished. Our work focuses on modelling interac-
tion adequately, at the same level of data and functionality, 
to provide a full system description in the conceptual mod-
el. 

These complementary perspectives must provide the corre-
sponding conceptual primitives, which are modelling ele-
ments having the capability of abstractly representing a fea-
ture of the system. Examples of conceptual modelling ele-
ments for the class structure view are classes of a class dia-



 69

gram, attributes, and services. Examples of conceptual 
modelling elements for the functional view include service 
pre/post conditions, valid states and transitions. In this pa-
per, our intention is to focus on conceptual modelling ele-
ments for the interaction view, and in particular, for func-
tional usability features. The holistic conceptual model can 
then be seen as the input for a model compiler that can 
generate the software application automatically (or semi-
automatically, depending on the model compiler capacity). 
Providing such a MDD-based software production envi-
ronment, the problems of existing approaches that deal 
with functional usability features can find an adequate so-
lution.  

There are currently several MDD methods which model 
full functional systems, such as WebRatio [1], AndroMDA 
[2], and OO-Method [19] among others. However, none of 
them can model most functional usability features in their 
conceptual model. These features must be manually im-
plemented, inheriting all the disadvantages of manual de-
velopment mentioned above. This paper aims to extend ex-
isting MDD methods with conceptual primitives that repre-
sent functional usability features well known in the Human 
Computer Interaction community [11]. All these primitives 
are gathered in what we call the Usability Model. 

The paper is structured as follows. Section 2 presents the 
state of the art. Section 3 describes the functional usability 
features used in our proposal. Section 4 explains our pro-
posed Usability Model with its primitives. Section 5 de-
scribes how to include the Usability Model in a holistic 
MDD method using OO-Method as example. Finally, sec-
tion 6 presents some conclusions and future work. 

STATE OF THE ART 
If we look for existing proposals that deal with usability in 
MDD, we notice that, currently, there are not many works 
in the literature. Two examples of authors that propose 
considering usability in MDD methods are Taleb [24] and 
Gull [9]. The main disadvantage of both proposals is that 
these authors do not specify the usability traceability 
among the different development steps. Moreover, a specif-
ic notation to represent usability features in each step does 
not exist.  

There are also works that propose integrating HCI tech-
niques in MDD, such as Wang [27]. Wang proposes a user-
centred design where the users play an important role in 
modelling the interface. This work focuses only on usabil-
ity features related to the interface display, not to the func-
tionality. In contrast, Sottet [22] is an author that deals with 
usability considering functional usability features. This au-
thor investigates MDD mappings for embedding both usa-
bility description and control. For Sottet, a user interface is 
a graph of models, and usability is described and controlled 
in the mappings between these models. The main disad-
vantage of  Sottet’s proposal is that the analyst must speci-
fy the transformation rules for each system and this is not 
trivial. 

Other proposals use existing models to represent usability 
features, such as Sousa [23]. Sousa has defined an activity-
based strategy to represent usability goals. The main disad-
vantage of this proposal is that we cannot model how usa-
bility features are related to the system functionality. Other 
authors that represent usability in existing models are Tao 
[25] and Brajnik [4], who propose modelling usability by 
means of state transition diagrams. However, state transi-
tion diagrams are only able to represent interactions, so 
they cannot represent all the usability features. 

There are also some works [7][15] related to measuring the 
system usability in MDD conceptual models. Fernandez [7] 
proposes a model to evaluate system usability from concep-
tual models. Molina [15] proposes measuring usability at-
tributes focused on navigational models. The main short-
comings of these proposals is that many usability attributes 
are subjective, and therefore cannot be measured automati-
cally without taking into account the user. 

For instance, attributes related to the attractiveness sub-
characteristic [10] cannot be measured by means of con-
ceptual models. Therefore, the result of early usability 
evaluation is a sort of prediction. 

After studying related works, we conclude that existing 
proposals for dealing with functional usability features in 
MDD present some problems when we want to include 
them in a real software development process. First, few 
works have a specific notation to represent functional usa-
bility features in a model, and existing notations do not 
cover the model of all the existing features. Second, it is 
not clear how to include usability features throughout the 
whole software development process since existing pro-
posals do not specify the traceability among models. 

BACKGROUND: PROPERTIES OF FUNCTIONAL USA-
BILITY FEATURES 
In previous works, we have extracted the properties that are 
needed to configure a set of usability features [18] defined 
by Juristo [11] and called FUFs (Functional Usability Fea-
tures). We chose these usability features from all the exist-
ing ones since FUFs are specific to management infor-
mation systems, the target systems of our work.  

Moreover, FUFs have templates to capture usability re-
quirements that are very useful for identifying features’ 
properties. In the FUF definition, each FUF has a main ob-
jective that can be specialized into more detailed goals 
named mechanisms. A detailed explanation of properties 
derived from FUFs is out of scope of this paper, but can be 
consulted in [13]. Next, we summarize the process we fol-
lowed to extract these properties: 

1. We defined Use Ways (UW) using the usability 
mechanisms description. Each usability mechanism 
can achieve its goal through different means. We 
called each such mean Use Way (UW).  Each UW has 
a specific target to achieve as part of the overall goal 
of the mechanism. For example, the usability mecha-



 70

nism called System Status Feedback aims to inform 
the user about the internal system state. We identified 
that this goal can be achieved in at least three use 
ways: (1) Inform about the success or the failure of an 
execution (UW_SSF1): it informs if an action execu-
tion finished successfully; (2) Show the information 
stored in the system (UW_SSF2): it shows infor-
mation of the system before the user triggers an ac-
tion; (3) Show the state of relevant actions 
(UW_SSF3): it indicates which actions cannot be 
triggered in the current system state. 

2. We defined properties for each UW. We called the 
different UW configuration options to satisfy usability 
requirements as Properties. For example, we identi-
fied that the Inform about the success or the failure of 
an execution Use Way is composed of two properties: 
(1) Service selection; (2) Message visualization. By 
means of Service selection the analyst can specify the 
service that will inform about the success or failure; 
by means of Message visualization, the analyst can 
specify how the message will be displayed (format, 
position, icon, etc.). 

In previous works [18], we defined Use Ways and proper-
ties but their inclusion in an MDD method affected its con-
ceptual model. This paper aims to define a generic ap-
proach that does not affect the existing conceptual model. 
This new approach is based on a Usability Model explained 
in the next section.  

A USABILITY MODEL 
This section presents the conceptual primitives needed to 
represent Use Ways extracted from FUFs. Since currently 
there is no a standard notation to represent usability fea-
tures, we have used a set of primitives very similar to UML 
notation [26]. We use graphical elements already defined in 
UML but we have extended these elements with some tex-
tual descriptions. The new conceptual primitives are gath-
ered in a model called Usability Model.  

Next, we detail primitives to represent the set of 22 Use 
Ways [13] and their properties in a Usability Model. As an 
illustrative example to introduce these primitives, we use a 
system to manage a library. In the example, we aim to im-
prove the system usability by means of the three Use Ways 
described above: UW_SSF1, UW_SSF2 and UW_SSF3. 
We have focused our example in these three elements be-
cause the primitives needed to represent all their properties 
are enough to represent any other property of the remaining 
19 Use Ways. 

Table 1 shows the properties of the three Use Ways used in 
the example and their values. These properties must be 
specified by the analyst in order to develop a usable sys-
tem. Next, we present how these three Use Ways improve 
the usability of the system to manage a library. 

  

Use Way Property Value 

UW_SSF1 
Service selection 

All the services 

Message visuali-
zation 

Display the failure mes-
sage textually 

UW_SSF2 Dynamic infor-
mation 

Number of loans and 
number of penalties 

Static infor-
mation 

The labels “Loans” and 
“Penalties” 

Message visuali-
zation 

Textually with Arial, 
black. Size 10 

UW_SSF3 
Service selection 

Lend book 

Condition to dis-
able 

When the member is pe-
nalized 

Descriptive text 
“The member is currently 
penalized” 

Table 1. Properties of UW_SSF1, 
UW_SSF2 and UW_SSF3. 

1. UW_SSF1 (Inform about the success or the failure of an 
execution): Each service of the system must inform 
whether or not the execution finished successfully with a 
textual message. For example, if the system does not sup-
port this Use Way, when the librarian tries to lend an in-
existent book, she/he will not notice about the reason of 
the system failure. However, including UW_SSF1, when 
the librarian tries to lend an inexistent book, the system 
displays an interface similar to Fig 1, detailing infor-
mation about the reason of the mistake. According to Ta-
ble 1, when the services specified in the property Service 
selection fail in the execution, an error message is dis-
played such as Message visualization indicates. 

 
Figure 1. Error derived from UW_SSF1. 

2. UW_SSF2 (Show the information stored in the system): 
When the librarian queries the list of members, she/he 
can choose a member and navigate towards the list of 
her/his current loans and towards the list of her/his penal-
ties (buttons Loans and Penalties in Fig 2). The librarian 
would like to see how many loans and penalties the 
member has without performing the navigation. This 
functionality is supported with UW_SSF2, which pro-
vides dynamic aliases for the navigation buttons by 
means of the property Dynamic information. Fig 3 shows 
the navigations buttons after including UW_SSF2 in the 



 71

system. According to Table 1, navigation buttons aliases 
are composed of Static information (Loans and Penalties) 
together with Dynamic information (the number of loans 
and penalties for the selected member), and they are dis-
played such as Message visualization  indicates. 

 
Figure 2. List of members with navigations towards 

Loans and Penalties. 

 
Figure 3. Navigation buttons with dynamic aliases. 

3. UW_SSF3 (Show the state of relevant actions): If this 
Use Way is not included in the system, when the user 
tries to execute a service that cannot be triggered in the 
current system state, the execution results in a failure. 
For example, when the librarian executes the service to 
lend a book to a member that is currently penalized, 
the execution will finish unsuccessfully. Including 
UW_SSF3, the button to lend a book is disabled if the 
member is penalized, avoiding the librarian to make a 
mistake. Fig 4 shows an example of an interface that 
has disabled the service to create a new loan, since the 
selected member is currently penalized. According to 
Table 1, if the Service selection (Lend book) has a 
Condition to disable (when the member is penalized) 
that becomes true, the service is disabled and a De-
scriptive text (“The member is currently penalized”) is 
displayed. 

OK Cancel
The member is currently 

penalized
 

Figure 4. Disabling the button to execute an action 
when it cannot be triggered. 

The main goal of our work is to demonstrate that these as-
pects related to usability improvement can and should be 
included in the conceptual schemas that are used in MDD 
environments, what is often just ignored. We need thus in-

corporate the corresponding set of conceptual primitives 
for that purpose. The primitives that compose the Usability 
Model are grouped into two levels: packages and ele-
mental primitives. Packages are primitives that contain a 
set of other primitives (packages or elemental primitives).  
Elemental primitives constitute the building blocks from 
which packages are constructed. There are two types of 
packages in our Usability Model: 

 First, for each Use Way, the analyst must define a pack-
age that groups all the primitives that define the Use 
Way. Each Use Way is represented by means of an ele-
ment similar to a UML package whose name is the name 
of the Use Way with the label Use Way. Fig 5 shows an 
example to represent UW_SSF2. 

 Second, the analyst must define inside each package Use 
Way, the interfaces involved in the Use Way definition. 
Each interface groups the main interactive operations that 
the user can perform with the system. We propose defin-
ing interfaces by means of an element similar to a UML 
package with the label Interface. Fig 5 shows an example 
of two interfaces: Member and Loans. 

Once we have defined the packages, the next step in our 
proposal is to define elemental primitives inside them: 

 First, the analyst must define navigations in each Use 
Way with a property to navigate among several interfac-
es. These Navigations determine the target interfaces that 
can be reached from a source interface. For example, in 
Fig 2 the librarian can navigate towards the list of loans 
and penalties for a selected member. We propose specify-
ing these navigations by means of an arrow with a source 
and a target. Fig 5 represents the primitives to define the 
navigation from member to loans displayed in Fig 2.  

 
Figure 5. Primitives to model UW_SSF2 in the library 

management system. 

 Second, the analyst must specify attributes and services 
used in the properties of the Use Way. An attribute is an 
element used to ask the user for data or to query stored 
data. A service is an element that represents an action that 
can be executed by the user. Attributes and services are 
related to a class; therefore we propose modelling them 
according to the UML notation used to represent classes. 
Fig 5 shows the attributes of the class Loan used in the 
definition of the dynamic alias formula (explained in the 
next step).  



 72

 
Figure 6. The Metamodel of the Usability Model. 

 Third, the analyst must define formulas needed in Use 
Ways with properties that use conditions or dynamic in-
formation. These formulas are represented textually. For 
example, the formula to describe the dynamic alias used 
in the navigation towards Loans in Fig 2 has been textu-
ally defined in Fig 5.  

  <window id="1" name="Error_window" width="400" 
height="158"> 
 <outputText id="M1" name="Error_message" isVisi-
ble="true"                   isEnabled="true" isBold="true" 
textColor="#000000" value=”The book could not be 
lent. You must select an existing book”/> 
  <imageComponent id="I1"   name="Error_Icon" /> 
<button id="OK1"   name="Ok_Button" "/>  
</window> 

Table 2. Example of UsiXML to represent how 
the error window will be displayed. 

 Finally, the analyst must specify how the interface will be 
displayed to the user. We have called this primitive dis-
play, and it is defined textually using the UsiXML nota-
tion [13] (USer Interface eXtensible Markup Language), 
an XML-based markup language for defining user inter-
faces. Table 2 shows a piece of code of UsiXML to ex-
press how the window of Fig.1 is displayed.  

These elements compose the suite of conceptual primitives 
used in the Usability Model. They are enough to represent 
any of the 22 Use Ways extracted from Juristo’s FUFs. A 
description of the primitives needed to represent each Use 
Way is detailed in [15]. 

We have defined a usability metamodel to specify the 
properties of the Use Ways and how these properties are 
related to system functionality. The aim of the metamodel 
is to identify the elements needed to represent all the prop-
erties. All these elements can be represented with the con-
ceptual primitives described above. The usability meta-



 73

model is drawn in Fig. 6 (and also downloadable from 
[14]), where each Use Way is represented with a class with 
the prefix UW. Attributes and relationships represent prop-
erties of the Use Ways. For example, the class UW_SSF2 
that represents the Use Way Show the information stored in 
the system, represents the properties Static information and 
Dynamic information by means of two attributes. The 
property Message visualization is represented with the rela-
tion to the class Display option, which is a class to repre-
sent how the visual elements will be displayed in the inter-
face. It is important to note that in the metamodel we can 
see how the properties are involved in the functional and 
interaction features. 

For example, in UW_SSF2, the property Dynamic infor-
mation depends on the information stored in the system 
(which is a functional feature), therefore, we need to relate 
the class that represents UW_SSF2 to the class that repre-
sents the system persistency, called Class in the metamodel. 
Moreover, there is a relationship with the class Widget, 
since the navigation alias (linking Static information and 
Dynamic information) is displayed in a button (which is an 
interaction feature).  

Depending on the MDD method where we would like to 
include usability features, some of the primitives that com-
pose the Usability Model can already be supported by the 
existing conceptual model of the MDD method. For exam-
ple, if the MDD method has a model to represent the class 
structure, the primitives Attributes and Services are already 
supported. Next section explains how the Usability Model 
can be included in an existing MDD-based approach with-
out affecting the models. In a first step, we propose extract-
ing the information represented in existing primitives by 
means of model-to-model transformations. In a second 
step, the analyst models unsupported primitives in the Usa-
bility Model. 

THE USABILITY MODEL IN AN INDUSTRIAL MDD 
METHOD: A LAB CASE 
The Usability Model in a Holistic Method 
This section explains how to integrate the Usability Model 
into a holistic MDD method without changing its existing 
conceptual model. As we commented above, by holistic we 
mean that all the relevant systems views (static, dynamic, 

interaction) are properly incorporated into the used model-
ling strategy. Fig 7 represents graphically a summary of the 
process. In the example, there are two existing models in 
the conceptual model of the MDD method: one model to 
represent the system persistency and another model to rep-
resent the interaction. In this example, we have depicted 
only two models, but the number of models that the MDD 
method uses depends exclusively on the chosen MDD 
method. Moreover, the existing MDD method can support 
code generation from the conceptual model by means of a 
model compiler. The level of automation of this process al-
so depends on the MDD method chosen. Some methods are 
automatic (generate full functional systems), and others 
semi-automatic (some manual implementation). 

Our proposal to include the Usability Model in a holistic 
MDD method consists of three steps:  

1. Derivation of conceptual primitives defined in the ex-
isting conceptual model: The notation of the Usability 
Model includes functionality, persistency, navigation 
and interaction elements that can be defined in other 
models of the MDD method (depending on the expres-
siveness of the MDD method chosen). For example, in 
Fig 7, the classes, attributes, and services needed in the 
Usability Model have been previously defined in the 
Class Model. Elements that have been previously de-
fined in the existing conceptual model do not need to 
be defined again in the Usability Model. In this first 
step, we automatically extract primitives defined in 
other models and include them in the Usability Model 
(model-to-model transformations). 

We propose performing these transformations with 
ATL [3], which is a language to specify transfor-
mations using a source metamodel and a target meta-
model. In the example of Fig 7, the source metamodels 
are the metamodel of the Class Model and the meta-
model of the Task Model, while the target metamodel 
is the metamodel of the Usability Model.  

2. Modelling unsupported conceptual primitives: Once 
supported primitives have been automatically derived, 
the analyst must manually specify properties that are 
not supported by existing models.  

 
Figure 7. An overview of the process to integrate the Usability Model in a holistic MDD method. 



 74

3. Code generation: Once the Usability Model has been 
fully defined, we can generate code from this model by 
means of automatic Xpand transformations [28] (mod-
el-to-code). The code generated from the Usability 
Model can be combined with the code generated by the 
model compiler, which generates code from the exist-
ing conceptual model. In the end, the final code in-
cludes all the elements specified in the existing con-
ceptual model and in the Usability Model. 

It is important to mention that ATL and Xpand transfor-
mations must be defined once only for a specific MDD 
method since these transformations based on metamodels 
are valid for developing any system. Therefore, steps 1 and 
3 can be executed automatically by means of transfor-
mation templates. 

 A Lab Case with OO-Method 
In order to demonstrate that our proposal works for a real 
software development process, we have used OO-Method 
[19]. OO-Method has been successfully implemented in in-
dustry with a tool called OLIVANOVA [5], which can 
generate full functional systems automatically from a con-
ceptual model. This is the reason why we have chosen OO-
Method as proof of concept for our proposal. The OO-
Method conceptual model is composed of four complemen-
tary models: 

1. Object Model: Specifies the system structure in terms 
of classes of objects and their relations. It is modelled 
as an extended UML [26] class diagram. 

2. Dynamic Model: Represents the valid sequence of 
events for an object.   

3. Functional Model: Specifies how events change object 
states.  

4. Presentation Model: Represents the interaction be-
tween the system and the user [16]. This model repre-
sents the interface by means of Interaction Units. More-
over, this model represents Elementary Patterns that 
will be displayed inside the interfaces, such as masks, 
filters, or navigations, among others.  

With regard to the system used in the lab case, we use the 
system to manage a library. This example is simple enough 
to facilitate the understanding of our proposal. Fig 8 shows 
the OO-Method Object Model of the system.  

The other three models that compose the conceptual model 
of OO-Method (Dynamic, Functional and Presentation) are 
not displayed for space reasons. Next, we explain how to 
model UW_SSF1 (Inform about the success or the failure 
of an execution), UW_SSF2 (Show the information stored 
in the system) and UW_SSF3 (Show the state of relevant 
actions) for developing the library management system in 
OO-Method. 

The first step of our proposal consists of extracting infor-
mation from the existing primitives. 

  

Create_book
Modify_book
Delete_book

Title
Author
ISBN
Publisher
City

BOOK

Lend_book
Return_book
Delete_book

Collection_date
Return_date

LOAN

Create_member
Modify_member
Delete_member

Name
Surname
Age
Address
City

MEMBER

Penalize_a_person
Stablish_end_date

Start_date
End_date

PENALTY

Create_librarian
Modify_librarian
Delete_librarian

Name
Surname

LIBRARIAN

0..*1

0..*
1

10..*

0..1
1

 

Figure 8. Object Model of the system 
to manage a library. 

From the list of properties of the three Use Ways (Table 1), 
we can extract from the OO-Method’s conceptual model 
the followings: 

 UW_SSF1: Service selection can be derived from the 
Object Model. 

 UW_SSF2: Static information of navigations can be 
derived from the Presentation Model. 

 UW_SSF3: Service selection and Condition to disable 
can be derived from the services of the Object Model 
and their preconditions. A precondition in the Object 
Model is a condition that must be satisfied to execute 
a service.  

In order to derive these properties from existing OO-
Method models, we have used ATL transformations. The 
source metamodels are the four metamodels that define the 
four conceptual models of OO-Method (object, dynamic, 
functional and presentation); and the target metamodel is 
the metamodel of the Usability Model. Next, we show the 
ATL transformation rule that generates a first version of 
the Usability Model to represent UW_SSF1 when the ser-
vice execution finishes with a failure. 

From the two properties, we can only derive Service selec-
tion from the Object Model since OO-Method does not 
have any model to represent Message visualization (the 
Presentation Model does not have primitives to represent 
this property). The ATL rule is simple in order to be as il-
lustrative as possible and avoid technical terms. We have 
defined similar rules to extract supported primitives of 
UW_SSF2 and UW_SSF3. 

rule Service2UWSSF1Failure{ 

 from 

 b: Object!Service 

 to 

 e: Usability!Service (Name <- b.Name) } 

 



 75

Once we have extracted the properties supported by the 
OO-Method’s conceptual model, the second step of our 
proposal is to complete the Usability Model with unsup-
ported conceptual primitives. Next, we detail how to com-
plete each Use Way in the Usability Model. Primitives that 
are automatically extracted from existing models are drawn 
on grey background in the figures. Primitives added manu-
ally are drawn on white background. 

For UW_SSF1, the property Service selection has been ex-
tracted from the Object Model automatically (in the first 
step). If the users want to visualize failure messages for the 
service Lend_book like Fig 1, we must model the property 
Message visualization with the values shown in Table 2. 
Fig 9 shows the Usability Model for representing 
UW_SSF1. The property Service selection is represented 
with the primitive Service and the property Message visual-
ization with the primitive Display. The primitives Use Way 
and Interface are generated from scratch in the ATL trans-
formation. 

 

Figure 9. Model to represent UW_SSF1. 

The second usability feature that must be included in the li-
brary system is to provide dynamic labels in navigation 

buttons to display how many loans and penalties a selected 
member has (UW_SSF2). As we have commented above, 
navigations, their static aliases and interfaces can be ex-
tracted from the OO-Method Presentation Model (in the 
first step). In the second step, the analyst must specify the 
properties Dynamic information and Message visualization 
since these elements are not supported by the OO-Method 
Presentation Model. Fig 10 shows the Usability Model for 
UW_SSF2. The property Static information is represented 
with the primitive Navigation and Interface, Dynamic in-
formation is represented with the primitives Formula and 
Attributes, and Message visualization is represented with 
the primitive Display. The primitive Use Way is generated 
from scratch in the ATL transformation.  

The third usability feature to include is for disabling the 
service Lend_book when the member currently has a penal-
ty (UW_SSF3). The properties Service selection and Con-
dition to disable have been extracted from preconditions of 
the Object Model (in the first step). The aim of the precon-
ditions is to trigger an error if the user tries to execute a 
service when a condition is not satisfied. Therefore, the 
definition of these preconditions can be used to know when 
to disable the service in order to avoid a user mistake. In 
this second step, the analyst must only specify the descrip-
tive text that will be shown when the service is disabled 
(property Descriptive text). Fig 11 shows the model to dis-
able Lend_book when the member currently has a penalty. 
The property Service selection is represented with the prim-
itive Service, Condition to disable with the primitives For-
mula and Attributes and Descriptive text with the primitive 
Display.  

 

Figure 10. Model to represent UW_SSF2. 



 76

 
Figure 11. Model to represent UW_SSF3 to disable 

Lend_book. 

Finally, in the third step, the Usability Model must be 
transformed into code that implements all the characteris-
tics represented in it. This transformation is performed 
with Xpand [28]. The code derived from the Usability 
Model must be included in the code generated with the 
OO-Method model compiler. Below, we show a small 
chunk of Xpand code used in the transformation from 
UW_SSF1 into Java code. 

 

«DEFINE javaClass FOR Class» 

 «FILE Class.name+".java"» public class 
«name» { 

 «FOREACH service1 AS s» 

 DisplayOption show 

 public void «s.name»( 

  «FOREACH attribute1 AS a» 

  «a.type» «a.name»)   }
 «ENDFOREACH» 

 «IF s.uwSsf11 != null» If ("error") 
show.display(«s.uwSsf11.modal», «s.uwSsf11.position», 
«s.uwSsf11.typeOfMessage», 
«s.uwSsf11.messageContent»); 

 «ENDIF» 

 «ENDFOREACH»} 

 «ENDFILE» «ENDDEFINE» 

 

Fig 1, Fig 3 and Fig 4 show screenshots of the system to 
manage a library developed with OLIVANOVA after in-
cluding UW_SSF1, UW_SSF2 and UW_SSF3 respec-
tively. Therefore, we can state that our proposal can be 
successfully applied to an industrial MDD method.  

CONCLUSION 
The contribution of this paper is the definition of a Usa-
bility Model to deal with usability features in a holistic 
MDD method. We have defined conceptual primitives to 
represent usability features defined by Juristo for man-
agement information systems and we have gathered them 
in a Usability Model. It is important to note that there are 
many other non-functional usability features that are out 

of scope of this paper, such as, understandability or at-
tractiveness. Moreover, systems of other areas such as 
multimedia applications or virtual reality systems are out 
of scope too. The main advantages of our proposal with 
regard to existing proposals to deal with usability in 
MDD are: (1) The Usability Model can represent most 
functional usability features for a management infor-
mation system (we can ensure that it supports all the 
FUFs defined by Juristo); (2) The notation used in the 
Usability Model has an unambiguous syntax and seman-
tics, which allows transformations to be performed; (3) 
The Usability Model can be used in any MDD method 
(we have used OO-Method as example). 

We have learned some lessons applying the proposal to 
OO-Method: First, the difficulty of writing ATL and 
Xpand transformations depends exclusively on the MDD 
method chosen. OO-Method generates the whole system, 
but MDD methods with less powerful model compilers 
need more effort to define transformations. However, it is 
important to mention that these transformations are de-
fined only once and can be used indefinitely in every 
software development. Second, the existence of a Usabil-
ity Model does not ensure that generated systems are usa-
ble. The analyst must follow usability guidelines to com-
bine the primitives properly. As future work, we plan to 
define metrics to measure the usability of the system 
based on the conceptual primitives of the Usability Mod-
el. Moreover, we plan to measure the effort required to 
implement this approach in an MDD method. This meas-
ure will be done considering analysts who know previ-
ously FUFs and analyst who do not know them yet.  

ACKNOWLEDGMENTS 
We gratefully acknowledge the support of the ITEA2 Call 
3 UsiXML project (20080026) and financed by the MI-
TYC under the project TSI-020400-2011-20; the 
MICINN under the project PROS-Req (TIN2010-19130-
C02-02) co-financed with ERDF; the Generalitat Valen-
ciana under the project ORCA (PROMETEO/2009/015).  

REFERENCES 
1. Acerbis, R., Bongio, A., Brambilla, M., and Butti, S.: 

WebRatio 5: An Eclipse-Based CASE Tool for Engi-
neering Web Applications. LNCS, vol. 4607. Spring-
er, Berlin (2007), pp. 501-505. 

2. AndroMDA, http://www.andromda.org/. 

3. ATL: http://www.eclipse.org/atl/ 

4. Brajnik, G.: Is the UML appropriate for Interaction 
Design? Università di Udine (2010) 6. 

5. CARE Technologies S.A. http://www.care-t.com 

6. Davis, F.D. User acceptance of information technolo-
gy: system characteristics, user perceptions and behav-
ioral impacts. Int. Journal Man-Machine Studies 38 
(1993), pp. 475-487. 

7. Fernández, A., Abrahao, S., and Insfran, E. A Web 



 77

Usability Evaluation Process for Model-Driven Web 
Development. In Proc. of 23rd Int. Conf. on Advanced 
Information Systems Engineering CAiSE’2011. 
Springer, London (2011), pp. 108-122 

8. Folmer, E. and Bosch, J. Architecting for usability: A 
Survey. Journal of Systems and Software 70, 1 (2004) 
pp. 61-78. 

9. Gull, H., Azam, F., and Iqbal, S.Z. Design of Novel 
Usability Driven Software Process Model. Int. Journal 
of Computer Science and Information Security 8 
(2010) pp. 46-53. 

10. ISO/IEC 9126-1, Software engineering - Product qual-
ity - 1: Quality model (2001). 

11. Juristo, N., Moreno, A.M., and Sánchez, M.I. Analys-
ing the impact of usability on software design. Journal 
of Systems and Software 80 (2007), pp. 1506-1516. 

12. Lawrence, B., Wiegers, K., Ebert, C.: The top risk of 
requirements engineering. IEEE Software 18 (2001), 
pp. 62-63. 

13. Limbourg, Q. and Vanderdonckt, J. UsiXML: A User 
Interface Description Language Supporting Multiple 
Levels of Independence. In Engineering Advanced 
Web Applications, M. Matera, S. Comai, S. (Eds.). 
Rinton Press, Paramus (2004), pp. 325-338. 

14. List of Use Ways and Properties, http://hci.dsic. 
upv.es/UsabilityModel/UseWaysList. html 

15. Molina, F. and Toval, A. Integrating usability re-
quirements that can be evaluated in design time into 
Model Driven Engineering of Web Information Sys-
tems. Advances in Engineering Software 40 (2009), 
pp. 1306-1317. 

16. Molina, P.J., Meliá, S., and Pastor, Ó. JUST-UI: A 
User Interface Specification Model. In Proc. of 4th Int. 
Conf. on Computer-Aided Design of User Interfaces 
CADUI’2002 (Valenciennes, June 2002). Kluwer Ac-
ademics, Dordrecht (2002), pp. 63-74. 

17. Olive, A. Conceptual Schema-Centric Development: 
A Grand Challenge for Information Systems Research. 

In Proc. of the 16th Int. Conf. on Advanced Infor-
mation Systems Engineering. LNCS, vol. 3520, 
Springer-Verlag, Berlin (2005), pp. 1-15. 

18. Panach, J.I., España, S., Moreno, A., and Pastor, Ó. 
Dealing with Usability in Model Transformation 
Technologies. In Proc. of ER’2008. LNCS, vol. 5231. 
Springer, Berlin (2008), pp. 498-511. 

19. Pastor, O. and Molina, J.C. Model-Driven Architec-
ture in Practice. Springer, Berlin (2007). 

20. Selic, B.: The Pragmatics of Model-Driven Develop-
ment. IEEE software 20 (2003) 19-25 

21. Sendall, S., Kozaczynski, W.: Model Transformation: 
The Heart and Soul of Model-Driven Software Devel-
opment. IEEE Software 20 (2003) 42-45. 

22. Sottet, J.-S., Calvary, G., Coutaz, J., and Favre, J.-M. 
A Model-Driven Engineering Approach for the Usa-
bility of Plastic User Interfaces. In Proc. of Engineer-
ing Interactive Systems EIS’2007 (2007), pp. 22-24. 

23. Sousa, K., Mendonça, H., and Vanderdonckt, J. To-
wards Method Engineering of Model-Driven User In-
terface Development. In Proc. of TAMODIA’2007. 
LNCS, vol. 4849. Springer, Berlin (2007), pp. 112-
125. 

24. Taleb, M., Seffah, A., and Abran, A. Investigating 
Model-Driven Architecture for Web-based Interactive 
Systems. Int. Journal on Human-Computer Interac-
tion 2 (2010). 

25. Tao, Y. An Adaptive Approach to Obtaining Usability 
Information for Early Usability Evaluation. IMECS 
(2007), pp. 1066-1070. 

26. UML: http://www.uml.org/ 

27. Wang, X., Shi, Y.: UMDD: User Model Driven Soft-
ware Development. In Proc. of IEEE/IFIP Int. Con-
ference on Embedded and Ubiquitous Computing, 
(Shanghai, 2008). 

28. XPAND, http://www.eclipse.org/modeling/ m2t/?pro 
ject=xpand



 78

Proposal of a Usability-Driven Design Process 
for Model-Based User Interfaces 
Eric Montecalvo, Alain Vagner, Guillaume Gronier 

Public Research Centre Henri Tudor 
29, av. J.F. Kennedy L-1855 Luxembourg-Kirchberg 

eric.montecalvo@tudor.lu, alain.vagner@tudor.lu, guillaume.gronier@tudor.lu 

ABSTRACT 
Nowadays, user interface design is becoming more and 
more complex, particularly with the proliferation of new 
mobile devices, available modalities, context-awareness 
capabilities and so on. However, in this context, the quali-
ty of User Interfaces (UIs) must be preserved. To cope 
with this situation and to meet the needs of UI designers 
to reason at a higher level of abstraction during the design 
step, different solutions have been proposed, such as the 
use of models describing the aspects to consider when de-
signing UIs (e.g. user tasks, interaction model, context 
model etc.) and User Interface Description Languages 
(UIDL). UsiXML (USer Interface eXtensible Markup 
Language) is one of them and defines a set of relevant 
models to support the design of UIs at different levels of 
abstraction. Moreover, it is compliant with a Model-
Driven Engineering (MDE) approach. The usability of the 
UI is an important part of the quality of interactive sys-
tems, and we have previously proposed a generic method, 
named GENIUS and inspired by the user-centred design 
approach, to try to improve the quality of UI within a 
model-driven interface approach. This paper is focused 
on the first two steps of the method, which are the model-
ling of interactive systems and transformation between 
models. During these steps, we propose a means to take 
into account usability criteria in a pragmatic way. 

Author Keywords 
Ergonomics, graphs, Model-Driven Engineering, models, 
ontologies, transformations, usability, user interfaces.  

General Terms 
Design, Experimentation, Human Factors, Verification. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Proto-
typing; reusable software. H5.2 [Information interfaces 
and presentation]: User Interfaces – Prototyping. 

INTRODUCTION 
The purpose of Model-Based User Interfaces (MBUI) is 
to offer the designer several high-level models to design 
and analyse an interactive system rather than starting to 
implement it upfront. Thus, the focus is given to the im-
portant aspects of the interactive system such as task 
analysis, context of use, graphical interactions, etc. 

The Cameleon Reference Framework [2] (Figure 1) pro-

vides a consensus on the types of UI models used for the 
different levels of abstractions and to support the changes 
of the context of use. It defines the tasks and concepts 
model, the Abstract User Interface model (AUI), the Con-
crete User Interface model (CUI) and the Final User In-
terface (FUI). UI designers can use these models as a 
means to design the UI following a MDE approach. The 
UsiXML models, implementing the Cameleon frame-
work, are used in the modelling steps of the GENIUS 
method. This paper is dedicated to proposing a way, 
based on ontologies, for the integration of usability inputs 
throughout the design steps. The GENIUS method is de-
veloped within the Luxembourgish competitive research 
project GENIUS (model driven Generation of ErgoNom-
Ic User interfaceS). 

 
Figure 1. Cameleon Framework (simplified) and 

Transformations. 

The first section of this paper provides a brief overview 
of the GENIUS method [7] and the ontological approach. 
The next section introduces how ontologies and related 
tools could be used as a way to integrate usability inputs. 
The last section deals with some examples about how to 
use this approach to help UI designers in the modelling 
step of the interactive system. 

THE GENIUS METHOD AND THE MODEL-BASED US-
ER INTERFACES DESIGN PROCESS USING ONTOL-
OGIES 
Previous works [4][18] investigate the use of MDE for 
embedding both the description and control of usability 
criteria in models. They also offer a general definition of 
transformations and mapping between models, which are 
involved in the modelling steps, and identify them to be 
of key importance for reasoning on usability. In order to 
try to reach a better usability within a MDE approach, the 
GENIUS method (Figure 2) attempts to identify where 
and how to take into account usability inputs and the usa-
bility validation process. In the GENIUS method, one of 
the main development paths considered is forward engi-
neering, going from the high-level abstraction to the low-
er-level abstraction of the interactive system. 



 79

The GENIUS Method 
The method proposed is based on an iterative process 
made from four successive major steps. This iterative 
process is inspired by the User-Centred Design (UCD) 
method [9], since the involvement of the users is a key 
concept. The first step is related to the modelling (e.g. us-
er tasks, abstract UIs, concrete UIs etc.). The second step 
consists of generating UIs based on the modelling, taking 
into account usability inputs. The third step allows multi-
ple users to use and test the produced UIs and automate 
the feedback channel with semantic logs of the use of 
UIs. Finally, the fourth step consists in analysing the 
feedbacks to enhance or adapt the designed models in the 
first step. 

 
Figure 2. The GENIUS method. 

In this paper, the focus is given on the two first steps, 
wherein the different stages defined in the MDE approach 
are performed and where the usability models are used in 
order to help designers having a predictive viewpoint on 
usability during the modelling of an interactive system.  

What are ontologies? 
An ontology mainly consists of the specification of a con-
ceptualisation [8]. Ontologies may be used for modelling 
and metamodelling. Several languages exist to describe 
ontologies, like DAML, OIL, KIF and OWL. In the rest 
of this paper, we focus on semantic web technologies and 
thus use Web Ontology Language (OWL), as it is the 
standard to define ontologies on the Web. As OWL pro-
vides us with important flexibility and expressiveness de-
grees, it is possible to express languages such as Unified 
Modelling Language (UML) in OWL [15]. Since meta-
modelling, models transformations and productive models 
are native features of the semantic web technologies con-
sidered, it allows us to start the deployment of our MDE 
approach. 

Benefits of ontologies  
Ontologies allow the creation of links between different 
and distributed models at runtime. These links are generic 

and are considered as additional statements. Anyone has 
the possibility to extend, annotate and redefine existing 
models on the Web. In this frame, the semantic Web 
promotes the “open world assumption” for dealing with 
knowledge incompleteness: The truth value of a statement 
is independent of the fact that it is known. So, it is a very 
different situation than in data silos, in which the 
knowledge coherence is maintained at a local level and is 
based on the “closed world assumption”: Any statement 
that is not known to be true is false. “Open world assump-
tion” and links between models are real enablers for a dis-
tributed inference on several models expressed with se-
mantic web technologies. 

For example, a designer can choose to extend standard 
UsiXML models described using ontologies by using pri-
vate models that express his preferences and experience. 
These models add knowledge that will be taken into ac-
count by inference engines and model transformations. 
The links between models could also be established by 
the system as a means to trace the origin of concepts after 
transformations. 

Moreover, in the semantic web ecosystem, the tooling is 
hectic and stable, such as ontology design tools (e.g. Pro-
tégé [22]), knowledge bases (e.g., Virtuoso [23]), infer-
ence engines (e.g., Hermit [24]), querying system (e.g. 
Protocol and RDF Query Language – Description Logic 
[SPARQL-DL] [25]), etc. These different components are 
used as a technological framework supporting the needs 
of our project.  

Transformations within ontologies 
Schaefer provides us with a large review of transfor-
mation tools for MBUI [16], such as graph transfor-
mations, ATL, TXL, 4DML, UIML Peers, XSLT, GAC 
and RDL/TT. The comparison criteria between these tools 
takes into account the relevant features within the MBUI 
design context. In these comparisons, graph transfor-
mations appear to be associated to UsiXML since it is 
specifically designed for the multi-path development of 
UIs and it is one of the first approaches which have been 
proven to be MDA-compliant [19]. Moreover, in order to 
classify the different model transformations, an extensive 
taxonomy has been proposed by Czarnecki and Helsen 
[3]. The concepts of graph transformation support differ-
ent kinds of transformations such as abstraction, reifica-
tion and translation between models (and traceability). 
These transformations are particularly interesting in re-
gard to the defined method and goals of the GENIUS pro-
ject.  

Transformation rules can be expressed as graph patterns. 
By taking advantage of the potential of the ontology rea-
soners and querying systems, we try to detect potential 
usability problems in a predictive way and to associate 
suggestions directly in the modelling and transformations 
steps. A transformation is performed by a set of trans-
formation functions using mappings properties to provide 



 80

the designer with a means for selecting the most appro-
priate transformation between models. We make the as-
sumption that it seems to be an easy way for both describ-
ing and controlling usability criteria during the design 
time. 

Ontologies and Model-Based User Interfaces 
Following a declarative approach, the transformations of 
models can be expressed as graph transformations, be-
cause models can be designed with an underlying graph 
structure. In this way, the expressions of transformations 
and mappings can be used for graph rewriting (addition, 
modification or deletion of elements of graphs, and so the 
elements of models.) 

Generally in the conventional model-driven approach to 
UI generation, transformation rules are integrated within 
tools and consequently the links between models can be 
quite difficult to control. Ideally, a designer should be 
able to alter or redefine these rules and choose between 
different possible propositions of transformations. To ad-
dress these issues, one of the current directions for the 
GENIUS project is to use ontology-based tools in order to 
express models, rules and inferences.  

USABILITY KNOWLEDGE INTEGRATION AND USES 
Human-Computer Interactions are part of our everyday 
life, from computers to mobile phones, and in numerous 
artefacts. There is a proliferation of devices, acting in 
more and more different contexts and providing specific 
interactions (e.g., touchscreen). Also, with the cloud 
computing trend, more and more services are available 
from different connected mobile devices. This propaga-
tion of electronic devices tends to complicate interaction 
paradigms of these interactive systems that lead global 
usability issues.  

Usability resources 
Since the beginning of work in psychology about usabil-
ity, numerous methods were developed in order to correct 
usability problems and to design usable applications. We 
are focusing here on usability heuristics, which consist of 
a set of guidelines or rules for the a priori evaluation of 
user interfaces. In the literature, we can find several usa-
bility heuristics specifications, the more well-known be-
ing Nielsen’s [20] and Bastien & Scapin [21] heuristics. 
More recent works propose to formalise these usability 
heuristics into a unified model [17]. A recent study on the 
calculable metrics of a Concur Task Tree (CTT) model is 
also presented in [14]. 

Usability metamodel definition  
We saw that there are lots of references about quality 
models, usability criteria or guidelines in the literature. 
Most of them propose an organisation of usability 
knowledge according to a set of criteria and sometimes 
associated metrics. In our experimentation, we have de-
fined a simple metamodel (Figure 3) to keep a compatibil-
ity with these different sources. The purpose was not to 

define a comprehensive metamodel, but to allow the in-
stantiation of main elements coming from these sources 
and considered as essential in our approach. So, to begin 
with, we have integrated the key elements in common in 
our metamodel. 

 
Figure 3. A Basic Usability Metamodel (UML nota-

tion). 

To simplify the navigation of the UI designer within the 
viewpoint on usability during the modelling step, only 
two hierarchical levels of usability concept were kept: 
The factors, which are the main generic characteristics of 
the usability concept (e.g. effectiveness, efficiency, 
learnability etc.); and subfactors, which are the measura-
ble usability criteria and can be linked to one or more fac-
tors. 

An indicator is a generic element giving information on a 
subfactor. The information is about the influence of the 
indicator on each subfactor and can be either a positive or 
negative influence as proposed by Jameson [10][11]. 

An indicator can be a metric (composed of values, ranges, 
thresholds etc.) calculated from the current state of mod-
elling, or a generic pattern of structured elements, which 
should be matched also during the modelling step. The 
patterns may be used to propose a transformation of the 
matched elements, directly as a graph rewriting in the de-
signed models of the interactive system. 

We also consider the notion of phase to specify the step 
wherein the indicator can be obtained (e.g. Platform-
Independent Model (PIM) / Platform-specific model 
(PSM) [5], at the runtime on the use by end users, etc.). 
This notion is mainly used to classify the indicators with-
in specific steps of the GENIUS method and it is used by 
the system implemented to determine if an indicator has 
to be calculated for a given step. 

As mentioned before, our experimentation is based on on-
tologies to represent all concepts of models, so we have 
translated this metamodel from the UML notation to an 
OWL representation (Figure 4) in order to use the capa-
bilities of querying systems, reasoners and other associat-
ed tools.  

At this time, to exploit a usability model, we have chosen 
to use an instantiation of Quality in Use Integrated Meas-
urement (QUIM) model defined in [17], which consists of 
a consolidated model of usability factors and the associat-



 81

ed metrics. It supplies us with a wide panel of usability 
factors and subfactors.  

Our main objective is to improve usability iteratively. So 
as to be able to reach this goal, the UI designer must 
know, at each step of the design process, the state of the 
usability of her application. Then she can detect prob-
lems, study different options according to usability crite-
ria and make design choices, by following the QOC 
(questions, options and criteria) approach [27]. For us, 
these choices are expressed during the transformations 
between UI models.  

The proposed metamodel can support the usability as-
sessment of the different models by analysing them ac-
cording to patterns and metrics and consolidating the re-
sults at the subfactor level. The usability impact of each 
design option can also be anticipated by studying the pos-
itive and negative influences of each of these options to 
the usability factors and subfactors. 

In the next section we present several aspects of this pro-
cess, most particularly the usability overview of the UI 
and the implementation of usability metrics, patterns and 
transformations. 

 
Figure 4. A basic Usability Metamodel (OWL repre-

sentation). 

EXAMPLES OF USE WITHIN A MODEL-DRIVEN ENGI-
NEERING APPROACH 
Currently, a proof of concept (PoC) supporting our ap-
proach to consider the usability aspects is under develop-
ment. It can be considered as a design assistance tool and 
model transformation engine. We have also designed this 
PoC by keeping in mind that it could be considered as a 
plug-in for other tools relative to MBUI. 

Viewpoint on usability in the modelling steps 
Here is an example of visualisation implemented for the 

usability viewpoint (Figure 5). It can be used during the 
modelling steps of an interactive system, giving usability 
feedbacks for the UI designer. 

On the left (Figure 5a), the panel is comprised of a sun-
burst visualisation dedicated to the representation of the 
instantiated usability models. The designer browses the 
usability factors and subfactors coming from the usability 
models, in this case QUIM, through the interactive sun-
burst. Advanced visualisation has already been used to 
navigate more easily within a task tree through an interac-
tive tree map view associated with a magnetic zoom. An 
advantage of the sunburst is to display a consequent num-
ber of hierarchical information in a local region of the 
screen. 

Associated with a colour code, it allows a quick overview 
of the usability state according the measured metrics and 
matched patterns. The colour code (from red to green or 
from dark to light for a monochrome version of this pa-
per) used for the sunburst items is relative to the ratio of 
positive influence indicators over the negative influence 
indicators associated with each subfactor. Thus for a giv-
en criterion, the number of indicators having a positive 
influence is the sum of reached metrics, the number of 
positive patterns matched, and the number of suggested 
transformations which are accepted by the designer. The 
number of indicators having a negative influence is the 
sum of unreached metrics, the number of negative pat-
terns matched, and the number of suggested transfor-
mations which are not accepted. Of course this represen-
tation and the calculation of the ratio may be personalised 
(e.g. coefficient relative to given priorities, etc.) and can-
not be considered as a final validation of the real usability 
level of the designed interactive system. This justifies the 
usefulness of the steps 3 and 4 of the GENIUS method. 

 
Figure 5a. Usability viewpoint visualisation (left side). 



 82

 
Figure 5b. Usability viewpoint visualisation 

(right side). 

So, the sunburst is built with data coming from the triple 
store [23], a knowledge database. Next, the statements are 
translated to a JSON representation, in the expected for-
mat for the advanced JavaScript visualisation toolkit used, 
TheJit [26]. 

The right panel (Figure 5b) shows information relative to 
the selected subfactor. It contains the relevant information 
that can be useful for the designer in making choices dur-
ing the modelling and activate the suggested propositions 
of transformation. This panel contains the list of current 
designed models involved in the selected subfactor (the 
usability criterion), the definition of the factors and sub-
factors, the list of calculated metrics and matched pat-
terns, their description and the links to each part of the 
designed interactive system. 

Basically, the underlying idea is to provide the designer 
(who may have different profiles like developer, UX de-
signer etc.) with an easy way to visualise, find and under-
stand how the usability viewpoint is measured. Thus, dur-
ing the modelling step, all the changes of models provide 
dynamic feedback on the positive and negative influences 
of indicators among usability factors. Moreover, this pan-
el provides him with recommendations to correct the part 
of models linked to matched pattern thanks to the sug-
gested associated transformations. 

Measurable metrics 
First of all, thanks to semantic web technologies, the an-
notations allow us to bind any kind of information for all 
elements of models. These annotations can be useful in 
defining usability indicators. For instance, each user task 
could be decorated with additional information in order to 
supply the end users with relevant indications to under-
stand and complete the tasks (e.g. help, input mask, un-
derstandable error messages etc.). The coverage rate of 
these annotations within models can be measured by on-

tology-based tools and be used as a usability indicator.  

The traceability information about the links between 
transformed elements can also be stored by using annota-
tions. This adds semantic to the logs of user interactions, 
which means that rather than having a basic log of events, 
it is possible to analyse them with the initial associated 
elements of models, from concrete models (e.g. CUI, 
FUI) to abstract models (e.g. task model) and get the ef-
fectiveness and efficiency measures during user testing. 

Matched patterns 
As previously mentioned, the patterns are used to detect 
specific structured elements which have either a positive 
or negative influence on the usability criteria. 

Here is an example of a pattern improving the system 
feedback of the designed UI, by suggesting the addition 
of a time indicator in AUI/CUI for specific computer 
tasks. In this case the computer tasks are loading and sav-
ing tasks. One of the usability criterion positively influ-
enced is the “Feedback” criterion, whose description 
coming from QUIM is “Responsiveness of the software 
product to user inputs or events in a meaningful way.”  

Thus, the suggestion can be expressed as: “Add visual in-
dicator components in AUI and so CUI models, for each 
loading or saving computer tasks.” To refine this sugges-
tion, the proposed transformations can depend on the 
waiting time, which can be estimated or come from logs: 
a) from 0 second to 0.3 seconds, no time indicator; b) 
from 0.3 seconds to 2 seconds, add a spinner loader; c) 
Above 2 seconds, add a progress bar. Here is an example 
of a priori defined influences for each variant. 

Variants Positive influence Negative influence 

a Likeability In this case no feed-
back is needed 

b Feedback Readability 

c Feedback 
Accuracy 

Attractiveness 

Table 4. Variants and usability influences. 

An example of an associated SPARQL query retrieving 
all loading and saving tasks (task_x) with duration greater 
than a given duration (duration_x) is: 
PREFIX pi:<http://genius.tudor.lu/projectinstance.owl#> 
PREFIX usi:<http://genius.tudor.lu/usixml.owl#> 

SELECT 

    ?task_x  

FROM 

    <http://genius.tudor.lu/projectinstance_task.owl> 

WHERE { 

    ?task_x rdf:type usi:SaveTask . 

    ?task_x rdf:type usi:LoadingTask 

    ?task_x usi:TaskDuration ?duration 

    filter ( ?duration > duration_x)     

} 



 83

Thanks to this list, the designer is able to choose among 
the retrieved tasks and chooses to accept or reject the 
suggestions for adding an abstract individual component 
dedicated to the time indicator. If the suggestion is ac-
cepted, here is an example of a request performed into the 
project instance to add corresponding statements: 
 

PREFIX pi:<http://genius.tudor.lu/projectinstance.owl#> 

PREFIX usi:<http://genius.tudor.lu/usixml.owl#> 

INSERT IN GRAPH <http://genius.tudor.lu/projectinstance.owl> { 

   pi#AIC_x rdf:type usi:AbstractIndividualComponentOutput 

   pi#AIC_x rdf:label "Time Indicator for task_x" 

   pi#AIC_x rdf:Comment "Added from suggestion engine" 

   pi#TR_x  rdf:type usi:ReificationTaskToAUI 

   pi#TR_x usi:TransformationSource pi:task_x 

   pi#TR_x usi:TransformationTarget pi:AIC_x 

} 

 
The statements about the link between the computer task 
and the added abstract individual components are inserted 
into the graph to preserve the traceability and semantic 
logs.  

Furthermore, other examples directly linked to the UIs 
coming from our case study are described in Table 2. The 
list of variants and the influences are established a priori 
and their relevance needs to be tested and validated by 
experts in usability. 
 
 
 

Variant 1 Variant 2 

Context: “The user task is a validation task” 
Description of 
transformation 

Create a “validation 
button” 

Create a “validation 
button” and a “confir-
mation message box” 

Involved Models Task To AUI/CUI Task To AUI/CUI 

Positive influence Minimal action Fault tolerance 

Negative influence Operability Minimal action 

Context: “The user task is a selection of items” 

Description of 
transformation 

Create a select box if 
the number of items is 
less than 15 

Create a filterable list if 
the number of items is 
greater than 15 

Involved Models Domain/Task To 
AUI/CUI 

Domain/Task To 
AUI/CUI 

Positive influence Minimal action 
Simplicity 

Navigability 

Negative influence - Minimal action 

Table 2. Other examples of transformations. 

 
RELATED WORK 
A recent proposition of a comprehensive and generic 
quality metamodel, named QUIMERA [6], has been done 
in the context of MBUI. This model aims to support the 
modelling of quality attributes in order to use it for a de-
sign rationale within an MDE approach. This metamodel 

can be used for the implementation of usability models, 
such as our usability metamodel.  

With regards to design rationale and the QOC approach, 
the TEAM notation, as presented in [28], provides an ex-
tension to the traditional QOC semi-formal notation by 
taking into account usability concerns and establishing 
links between a task tree and the options. Our usability 
metamodel presented here is rather similar but has differ-
ent objectives. Where TEAM aims at justifying the design 
choices, we try to operationalise the decision-making pro-
cess. Thus, we consider not only links between options 
and tasks but also between options and components per-
taining to the AUI and CUI models. 

In the MBUI and MDE context, the graph transformations 
have been explored in [12] to express the transformations 
between models. However, these transformations are not 
particularly devoted to usability.  

The ontologies are often used as a way for qualifying UI 
items; for instance, they are used in [1] to describe the UI 
items (the semantic of containers, widgets, layout, etc.), 
and the associated annotations are exploited to improve 
the reorganisation of the UI items for context-aware inter-
active systems.  

In the first and the second step of the GENIUS method, 
an approach based on ontologies and graph transfor-
mations, can take advantage from these works, to enrich 
the usability metamodel, integrate usability inputs within 
basic transformations and consider another approach 
based on ontologies to enhance MBUIs. 

CONCLUSION  
In this paper, we have focused on the description of the 
first two steps of the GENIUS method, which defines a 
generic model-driven iterative process to design user in-
terfaces. In this process, we propose a way, based on on-
tologies, to implement the transformations between mod-
els since we believe that usability should be specifically 
taken into account during this modelling step.  

To achieve this purpose, we propose to express our mod-
els as ontologies, use inference capabilities and querying 
systems of related tools, and express transformations be-
tween models as graph transformations. The ergonomic 
heuristics and associated indicators are then implemented 
from the defined usability metamodel, which assists the 
designer during the modelling of the interactive system. 
The next step is to define a set of generic and relevant in-
dicators in our scope, associate them positively or nega-
tively to the impacted criteria and validate them with de-
signers through our case study. This framework is imple-
mented, but we still need to evaluate its relevance and, 
where appropriate, to open to other dimensions to support 
usability inputs.  

The GENIUS method will be carried for one case study in 
the AEC industry. In this context, each construction pro-
ject requires well-adapted software-based services and 



 84

user interfaces to improve the efficiency of business col-
laborations as well as the quality of end-user experience 
for the interfaces and devices that may be used. A com-
parative study of interface design will be conducted. It 
will aim to systematically compare the automatic design 
method described above to a more traditional and iterative 
method of guaranteeing “user-centred design” [9]. The 
specific experimental protocol that we will set up is based 
on a real interface dedicated to the construction domain. 
Thus, we propose to 1) analyse the HCI used, 2) analyse 
the generated HCI using the GENIUS methodology and 
3) compare the results. 

This comparison will be based on quantitative and quali-
tative approaches. With the existing HCI, the statistical 
feedback will be obtained through inserting some trace 
analysis components into the existing HCI. Then inter-
views with actual users will provide qualitative data on 
the ergonomic quality of the HCI and possible improve-
ments. With the generated HCI, trace analysis compo-
nents will automatically provide quantitative feedback on 
the user interaction, which will be directly compared to 
the results obtained with the existing HCI results. The use 
of the generated interfaces in an experimental context in 
the usability laboratory of the EMACS department (Uni-
versité du Luxembourg) will then provide qualitative 
feedback on the generated HCI. 

ACKNOWLEDGMENTS 
The research in this paper was carried out within the pro-
ject GENIUS, funded by the “Fonds National de la Re-
cherche” in Luxembourg.  

REFERENCES 
1. Brel, C., Dery-Pinna, A-M., Faron-Zucker, C., Ren-

evier-Gonin, P., and Riveill, M. An Ontology-based 
Interactive System to Compose Applications. In 
Proc. of WEBIST’2011. 

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Ref-
erence Framework for Multi-Target User Interfaces. 
Interacting with Computers 15, 3 (2003), pp. 289–
308.  

3. Czarnecki, K. and Helsen, S. Classification of model 
transformation approaches. In Proc. of the 2nd 
OOPSLA Workshop on Generative Techniques in 
the Context of the Model Driven Architecture 
(2003), p. 15. 

4. Favre, J-M. and Calvary, G. Mapping Model: A 
First Step to Ensure Usability for sustaining User In-
terface Plasticity. In Proceedings of the MoDELS, 
Workshop on Model Driven Development of Ad-
vanced User Interfaces (2006). 

5. Fernandez, A., Insfran, E., and Abrahão, S. Integrat-
ing a Usability Model into Model-Driven Web De-
velopment Processes. In Proc. of WISE’2009. 

6. Garcia Frey, A., Céret, E., Dupuy-Chessa, S., and 
Calvary, G. QUIMERA: A Quality Metamodel to 
Improve Design Rationale. In Proc. of 3rd ACM 
Symposium on Engineering Interactive Systems 
EICS 2011 (Pisa, June 2011). ACM Press, New 
York (2011). 

7. Gronier, G., Kubicki, S., Vagner, A., Schwartz, L., 
Montecalvo, E., Altenburger, T., and Halin G. Mod-
el-driven generation of ergonomic user interfaces in 
visualization services. In Proc. of 1st International 
Workshop on User Interface eXtensible Markup 
Language UsiXML’2010 (Berlin, June 20, 2010). 
Thalès, Paris (2010). 

8. Gruber, Thomas R. A translation approach to porta-
ble ontology specifications. Knowledge Acquisition 
5, 2 (1993), pp. 199–220. 

9. ISO 13407. Human-centred design processes for in-
teractive systems. International Standards for Busi-
ness, Government and Society. 

10. Jameson, A. User Modeling Meets Usability Goals. 
In Proc. of UM’2005, L. Ardissono, P. Brna, and A. 
Mitrovic (Eds.). LNAI, vol. 3538. Springer-Verlag, 
Berlin (2005), pp. 1–3. 

11. Jameson, A. Adaptive Interfaces and Agents. In 
Human-Computer Interface Handbook. J.A. Jacko 
and A. Sears (Eds.). (2003), pp. 305–330. 

12. Limbourg, Q. and Vanderdonckt, J. UsiXML: A Us-
er Interface Description Language Supporting Mul-
tiple Levels of Independence. In Engineering Ad-
vanced Web Applications, M. Matera, S. Comai, S. 
(Eds.). Rinton Press, Paramus (2004), pp. 325-338. 

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., 
Bouillon, L., and Víctor López Jaquero. UsiXML: a 
Language Supporting Multi-Path Development of 
User Interfaces. In Proc. of 9th IFIP Working Con-
ference on Engineering for Human-Computer Inter-
action jointly with 11th Int. Workshop on Design, 
Specification, and Verification of Interactive Sys-
tems EHCI-DSVIS'2004 (Hamburg, July 11-13, 
2004). Lecture Notes in Computer Science, vol. 
3425. Springer, Berlin (2004), pp. 200-220.  

14. Oliveira, K. Une étude initiale sur les métriques d'u-
tilisabilité pour les modèles de tâches exprimés avec 
CTT. In Proc. of INFORSID’2011. 

15. Ontology Definition Metamodel (ODM) Version 
1.0, Object Management Group, 2009. 

16. Schaefer, R. A Survey on Transformation Tools for 
Model Based User Interface Development. Trans-
formation Journal (2007), pp. 1178-11. 

17. Seffah, A., Donyaee, M., Kline, R. B., and Padda, 
H. K. Usability measurement and metrics: A consol-
idated model. Software Quality Journal 14, 2 
(2006), pp. 159–178. 



 85

18. Sottet, J-S., Calvary, G., Coutaz, J., and Favre, J-N. 
A Model-Driven Engineering Approach for the Us-
ability of Plastic User Interfaces. In Proc. Of Engi-
neering Interactive Systems EIS’2007, pp. 140-157. 

19. Vanderdonckt, J. A MDA-Compliant Environment 
for Developing User Interfaces of Information Sys-
tems. In Proc. of 17th Conf. on Advanced Infor-
mation Systems Engineering CAiSE'05 (Porto, 13-17 
June, 2005). O. Pastor & J. Falcão e Cunha (Eds.). 
Lecture Notes in Computer Science, vol. 3520. 
Springer-Verlag, Berlin (2005), pp. 16-31. 

20. Nielsen, J. Heuristic evaluation. In Usability ins-
pection methods, (1994) pp. 25-62. 

21. Bastien, J.M.C. and Scapin, D.L. Critères ergonomi-
ques pour l’évaluation des interfaces utilisateurs, 
Rapport technique INRIA, vol. 156, 1993. 

22. Protégé, http://protege.stanford.edu/ 

23. Virtuoso, http://virtuoso.openlinksw.com  

24. Hermit, http://hermit-reasoner.com/ 

25. Sirin, E., Parsia, B., Sparql-dl: Sparql query for owl-
dl.  

26. 3rd OWL Experiences and Directions Workshop 
(OWLED-2007). 

27. TheJIT, Javascript Infovis Toolkit, http://thejit.org 

28. MacLean, A., Young, R.M., Bellotti, V.M.E., and 
Moran, T.P. Questions, options, and criteria: ele-
ments of design space analysis. 1996. 

29. Lacaze, X and Palanque, Ph. DREAM & TEAM: A 
Tool and a Notation Supporting Exploration of Op-
tions and Traceability of Choices for Safety Critical 
Interactive Systems. In Proc. of INTERACT 2007. 

 

 



 86

Towards a new Generation of MBUI Engineering Methods: 
Supporting Polymorphic Instantiation in Synchronous 

Collaborative and Ubiquitous Environments 
 

George Vellis1, Dimitrios Kotsalis1, Demosthenes Akoumianakis1, Jean Vanderdonckt2

 

1Department of Applied Information Technology & Multimedia, 
Technological Education Institution of Crete 
Stavromenos 71004, Heraklion, Crete, Hellas  

{g.vellis, kotsalis, da}@epp.teicrete.gr 
2Louvain School of Management, Université catholique de Louvain 

Place des Doyens, 1 – B-1348, Louvain-la-Neueve, Belgium 
jean.vanderdonckt@uclouvain.be 

ABSTRACT 
This paper extends model based UI engineering so as to 
address polymorphic UI development in the light of distrib-
uted synchronous collaborative ubiquitous environments. 
Our current effort concentrates on extensions to a popular 
model-based user interface description language, namely: 
“UsiXML” and proposes a suitable development methodol-
ogy and a dedicated runtime infrastructure. 

Author Keywords 
Polymorphic instantiation, Multi-user interfaces, Social 
awareness, UIDL, UsiXML, Model-based UI Engineering. 

General Terms 
Design, Experimentation, Human Factors, Verification. 

ACM Classification Keywords 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H5.2 [Information interfaces and 
presentation]: User Interfaces – Prototyping. 

THE PROBLEM 
The remarkable progress which we have witnessed over the 
last years, in fields relevant to information technology, has 
resulted in a wide range of novel computational appliances, 
having deeply penetrated a broad range of our daily prac-
tices. Increasingly, users come across of a sharply growing 
number of interactive applications enabling them to engage 
in various sorts of collaborative and social endeavors in a 
wide variety of contexts. In such cases one important aspect 
to consider relates to the UI design to support group work 
appropriately. It turns out that such development is quite 
challenging since prominent engineering methods and sup-
porting tools fail to account for the requirements imposed 
by diverging user- and usage-context parameters (i.e.: plat-
form, environment, user-stereotype). ‘Polymorphic’ instan-
tiation, conceived of as a capability to manage concurrently 
alternative instances of the same interaction element at 
runtime, constitutes key provision in the direction of coping 

with this diversity (through extensive and intuitive UI adap-
tations). Specifically, it separates the role of the object (i.e., 
why an object is used) from its physical / presentation de-
tails in a designated context. It also hides technical features 
of an object’s implementation from its core pattern that is 
independent of physical realization, thus common to poten-
tially more than one implementation. In this account, poly-
morphic instantiation functions as ‘idiom’ in user interface 
engineering. Nevertheless, prevalent UI toolkits (ja-
va/swing, MAUI, QT, etc.) and languages do not make suf-
ficient inroads towards supporting such polymorphic UI ar-
rangements. Instead, they remain committed to supporting 
provisions for cross-platform generalizations (i.e.: address-
ing portability) rather than ‘true’ abstractions. Supporting a 
stronger notion of abstraction (with corresponding toolkit-
level provisions) would enable, among other things, richer 
specifications of interactive behaviors, enumeration of al-
ternative widget incarnation (i.e.: via encapsulation) and 
finer-grained and dynamic assembly of polymorphic UIs.  

A particular scenario where polymorphic instantiation re-
veals its power as an engineering pattern is in the case of 
synchronous collaborative sessions supporting real-time 
distributed team work. Arguably, the state of the art offers a 
a rich insight into the desired groupware functionality and 
the features to facilitate such functionality (i.e., session 
management, object sharing, floor control, etc.). However, 
maintaining synchronized versions of potentially incon-
sistent multi-user UI instances, due to context-related pa-
rameters i.e., platforms or roles, continuous to pose sub-
stantial challenges. Toolkit-level sharing as exploited by 
the state of the art in groupware toolkits (i.e.: MAUI [1]) 
fails to account for the diversity of target devices involved 
in emerging ubiquitous environments, since it requires that 
the same groupware toolkit is available in every target-
device. Nevertheless, this turns out to be an impractical as-
sumption since dedicated runtime environments required 
for operating such toolkits might even not be supported 
(i.e.: JRE). Furthermore, even if alternative groupware 



 87

toolkits, accommodating constraints imposed by target-
platforms, were used for assembling each target multiuser 
interface and that interoperability could be granted in some 
way, another major obstacle to overcome would be that of 
supporting awareness across engaged participants. Since 
different groupware toolkits make use of alternative mech-
anisms to facilitate awareness (i.e.: telepointers, radar-
views, etc.), it would be rather impossible to achieve suc-
cessful collaboration among users since awareness support 
would be foredoomed to failure. Finally, it is worth point-
ing out that groupware toolkits inherit the unimorphic style 
of programming imposed by their single-user counterparts; 
therefore they dismiss support for advanced and intuitive 
adaptation (i.e.: polymorphic instantiation in synchronous 
sessions). In this paper we focus on addressing these chal-
lenges to support complex interaction in synchronous col-
laborative and ubiquitous scenarios. By this account, our 
aim is to layout the foundations of a UI engineering meth-
ods that combine MBUI methods and toolkit programming 
to support polymorphic UI instantiation patterns.  

 
Figure 1. Alternative instantiations of ‘abstractButton’. 

To this effect, we propose to briefly elaborate on a very 
simplistic but demanding scenario. Figure 1 depicts two 
versions of a simple UI comprising one container object 
and one button. Each version of the UI is intended to serve 
a different user role. The left-hand side depicts the instance 
for participants (role A) where the button is manifested us-
ing a conventional rectangular pattern with two states (as 
commonly encountered in various toolkits). The right-hand 
side represents the moderator’s (role B) view of exactly the 
same button rendered in a synchronous collaborative and 
distributed setting (i.e.: multiuser). This time the instance of 
of button is augmented (at both physical and syntactic lev-
els) so as to possess visual affordances that convey aware-
ness.In the specific example this is supported by using a 
dedicated nested radial layout indicating how many partici-
pants (i.e., users with role A) are currently engaged in the 
session or have access to this replica. The button’s label 
remains the same in both cases just to indicate that we are 
working with the same abstraction that is capable of poly-
morphic instantiation.  

In light of the above, the present research is motivated by 
some key questions; 

 Can the above UIs be designed so as to be generated 
from the same specification? 

 Can this be supported in a manner that allows design-
ers to designate complex interactive behaviors as 
means to facilitate affordances such as awareness? 

 What kind of widget attributes need to be manipulated 
(i.e., layout, topology, access policies) at client and 
server sides? 

Responding to these questions is expected to enlighten our 
views on prominent architectural limitations of current UI 
engineering methods. Most importantly, however, it is like-
ly to lead to new insights into affordance-based design of 
UIs and how they may be associated with MBUI engineer-
ing. 

RELATED WORK 
One approach to address the problem is to craft UIs by 
combining popular UI toolkit-based programming and 
model-based UI engineering techniques. Toolkit program-
ming is grounded on the philosophy of building user inter-
faces as hierarchies of reusable widgets by registering event 
event handlers. This allows for complex interactive behav-
iors and customized dialogues [1]. 

On the other hand, MBUI engineering makes use of ab-
stract notations and mark-up languages to facilitate map-
ping of abstract components to platform-specific toolkit li-
braries by delegating the display to a platform-specific ren-
derer [2]. At first site, this seems to provide a better frame 
of reference to addressing the problem as it offers greater 
flexibility and provisions with regards to potential hetero-
geneities in contexts of use (i.e.: cell phones, web, etc.). 
Nevertheless, the key issue in the problem presented earlier 
is not portability and the degree to which it is supported for 
a set of pre-determined widgets. 

Rather, it is a matter of utilizing widgets (either native or 
custom) so as to facilitate polymorphic instantiation with 
variations at all levels including physical, syntactic and se-
mantics. This is an issue which is only partly and loosely 
addressed by model-based approaches which are still lim-
ited to crafting rather simplistic form-based UIs for conven-
tional presentation vocabularies and contexts of use. This 
limitation is attributed to lack of provisions a) for enhanc-
ing expressive capacity of interactions by allowing aug-
mentation and/or expansion of UI vocabularies and b) to al-
low alternative instantiations to be encapsulated in the con-
text of supported unimorphic widgets.  

Polymorphic instantiation 
Polymorphic instantiation is a demanding notion for UIs 
which has not been adequately addressed in the recent lit-
erature. It was initially introduced in toolkit based systems 
such as the HOMER user interface management suite [3], 
and the Platform Integration Module [4]) in unified user in-



 88

terface development. These studies explored the challenge 
for 4GLs to realize polymorphic UI objects. At the time, 
the concept did not implicate any kind of design considera-
tions regarding the specification of polymorphic dialogues. 
Rather, it was conceived as a property of the language, not 
a desirable affordance to be designed.  

Model-based UI approaches promised to alleviate this 
shortcoming by offering new models and abstractions to 
reconsider affordance-based UI design. In practice, this 
never turned out to be the case, as most of the available 
scholarship concentrates on methodologies, engineering 
techniques and tools to describe native interaction compo-
nents and their transformation and mapping from one dia-
lect to another. For instance, COMETS [5] provide support 
for multi-level UI adaptations at runtime driven by support 
for semantic networks (no WSL, no advanced widgets). It 
is worth noticing that none of these systems integrates nov-
el widget specification languages (WSL) or advanced 
widgets.  

Collaborative aspects 
Another key issue in reconsidering affordance-based de-
sign of UIs is collaboration and in particular synchronous 
collaboration. Again, here progress has been slow in both 
toolkit-based systems and model-based UI engineering. 
Groupware toolkits are around for more than two decades 
now. Their focus has been on managing technical proper-
ties of collaboration such as session management, floor 
control, object sharing and replication. Awareness was 
conceived of at multiple levels (task, activity, social aware-
ness) but it was never fully supported. 

Notable exceptions include research prototypes such as the 
MAUI toolkit which supports group awareness, is java-
based and facilitates multi-user UI design via a dedicated 
IDE provided (JBuilder). Other systems such as BEACH 
[6] concentrate on aspects of colocation in ubiquitous col-
laborative systems but offer no support for awareness, 

Model-based UI engineering, once again, has brought 
about modest but notable improvements. TOUCHE [7] 
provides multiuser functionality using adhoc mappings to a 
custom underlying groupware toolkit. Support for aware-
ness is fixed during design phase. In the same vein, indica-
tive examples include approaches such as CIAM (Collabo-
rative Interactive Applications Methodology) [8] or AME-
NITIES (A Methodology for aNalysis and desIgn of coop-
eraTIve systEmS) [9]. 

These efforts primarily concentrate on devising notations 
and tools to model cooperative behavior and workflows. In 
effect, their primary contribution is that they make explicit 
different elements of collaboration (i.e., roles, responsibili-
ties and tasks) using dedicated notations (i.e.: CIAN [10]). 
As a result they provide no support for designing the UI. 
No support for session modeling.  

APPROACH 
First principles 
The present work seeks to improve on the state of the art 
by addressing several of the challenges and the limitations 
introduced earlier. Specifically, it focuses on issues related 
to polymorphic instantiation and collaborative management 
of UIs in ubiquitous distributed contexts. The approach 
builds on the Model-based UI engineering paradigm aim-
ing to inject new elements so as to facilitate a more ac-
countable affordance-based UI perspective. To this end, 
our current effort is grounded on a very popular UIDL, 
namely UsiXML [11] and inherits a single design process 
for all supported contexts of use. In turn, this leads to sig-
nificant reductions in (re-) engineering costs and program-
ming complexity while resulting to more reliable and co-
herent UIs. UsiXML makes use of three distinct levels of 
abstraction (i.e.: CTT, AUI, CUI) for incrementally speci-
fying a UI in order to promoting separation of concerns. 
Specifically, the CTT model captures a UI specification in 
a computation independent manner while adopting a user 
centered perspective. Additionally, the Abstract User Inter-
face (AUI) enables the definition and derivation of both 
modality-independent and multimodal interactive object hi-
erarchies by providing support for the CARE properties. 
Finally, the CUI-model focuses on a platform-independent 
(or better toolkit-independent) UI specification. At all 
times, transition between supported models is enabled via 
dedicated transformations. A salient feature of UsiMXL is 
support for plasticity [12], which is addressed via the ‘con-
text-model’ enabling context - sensitive transformations to 
be performed so as to accommodate diverse requirements 
posed by different contexts of use.  

Extensions 
Despite  the relative ease in designing for multiple envi-
ronments, UsiXML lacks support for taking advantage of 
advanced interactive capabilities offered by target plat-
forms since its support is limited only to a reduced set of 
rather simplistic natively supported form-based elements 
(i.e.: buttons, labels, etc.). Moreover, as expected, no widg-
et specification language is provided since the widget range 
is a priori known and hardcoded within the transformation 
logic via direct calls to platform-specific presentation vo-
cabularies. Besides, support for polymorphic assembly of 
UIs is completely dismissed, since no dedicated mecha-
nisms or widget specification language exists so as to allow 
widgets to encapsulate alternative instantiations. In addi-
tion, no provisions are made either for modeling or runtime 
support of distributed multi-user interactions (i.e.: session 
modeling, multi-user artifacts, awareness support, etc.).  

In order to address these shortcomings, our efforts concen-
trated on a series of modifications in language-level which 
resulted in either new models (i.e.: language expansions), 
or enhancements of already existing (i.e.: language aug-
mentations). 

  



 89

 

Table 1. Enhancements in UsiXML. 
 

Figure 2. Architectural Abstraction. 

Table 1 summarizes the injections introduced into the latest 
version of UsiXML models reflecting the state of our cur-
rent research. As shown the focus is on key affordances 
(left column) and how they are implicated through revi-
sions in or extensions of UsiXML models. In turn, this 
gives rise to a general purpose architectural abstraction 
which is depicted in Figure 2. 

ARCHITECTURAL MODEL AND COMPONENTS 
Our architecture makes use of several novel components 
that extend model-based UI engineering and make new 
ground in specification-based engineering   

Widget specifications (for native and custom widgets)  
In order to fully exploit the management of truly diverse in-
teraction elements and vocabularies in target platforms 
(i.e.: natively and/or non-natively supported widgets) we 
crafted a formal (i.e.: compliant with a dedicated xml 
schema) specification mechanism referred to as Widget 
Specification Language (WSL). In order for a widget to be 
properly integrated and fully deployed by language’s con-
structs, each must be separately introduced in a compliant 
to the provided WSL schema manner.  

A WSL is responsible for capturing all required details for 
widget’s proper utilization, parameterization and smooth 



 90

operation. Such details include widget’s name, unique id, 
description, etc. Moreover, specific constraints can be de-
fined, such as: platform availability, runtime environments 
required (i.e.: JRE), or even constraints on specific versions 
of external libraries required for widget’s proper instantia-
tion. In addition, widget’s api (i.e.: accessor and mutator 
methods, constructors, etc.) is properly codified along with 
proper mappings to a widget resource model instance that it 
incrementally manifested exclusively at design time for 
capturing widget’s detailed configuration (i.e., pre-
instantiation state) in terms of simple or compound proper-
ty-value pairs.  

Polymorphism, abstraction and collaboration   
Support for polymorphic instantiation is primarily granted 
via provisions in the WSL permitting multiple alternative 
instantiations to be defined (i.e.: encapsulation) for a spe-
cific widget type (i.e.: ‘abstract widget’). To this end, also 
support for abstraction is granted since beyond polymor-
phic properties enumeration, also abstract properties must 
be defined, which constitute the common bond across all 
alternative instantiations. Moreover, it worth noting that 
widget resource model is also responsible (at design time) 
for capturing the range of adaptations each polymorphic 
widget may be permitted to run. Decision logic upon which 
alternative incarnations are utilized is specified in the light 
of the context and/or squad models. Each polymorphic in-
stance is expected to define all supported behaviors in 
terms of properly codified finite state machines. At this 
level only supported states and permitted transitions among 
these can be defined and not at any case application-
specific logic which is captured at design time by the ‘Be-
havior’ model. Abstraction (and the abstraction model) is 
not only used to facilitate polymorphic instantiation in col-
located settings, but also to provide the mechanism to sup-
port distributed synchronous collaborative interactions in 
the context of the ‘abstraction’ model. Specifically, Ab-
straction model’s prime aim is to establish an abstraction 
layer between multiuser widgets in the light of thorough or 
partial commonalities in regards to their models (in terms 
of Model View Controller architecture) while keeping their 
corresponding views synchronized. 

Abstraction model comprises classes defined using class 
diagrams (at design time), in an attempt to facilitate model-
level sharing which is completely relieved (in contrast to 
toolkit-level sharing) from physical-level properties, thus 
providing higher flexibility with regards to potential varia-
tions between alternative to be synchronized views. The 
reason for not selecting to synchronize directly widget  cor-
responding models is mainly due to the need for design and 
implementation simplicity which is best served by central-
izing concerns (i.e.: shared model). 

Specifically, it would be much more complex to implement 
in a peer to peer manner intertwined relations between 
models each adhering to different widget than defining a 
single external model and providing appropriate hooks to 

synchronize every widget with that single model. Moreover 
it would be rather infeasible to inject collaboration-aware 
code and logic (i.e.: consistency and/or concurrency con-
trol) to collaboration unaware widget-models. Abstract 
classes alleviate this issue since collaboration-aware code 
is properly injected during their translation to platform spe-
cific code so as to automatically broadcast, receive and ap-
ply changes made by remote users. There are also dedicat-
ed provisions for properly managing consistency or concur-
rency related issues. Support for feed through, i.e.: apply 
changes received as an input of another distributed user, is 
implemented via dedicated mappings between shared prop-
erties of classes (i.e.: ‘abstraction classes’) defined in the 
context of abstraction model and direct calls to instance-
specific API.  

Replication and awareness 
Moreover, it is worth noting that abstraction classes are 
distributed by replication in the context of particular syn-
chronous collaborative sessions modeled via the ‘session 
model’. In this context, support for social awareness is na-
tively provided for widgets capable to visualize social scent 
using mixed dialogues. Specifically, social awareness is 
enabled inside widgets’ specifications at polymorphic-
instance level in order to indicate capacity for that specific 
instance to properly visualize social awareness. Neverthe-
less, the final decision for engaging social awareness for 
‘socially-aware’ polymorphic instance is determined via a 
corresponding to that instance entry inside the Widg-
etResource model instance. 

SUPPORTING THE DESIGN PHASE 
Having described briefly architectural elements of our ap-
proach, an attempt is made to explain how these concepts 
are implicated during the design phase. We have developed 
a prototype system that takes advantage of the NetBeans 
platform, introducing on top of it a number of custom 
modules to support the development of either single user or 
distributed collaborative projects. The main differences be-
tween these two project types are in the way they employee 
to ‘compile’, distribute and execute the produced UI speci-
fications, as well as in the number of available plugins en-
gaged by default. For instance in case of collaborative ap-
plication, a pre-requisite is the registration of a compatible 
server side environment dedicated to managing special 
purpose collaborative aspects (i.e.: synchronization, session 
management, etc.). Moreover, in distributed collaborative 
applications where UI models need to be accessible by sev-
eral users over the network the pre-requisite is  a central-
ized repository for depositing shared resources (i.e.: com-
mon models, widget archives, etc.). Furthermore, addition-
al provisions are required for distributing a reference to all 
users may engage in a particular session (i.e.: ‘distributed 
shortcuts’). Nevertheless, in all cases the development pro-
cess remains quite common in terms of tool support, since 
most of custom plugins devised, remain the same (i.e.: edi-
tors for manipulating: CTT, CUI, Squad, etc.). 



 91

Figure 3. Design Environment for Polymorphic UIs. 

A representative instance of our system depicting the de-
sign of the UI in Figure 1 is presented in Figure 2. At any 
time, a design project has a dual view – the graphical edi-
tor’s visual depiction of abstract interaction components 
and the source (XML) view of the respective model. 

Typically, designers utilize the palette to introduce compo-
nents in a direct manipulation fashion and specify their 
properties. Design updates are immediately manifested as 
XML model changes. The properties of each widget fall in 
three categories, namely widget-specific properties, ab-
stract properties and polymorphic properties. The way in 
which these properties are manipulated is dependent on 
specifications in the widget archive.     

Widget archives   
Widget archives provide the means for introducing ad-
vanced customized widgets. They may be non-native inter-
action components, developed by third-parties and shared 
to the design community. We have designed several cus-
tom widgets, some of them quite complex, to test the con-
cept of a widget archive and the way in which it is articu-
lated using our system. For purposes of illustration, in our 
example we discuss one such component which is referred 
to as ‘Round button’. In order for a widget archive such as 

that encapsulating the ‘Round button’ incarnation to be de-
ployed into our tool, it must be firstly installed by a series 
of steps depicted in Figure . Due to space limitations and 
the focus of the present work, we will not provide further 
details on this process. 

Visual manipulation of abstract interaction elements 
Each uploaded widget appears in the ‘Abstract Control’ 
section of the palette and can be utilized in a direct manipu-
lation fashion. Thus, it can be attached to a container ob-
ject, resized, relocated and specified. For widget archives 
with polymorphic instantiation, the visual depiction of the 
abstract component indicates the options available (see 
right-hand side round button in 3). Further specification of 
the widget can be attained by manipulating properties in 
the lower part of the palette leading to a concrete instance. 
Figure  summarizes the mapping for the right-hand side 
button which exploits polymorphic instantiation capability. 
We refer to this model as the ‘WidgetResource’ model 
which conveys the range of possible polymorphic adapta-
tions. Thus, Figure  depicts how such customizations are 
defined (i.e.: triplet comprised of WSL instance id and in-
stances of the WR & CUI model) for the specific widget in 
Figure 3. 



 92

 
Figure 4. Widget Deployment Workflow. 

 
Figure 5. Widget’s Pre-instantiation 

Configuration Mapping. 

RUNTIME ENVIRONMENT 
In order to support the novel features introduced in the pre-
vious sections, advanced software components have been 
crafted both at the client as well as at the server side (see 
Figure 2).  

Client-side components 
At the client side of particular interest is a runtime infra-

structure developed namely: ‘Platform Server’ (P.S.), de-
noting a multifunctional software component which guar-
antees language’s smooth and consistent operation. Dedi-
cated to a particular platform, the P.S. constitutes a virtual 
software layer between UsiXML models and the underly-
ing system with its role being limited to: distributed class 
loading (in case of managing non-native interactive ele-
ments), event management (as part of facilitating collocat-
ed and/or distributed synchronization), as well as compila-
tion (see: Domain model, Abstraction Model) and interpre-
tation of UsiXML models at runtime. In addition, another 
very important function in the context of collaborative ses-
sions, either synchronous or synchronous, relates to client-
side support for session management. To this end, P.S. 
handles both grabbing and distribution of shared actions 
via triggering and managing inter-client (i.e.: inter-P.S.) 
message exchanges in the context of a particular session. 
To support this functionality P.S. interoperates with a cus-
tom dedicated server-side general purpose framework, built 
on top of the apache axis2 framework, to support session 
management. Moreover P.S. is responsible for handling 
replication process via managing (i.e.: generation of repli-
caIds, distributed registration, etc.) and maintaining a dedi-
cated client-side replication list with replicaIds associated 
to corresponding object-references. In case of detected var-
iations (via ‘context-sniffer’ daemon thread) regarding the 
context of use, P.S. is responsible for engaging a re-
adaptation process driven-instructed from the server-side 
developed framework. Furthermore, another important 
function assigned to the P.S. relates to the process of over-
all handling non-native widgets (based on a Widget Speci-
fication Language devised on our side) part of which re-
lates to ‘custom events management’ and ‘widget data 
model’ handling briefly discussed in previous section.  

Server-side components 
On the other hand at the server-side there is a generic-
purpose server-side framework (SSF). The role of the SSF 
in the context of distributed settings focus on maintaining a 
repository of accessible at runtime UsiXML models, for in-
itial or re-adaptation process, correlated to a particular ses-
sion (either synchronous or asynchronous). The SSF also 
handles low-level session management (in both modes, i.e.: 
synchronous and asynchronous), build on top of apache ax-
is2 framework, by performing several functions such as 
creation, registration, etc., while also maintains a list with 
all running sessions. Regarding non-natively provided 
widgets, in the context of a particular UI description speci-
fication, the SSF contributes by maintaining a shared re-
pository with platform-specific widget libraries, in respect 
to widget’s platform availability, facilitating P.S. via dis-
tributed class loading to handling non-natively supported 
interactive hierarchies. Finally, it keeps a per-session noti-
fication Queue, accessed by performing polling on the cli-
ent side based on dynamically determined intervals, facili-
tating synchronization of distributed multi-user compo-
nents. 



 93

AN EXAMPLE DESIGN CASE - UI GENERATION 
In the present section we will elaborate on an indicative 
scenario in an attempt to provide a more detailed insight in-
to the role of the supported models, the tools comprising the 
the overall environment and the development practices. 
More specifically, let’s assume that support was required so 
so as to facilitate synchronous collaborative interactions in 
the light of heterogeneous contexts of use. In such cases a 
convenient point for engaging the design process would be 
that of CUI. Supposing that the UI design properly address-
ing our scenario is that displayed in Figure 3 then, in the 
course of alternative UI - execution flows, two potential in-
stantiations (i.e.: assemblies) for two random users could be 
be these depicted in the Figure 6. Henceforth the view sided 
on the left in Figure 6 would be referred as “user’s 1” while 
the other as “user’s 2”. Access to these UIs is granted after 
a user-request is made, triggered by clicking on a dedicated 
‘shortcut’ available in both target platforms (i.e.: user1 and 
user2), for engaging to the appropriate collaborative session 
with which the corresponding UI specification has been as-
sociated with (at design time). Upon successful engagement 
to a collaborative session, P.S. automatically gains access 
and downloads all data (i.e.: UI models, dependencies, etc.) 
required in order to proceed to assembling the UI. Follow-
ing this, UI generation begins by interpreting the retrieved 
CUI specification. In order for the P.S. to facilitate poly-
morphic instantiation, it requires decision logic (D.L.) 
which will allow it to decide which instance is to be deliv-
ered. For the purposes of our example, this decision is to be 
made on the grounds of socially-aware criteria (i.e.: com-
munity membership) which are properly codified inside the 
three supported models, i.e.: the squad model, the WRM 
and the CUI model. Specifically, we defined the middle 
‘abstractButton’ to incarnate as a non-native circular button 
in case the user belongs to ‘community-1’ while on the oth-
er hand, it should be instantiated as a two-state rectangular 
button in case the user is a member of ‘community-2’. Fig-
ure 7 depicts how these relations are codified in the sup-
porting models so as to deliver the desired effect.  

Runtime instantiation of RoundButtons (i.e.: non-native in-
teractive element), is instructed by widget’s specification 
language which facilitates P.S. to fully exploit instance-
specific apis properly codified so as to standardize among 
other dynamic linking to external libraries required for its 
instantiation (i.e.: dependencies) as well as allow direct 
calls to be made so as to alter its state which could be use-

ful in order to applying instance-specific configurations 
available from design phase (i.e.: icons, border color, etc., 
see: bottom right hand side in Figure 3). Each time a poly-
morphic interactive incarnation is instantiated in collabora-
tive settings, P.S. seeks to determine (i.e.: WSL) whether or 
or not that instance type provides native support for social 
awareness (SA, i.e.: social awareness enabled).  

 
Native support implies that toolkit-level provisions have 
been made in the course of widgets’ development so as to: 
a) enable social scent be properly visualized as well as b) 
give access for its manipulation by appropriating a dedicat-
ed standardized API (i.e.:, ‘addIndicator()’, ‘removeIndica-
tor()’, etc.) ready to be used by the runtime framework. In 
the present case, Round Button constitutes the only incarna-
tion that has been properly manifested to provide support 
for social awareness. To this end, we had to apply toolkit-
augmentation in many ways so as to create a circular 
bounded widget (note that non-rectangular widgets are not 
directly supported in java/swing) as well as a special pur-
pose topology-policy to radially layout social indicators. In 
addition to physical-level enhancements, for SA to be 
properly managed, we had also to semantically augment 

Figure 6. Runtime Instance of Final UIs.

 

Figure 7. Rule for Polymorphic Decision Logic.

 



 94

Round Button so that it can be appropriated by the runtime 
framework. Notably, such technical details are transparent 
to designers (see: Figure 3) whose role is limited to ena-
bling or disabling this feature in case it is supported. Figure 
8 attempts to clarify the allocation of provisions to handle 
SA in the current implementation. 

 
Figure 8. Implications in supporting Social Awareness 
in the course of the Design & Implementation process. 

Moreover, in case of native support, a final check is also 
performed in order to determine whether or not that af-
fordance has been enabled (WRM) for that polymorphic 
instance. In case both checks are successful, P.S. engages 
SA (via polymorphic method binding to that widget) and 
performs a direct call to the Collaboration plugin which 
then assigns a social proxy keeping social scents up to date.  

 
Figure 9. Enabling/Disabling Social Awareness 

Support. 

Figure 9 shows how SA is disabled for the round button in 
the middle of the UI, and respectively enabled for the round 
round button, in the right hand side. Finally, widgets’ be-
haviors (i.e.: Finite State Machines, Behavior model) and 
abstraction classes are compiled on the fly to machine code. 
code. Once behaviors get compiled they are automatically 
attached, by a dedicated P.S. module instructed by widget’s 
specification language, to the proper instances of the UI. In 

the case of our example press state was synchronized (i.e.: 
shared property of an Abstraction Class). 

CONCLUSIONS AND FUTURE WORK 
Currently, we have a fully implemented version of all the 
components (models, plug-ins, architectural components, 
etc.) introduced earlier and working prototypes of several 
UIs that exhibit the required properties. In fact, all exam-
ples presented in the paper are realized using our research 
prototype. Ongoing work concentrates on several research 
lines. One is aiming to extend the widget archiving method 
to handle more complex and customized widgets intuitive-
ly. Another related line integrates the required revisions so 
as to further enhance the framework’s capabilities to cope 
with more advanced affordances and quality attributes such 
as social translucence and UI plasticity in collaborative 
ubiquitous settings.  

ACKNOWLEDGMENTS 
We gratefully acknowledge the support of iSTLab 
(www.istl.teicrete.gr) and the ITEA2 UsiXML project. 
Jean Vanderdonckt would like to acknowledge of the 
ITEA2-Call3-2008026 USIXML (User Interface extensible 
Markup Language) European project and its support by 
Région Wallonne DGO6. 

REFERENCES 
1. Hill, J. and Gutwin, C. The MAUI toolkit: Groupware 

widgets for group awareness. In Computer Supported 
Cooperative Work, 2004, vol. 13, pp. 539-571. 

2. Lee, C., Helal, S., and Lee, W. Universal Interactions 
with Smart Spaces. IEEE Pervasive Computing 5 (Jan.-
Mar. 2006), pp. 16-21. 

3. Savidis, A. and Stephanidis, C. Developing Dual User 
Interfaces for Integrating Blind and Sighted Users: the 
HOMER UIMS. In Proc. of ACM Conf. on Human Fac-
tors in Computing Systems CHI’95 (Denver, 1995). 
ACM Press, New York (1995), pp. 106-113. 

4. Savidis, A., Stephanidis, C., and Akoumianakis, D. 
Unifying toolkit programming layers: a multi-purpose 
toolkit integration module. In Proc. of the 4th Eu-
rographics Workshop on Design, Specification and 
Verification of Interactive Systems DSV-IS’1997 (Gra-
nada, 1997), pp. 177–192. 

5. Demeure, A., Calvary, G., Coutaz, J., and Vander-
donckt, J. The Comets Inspector: Towards Run Time 
Plasticity Control based on a Semantic Network. In 
Proc. of 5th Int. Workshop on Task Models and Dia-
grams for User Interface Design TAMODIA’2006 (Has-
selt, 23-24 October 2006). K. Coninx, K. Luyten, K. 
Schneider (Eds.). Lecture Notes in Computer Science, 
vol. 4385, Springer-Verlag, Berlin (2007), pp. 324-338. 

6. Tandler, P. The BEACH application model and soft-
ware framework for synchronous collaboration in ubiq-
uitous computing environments. Journal of Systems and 
Software 29, 3 (2004), pp. 267-296. 



 95

7. Penichet, V., Lozano, M., Gallud, J., and Tesoriero, R. 
User Interface Analysis for Groupware Applications in 
the TOUCHE Process Model. International Journal 
Advances in Engineering Software (2009). 

8. Molina, A.I., Redondo, M.A., Ortega, M., and Hoppe, 
H.U. CIAM: A methodology for the development of 
groupware user interfaces. Journal of Universal Com-
puter Science (2007). 

9. Garrido, J.L., Gea, M., and Rodríguez, M.L. Require-
ments enginnering in cooperative systems, In Require-
ments Enginnering for Sociotechnical Systems. Idea 
Group, Inc., (2005), pp. 226–244. 

10. Molina, A.I., Redondo, M.A., and Ortega, M. A con-
ceptual and methodological framework for modeling in-
teractive groupware applications. In Proc. of 12th Inter-
national Workshop on Groupware CRIWG’2006 (Val-
ladolid, 2006). Lecture Notes in Computer Science. 
Springer-Verlag, Berlin (2006). 

11. Limbourg, Q. and Vanderdonckt, J. UsiXML: A User 
Interface Description Language Supporting Multiple 
Levels of Independence. In Engineering Advanced Web 
Applications, M. Matera, S. Comai, S. (Eds.). Rinton 
Press, Paramus (2004), pp. 325-338. 

12. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (2003), pp. 289–308. 

13. Souchon, N. and Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages. In 
Proc. of 10th Int. Conf. on Design, Specification, and 
Verification of Interactive Systems DSV-IS’2003 (Ma-
deira, 4-6 June 2003). J. Jorge, N.J. Nunes, J. Cunha 
(Eds.). Lecture Notes in Computer Science, vol. 2844, 
Springer-Verlag, Berlin (2003), pp. 377–391. 

 



 96

Technique-Independent Location-aware User Interfaces 

Ricardo Tesoriero1,2, Jean Vanderdonckt2, and José A.Gallud1 
1Computing Systems Department, University of Castilla-La Mancha 

Campus Universitario de Albacete, 02071, Albacete (Spain) 
2Louvain School of Management, Université catholique de Louvain 

Place des Doyens, 1, B-1348, Louvain-la-Neuve (Belgium) 
ricardo.tesoriero@uclm.es, {ricardo.tesoriero, jean.vanderdonckt}@uclouvain.be, jose.gallud@uclm.es  

ABSTRACT 
Many techniques have been developed to support location 
awareness in user interfaces. Most of them are expressed at 
the code level, making them inflexible for modification of 
the location-awareness logic. They are very specific to a 
certain domain of application, making them hard to reuse 
or transfer. This paper introduces a model-based approach 
for specifying location-awareness throughout the user in-
terface development life cycle from the task and domain 
level propagated until the final user interface level. In this 
manner, multiple techniques for location-awareness could 
be expressed and supported, with flexibility and reusability, 
thus obtaining technique-independent location-aware user 
interfaces. For this purpose, the space concept is defined at 
the task and domain levels and then linked to an extension 
of the concrete user interface model. In order to exemplify 
the model-based approach, some techniques for location-
awareness will be expressed and, a case study will be ex-
plained: the Location-aware Remote Control system. 

Author Keywords 
Location-awareness, model-based approach, region defini-
tion, space model, ubiquitous computing. 

General Terms 
Design, Experimentation, Human Factors, Verification. 

Categories and Subject Descriptors 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H5.2 [Information interfaces and 
presentation]: User Interfaces. I.2.4 [Artificial Intelligen-
ce]: Knowledge Representation Formalisms and Methods. 

INTRODUCTION 
Heterogeneous interacting devices and surfaces are part of 
our surroundings in our lives. Through the popularity of 
mobile devices and communication technologies, the ubiq-
uitous computing scenario envisioned by Weiser is becom-
ing reality [27]. Consequently, a new set of interactive ap-
plications where the context of use, defined as “any infor-
mation that can be used to characterize the situation of an 
entity” [7], allows applications to make assumptions about 
users’ current situation and act accordingly [26].  

Thus, location-aware applications employ users’ location to 
interact with the system. There are many fields in which lo-

cation-aware applications are useful: home automation 
(e.g., location-aware remote controls adapt the User Inter-
face to the nearest device), office automation where users 
are assisted by the system when locating resources (e.g., 
the nearest printer to print a document), m-learning appli-
cations where students perform learning activities “in-situ” 
(e.g., recognizing masterpieces in art galleries), outdoor 
guiding systems where users get information according to 
their position (e.g., the nearest restaurant), indoor guiding 
systems where visitors are guided through the building us-
ing a mobile device, multiplayer games where participants 
may win various points depending on where they are or 
where they have been through, and augmented reality. 

Designing and developing location-aware UIs is still chal-
lenging today: there is no global conceptual approach for 
characterizing what the location is, how to properly charac-
terize a location change, and how to express location-
awareness logic. This logic is often produced programmati-
cally, thus making it inflexible to modify. Multiple tech-
niques for location-awareness exist based on different defi-
nitions, and relying on deployment platforms that are not 
interoperable, thus making them very specific to a domain, 
and hard to reuse in another domain of discourse.  

In order to address these challenges, based on the related 
work section, this paper discusses motivations and working 
hypotheses for a model-based approach for location-aware-
ness. Based on these requirements, the space model section 
defines a generic space conceptual model that enables ex-
pressing multiple location-aware techniques, rules, and 
logics thanks to a unified specification language, along 
with a model-based approach. This model-based approach 
consists of a series of models, and extensions of them, 
based on the UsiXML User Interface Description Language 
(UIDL) to capture the location-awareness aspects at differ-
ent levels of abstraction. Afterwards, in the case of study 
section, we expose how models are defined in the location-
aware remote control (LARC) scenario. Later, the imple-
mentation section exposes issues regarding the implemen-
tation of the editors used to define the models. Finally, we 
present conclusions and future work. 

RELATED WORK 
In this section we expose the most relevant location tech-
nologies used by location-aware applications. Then, we ex-
pose different examples of applications in different do-



 97

mains where location-awareness is a key issue to board. Fi-
nally, we analyze the Topiary environment used to proto-
type location-aware applications.  

Location technologies 
According to the environment where the location aware-
ness is achieved, the systems are classified into three cate-
gories: indoor, outdoor, and hybrid (that operate in both). 

While most outdoor location systems are based on GPS 
technology, the technology employed in indoor environ-
ments is very diverse. For instance, [2] uses RF; Ekahau 
(http://www.ekahau.com/) employs Wi-Fi, BlueBot [19] 
uses RFID and RF technology, SmartFloor [16] uses pres-
sure sensors, among many others. 

Hybrid approaches are: Place Lab [11] that combines Blue-
tooth, GSM, and Wi-Fi technologies; “Bridging the gaps” 
[10] that combines an INS with infrared technology for 
drifting correction; the GETA Sandals [15] that combine 
dead-reckoning sensors with passive RFID technology, etc. 

Location-aware applications 
In this section we describe some examples of location-
aware applications with respect to their domain. 

Regarding office automation, the system described in [3] 
presents information according to the office room the user 
is located. It also provides users with the ability to search 
for the nearest resources and attach UNIX directories to of-
fice rooms. In [1], the mobile device is used as a remote 
control. A system to check people in and out from a build-
ing is presented in [20], the Dynamic Ubiquitous Mobile 
Meeting Board (DUMMBO) detects the presence of two or 
more people in a meeting room and automatically gathers 
information for the meeting summary, such as participants, 
date and conversation recording.  

Regarding indoor guiding systems, location-aware infor-
mation retrieving applications are frequently exploited to 
guide visitors in cultural environments (such as, art galler-
ies and museums). These applications: [14, 22] employ 
from RFID to IRdA technologies to carry out this task. 

Regarding learning activities, the emergence of mobile 
learning applications used to teach “in-situ” or other places 
is obvious. Thus, location-awareness becomes a key factor 
in informal science settings and nomadic learning [8, 17]. 

To sum up, the use of location-aware applications is not re-
stricted to a particular area or domain. Besides, they all use 
different techniques and technologies to accomplish their 
purposes. Therefore, we need a model that should be inde-
pendent of the technology to be employed. To cope with 
this problem, we have studied the most relevant approaches 
that adhere to Model-Driven Engineering (MDE) and a se-
lected set of the most relevant methods that cope with the 
development of context-aware applications. We observed 
that none of them targets the problem from the UI perspec-
tive explicitly. 

The reusability issue of previously developed UIs is a key 

concept from a software engineering perspective that is not 
tackled by any of the methods we analyzed. They are fo-
cused on the reuse of the Platform Independent Models 
(PIMs) to generate source code targeted for different plat-
forms, but they do not support the reuse of higher level 
models, such as, reusing a previously designed task model 
in a new context of use that is similar to the previous one. 

The Topiary environment 
Among others, Topiary [12] rapidly prototypes location-
enhanced applications based on design patterns. It allows 
designers to create a map that models the location of peo-
ple, places, and things. It uses an active map to demonstrate 
scenarios, depicting location contexts creating storyboards 
that describe interaction sequences with a wizard. While 
this certainly fosters rapid prototyping, there is no underly-
ing model that captures the results of this prototype that 
could be further used in the development life cycle. 

However, some important UI aspects were not covered by 
this approach: the application is not conceived with models 
at different levels of abstraction, leading to a huge lack of 
reuse of information when developing location-aware UIs. 
Routes are one of the most important aspects of location-
aware applications. Topiary defines routes in a non-
deterministic way, where the order of the location events 
cannot be specified properly. The route alternative (e.g., 
the capability to define the same behavior for different 
routes) is also not supported by the tool. To sum up, the ac-
tual approaches are not capable enough to support the de-
velopment of multi-model and multi-technique UIs for lo-
cation-aware applications efficiently. 

Besides, the lack of explicit models for representing the lo-
cation-awareness logic in the methods analyzed prevents 
designers from reusing parts or whole of a previously de-
signed logic. Perhaps, it may not be an important issue 
when modeling logic for small scenarios such as, small 
buildings or houses; but it may result in an interesting re-
source when modeling complex buildings, such as town 
halls or big companies or hospitals, where the complexity 
of the application behavior regarding the location is crucial 
to the application success. 

MOTIVATIONS 
As the result of the related work analysis we have arrived 
to the following motivations: 

The need for a conceptual model 
A location-aware UI could be considered basically as an 
Event-Condition-(re-)Action (ECA) system where rules 
express a location-aware logic decomposed into events 
(what occurred that requires some consideration of the lo-
cation), conditions (under which circumstances do we need 
location-awareness, it is not necessary to do something for 
all changes of location), and reactions (what do we need to 
do in order to react to a change of location). Based on this 
decomposition, we have specialized Norman’s mental 
model in a variation for addressing location-awareness with 
seven stages for each entity (Figure 1): 



 98

1. Goals for location-awareness: any entity (i.e., user, UI, 
or external third party) may be responsible for specify-
ing and maintaining a formal expression of goals for 
ensuring location-awareness. Although this process is 
ultimately intended to be beneficial for the end user, it 
could be achieved with respect to any location aspect. 
Such aspects could fall into three categories: location-
central information (information that describes the lo-
cation, such as coordinates, temperature, pressure, hu-
midity, closeness), location-peripheral information (in-
formation related to the location, but not describing the 
location, such as vicinity, surroundings, connections 
with other regions), and meta-location information (in-
formation about location information, such as how the 
location is characterized). The goals are said to be self-
expressed, UI-expressed, locally or remotely, depending 
on their locus of control: in the user’s head, in the local 
UI, or in a remote system. In this work, we mainly as-
sume that these goals will be expressed in the UI, with a 
specification language to be defined. 

2. Initiative for reaction: this stage is refined into formula-
tion for a reaction request, detection of a reaction need, 
and notification for a reaction request, depending on 
who is in charge: the user, the UI, or a third party. 

3. Specification of reaction: this stage is further refined in 
specification by demonstration, by computation, or by 
definition, depending on their origin: respectively, the 
user, the UI, or a third-party. When the user wants to 
trigger a reaction to a location change, she should speci-
fy the actions required to make this reaction, such as 
with programming by demonstration or by designating 
the operations required for this purpose. When the UI is 
responsible for this stage, it should compute one or sev-
eral reaction proposals depending on location infor-
mation available (of any type). When a third party spec-
ifies the reaction, a definition of the operations required 
to execute the reaction could be provided. 

4. Application of reaction: this stage specifies which entity 
will apply the reaction specified in the previous stage. 
Since this adaptation is always applied on the UI, it 
should provide some mechanism to support it. If the us-
er applies the reaction, UI mechanisms should be of-
fered such as through customization or personalization.  

5. Transition with reaction: this stage specifies which enti-
ty will ensure a smooth transition between the UI before 
and after the location change. For instance, if the sys-
tem is responsible for this stage, it should provide some 
visualization techniques for explaining the transition.  

Goals for UI
Location-awareness

Meaning of an
input adaptation

Meaning of an
output adaptation

Specification
of adaptation

Shape of an
input adaptation

Shape of an
output adaptation

Application of
adaptation

INterpretation
of evaluation

Initiative for
adaptation

Evaluation
of adaptation

Interactive
System

Transition with
adaptation

Reaction
semantic
distance
in input

Reaction
articulatory

distance
in input

Reaction
semantic
distance
in output

Reaction
articulatory

distance
in output

G
ul

f 
of

 r
ea

ct
io

n
ex

ec
ut

io
n

G
ulf of reaction

evaluation

Meaning of an
input adaptation
Meaning of an

input reaction
Meaning of an

output reaction

Specification
of reaction

Shape of an
input reaction

Shape of an
output reaction

Application of
reaction

INterpretation
of reaction

Initiative for
reaction

Evaluation
of reaction

Interactive
System

Interactive
System

Transition with
reaction

semantic
distance
in input

articulatory
distance
in input

semantic
distance
in output

articulatory
distance
in output

ex
ec

ut
io

n

evaluation

1 2 3 4 

Figure 1. Norman seven stages revisited for location-
awareness. Figure 2. The four sociologic zones. 

Figure 3. CRF simpli-
fied. 

 

6. Interpretation of reaction: this stage specifies which en-
tity will produce meaningful information in order to fa-
cilitate the understanding of the reaction of other enti-
ties. When the UI performs some reaction without any 
explanation, the end user may be confronted to a prob-
lem of understanding what has been changed depending 
on the location information type. When the user per-
forms some reaction, she should teach the system how 
to interpret this reaction for future usage. 

7. Evaluation of a reaction: this stage specifies the entity 
responsible for evaluating the quality of the location-
awareness performed so that it will be possible to check 
whether the goals initially specified in Stage 1 are satis-
fied. If the UI maintains some specification of goals, it 
should be able to update these specifications according 
to the reactions executed. If the goals are in the users’ 
mind, they could be also evaluated with respect to what 
has been conducted in the previous stages. 



 99

The need for controlling the reaction 
Another shortcoming found for location-aware UIs is that 
they can undertake reactions proactively. In terms of the 
model of Figure 1, it means that the application of the reac-
tions, perhaps including the initiative and the specification 
that lead to this reaction, escaped from the user’s control. 
For instance, Mobi-Timar [21] users are not allowed to 
change the reaction as it is pre-defined according to the re-
quired tasks for the user class depending on their location, 
but they can change some individual preferences, like inter-
face layout or level of details. For instance, when a muse-
um UI guides the visitor, it automatically prompts the de-
scription of the artwork that is closest to the visitor, thus 
preventing her from viewing the same artwork from a dis-
tant location. Therefore, a requirement states that the end 
user should be in control of the location-awareness process. 

The need for gathering feedback for reaction 
In the museum example, if a user comes close to an art-
work and the UI does not prompt anything new, the user 
may become puzzled by the UI reaction. The conditions for 
triggering the reaction could be satisfied, but they are not 
observable (perhaps browsable). Or they are not satisfied 
and the reasons why are not observable neither. Therefore, 
a need arises for expressing feedback, positive or negative, 
but also in terms of contents (e.g., why and why not?). 

The need for sociologic zone definition 
Perceptual psychology may inform us to what extent a per-
son considers an object far or close. Sociology interprets 
this as four spatial zones depending on the distance from 
subject (Figure 2). Central zone, respectively personal, so-
cial, public correspond to a focus distance from the user of 
0 to 45cm, respectively 46cm to 1.2m, 1.3 to 3.6m, bigger 
than 3.6m [23]. This topic is also addressed in [5]. 

The need for expressing location awareness logically 
In order to express the location-awareness in a logical way, 
there is a need to rely on some models in order to state the 
ECA system. For instance, the reaction should be expressed 
logically on the UI independently of any location-
awareness technique. For this purpose, a User Interface 
Description Language (UIDL) should be selected that is 
compatible with the Cameleon Reference Framework 
(CRF) [4] (a simplified version is reproduced in Figure 3, 
which shows the development process divided into four 
development steps). These steps are: 

 In the Tasks & Concepts (T&C) step, we describe users' 
tasks to be carried out, and the domain-oriented con-
cepts required to perform these tasks. 

 In the Abstract UI (AUI) step, we define the abstract 
containers and the individual components [13] that will 
represent the artifacts on the UI. Containers are used to 
group subtasks according to various criteria (e.g., task 
model structural patterns, cognitive load analysis, and 
the identification of semantic relationships). Individual 
component represents an artifact that describes the be-
havior of a UI component in a modal-independent way 

(navigation, task performance, etc.). Thus, an AUI ab-
stracts a CUI with respect to interaction modality. 

 In the Concrete UI (CUI) step, we concretize an ab-
stract UI for a given context of use into Concrete Inter-
action Objects (CIOs) [24] defining the widget layouts 
and the interface navigation. It abstracts a FUI into a UI 
definition that is independent of any computing plat-
form. The CUI can also be considered as a reification of 
an AUI at the upper level and an abstraction of the FUI 
with respect to the platform. 

 In the Final UI (FUI) step, we represent the operational 
UI running on a particular computing platform either by 
interpretation (e.g., through a Web browser) or by exe-
cution (e.g., after code compilation) 

UIDL candidates that follow the CRF are: MariaXML 
(http://giove.isti.cnr.it/tools/Mariae/), UIML (http://www. 
uiml.org), UsiXML (http://www.usixml.org), or XIML 
(http://www.ximl.org). 

We chose UsiXML [25] for the following additional crite-
ria, but other UIDLs could be selected equally: the 
UsiXML modeling language must be described in terms of 
the Meta-Object Facility (MOF) language to enable the 
metamodels to be understood in a standard manner, which 
is a precondition for any activity to perform model-to-
model (M2M) transformation and model-to-code (M2C) 
generation, a transformation model is also compliant with a 
metamodel expressed in the same way. To support the con-
ceptual modeling of UIs and to describe UIs at various lev-
els of abstractions, the following set of models is defined in 
UsiXML [25]: 

 The taskModel describes the task as viewed by the end 
user interacting with the system. It represents decompo-
sition and temporal relationships among tasks. 

 The domainModel describes the classes of objects ma-
nipulated by a user while interacting with a system. 
Typically, it could be a UML class diagram or an enti-
ty-relationship-attribute model. 

 The mappingModel contains a series of related map-
pings between models or elements of models. It gathers 
inter-model relationships that are semantically related 
(reification, abstraction and translation) 

 The contextModel describes the three aspects of a con-
text of use in which an end user is carrying out an inter-
active task with a specific computing platform in a giv-
en surrounding environment. 

 The auiModel describes the UI at the abstract level as 
previously defined. 

 The cuiModel describes the UI at the concrete level as 
previously defined. 

As other UIDLs, UsiXML does not support location-
awareness, but hold the appropriate concepts to express lo-
cation-awareness logically. Thus, we propose to add a 
Space model to describe the location environment where 
users interact with the application. Besides, we extend the 
task, the AUI, and the CUI models accordingly. 



 100

 
Figure 4. Space metamodel extension for Tasks & Concepts. 

THE SPACE MODEL 
The space model enables the definition of the space envi-
ronment the application is aware of and how the user loca-
tion affects the application. 

The extension affects the Task & Concepts, the CUI, the 
Mapping and the FUI models of UsiXML. The AUI model 
was not extended because the mapping between AUIs and 
CUIs propagates all the vital information. 

While in the Tasks & Concepts layer we describe the space 
environment and how it affects the application, in the CUI 
and FUI layer we describe how the information is per-
ceived from the environment and how it is propagated to 
the application. 

The Task & Concept extension 
The space metamodel extension for the Tasks & Concepts 
layer is depicted in Figure 4. The SpaceModel represents 
the space environment the application is aware of. It is the 
root of the space model and it is characterized by spaces 
and a set of space relationships among them. 

The space 
Spaces represent location references that could be located 
and dimensioned by the system. The space concept covers 
a broad range of spaces according to the system capability. 
For instance, if the system is able to retrieve GPS coordi-
nates of users and locate them in a city, a square, a build-
ing, a floor or a room, then all these physical spaces may be 
represented by spaces. However, the space concept is not 
restricted to physical space representations only. It may al-
so be related to virtual representations, such as forms, dia-
logs [28], widgets, and so on in traditional UIs. They may 
also represent the virtual representation of a physical de-
vice, such as the mouse cursor. Even more, we can assign 
user spaces, to model colocation, or different sociological 

zones for the same user, as discussed in the previous sec-
tion (Figure 2). 

This high-level abstraction provides designers with the 
ability to describe “mixed” relationships among virtual and 
physical spaces providing highly dynamic behavior to the 
application. For instance: click “lights on” button in my 
room turn the lights on. 

To provide richer location aware situations Spaces may be 
related to other Spaces through SpaceRelationships. There 
are two types of space relationships: SpaceCompositions 
and SpaceGeneralizations. 

The space composition 
SpaceCompositions represent a set of spaces that are treat-
ed as “the same” space. It means that if space S is com-
posed by space A and space B. If user U enters A, then 
goes to B and then exits B. From S point of view, the user 
has entered S and then exited S. For instance, suppose that 
we have to model the personal presence in an office build-
ing. The “building” space should be composed by the “of-
fice” spaces, the “hall” spaces, the “elevator” spaces, and 
so on. Thus, to express that someone is outside we have to 
write “U out Building”. 

The space generalization 
SpaceGeneralizations are used to express common behav-
ior among a set of spaces. It means that if space S is gener-
alizes space A and space B. If user U enters A, then goes to 
B and then exits B. From S point of view, the user has en-
tered A, exited A, entered B and exited B. For instance, 
suppose that we have to model who is in the rest room in 
an office building. As there are several rest rooms in the 
building, we should define the “RestRoom” space as the 
generalization of all the rest room spaces of the building. 
Thus, to express that someone is in the rest room we have 
to write “U in RestRoom”. 



 101

The location-aware situation 
The LocationAwareSituation is a key concept in the space 
model because it is “the link” between location awareness 
and the TaskModel. Through this relationship, and the rela-
tionship between the TaskModel and the DomainModel, 
the location information reaches to the core of the system. 
Thus, while the Space and the SpaceRelationship describe 
the space environment, LocationAwareSituations define 
how the environment affects system and user tasks. These 
situations are defined by SpaceExpressions that describe 
the situation. 

The space expressions 
Space expressions describe a location-aware state of the 
system in terms of regular expressions that are modeled 
following the Composite Design Pattern [9]. 

The space event 
The simplest SpaceExpression is the SpaceEvent. It repre-
sents an event that relates two Spaces. Note that one of 
them is usually the user. There are 4 types of SpaceEvents, 
according to the patterns exposed in [12]. For instance: if U 
represents the Space for a user, and X an arbitrary Space 
(e.g., a Room), the SpaceEvent expression U ENTER X 
occurs when U entered in X. Or if U represents the Space 
for a user, and X an arbitrary Space (e.g., a Room), the 
SpaceEvent expression U EXIT X occurs when U left X. 
Besides, if U represents the Space for a user, and X an arbi-
trary Space (e.g., a sculpture), the SpaceEvent expression U 
MOVES_FORWARD X occurs when U is approaching to 
X. Finally, if U represents the Space for a user, and X an 
arbitrary Space (e.g., a sculpture), the SpaceEvent expres-
sion U MOVES_AWAY X occurs when U is going away 
from X. Note that exiting a region does not necessarily im-
ply an entering in the next region: it depends how regions 
are configured together. 

The space operations 
SpaceEvents can be composed into SpaceOperations. A 
SpaceOperation represent a relationship between two 
SpaceExpressions (exp1 and exp2). There are two types of 
SpaceOperations: SpaceSequence and SpaceAlternative. 
While the SpaceSequence represents a “path” of 
SpaceEvents, the SpaceAlternative represent a “selection” 
between two events. 

The space sequence 
The space sequence is used to identify patterns of behavior. 

The tracking of the user position may result in a very valu-
able resource for both, controlling and gathering feedback 
for reactions. SpaceSequences can be used to make predic-
tions and subsequently, ask the user for a decision (control-
ling reaction) or perform an action (provide feedback to the 
user). Thus, let Seq (E1, E2) be the SpaceSequence expres-
sion where E1 and E2 represent expressions, too. The situa-
tion Seq(U ENTER S,U EXIT S) occurs if the user has en-

tered and then exited space S. For instance, we want to be 
aware if the user U has gone to the cinema, to suggest 
him/her a place for dinner. Seq(U ENTER CINEMA, U 
EXIT CINEMA). 

The space alternative 
The space alternative is a valuable resource when dealing 
with the same LocationAwareSituation in different Spaces. 
Thus, let Alt (E1, E2) be the SpaceAlternative expression 
where E1 and E2 represent expressions too. The situation 
Alt(U ENTER S1, U ENTER S2) occurs if the user has en-
tered space S1 or space S2. For instance, “set light intensi-
ty” to user defined if the user enters into the kitchen or the 
dining room Alt(U ENTER KITCHEN, U ENTER DIN-
ING). 

The space repetitions 
The SpaceRepetitions expressions are analogous to the 
Kleene Closure in regular expressions. They are used to 
express repetition of expressions. There are two types of 
space expressions: SpaceRepeatZeroOrMore and SpaceRe-
peartOneOrMore.On the one hand, the SpaceRe-
peatZeroOrMore represents an optional repetition of a 
SpaceExpression; it means that the expression may occur 
or not, if it does it may occur more than once. On the other 
hand, the SpaceRepeatOneOrMore represents a mandatory 
repetition of a SpaceExpression; the expression occurs at 
least once. Therefore, let Rep(E) be the SpaceRe-
peatZeroOrMore expression where E expression too. The 
situation Rep(Seq(U ENTER S, U EXIT S)) occurs if the 
user has entered and exited S more than once or has not en-
tered and exited S at all. Similarly, let Rep1(E) be the 
SpaceRepeatOneOrMore expression where E expression 
too. The situation Rep1(Seq(U ENTER S, U EXIT S)) oc-
curs if the user has entered and exited S more than once. 
Finally, we present a shortcut to a very common SpaceEx-
pression: U IN S => Seq (U ENTER S, U EXIT S). For in-
stance, suppose that we want to suggest a visitor V, in an 
art gallery, pieces of the same author. If all pieces of author 
A are generalized by the A Space, and the visitor space is 
represented by V, then the expression Rep1(V ENTER A) 
represents  that the user have visited at least one piece of A. 

The mapping, CUI and FUI extensions 
These extensions deal with the lower level representation 
of the location awareness and the relationships among 
high-level and low-level models of the system. The Figure 
5 shows the extension. The information is perceived by the 
system through Sensors. These Sensors provide data that is 
interpreted by LocationInterpreters. These Interpreters are 
in charge of turning the sensor data into space information 
that can be processed by the location system in a platform 
independent way. Thus, this information is matched to Lo-
cationAwareSituations that are relevant to the system in or-
der to propagate this information through the tasks to the 
domain model. 

 



 102

 
Figure 5. Space metamodel extension for CUI. 

The space representation 
The SpaceRepresentation provides an abstraction of the 
technology used by the location system. It provides a 
common identification for spaces in the system. Thus, 
when interpreters get data from sensors, they turn them into 
Spaces through the use of the SpaceRepresentation abstrac-
tion. Concretely, we defined three types of SpaceRepresen-
tations according to the type of technology being used. The 
IDSpaceRepresentation is used by technologies that base 
object location on IDs. The UTMSpaceRepresentation is 
used by GPS based technologies. The SignalSpaceRepre-
sentation is used by RF based technologies.  

The location sensor 
The LocationSensor is seen as a Concrete Interaction Ob-
ject (CIO) that is defined in the Concrete User Interface 
(CUI) model. It is used to represent the technology, or set 
of them, to be used by the location system. 

As the CUI model is part of the Platform Specific Model 
(PSM), the inclusion of new technologies or brands should 
be reflected into this model. We have initially introduced 
the Wi-Fi, the Bluetooth, the Passive and active RFID, the 
ZigBee and the GPS technologies. While whole new tech-
nologies should be added as new Sensors, new brands of 
products may be sub-classified from existing technologies 
to improve the reusability. 

The location interpreter 
Location interpreters are the glue that relates the spaces de-
fined in the space model to spaces in the real or virtual 
world through the location sensors. In this way, Loca-
tionAwareSituations perceives the space environment that 
is forwarded to the domain model according to their rele-
vance. To carry out this task a LocationInterpreter is de-
fined for Sensor technology to translate information re-

ceived from sensors, and turn it into events that will be 
processed by LocationAwareSituations to check for the oc-
currence of them. Regarding infrastructure of the location 
system, it can be either centralized or distributed because 
the application interface between the SpaceRepresentation 
and the LocationInterpreter can be defined using the Proxy 
design pattern [9] 

CASE STUDY 
This section explains how to model location-aware charac-
teristics of the Location-Aware Remote Control (LARC) 
application using the extensions of UsiXML to support lo-
cation-awareness. 

LARC is a home automation application that allows users 
to control different home devices through different UIs 
(one for each device) that are automatically displayed when 
the user is at the range of the device control. The Figure 6 
(on the left) depicts the scenario with three devices: the 
TV, the air condition system and the electric blinds. The 
description is focused on the UI modeling because infra-
structure issues are out of the scope of this article. 

Space model 
The space model is described with a UML class diagram 
like notation (see Figure 6 on the right). While the Space 
relationship is represented as an UML class without attrib-
utes or methods, the SpaceComposition and SpaceGeneral-
ization relationships are described using the UML class 
composition and generalization respectively. 
The physical spaces from where devices are controlled are 
represented by the AC, TV and Blinds Spaces. They are all 
part of the Room Space. Besides, we have defined three 
main virtual spaces representing the UI for each device. 
They are the ACRC for the AC remote control, the TVRC 
for the TV device and the BlindRC for the electric blinds 



 103

 

 
Figure 6. The LARC space model. 

The space representation for each control is very similar. 
Therefore, we focus our attention on the TVRC representa-
tion. The TVRC is composed by a set of spaces that may 
represent the controls on the PDA screen (we say “may” 
because we do not know how they will be represented at 
this stage of the development process). There spaces are 0-
9, TVONOFF, TVIncVol, TVDecVol, NextPictureCon-
trol, PictureUp and PictureDown. In order to select a 
channel, the user introduces a sequence of digits. To define 
this sequence we need a common identified for all digits 
(0-9). Therefore, we have defined the TVDIGIT space as 
the generalization of all digits. 

Task model 
As we have mentioned before, the description is not com-
plete. The Figure 7 depicts the Task model for the LARC. 
As UsiXML describes task models using the CTT [18] no-
tation, we use an extension to CTT notation in order to in-
troduce the LocationAwareSituation concept. LocationA-
wareSituations are defined within Tasks. They define the 
SpaceExpressions using the textual notation we have de-
scribed on previous section.  

For the sake of clarity, the Figure 7 does not show the 
whole task model. Although it depicts the task model for 
all models, the only one that is complete is the AC remote 
control UI. However, the complete definition for the rest of 
the models is analogous to the AC remote control UI. 

Analyzing the model we notice that the ShowACUI task is 
executed when the OnEnterAC situation matches the U 
ENTER AC space expression. It means that the AC Remote 
Control UI will be shown when the user U enters into the 

AC space. This is a physical space relationship between the 
user and the control zone of the AC device. However, as 
we have mentioned before, we can define virtual relation-
ships among physical and virtual spaces. For instance, The 
SwitchACONOFF task defines the OnACSwitch situation 
where the expression U ENTER ACONOFF, U EXIT 
ACONOFF, defines a relationship between the space that 
may be represented by the user’s finger on the PDA screen, 
and may be a Button control that is being displayed on the 
PDA screen. Thus, the space expression defines the “on 
click” event on the screen. 

Concrete and Final User Interface 
The concrete user interface regarding location awareness is 
based on the LocationSensor concrete interaction object. 
The LocationSensor provides the user interface with the in-
formation to act. It is related to the technology (RFID, 
GPS, etc.) employed. This information is interpreted by the 
LocationInterpreter according to the location technique 
(fingerprint, triangulation, etc.) employed. Thus, using 
SpaceRepresentations that are compatible with the technol-
ogy and technique employed, the LocationAwareSituation 
is evaluated according to the space expression in order to 
provide the user interface with the situation occurred. The 
implementation of the approach is based on the mappings 
described by the LocationInterpreter (LocationAwareSitua-
tion, Space) through the SpaceRepresentation, and the Lo-
cationAwareSituation mapping between (Space, Task). 

IMPLEMENTATION 
Both, the Task and Space model editors were developed as 
Eclipse plugins, using the Eclipse Modeling Framework 
(EMF) and the Eclipse Graphical Modeling Project (GMF).



 104

 
Figure 7. The LARC task model. 

 

 
Figure 8. Task model editor. 

 
Figure 9. Space model editor. 

 
Both editors are built on the base of Essential Meta-Object 
Facility (EMOF) metamodels using the ECORE format. 
Model validation is provided by the means of constraints 
defined in Object Constraint Language (OCL). Models are 
manipulated and stored in XMI (XML Metadata Inter-
change format). 

To build the task model editor (see Figure 8), we have de-
fined a modified version of the CTT where tasks can be re-
lated to different situations according to different location-
aware situations. It provides designers with the ability to 
define space expressions for each situation. To build the 
space model editor (Figure 9), we have employed an UML-
like Domain Specific Language (DSL) based on class dia-
grams. 

CONCLUSION AND FUTURE WORK 
This work presents how to model and develop location-
aware UIs employing the UsiXML methodology. To ac-
complish this goal we have extended the metamodels de-
fined by the CRF process. As discussed in the Motivation 
section, actual approaches to develop location-aware appli-
cations lack of technology independence, conceptual space 
modeling, sociologic space support, and feedback for reac-
tion, and control for reaction, too. To cope with technology 
independence we have adopted a MDA approach where the 
PIM allows designers to define applications that are plat-
form independent. Thus, the PSM defined by the CUI 
model (Sensors, SpaceRepresentations, etc.) abstracts the 
technological issues regarding the location awareness.  



 105

The adoption of the MDA approach has also provided us 
with a CIM to represent the space environment using the 
space model where spaces can be modeled independently 
in a conceptual way. Regarding the need for conceptual 
model for spaces, the need for gathering feedback for reac-
tion and the need for controlling the reaction, we have re-
visiterdingd the Norman seven stages to the space and task 
metamodels for location awareness as follows: the Goals 
for location-aware UI are defined by the Goals of the sys-
tem, the initiative for reaction is represented by the 
SpaceExpression, the specification of the reaction is repre-
sented by a LocationAwareSituation, the application of the 
reaction is perfomed by the Task, the transition with reac-
tion is represented by the relationship (Task to Domain 
Model), the interpretation of the reaction is exposed by the 
UI through the domain model, finally the evaluation of the 
reaction is performed by the User. Regarding the need for 
sociological space, we introduced a general definition of 
space where users have their own space that may be dy-
namically changed (the same user can be represented by 
different spaces according to the situation). 

The idea of the homogeneous view of spaces is also very 
useful to represent virtual spaces such as UI artifacts. Thus, 
GUIs and physical spaces are abstracted to such level that 
space situations may reference any of them indifferently. 
As future work, we are following different research lines. 
The position is the initial point of the gesture. 

Thus, we plan to introduce gestures to UsiXML methodol-
ogy in order to extend its power of expression. Besides, the 
location awareness is just a subset of context awareness. 
Therefore, we are doing research on how to introduce other 
aspects of context awareness into UsiXML such as the 
physical environment or the infrastructure. Finally, the so-
cial environment is an important part of the context aware-
ness. Therefore, the definition of the social structure of the 
application is a current key issue. 

ACKNOWLEDGMENTS 
We gratefully acknowledge the support of the ITEA2 Call 
3 UsiXML project under reference 20080026 by Région 
Wallonne DGO6 and the FP7-ICT5-258030 Serenoa pro-
ject funded by the European Commission. 

REFERENCES 
1. Anastasi, G., Bandelloni, R., Conti, M., Delmastro, F., 

Gregori, E., and Mainetto. G. Experimenting an indoor 
bluetooth-based positioning service, in Proc. of 
ICDCS’2003, 480–483. 

2. Bahl, P., and Padmanabhan, V. N. RADAR: an in-
building rf-based user location and tracking system in 
Proc. of INFOCOM 2000, IEEE, 775–784, 2000. 

3. Brown, P. J., Bovey, J. D., and Chen, X. Context-aware 
applications: from the laboratory to the marketplace. 
IEEE Personal Communications, 4(5), 58–64, Oct. 
1997. 

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A unifying reference 

framework for multi-target user interfaces. Interacting 
with Computers, 15(3):289–308, 2003. 

5. Prante, T., Röcker, C., Streitz, N. A., Stenzel, R., 
Magerkurth, C., van Alphen, D., Plewe, D. A.: Hel-
lo.Wall- Beyond Ambient Displays. In Proc. of the 5th 
Intern. Conference on Ubiquitous Computing, Seattle, 
Wash., USA, Oct. 12-15, 2003. 

6. Chou, L.-D., Lee, C.-C., Lee, M.-Y., and Chang, C.-Y. 
A tour guide system for mobile learning in museums. In 
Proc. of WMTE 2004, IEEE Computer Society, 195–
196, 2004. 

7. Dey, A. K. Understanding and using context. Personal 
and Ubiquitous Computing, 5, 4–7, 2001. 

8. Fleck, M., Frid, M., Kindberg, T., O Brein-Strain, E., 
Rajani, R., and Spasojevic, M. From Informaing to Re-
membering: ubiquitous systems in interactive museums, 
Pervasive Computing, 1(2), 13-21, 2002. 

9. Gamma, E., Helm, R., Johnson, R.., and Vlissides, J. 
Design Patterns: Elements of Reusable Object-Oriented 
Software. 

10. Hallaway, D., Feiner, S., and Höllerer, T. Bridging the 
gaps: Hybrid tracking for adaptive mobile augmented 
reality. Applied Artificial Intelligence, 25, 477–500, 
2004. 

11. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, 
J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., 
Potter, F., Tabert, J., Powledge, P., Borriello, G., and 
Schilit, B. Place Lab: Device positioning using radio 
beacons in the wild, in Proc. of PerCom’2005, 116–
133, 2005. 

12. Li, Y., Hong, J. I., Landay, and J. A. Topiary: a tool for 
prototyping location-enhanced applications. In Proc. of 
UIST’2004. 

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouil-
lon, L., and Víctor López Jaquero. UsiXML: a Lan-
guage Supporting Multi-Path Development of User In-
terfaces. In Proc. of 9th IFIP Working Conference on 
Engineering for Human-Computer Interaction jointly 
with 11th Int. Workshop on Design, Specification, and 
Verification of Interactive Systems EHCI-DSVIS'2004 
(Hamburg, July 11-13, 2004). Lecture Notes in Com-
puter Science, vol. 3425. Springer, Berlin (2004), pp. 
200-220. 

14. Long, S., Kooper, R., Abowd, G. D., and Atkeson, C. 
G. Rapid prototyping of mobile context-aware applica-
tions: The Cyberguide case study. In Proc. of Mo-
biCom’96, 97–107. 

15. Okuda K., Yeh, S., Wu, C., Chang, K., and Chu, H. The 
GETA sandals: A footprint location tracking system. In 
Proc. of LoCA’2005. LNCS, 3479, 120–131, 2005. 

16. Orr, R., Orr, R. J., and Abowd, G. D. The smart floor: 
A mechanism for natural user identification and track-
ing. In Proc. of CHI 2000, ACM Press, 1–6, 2000. 

17. Pascoe, J., Ryan, N., and Morse, D. Using while mov-
ing: HCI issues in fieldwork environments.TOCHI 7(3), 
417-437, 2000. 



 106

18. Paternò, F. Model-Based Design and Evaluation of In-
teractive Applications. Applied Computing. Springer-
Verlag, 1999. 

19. Patil, A., Munson, J., Wood, D., and Cole, A. Bluebot: 
Asset tracking via robotic location crawling, Computer 
Communications, 31(6), 1067–1077, 2008. 

20. Salber, D., Dey, A. K., and Abowd, G. D. The context 
toolkit: Aiding the development of context-enabled ap-
plications. In Proc. of CHI’99, 434–441, 1999. 

21. Sharifi, G., Deters, R., Vassileva, J., Bull, S., and 
Röbig, H. Location-Aware Adaptive Interfaces for In-
formation Access with Handheld Computers. LNCS, 
vol. 3137. Springer-Verlag, Berlin (2004), pp. 305-328. 

22. Tesoriero, R., Gallud, J. A., Lozano, M. D., and Peni-
chet, V. M.R. Tracking autonomous entities using 
RFID technology. IEEE Trans. on Cons. Elec. 55, 650–
655, May 2009. 

23. Trevisan, D.G., Gemo, M., Vanderdonckt, J., and 
Macq, B. Focus-Based Design of Mixed Reality Sys-
tems. In Proc. of 3rd Int. Workshop on Task Models and 
Diagrams for user interface design TAMODIA’2004 
(Prague, November 15-16, 2004). Ph. Palanque, P. 
Slavik, M. Winckler (Eds.). ACM Press, New York 
(2004), pp. 59-66. 

24. Vanderdonckt, J., and Bodart, F. Encapsulating 
Knowledge for Intelligent Automatic Interaction Ob-
jects Selection. In Proc. of the ACM Conf. on Human 
Factors in Computing Systems INTERCHI'93 (Amster-
dam, 24-29 April 1993). ACM Press, New York 
(1993), pp. 424-429. 

25. Vanderdonckt, J. A MDA-Compliant Environment for 
Developing User Interfaces of Information Systems. In 
Proc. of 17th Conf. on Advanced Information Systems 
Engineering CAiSE'05 (Porto, 13-17 June, 2005). O. 
Pastor & J. Falcão e Cunha (Eds.). Lecture Notes in 
Computer Science, vol. 3520. Springer-Verlag, Berlin 
(2005), pp. 16-31. 

26. Vanderdonckt, J., Grolaux, D., Van Roy, P., Limbourg, 
Q., Macq, B., and Michel, B. A Design Space for Con-
text-Sensitive User Interfaces. In Proc. of ISCA 14th  
Int. Conf. on Intelligent and Adaptive Systems and 
Software Engineering IASSE’2005 (Toronto, 20-22 July 
2005). International Society for Computers and their 
Applications, Toronto (2005), pp. 207-214. 

27. Weiser, M., and Brown, J. S. The coming age of calm 
technology. Beyond Calculation: The Next Fifty Years 
of Computing. Copernicus, 75–85, 1997. 

28. Winckler, M., Trindade, F., Stanciulescu, A., and 
Vanderdonckt, J. Cascading Dialog Modeling with 
UsiXML. In Proc. of 15th Int. Workshop on Design, 
Specification, and Verification of Interactive Systems 
DSV-IS’2008 (Kingston, July 16-18, 2008). Lecture 
Notes in Computer Sciences, vol. 5136. Springer, Ber-
lin (2008), pp. 121-135 

.



 107

Adaptive User Interface Support for 
Ubiquitous Computing Environments 

Heiko Desruelle1, Dieter Blomme1, George Gionis2, and Frank Gielen1 
1Ghent University – IBBT, Ghent, Belgium 

2National Technical University of Athens – DSS lab, Athens, Greece 
{heiko.desruelle, dieter.blomme, frank.gielen}@intec.ugent.be, gionis@epu.ntua.gr  

ABSTRACT 
Application developers are increasingly facing the need to 
cover a wider variety of target devices. The diversity of de-
vices supporting software applications is expanding from 
PC, to mobile, home entertainment systems, and even the 
automotive industry. Maintaining a viable balance between 
development costs and market coverage has turned out to 
be a challenging issue when developing applications for 
such a ubiquitous ecosystem. In this paper, we present the 
webinos approach as a means to enable adaptive user inter-
faces for web-based applications in ubiquitous computing 
environments. We propose a model-based user interface 
adaptation framework driven by a rich description of the 
target delivery context. 

Author Keywords 
Abstract user interface, adaptation, context awareness. 

General Terms 
Design, Reliability, Human Factors, Theory 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces 
and Presentation]: User Interfaces – User-centered de-
sign. 

INTRODUCTION 
The availability of connected devices is growing rapidly. In 
our everyday life, we already use a multitude of personal 
devices that are connected to the Web. The number of 
shipped smart-phones at the end of 2010 even surpassed 
the traditional computer segments for the first time in the 
US [10]. From PC, to mobile, to home entertainment and 
even in-car units, consumers should prepare for a connect-
ed experience. Through the Web, applications can be ac-
cessed whenever and wherever the user wants, regardless 
of the type of device that is being used. However, from an 
application development perspective, ubiquitous environ-
ments generally introduce challenging and time-consuming 
requirements. 

The variety of presentation and interaction modalities 
makes it very hard to support a wide range of devices. 
Even with standardized and cross-platform web technolo-
gies such as HTML, CSS, and JavaScript, efficiently man-
aging ubiquitous variability points remains an important 
ongoing research topic [9].  

Web-based software systems are traditionally modeled by 
separation of concerns. The models are engineered along 
three orthogonal dimensions: the development phases, the 
system’s views, and its aspects (as illustrated in Figure 1) 
[12]. The phase dimension sets out the different stages of 
web development, ranging from analysis, to design and im-
plementation. Each of these phases requires a number of 
specific views addressing the system’s content, its naviga-
tion structure, and its presentation to the end-user. Finally, 
the aspects dimension defines both the structural and be-
havioral aspects of each of the view models. The growing 
importance of ubiquitous applications emphasizes the need 
for fragmentation management within this web engineering 
model. This concern has to be handled throughout every 
stage of the application’s development life cycle. As pro-
posed by Kappel et al., adaptability can be considered as an 
additional web engineering dimension, crosscutting all 
three other web modeling dimensions [11].  

 
Figure 1. Adaptability as a crosscutting aspect on the 
traditional modeling dimensions of web engineering 

(from Koch et al. [12]). 

For developers, the straightforward incorporation of such 
adaptability still remains an important challenge [17]. 
Ubiquitous applications should adapt dynamically to the 
current context of use, and even to contextual situations not 
foreseen at the application’s design time. From this per-
spective, the webinos project aims to deliver a platform for 
web applications across mobile, PC, home media and in-car 
devices [22]. Webinos is a service platform project under 
the European Union’s FP7 ICT Programme. The project 
represents a leap forward as a federated web runtime that 
offers a common set of APIs to allow applications to easily 
access cross-user, cross-service, and cross-device function-
ality in an open yet secure manner. Within the webinos 



 108

project, work is being done to achieve a maximum level of 
independence from the various underlying operating sys-
tems and hardware. The aim of our research is to propose a 
number of frameworks that enable the development of self-
adaptive ubiquitous web applications. The Model Driven 
Development (MDD) approach provides very useful sup-
port for this type of challenge. In this paper, we focus on 
enabling the adaptability of user interfaces according to an 
approach derived from the CAMELEON Reference 
Framework (CRF) [3]. We achieve this goal by incorporat-
ing webinos runtime support for context-aware transfor-
mation of abstract user interfaces description models. 

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 provides back-
ground on the webinos project and discusses the core web 
application runtime platform. Section 4 elaborates on the 
webinos approach in offering adaptive user interface sup-
port to application developers. In section 5 we discuss a 
case study in the e-learning domain for providing learning 
assistance to students with a disability. This use case 
demonstrates the goal of our approach in order to reach 
adaptability support that is driven by various contextual 
dimensions. Finally, future work and our conclusion are 
presented in Section 6. 

RELATED WORK 

The CAMELEON Reference Framework (CRF) [3] is a re-
sult of the EU-funded FP5 CAMELEON Project [4]. The 
framework defines a context-sensitive user interface devel-
opment process. The process is driven by an intrinsic no-
tion of the current user context, the environment context, as 
well as the platform context. According to the CRF ap-
proach, User Interface (UI) development consists of four 
subsequent stages:  

1. Specification of the task and domain model, defining a 
user’s required activities in order to reach his goals.  

2. Definition of an abstract user interface (AUI) model. 
The AUI model expresses the application’s interface 
independently from any of the delivery context attrib-
utes.  

3. Definition of a concrete user interface (CUI) model, 
which generates a more concrete description of the AUI 
by including specific dependencies to the delivery con-
text.  

4. Specification of the final user interface (FUI), corre-
sponding with the user interface in its runtime environ-
ment.  

Figure 2 shows the interconnections and transformations 
between the above-mentioned CRF stages. The downward 
arrows depict reification processes. Reification is the trans-
formation from a higher-level abstraction to a lower-level 
abstraction phase, hence inferring a more concrete UI de-
scription. The upward arrows, on the other hand, specify 
the abstraction processes. An abstraction is the inverse 

transformation of reification. The third transformation type 
is the translation, depicted by the horizontal arrows. The 
translation deals with adapting the UI description to chang-
es in one of the context of use models. In this case, the UI 
description’s abstraction level remains the same when per-
forming a translation. 

 
Figure 2. Context-aware UI development according to 

the CAMELEON Reference Framework 
(from Calvary et al. [3]). 

The Morfeo MyMobileWeb project [14] offers a frame-
work that simplifies the development of web-based appli-
cations. MyMobileWeb specifically focuses on the mobile 
ecosystem. Alternative device spaces are not addressed by 
the project at this point. The framework applies a model-
based approach to enable an automated application adapta-
tion process based on the target delivery context. 

MyMobileWeb uses the IDEAL2 language [6] to enable 
higher abstraction levels during the application’s develop-
ment. Adaptation decisions are made at runtime, based on a 
contextual description of the target platform. The context 
space is modeled according to the W3C Delivery Context 
Ontology [5]. The mappings between the AUI and CUI de-
scriptions are expressed using the standardized syntax of 
Cascading Style Sheets Level 2 (CSS2) [1]. 

The Model-Based UI Working Group (MBUI WG) [21] is 
a recently chartered W3C working group as part of the 
consortium’s Ubiquitous Web Activity (UWA) [18]. Its 
goal is to work on standards that enable the authoring of 
context-aware user interfaces for web applications. The 
MBUI WG aims to achieve this type of adaptivity by 
means of a model driven design approach. In this context, 
the semantically structured aspects of HTML5 will be used 
as key delivery platform for the applications’ adaptive user 
interface. 

THE WEBINOS PLATFORM 

Webinos is an EU-funded project. The project aims to de-
fine and deliver an open source platform, to enable web-
based applications and services to be used in a consistent 
and secure manner over a broad range of connected devic-
es. The supported devices range from mobile, to desktop, 



 109

to home entertainment systems, and in-car units. In order to 
support this variety of devices and minimize the required 
efforts for application developers, webinos upholds a “sin-
gle service for every device” ideology. Figure 3 depicts a 
high-level overview of the webinos platform structure. The 
system’s components are spread over the devices, as well 
as the cloud. The cloud components represent an important 
aspect of the platform, as these components enable users to 
access applications and services regardless of their device’s 
physical boundaries. 

This seamless interconnection principle is centered around 
the notion of a so called Personal Zone. The Personal Zone 
groups a user’s personal devices and services. To enable 
external access to devices and services in the zone, the 
webinos platform defines the Personal Zone Hubs (PZH). 
Each user has his/her own PZH running in the cloud. This 
facilitates access to someone’s services over the Web from 
other devices. 

The PZHs are federated and provide support for discover-
ing other people’s hub, allowing users to easily share data 
and services. Although the system is designed with a strong 
focus on taking benefit from online usage, all devices in the 
Personal Zone have access to a local context model. This 
allows users to still operate their applications when being 
offline, or temporarily unable to access the Internet. 
Webinos provides offline support through the Personal 
Zone Proxy (PZP) component on the device. The PZP acts 
in place of the PZH when no Internet access is available. 

The webinos Web Runtime (WRT) component can be con-
sidered as an extension to a traditional browser. It is capa-
ble of rendering web applications specified using standard-
ized web technologies such as HTML, CSS, and JavaS-
cript. The webinos WRT maintains a tight binding with the 
local PZP. This binding allows the webinos WRT to be 
much more powerful than traditional browser-based appli-
cation environments, as it enables the runtime to interface 
with local device APIs and services. Moreover, the PZP al-
so allows the system to connect and synchronize with other 
webinos devices through its binding with the PZH. 

 
Figure 3. High-level overview of the webinos ubiquitous 

application runtime platform. 

CONTEXT-DRIVEN USER INTERFACE ADAPTATION 
As described in the previous section, the webinos platform 
uses the web to provide a rich delivery channel for ubiqui-
tous applications. Nevertheless, there is still a need for op-
timizing applications to their specific delivery context. We 
use the Context-Aware Design Space (CADS) to visualize 
the required degree of application adaptability that is aimed 
for by the webinos platform (see Figure 4). The CADS is 
proposed by Vanderdonckt et al. [20] as a means to analyze 
and compare a software system’s dimensions subject to ad-
aptation. By default, the design space defines seven adapta-
tion dimensions, but it can be extended with additional di-
mensions based on the application domain’s specific needs. 
As shown in Figure 4, the strong fragmentation of ubiqui-
tous computing in terms of interaction methods, hardware 
characteristics, software capabilities, etc. clearly requires a 
high level of adaptability. 

 
Figure 4. Context-aware design space (CADS) visualiz-

ing the adaptability levels supported by the webinos 
platform for each of the design dimensions. 

Webinos Context Model and Framework 
Context management is an important aspect of the webinos 
platform. The webinos context model comprises four top-
level submodels: the user context, the device context, the 
environment context, and the application context. The first 
three models are internally managed by the webinos sys-
tem, whilst the application context model provides devel-
opers the opportunity to structure a situation’s contextual 
description from their application’s perspective. In addi-
tion, structuring the application’s context information al-
lows users to more easily open up data access from other 
devices and services, or even allow access from the outside 
world (e.g., by friends, family, collegues, etc.). The webi-
nos context framework is built on top of these models. The 
framework is one of the core webinos service (see Figure 
3) and provides the necessary functionality for acquiring, 
storing, and inferring rich contextualized data. Other 
webinos applications and services rely on this framework 
to support the need for context-awareness during the exe-
cution of their operations. The framework is responsible for 
extracting and storing context data through the identifica-



 110

tion of specific context-related events that happen within 
webinos-enabled devices. In addition, the framework pro-
vides applications with an API to access such context in-
formation either by querying against the in-storage data or 
by being notified in real time regarding specific context 
changes. The context framework is closely coupled with 
the webinos policy and privacy enforcement framework in 
the PZP. This binding aims to ensure the secure handling of 
the often highly sensitive context data that is being stored 
and accessed. Figure 5 describes the conceptual architec-
ture of the webinos context framework. 

 
Figure 5. Architectural overview of the webinos context 

framework. 

The Context API constitutes a component that enables ap-
plications to access the underlying volume of contextual 
data in a uniform way. The API provides interfaces that 
support two different modes for accessing context infor-
mation: 

• The Query API enables applications to execute targeted 
queries for specific context data in the storage system.  

• The Change Subscription API enables applications to 
subscribe for specific events that are triggered by a con-
textual change within webinos. Subsequently, sub-
scribed applications are notified in real time when such 
events occur.  

API access requests are passed to the Query Processor. The 
processor parses the request and checks its execution rights 
in collaboration with the PZP. In case the request is granted 
by the PZP, the query is optimized and executed. Besides 
acting as policy enforcement point, the PZP is also respon-
sible for dispatching context events to the Context Acquisi-
tion component, and synchronizing contextual data be-
tween the local device and the Personal Zone (cfr. descrip-
tion of the general webinos architecture in Section 3). 

Webinos User Interface Framework 
The UI Framework is another core webinos service (see 
Figure 6). It enables application developers to focus the de-
sign of their user interfaces on the AUI abstraction level. 
The framework takes care of processing UI-related plat-
form and context dependencies by using the AUI model to 
drive the CUI generation in a (semi-)automated way. 
Whilst the framework is capable of generating CUIs with-
out human intervention, webinos wants to keep developers 
in the loop and enables them to specify their own transfor-
mation requirements throughout the entire UI generation 
process. The framework addresses this requirement by 
providing plugable support for User Interface Description 
Languages (UIDL). The extensible nature of the frame-
work allows developers to use their preferred CAMELEON 
Reference Framework-compliant UIDL (e.g., UsiXML 
[19], or MariaXML [16]) to define their application’s user 
interface. The only requirement to use a specific UIDL is 
the presence of a connector component for this particular 
UIDL in the webinos UI framework. The UIDL-specific 
connectors are required in order to enable the framework’s 
automated transformation inference.  

The UI Transformation Manager component is at the heart 
of the framework. The component drives the transfor-
mation processes, aiming for a contextually optimized final 
user interface through a series of reification and translation 
operations. The Transformation Manager comprises an in-
ference engine to attain this goal. The webinos UI trans-
formation process relies on inference through dynamic pat-
tern matching. 

 
Figure 6. Architectural overview of the webinos adap-

tive user interface framework. 



 111

Each transformation rule Φ within the transformation mod-
el can be represented as a conditional substitution opera-
tion: 

 Φ:=P ?   [S]  :  [T]  . (1) 

The predicate P in Equation (1) is used to set the required 
condition before executing the transformation operation. 
The actual transformation is expressed in terms of the subs-
titution S=e [ ]l:=r , consisting of an expression e which is 
matched for pattern l that in turn is substituted by the ex-
pression r. T is an optional substitution, executed in case 
the required condition P is not met. The structural patterns 
are searched for in the AUI model. This matching step is 
performed in order to detect structural abstractions (i.e., 
widget structures) within the application’s user interface 
description. The transformation’s precondition expression 
P, on the other hand, is based on the variables in the con-
text model and the application’s domain model. The trans-
formation rules are selected from the transformation model. 
In case multiple transformation rules match the discovered 
UI pattern, the default conflict resolution strategy is to allo-
cate higher priority to rules defined by the application de-
veloper. This way, application developers maintain maxi-
mum control over the transformation process. 

CASE STUDY: LEARNING ASSISTANCE FOR DISA-
BLED STUDENTS 
In this section, we demonstrate the concepts of our ap-
proach based on a case study from the e-learning domain. 
The presented case aims to provide optimized e-learning 
facilities to students with a certain disability. For students 
with a disability, learning assistance services can be indis-
pensable to the successful pursuit of education. In general, 
course material can significantly benefit from accessibility 
adaptations for sighted, blinds, hearing impaired persons, 
etc. This process is very resource consuming and often re-
quires the allocation of dedicated caretakers. Technologies 
such as Braille readers, text-to-speech (TTS), and speech 
recognition have considerably increased the accessibility of 
user interfaces. Using these technologies, disabled persons 
are given the opportunity to become more independent 
from their environment. Nevertheless, every type of disa-
bility imposes its own usability and structuring require-
ments on applications. Providing end-users with an optimal 
experience requires developers to address each of these re-
quirements individually. This approach leads to ad hoc de-
velopment processes, in which developers have to create 
and maintain multiple versions of their learning application 
for each specifically supported disability. 

This case study emphasizes the need for adaptability pro-
cesses driven by the user context, as well as the device and 
environment context. The remainder of this section will 
elaborate on the dynamic adaptation of an e-learning AUI 
into a contextually optimized CUI, performed within the 
webinos UI framework. We will examine the case in which 
a user needs to be presented with an interactive form-based 

user interface. Form-filling is a frequently performed action 
in e-learning environments (e.g., online assessments, sub-
mitting assignments, etc.). 

Abstract User Interface Model 
An application developer starts the UI design process by 
defining the AUI model. The developer can choose any 
CRF-compliant description language, as long as the 
webinos UI framework contains the necessary connector 
component for that specific UIDL. In this case, the devel-
oper needs to create an abstract form-based user interface 
for applying to a certain e-learning course and decides to 
use W3C XForms [] as abstract UI description language. 
The XForms description provides an overview of which 
control types should be presented in the UI, whilst remain-
ing at a high abstraction level and not specifying how to 
exactly display these controls. A partial representation of 
the application form’s AUI is shown in Figure 7.  

 

 
Figure 7. Partial representation of the AUI model for a 

context-aware e-learning application using the W3C 
XForms standard. 

 
Figure 8. Simplified representation of e-learning appli-

cation’s domain model. 



 112

The form controls are abstracted to a level of input and se-
lection components. Grouping controls provide a high level 
means of hierarchical interface structuring. These grouping 
controls will also help in the detection of widget structures 
by the UI Transformation Engine. Moreover, all controls 
contain a reference to their corresponding entity in the ap-
plication’s domain model (see Figure 8, and the webinos 
UI Framework description in Section 4). For form-based 
interfaces these bindings provide additional semantics re-
garding structure, data types, data ranges, etc. This infor-
mation can in turn be exploited by the UI Transformation 
Engine as rich a-priori knowledge concerning the adapta-
tion process. 

Transformation Model 
The system’s transformation model encompasses the reifi-
cation and translation steps in order to obtain a final user 
interface that is optimized for the end-user’s current con-
text of use. The webinos UI Framework enables developers 
to fall back on a generic set of transformations provided by 
the platform. The standard set of transformations ranges 
from screen-fitting media adaptations, to adaptations based 
on generic accessibility and resource saving best practices 
[7,8]. On the other hand, application developers are still 
able to maintain control over the transformation process. 
Developers are free to refine their own transformation sets, 
specific to the application domain. As elaborated in Section 
4, reification and translation rules can be expressed in 
terms of conditioned substitutions. Substitutions define 
structural changes to the AUI model. Furthermore, the link 
between the structural transformation and the conditionally 
required context attributes is realized through the specifica-
tion of the transformations’ conditional predicate descrip-
tion. These transformation preconditions can contain refer-
ences to variables within the application’s domain model, 
as well as the webinos Context Framework model. Never-
theless, based on privacy and security considerations, mod-
el queries are only permitted as long as the Personal Zone 
Proxy grants the application access to that specific type of 
information. 

The process of filling in forms with a mobile device can be 
tedious task, as these devices lack the presence of a decent 
keyboard [15]. A potential translation rule for a form-based 
user interface in a mobile delivery context could be to 
match the AUI for optional input controls. If such a pattern 
is detected, the Transformation Manager can be instructed 
to remove the matching controls from the AUI. Alterna-
tively, the translation rule can state to make such optional 
controls less obtrusive by rearranging them to the back of 
the form. Moreover, at the reification transformation level, 
the AUI can be transformed to a CUI with a look-and-feel 
matching the target device context.  

On the other hand, taking the user context into account is 
also an important aspect. As indicated above in the case 
study description, the use of abstract user interfaces can 
support the process of optimizing UIs for people with spe-

cific disabilities. A useful reification rule in this context 
can be to transform AUI structures to a VoiceXML-based 
[13] CUI in case the end-user is blind or sighted. Figure 9 
depicts the code snippet of a VoiceXML-based form filling 
CUI model after application of such reification ruleset. In 
the same way, motor impaired persons can be supported. 
E.g, by transforming the default rendering of form interac-
tion controls in order to simplify their selection. 

 
Figure 9. Partial representation of the VoiceXML-based 
CUI model for a context-aware e-learning application. 

CONCLUSION AND FUTURE WORK 
It is essential to provide end-users with an UI design that is 
optimized to their specific context of use. When developing 
for ubiquitous computing environments, this requirement is 
even further emphasized. It is not a sustainable business to 
require developers to manually address all variability 
points of the ubiquitous ecosystem. Such an approach only 
leads to developers rapidly loosing market share, and on 
the other hand entire consumer segments being ignored due 
to their marginal revenue potential. Hence, the develop-
ment of ubiquitous applications requires a higher level of 
abstraction. 

In this paper, we presented the webinos platform approach 
as a means to support adaptive ubiquitous user interfaces. 
We propose an adaptive UI framework driven by a detailed 
description of the target delivery context. The framework 
handles the processing of context related user interface de-
pendencies, whilst still providing developers the means to 
keep control over the adaptation process. The UI adaptation 
is performed on a high abstraction level through the incor-
poration of the CAMELEON Reference Framework (CRF). 



 113

We are currently working on a reference implementation of 
the webinos platform. The extensive evaluation of our plat-
form has yet to be carried out. An iterative evaluation pro-
cess is planned throughout the implementation. Various test 
groups will be addressed in order to validate our approach 
from the perspective of developers as well as end-users. 

ACKNOWLEDGEMENTS 
The research leading to these results has received funding 
from the European Union’s Seventh Framework Pro-
gramme (FP7-ICT-2009-5) under grant agreement number 
257103. 

REFERENCES 
1. Bos, B., Celik, T., Hickson, I., and Lie, H.W. Cascad-

ing Style Sheets Level 2. http://www.w3.org/ 
TR/CSS2 

2. Boyer, J.M. XForms 1.1. http://www.w3.org/TR/ 
xforms 

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L. and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (2003), pp. 289–308. 

4. Cameleon project, http://giove.isti.cnr.it/projects/ 
cameleon.html 

5. Cantera, C.M. and Rhys, L. Delivery Context Ontolo-
gy. http://www.w3.org/TR/dcontology 

6. Cantera, C.M., Roderiguez, C., and Diaz, J.L. IDE-
AL2. https://files.morfeo-project.org/mymobileweb/ 
public/specs/ideal 

7. Chisholm, W., Vanderheiden, G., and Jacobs, I. Web 
Content Accessibility Guidelines 1.0. http://www.w3. 
org/TR/WAI-WEBCONTENT 

8. Connors, A. and Sullivan, B. Mobile Web Applica-
tion Best Practices. http://www.w3.org/TR/mwabp 

9. Frederick, G.R. and Lal, R. The future of the mobile 
web. Beginning smartphone web development.  
Springer, Berlin (2009) pp. 303–313. 

10. International Data Corporation (IDC). http://www.idc. 
com/research 

11. Kappel, G., Proll, B., Retschitzegger, W., and Sch-
winger, W. Modeling ubiquitous web applications: 
the WUML approach. Conceptual Modeling for New 
Information Systems Technologies. Springer (2002), 
pp. 183–197. 

12. Koch, N., Knapp, A., Zhang, G., and Baumeister, H. 
UML-Based web engineering. Web engineering: 
modeling and implementing web applications. 
Springer, Berlin (2008), pp.157–191. 

13. McGlashan, S., Burnett, D.C., Akolkar, R., Auburn, 
R.J., Baggia, P., Barnett, J., Bodell, M., Carter, J., 
Deshmukh, M., Oshry, M., Rehor, K., Yang, X., 
Young, M., and Hosh, R. Voice Extensible Markup 
Language (VoiceXML). http://www.w3.org/TR/ 
voicexml30 

14. Morfeo MyMobileWeb project, http://mymobileweb. 
morfeo-project.org 

15. Nakagawa, T. and Uwano, H. Usability Evaluation 
for Software Keyboard on High-Performance Mobile 
Devices. In Proc. of HCI International 2011. Spring-
er, Berlin (2011), pp. 181–185. 

16. Paterno, F., Santoro, C., and Spano, L.D. MARIA: A 
universal, declarative, multiple abstraction-level lan-
guage for service-oriented applications in ubiquitous 
environments. ACM Trans. Comput.-Hum. Interact., 
(2009), pp. 324–353. 

17. Schauerhuber, A., Wimmer, M., Schwinger, W., 
Kapsammer, E., and Retschitzegger, W. Aspect-
oriented modeling of ubiquitous web applications: the 
aspectWebML approach. In Proc. of 14th Internation-
al Conference and Workshops on the Engineering of 
Computer-Based Systems, (2007), pp. 569–576. 

18. W3C Ubiquitous Web Applications Activity. http:// 
www.w3.org/2007/uwa 

19. UsiXML, http://www.usixml.org 
20. Vanderdonckt, J., Coutaz, D., Calvary, G., and Stan-

ciulescu, A. Multimodality for Plastic User Interfaces: 
Models, Methods, and Principles. In Multimodal user 
interfaces: signals and communication technology, 
Lecture Notes in Electrical Engineering. Springer-
Verlag, Berlin (2007), pp. 61–84. 

21. W3C Model-Based UI Working Group Charter. 
http://www.w3.org/2011/01/mbui-wg-charter.html 

22. Webinos project, http://www.webinos.org 



 114

Supporting Models for the Generation of 
Personalized User Interfaces with UIML  

Firas Bacha, Káthia Marçal de Oliveira, Mourad Abed 

UVHC, LAMIH, FRE CNRS 3304, F-59313 Valenciennes, France 
{firas.bacha, kathia.oliveira, mourad.abed}@univ-valenciennes.fr

ABSTRACT 
User interface (UI) personalization aims at providing the 
right information, at the right time and on the right support. 
Personalization can be performed on the interface contain-
ers (e.g. layout, screen size and resolution); and on the con-
tent provided in the interface (e.g., data, information, doc-
ument). This paper explores the content personalization in 
the description of UI using a well-know User Interface De-
scription Language (UIDL), named User Interface Markup 
Language (UIML). To address this goal, we defined a set 
of personalization models that are used to annotate a UI 
task model. By transforming this model in a model-driven 
architecture implementation, one can be able to generate a 
UIML code to generate the final UI. 

Author Keywords 
Content personalization, Personalization models, Annota-
tion, BPMN, UIML. 

General Terms 
Design, Reliability, Human Factors, Theory. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces 
and Presentation]: User Interfaces – User-centered de-
sign. 

INTRODUCTION 
The relevance of the delivered information, its intelligibil-
ity and its adaptation to the usages and preferences of users 
are key factors for success or rejection of information sys-
tems [6]. Indeed, proliferation and continuing growth of 
different computer devices with several interaction modes 
allowing users to access information anywhere and any-
time, brings new personalization challenges to these sys-
tems. In fact, systems should be adapted to the context 
changes [Error! Reference source not found.].  

Recognizing this fact, some initiatives [10] [5] [7] consid-
ering personalization aspects in the user interface design 
emerged. Personalization can be performed on the interface 
containers (i.e., layout, colors, sizes, and other design ele-
ments), and on the content (data, information, document) 
provided in the User Interface (UI) [7]. Unlike content per-
sonalization, many works explore the personalization of 
containers for User Interface (UIs).  

According to several approaches that consider UI adapta-
tion since design time and specially the CAMELEON Ref-

erence Framework (CRF) [8], the context of interaction 
with the UI and the business domain are two elements that 
are essential to implement this adaptation.  

In this context, we decided to implement UI content per-
sonalization by using a User Interface Description Lan-
guage (UIDL) that could describe the personalized UI. For 
that reason, we proposed a set of models, called personali-
zation models that contain a context model and a domain 
ontology which are linked with a mapping model. The per-
sonalization models will serve to annotate a UI task model, 
which is the high-level specification of a UI. By transform-
ing this model, one can be able to generate a User Interface 
Markup Language (UIML) [12] code, our chosen UIDL 
that describes the personalized UI.  

The reminder of this paper proceeds as follows. We first 
present briefly the definition and some studies about per-
sonalization. Then we define our proposed models. In sec-
tion 4 we explain the way this models could support UIML, 
to generate personalized UIs. Finally we present our con-
clusion and ongoing works. 

USER INTERFACE PERSONALIZATION 
There is no consensual definition of personalization. Usual-
ly, authors define personalization based on their specific 
goals and applications [6]. In this article, we can say that 
personalization deals with the capacity of adaptation of a 
UI considering some information related to this user and his 
his context. This adaptation can be performed basically on 
the interface containers presentation; i.e., layout, colors, 
sizes, and other design elements; and, on the content ele-
ments; e.g., data, information, document [7].  

To allow the UI personalization or adaptation, several au-
thors proposed to use context models (e.g., [8] [14]). When 
a system uses context to provide relevant information 
and/or services to the user, it is considered context-
awareness. A context is defined [11] as any information 
that can be used to characterize the situation of an entity 
(person, place, or object) considered relevant to an interac-
tion between a user and a system. [8] named context as 
context of use, which is composed of three classes of enti-
ties: user, platform and physical environment where the in-
teraction takes place. In this paper, we use the term “con-
text”  

The personalization of UIs has been studied by different re-
search groups in Human-Computer Interaction community. 
The consideration of content personalization is not inte-



 115

grated in proposed UIDLs. Even if they were used within 
declarative approaches, the main focus of these formalisms 
was the container adaptation. One of the most important 
works is the CAMELEON Reference Framework [8]. In 
this framework, the UI development is done through a set 
of models and transformations according to the context of 
use. Four models are proposed: task and concepts models, 
that describes the user’s tasks to be carried out and the do-
main-oriented concepts required by these tasks; abstract UI, 
that describes a UI independent of any modality of interac-
tion; concrete UI, that concretizes an abstract UI for a giv-
en context of use; and, the final UI, that is the operational 
UI running in a specific platform.  

Several proposals, interested in UI personalization, were 
defined based on CAMELEON. UsiXML [18,19] is a 
UIDL that provides a high level of abstraction for the de-
sign of the UI, using a set of models including a domain, a 
context and a mapping models and providing a complete 
XML based language for modeling UIs. This language was 
also used to define an environment for the generation of 
multi-platform interfaces, and for different contexts of use 
in an MDA approach [14]. Although, the authors proposed 
several UI designing models, only the container personali-
zation was referred either for the language or for the ap-
proach.  

Ali [1] proposes an approach for the generation of multi-
platform UIs, by extending a task model specified in CTT 
[17] which will be transformed into UIML code. The ap-
proach and the generated code did not consider any form of 
UI adaptation.  

Brossard et al. [7] proposed a methodology for the design 
of personalized information system for the transportation 
domain that, like us, aims to perform content personaliza-
tion at runtime. Contrariwise, this proposal is specific to 
transportation software development and authors do not de-
fine a context model to be used in UI design. Indeed, the 
authors did not use any UIDL to define their UIs. 

INTEGRATING CONTENT PERSONALIZATION IN UIML 
We recall that our main goal is to include some content 
personalization into the UIML description of a specific UI, 
that is, to define, when possible, which personalized infor-
mation should be provided for each UI entry (input/output). 
To address this goal and following the CAMELEON 
framework [8], we consider the information about the do-
main application to which the system is developed; we 
consider also the information about the context of use [8], 
since delivered information depends on the context; and fi-
nally we try to include these two aspects into the UIML 
code in order to enrich and to personalize the UI descrip-
tion. 

To define the domain model, one can use class diagram or 
domain ontology. The importance is that this domain model 
works as a vocabulary of the domain for the whole applica-
tion components, i.e., UI, implemented software functions 
and, mainly, the database definition since the content to be 

provided in the UI comes from the database of the system 
application. 

The context model is necessary to provide the relevant in-
formation that should be taken into account to provide per-
sonalized information. In this way the information of this 
context should be directly related to the domain infor-
mation (some authors, even choose to define context mod-
els specific for a particular domain [9] [13]. We decided to 
use a generic context model and to associate it with the 
domain information to assure the personalization. We need, 
therefore, to describe “relations of influence” from context 
model elements to domain model elements. We call these 
relationships “mappings”.  

Moreover, it was clear for us that we have to consider these 
models into the UIML code. To reach our goal, we decided 
to integrate our models within a MDA architecture [15] 
where the Computational Independent Model (CIM) level 
is composed of the UI task model that is annotated with the 
personalization information. By transforming the UI task 
model, one can be able to generate a UIML code that de-
scribes the final personalized UI and that defines the Plat-
form-Independent Model (PIM) and the Platform-Specific 
Model (PSM) levels of that architecture.  

Next section presents each one of those models. 

UI DESIGNING MODELS DEFINITION 
Domain model 
In order to define our domain model, we decided to use 
domain ontology since it represents the concepts of the 
domain independent of the system application. Domain on-
tologies express conceptualizations (i.e., description of en-
tities and their properties, relationships, and constraints) 
that are related to a specific domain (e.g., medicine or 
transportation) and it captures the knowledge of a domain 
to be used in several applications from the same domain.   

Since we are interested in content personalization the on-
tology will also play the role of an interface to access to the 
data which represents instances of that ontology. 

Context model 
As defined previously the context model should contain in-
formation about the user, platform and environment. To de-
fine this model, we did a large literature review. Although 
eighteen context model propositions were found none of 
them was considered complete. Some propositions consid-
ered only one of the context dimensions (user, platform or 
environment). Others were specific to a particular domain 
(e.g. smart phones, e-commerce) and/or not enough de-
tailed. We decided, therefore, to integrate the main infor-
mation from all propositions and to propose our context 
model [2] (See figure 1). 

The central element of the context model is the user profile 
that is composed of five major parts allowing to specify the 
user when interacting with the final interface: Contact in-
formation that contains personnel data; Demographic in-
formation that contains basic and unchanged user data. 



 116

 

Figure 1. Proposed context model. 

Preference to describe user interests and preferences; User 
State to describe the physiological user state and the activi-
ty s/he is practicing; and finally Ability and Proficiency that 
specify the user skills and abilities. The information about 
the platform used by the user is organized in two main 
classes:  Hardware, describing the physical aspects; and, 
Software, with description of computer systems. The in-
formation about environment is organized in three main 
classes: Location refers to the place where the user is locat-
ed at the time of interaction (the geometric, i.e. exact, loca-
tion and the symbolic that is relative to another location); 
Time that describes the interaction moment (exact time or 
by a symbolic one - summer, school holidays…) and the 
Environmental Condition identified at the moment of user 
interaction. 

Mapping between domain and context models 
Since the context model is independent of domain and we 
look for personalization for a specific application domain, 
we have to find a correspondence between the context 
model and the domain specific ontology. For that reason, 
we created the mapping model that defines the relationship 
between the context elements and the ontology ones (see 
figure 3). In fact, the domain elements (classes or attrib-
utes) should be analyzed against the context model ele-
ments looking for each context element that could influ-
ence the domain concept. Once we find an element, we 
should set a mapping with the domain concept. In this way 
the information provided in the UI will be personalized 
considering the context. Analyzing domain models, we 
identified three main cases of mappings. 

The first one refers to concepts that are exactly the same in-
formation present in the context model although, some-
times, with different name. That means the information of 
the context has a direct influence on the content of the 
same information of the domain model. We say, therefore, 
that we have a direct mapping. Figure 2 shows an example 
of mapping of a domain ontology adapted from the transla-
tion medicine domain ontology [4]. For example in figure 2 
(b), since the Gender ontology attribute and the Gender 
context attribute are synonyms, we can set a direct mapping 
between them.  

A second case refers to the class attributes from the context 
model that just indicates a specific state of the user. They 
can influence some domain concept by defining the exist-
ence or absence of that information. We say, therefore, that 
we have an indicative mapping. It is similar to the direct 
mapping, except that in this case the context attribute ele-
ment must have the Boolean type.(See figure 2 (c)). 

Finally, there are some concepts from context model that 
could have an indirect influence on the domain model ele-
ments. To define an indirect mapping, the designer should 
verify if there is any information in the domain model that 
could change depending on some data modeled in the con-
text. In figure 2 (c), the FormulatedPharmaceutical domain 
concept is indirectly associated with Age attribute from 
Demographic Information class. That means that the chem-
ical substance of a medicine (PharmaceuticalProduct) de-
pends on the user age (for example, some drugs are used 
only for adults). 

 



 117

 

 
Figure 2. Example of mappings. 

 
Figure 3. Meta-model for mapping context and ontology elements. 

Figure 4 presents the algorithm that a designer could follow 
when defining mappings. In what follows, we refer to an 
ontology element (classes or attributes) by “o” and to a 
context model element by “c”. “O” represents the set of all 
ontology elements and “C” all context attributes. 

Annotation of UI Task Model 
UI task models have been used as a high-level specification 
for UI design. Several notation has been used (e.g., Concur 
Task Tree (CTT) [17], Business Process Modeling Nota-
tion (BPMN) [16]). We used BPMN because of its capabil-
ity to model the passage of information flow and the dy-
namic application aspect. It allows modeling both human 
and non-human tasks and it allows specifying for each task, 
the actor performing it. In general the BPMN is used as a 
task model description as follows [7]: the processes and 
sub-processes are set of elementary tasks that represent the 
interactive and non-interactive task of a UI.  

Figure 4. Mappings definition algorithm. 



 118

The connection between tasks represents the sequence of 
execution with or without the transfer of some information. 
They represent the information flow between them. Figure 
5 presents an example of a task model implemented using 
the BPMN formalism for a software system that aims to 
provide medicine recommendation that does not depend of 
doctor’s prescription. We will use in the example, two 
main user interfaces. The first UI ask the input information 
from the user: his/her disease area (e.g. head, throat), 
his/her sex, and some pre-defined symptoms (fever, tired-
ness, eye pain, cough, dizziness, trembling). The second in-
terface presents the recommended medicines based on the 
input data and user age. The tasks 3 to 13 represent the first 
interface with the static information (e.g. task 3 “enter the 
disease area”) and the required input of a UI (e.g. the Dis-
ease area input field). Task 15 represents a second UI with 
the result information. 

To provide the content personalization for all input/output 
information, we should annotate each user or system tasks 
with:  

 The input/output element manipulated in the task, that 
we named interaction elements. The interaction ele-
ments are an abstract view of types of interaction be-
tween user and system. The interaction elements that 
we are particular interested for the content personaliza-
tion are the different types of input of information (e.g., 
informed by the user – named UIFieldManual, selected 
from a defined set of options –  named UI-
FieldOneChoice, etc.) and  output information (named 
UIFieldOutput).  Other interaction elements were also 
defined to be associated with any task modeled with 
BPMN (e.g., to represent a group of information - 
named UIUnit, to represent a UI with several groups of 
information – named UIGroup, etc.).In the figure 5, we 
associated to the task number 6 an UIFieldManual in-
teraction element since it has to be filled manually by 
user who has to mention his/her gender. The UI-
FieldOneChoice element associated to the task number 
8 means that is the user has to select or not this alterna-
tive. Finally the task number 15 is enriched with the 
UIFieldOut interaction element since it is a task where 
the system has as an output the results of searching pro-
cess. 

 The concept of the domain model, whenever possible, 
and its pertinent mapping with the context model.  Di-
rect mappings are chosen when we want that the do-
main concept provides, at runtime, the content of the re-
lated context element. Indicative mappings are chosen 
when we want to set at runtime the selection/not selec-
tion of a domain element from a list of options. This se-
lection is defined by the value (true/false) of the associ-
ated context element. Finally, indirect mappings are 
chosen when we want to show results that depends on 
many other domain elements to which we associated 
indirect mappings with context elements. 

 
Figure 5.  Examples of tasks annotation. 

 

In the Figure 5, we specify for the task (6), the Gen-
der ontology attribute as an OntologyElementName 
attribute and we choose the Direct option (for the 
mapping type attribute). That means that the value of 
Gender input field corresponds to the value of the 
context element mapped directly to it, in this case the 
Gender attribute. We associate to the task number 
(15), the searched concept, in this case Pharmaceuti-
cal Product (through the OntologyElementName at-
tribute) and we specify the parameter that have to be 
taken into account when searching it, in this case the 
Formulated Pharmaceutical ontology concept 
(mapped to the Age context attribute). Since the de-
signer knows the defined mapping, that means that 
when delivering the result of searching the pharma-
ceutical products, the system must take into account 
the age of the user.  

The definition and the annotation of the BPMN were better 
detailed in [3].   

UIML CODE GENERATION 
As mentioned previously, we decide to generate content-
personalized UI that are described through UIML. UIML 
was chosen because it is a UIDL that provides facilities to 
manipulate content and to work with dynamic information. 
Indeed, several tools for the conversion from UIML to oth-
er source code in different platforms were proposed (for 
example, the toolkit LiquidApps allows the conversion 
from UIML to Java, HTML, WML and VoiceXML).  

A UIML model is composed of two main components: 
interface and peers. The interface component 
represents the description of the interface through four 
parts: structure, that represents the organization and 
hierarchies of all UI parts; content that describes the set 
of the application information that will be displayed (e.g. in 



 119

different languages), behavior that represents the behav-
ior of the application at the user interaction time, and 
style that defines all properties specific for each UI ele-
ment. The peers component links the generic UI elements 
and their properties, to a specific platform using the 
presentation part. Indeed, it describes the calling con-
ventions for methods that are invoked by the UIML code in 
the logic part. The logic part links methods that are 
used in UIML with other ones used in a platform-specific 
source code. 

In our case, the PIM level is composed of the struc-
ture, behavior, content and style (that ma-
nipulates content) parts.  

The PSM level is composed of the style, presenta-
tion and logic parts. The style part here contains the 
layout information using the appropriate style properties 
based on the chosen platform. 

In order to describe the behavior of the UI that the user is 
interacting with, UIML provides the rule statements 
which are composed of a set of conditions and associated 
actions. The condition is used to keep the dynamics of 
the application modeled in the BPM when transforming to 
UIML.  

In order to ensure the sequencing of tasks also, UIML pro-
vides the <Event> tag that could be a condition to trigger 
a rule or that could be the result of an action of a rule. This 
tag is used to represent the interactive tasks produced by 
the user or the system. But UIML does not propose tags to 
define non-interactive tasks. 

The solution we proposed was to create the activation vari-
ables, to ensure the passage of the flow of information be-
tween interactive and non-interactive tasks while trans-
forming the annotated BPMN model to UIML. In fact, for 
each element of the BPMN diagram, we generate at the 
UIML code, a variable called activation variable. Once the 
variable activation of an element is equal to True, a set of 
UIML actions is generated depending on the type of that 
element (see Figure 6(a)). 

In order to manipulate the personalized content in UIML, 
we generate in the behavior part two methods: the  
GetValueFromContext and Get-Element meth-
ods. 

The GetValueFromContext method is used to 
implement the direct and the indicative mappings. For the 
direct mapping it is used to set the value of some fields that 
will be filled-in  automatically by the value taken from the 
context by calling the GetValueFromContext method. 
In the example of Figure 5, for the task number 4,  the 
value of the context attribute, that is mapped directly to the 
Gender ontology element, will be extracted by the 
GetValueFromContext and will be used to fill the 
UIFieldManual element.  Figure 6(b) presents the part of 
the UIML code generated for this purpose. 

For indicative mappings, the value of the context element 
(true/false), returned by the GetValueFromContext 
method is verified to decide the value (selected/not 
selected) of the interaction element. This is done by 
including a condition statement in the UIML rule that 
verifies the value of the context element mapped to the 
ontology element. The generated when-true statement, 
will decide to select or not that UI element. For example, in 
the Figure 5, in the case of the task 6,  if the GetValue-
FromContext  returns a true value (the user is tired), 
then select this alternative.  

The Get-Element method is used to implement the in-
direct mapping. In fact, using the UIML call statement, 
the DomainElementName annotation attribute presents the 
searched element, first argument of the method, and the in-
ferenceCiteria presents parameters to take into account 
when searching it, remaining method parameters. 

For the example in Figure 5, in the case of the task number 
15, the searched element Pharmaceutical Product will be 
the first parameter of this method, and the searching pa-
rameters is the Formulated Pharmaceutical ontology con-
cept (mapped to the Age context attribute). Figure 6(c) pre-
sents the part of the generated UIML code related to this 
method. 

For each call generated, a <logic> statement will be 
added with the information about the implemented code for 
this method. This code is implemented by the software de-
signer to search the required information based on the de-
fined parameters. Fig. 6 shows some parts of the PSM 
when the target platform will have Java  as a programming 
language. 

The structure class named G:TextField  will   be   
mapped   to  the JTextField Swing library class. The 
generated method named 16GetValueFromContext is 
mapped to the platform-specific method named Lamih. 
Context.GetValueFromContext that allows getting 
information from context. The 15Get-Element method 
sets the method to search an element (param1_15) con-
sidering a criteria (param2_15).  

CONCLUSION 
This paper proposed a set of designing models that permit 
generating UIML code describing content-personalized 
UIs. These models belong to an MDA architecture that 
considers the content personalization since the UI design.  
The core of this approach is the personalization models 
composed of the context that is mapped onto a domain on-
tology. These models are used to annotate the UI task  
model. By transforming these models, we are able to gen-
erate a UIML code. 

We are currently working in the development of an inte-
grated environment to support all features of this proposal, 
from the definition of the UI designing models till the gen-
eration of the final UI. 



 120

<UIML:Structure> 
 .. 
  <part class="G:TopContainer" id="1"> 
  ... 
     <part class="G:TextField" id="3"/> 
     <part class="G:CheckBoxButton" id="8"/> 
      ... 
  </part>    
 ... 
</UIML:Structure>   
... 
<UIML:Behavior id="Main Behavior"> 
  <rule id="Rule6"> 
    <condition> 
      <op name="Equal"> 
        <variable name="6isactivated"/> 
        <constant value="true"/> 
      </op> 
    </condition> 
    <action> 
      <whenTrue> 
        <property name="g:text" partName="6"> 
          <call componentId="6Context"   
           methodId="6GetValueFromContext"> 
            <param name="Birthday"/> 
          </call>         
        </property> 
        <property name="g:visible"  
          partName="6"> 
          <constant value="true"/> 
        </property> 
        <variable name="16isactivated" value="true"/> 
      </whenTrue> 
    </action> 
  </rule> 
 

  <rule id="Rule15"> 
   <condition> 
      <op name="Equal"> 
        <variable name="15isactivated"/> 
        <constant value="true"/> 
      </op> 
   </condition> 
   <action> 
    <whenTrue> 
    <property name="g:text"partName="15"> 
      <call componentId="15Context"  
           methodId="15Get-Element"> 
      <param name="Pharmaceutical  
             Product"/> 
      <param name="Formulated  
             Pharmaceutical/>   
      </call>         
     </property> 
        ... 
    /whenTrue> 
   </action> 
  </rule>   
</UIML:Behavior> 
 

Generated 

Structure 

part 

Generated Behavior 

rule 

Generated Behavior 

rule 

(I di i

 
Figure 6. Example of UIML code generated by transformation from BPMN to PIM. 

 
Figure 7. Example of UIML code integrated to PSM Presentation part (a) and Logic part (b)). 

<UIML:Peers id=”MainPeers”> 
 <UIML:Presentation id=”MainPresentationPart”>  
  <d-class id="G:TextField" used-in-tag="part" maps-type="class" maps-to="javax.swing.JTextField"> 
     <d-property id="text" maps-type="setMethod" maps-to="setText"> 
       <d-param type="java.lang.String"/> 
     </d-property> 
    <d-class 
 </UIML:Presentation> 
 <UIML:logic id="MainLogicPart"> 
    <dComponent id="6Context" mapsTo="Lamih.Context"> 
        <dMethod id= "6GetValueFromContext" mapsTo="Lamih.Context.GetValueFromContext"> 
          <dParam id= "param6GetValueFromContext" type="String"/> 
        </dMethod> 
    </dComponent> 
     <dComponent id="15Context" mapsTo="Lamih.Context"> 
        <dMethod id= "15Get-Element" mapsTo="Lamih.Context.Get-Element"> 
          <dParam id= "param1_15" type="String"/> 
          <dParam id= "param2_15" type="String"/> 
        </dMethod> 
    </dComponent> 
 </UIML:logic> 
</UIML:Peers> 
 



 121

REFERENCES 
1. Ali, M.F. A transformation-based approach to building 

multi-platform user interfaces using a task model and 
the user interface markup language. PhD thesis, Blacks-
burg, Virginia, USA, (2004). 

2. Bacha, F., Oliveira, K., and Abed, M. Using Context 
Modeling and Domain Ontology in the Design of Per-
sonalized User Interface. International Journal on 
Computer Science and Information Systems IJCSIS, 
(2011). 

3. Bacha, F., Oliveira, K., and Abed, M. Providing Per-
sonalized Information in Transport Systems: A Model 
Driven Architecture Approach. In Proc. of IEEE Inter-
national Conference on Mobility, Security and Logistics 
in Transport MSLT’2011 (June 2011). IEEE Computer 
Society Press, Los Alamitos (2011), pp. 452-459. 

4. Batchel O. et al.: Translational Medicine Ontology. 
Available at http://translationalmedicineontology. goog-
lecode.com/svn/trunk/ontology/tmo.owl 

5. Bouchelliga, W., Mahfoudi, A., Benammar, L., Rebai, 
S., and Abed, M. An MDE Approach for User Interface 
Adaptation to the Context of Use. In Proc. of 3rd Inter-
national Conference on Human-Centred Software En-
gineering HCSE’2010. R. Bernhaupt et al. (Eds.). 
LNCS, vol. 6409. Springer, Berlin (2010), pp. 62-78.  

6. Bouzghoub, M. Action Spécifique sur la Personnalisa-
tion de l'Information. CNRS, Paris (2004). 

7. Brossard, A., Abed, M., and Kolski, C. Modélisation 
conceptuelle des IHM : Une approche globale s'ap-
puyant sur les processus métier. Ingénierie des Systèmes 
d'Information (ISI) - Networking and Information Sys-
tems 12, (2007), 69-108.  

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (2003), pp. 289-308. 

9. Chen, H., Perich, F., Finin, T., and Jochi, A. SOUPA: 
Standard ontology for ubiquitous and pervasive applica-
tions. IEEE Computer Society, Los Alamitos (2004), 
pp. 258-267.  

10. Clerckx, T., Luyten, K., and Coninx, K. Dynamo-aid: A 
design process and a runtime architecture for dynamic 
model-based user interface development. In Proc. of 
EHCI/DSV-IS 2004, Lecture Notes in Computer Sci-
ence, 3425, Springer, (2004), 77-95..  

11. Dey, A. Understanding and Using Context. Journal of 
Personal and Ubiquitous Computing 5, (2001), pp. 4-7.  

12. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., 
Abrams, M., Coyette, A., and Vanderdonckt, J. Human-
Centered Engineering with the User Interface Markup 
Language. In Human-Centered Software Engineering, 
A. Seffah, J. Vanderdonckt, M. Desmarais (Eds.). 

Chapter 7, HCI Series, Springer, London (2009), pp. 
141-173. 

13. Kim, E., and Choi, J. An Ontology-Based Context 
Model in a Smart Home. Computational Science and Its 
Applications, (2006), pp. 11-20.  

14. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, 
L., and Lopez, V. UsiXML: a Language Supporting 
Multi-Path Development of User Interfaces. In Proc. of 
9th IFIP Working Conference on Engineering for Hu-
man-Computer Interaction jointly with 11th Int. Work-
shop on Design, Specification, and Verification of In-
teractive Systems EHCI-DSVIS’2004. LNCS, vol. 3425. 
Springer-Verlag, Berlin (2005), pp. 200-220. 

15. OMG, MDA Guide, Version 1.0.1,  Avalable at  
http://www.omg.org/cgi-bin/doc?omg/03-06-01 (2003) 

16. OMG, Business process modeling notation specifica-
tion, (2006). 

17. Paternò, F. Model-based design and evaluation of in-
teractive applications. Springer, Berlin (1999). 

18. Vanderdonckt, J. Model-Driven Engineering of User In-
terfaces: Promises, Successes, and Failures. In Proc. of 
5th Annual Romanian Conf. on Human-Computer Inter-
action ROCHI’2008 (Iasi, September 18-19, 2008), S. 
Buraga, I. Juvina (Eds.). Matrix ROM, Bucarest (2008), 
pp. 1–10. 

19. Winckler, M., Trindade, F.M., Stanciulescu, A., 
Vanderdonckt, J., Cascading Dialog Modeling with 
UsiXML. In Proc. of 15th Int. Workshop on Design, 
Specification, and Verification of Interactive Systems 
DSV-IS’2008 (Kingston, July 16-18, 2008). Lecture 
Notes in Computer Sciences, vol. 5136. Springer, Berlin 
(2008), pp. 121-135. 

 

 

 

 



 122

Architecture for Reverse Engineering of 
Graphical User Interfaces of Legacy Systems  

Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina 

Department of Informatics and Systems, University of Murcia 
Campus de Espinardo, Murcia (30100). 

+34 868 884642 - {osanchez, jesusc, jmolina}@um.es

ABSTRACT 
The CAMELEON reference framework is aimed at speci-
fying multi-modal user interfaces at several abstraction lev-
els. This is a proposal that is growing in popularity and 
there are some User Interface Description Languages 
(UIDL) that are aligned to this framework. In this paper, 
we propose a model architecture to perform reverse engi-
neering of legacy systems using UIDLs that conform to the 
CAMELEON framework. The general approach is also il-
lustrated in the specific context of a reverse engineering 
tool we are developing to modernise applications created 
with Rapid Application Development (RAD) environ-
ments. 

Author Keywords 
User Interface Description Language (UIDL), Cameleon 
Reference Framework, Reverse Engineering, Legacy Sys-
tems. 

General Terms 
Design, Reliability, Human Factors, Theory. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces 
and Presentation]: User Interfaces – User-centered de-
sign. 

INTRODUCTION 

The birth of the internet and mobile technologies has led to 
an explosion of platforms that can run interactive applica-
tions. Thus, there has been a need for developers to build 
User Interfaces (UIs) that can run across different plat-
forms and devices. However, different platforms have dif-
ferent features and constraints that hinder that a UI pro-
grammed for a particular platform could be run in a differ-
ent one. At the same time, legacy systems are still in use in 
many companies, but they cannot take advantage of recent 
UI developments. 

UIDLs have recently gained in popularity since they are 
useful for reducing the effort of creating UIs for different 
platforms. When using a UIDL a developer only has to fo-
cus on defining interfaces and leaves the implementation 
details to the tool. Although this is probably the main char-
acteristic of UIDLs, they are very heterogeneous in terms 
of coverage, aims, goals, or software support. In addition, 

some UIDLs were not originally conceived to be used in 
reverse engineering but for easing UI design. 

Model-based approaches have been widely used and have 
proved to be useful in varied contexts due to its ability to 
automate repetitive tasks [1]. Model-based and automatic 
techniques allow designers to focus on the definition of in-
terfaces at a high level [2], which is especially interesting 
when there is a wide range of UI target devices and plat-
forms available. In this sense, the CAMELEON Reference 
Framework (CRF) [3] is a conceptual framework aimed at 
helping structuring the development process of multi-target 
user interfaces. 

At present we are building a model-based reverse engineer-
ing tool for legacy systems developed with Rapid Applica-
tion Development (RAD) environments [4]. In this kind of 
applications, GUI code is typically mixed with business 
logic, so recovering the different aspects of the GUI from 
the source artefacts is essential. This task requires defining 
models at different levels of abstraction, and building mod-
el transformations to extract information from lower-level 
models. In this way, the Horseshoe Model [5] provides a 
conceptual framework for dealing with different levels of 
abstraction in a reverse engineering process. 

In this paper we discuss a model-based infrastructure to en-
able obtaining the models proposed in the CRF [3] from a 
legacy application. In this way, we will align the CRF to 
the Horseshoe Model in order to provide a model-based 
framework for reverse engineering GUIs. 

We will discuss which auxiliary models are needed, and 
how model transformations relate the different models in-
volved. As a concrete example of the application of the 
framework, we will apply it to the reverse engineering of 
applications developed with RAD environments. 

In the next section we will outline the integration of the 
CAMELEON framework with the Horseshoe Model. Then 
we will present the model architecture we propose to per-
form reverse engineering based on the CAMELEON 
framework, and we will show the infrastructure we have 
devised to reverse engineering the RAD legacy scenario. 
We will finish with the conclusions and future work. 



 123

REENGINEERING ARCHITECTURE 
The CAMELEON Reference Framework is an approach 
that defines several levels of abstractions for specifying us-
er interfaces. This framework can be aligned with the 
Horseshoe Model [5], which is a conceptual model for 
software reengineering. In Figure 1, we show the Horse-
shoe model tailored for UI reengineering. 

 

 
Figure 1. Horseshoe model for UI reengineering. 

The approach consists of three main phases, which are de-
picted with arrows. The first phase is the reverse engineer-
ing of the legacy system that starts with the analysis of the 
legacy artefacts. This step can entail dealing with different 
kinds of artefacts. For instance, the UI can be defined in a 
programming language, XML or a proprietary format (text 
or binary), whereas event handlers are commonly ex-
pressed in some imperative language. From the legacy arte-
facts, a Concrete User Interface Model is obtained, which 
defines the UI in a platform-independent way. An Abstract 
User Interface Model is obtained by raising the abstraction 
level of the CUI so it is modality-independent. 

The CRF [3] goes beyond and proposes the extraction of 
the Task and Domain Models that capture the intention of 
the original UI design. Note that the Task and Domain 
Models can be considered as Computing-independent 
Models (CIM) of the MDA approach [6]. As a result of the 
reverse engineering (recovery) phase, we will obtain in-
formation of different aspects that were not explicit in the 
original artefacts. This information can be expressed in the 
form of models of some UIDL. However, as we will ex-
plain, for being effective for this task UIDLs require some 
features which they typically not provide.  

The second phase involves performing structural and or 
behavioural changes in the original system in order to 
move it to a different platform or technology. The restruc-
turing is applied on the UIDL that captures the source sys-
tem. 

Finally, the Horseshoe Model advocates for a forward en-
gineering approach where the generation of the low level 
artefacts is guided by the higher-level models. In the case 
of the CRF, the Task Model, the Domain Model, and the 
AUI can be used to generate (semi-automatically) the CUI 
and the final UI. 

Although not all the UIDLs conform to the CRF, we will 
build our reverse engineering tool upon this framework 
since it is suitable for reengineering as it is based on similar 
principles as the Horseshoe Model. 

MODEL-BASED REVERSE ENGINEERING APPROACH 
In this section we will detail the reverse engineering phase 
(UI recovery) of the architecture shown above, discussing 
which additional models are need to generate the models 
proposed by the CRF for representing UI at different ab-
straction levels. The type of legacy UIs that we want to en-
compass with our approach are: 

 Textual User Interface (TUI). They are also known 
as Character-based User Interfaces (CUIs), but we pre-
fer the former in order to avoid misunderstanding. TU-
Is only use text, symbols and colors available on a typ-
ical text terminal, while Graphical User Interfaces 
(GUIs) typically use high-resolution raster graphics. 

 Rapid Application Environment (RAD). Oracle 
Forms and Borland Delphi are two examples of these 
kinds of environments. They became popular in the 
90’s by allowing developers to create management ap-
plications quickly by means of visual facilities. They 
reduce the development time by facilitating GUI de-
sign and coupling data access to GUI controls. 

 Primitive web applications. These are web 1.0 appli-
cations that were developed using HTML for the 
presentation layer, and events were handled in the 
server side (Javascript was not widely used yet). CSS 
was not widely used to layout web controls but this 
was frequently done with tables. They are featured by 
a poor user experience since neither Ajax nor embed-
ded objects (like Adobe Flash players) were used. 

The architecture we have devised is shown in Figure 2. Ar-
rows represent model-to-model transformations, but the ar-
rows that are originated in the Legacy Code, which are in-
jectors. Note that arrows also state the order in which the 
process must be applied. An injector bridges two technical 
spaces [7], that is, it transforms artefacts in a specific for-
malism into a different one. For instance, code conforming 
to a grammar (grammarware) injected to some modeling 
framework (modelware) such as EMF/Ecore. Model-to-
model transformations allow us to automate the conversion 
of models at different levels of abstraction. 

Cross-references from a model to the models that originat-
ed it have been omited for clarity. These cross-references 
between models allow us to keep relationships between the 
different recovered aspects, as well as maintaining the 
traceability from the source artefacts. Legacy code repre-
sents the collection of artefacts that makes up the system 
(programming language files, configuration files, UI files, 
and so forth).   

 



 124

 
Figure 2. Reverse engineering approach proposed. 

In general obtaining a high-level representation of a system 
requires going through several abstraction levels and trans-
formation steps, and in the case of the UI the CAMELEON 
Reference conceptually provides such levels. However, in 
our experience dealing with reverse engineering we have 
found out that a simple transformation chain is not enough, 
but support models are needed to gather and reorganize the 
information, so that the transformation chain is comple-
mented with these models. For example, in Figure 2, a 
Navigation model contributes the transformation to obtain 
the CUI and the Task Model. 

Low-level support models 
Next we explain some of the support models we have iden-
tified so far, and later we discuss how they are used to ob-
tain models from the CRF. 

AST Model 
An Abstract Syntax Tree (AST) model conforms to a met-
amodel which represents the abstract syntax of the underly-
ing language. In this paper we are using the term AST due 
to it is a well-known concept to refer to a structure that 
captures the abstract syntax of a language, but actually this 
model is not a tree but a graph. If the definition of the inter-
face is mixed with the event handling (and in some cases 
also mixed with business logic or persistence) in program-
ming language code, the AST model will represent all the 
code. This is the case when reverse engineering TUIs. 
Conversely, if the definition of the interface and the rest of 
the code are placed in separate modules (or at least in sepa-
rated sections of the same module), the AST should just 
represent the code of the event handlers. 

AST models are obtained in different manners, depending 
on the nature of the source files. If the source code can be 
expressed with a grammar, then Gra2MoL [8] can be used 
to extract the models. When the source code is XML, there 
exist facilities to get models, such as the utilities of the 
Eclipse Modelling Framework (EMF) [9]. Sometimes the 
source code is stored in a binary proprietary format, so in 
this case company utilities are needed to convert the code 

to a well-known format such as XML. In other cases, a 
dedicated parser could be used. 

AST models are dependent on the language in which the 
code is expressed and it is possible to abstract these models 
to obtain language-independent models. This has the ad-
vantage that later reverse engineering algorithms can be re-
used for different languages. In this sense, Knowledge Dis-
covery Metamodel (KDM) [10] could be used to represent 
language-independent code. 

Source UI Model 
This is a model which mirrors the user interface of the 
source system. A metamodel to represent such a system 
must be built. When the user interface is stored in a sepa-
rate definition (e.g., an XML file), the model is generated 
directly from the definition. When the user interface defini-
tion is mixed with other code, as in TUIs, this model is ob-
tained from the AST model. 

Layout Model 
Legacy systems commonly have an implicit layout, i.e., the 
widgets are located in the window by means of absolute or 
relative coordinates. Expressing the layout in that way is 
not a good practice. For example, when the layout is ex-
pressed with coordinates, if the size of the window is 
changed its content will not be resized accordingly. This is 
the case of some RAD applications and some hard-coded 
interfaces. Explicit extraction of the implicit layout is not a 
trivial task. This problem is addressed in [11]. When using 
a markup language for defining the user interface, e.g. 
HTML, the parts of the window are defined with marks. In 
many cases, tables were used to layout old web pages, and 
this is a discouraged practice by the W3C, so extracting an 
explicit high-level layout from web pages is also interest-
ing. Due to parts of the window are limited with marks, the 
layout discovery is easier than the previous case. Some 
works like [12,13] deal with the layout extraction from web 
pages. 

Navigation Model 
This model represents the navigation relationships between 
the windows of the applications. They are frequently repre-
sented by means of Finite State Machines (FSMs). Naviga-
tion Models are useful, for example when the original 
desktop application needs to be restructured to fit the Ajax 
platform. In this case the navigation flows identified could 
be turned into interactions among parts of the same win-
dow. Some works [14] deal with the extraction of naviga-
tion flow from code models (AST, KDM, and others). In 
[15] authors perform static analysis on a text-based UI and 
obtain a transition graph which is represented with AUIDL. 

Data Model 
A variety of data models are used in legacy systems and for 
each kind a metamodel must be built. For instance, a met-
amodel for the SQL DDL could be used to represent a logi-
cal data model. It could be refined to obtain an entity-
relationship model. 



 125

Other Models 
Some other information can be discovered from the UI def-
inition model and the AST model. For example, a model 
that represents the validators that can be extracted for cer-
tain widgets. Another example could be a model represent-
ing dependencies among widgets. All this information will 
ease later restructuring and forward engineering phases. 

CAMELEON Models 
Given that support models have been obtained CUI, AUI 
and Task models are derived by means of model transfor-
mations.  

CUI Model 
The Concrete User Interface (CUI) Model will contain the 
information extracted from the different aspects of the 
source interface (e.g. layout, event handling or navigation) 
in a platform-independent way. This is not a complex task 
since this model is constructed by querying and infor-
mation gathered in the previously obtained models. As an 
example, in [16] authors obtain a CUI from web pages. 

AUI Model 
It is a modality-independent representation of the CUI. 
This is a relatively straightforward transformation since is 
based on abstracting the concepts that appear in the CUI 
model. In [17] some examples to obtain AUI elements from 
CUI are explained for the UsiXML language. 

Task Model 
Obtaining high-level tasks from a source system is not a 
trivial issue. Task models cannot be derived just with the 
information contained in the AUI model, but additional in-
formation is required. There are works like [18] in which 
static program analysis techniques such as control flow 
analysis, data flow analysis, or pattern matching are per-
formed in order to extract the user interactions. Also dy-
namic analysis is performed to get the user interactions, 
such as in [19], which propose analysing the user traces to 
get the tasks. 

This problem is tightly-related with the problem of obtain-
ing business process models (BPMN) from low-level arte-
facts. In [20], the authors address the problem of obtaining 
BPMN models from KDM models based on pattern recog-
nition. We believe that the construction of the Task Model 
can be facilitated by some of the models that we have pre-
viously obtained. For example, the Navigation Model cap-
tures the windows that can be reached from a certain win-
dow. If we assume that different windows are used to 
achieve different goals, we can use heuristics over the Nav-
igation Model to know which tasks are derived from other 
tasks. Other additional models can also be useful. For ex-
ample, if we have an Interaction Model that captures the 
dependencies among widgets, it is possible to know which 
widgets are affected by others. Then we could think of a 
heuristic that groups those widgets that are related and as-
sociate them with the same task. 

Domain Model 
In many cases is represented with a UML class model alt-
hough the source system does not need to be object-
oriented. Most legacy systems store application data in a 
relational database. If the database schema is available, 
Domain Model can be easily obtained. In this information 
is not available, we can analyse the Source UI Model and 
or the AST to see what information is displayed in the 
screen. Even if the database schema can be used, this can 
include much more information than the information in-
volved in the application, so using the UI Model could en-
hance the Domain Model. The information contained in the 
Layout Model can be useful as a hint to know about close 
fields in the window, which are likely to be conceptually-
related. 

APPLICATION SCENARIO: RAD APPLICATIONS 
As explained in the introduction, we are developing a re-
verse engineering tool in the context of RAD applications, 
where GUIs are an essential element. 

RAD-based applications have some specific constraints 
that affect the UI recovery. We particularly highlight two 
features. First, the layout is not explicitly defined by using 
high-level layouts (e.g., Flow Layout in Java Swing), but it 
is implicitly defined by the position of the elements, which 
are expressed in terms of relative or absolute coordinates. 
Keeping this type of layout is not a good practice, because 
this means that, for example, when a window is resized the 
widgets are not resized or rearranged accordingly. The se-
cond feature is that code managing the GUI is mixed with 
business logic and database access, i.e., there is no clear 
separation among the different concerns of the application. 
This entails that extracting information of a certain aspect 
requires analysing all the code. 

In Figure 3 we show the model architecture we have im-
plemented. Solid lines are injectors and model-to-model 
(M2M) transformations. Dotted lines are cross-references 
among models.  

At present we have just reach the CUI level, which is com-
posed of: The Presentation Model, the RAD Behaviour 
Model, the Event Concerns Model and the Interactions 
Model. The architecture is exemplified with Oracle Forms 
as the source technology, but it could be used with any oth-
er RAD technology such as Borland Delphi or Microsoft 
Visual Basic. The different models involved are described 
next, exemplified for Oracle Forms. All the model trans-
formations have been implemented in RubyTL [21]. 

 



 126

 
Figure 3. Architecture proposed for reverse engineering 

RAD-based applications. 

 

Source Artefacts 
The source artefacts in the case of Oracle Forms are XML 
files that include the definition of the different windows of 
the application. These files also include some other infor-
mation, e.g. information about database tables linked to 
widgets. The presentation elements such as widgets or 
windows can have some event handlers associated with 
them, which are expressed in the form of PL/SQL triggers. 
The PL/SQL code is embedded in the XML files. 

From the XML files, two models are obtained. The Source 
UI Model is obtained by means of an EMF tool for inject-
ing models from XML code, and the AST model (PL/SQL 
models in our case) which is obtained with Gra2MoL, 
which allow us to get models from code that conforms to a 
grammar. 

Source UI Model 
It is a model that represents the source GUI. Although it is 
not explicitly depicted in Figure 3, two different models are 
involved. Firstly, a model that mirrors the original Forms 
GUI is obtained. From this model, a model-to-model trans-
formation gets a second model, called RAD Model, which 
represents the source system in terms of common concepts 
provided by RAD environments. This is a kind of normali-
zation model for GUIs built with a RAD, in order to make 
the rest of the process independent of the specific RAD en-
vironment. 

Low-Level Layout Models 
As said, in desktop legacy applications (such as applica-
tions created with RAD) the layout is implicitly defined by 
the position of the elements, which are expressed in terms 
of coordinates. This means that, for example, when a win-
dow is resized the widgets are not resized or rearranged ac-
cordingly. We have defined a couple of low-level layout 
models to support the discovery of an explicit layout mod-
el. Although they are auxiliary models, they are useful to 
bridge the gap between the original layout based on coor-
dinates and the CUI model. More details about these mod-
els and the algorithms involved are given in [11]. 

Presentation Model 
This model defines the structure of the GUI (i.e., what 
views compose the GUI, and which are the containment re-
lationships among the graphical elements of the views), as 
well as the layout (i.e., how the graphical elements are ar-
ranged in the views). An example that shows the Source UI 
Models, the Low-Level Layout Models and the final 
Presentation Model can be found in [11]. 

RAD Behaviour Model 
This model captures the behaviour of the source code in 
terms of simple primitives which are common in RAD en-
vironments, such as read data from a database or write 
some data in the GUI controls. This model is the basis on 
which we extract more knowledge about the source code 
since it eases static analysis of a RAD system. Particularly, 
it let us get the Event Concerns Model and the Interactions 
Model [22]. 

To adapt this architecture to a different legacy technology, 
this model should be replaced with a domain-specific be-
haviour model if it is possible to identify commonalities in 
the event handler code of a domain. Another option would 
be to suppress this model and perform all the static 
anaylisis based on the AST Model.  

Event Concerns Model 
Legacy systems often mix UI code with business logic or 
control code in event handlers. This support model is aimed 
at identify fragments of code which are related to the same 
concern so that it is possible to achieve separation of con-
cerns. It helps us to the understand event handlers, and it 
can be useful when restructuring the source system in order 
to create a new one with better quality in terms of exten-
sion and maintainability. In [22] a real example of event 
handlers that are reverse engineered can be found, which 
shows the RAD Behaviour and Event Concerns Models ob-
tained. 

Interaction Model 
The goal of this model is twofold. On the one hand it repre-
sents the navigation flow by means of a state machine. On 
the other hand, it explicitly shows the dependencies that 
exists among the GUI elements. For example, provided 
there is a checkbox that enables a panel when it is checked, 
this model will capture the interaction that exists between 
the checkbox and the panel. 

Putting the pieces together: CUI Model 
In summary, our CUI model represents GUIs developed 
with RAD environments, and it is specifically tailored for 
the reverse engineering of these kinds of applications. The 
models that compose the CUI level are: 

 The Presentation Model which defines the elements 
in the GUI and their layout. 

 The RAD Behaviour Model which defines the behav-
ioural part of the GUI (the event model). 



 127

 The Interactions Model which defines navigation re-
lationships and dependencies among widgets. 

 The Event Concerns Model that enriches the RAD 
Behaviour Model by specifying categories of code in 
the event handlers. 

CONCLUSION AND FUTURE WORK 
In this paper we have presented a model-based architecture 
to perform reverse engineering of legacy UIs based on the 
Cameleon Reference Framework [3]. We have shown the 
concrete model arquitecture we have built to reverse engi-
neering RAD-based applications. As a future work, we will 
continue with the development of the reverse engineering 
tool in order to reach all the abstraction levels defined in 
the Cameleon Reference Framework. We will also generate 
UsiXML models from the information gathered. In addi-
tion, the architecture will be extended to consider TUI and 
legacy web applications. 

ACKNOWLEDGMENTS 
This work is partially supported by Consejería de Univer-
sidades, Empresa e Investigación (grant 129/2009) and 
Fundación Séneca (project 15389/PI/10). 

REFERENCES 
1. Selic, B. Personal reflections on automation, program-

ming culture, and model-based software engineering. 
Automated Software Engineering, 15, 3-4 (December 
2008), 379-391. 

2. Myers, B., Hudson, S. and Pausch, R. Past, present, fu-
ture of user interface tools. ACM Trans. Comput.-Hum. 
Interact. 7, 1 (March 2000), 3-28. 

3. Calvary, G., Coutaz, J., Thevening, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Comp. 15, 3 (June 2003), 289-308. 

4. James, M., Rapid Application Development. Macmillan 
Publishing Co., Inc. 1991. 

5. Kazman, R., Woods, S. G. and Carrière S. J., Require-
ments for Integrating Software Architecture and Reen-
gineering Models: CORUM II. Proceedings of the 
WCRE’98, 154-163. 

6. OMG Model Driven Architecture. http://www.omg. 
org/mda/. 

7. Bézivin, J. and Kurtev, I. Model-based Technology In-
tegration with the Technical Space Concept. Proceed-
ings of the Metainformatics Symposium. 2005. 

8. Cánovas Izquierdo, J. L. and García Molina, J. A Do-
main Specific Language for Extracting Models in Soft-
ware Modernization. Proceedings of the ECMDA-FA 
’09, 82-97. 

9. Eclipse Modeling Framework Project (EMF). http:// 
www.eclipse.org/modeling/emf. 

10. OMG Knowledge Discovery Meta-Model (KDM) v1.0.  
2008. http://www.omg.org/spec/KDM/1.0/. 

11. Sánchez Ramón, O., Sánchez Cuadrado, J. and García 
Molina, J. Model-Driven Reverse Engineering of Lega-
cy Graphical User Interfaces. Proceedings of the 
ASE’10. 147-150. 

12. Bandelloni, R., Mori, G. and Paternò, F. Dynamic Gen-
eration of Web Migratory Interfaces. Proceedings of the 
MobileHCI’05. 83-90. 

13. Cai, D., Yu, S., Wen, J. and Ma, W. VIPS: a Vision-
Based Page Segmentation Algorithm. Microsoft Re-
search TechReport. 2003. http://research.microsoft. 
com/apps/pubs/default.aspx?id=70027. 

14. Staiger, S. Reverse Engineering of Graphical User In-
terfaces Using Static Analyses. In Proceedings of the 
WCRE’07. 

15. Merlo, E., Gagné, P., Girard, J., Kontogiannis, K., Hen-
dren, L., Panangaden, P., De Mori, R. Reengineering 
User Interfaces. IEEE Software, 12, 1 (1995), 64-73. 

16. Bouillon, L., and Vanderdonckt, J., Retargeting Web 
Pages to other Computing Platforms with VAQUITA. 
In Proc. of IEEE Working Conf. on Reverse Engineer-
ing WCRE’2002 (Richmond, 28 October-1 November 
2002). A. van Deursen, E. Burd (Eds.). IEEE Computer 
Society Press, Los Alamitos (2002), pp. 339-348. 

17. Limbourg, Q., and Vanderdonckt, J. Multipath Trans-
formational Development of User Interfaces with Graph 
Transformations. Human-Centered Software Engineer-
ing: Software Architectures and Model-Driven Integra-
tion, Chapter 8, Vol. II, Springer HCI Series, Springer-
Verlag. 2007. 

18. Paganelli, L. And Paternò, F. Automatic Reconstruction 
of the Underlying Interaction Design of Web Applica-
tions. In Proc. of the SEKE’02. 439-445. 

19. El-Ramly, M., Iglinski, P., Stroulia, E., Sorenson, P and 
Matichuk, B. Modeling the System-User Dialog Using 
Interaction Traces. Proceedings of the WCRE’01. 

20. Zou, Y., Lau, T., Kontogiannis, K., Tong, T. and 
McKegney, R. Model-Driven Business Process Recov-
ery. Proceedings of the WCRE’04. 

21. Sánchez Cuadrado, J. and García Molina, J. Modulari-
zation of model transformations through a phasing 
mechanism. Software and System Modeling, 8, 3 (July 
2009), 325-345. 

22. Sánchez Ramón, O., Sánchez Cuadrado, J. and García 
Molina, J. Reverse Engineering of Event Handlers of 
RAD-Based Applications. Proceedings of the 
WCRE'11. 

23. Bouillon, L., Limbourg, Q., Vanderdonckt, J., and Mi-
chotte, B., Reverse Engineering of Web Pages based on 
Derivations and Transformations. In Proc. of 3rd Latin 
American Web Congress LA-Web’2005 (Buenos Aires, 
October 31-November 2, 2005), IEEE Computer Socie-
ty Press, Los Alamitos, 2005, pp. 3-13. 



 128

Model-based Reverse Engineering of 
Legacy Applications User Interfaces  

Francisco Montero, Víctor López-Jaquero, Pascual González 
LoUISE Research Group, I3A, University of Castilla-La Mancha 

Campus, s/n, 02071 (SPAIN) 
+34 967 59 92 00 - {fmontero, victor, pgonzalez}@dsi.uclm.es

ABSTRACT 
User Interface Description Languages (UIDL) are lan-
guages used in Human-Computer Interaction (HCI) in or-
der to describe User Interfaces (UI) independently of any 
implementation technology. These languages can be used 
effectively and efficiently when proper software is availa-
ble. In this paper a suite of software tools is introduced. 
This suite of tools is useful for supporting Reverse Engi-
neering activities of UIs. Prototyping, evaluation and speci-
fication of user interfaces are enabled by using our suite of 
tools: GuiLayout++, PureXML, reTaskXML, and 
AcauiXML. 

Author Keywords 
Model-based, user interfaces, legacy applications, reverse 
engineering, UIDL. 

General Terms 
Measurement, Design, Human Factors, Languages. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – user interfaces. H.5.2 [Information Interfaces 
and Presentation]: User Interfaces, Graphical User Inter-
faces (GUI). 

INTRODUCTION 

Engineering is the process of designing, manufacturing, as-
sembling and maintaining products and systems. There are 
two types of engineering, forward engineering and reverse 
engineering. Forward engineering is the traditional process 
of moving from high-level abstractions and logical designs 
to the final implementation of a system. The process of du-
plicating an existing part, subassembly, or product, without 
drawings, documentation, or a computer model is known as 
reverse engineering. 

Reverse engineering is now widely used in numerous ap-
plications, such as manufacturing, industrial design and 
jewelry design and reproduction. For example, when a new 
car is launched on the market, competing manufacturers 
may buy one and disassemble it to learn how it was built 
and how it works. In software engineering, good source 
code is often a variation of other good source code. 

In this last scenario, in software development, designers 
give shape to their ideas by using high and low prototypes 
by using paper and pencil, interactive paper prototypes, 

programmed façades, and prototype-oriented languages, 
but a set of models are needed to develop a final applica-
tion. The fidelity of the prototypes previously described 
ranges from low to high. Does fidelity affect a prototype’s 
usefulness as a testing tool? Most usability experts agree 
that low-fidelity prototypes are very useful in the early 
stages of design. 

Reverse engineering provides a solution to this problem, 
because the final user interface model may be the source of 
information for other models, for instance, concrete user 
interface, abstract user interface or another. All those mod-
els are considered in traditional model-based and model-
driven user interface development environments. 

In this paper reverse engineering, prototyping and model-
based user interface development techniques are used joint-
ly in order to provide facilities for user interface develop-
ment of legacy application. Following are some of the rea-
sons to use reverse engineering in user interface develop-
ment: 

 The original source code and developers no longer ex-
ists. 

 The original developers of an application no longer 
maintain the product, and the software may become ob-
solete. 

 The software application design documentation may be 
lost or never existed. 

 We want to eliminate or modify some bad features of 
an application.  

 Exploring new alternatives to improve software per-
formance and features. 

 Documentation  

This paper is organized as follows. Section 2 describes and 
provides an overview of related works with Reverse Engi-
neering. Section 3 introduces the main contribution of this 
paper, a software tool for supporting reverse engineering 
by using prototyping and user interface description lan-
guages. With this tool presentation and navigation models 
associated with a model-based user interface development 
environment can be achieved. Finally, a section related to 
discussion and conclusions is included. 



 129

RELATED WORK 
Reverse Engineering (RE) has been an active research top-
ic for some years now. RE has been applied to many differ-
ent fields. Regarding Computer Science, it has been applied 
to both hardware and software systems. First, to focus our 
work, the term RE will be discussed. The most widely-
known taxonomy for RE is [2]. In this work the authors 
present a taxonomy that illustrates the different paths that 
software development can follow. Reverse engineering is 
the process of analyzing a subject system to: (1) Identify 
the system’s components and the interrelationships and (2) 
Create representations of the system in another form or at a 
higher level of abstraction. Thus, RE is supposed to happen 
from implementation to design and from design to re-
quirements. Furthermore, RE can also happen at the same 
development stage. In this case, some different operations 
are identified: Restructuring, Reengineering, Redocumen-
tation and Design Recovery. Restructuring is the transfor-
mation from one representation form to another at the same 
relative abstraction level, while preserving the subject sys-
tem’s external behavior (functionality and semantics). 

It does not involve modifications because of new require-
ments. On the other hand, Redocumentation is the creation 
or the revision of a semantically equivalent representation 
within the same relative level of abstraction. Such as the 
pretty printers for code. Reengineering is the examination 
and alteration of the subject system to reconstitute it in a 
new form and the subsequent implementation of the new 
form. It generally includes some form of reverse engineer-
ing followed by some form of forward engineering or re-
structuring. Finally, in Design Recovery domain 
knowledge, external information, and deduction or fuzzy 
reasoning are used to identify meaningful higher level ab-
stractions beyond those obtained directly by examining the 
system itself. In [4] a multi-path development process for 
user interfaces was introduced.  In this process, user inter-
face design could begin at different entry points in the pro-
cess, not necessarily staring from the first or last stages. RE 
was also considered in this approach. 

When working with legacy systems user interfaces all three 
RE operations are very useful. i.e.Restructuring could be 
used to port the user interface from one target platform to 
another. This issue was addressed in VAQUITA [1]. In 
VAQUITA HTML contents were reverse engineered to be 
ported to another target platform. The main limitation of 
VAQUITA was its dependency on HTML. An on-line ver-
sion of VAQUITA, namely ReversiXML, is also available 
[10]. WebRevEnge [8] also supports HTML Reverse Engi-
neering. Nevertheless, WebRevEnge obtains the corre-
sponding CTT task model. User interface Reengineering 
goes one step beyond, as it considers making changes in 
the functionality. An example would be using one of the 
tools aforementioned supporting restructuring, i.e., VAQ-
UITA, and then add some extra functionalities before port-
ing to another target platform. 

Obviously, to support actual RE, more than the user inter-
face should be reversed engineered. This includes func-
tional core and databases. i.e., it has been applied to mi-
grate legacy databases [7]. 

Model driven techniques applied to user interface design 
look promising for RE, because of the clear separation of 
concerns that it exhibits. When applying RE the different 
facets of an application must be processed. Having a clear 
separation of concerns can help in this process. Further-
more, in the goals of these model-driven approaches for 
user interface design restructuring and reengineering are 
two purposes usually considered. Starting from a set of 
models, the aim is generating the user interface for differ-
ent target platforms, supporting restructuring to accommo-
date the user interface to the peculiarities of each platform 
(an in general each context of use). The original set of 
models could be modified afterwards, for instance, to re-
move obsolete functionalities. 

The creation of the models required in any model-driven 
approach is an interesting issue. A visual syntax can greatly 
improve the usability of a notation. Directly creating the 
models, i.e. by using an XML syntax, can be error prone 
and slow. Different tools have been used so far for visually 
designing these models, including IdealXML[5], Sketchi-
XML [3] or CTTE (http://giove.isti.cnr.it/ctte.html). Ide-
alXML support the automatic generation of abstract user in-
terfaces out of task models, enabling the user the rapidly 
create user interface prototypes. This idea was combined 
with some automatic evaluation techniques in Gui-
Layout++ [6]. In this tool, some RE support was already 
included. The designer loads a screenshot of the user inter-
face, and then he draws on it the different widgets and are-
as identified in the screenshot. Finally, these elements were 
used to automatically generate an abstract user interface. 

In this work we use an approach similar to the one we used 
on GuiLayout++, but in this case we aim at reverse engi-
neering the user interface to generate the concrete user in-
terface, including both the widgets, layouts and navigation.  

REVERSE ENGINEERING USER INTERFACE FOR LEG-
ACY APPLICATION 
Aiming at supporting RE for user interface design a suite 
of tools has been developed. These tools support the re-
verse transformation between the usual models used in user 
interface development. 

Currently, these tools work individually, and they inter-
change the models they used by means of an XML specifi-
cation expressed in UsiXML. Nevertheless, we are working 
in a unified tool to make easier their use. In Fig. 1 the tools 
developed and the models they manipulate are illustrated. 

Fig. 1 shows the main models linked to user interface de-
sign. Reading the figure from left to right a forward devel-
opment of user interfaces can be observed (forward engi-
neering). On the other hand, reading the figure from right 
to left reverse engineering can be observed. 



 130

 
Figure 1. Suite of tools and reverse engineering of 

UI process. 

The suite of tools currently developed is: 

 reTaskXML: is tool that tackles reverse engineering an 
abstract specification of a user interface to obtain the 
corresponding task model (see Fig. 2). 

 AcauiXML: is a tool that supports reverse engineering a 
concrete user interface model to obtain a corresponding 
abstract user interface. UsiXML syntax is used for this 
purpose (see Fig. 3). 

 PureXML: is a tool that supports loading user interface 
screenshots, from a user interface design or an existing 
application, and creating prototypes for those screen-
shots. These prototypes are then used to obtain a con-
crete user interface expressed in terms of UsiXML (see 
Fig. 5). 

 GuiLayout++ [6]: is a tool that supports the creation 
and evaluation of user interface prototypes (both low 
and high fidelity). The prototypes created are then used 
to generate the corresponding abstract user interface 
specification in UsiXML language (see Fig. 4). 

 

 
Figure 2. reTaskXML: from abstract user interface to 

task model. 

The reverse engineering process 
As aforementioned, different situations can arise promoting 
the use of reverse engineering techniques. Legacy applica-
tions are one of the most usual situations when one would 
use reverse engineering. i.e., the designer would like to 
move the user interface of a legacy application from a 
character-based screen to a graphical one, or we could re-
quire retargeting the legacy application from standard desk-
top PC to the web. 

This process can be supported by our suite of tools to help 
the developer in the reverse engineering process. 

In Fig. 1, the process is depicted. In the beginning the de-
veloper has only a screenshot of the legacy application. 
This screenshot can be loaded into GuiLayout++, where 
the designer can assess some metrics in the screenshot. i.e., 
the uniformity in the alignment in the layout of the compo-
nents or the percentage devoted to each task can be ana-
lyzed. The different areas used for each purpose and its 
layout are specified by drawing boxes of the corresponding 
type. The different types of boxes are marked in different 
colors (see Fig. 4a). Then, the designer can change the 
screenshot to address the issues detected by GuiLayout++. 
An example of one of the metrics computed by Gui-
Layout++ is shown in Fig. 4b. The graph in this figure dis-
plays the results for the metric to assess the amount of 
space devoted to each purpose in a web page. This is one 
of the metrics proposed in [11]. Alternatively, the designer 
can directly load a screenshot in PureXML (see Fig. 5). 

In PureXML, the designer loads a screenshot. In the exam-
ple used in this paper, a well-known printing dialogue is 
used. Then the designer used the widget palettes provided 
(see the right part in Fig. 5) to add widgets. These widgets 
are organized in tabs, so they can be more easily found. 
Their Look&Feel takes inspiration from Balsamiq [9]. The 

designer uses Drag&Drop to 
drag the corresponding widget 
into the screenshot, and then he 
adjusts its size to the real one in 
the screenshot. i.e., when the de-
signer finds a dropdown list in 
the screenshot, a dropdown list is 
dragged from the List,Trees and 
Tables tab of the widget palette, 
and then its size is adjusted. The 
designer proceeds for all widgets 
in the screenshot. Notice how a 
tree is created simultaneously to 
represent the widgets added to 
the screenshot (see the top left 
part in Fig. 5). One important is-
sue that PureXML addresses is 

navigation. A user interface is 
usually composed of more 
than one window, and there-

fore more than one screenshot. 



 131

 
Figure 3. AcauiXML: from concrete user interface to 

abstract user interface. 

Thus, in PureXML the designer can load many screenshots. 
They are shown in the same place as the tree in the left part 
of the window. The designer can toggle both views by us-
ing the tabs Design and Navigation. 

In the example in the bottom left part there is a window 
where the designer has modeled a transition from Proper-
ties button to the Properties dialogue window. In the prop-
erties of the transition the designer can specified the events 
that trigger the transition. Thus, the designer is supported in 
modeling which widgets the user interface is composed of, 
and how the user navigates from one window to another.  

By selecting any widget added, the designer can specify 
some properties of the widget. The set of properties sup-
ported is taken from the current UsiXML 2.0 concrete user 
interface draft. Thus, the designer can specify attributes 
such as, the fonts, the colors, etc. All the project can be 
saved in UsiXML 2.0 concrete user interface XML syntax. 
This output can be then used in AcauiXML. 

AcauiXML takes a concrete user interface specification 
and it obtains an abstract user interface (see Fig. 3). The 
visual syntax currently used is the same one we designed 
for IdealXML. 

Finally, the abstract user interface generated by AcauiXML 
can be used to obtain a task model. The task model is a per-
fect starting point for reengineering an application, and 
starting from the task a forward engineering process to 
produce a new application out of the starting legacy one. In 
this task model unused features could be removed, and 
some extra features could be added. 

DISCUSSION AND CONCLUSION 
Currently, user interface description languages present 
many challenges and difficulties, among these challenges 
are the following: effective, efficiency and satisfactory 
software tools for supporting prototyping, evaluation and 
developing. But, many times developing must be done fol-
lowing a reverse path.  

 

 

 

 
Figure 4. GuiLayout++: prototyping and assessing the 

user interface: (a) Prototyping, (b) Assessing. 



 132

 

 
 

In this paper a suite of tools is introduced. These tools are 
related to evaluation and reverse engineering. Prototyping 
is used in some of these software tools also. We identified 
a good joint-venture in the combination of prototyping and 
UI description languages. Prototyping is a very good com-
mon ground to communicate stakeholders involved in a de-
velopment, between them, for instance, designers, final us-
ers, clients and developers. 

Moreover, prototyping and evaluation are key elements in 
any user-centered design technique. GuiLayout++ is useful 
in this scope, we can specify applications and we can eval-
uate what space distribution is used. In a similar scenario, 
PureXML is introduced. By using PureXML, concrete spec-
ifications of user interfaces can be built. 

We identified an agile tendency in the development of user 
interfaces and software products in general. Under this 
point of view, several activities in the development process 
can be done simultaneously. Prototyping, specification and 
evaluation activities should be supported by available tools. 
In this paper a suite of tools with this premise in mind was 
introduced. 

Additional improvements in our suite of tools can be con-
sidered. Previous software tools were done independently 
and integration efforts are considered in this moment.  

 
Figure 5. PureXML: from final user interface to con-

crete user interface: (a) The editor window tabs (Design 
and Navigation), (b) The tabs for the UI component 

palette. 

 

A previous version of UsiXML was used for developing 
some previous software tools, namely 1.8, but a new re-
lease and review of this language will be made soon offi-
cially available and modifications and updates will be 
done. Therefore, some of our tools require some updating 
efforts 

Reverse engineering is an interesting path in the specifica-
tion, modification and optional development of software 
tools. In this sense, additional efforts will be done in the 
forward engineering direction. That is, suite of tools intro-
duced in this paper will be integrated with idealXML[5] in 
order to provide a new version from previously non-
documented or available software products. 

ACKNOWLEDGMENTS 
This research has been partially funded by Spanish Minis-
try of Science and Innovation grant TIN2008-06596-C02-
01 and the grant PEII09-0054-9581 from the Regional 
Government of Castilla-La Mancha. We would like to 
thank also Miguel Oliver, Abraham Martínez y Francisco 
Javier Muñoz for collaborating in the implementation of 
the tools. 



 133

REFERENCES 
1. Bouillon, L., and Vanderdonckt, J., Retargeting Web 

Pages to other Computing Platforms with VAQUITA. 
In Proc. of IEEE Working Conf. on Reverse Engineer-
ing WCRE’2002 (Richmond, 28 October-1 November 
2002). A. van Deursen, E. Burd (Eds.). IEEE Com-
puter Society Press, Los Alamitos (2002), pp. 339-
348. 

2. Chikofsky, E.J., and Cross, J.H., II. Reverse engineer-
ing and design recovery: a taxonomy. IEEE Software 
7, 1 (Jan. 1990), pp. 13-17  

3. Coyette, A., Kieffer, S., and Vanderdonckt, J. Multi-
fidelity Prototyping of User Interfaces. In Proc. of 
11th IFIP TC 13 Int. Conf. on Human-Computer In-
teraction INTERACT’2007 (Rio de Janeiro, 10-14 
September 2007), Lecture Notes in Computer Sci-
ence, vol. 4662, Springer-Verlag, 2007, pp. 149-162. 

4. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouil-
lon, L., and Víctor López Jaquero. UsiXML: a Lan-
guage Supporting Multi-Path Development of User 
Interfaces. In Proc. of 9th IFIP Working Conference 
on Engineering for Human-Computer Interaction 
jointly with 11th Int. Workshop on Design, Specifica-
tion, and Verification of Interactive Systems EHCI-
DSVIS'2004 (Hamburg, July 11-13, 2004). Lecture 
Notes in Computer Science, vol. 3425. Springer, Ber-
lin (2004), pp. 200-220. 

5. Montero, F., López Jaquero, V. IdealXML: An Inter-
action Design Tool and a Task-Based Approach to 
User Interface Design. 6th International Conference 
on Computer-Aided Design of User Interfaces (CA-
DUI 2006), Bucharest, Romania, 6-8, June, 2006. 

6. Montero, F., López-Jaquero, V. Guilayout++: Sup-
porting Prototype Creation and Quality Evaluation for 
Abstract User Interface Generation. Proceedings of 
the 1st Workshop on USer Interface eXtensible 
Markup Language Workshop UsiXML’2010 (Berlin, 
June 20, 2010). Thalès, Paris, pp. 39-44. 

7. Pérez, J. Anaya, V.,  Cubel, J.M., Domínguez, F., 
Boronat, A., Ramos, I., Carsí, J.A. Data Reverse En-
gineering of Legacy Databases to Object Oriented 
Conceptual Schemas, Software Evolution Through 
Transformations: Towards Uniform Support through-
out the Software Life-Cycle Workshop (SET'02), 
Barcelona (Spain), 2002. 

8. WebRevEnge - Tool for Reverse Engineering: From 
HTML to CTT Task Models. http://giove.isti. 
cnr.it/tools/WebRevEnge/home 

9. Balsamiq. Balsamiq mockups. http://balsamiq.com/ 

10. Bouillon, L., Limbourg, Q., Vanderdonckt, J., and 
Michotte, B., Reverse Engineering of Web Pages 
based on Derivations and Transformations. In Proc. 
of 3rd Latin American Web Congress LA-Web’2005 

(Buenos Aires, October 31-November 2, 2005), IEEE 
Computer Society Press, Los Alamitos, 2005, pp. 3-
13. 

11. Nielsen, J., Tahir, M. Homepage Usability: 50 Web-
sites Deconstructed, 2001. 



 134

UsiXML Concrete Behaviour with a Formal Description 
Technique for Interactive Systems  

Eric Barboni, Célia Martinie, David Navarre, Philippe Palanque, Marco Winckler 

Institute of Research in Informatics of Toulouse, University of Toulouse 
Interactive Critical Systems (ICS) team 

118, route de Narbonne, F-31042 Toulouse Cedex 9 (France) 
{barboni, martinie, navarre, palanque, winckler}@irit.fr

ABSTRACT 
In the last years User Interface Description Languages 
(UIDL) such as UsiXML appeared as a suitable solution 
for developing interactive systems. So far, there have been 
several attempts for exploring the potential of UsiXML as a 
language for describing user interface components for mul-
ti-target platforms. In this paper we are concerned by the 
behavioural aspect of interactive system built using 
UsiXML. In order to implement reliable and efficient ap-
plications, we propose to employ a formal description 
technique called ICO (Interactive Cooperative Objects) that 
have been developed to cope with complex behaviours of 
interactive systems including event-based and multimodal 
interaction. Our approach offers a bridge between UsiXML 
descriptions of the user interfaces components and a robust 
technique for describing behaviour using ICO modelling. 
Beyond that, this paper highlights how it is possible to take 
advantage from the two approaches to make possible to 
provide a model-based approach for prototyping interactive 
systems. The approach is fully illustrated by a case study 
using the ARINC 661 specification for User Interface 
components embedded into interactive aircraft cockpits. 

Author Keywords 
Behavioural modelling, Interactive systems, User Interface 
Description Languages (UIDLs), UsiXML, ARINC 661. 

General Terms 
Design, Reliability, Human Factors, Theory. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces 
and Presentation]: User Interfaces – User-centered de-
sign. 

INTRODUCTION 

In the last years User Interface Description Languages 
(UIDLs) appeared as a suitable solution for developing in-
teractive systems [7][Error! Reference source not 
found.][18]. In this scenario UsiXML [10] appears as an 
emergent candidate for describing interactive system, in 
particular those sought to be deployed in different plat-
forms [21]. It is widely agreed that a UIDL must cover 
three different aspects of the User Interface (UI): to de-

scribe the static structure of the user interfaces (i.e. presen-
tation part which ultimately includes the description of user 
interface elements, e.g. widgets, and their composition), to 
describe the dynamic behaviour (i.e. the dialog part, de-
scribing the dynamic relationships between components in-
cluding event, actions, and behavioural constraints) and to 
define the presentation attributes (i.e. look & feel proper-
ties for rendering the UI elements). Among the models in-
volved in User Interface (UI) development, dynamic be-
haviour is one of the most misunderstood and one of the 
most difficult to exploit [6][23]. Dialog models play a ma-
jor role on UI design by capturing the dynamic aspects of 
the user interaction with the system which includes the 
specification of: relationship between presentation units 
(e.g. transitions between windows) as well as between UI 
elements (e.g. activate/deactivate buttons), events chain 
(i.e. including fusion/fission of events when multimodal in-
teraction is involved) and integration with the functional 
core which requires mapping of events to actions according 
to predefined constraints enabling/disabling actions at 
runtime. 

These problems related to the description of behavioural 
aspects of interactive systems have been discussed in detail 
in [15]. Among the techniques presented, it is worth of 
mention the Interactive Cooperative Objects (ICO) formal-
ism which is a formal description technique designed to the 
specification, modelling and implementation of interactive 
systems. ICO has been demonstrated efficient for describ-
ing several techniques including 3D, multimodal interac-
tion techniques and dynamic reconfiguration of interactive 
systems [16]. ICO models are executable and fully sup-
ported by the CASE tool PetShop [4] which has been 
shown effective for prototyping interactive techniques [14].  

In this paper we propose a model-driven approach to inte-
grate behaviour described using ICO models and user inter-
face components described with UsiXML. By using ICO 
models is possible to run the Petshop environment to con-
trol the execution of the application. This approach has al-
ready been demonstrated efficient to model the behaviour 
of user interface components based on the standard ARINC 
661 for interactive aircraft cockpits [1][2][3][13]. In sec-
tion 2 we present an overview of behavioural aspects in 
UsiXML and how these issues have been treated by the re-



 135

search community. Section 3 introduces the standard 
ARINC 611 and how user interface components described 
by this standard can be implemented using UsiXML. Sec-
tion 4 introduces the case study. Section 5 is devoted to the 
specification of the behaviour of user interface compo-
nents. In section 6 we present a proposal for extending the 
concrete behavioural description within UsiXML. Finally, 
section 7 presents conclusions and future work.  

UsiXML AND BEHAVIOURAL DESCRIPTIONS 
UsiXML (USer Interface eXtensible Markup Language) is 
defined in a set of XML schemas where each schema cor-
responds to one of the models containing attributes and re-
lationships in the scope of the language [10]. UsiXML 
schemas are used to describe at a high level of abstraction 
the constituting elements of the UI of an application includ-
ing: widgets, controls, containers, modalities, interaction 
techniques, etc. 

The UsiXML language is structured according to the four 
levels of abstractions as proposed by the framework 
Cameleon [7], as follows: task models, abstract user inter-
faces (AUI), concrete user interface (CUI) and final user 
interface (FUI). Several tools [12] exist for editing specifi-
cation using UsiXML at different levels of abstraction. 
Notwithstanding, developers can start using UsiXML 
schemas at the abstraction level that better suits their pur-
poses. 

As far as the behaviour is a concern, there are some dedi-
cated schemas in UsiXML. At the task level, behaviour is 
covered by task models featuring operators in a similar way 
as it is done by CTT [11]. At the AUI and CUI levels sev-
eral schemas allows to describe basic elements of the dia-
log behaviour including events, triggers, conditions, and 
source and target components. These elements can be re-
fined at the FUI level to reach final constructs implemented 
by the target platform.  

So far there is limited support for UsiXML schemas related 
to behavioural aspect of interactive systems beyond the 
task model level. Some extensions have been proposed to 
describe high level dialog behaviours such as those imple-
mented by transitions between windows [22] and between 
states of workflow-based applications [9]. However, all 
these extensions are more or less related to task models.  

The description of fine-grained behaviour in UsiXML is 
awkward as the behavioural aspect and the user interface 
composition are interleaved in a single description. So that, 
the description of events, triggers and actions is scattered 
along the components of the user interface with makes ex-
tremely difficult to visualize the behaviour of the current 
state of the application being modelled. Another conceptual 
issue with dialog modelling with UsiXML is related to the 
different levels of abstraction; whilst abstract containers 
can be easily mapped to windows, it is not so easy to en-
visage abstract behaviour and how to refine them into more 
concrete actions on the user interface.  

A few works [17][23] have addressed the behaviour aspect 
of interactive system described with UsiXML. Schaefer, 
Bleul, and Mueller (2006) [17], propose an extension of 
UsiXML by the means of a dedicated language called Dia-
log and Interface Specification Language (DISL). The 
main contribution of that work is to propose clear separa-
tion between presentation, user interface composition and 
dialog parts of the interface. Winckler et al (2008) [23] 
suggest there is no need of new dialog language as 
UsiXML can be coupled with existing dialog modelling 
techniques such as StateWebCharts (SWC) [24] to deal 
with the behaviour of interactive systems. Those authors 
propose a set of mappings that allows SWC specification to 
be used as running engine for the behaviour of UsiXML 
specifications. Notwithstanding, the work was limited to 
navigation between web pages in Web-based user interfac-
es.   

ARINC 661 SPECIFICATION AND UsiXML 
Even if the main topic of this contribution is to make a 
bridge between a description of the user interface using 
UsiXML and an external behavioural description, we first-
ly propose an overview of a similar work done on an air-
craft standard for interactive application. Making a parallel 
with this previous work, we then highlight the basic bricks 
making possible to enhance UsiXML with a behavioural 
description. As illustrated in the next paragraphs, services 
offered by the ARINC 661 widgets and the definition of 
User Application (UA) are very close to UsiXML Concrete 
User Interface model.  

The Airlines Electronic Engineering Committee (AEEC) 
(an international body of airline representatives leading the 
development of avionics architectures) formed the ARINC 
661 Working Group to define the software interfaces to the 
Cockpit Display System (CDS) used in all types of aircraft 
installations. The standard is called ARINC 661 - Cockpit 
Display System Interfaces to User Systems [1][2]. In 
ARINC 661, a user application is defined as a system that 
has two-way communication with the CDS: 

 Transmission of data to the CDS, possibly displayed 
to the flight deck crew. 

 Reception of input from interactive items managed by 
the CDS. 

According to the classical decomposition of interactive sys-
tems into three parts (presentation, dialogue and functional 
core) defined in [5], the CDS part (in Figure 1) may be 
seen as the presentation part of the whole system, provided 
to the crew members, and the set of UAs may be seen as 
the merge of both the dialogue and the functional core of 
this system. ARINC 661 then puts on one side input and 
output devices (provided by avionics equipment manufac-
turers) and on the other side the user applications (designed 
by aircraft manufacturers). Indeed, the consistency between 
these two parts is maintained through the communication 
protocol defined by ARINC 661. 



 136

 
 

 

Figure 1. Abstract architecture and communication 
protocol between Cockpit Display System and a User 

Application. 

The ARINC 661 Specification uses a windowing concept 
which can be compared to a desktop computer windowing 
system, but with many restrictions due to the aircraft envi-
ronment constraints (see Figure 2).  

Display   Unit 
 - Screen - 

Window 
(managed 
by the CDS) Layer 

(owned by one 
User Application) Widget 

Format 

Application 1

Application 3

Application 2

Application 1

 

Figure 2. ARINC 661 Specification windowing 
architecture. 

The windowing system is split into 4 components:   

 The display unit (DU) which corresponds to the 
hardware part,  

 The format on a Display Unit (DU), consists of a set 
of windows and is defined by the current configura-
tion of the CDS, 

 The window is divided into a set of layers (with the 
restriction of only one layer activated and visible at a 
time) in a given window, 

 The widgets are the smallest component on which in-
teraction occurs (they corresponds to classical interac-
tors on Microsoft Windows system such as command 
buttons, radio buttons, check buttons, among others). 

In ARINC 661, a widget is defined with an identifier 
(widget type, widget identifier and widget parent), states 
(informal description of the relationship between these 
states) and some other descriptions: 

 A definition section provides general information on 
the widget such as the categories it belongs to, a func-
tional description of its behaviour and restrictions (if 
any) with respect to ARINC 661 principles.  

 A parameter table provides the list of the widget pa-
rameters (position, size, availability…). 

 A creation structure table presents the parameters 
required for the instantiation of the widget (kind, re-
strictions…).  

 An event structure table presents the event notifica-
tion structure. It describes the parameters that may be 
held by the events. 

 A run-time modifiable parameter table presents the 
sets of parameters that may be changed at run-time.  

For instance, a PushButton is defined as followed (only a 
subpart of the entire description is provided hereafter): 

Categories: 

Graphical representation, Interactive, Text 
string. 

Description: 

A PushButton widget is a momentary switched 
button, which enables a crew member to launch 
an action. A PushButton has only one inner 
state, so there is no need for an inner state 
parameter. 

Restriction: 

None. 

PushButton event structure: 

Event structure Size(bits) Value/Description 

EventId 16 A661_EVT_SELECTION 

PushButton Runtime Modifiable Parameters: 

Parameter Type Size Parameter Ident Type of struc-
ture 

Enable Uchar 8 A661_ENABLE … 

Visible Uchar 8 A661_VISIBLE … 

…     

… 

In ARINC 661, a UA communicates with the CDS asking 
for modification of widgets parameters and receiving 
events from them. On the CDS side, the set of widgets is 
created and their layout is related to the use of the User 
Application Definition File (UADF). The content of this 
file, as well as the description of widgets is really close to 
the UsiXML model for a Concrete User Interface (even if it 
is not expressed using an XML-based format). 

INFORMAL DESCRIPTION OF THE CASE STUDY 
In order to illustrate our approach, we briefly introduce the 
MPIA application (which stands for Multi-Purpose Appli-
cation) that we employ as case study (see Figure 3).   

 
Figure 3. WXA User Interface of the MPIA application. 



 137

The MPIA is an application embedded into aircraft cock-
pits (see Figure 4) and it aimed for handling several flight 
parameters. It is made up of three pages (called WXR, 
GCAS and AIRCOND) between which a crew member is 
allowed to navigate. WXR page is in charge managing 
weather radar information; GCAS is in charge of the 
Ground Anti Collision System parameters while AIR-
COND deals with settings of the air conditioning. Due to 
space reasons, we only focus on the WXR page. For the 
same reasons, we only on the ARNC 611 component 
PushButton that is used to build the buttons WXR, GCAS 
and AIRCOND as shown in the bottom-side of Figure 3. 

 

Figure 4. The MPIA application in aircraft cockpit. 

BEHAVIOURAL DESCRIPTION OF ARINC 661 WITH ICO 
Such as UsiXML CUI model, ARINC 661 does not pro-
vide an explicit description of both the application and 
widgets behaviour. Previous works based on the ICO for-
mal description technique [15] have been done in order to 
enhance ARINC 661 specification. In [13] we provide the 
basis for mapping parts of the ARINC 661 Specification in-
to ICO constructs used to describe the behaviour of both 
widgets and UA. In [3] we present architecture to explicit 
rendering concerns based on SVG [19]. In [16] we improve 
the previous architecture to support both multimodal inter-
action and reconfiguration of input and output devices. In 
this section, we present an overview of this work. 

The ICO formalism  
The Interactive Cooperative Objects (ICO) formalism is 
based on concepts borrowed from the object-oriented ap-
proach (i.e. dynamic instantiation, classification, encapsu-
lation, inheritance, and client/server relationships) to de-
scribe the structural or static aspects of systems, and uses 
high-level Petri nets to describe their dynamics or behav-
ioural aspects. In the ICO formalism, an object is an entity 
featuring five components: a cooperative object (CO), an 
available function, a presentation part and two functions 
(the activation function and the rendering function) that 
correspond to the link between the cooperative object and 
the presentation part. 

The Cooperative Object (CO) models the behaviour of an 
ICO. It states (by means of a high-level Petri net) how the 
object reacts to external stimuli according to its inner state.  

Figure 5 shows the concepts of the Cooperative Object 
models including: places (i.e. used as variables for tracking 
the system state), transitions (i.e. elements processing 
changes in the system state) and arcs (i.e. connecting plac-
es and transitions in a graph). Arcs can indicate in-
put/output for tokens circulating in the graph; notice that an 
input arc (i.e. InputArc) can be extended to feature precon-
ditions such as testing the availability of tokens in a place 
(i.e. TestArc) or preventing the movement of token accord-
ingly to special conditions (i.e. InhibitorArc). 

The variables associated to an arc are expressed by the 
concept EString. Tokens can hold values of any class in the 
system. The types of tokens that can circulate in a given 
place are denoted through the relationship with the concept 
EClass.  

 
Figure 5. The Cooperative Objects meta-model. 

The presentation part describes the external appearance 
of the ICOs. It is a set of widgets embedded into a set of 
windows. Each widget can be used for interacting with the 
interactive system (user interaction  system) and/or as a 
way to display information about the internal state of the 
object (system  user interaction).  

The activation function (user inputs: user interaction  
system) links users’ actions on the presentation part (for in-
stance, a click using a mouse on a button) to event services. 

The rendering function (system outputs: system  user 
interaction) maintains the consistency between the internal 
state of the system and its external appearance by reflecting 
system states changes through functions calls. 

Additionally, an availability function is provided to link a 
service to its corresponding transitions in the ICO, i.e., a 
service offered by an object will only be available if one of 
its related transitions in the Petri net is available. 

Architecture 
The architecture presented in Figure 6 proposes a struc-
tured view on the findings from of a project dealing with 
formal description techniques for interactive applications 
compliant with the ARINC 661 specification. 



 138

 
 

 

Figure 6. Detailed architecture compliant with 
ARINC 661 specification. 

The ICOs notation is exploited to model the behaviour of 
all the components of an interactive application compliant 
with ARINC 661 specification. 

This includes each interactive component (i.e. widgets), the 
user application (UA) and the entire window manager (re-
sponsible for the handling of input and output devices, and 
the dispatching of events (both those triggered by the UAs 
and by the pilots) to the recipients (the widgets or the 
UAs). The two main advantages of the architecture pre-
sented in Figure  are: 

 Every component that has an inner behaviour (server, 
widgets, UA, and the connection between UA and 
widgets, e.g. the rendering and activation functions) is 
fully modelled using the ICO formal description, 

 The rendering part is delegated to a dedicated language 
and tool (such as SVG, Scalable Vector Graphics 
[19]), thus making the external look of the user inter-
face independent from the rest of the application, 
providing a framework for easy adaptation of the 
graphical aspect of cockpit applications. In this archi-
tecture the basic principle is to associate a document 
object model (DOM) to the set of widgets and to pro-
duce a SVG document using an XSLT transformation 
[26]. 

Overview of the formal description using ICO 
As illustrated by the above architecture, ICO is used to 
model several parts of the entire interactive system. In this 
section, we present the modelling of a simple widget and 
its link to the SVG rendering, then we briefly present the 
classical modelling of a user application, and finally we 
present parts of the server. The purpose here is to present a 
brief extracts to show all bricks of the modelling. 

Modelling ARINC 661 widgets 
For each widget in ARINC 661 specification document, we 
model: 
 Its behaviour using a Petri net. 

 Its states (by the distribution of tokens in the places of 
the Petri net). 

 The transition between the states. 

 The rendering and activation function (which links the 
behaviour to the presentation part). 

Modelling a widget follows the following process: 

 Extract from ARINC 661 specification document the 
list of all the parameters 

 Extract from ARINC 661 specification document the 
list of all the events it raises 

 Build a software interface that exposes its run-time 
modifiable parameters, by providing an accessor for 
each parameter (i.e. a setXXX method for each XXX 
run-time modifiable parameter) 

 Edit the Petri net model for which a skeleton has been 
generated from the previous information. 

By applying this process, we modelled 12 widgets (from 
classical buttons, to complex containers such as a 
Tabbed_Panel_Group). Hereafter we present the modelling 
of a widget called Picture_Push_Button as an example. A 
Picture_Push_Button is a widget that is made up of 5 run-
time modifiable parameters (Enable, Visible, StyleSet, La-
belString and PictureReference) and raises 1 event 
(A661_EVT_SELECTION). 

The upper side of the Figure 7 presents a zoom on the be-
haviour of this widget that handles the modification of the 
two parameters Visible and Enable. The bottom part of 
Figure 7 shows the connections of this widget and model 
describing the whole behaviour of the WXR application. 

 

Figure 7. Behaviour model of the PicturePushButton. 



 139

Figure 8 presents the rendering function associated to the 
widget Picture_Push_Button. The third column presents 
the DOM attribute modified when the inner state of the but-
ton changes (e.g. when the state of the Petri net changes). 
An XSLT transformation is then used to produce the SVG 
document that renders the widget. 

ObCSNode ObCS event Modified DOM attribute 

Visible token_enter Visible = true 

Visible token_remove Visible = false 

Enabled token_enter Enabled = true 

Enabled token_remove Enabled = false 

…   

Figure 8. Rendering function of the PicturePushButton. 

Modelling User Applications 
Modelling a user application using ICO is quite simple as 
ICO has already been used to model such kind of interac-
tive applications. Indeed, UAs in the area of interactive 
cockpits correspond to classical WIMP-based user inter-
faces (WIMP stands for Window, Icon, Menu, Pointing 
device). Figure 9 shows the entire behaviour of page WXR 
which is made up of two non-connected parts:  

 The upper part aims at handling events from the 5 
CheckButtons and the modification implied of the 
MODE_SELECTION that might be one of five possi-
bilities (OFF, STDBY, TST, WXON, WXA). Value 
changes of token stored in place Mode-Selection are 
described in the transitions while variables on the in-
coming and outgoing arcs play the role of formal pa-
rameters of the transitions.  

 The lower part concerns the handling of events from 
the 2 PicturePushButton and the EditBoxNumeric. In-
teracting with these buttons will change the state of 
the application, allowing changing the tilt angle of the 
weather radar.  

Figure 10 shows an excerpt of the activation function for 
page WXR, which describes the link between events avail-
ability and triggering and the behaviour of the application. 
For instance, the first line represents the link between the 
event A661_EVT_SELECTION produced by the button 
auto_PicturePushButton and the event handler switch from 
the behavioural model of WXR (see Figure 9). If the event 
handler is available, the corresponding event producer (the 
button) should be enabled. 
From this textual description, we can derive the ICO model 
as presented in [3]. The use of Petri nets to model the acti-
vation function is made possible thanks to the event com-
munication available in the ICO formalism. As this kind of 
communication is out of the scope of this paper, we do not 
present the models responsible in the registration of events-
handlers needed to allow the communication between be-
haviour, activation function and widgets. 

 

 
Figure 9. Behaviour of the page WXR 

Widget Event Event Handler 

auto_PicturePushButton A661_EVT_SELECTION switchAUTO 

stab_PicturePushButton A661_EVT_SELECTION switchSTABILIZATION

tiltAngle_EditBox A661_STRING_CHANGE changeAngle 

…  

Figure 10. Activation Function of the page WXR 

Figure 11 shows an excerpt of the rendering function, 
which describes how state changes within the WXR behav-
iour lead to rendering changes. For instance, when a token 
(<float a>) enters (i.e. token_enter) the place 
TILT_ANGLE, it calls the rendering method showTiltAn-
gle(a) which displays the angle value into a textbox. 

ObCSNode name ObCS event Rendering method 

MODE_SELECTION token_enter <int m> showModeSelection(m) 

TILT_ANGLE token_enter <float a> showTiltAngle(a) 

…   

Figure 11. Rendering Function of the page WXR 

The modelling of the rendering function into Petri nets 
works the same way as for the activation function, i.e. for 
each line in the rendering function, there is a pattern to ex-



 140

press that in Petri nets (the interested reader may find more 
details in [3]). 

Modelling User Interface Server 
An important part of the above architecture is the user in-
terface server that manages the set of widgets and the hier-
archy of widgets used in the User Applications. More pre-
cisely, the user interface server is responsible in handling: 
 The creation of widgets. 

 The graphical cursors of both the pilot and his co-
pilot. 

 The edition mode. 

 The mouse and keyboard events and dispatching it to 
the corresponding widgets. 

 The highlight and the focus mechanisms. 

 … 

As it handles much functionality, the complete model of 
such a server is complex and difficult to manipulate with-
out an appropriate tool, and cannot be illustrated with a 
figure. In previous works [16], this server has been im-
proved to support reconfiguration policies for both input 
and output devices and it has been enhanced too to support 
multiple mice interaction. 

A PROPOSAL FOR CONCRETE BEHAVIOURAL DE-
SCRIPTION WITHIN UsiXML 
Beyond the obvious link that exists between the domain 
model of UsiXML and the behavioural description of an 
ICO, the work presented in the previous sections shows 
that there are common concerns between UsiXML CUI 
model and ARINC 661 specification (such as description 
of high level widgets and user interface, independent from 
implementation), and it shows that it is possible to enhance 
such descriptions with behavioural aspects.  

With respect to the UsiXML architecture, the work done 
with ARINC 661 may be divided into two distinct parts, 
making possible to ease the design path from the concrete 
user interface to the final user interface.  

An architecture making the bridge between ICO and 
UsiXML 
As stated when discussing the architecture of Figure 6, it is 
possible to clearly separate behavioural aspects from ren-
dering aspects. Figure 12 presents a first proposal for mak-
ing UsiXML and ICO cooperate. 

 
 

 
Figure 12. Detailed architecture compliant with 

UsiXML CUI. 

As with ARINC 661, the main idea is to explicitly intro-
duce behavioural models and make a clear link with the 
graphical representation. A successful integration should 
then lead to a UsiXML-based prototyping approach, inher-
iting from the prototyping capability of ICO. 

Introducing behaviour at CUI level 
Mapping state changes described using ICO description 
technique with UsiXML model attributes can be done easi-
ly. We illustrate the principle of introducing behavioural 
aspects at the CUI level with the example of the WXR ap-
plication. These illustrations provide the key features al-
lowing integration of ICO and UsiXML. 

Figure 13 introduces a subpart of the CUI model of the 
WXR application, showing only a classical text box and a 
button: 

 The inputText element txt_tiltAngle aims at containing 
a number representing a tilt angle. In order to include 
such as information into the description of the user in-
terface built using UsiXML we propose the inclusion 
of an attribute “text” that does not exist in the current 
version of UsiXML. Thus attribute “text” is used to 
host the corresponding rendering function as shown 
by Figure 15. 

 When clicked, the button btn_switchAUTO produces 
an event “switchAUTO”. Both the availability of this 
event and its occurrence are related to the behaviour 
of the application (as stated by the next paragraphs). 

<cuiModel id="WXR-cui_1" name="WXR-cui"> 

<window id="window_component_0" 
name="window_component_0" width="456" 
height="416"> 

<inputText id="txt_tiltAngle" 
name="txt_tiltAngle" isVisible="true" isEna-
bled="true" textColor="#000000" maxLength="50" 
numberOfColumns="15" isEditable="true" text=””/> 

<button id="btn_switchAUTO" name="btn_switchAUTO" 
isVisible="true" isEnabled="true" textCol-
or="#000000"> 

<behavior> 

  <event id="switchAUTO" eventType="action" 
   eventContext=""/> 

</behavior> 

</button> 

… 

</window> 

</cuiModel> 

Figure 13. Part of the CUI model of the 
WXR application. 

Making the link between the behaviour of the application 
expressed using ICO (as illustrated by Figure 9) is quite 
easy as there can be a direct mapping of the event produced 



 141

by the button (“switchAUTO”) and the available event han-
dler of the behaviour of WXR (“switchAUTO”), as shown 
in Figure 14. 

Widget Event Event Handler 

btn_switchAUTO switchAUTO switchAUTO 

…   

Figure 14. Activation Function of the page WXR. 

When the event handler is enabled, the attribute enabled of 
the button is thus set to “true”, “false” otherwise. Describ-
ing the rendering of the application is linked to attribute 
modification of the CUI DOM such as described by Figure 
15. 

ObCSNode name ObCS event CUI attribute 

TILT_ANGLE 
token_enter <float 

a> 
“text” of 
txt_tiltAngle 

…   

Figure 15. Rendering Function of the page WXR. 

When the token enters the place TILT_ANGLE, the attrib-
ute “text” of the inputText element of the CUI is modified 
with the value hold by the token. 

An executable CUI as a prototype for FUI 
Thanks to the possibility of executing Petri nets, ICO al-
lows prototyping when connected to the graphical repre-
sentation of an application [14]. For instance, the MPIA 
application (from which WXR is extracted) has been fully 
modelled and can be executed on the CDS modelled using 
the ICO formalism. However, it has also been connected on 
a CDS developed on an experimental test bench as shown 
in Figure 4. 

Providing a graphical representation of the CUI makes pos-
sible to build a prototype based our approach. Associating 
ICO and the CUI model has been discussed in the previous 
section, but it is possible too, in a similar way, to do this 
association at widget level, while proposing a way to ren-
der a CUI model based on a previous work integrating 
SVG [3]. Such a work should then allow the prototyping of 
the final UI (FUI) based on the bridge between ICO and a 
CUI model, shortening the design path to the FUI. 

Rendering based on SVG 
As stated in the previous section, any state change of the 
application is rendered via the modification of the CUI 
DOM, based on the mapping described by both the render-
ing and activation function. Figure 16 illustrates the run-
time architecture that supports FUI prototyping based on 
the association of UsiXML and ICO. To provide a render-
ing to each CUI element, we propose the use of declarative 
descriptions of the graphical part that support transfor-
mations from conceptual models to graphical representa-
tions. The approach exploits both the SVG language [19] 

for graphical representation, and the XSLT language for 
transformation (called a “stylesheet”). 

 

Figure 16. The run-time architecture. 

In order to write a stylesheet, one has to design the render-
ing of a particular widget, using Illustrator for example. 
When ready, the textual description of the widget is includ-
ed in the stylesheet. 

In our case, the source is the CUI DOM, built at start-up 
time, together with the instantiation of the ICOs compo-
nents. Before running the application, the system must 
compile the stylesheet to an XSLT transformer. While run-
ning the application, every time the state of a CUI DOM 
variable changes, it is transformed into a DOM SVG tree, 
which in turn is passed to the SVG renderer and displayed.  

Introduction of behaviour for widgets 
To go further with a precise prototyping of the FUI, it is 
necessary to describe each widget, including its behaviour 
(such as already done with ARINC 661). As illustrated by 
Figure 17 and Figure 18, it is possible to describe the fine 
grain behaviour of a widget and the link of its inner state 
changes with rendering. 

In its current state, UsiXML, via the CUI model, describes 
widgets as a type and a set of attributes (a button is defined 
by an id, a name…), making it abstract enough to be inde-
pendent from the targeted platform for the FUI. But when 
considering prototyping, it may be interesting to provide a 
finer description of the kind of widget that is expected, and 
a less coarse grain description of the widgets attributes (for 
instance, it is possible to introduce rendering for any inner 
state of a button: armed, pressed…). Another interesting 
point when dealing with widget is the introduction of new 
widgets that may request a precise description of how it 
should work on the targeted platforms. 

One possible way to allow such description within Usi-
XML could be to enhance the current platform model of 
the context model with a precise widget description. Even 
if no effort has already been put on it, this way is an im-
portant part of our future works. 



 142

DISCUSSION AND OUTLOOK 
Most of the recent work on UsiXML have been focused on 
mapping UsiXML schemas between several levels of ab-
straction [11][20] or proving automatic user interface gen-
eration of components to multi-target devices [12][21]. In-
deed, very few works have focused on the behavioural as-
pect of interactive systems modelled with UsiXML.  

This paper has presented a bridge between an already exist-
ing formal description technique for behavioural aspects of 
interactive systems and an approach for describing the 
presentation part of such system. Beyond that, it highlights 
how it is possible to take advantage from the two ap-
proaches to make possible to provide a model-based ap-
proach for prototyping interactive systems. 

Such as highlighted by the Arch architecture, this approach 
allows a clear separation between graphical aspects, behav-
ioural aspects and functional aspects. It allows too a clear 
separation with tasks such as with the work done in [4]. 
Such a separation is necessary as, depending on the func-
tional part of the interactive system, constraints independ-
ent from task concerns can appear. In the example used in 
this paper, the value of the tilt angle must meet the system 
requirements and the dialogue is thus specially designed to 
support this constraint. If the functional part changes, the 
dialog part must be modified, but not the user’s tasks. 

It is noteworthy that the use of ICO models to describe the 
behaviour of user interfaces allows overcoming of some of 
the limitations of other UIDL languages such as SCXML 
[25] XUL [27] such as the easier management of infinite 
states, the encapsulation of variables as objects of any kind 
and dynamic instantiation of objects. Moreover, properties 
of UI descriptions can be formally assessed using the un-
derlying Petri Net formalism.  

Three ways of improvement for this work could be: 

1. As presented in the previous section, a possible exten-
sion of our work is to introduce a notation or to en-
hance the current context model of UsiXML with a 
precise widget description, including its behaviour, 
making possible to build prototypes of the FUI. 

2. As presented with classical widgets, such an approach 
can be used to precisely describe new interactive com-
ponents. 

3. A link from task models and abstract UI to concrete UI 
could be done based on the work we have already done 
about putting into correspondence task models and 
system model [4] 

To make this work more “concrete” a particular effort has 
to be performed to integrate already existing tool support or 
to point out new developments. These issues are currently 
being addressed by our team at the IRIT (Institute of Re-
search in Informatics of Toulouse) and the CNES (Centre 
National d’Etudes Spatiales) in a recently started Research 
& Technology project called ALDABRA. 

ACKNOWLEDGEMENTS  
This work is supported by the Research & Technology Pro-
ject (RT) ALDABRA (IRIT-CNES).  

REFERENCES 
1. ARINC 661, Prepared by Airlines Electronic Engineer-

ing Committee. Cockpit Display System Interfaces to 
User Systems. ARINC Specification 661.  (2002). 

2. ARINC 661-2, Prepared by Airlines Electronic Engi-
neering Committee. Cockpit Display System Interfaces 
to User Systems. ARINC Specification 661-2; (2005). 

3. Barboni, E., Conversy, S., Navarre, D., Palanque, P. 
Model-Based Engineering of Widgets, User Applica-
tions and Servers Compliant with ARINC 661 Specifi-
cation. In Proceedings of the 13th conference on Design 
Specification and Verification of Interactive Systems 
DSVIS’2006. LNCS, Springer Verlag. 

4. Barboni, E., Ladry, J-F, Navarre, D., Palanque, P., 
Winckler, M. Beyond Modelling: An Integrated Envi-
ronment Supporting Co-Execution of Tasks and Sys-
tems Models. In Proc. of the ACM SIGCHI conference 
Engineering Interactive Computing Systems EICS’2010 
(Berlin, June 19-23, 2010). ACM Press, New York 
(2010), pp. 143-152.  

5. Bass L. et al. A metamodel for the runtime architecture 
of an interactive system: the UIMS tool developers 
workshop. SIGCHI Bulletin 24, 1 (1992), pp.32–37. 

6. Book, M., Gruhn, V.: Fine-Grained Specification and 
Control of Data Flows in Web-based User Interfaces. 
Journal of Web Engineering 8, 1 (2009), pp. 48-70. 

7. Calvary, G., Coutaz J., Thevenin, D., Limbourg, Q., 
Bouillon, L., Vanderdonckt, J. A. Unifying Reference 
Framework for Multi-Target User Interfaces. Interact-
ing With Computers 15, 3 (2003), pp. 289-308, 2003. 

8. Guerrero-García, J., González-Calleros, J.M., Vander-
donckt, J., and Muñoz-Arteaga, J. A Theoretical Survey 
of User Interface Description Languages: Preliminary 
Results. In Proc. of Joint 4th Latin American Confer-
ence on Human-Computer Interaction-7th Latin Ameri-
can Web Congress LA-Web/CLIHC'2009 (Merida, No-
vember 9-11, 2009). E. Chavez, E. Furtado, A. Moran 
(Eds.). IEEE Computer Society Press, Los Alamitos 
(2009), pp. 36-43. 

9. Guerrero-García, J., Vanderdonckt, J., and González-
Calleros, J.M. FlowiXML: a step towards designing 
workflow management systems. International Journal 
of Web Eng. Technol. 4, 2 (2008), pp. 163-182. 

10. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, 
L., and Víctor López Jaquero. UsiXML: a Language 
Supporting Multi-Path Development of User Interfaces. 
In Proc. of 9th IFIP Working Conference on Engineer-
ing for Human-Computer Interaction jointly with 11th 
Int. Workshop on Design, Specification, and Verifica-



 143

tion of Interactive Systems EHCI-DSVIS'2004 (Ham-
burg, July 11-13, 2004). Lecture Notes in Computer 
Science, vol. 3425. Springer, Berlin (2004), pp. 200-
220. 

11. Montero, M., López-Jaquero, V., Vanderdonckt, Gon-
zalez, and P. Lozano. Solving the Mapping Problem in 
User Interface Design by Seamless Integration in Ide-
alXML. In Proc. of DSV-IS’2005 (Newcastle upon 
Tyne, 13-15 July 2005). S.W. Gilroy, M.D. Harrison 
(Eds.). Lecture Notes in Computer Science, vol. 3941. 
Springer-Verlag, Berlin (2005), pp. 161-172. 

12. Michotte, B., and Vanderdonckt, J. GrafiXML, A Mul-
ti-Target User Interface Builder based on UsiXML. In 
Proc. of 4th Int. Conf. on Autonomic and Autonomous 
Systems ICAS’2008 (Gosier, 16-21 March 2008). IEEE 
Computer Society Press, Los Alamitos (2008), pp. 15-
22. 

13. Navarre, D., Palanque, P., and Bastide, R. A Formal 
Description Technique for the Behavioural Description 
of Interactive Applications Compliant with ARINC 661 
Specifications. In Proc. of HCI-Aero'04 Toulouse, 
France, 29 September-1st October 2004 

14. Navarre, D., Palanque, P., Bastide, R., and Sy, O. A 
Model-Based Tool for Interactive Prototyping of Highly 
Interactive Applications. In Proc. of 12th IEEE, Inter-
national Workshop on Rapid System Prototyping; Mon-
terey (USA). IEEE; 2001. 

15. Navarre, D., Palanque, P., Ladry, J.F., Barboni, E. 
ICOs: A model-based user interface description tech-
nique dedicated to interactive systems addressing usa-
bility, reliability and scalability. ACM Transactions on 
Computer-Human Interaction 16, 4 (November 2009). 

16. Navarre, D., Palanque, P., Ladry, J.F., Basnyat, S. An 
Architecture and a Formal Description Technique for 
User Interaction Reconfiguration of Safety Critical In-
teractive Systems. In Proc. of 15th Int. Workshop on 
Design, Specification, and Verification of Interactive 
Systems DSV-IS’2008 (Kingston, July 16-18, 2008). 
Lecture Notes in Computer Sciences, vol. 5136. Spring-
er, Berlin (2008). 

17. Schaefer, R., Bleul, S., Mueller, W. 2006. Dialog mod-
eling for multiple devices and multiple interaction mo-
dalities. In Proceedings of the 5th international confer-
ence on Task models and diagrams for users interface 
design TAMODIA'06. Karin Coninx, Kris Luyten, and 
Kevin A. Schneider (Eds.). Springer-Verlag, Berlin, 
Heidelberg, 39-53. 

18. Shaer, O., Green, M., Jacob, R.J.K, and Luyten, K., Us-
er Interface Description Languages for Next Generation 
User Interfaces. In Proc. of Extended Abstracts of 
CHI'08, ACM Press, New York (2008), pp. 3949-3952. 

19. SVG W3C 2003: Scalable Vector Graphics (SVG) 1.1 
Specification http://www.w3.org/TR/SVG11/ 

20. Tran, V., Vanderdonckt, J., Kolp, M., Wautelet, Y., Us-
ing Task and Data Models for User Interface Declara-
tive Generation. In Proc. of 12th International Confer-
ence on Enterprise Information Systems ICEIS’2010 
(Funchal, 8-10 June 2010), J. Filipe, J. Cordeiro (Eds.), 
Vol. 5, SciTePress, 2010, pp. 155-160. 

21. Trindade, F. M., and Pimenta, M. S. RenderXML - A 
Multi-platform Software Development Tool. In Proc. of 
TAMODIA 2007. LNCS, vol. 4849. Springer, Berlin 
(2007), pp. 293-298.  

22. Vanderdonckt, J., Limbourg, Q., Florins, M., Deriving 
the Navigational Structure of a User Interface. In Proc. 
of 9th IFIP TC 13 Int. Conf. on Human-Computer In-
teraction INTERACT’2003 (Zurich, 1-5 September 
2003). M. Rauterberg, M. Menozzi, J. Wesson (Eds.). 
IOS Press, Amsterdam (2003), pp. 455-462. 

23. Winckler, M., Trindade, F.M., Stanciulescu, A., 
Vanderdonckt, J., Cascading Dialog Modeling with 
UsiXML. In Proc. of 15th Int. Workshop on Design, 
Specification, and Verification of Interactive Systems 
DSV-IS’2008 (Kingston, July 16-18, 2008). Lecture 
Notes in Computer Sciences, vol. 5136. Springer, Berlin 
(2008), pp. 121-135. 

24. Winckler, M.; Palanque, P. StateWebCharts: a Formal 
Description Technique Dedicated to Navigation Model-
ling of Web Applications. In Proc. of Int. Workshop on 
Design, Specification and Verification of Interactive 
Systems DSVIS'2003 (Funchal, June 2003). 

25. World Wide Web Consortium. State Chart XML 
(SCXML): State Machine Notation for Control Abstrac-
tion. Working Draft 26 April 2011 Available at: 
http://www.w3.org/TR/2011/WD-scxml-20110426/ 

26. XSL Transformations (XSLT). Version 1.0. W3C Rec-
ommendation 16 November 1999. Available at: 
http://www.w3.org/TR/xslt 

27. XUL (XML User Interface Language). Available at: 
http://www.mozilla.org/projects/xul/ (August 10, 2011). 

 



 144

An Abstract User Interface Model to Support 
Distributed User Interfaces  

A. Peñalver, J. J. López-Espín, J. A. Gallud, E. Lazcorreta, F. Botella 
Operations Research Center University Institute 
Miguel Hernandez University of Elche, Spain 

{a.penalver, jlopez, jgallud, enrique, Federico}@umh.es

ABSTRACT 
Recently, the traditional concept of user interface has been 
changing significantly. The development of new devices 
supporting new interaction mechanisms have changed tra-
ditional way in which people interact with computers. In 
this environment of strong technological growth, the in-
creasing use of different displays managed by several users 
has improved user interaction. Combining fixed displays 
with wearable devices allows interaction and collaboration 
among users. Traditional user interfaces are evolving to-
wards “distributed” user interfaces according to the new 
technological advances, allowing one or more interaction 
elements are distributed among many different platforms in 
order to support interaction with one or more users. In this 
new scenario, the Abstract User Interface model has been 
reviewed and modified to include specific characteristics 
from the Distributed User Interface point of view. This pa-
per proposes a new Abstract User Interface that takes into 
account the possibility of distribution. Before presenting 
this new AUI model, the paper introduces the definition of 
the DUI concept and its foundations using a formal nota-
tion.  

Author Keywords 
Disabled, elderly people, user interface description lan-
guage, UsiXML, user model editor, virtual user. 

General Terms 
Design, Human Factors, Theory. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces 
and Presentation]: User Interfaces – User-centered de-
sign. 

INTRODUCTION 
Distributed User Interfaces are gaining attention in many 
research groups due to the recent advances in the field of 
display and mobile technologies, among others. This evolu-
tion has affected definitively the concept of user interface, 
which has to be called now Distributed User Interface 
(DUI). Nowadays, a user can interact with computers by 
using new interaction ways thanks to the use of different 
displays, platforms and the total connectivity. A typical ex-
ample of DUI could be AttachMe/DetachMe [8], where 
one single user can distribute UI elements across several 
platforms at run-time in order to accomplish a given task. 

For example, the painter’s palette of this application can be 
migrated from a desktop PC to a mobile device such as a 
PDA in order to maximize the available screen space for 
painting. This way, the interaction elements of the palette 
(e.g. brushes, color palettes, pencils) would be available in 
the PDA, while the drawing would be showed in the desk-
top PC. 

This paper presents a new Abstract User Interface model 
that takes into account the properties and features of the 
DUIs. Before introducing our proposal, we review the def-
inition of user interface to give a more comprehensive ap-
proach. This is justified by the fact that the Graphical User 
Interfaces (GUI) no longer has much emphasis in the pro-
posed new interaction devices. 

The use of formal models for user interface design can help 
us to ensure coherency across designs for multiple plat-
forms and prove properties such as consistency, reachabil-
ity and completeness [1]. Previous efforts dedicated to 
specify user interfaces (UI) [3] must be revisited and rede-
fined in order to consider this new interaction environment 
provided by distributed user interfaces, including for User 
Interface Description Languages (UIDLs) [12]. 

According to [13], DUI concerns to the allocation of one or 
many elements of one or many user interfaces to support 
one ore many users carrying out one ore many tasks on one 
or many domains in one or many contexts of use, each con-
text of use consisting of users, platforms and environments. 
Authors explain that where UI distribution is supported, UI 
federation is needed. UI federation supports the concentra-
tion of UI elements from distributed sources. 

Other previous studies have addressed, not always from a 
formal point of view, the specification of the essential 
properties of DUI’s, as well as reference model proposals 
[2,4,5,6,11]. In this paper, we define a user interface as a 
set of elements (input, output and control) that allows users 
to interact with different types of devices. The above defi-
nition of DUI is the starting point of the proposal described 
in this article. DUI adds the term distribution to the user in-
terface concept. 

We use the specification of Distributed User Interfaces 
(DUIs) that can be found in [10]. This formal view covers a 
wide range of descriptions from the most abstract to the 
implementation-oriented. Formal description techniques 
provide a means for producing unambiguous descriptions 
of complex interactions that occur in DUIs (distribution of 



 145

elements, including communication and distributed interac-
tion), more precise and understandable than descriptions 
using the natural language. In addition, formal description 
techniques provide the foundation for analysis and verifica-
tion of the descriptions provided. The analysis and formal 
verification can be applied to specific or abstract proper-
ties. Natural language is a good complement to the formal 
notation to get a first idea of the purpose of description. 

The work is organized as follows. First we briefly describe 
the field of Distributed User Interfaces. Next section shows 
the characterization of the DUI concept. Section 3 presents 
the set of basic definitions that are the foundation of our 
concept of DUI. Section 4 presents our AUI model and its 
characteristics. Last section details the conclusions and fu-
ture work. 

DUI CHARACTERIZATION 
The definition of Distributed User Interface (DUI) is based 
on the definition of User Interface (UI). In this section we 
are reviewing each term included in the former definition 
of DUI: user interface elements, UI, user, task, domain, 
contexts of use. Some authors have proposed a new defini-
tion of UI concept by using the term Human User Interface 
(HUI) [7] to underline the fact that the interface concept is 
becoming an element that is “closer” to the user than the 
computer. 

In the traditional definition, the interface is “closer” the 
computer or part of the computer indeed. This is, a UI is a 
set of elements that allows users to interact with computers. 
These elements can be categorized into input data elements, 
output data elements and control elements. This definition 
of UI supports all kind of technologies and interaction 
mechanisms. 

The task can be defined as the set of actions the user per-
forms to accomplish an objective. A DUI system is an ap-
plication or set of applications that make use of DUIs, since 
these applications share the user interface. A DUI system 
can be implemented by means of several kinds of devices, 
hardware and software platforms. So, for the purposes of 
this paper, there is no need to maintain the difference be-
tween device and platform. 

If we consider the former definition of DUI, we can define 
the following essential properties: portability, decomposa-
bility (and composability), simultaneity and continuity. The 
next paragraphs are devoted to describe each of the proper-
ties. 

Portability 
This property means that the UI as a whole, or elements of 
the UI, can be transferred among platforms and devices 
through easy user actions. For example, a user could be 
running a graphic editor in his/her desktop computer and 
then transfer the color palette panel (UI element) to another 
platform (a portable device) with a simple action. 

Decomposability 
A DUI system is decomposable if given a UI composed by 
a number of elements, one or more elements of that UI can 
be executed independently as a UI without losing their 
functionality. For example, a calculator can be decomposed 
in two UI elements, the display and the numeric keyboard. 
This property could be used along with Portability in order 
to allow the keyboard being executed in a smartphone 
meanwhile the display could be showed in a public display. 
These two UI elements could be also joined in a unique UI 
(composability). 

Simultaneity 
A DUI system is said simultaneous if different UI elements 
of the same DUI system can be managed in the same in-
stant of time on different platforms. For example, two or 
more users could be using the same DUI system, each one 
interacting with one of the different platforms at the same 
time. This does not imply that all DUI systems are multius-
er as we shall see later. 

Continuity 
A DUI system is said continuous if an element of the DUI 
system can be transferred to another platform of the same 
DUI system maintaining its state. For example, a user could 
be on a call in his/her mobile phone while walking down 
the street and transfer the call to the TV when he/she get 
home without interruption. 

BASIC DEFINITIONS AND SPECIFICATION OF ESSEN-
TIAL PROPERTIES OF DUIS 
In this section a set of concepts with the objective of ob-
taining a formal definition of a DUI is presented. 

Definition 1: Interaction Element 
An Interaction Element e∈E is defined as an element which 
allows a user u to carry out an interaction through a plat-

form p (denoted by u∼ep). An element can be defined as an 
input-data element u∼e,→p, an output-data element u∼e,←p 
or a control element u∼e,cp. In this work the generic nota-

tion e is used to enclose the three kinds of elements. 

Definition 2: Functionality 
Two elements of interaction e and e' have the same func-
tionality if a user can perform the same action using them 

in his/her interaction with the device (denoted by e=Fe'). In 
this sense, a button in a “Graphic Interface Unit" has the 
same functionality than a hand movement, if the computer 
receives the same order. In the same way, a sound has the 
same functionality as an audible alert if the user receives 
the same information as an answer to any interaction. 

Definition 3: Target 
A set of elements of interaction E

0
⊂E have the same Tar-

get (e∈TE
0
) if ∀e∈E

0
, a user u∈U obtains, through the 

functionality of e, an action of the task whose goal is to 
reach that target. 



 146

Definition 4: User Interface 
A User Interface (UI) i∈UI is a set of interaction elements 

such as i={e∈E / e∈Ti}, i.e., the user interface i is defined 
by the target for which that elements were chosen. From 
definitions exposed above it is possible to define a User In-
terface as a set of interaction elements which let a user to 
carry out a task in a specific context. After introducing the 
concepts of interaction elements, functionality and target, 
we can say that a user interface is simply a set of interac-
tion elements that allow a user to perform a task in a con-
text. 

Definition 5: Platform 
An interaction element e∈E exists in a platform p∈P (de-

noted by ∼ep), if e can be implemented, supported or exe-
cuted on p. Thus, this definition also includes the existence 
of a framework that supports the interaction element e. A 

user interface i∈UI is supported on p∈P (denoted by u∼ip) 

if ∀e∈i then u∼ep being u∈U. In addition, i∈UI is support-

ed on a set of platforms P
0
⊂P (u∼iP

0
) if ∀e∈i then u∼ep 

∀p∈P
0
 being u∈U. 

Essential properties explained in the aforementioned sec-
tions can be formalized following the proposed notation. 

Portability 

A user interface i∈UI / u∼ip being u∈U and p∈P, is porta-

ble if exits E
0
={e∈E/e∈i}⊂i such as u∼E

0p' and u∼Ē(p be-

ing p,p'∈P) reaching the same target than i (This property 
can be extended to more than one user). i∈UI has been 
ported if i is portable and this property id fulfilled. 

Decomposition 
A user interface i∈UI is decomposable if exits E

0
⊂i such as 

as E
0
={e∈i/ e∈T'E

0
} and Ē={e∈i/ e∈T''Ē} obtains the same 

target than i. Thus, if through i the target T is reached, then 
T' and T'' are two subtarget of T which can be reached 
through E

0
 and Ē

0
 respectively. Note that from the defini-

tion of UI we can deduce that E
0
 and Ē are two user inter-

faces (denoted by User Subinterface as it is shown in the 
next definition). 

Definition 6: User Subinterface 
Let us suppose that i∈UI is a user interface that allows a 

user u∈U to reach a target T on a platform p∈P, i.e. u∼Tp. 

If T' is a subtarget of T, then the set i'={e∈Ti/e∈T'i'} is a Us-

er Subinterface of i, and u∼T'p. i∈UI has been decomposed 
if it is decomposable and this property has been fulfilled. 

Definition 7: Distributed User Interface 

A Distributed User Interface di∈DUI is defined as a user 
interface which has been decomposed and ported. Then, a 
Distributed User Interface di∈DUI is defined as 

 

Thus, a distributed user interface is a collection of interac-
tion elements that forms a set of user interfaces, as well as 
the subinterfaces of the user distributed interface. These 
user subinterfaces are distributed in platforms without los-
ing their functionality and their common target. 

Using this new notation it is possible to express the interac-

tion of a user through traditional UIs as u∼ip, being i∈UI, 

the interaction of a user through DUIs as u∼dip being 
di∈DUI, and the interaction of some users through some 

platforms trough DUIs as {u/u∈U}∼di{p/p∈P}. 

Definition 8: State of a User Interface 
The Status of a user interface i∈UI, denoted by S(i), is de-
fined as the temporal point in which i lies after the user has 
used part of its elements with the goal of reaching the tar-
get associated to i. A state of i is the Initial State (S

0
(i)) ei-

ther none of the elements have been used or some elements 
have been used, but they do not contribute to reach the tar-
get of i. The Final State of i (S

F
(i)) is reached when the 

target of i is reached. It is said that this target is achieved in 

n steps or states, if through the sequence S
0
(i),…,Sn(i)  

the target of i is fulfilled. Note that moving from the state 
S

j
(i) to S

j+1
(i) requires to use the appropriate interaction el-

ement e∈i. Other elements used do not change the state. 
Furthermore, there exists elements which move from state 
S

j
(i) to S

j−1
(i), to S

F
(i) or to S

0
(i). 

Definition 9: State of a Distributed User Interface 
The State of a Distributed User Interface di∈DUI, denoted 
by S(di) = (S(i1),…, S(in)), is defined as a n-tupla where 
each element corresponds to the state of each user interface 
in which di has been decomposed. Note that S(di) depends 
on the decomposition of di in subinterfaces and those that 
have been ported to different platforms. 

We say that di is in an initial state if S0(di) = (S0(i1),…, S0 
(in)), and we also say that di is in a final state if SF(di) = 
(SF(i1),…, SF (in)). The number of states required to reach 
the target of di is the product of the number of states re-
quired to reach each subtarget in each ported user subinter-
face in which di have been divided. 

Simultaneity 

An distributed user interface di∈DUI is simultaneous in p0, 
p1, …, pn P with n>1 for u

k
∈U with k = 1, …, nu (nu

≥1) 

users, if di=⋂N,j=1i
j
 with i

j
∈UI, and u

k
∼i

jp
s
 in the same 

temporal point, with j=1…N and s=1…n and k=1…n. 



 147

Continuity 

An distributed user interface di∈DUI is continuous in p0, p1 

P if ∀e∈di, u∼ep
0
 and u∼ep

1
 maintaining the state of di, 

i.e., being S
j
(di) the state of di, in both cases S

t
(i) is reached 

(being able to be t=0,j,j+1,j−1,F). We can illustrate these 
definitions using a simple example: the calculator. A calcu-
lator application consists of two main sets of interaction el-
ements: the calculator screen or display and the calculator 
key pad. These two sets can be considered as a user subin-
terface (a container of other interaction elements). The key 
pad is also a set of interaction elements, being each numer-
ic button an interaction element itself. In this case, the 
common global user’s goal (target) for calculator is to al-
low the user to perform computations. The calculator 
screen has its own target: to show the operands, numbers 
and results. The key pad has its own target or goal: to allow 
the user to introduce the operations. We cannot consider 
each button as its own target because it would not make 
sense. 

If we consider the distribution of the calculator application 
across two different platforms (for instance, a situated large 
display and a mobile device), a possible solution could be 
to distribute the calculator display on the large situated dis-
play and the key pad to the mobile device. The distributed 
calculator application accomplishes the decomposition 
property since we can divide the main user interface into 
two UsubI, each one with its own target. The other three 
properties need a real implementation in order to test 
whether the distributed application verifies or not each 
property. A detailed verification of real applications can be 
found in [10]. 

AN AUI MODEL TO SUPPORT DUIS 

In this section, the AUI model that supports our concept of 
Distributed User Interfaces is presented. As it has been 
showed in the previous section, the concept of Distributed 
User Interfaces is based on the concept of User Interface. 
In fact, according of the perspective of this work, a DUI is 
a set of interaction elements distributed across different 
platforms. In order to consider a set of interaction elements 
as a UI, it is required that all these interaction elements 
have a common goal (target). This common goal is con-
nected with the user’s task, i.e., a UI is the resource to the 
user to reach the result of the task. This result appears in 
the model as target. 

Figure 1 shows the abstract user interface model proposed 
in this paper. A User Interface is composed of an abstract 
interaction object (aio) that can be either an interaction el-
ement or a sub user interface (uSubI). The interaction ele-
ment can be used to express input, output, navigation or 
control actions. In this model, the terms "target" and "sub-
target" are present in the model to remark the importance of 
the common goal which is connatural to the concept of user 
interface. Figure 2 shows the abstract user interface model 
that is proposed in the UsiXML V1.8 [9]. 

 

  
Figure 1. Abstract User Interface with the 

DUI perspective. 

 
Figure 2. Abstract User Interface proposed in UsiXML. 

After analyzing the showed models, it must be noted that 
the term "target" is used in Figure 2 in the sense of user’s 
goal or objective. Target in Figure 2 does not represent us-
er’s goal. Comparing both models, the interaction element 
of Figure 1 is equivalent to the abstractIndividualCompo-
nent of Figure 2, the uSubI element is equivalent to the ab-
stractContainer and the uSubI element is linked with the 
subTarget element to support the explained properties. 

There is a significative difference between these two AUI 
models and the introduction of the target and subTarget 
terms in the model. As it has been explained, a DUI is a set 
of distributed interaction elements that support a common 
goal (target). Before distributing a UI, it is possible to 
check if a set of interaction elements can be separated and 
transferred to other platform (portability and decomposabil-
ity properties) with a simple verification. We have to test if 
the selected interaction elements have associated a sub-
target or not. 



 148

 
Figure 3. Decomposing the calculator interface. 

To illustrate this proposal, a simple example based in the 
calculator is explained. The calculator, as a whole, is a UI 
in order to allow the user to perform mathematical calcula-
tions which is the final objective (“target” in our model)”. 
The calculator is composed of an abstract interaction object 
which also contains an interaction element (the display) 
and of a user sub-interface (the keyboard). The display has 
a subtask related to the main goal: show the calculations to 
the user. 

The sub-interface keypad is composed of a set of interac-
tion elements (buttons) with a common sub-objective: Al-
low user input. The display is framed within the output in-
teraction elements, while each of the keys can be consid-
ered as an input element. The "key" interaction elements 
share a common sub-objective: to allow data input, so it 
makes no sense to be distributed separately, but framed 
within its sub-interface since they share the same input 
subgoal. To separate or distribute interaction elements that 
do not share a sub-objective linked to the main purpose of 
the UI can jeopardize the attainment of this objective. Fig-
ure 3 shows the discussed concepts. 

CONCLUSIONS AND FUTURE WORK 

This work presents a new AUI model to support the Dis-
tributed User Interface (DUI) perspective. The introduction 
of the “target” hierarchy associated to every user interface 
supports the distribution of user interface elements across 
different devices maintaining the coherence with the user’s 
task goal. This new AUI model is based on the characteri-
zation of the essential properties of Distributed User Inter-
faces: decomposability, portability, simultaneity and conti-
nuity. We have employed a formal notation to describe the-
se properties. With this formal notation we will be able to 
build a solid base for developing distributed user interfaces. 

This approach will allow us to define an automatic or semi-
automatic way to determine whether a user interface can be 

distributed or not, depending on the degree of achievement 
related to the target hierarchy. Provided that all user inter-
faces and subInterfaces are linked with a target (in the 
sense of user’s goal), we can easily detect when an isolated 
(not linked to a user’s goal) interaction element is going to 
be distributed on a different platform, which can have an 
adverse effect in the behavior of the distributed user inter-
face. 
 
REFERENCES 

1. Bowen, J. and Reeves, S. Using formal models to de-
sign user interfaces: a case study. In Proceedings of the 
BCS-HCI’2007 (Swinton, 2007). (2007), pp. 159–166. 

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (2003), pp. 289-308. 

3. Chi, U. Formal specification of user interfaces: A com-
parison and evaluation of four axiomatic approaches. 
IEEE Transactions on Software Engineering 11, 8 (Au-
gust 1985), pp. 671–685. 

4. Demeure, A., Calvary, G., Sottet, J.-B., Ganneau, V., 
and Vanderdonckt, J. A Reference Model for Distribut-
ed User Interfaces. In Proc. of 4th Int. Workshop on 
Task Models and Diagrams for user interface design 
TAMODIA'2005 (Gdansk, 26-27 September 2005). 
ACM Press, New York (2005), pp. 79-86. 

5. Demeure, A., Sottet, J.S., Calvary, G., Coutaz, J., Gan-
neau, V., and Vanderdonckt, J. The 4C Reference Mod-
el for Distributed User Interfaces. In Proc. of 4th Int. 
Conf. on Autonomic and Autonomous Systems 
ICAS’2008 (Gosier, 16-21 March 2008). D. Green-
wood, M. Grottke, H. Lutfiyya, M. Popescu (Eds.). 
IEEE Computer Society Press, Los Alamitos (2008), 
pp. 61-69. 

6. Florins, M., Montero, F., Vanderdonckt, J., Michotte, 
B., Splitting Rules for Graceful Degradation of User In-
terfaces. In Proc. of 8th Int. Working Conference on 
Advanced Visual Interfaces AVI’2006 (Venezia, 23-26 
May 2006). ACM Press, New York (2006), pp. 59-66. 

7. Gallud, J.A., Villanueva, P.G., Tesoriero, R., Sebastian, 
G., Molina, S., and Navarrete, A. Gesture-based inter-
action: Concept map and application scenarios. In Pro-
ceedings of the 3rd Int. Conf. on Advances in Human-
Oriented and Personalized Mechanisms, Technologies 
and Services CENTRIC’2010. IEEE Computer Society 
Press, Los Alamitos (2010), pp. 28–33. 

8. Grolaux, D., Vanderdonckt, J., and Van Roy, P. Attach 
me, Detach me, Assemble me like You Work. In Proc. 
of 10th IFIP TC 13 Int. Conf. on Human-Computer In-
teraction INTERACT’2005 (Rome, 12-16 September 
2005). Lecture Notes in Computer Science, vol. 3585. 
Springer-Verlag, Berlin (2005), pp. 198–212. 



 149

9. Limbourg, Q. and Vanderdonckt, J. UsiXML: A User 
Interface Description Language Supporting Multiple 
Levels of Independence. In Engineering Advanced Web 
Applications, M. Matera, S. Comai, S. (Eds.). Rinton 
Press, Paramus (2004), pp. 325-338. 

10. Lopez-Espin, J.J. Formal specification of distributed 
user interfaces. In: Proc. of DUI’2011 Workshop, Uni-
versity of Castilla-La Mancha (2011). 

11. Reichart, D.: A.: Task models as basis for requirements 
engineering and software execution. In Proc. of 
TAMODIA’2003. (2003), pp. 51–589. 

12. Souchon, N., and Vanderdonckt, J. A review of XML-
compliant user interface description languages. In Proc. 
of Workshop on Design, Specification, and Verification 
of Interactive Systems DSV-IS’2003. J.A. Jorge, 
N. Jardim Nunes, and J. Falcāo e Cunha (Eds.). Lecture 
Notes in Computer Science, vol. 2844. Springer, Berlin 
(2003), pp. 391–401. 

13. Vanderdonckt, J. Distributed User Interfaces: How to 
Distribute User Interface Elements across Users, Plat-
forms, and Environments. In Proc. of XIth Congreso In-
ternacional de Interacción Persona-Ordenador Inter-
acción’2010 (Valencia, 7-10 September 2010). J.L. 
Garrido, F. Paterno, J. Panach, K. Benghazi, N. Aquino 
(Eds.). AIPO, Valencia (2010), pp. 3-14. 

 



 150

A Graphical UIDL Editor for Multimodal Interaction 
Design Based on SMUIML  

Bruno Dumas1, Beat Signer1, Denis Lalanne2 
1WISE Lab, Vrije Universiteit Brussel 

Pleinlaan, 2 – B-1050 Brussels (Belgium) 
{bdumas, bsigner}@vub.ac.be 

2DIVA Group, Université de Fribourg 
Boulevard de Pérolles, 90 

CH-1700 Fribourg (Switzerland) 
denis.lalanne@unifr.ch 

ABSTRACT 
We present the results of an investigation on software sup-
port for the SMUIML multimodal user interaction descrip-
tion language. In particular, we introduce a graphical UIDL 
editor for the creation of SMUIML scripts. The presented 
graphical editor is fully based on SMUIML for the repre-
sentation of the underlying data as well as for the dialogue 
modelling. Due to the event-centered nature of SMUIML, 
the representation of the multimodal dialogue modelling in 
the graphical SMUIML dialogue editor has been realised 
via a state machine. The editor further offers a real-time 
graphical debugging tool. Compared to existing multimod-
al dialogue editors, the SMUIML graphical editor offers a 
dual graphical and textual editing as well as a number of 
operators for the temporal combination of modalities.  

Author Keywords 
Multimodal Interaction, UIDL, Graphical Editor, 
SMUIML, HephaisTK. 

General Terms 
Design, Human Factors, Theory 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – Graphical User Interfaces (GUI), Prototyping, 
Theory and Methods. 

INTRODUCTION 
Multimodal interfaces aim to improve the communication 
between humans and machines by making use of concur-
rent communication channels or modalities. They have 
been shown to increase comfort and offer better expressivi-
ty to users. Nevertheless, multimodal interfaces are difficult 
to realise due to a number of reasons. First, multimodal in-
terfaces are typically composed of a number of state of the 
art recognition technologies, such as speech recognition or 
pattern matching-based gesture recognition. Typically, de-
velopers have to master a number of these state of the art 
recognisers for different modalities in order to create ad-
vanced multimodal interfaces. Second, a combination of 
input for the same modality can lead to ambiguous inter-
pretations based on factors such as the ordering of input 
events, the delay between events, the context of use or spe-
cific user profiles. Fusion algorithms that take adaptation 
into account are therefore required. Last but not least, mul-
timodal human-machine dialogue modelling is desirable in 

order to facilitate the development of complex multimodal 
interfaces. 

The challenges introduced by multimodal interaction de-
sign can potentially be addressed by using a modelling lan-
guage in combination with a multimodal framework and 
development environment. A multimodal User Interface 
Description Language (UIDL) forms the key element of 
such an approach. A UIDL [17] is used to define the be-
haviour of the multimodal framework, to perform the dia-
logue modelling and as the underlying format for the GUI 
development environment. A multimodal user interface de-
scription language is typically situated at the Abstract User 
Interface (AUI) layer. Furthermore, software support for 
the UIDL is provided for the definition, modelling or inter-
pretation of user interface descriptions. 

We present our explorations of such a language-based ap-
proach in the context of the Synchronized Multimodal User 
Interfaces Modelling Language (SMUIML) and the corre-
sponding software support. In particular, we present a 
graphical UIDL editor for SMUIML and discuss its support 
for designing multimodal interactions. The graphical editor 
offers an alternative to the purely text-based editing of 
scripts in our XML-based language, which is often tedious 
and can easily lead to errors. This graphical editor further-
more focuses on how to express complex temporal rela-
tions between input modalities. We start by discussing re-
lated work in the context of modelling languages as well as 
graphical editors for multimodal interaction design. We 
then introduce the SMUIML language and some results 
from our research on the language design for modelling 
multimodal interaction. This is followed by a description of 
the different supportive software components for the 
SMUIML language with a particular focus on the graphical 
UIDL editor. After an overview of the planned future 
work, we provide some conclusions. 

RELATED WORK 
Over the last decade, there have been a number of formal 
language approaches for the creation of multimodal inter-
faces. Some of these approaches are positioned in the con-
text of a multimodal web, propagated by the World Wide 
Web Consortium’s (W3C) Multimodal Interaction Activity 
and its proposed multimodal architecture1. This theoretical 
                                                           
1 http://www.w3.org/TR/mmi-arch/ 



 151

framework describes the major components involved in 
multimodal interaction, as well as potential or existing 
markup languages to be used to relate these components. 
Many elements described in this framework, such as the 
W3C EMMA markup language2 or modality-focused lan-
guages including VoiceXML3, EmotionML and InkML4, 
are of practical interest for multimodal HCI practitioners.  

The W3C framework inspired Katsurada et al. [9] for their 
work on the XISL XML language. XISL focuses on the 
synchronisation of multimodal input and output, as well as 
dialogue flow and transition. 

Araki et al. [1] propose the Multimodal Interaction Markup 
Language (MIML) for the definition of multimodal interac-
tions. A key characteristic of MIML is its three-layered de-
scription of interaction, focusing on interaction, tasks and 
platform. 

Ladry et al. [11] use the Interactive Cooperative Ob-
jects (ICO) notation for the description of multimodal in-
teraction. This approach is closely bound to a visual tool 
enabling the editing and simulation of interactive systems, 
while being able to monitor system operations at a low lev-
el. 

Stanciulescu et al. [18] followed a transformational ap-
proach for the development of multimodal web user inter-
faces based on UsiXML. Four steps are necessary to get 
from a generic model to the final user interface. One of the 
main features of their work is a strong independence from 
the available input and output channels. A transformational 
approach is also used in Teresa XML by Paterno et al. [13]. 
DISL [14] was created as a language for specifying a dia-
logue model which separates multimodal interaction and 
presentation components from the control model. Finally, 
at a higher level of modelling, NiMMiT [6] is a graphical 
notation associated with a language used to express and 
evaluate multimodal user interaction. An analysis of mul-
timodal interaction modelling languages can also be found 
in [16]. 

Graphical editors for the definition of multimodal dia-
logues can broadly be separated into two families. These 
two families differ in the way how a dialogue is represent-
ed, which is often driven by the underlying architecture. On 
the one hand, stream-based architectures favour a direct 
representation of data streams, with building blocks con-
sisting of processing algorithms that are applied to the 
streams in a sequential manner. In the past few years, there 
has been a trend for graphical editors for stream-based mul-
timodal architectures. Petshop for ICO [11], Squidy [10] or 
Skemmi [12] for OpenInterface are examples of these types 
of graphical editors for stream-based architectures. On the 

                                                           
2 http://www.w3.org/TR/emma/ 
3 http://www.w3.org/TR/voicexml20/ 
4 http://www.w3.org/TR/InkML/ 

other hand, event-driven architectures result in a state ma-
chine-based representation of the multimodal human-
machine dialogue. In this category, fewer examples exist 
for the representation of multimodal interaction, the most 
prominent one being IMBuilder from Bourguet [3]. Note 
that the graphical editors introduced in this section have all 
been built from scratch and they are not based on a previ-
ously defined formal language, with Petshop for ICO form-
ing the only exception. 

THE SMUIML LANGUAGE 

SMUIML stands for Synchronized Multimodal User Inter-
action Modelling Language. As the name implies, 
SMUIML aims to offer developers a language to describe 
multimodal interaction and define the used modalities in an 
easy-to-read and expressive way. The language can further 
be used to describe the recognisers associated with a given 
modality, the human-machine dialogue modelling, the var-
ious events associated with these dialogues and the way 
these different events can be temporally synchronised5. 
SMUIML was designed to be as simple as possible and is 
targeting usability. In order to minimise the verbosity of 
SMUIML, we decided not to rely on existing standard mul-
timodal interaction languages. 

  
Figure 1. The three levels of SMUIML. 

The SMUIML language is divided into the three abstrac-
tion layers shown in Figure 1. The lowest level details the 
different modalities which are then used in the context of 
an application, as well as the particular recognisers to be 
used to access the different modalities. The middle level 
addresses input and output events. Input events are called 
triggers and output events actions. Triggers are defined per 
modality which means that they are not directly bound to 
specific recognisers and they can express different ways to 

                                                           
5 An XML Schema as well as some SMUIML examples 

can be found at: http://sourceforge.net/projects/hephaistk/ 



 152

trigger a particular event. For example, a speech trigger can 
be defined in such a way that the words “clear”, “erase” 
and “delete” will all lead to the same event. Actions are the 
messages that the framework sends to the client applica-
tion. The top level of abstraction describes the actual hu-
man-machine dialogue by means of defining the contexts 
of use and interweaving the different input events and out-
put messages between those contexts. The resulting human-
machine dialogue description is a series of “contexts of 
use”, with transitions between these different contexts. 
Therefore, the description of the multimodal human-
machine dialogue in SMUIML has an implicit representa-
tion as a state machine, similar to Bourguet’s IMBuild-
er [3]. The combination of modalities is defined based on 
the CARE properties [5] as well as on the (non-
)sequentiality of input triggers. As shown in Listing 1, the 
three abstraction levels are directly reflected in the basic 
structure of the language.  

 

Figure 2. Four modelling language purposes (from ma-
chine-oriented to human-oriented) with respect to ex-

pressiveness and usability. 

The spectrum of multimodal dialogue description language 
users, on a scale from usability to expressiveness, was pre-
sented in [8]. Through various workshops, informal discus-
sions with colleagues and students and a study of the cur-
rent state of the art, we envisioned three types of approach-
es for a description language: a highly formal language ap-
proach that perfectly fits for configuring a tool, a less for-
mal language approach which is good for communicating 
the details of an application and a “middle” approach fo-
cussing on the modelling. Along these three approaches, a 
formal language can also be used as a learning tool (see 
Figure 2) helping teachers in communicating the features of 
a particular application domain to their students.  

In [8] we presented 9 guidelines for a multimodal descrip-
tion language. These guidelines should be used as design 
tools or as language analysis criteria:  

• Abstraction levels  

• Modelling the human-machine dialogue  

• Adaptability to context and user (input and output)  

• Control over fusion mechanism  

• Control over time synchronicity  

• Error handling  

• Event management  

• Input and output sources representation  

• Finding the right balance between usability and ex-
pressiveness  

SOFTWARE SUPPORT FOR SMUIML 

SMUIML enables the definition of a full model of multi-
modal human-machine events and dialogues by providing 
modelling capabilities as well as a reflection basis. Howev-
er, the language shows its true potential when linked to a 
range of different supportive software solutions. In the fol-
lowing, we briefly introduce the software support within 
SMUIML for interpretation and then discuss the latest 
software addition in the form of a graphical editor for de-
signing multimodal human-machine dialogues.  

The HephaisTK Framework 
The HephaisTK framework which supports the creation of 
multimodal interfaces based on the SMUIML scripting 
language has been developed in our research lab. A de-
scription created in SMUIML, with the structure shown in 
Listing 1, is used to configure the HephaisTK framework. 
The <recognizers> part indicates which recognisers 
have to be loaded by the framework. It further provides 
some high-level parameters such as whether a speech rec-
ogniser is able to recognise different languages. The 
<triggers> are directly bound to the different fusion al-
gorithms provided by HephaisTK. The <actions> part 
defines the semantics to be used when communicating fu-
sion results to a client application. Last but not least, the 
SMUIML <dialog> part is used for a number of specific 
goals in HephaisTK. 

<?xml version=”1.0” encoding=”UTF–8”?> 
<smuiml> 
  <integration_desc client=”client app”> 
    <recognizers> 
      <!–– ... ––> 
    </recognizers> 
    <triggers> 
      <!–– ... ––> 
    </triggers> 
    <actions> 
      <!–– ... ––> 
    </actions> 
    <dialog> 
      <!–– ... ––> 
    </dialog> 
  </integration desc> 

<smuiml> 

Listing 1. Basic layout of a SMUIML script. 

First and foremost, by providing a description of the hu-
man-machine dialogue flow, the HephaisTK Dialog-
Manager agent stays in a consistent state with the client 
application. The clear separation of the SMUIML <dia-
log> into transitions and contexts allows the different 
triggers to be enabled or disabled depending of the current 
context. Since only a subset of triggers has to be considered 
in a given context, the load on the recognisers is reduced 
and the overall recognition rate is improved. 



 153

 

Figure 3. The SMUIML graphical editor with an example dialogue defining the behaviour of 
a music player application. 

The <dialog> part of SMUIML also helps with the in-
stantiation of the different fusion algorithms present in He-
phaisTK. In the case of the Hidden Markov Model-based 
fusion algorithm that is integrated in HephaisTK, the defi-
nition of the human-machine dialogue in SMUIML is also 
used to generate a set of all expected trigger input sequenc-
es. This set of expected sequences is then injected into a se-
ries of Hidden Markov Models (one per context of use) in 
order to have the fusion engine ready to be used when 
launching the HephaisTK framework.  

The SMUIML language is applied at multiple levels in the 
context of the HephaisTK framework: at the multimodal 
dialogue description level, at the recogniser launch and pa-
rameterisation level as well as the fusion engine instantia-
tion level. SMUIML is typically used during the later stag-
es of multimodal interface development, including the sys-
tem design and runtime stages. Note that it is out of the 
scope of this paper to provide a full description of He-
phaisTK but further details can be found in [7]. 

The SMUIML Graphical Editor 
The SMUIML language is derived from the XML metalan-
guage and a standard text editor is sufficient for creating 
SMUIML documents. Even if the language has been prov-
en to be expressive in a qualitative study [8], the editing of 
“raw” XML documents can easily lead to errors that are 
only identified when interpreting a SMUIML script at 
runtime. Other issues with the text-based editing of 
SMUIML scripts include the lack of an explicit representa-
tion of the relationships between different elements as well 
as the difficulty to produce and maintain an accurate mental 
model of complex dialogue scenarios. Furthermore, the ne-
cessity of having to learn a new language may represent a 
major challenge for some users. In order to overcome these 
shortcomings, we have developed a graphical editor for the 
definition of new SMUIML scripts.  

The goal of our SMUIML graphical editor was to provide 
developers, who are not fully proficient with multimodal 
interfaces, a usable and expressive tool for creating 



 154

SMUIML scripts. The dialogue editor offers a graphical 
representation of SMUIML-encoded multimodal human-
machine dialogues. Furthermore, it supports the creation of 
sets of actions and triggers and can be used to generate a 
Java configuration with all the calls related to the 
SMUIML script. The graphical representation of a multi-
modal dialogue follows the SMUIML logic presented in 
the previous section. The SMUIML graphical editor has 
been created based on the Eclipse open development plat-
form (http://www.eclipse.org). Eclipse is widely used 
among development teams and provides a set of well-
known interface elements. The SMUIML graphical tool it-
self was developed using the Graphical Editing Framework 
(GEF - http://www.eclipse.org/gef/) and the Eclipse Mod-
eling Framework (EMF - http://www.eclipse.org/modeling/ 
emf/). 

The main window of the graphical editor is shown in Fig-
ure 3. The central part of the tool is dedicated to the actual 
dialogue representation. As stated earlier, the multimodal 
human-machine dialogue in SMUIML is represented via a 
state machine. A graphical representation of this state ma-
chine is used to depict the multimodal dialogue in the 
graphical editor. Note that the editor also provides access 
to a textual version of the SMUIML script that is currently 
edited. Any changes that are done either in the graphical or 
the textual representation are immediately reflected in the 
other representation. For both, the graphical and textual 
representation, there exists real-time error checking. 

On the right-hand side of the window are a set of toolboxes 
and most of them are related to the different parts of a typi-
cal SMUIML file. The Palette toolbox presents the 
basic building blocks for creating the dialogue state ma-
chine, in particular states and transitions. The selection tool 
also forms part of the Palette toolbox. The Opera-
tors toolbox offers some operators to combine different 
modalities as defined in the SMUIML specification. These 
operators are tightly linked to the CARE properties [6]. 
Seq and corresponds to sequential-constrained comple-
mentarity, Par and to sequential-unconstrained comple-
mentarity, the Seq or operator to equivalence and Par or 
to redundancy. The next toolbox is devoted to input trig-
gers and contains a list of all triggers defined for a given 
application, as well as a New trigger button to create 
new triggers. Last but not least, the Actions toolbox lists 
all actions that have been defined for a given application 
and also provides a New action button. Triggers and ac-
tions are added to these toolboxes when they are defined as 
part of a multimodal dialogue. 

Figure 4 shows the graphical representation of Bolt’s “put 
that there” example [2] in the graphical editor with states 
(contexts) visualised as blue ellipses. The corresponding 
textual SMUIML specification is shown in Listing 2. Based 
on the actions taken by users, HephaisTK might stay in the 
same context or switch to another context of use. In the 
“put that there” example, there is only as single start 

context with a transition starting and pointing to it. This 
transition contains the overall description of the “put that 
there” action. It asks for five different input triggers in or-
der that the action will be fired. Namely, three speech trig-
gers (“put”, “that” and “there”) as well as two pointing 
event triggers. Furthermore, three temporal combination 
operators are used in this example. The main transition uses 
a Seq and operator asking for a “put” speech trigger to be 
followed by a “that” and “there” sub-event. The two sub-
events use a Par and combination operator, meaning that 
there should be speech and pointing triggers but without 
any sequential constraint. This implies that a user can per-
form the commands in different orders, such as “put that” 
[point1] [point2] “there” or “put” [point1] “that 
there” [point2] and both sequences will be correctly 
recognised. Finally, the transition specifies a time window 
of 1500 milliseconds for the whole command as well as an 
action (message to be sent the client application) to be per-
formed if the command has been successfully recognised. 
In our example, the transition then proceeds to the same 
start context it originated from. 

 
Figure 4. Graphical description of “put that there”. 

<context name=”start”> 
  <transition leadtime=”1500”> 
    <seq and> 
      <trigger name=”put trigger”/> 
      <transition> 
        <par and> 
          <trigger name=”that trigger”/> 
          <trigger name=”object pointed event”/> 
        </par and> 
      </transition> 
      <transition> 
        <par and> 
          <trigger name=”there trigger”/> 
          <trigger name=”object pointed event”/> 
        </par and> 
      </transition> 
    </seq and> 
    <result action=”put that there action”/> 
    <result context=”start”> 
  </transition> 
</context> 

Listing 2. SMUIML description of the “put that there” 
example. 



 155

 
Figure 5. The graphical debugging tool with three dif-

ferent steps going from the start context to 
registeredcd and back again. 

 
The SMUIML graphical editor has been presented to two 
expert users in order to achieve a small expert review. This 
review by experts lead to a number of changes to improve 
the editor’s usability. The modality of each trigger is now 
indicated by means of an icon. The start context which 
is the only mandatory context in a given SMUIML script is 
visualised in a slightly different colour to denote its special 
status compared to other contexts. Finally, users have the 
possibility to change the colour of connections, contexts or 
transitions in order to best suit their preferences. 

The graphical editor also contains an integrated debugging 
tool. This debugging tool is launched with the client appli-
cation and provides a real-time visualisation of the context 
the HephaisTK framework is currently in. It also highlights 
the transition leading from the previous context to the cur-
rent one. In the example illustrated in Figure 5, the applica-
tion starts in the start context. A Radio Frequency Iden-
tification (RFID) reader that is connected to the framework 

detects a tagged music album and transmits the infor-
mation. Based on the trigger_album trigger, a transi-
tion is fired and the application moves to the regis-
teredcd state and starts playing the music album. The 
user then executes a stop command and, at the same time, 
holds a “stop” labelled RFID tag close to the RFID reader. 
This simultaneous action fires the transition going from the 
registeredcd context back to the start context. As 
illustrated in this example, the graphical debugging tool al-
lows developers to visually analyse the application behav-
iour in real-time. 

FUTURE WORK 
While the presented SMUIML graphical editor looks quite 
promising and offers some features not available in other 
graphical editors for multimodal interfaces, we plan to per-
form a detailed evaluation of the presented solution in the 
near future. First, we are going to evaluate the usability of 
the presented graphical editor by asking developers to ex-
press a number of multimodal interaction use cases via the 
tool. In addition, we plan to evaluate the expressiveness of 
the presented approach. It is not enough to guarantee an ef-
fective and simple definition of multimodal interactions 
based on the graphical editor. We also have to ensure that 
the editor and the underlying SMUIML language are ex-
pressive enough to describe multimodal interactions of ar-
bitrary complexity. This study could be a starting point for 
tackling a more general question: to what extent do finite 
state machine-based approaches or event stream-based 
approaches best represent multimodal human-machine 
dialogues?  

Another important future direction is to support the flexible 
adaptation of multimodal interfaces [19,20]. The idea is to 
no longer have a fixed combination of modalities, but ra-
ther provide a context-dependent adaptation of multimodal 
user interfaces. This can either be achieved by extending 
the SMUIML language with the necessary concepts or by 
introducing another language for the adaptation of the mul-
timodal interaction. In this view, the abstract user interface 
definition would rely on SMUIML while the concrete, con-
text-dependant user interface specification would require 
the definition of a new language. The final user interface 
could be realised by HephaisTK [4].  

This new language for flexible multimodal interface adap-
tation could then be used to provide innovative document 
interfaces. Today’s document formats often provide no ac-
cess to specific semantic subparts or embedded media 
types [15]. However, if we would be able to get access to 
these document subparts, specific embedded media types 
could be associated with different modalities of interaction. 
Within the MobiCraNT6 project we are currently investi-
gating innovative mobile cross-media applications. As part 
of this research effort, we are developing a new fluid cross-

                                                           
6 http://soft.vub.ac.be/mobicrant/ 



 156

media document model and investigate how SMUIML, in 
combination with a context-dependant user interface speci-
fication language, could be used to provide multimodal ac-
cess to such a fluid document model.  

CONCLUSION 
We have presented our exploration on software support for 
multimodal UIDL based on the SMUIML multimodal dia-
logue modelling language. Thereby, we focussed on two 
particular software components: the HephaisTK framework 
which is used to interpret the SMUIML language (at the fi-
nal, runtime stage) and the SMUIML graphical editor for 
the graphical design of multimodal interaction dialogues (at 
the system design stage). The SMUIML graphical editor 
aims to provide a user-friendly way to create multimodal 
applications based on HephaisTK and SMUIML. Com-
pared to other graphical dialogue editors, our solution sup-
ports temporal constraints and a number of operators for 
the combination of multiple modalities. While these con-
cepts already form part of the underlying SMUIML lan-
guage, the graphical editor makes these concepts accessible 
via a user-friendly interface. Users further have the possi-
bility to freely switch between the graphical and textual di-
alogue representation. The presented SMUIML graphical 
editor further addresses a number of usability-oriented is-
sues such as automatic layouting, the clear identification of 
input modalities via specific icons as well as the possibility 
to customise various features of the graphical editor. Last 
but not least, the SMUIML graphical editor offers an inte-
grated debugging tool supporting developers in analysing 
the real-time application behaviour. 

ACKNOWLEDGMENTS 

The authors wish to thank Saïd Mechkour for his work on 
the SMUIML graphical editor. The work on HephaisTK 
and SMUIML has been funded by the Hasler Foundation in 
the context of the MeModules project and by the Swiss Na-
tional Center of Competence in Research on Interactive 
Multimodal Information Management via the NCCR IM2 
project. Bruno Dumas is supported by MobiCraNT, a pro-
ject forming part of the Strategic Platforms programme by 
the Brussels Institute for Research and Innovation (Innovi-
ris). 

REFERENCES 
1. Araki, M., and Tachibana, K. Multimodal Dialog De-

scription Language for Rapid System Development. 
In Proc. of the 7th SIGdial Workshop on Discourse 
and Dialogue (Sydney, July 2006), pp. 109–116. 

2. Bolt, R. A. “Put-that-there”: Voice and Gesture at the 
Graphics Interface. In Proc. of the 7th Annual Confer-
ence on Computer Graphics and Interactive Tech-
niques SIGGRAPH’80 (Seattle, July 1980), pp. 262–
270. 

3. Bourguet, M.-L. A Toolkit for Creating and Testing-
Multimodal Interface Designs. In Adjunct Proc. of the 
15th Annual Symposium on User Interface Software 
and Technology UIST’2002 (Paris, October 2002). 

4. Calvary, G., Coutaz, J. Thevenin, D. Limbourg, Q. 
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (2003), pp. 289–308. 

5. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, 
J., and Young, R.M. Four Easy Pieces for Assessing 
the Usability of Multimodal Interaction: The CARE 
Properties. In Proc. of the 5th Int. Conf. on Human-
Computer Interaction Interact’1995 (Lillehammer, 
June 1995). 

6. De Boeck, J., Vanacken, D., Raymaekers, C., and Co-
ninx, K. High-Level Modeling of Multimodal Interac-
tion Techniques Using NiMMiT. Journal of Virtual 
Reality and Broadcasting 4, 2 (September 2007). 

7. Dumas, B., Lalanne, D., and Ingold, R. HephaisTK: A 
Toolkit for Rapid Prototyping of Multimodal Inter-
faces. In Proc. of 11th International Conference on 
Multimodal Interfaces ICMI’2009 (Cambridge, No-
vember 2009). ACM Press, New York (2009), pp. 
231–232. 

8. Dumas, B., Lalanne, D., and Ingold, R. Description 
Languages for Multimodal Interaction: A Set of 
Guidelines and its Illustration with SMUIML. Special 
Issue on the Challenges of Engineering Multimodal 
Interaction, Journal on Multimodal User Interfaces 3, 
3 (February 2010), pp. 237–247. 

9. Katsurada, K., Nakamura, Y., Yamada, H. and Nitta, 
T. XISL: A Language for Describing Multimodal In-
teraction Scenarios. In Proc. of the 5th Int. Conf. on 
Multimodal Interfaces ICMI’2003 (Vancouver, Cana-
da, November 2003). ACM Press, New York (2003), 
pp. 281–284. 

10. König, W.A., Rädle, R., and Reiterer, H. Squidy: A 
Zoomable Design Environment for Natural User In-
terfaces. In Proc. of the 27th Int. Conf. on Human Fac-
tors in Computing Systems CHI’2009 (Boston, April 
2009).  

11. Ladry, J.-F., Palanque, P., Basnyat, S., Barboni, E., 
and Navarre, D. Dealing with Reliability and Evolva-
bility in Description Techniques for Next Generation 
User Interfaces. In Proc. of the 26th ACM Int. Conf. on 
Human Factors in Computer Systems CHI’2008 
(Florence, April 2008). ACM Press, New York 
(2008). 

12. Lawson, J.-Y. L., Al-Akkad, A.-A., Vanderdonckt, J., 
and Macq, B. An Open Source Workbench for Proto-
typing Multimodal Interactions Based on Off-the-
Shelf Heterogeneous Components. In Proc. of the 1st 
ACM Symposium on Engineering Interactive Compu-
ting Systems EICS’2009 (Pittsburgh, July 2009). 
ACM Press, New York (2009), pp. 245–254. 

13. Paterno, F., Santoro, C., Mäntyjärvi, J., Mori, G., and 
Sansone, S. Authoring Pervasive Multimodal User In-
terfaces. International Journal of Web Engineering 
and Technology 4, 2 (2008), pp. 235–261. 



 157

14. Schaefer, R., Bleul, S., and Mueller, W. Dialog Mod-
eling for Multiple Devices and Multiple Interaction 
Modalities. In Proc. of the 5th International Work-
shop on Task Models and Diagrams for User Inter-
face Design TAMODIA’2006 (Hasselt, October 
2006). Springer-Verlag, Berlin (2006), pp. 39–53. 

15. Signer, B. What Is Wrong with Digital Documents? A 
Conceptual Model for Structural Cross-Media Con-
tent Composition and Reuse. In Proc. of the 29th In-
ternational Conference on Conceptual Modeling 
ER’2010 (Vancouver, November 2010). Lecture 
Notes in Computer Science, Springer-Verlag, Berlin 
(2010), pp. 391–404. 

16. Sottet, J.-S., Calvary, G., Coutaz, J., Favre, J.-M., 
Vanderdonckt, J., Stanciulescu, A., and Lepreux, S. A 
Language Perspective on the Development of Plastic 
Multimodal User Interfaces. Journal on Multimodal 
User Interfaces 1, (2007), pp. 1–12. 

17. Souchon, N., and Vanderdonckt, J. A Review of 
XML-Compliant User Interface Description Lan-
guages. In Proc. of 10th Int. Conf. on Design, Specifi-
cation, and Verification of Interactive Systems DSV-
IS’2003 (Madeira, 4-6 June 2003). J. Jorge, N.J. 
Nunes, J. Cunha (Eds.). Lecture Notes in Computer 
Science, vol. 2844. Springer-Verlag, Berlin (2003), 
pp. 377–391. 

18. Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., 
Michotte, B., and Montero, F. A Transformational 
Approach for Multimodal Web User Interfaces Based 
on UsiXML. In Proc. of the 7th International Confer-
ence on Multimodal Interfaces ICMI’2005 (Trento, 
October 2005). ACM Press, New York (2005), pp. 
259–266. 

19. Vanderdonckt, J., Calvary, G., Coutaz, J., and Stanci-
ulescu, A. Multimodality for Plastic User Interfaces: 
Models, Methods, and Principles. In Multimodal User 
Interfaces, Signals and Communication Technology, 
Springer, Berlin (2008), pp. 61–84. 

20. Vanderdonckt, J. Model-Driven Engineering of User 
Interfaces: Promises, Successes, and Failures. In 
Proc. of 5th Annual Romanian Conf. on Human-
Computer Interaction ROCHI’2008 (Iasi, September 
18-19, 2008), S. Buraga, I. Juvina (Eds.). Matrix 
ROM, Bucarest (2008), pp. 1–10. 

 



 158

FlexiXML, A Portable User Interface 
Rendering Engine for UsiXML  

José Creissac Campos1, Sandrine Alves Mendes 2 
1 Departamento de Informática/CCTC  

Universidade do Minho 
Campus de Gualtar, 4710-057 Braga, Portugal 

jose.campos@di.uminho.pt 

2ALERT Life Sciences Computing, S.A. 
Rua Daciano Baptista Marques, 245 

4400-617 Vila Nova de Gaia, Portugal 
sandrine.mendes@alert.pt 

ABSTRACT 
A considerable amount of effort in software development is 
dedicated to the user interaction layer. Given the complexi-
ty inherent to the development of this layer, it is important 
to be able to analyse the concepts and ideas being used in 
the development of a given user interface. This analysis 
should be performed as early as possible. Model-based user 
interface development provides a solution to this problem 
by providing developers with tools that enable both model-
ing, and reasoning about, user interfaces at different levels 
of abstraction. Of particular interest here, is the possibility 
of animating the models to generate actual user interfaces. 
This paper describes FlexiXML, a tool that performs the 
rendering and animation of user interfaces described in the 
UsiXML modeling language.  

Author Keywords 
Tool Support, User Interface Description Languages 
(UIDLs), UsiXML. 

General Terms 
Design, Human Factors, Theory 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces 
and Presentation]: User Interfaces – User-centered de-
sign. 

INTRODUCTION 
User interface development is a complex process. In the 
long run, the success of an interactive system hinges on 
having considered both the users of the system appropriate-
ly, as well as the technologies for its development. Model-
based development provides a solution to manage such 
complexity. In this paradigm, declarative models are creat-
ed that range from abstract concerns with domain and task 
knowledge, through the design of the intended dialog, 
down to the concrete interaction styles and execution plat-
forms to be used. 

A model-based approach encourages a more sustainable 
development process. In particular it allows capturing a 
rigorous description of the design, thus facilitating the con-
struction of prototypes via the animation of the models. In 
turn, the development of prototypes fosters a better under-
standing of a systems design, and facilitates the participa-
tion of users in the development process. These prototypes 

can be repeatedly tested and adapted to the users’ needs. 
Prototyping and testing does not guarantee the absence of 
errors, but minimizes the likelihood of such errors in more 
advanced stages of the project, making it possible to assess 
the users’ reactions to the interface design under develop-
ment. 

This paper describes FlexiXML, a new user interfaces ren-
dering tool for the UsiXML modeling language. FlexiXML 
acts as a renderer and animator, enabling users to interact 
with an interface expressed in UsiXML. The rest of the pa-
per is organized as follows. First related work is discussed. 
Then the UsiXML modeling language is described. Next 
the technology used to implement the FlexiXML tool is de-
scribed, followed a description of the tool itself, and an ex-
ample of application. The paper ends with conclusions and 
an outline of future work. 
 
RELATED WORK 
As stated above, the core language for this project is 
UsiXML (USer Interface eXtensible Markup Language) 
[14]. UsiXML is a User Interface Description Language 
(UIDL), and will be discussed in the next section. Besides 
UsiXML, other UIDLs [17] dealing with different aspects 
of a graphical interface have been put forward. Examples 
include: AUIML (Abstract User Interface Markup Lan-
guage) [3], that focuses on enabling user interfaces to be 
deployed to different device types; UIML (User Interface 
Markup Language) [2], a markup language standardized by 
OASIS; XIML (eXtensible Interface Markup Language) 
[1]; IBM’s WSXL (Web Service Experience Language) 
[2]; or Mozilla’s XUL (XML User Interface Language) [9]. 
For an extensive survey of XML-compliant languages for 
user interface description see the paper by Guerrero et al. 
[12] and [17]. 

The selection of UsiXML was a result of its broad scope, 
which allows the specification of the different models 
needed during interface development, and a result of the 
fact that there is an active community supporting the de-
velopment of the language. The UsiXML language allows 
for the interface specification to be made at different levels 
of abstraction, and provides transformation mechanisms 
between them. Of particular interest in this context are 
models that deal with the design of the concrete user inter-
face (the components that make up the interface, their lay-



 159

out, and behaviour), and the execution context.  

To support user interface modeling and manipulation of the 
models, UsiXML has a set of tools, which can be divided 
into two categories: 

 Editors – Tools for the creation of UsiXML descrip-
tions. The way the descriptions are created varies with 
the type of tool. Examples of this type of tool include, 
SketichXML [5] that uses as input hand-drawn inter-
faces (sketchs), GrafiXML [8] where the interface is 
created by direct manipulation of components on the 
screen, VisiXML [5] where the interface design is 
done in Microsoft Visio, among other tools. 

 Interpreters – Engines to generate graphical user inter-
faces described in UsiXML. Each interpreter generates 
interfaces with a set of specific characteristics. Exam-
ples of this type of tool include: FlashiXML [15] that 
generates vectorial interfaces, HaptiXML [7] that gen-
erates graphical user interfaces in 3D with interaction 
by touch, QtkiXML [6] setting interfaces for multiple 
platforms, InterpiXML [15] that allows simultaneous 
interpretation of various UsiXML descriptions. 

Although the UsiXML community already has several 
tools focusing on different aspects of the language, ongo-
ing development of the language means that it does not 
have an updated animation tool to facilitate a process of 
rapid prototyping and analysis. The tool that more closely 
approximates the desired outcome is FlashiXML. However 
this tool is not compatible with the current version of 
UsiXML, and not easily upgradable. Currently UsiXML is 
in version 1.8, and FlashiXML is compatible with version 
1.4.6 only.  

This project aims to create a completely new interpreter 
tool that supports the current version of UsiXML, provid-
ing a number of additional features when compared with 
FlashiXML. Specifically, the main goals are to provide a 
tool that: 

 Is capable of both interpreting the latest version of 
UsiXML, and adapting to new versions; 

 Is implemented in a platform independent technology 
enabling web access. 

Additionally, we intend to take the opportunity to create a 
generic and expandable application, as exposed in the 
FlexiXML Platform section. 

Regarding the technologies to implement the tool, the 
choice was made to use the Adobe Flex software develop-
ment toolkit. The use of Flex and ActionScript 3 provides a 
robust solution, with better performance, and a more modu-
lar architecture, than what can be achieved by using Flash 
and ActionScript2. 

The use of the Adobe’s AIR runtime environment allows 
FlexiXML to be relatively independent of the computing 
platform where it runs. The only requirement is that there is 
an AIR runtime for the target platform. 

USIXML 
UsiXML (USer Interface eXtensible Markup Language) is 
an XML-compliant markup language for user interfaces (a 
XML-based User Interface Development Language – 
UIDL) that describes a user interface independently of pro-
gramming language, computing platform and working en-
vironment. This UIDL enables description of a user inter-
face at a high level of abstraction without requiring pro-
gramming skills, enabling analysts, designers, program-
mers and end-user to use it during the development life cy-
cle [18]. 

Levels of abstraction 
UsiXML allows for user interfaces to be modelled at sever-
al levels of abstraction. The language is inspired by the 
Cameleon Reference Framework (Context Aware Model-
ling for Enabling and Leveraging Effective interactiON) 
[13], which defines development stages for interactive ap-
plications with multiple contexts. In the current context the 
relevant layers are the Concrete User Interface (CUI) layer, 
comprising specifications of the user interface (in terms of 
interaction objects and their relationships) which are inde-
pendent of the computing platform; and the Final User In-
terface (FUI) layer, the interface that can be executed or in-
terpreted in a context of use (a specific computing platform 
and a set of specific devices, using specific interaction ob-
jects). A rendering engine performs a transformation from 
a CUI to a FUI. That is, a Reification transformation – 
converting an interface model at a more abstract level to a 
more concrete one. 

Relevant models 
The UsiXML language consists of a number of models that 
together address the needs of the framework described in 
the previous section. A detailed description of the different 
UsiXML models falls outside the scope of this paper. 
However, in order to contextualize the work, a brief 
presentation of the main models interpreted by FlexiXML 
will be made. 

UiModel – User Interface model 
The UIModel is the core model of the graphical interface 
specification. This component contains the common fea-
tures to all models, such as version, author, or creation 
date, among others. 

The UIModel aggregates a number of other models. In the 
specific case of the FlexiXML interpreter only the follow-
ing are required: the concrete user interface model 
(cuiModel), the context model (contextModel) and the re-
sources model (resourceModel). These are the models that 
contain information needed for constructing the final user 
interface. 

CuiModel – Concrete User Interface model 
The CuiModel specifies the concrete user interface as de-
scribed previously. It defines the objects that make up the 
graphical interface (CIO - Concrete Interaction Objects), 
and the relations between them (CUIR - Concrete User In-



 160

terface Relationships). Particularly relevant are graphical 
transitions, which enable the specification of control flow.  

Since FlexiXML has a fixed platform (the Air runtime), on-
ly the Environment and Stereotype features can vary. At 
this stage Stereotype was considered the relevant feature. 
In the stereotype, the feature that has more interest is the 
language. Using it, it is possible to define the language in 
which the generated application will be viewed. A 
UsiXML model can define more than one context, allowing 
user to view the application in different languages. 

ResourceModel – Resources Model 
The ResourceModel defines values for the attributes of the 
graphical objects that depend on the context (e.g. location, 
language, culture, etc.). This model contains all kinds of 
content that can be attributed to an interaction object (con-
tent, tooltip, etc). 

ADOBE FLEX 
As stated above the FlexiXML has been developed using 
the Adobe Flex7 software development toolkit (hence the 
name FlexiXML).   

Adobe Flex (or simply Flex) is an open-source framework 
for the development of cross platform Rich Internet Appli-
cations. The framework provides a library of components 
to build graphical user interfaces. These components can be 
extended to build new ones.  User interface layout is de-
claratively defined using MXML, an XML-based user in-
terface markup language. MXML also supports a prede-
fined set of behaviors, such as transitions between ele-
ments. For more complex control logic, the object oriented 
Action Script 3 language is used. Action Script is a dialect 
of ECMAScript, and as such it shares its syntax and seman-
tics with JavaScript. 

Applications developed in Flex are compatible (i.e. can 
run) with all main browsers and operating systems. They 
can be run on a browser resorting to the Adobe Flash® 
Player plug-in, or directly on the desktop with the cross-
platform Adobe AIR runtime environment. 

Adobe AIR8 is a cross platform runtime environment that 
enables Rich Internet Application to be run on the desktop 
to simulate native applications. Properly packages and 
signed applications will gain access to local resources in 
the host machine, bringing them closer to the flexibility and 
power of native applications. Runtime environments are 
available for most mainstream operating systems, including 
mobile operating systems such as Android and iOS. This 
enables an application developed in Flex to be run in a 
multitude of different platforms as either a Web or desktop 
application. 

                                                           
7 http://www.adobe.com/products/flex/ (visited 

14/07/2011) 
8 http://www.adobe.com/products/air/ (visited 14/07/2011) 

Besides the discussion above, other motivation to choose 
Adobe Flex as the implementation technology included: 

 The fact that it enables access to a number of different 
data sources (different databases, XML files, etc.); 

 The fact that it supports changing the user interface at 
runtime; 

 The fact that it provides better performance when 
compared with previous versions of Flash. 

USIXML vs. FLEX  
One of the problems with tools such as FlashiXML is that 
the mapping between UsiXML and the implementation 
technology is hardcoded in the tool. This makes keeping 
the tool up-to-date with the language difficult. To avoid 
this pitfall we have opted for a configuration based ap-
proach when designing FlexiXML. Instead of hard coding 
the mapping in the tool, a configuration file is used to ex-
plicitly provide this mapping. This creates a decoupling be-
tween the tool implementation and the specific version of 
the language being used with the goal of easing mainte-
nance and upgrades. It also should enable FlexiXML to 
support other markup language than UsiXML. 

Three types of mapping were identified as being needed. A 
mapping between the user interface elements of the markup 
language and the widgets in the implementation technolo-
gy; a mapping between the events in the markup language 
and the events supported by FlexiXML (in this case those 
supported by Action Script 3); and finally a mapping be-
tween window transitions in UsiXML and animation ef-
fects in Flex. 

Regarding the first mapping, Figure 1 illustrates the map-
ping of four elements: windows, buttons, text components 
and checkboxes. In each case, a class in the Flex imple-
mentation is identified. In the first three cases, special pur-
pose widgets, derived from the native widgets, are used. In 
the last case, a native widget is used.  

 
<ComponentsMapper> 

  <window component = 
          "Classes.Components.FlexiXMLWindow"/> 

  <button component = 
          "Classes.Components.FlexiXMLButton"/> 

  <textComponent component = 
            "Classes.Components.FlexiXMLText"/> 

 <checkBox component = "mx.controls.CheckBox"/> 

<ComponentsMapper> 

Figure 1. Components mapping. 

Regarding the second mapping, Figure 2 illustrates how 
UsiXML events are mapped to events in the FUI. In this 
case four events are mapped: release, depress, rollOver and 
rollOut. These vents are mapped to corresponding mouse 
events: mouse up, mouse down, mouse over, and mouse 
out. 

 



 161

<EventsMapper> 

   <release event = "mouseUp"/> 

   <depress event = "mouseDown"/> 

   <rollOver event = "mouseOver"/> 

   <rollOut event = "mouseOut"/> 

</EventsMapper> 

Figure 2. Events mapping. 

Finally, regarding the third and last mapping, Figure 3 ex-
amples of mapping between window transitions in 
UsiXML, and animation effects in Flex. Hence, box in/out 
transitions are mapped to zoom effects, fade in/out transi-
tions are mapped to corresponding fade effects, and 
close/open transitions are mapped to corresponding visibil-
ity effects. 

Using these mappings, it becomes possible to easy tailor 
how the user interface is generated. For example, we could 
change how a depress or release event is detected at the in-
terface, or specify that a fade event should be mapped to a 
zoom animation.  

 
<ActionsMapper> 

  <transition> 

   <boxOut effect="Classes.Animation.Zoom" 
           direction = "OUT"/> 

   <boxIn effect="Classes.Animation.Zoom" 
          direction = "IN"/> 

   <fadeOut effect="Classes.Animation.Fade" 
             direction = "OUT"/> 

   <fadeIn effect="Classes.Animation.Fade" 
           direction = "IN"/> 

   <close effect="Classes.Animation.Visibility" 
          direction= "OUT"/> 

   <open effect="Classes.Animation.Visibility" 
         direction = "IN"/> 

  </transition> 

</ActionsMapper> 

Figure 3. Actions mapping. 

FLEXIXML 
Put simply, the main goal of FlexiXML is to produce Final 
User Interfaces from Concrete User Interfaces. Context and 
Resources models provide additional information that 
shapes the generation of the generated user interface. By 
definition Adobe’s Air runtime environment is considered 
as belonging to the context of use. Currently the CUI mod-
el defines the user interface, the Context model defines the 
available user languages, and the Resources model defines 
language dependent attributes. 

In the next sections the main features of the FlexiXML tool 
are introduced. An overview of the application is made, its 
architecture is described, and an example of use presented. 

FlexiXML is structured around the concept of plugins, 
where each plugin implements a set of specific functions.  
This approach allows for constant evolution of the tool 

through the integration of new plugins and other features, 
with no impact on existing ones. 

Figure 4 presents the architecture of the tool. This architec-
ture can be divided into 3 layers: 

 Application Manager – this layer performs application 
management. Its main responsibilities include loading 
and coordinating available plugins, and dealing with 
messages localization. 

 Plugins – This is the layer where plugins are stored. In 
addition to the two default plugins (Project and Play-
er), it is possible (through the Application Manager) to 
integrate additional plugins into this layer. 

 CORE Data Manager – This layer is responsible for 
storing and providing information that is shared by all 
plugins, the most relevant being the CUI model to be 
rendered and animated. 

 

 
Figure 4. FlexiXML platform. 

 

As stated, besides allowing FlexiXML to integrate new 
plugins, the current version provides two default plugins: 
Project and Player. 

Project plugin 
The Project plugin is responsible for loading the project. A 
project file identifies two further files: a UsiXML file with 
the CUI model describing the interface, and an Ac-
tionScript file with the dialogue control (i.e. the event han-
dlers associated to controls in the CUI model). This ar-
rangement promotes reuse since different CUI models can 
be used with the same event handlers and vice-versa.  

The Project plugin loads the two files. A parser is then re-
sponsible for interpreting the file describing the interface 
and for filling the core data structures with this information 
so that others plugins might be able to use it. The parser to 
be used is determined by the UIDL selected by the user in 
this plugin. The mapping between the parsers and the 



 162

UIDLs is defined in a configuration file. Configuration 
files are explained later in this article. Currently, only the 
UsiXML parser is available, but other can be integrated. To 
do this the parser must implement the parse() method. 

Player plugin 
The Player plugin is responsible for generating the graph-
ical interface of the loaded project. In addition to generat-
ing the interface, it allows changes to the generated inter-
face at runtime, such as changing the style or language. 
This is the plugin where the user specifies the program-
ming language to be used for user interface generation. 

At the time of generation of the interface, the Player Plugin 
accesses the CORE Data Manager to get information about 
the current model. This information is then interpreted, and 
the relevant components and/or objects created that repre-
sent it. For each component defined in the model the corre-
sponding graphical component, its behavior, its content and 
the possible transitions to other components are created. 
The mapping between each UsiXML element and the 
widgets/controls in the interface is defined in a configura-
tion file (described later in this paper). 

Presently FlexiXML includes a generator for ActionScript 
3 only. However, other generators can be integrated. To do 
this the generator must implement the interface defined in 
Figure 5. 
 

 
Figure 5. Generator interface. 

 

As showed in the figure, a generator must be able to: 

 Add behavior to a widget (addBehaviourGUI-
Item); 

 Apply a style to the graphical user interface (apply-
Style); 

 Draw a graphic component (drawFUIItem); 

 Play transitions between components (execute-
Transition); 

 Update the contents of a widget (refreshGUI-
ItemContent). 

New plugins 
The list of plugins that FlexiXML provides is defined in an 
XML configuration file. The Application Manager reads 
this file during the initial process of starting the application. 
For each plugin, this file indicates its name, description, 

and the class implementing it. It is this class that the Appli-
cation Manager will load to make the plugin available. 

For the integration of a plugin into the platform to be pos-
sible, the plugin must be defined as a specialization of class 
PluginBase  (Figure 6). 

 

 
Figure 6. Class diagram of a FlexiXML plugin. 

 
The subclasses of PluginBase inherit and must set a 
PluginType object, which contains all the necessary 
properties for plugin characterization: name, description, 
icon, etc. In addition to setting these properties, the class 
must implement the IPlugin interface. This interface 
defines all required methods for FlexiXML to be able to in-
teract with the plugin. The methods defined in this interface 
are: 

 setInitialStatus() – defines the initial state of 
the plugin: active or inactive; 

 setEnabled(enabled:Boolean) – assigns a 
specific state to the plugin: active or inactive; 

 projectLoaded(event_evt:Event) – method 
executed whenever a new project is uploaded into the 
application; 

 projectIsNotLoaded(event_evt:Event) – 
method executed whenever there is no longer a project 
in the application. 

Configuration 
As already mentioned, a set of configuration files allows 
changing the behavior and visual aspects of user interfaces 
generated by FlexiXML. The main configuration files are: 

 Messages – All messages used in the application have 
an associated code. The message string associated with 
each code is defined in a XML configuration file. The 
existence of this file allows the FlexiXML to be local-
ized without the need to recompile the code. 



 163

 
Figure 7. FlexiXML workflow. 

 
 Plugins – Defines the list of available plugins. If a new 

plugin needs to be inserted, it is necessary to include 
its information in this file for the application be able to 
load it. 

 UIDLs – This file defines the list of UIDLs that 
FlexiXML interprets. In addition to listing the availa-
ble UIDLs, it defines all the characteristics needed for 
their integration into the application. These include: 
the parser for the UIDL, the available programming 
languages for generating the interface, the mapping be-
tween the UIDL objects and the widgets that can rep-
resent it, among others. 

 Styles – The list of styles available in the Player plugin 
is defined in this XML file. Thus, whenever there is 
the need to insert new styles, they simply have to be 
added to this file. 

Workflow of the Generation Process 
Previous sections, have described the basic building blocks 
of the FlexiXML’s architecture. The process carried out by 
the tool for generating a graphical interface is now de-
scribed. This process is depicted in Figure 7. The figure 

identifies both the inputs to the tool (labeled with letters a 
to d), and the flow of information (labeled with numbers 1 
to 9). 

FlexiXML takes as input a set of configuration files (labels 
a, b and c in Figure 7) that are interpreted by dedicated 
managers (steps 1, 2 and 3 in Figure 7). These managers 
keep this information, which (once the tool is running) can 
then be accessed by any one of the plugins that has been 
loaded (see below). The managers are: 

 System Messages Manager – this component is re-
sponsible for loading of the messages to be used in the 
application; 

 Plugins Manager – this component is responsible for 
loading the listed plugins into the application; 

 UIDLs Manager – this component is responsible for 
loading information of available UIDLs, and making 
this information available to plugins. 

Once this initial processing has been done, the application 
becomes available, with all the plugins that have been con-
figured. 



 164

Once the configuration of the tool is set up, the process for 
generating a graphical interface can start. For that, the tool 
needs to load the two project files: one containing the 
UsiXML model (label e), and the other containing dialogue 
control written in ActionScript (label f). The process starts 
(step 4) by receiving as input a project file (label d) where 
the location of these two files is provided. The UsiXML 
model is interpreted by the Project plugin (step 5), which 
sends the information therein to the CORE Data Manager, 
together with the dialogue control information (steps 6 and 
7). The Project plugin then creates the entities representing 
the components in the CUI model, and which the Player 
will afterwards interpret. The CORE Data Manager central-
izes all the information that can be shared by the plugins. 
Thus, when a plugin needs information about the current 
project it must request it from this manager. 

Once the project is loaded into the CORE Data Manager, 
the Player can generate a graphical user interface (step 9) 
based on the information provided by the CORE Data 
Manager (step 8). 

AN ILLUSTRATIVE EXAMPLE 
This section presents an example of a GUI generated using 
the FlexiXML tool. The example is an application to dis-
play and listen to music albums. Given the size of the mod-
el, only a few excerpts are presented here. The full model 
can be downloaded from the project’s webpage9. 

Design 
The user interface is generated inside a main box (ii) in the 
application's main window (i). In the concrete case of the 
"Music Player", the user interface consists of a window that 
can be divided into two main areas (see Figure 8): a header 
box (item iii in the figure) containing the application’s con-
trols; and an area (CurrentView) for displaying information 
about the albums collection (item vi in the figure). 

 

 
Figure 8. Decomposition of the application in areas. 

                                                           
9 http://FlexiXML.di.uminho.pt (visited 14/07/2011) 

 

<cuiModel id="musicPlayer-cui" 
          name=" musicPlayer-cuiModel"> 

  <window id="playerWindow" …> (i) 

    <box id="mainBox" …> (ii) 

      <box id="headerBox" …> (iii) 
          <box id="playerBox" …/> (iv) 
          <box id="currentMusicBox" …/> (v) 
          <box id="viewsBox" …/> (vi) 
      </box> 

      <box id="currentView" …> (vii) 

         […] 

      </box> 

    </box> 

  </window> 

</cuiModel> 

Figure 9. CUI model of the MusicPlayer application. 

 

 
Figure 10. Music player (coverView and gridView) gen-

erated by FlexiXML. 
 

The header box is itself subdivided into three areas: 

 Player – the area where the buttons to control the mu-
sic are placed (item iv in the figure); 

 CurrentMusic – the area that displays information 
about the music currently playing (item v in the fig-
ure); 

 View – the area where the buttons to switch between 
the different display formats of the albums list are 
placed (item vi in the figure). 



 165

 
Figure 11. Graphical transitions between views. 

The View area contains three buttons for toggling between 
the three available display formats:  

 ListView (to see the albums and theirs songs in list 
format);  

 GridView (to see the albums in a grid);  

 CoverView (to see the albums one at a time, by their 
cover).  

Users may, at any time, change the view being used. 

Figure 9 shows the basic structure of the model. The ex-
cerpt shown identifies the main structural components. For 
readability, the details of each component are omitted. The 
end result of the generation process is shown in Figure 10. 

Behaviour 
The above model describes the structure of the user inter-
face. It is now necessary to model its behaviour. This will 
be illustrated with a concrete example. 

As can be seen in Figure 10, it is possible to have different 
views of the album collection. Switching between views is 
achieved by pressing the corresponding buttons in the in-
terface. Figure 11 illustrates the effect of pressing the 
"GridView" button: the “GridView” view should be dis-
played, and the previous view hidden.   

The model specifying the behaviour of the GridView but-
ton is presented in Figure . When a depressed event hap-
pens in the button, a sequence of three transitions is fired: 
GridViewTr1, GridViewTr2, and GridView-Tr3.  
In addition, the method updateGridView must be in-
voked. This method is responsible for providing the neces-
sary data to this view (e.g., list of albums to view). 

Figure 12 defines the sequence of transitions, but does not 
describe what each transition actually is. That is done in 
Figure 13. There, it can be seen that GridViewTr1 and 
GridViewTr2 correspond to fade-outs of the grid and 
over views, respectively, while GridViewTr3 corre-
sponds to the fade-in of the list view. 

 

 

<button id="gridButton”> 
  <behavior id="gridView"> 
 
    <event id="gridViewEvt" 
           eventType="depress" 
           eventContext="gridButton"/> 
     
    <action id="gridViewAct"> 
        <transition transitionIdRef 
              ="GridViewTr1" /> 
        <transition transitionIdRef             
              ="GridViewTr2" /> 
        <transition transitionIdRef 
              ="GridViewTr3" /> 
 
        <methodCall methodName 
              ="updateGridView"/> 
      
    </action> 
 
  </behavior> 
</button> 

Figure 12. Specification of the behavior of the 
"GridView" button. 

 
 

<graphicalTransition id="GridViewTr1" 
           transitionType="fadeOut"> 
   <source id="gridButton" /> 
   <target id="listView" /> 
</graphicalTransition> 
 
<graphicalTransition id="GridViewTr2" 
           transitionType="fadeOut"> 
   <source id="gridButton" /> 
   <target id="coverView" /> 
</graphicalTransition> 
 
<graphicalTransition id="GridViewTr3" 
           transitionType="fadeIn"> 
   <source id="gridButton" /> 
   <target id="gridView" /> 
</graphicalTransition> 

Figure 13. Specification of the graphical transitions 
triggered by the "GridView" button. 

 

Context (Language) 
As already stated, FlexiXML supports localization of the 
interface via the definition of language contexts. To illus-
trate this use of context, the steps needed to make the inter-
face available in two languages are now put forward. 

Two models must be created to build the application in dif-
ferent languages: the ContextModel (to create the lan-
guages) and the ResourceModel (to specify the contents of 
the objects in each language). Figure 14 defines two lan-
guages for the “Music Player” application: English and 
French. Then Figure  shows the specification of the appli-
cation title in the two languages. Figure 15 shows the ap-
plication window with the titles in both languages. 

FlexiXML also allows changing the style of the generated 
interface at runtime. The list of styles that can be applied is 
defined in a configuration file. In this file, the name of the 
style, and the location of the style file (CSS or SWF for-
mat) are indicated. 



 166

Each style is defined in CSS (Cascading Style Sheet) for-
mat. This enables a style to contain images (skins), fonts, 
class selectors, among others. FlexiXML interprets this 
style from an external SWF (Shockwave Flash) file. The 
SWF files arise from the conversion of CSS files. 

Figure 17 shows the “Music Player” in two different styles. 
In this case, the background colors of the header and song 
list where changed.  

 
 

<contextModel id="playerContextModel" 
              name="playerContextModel"> 

  <context id="playerContext_En_US" 
           name="playerContext_En_US"> 

      <userStereotype  
        id="playerContextUser_US" 
        language="en_US" 
        stereotypeName="playerContextUser_US"/> 

  </context> 

  <context id="playerContext_FR" 
            name="playerContext_FR"> 

      <userStereotype  
          id="playerContextUser_FR" 
          language="FR" 
          stereotype-
Name="playerContextUser_FR"/> 
  </context> 

</contextModel> 

Figure 14. Specification of the languages. 

 
 

<resourceModel id="playerResourceModel"  
               name="playerResourceModel"> 

  <cioRef cioId="playerWindow"> 

     <resource content="Music Player" 
               contex-
tId="playerContext_En_US"/> 

     <resource content="Lecteur de Musique" 
               contextId="playerContext_FR"/> 

  </cioRef> 

</resourceModel> 

Figure 15. Specification of the application title in differ-
ent languages. 

 

 
Figure 16. "Music Player" in English and French 

Styles. 

 

 
Figure 17. “Music Player” with different styles. 

 

CONCLUSION AND FUTURE WORK 
The acceptance of an application depends largely on the 
quality of its graphical interface. Model-based user inter-
face development helps ensure the quality of the solution 
can be assessed at an early stage [4], allowing for the prob-
lems identified to be analyzed as soon as possible. This is 
achieved through the creation of models at different levels 
of abstraction, from the domain model to the final user in-
terface. To maximize model-based development, tools sup-
port is necessary both to enable analysis of the models, and 
to enable moving between levels of abstraction. 

The aim of this project was the creation of a tool to support 
automatic generation of user interfaces from models ex-
pressed in the UsiXML language. The current version of 
the tool supports the UsiXML language, but is designed to 
allow the inclusion of other XML-based declarative lan-
guages.  

In this version of the project, only a sub-set of the potential 
of the UsiXML language is used. For example, the possi-
bility of defining characteristics of the computing platform 
in the context model was not considered. In alternative, a 
technology was used that enables the generated interfaces 
to be run in a variety of platforms. That is, the adaptation is 
not directly handled by FlexiXML, but by the runtime envi-
ronment in which FlexiXML is executing. 

The generated interfaces are created in FLEX and Ac-
tionScript 3. The tool, however, is structured so that the us-
er can specify in which language (s)he wants the interface 
to be generated. These two characteristics are intended to 
make the tool as flexible as possible, not limiting users to 
particular languages (or language versions) for interface 
specification and generation, thus extending the number of 
users that can benefit from it. 

The fact that the FlexiXML tool relies on the AIR runtime 
environment for execution makes it independent of any 
specific computing platform. Indeed, due to the use of the 
runtime environment, FlexiXML is available in two for-
mats: Desktop and Web. Where the desktop version can be 



 167

used in any operating system that features an Air runtime 
environment (i.e. all major operating systems). 

Looking back at the objectives initially set forth, the fol-
lowing features of the FlexiXML tool can be highlighted: 

 Implementation in a recent technology (AIR, Flex and 
ActionScript3) enabling portability of the user inter-
face (in the sense that it can be deployed in different 
platforms); 

 An explicit, and configurable, mapping between the 
modeling language and the implementation technology 
(both regarding the structural elements of the interface, 
and regarding behaviour – supported events, graphical 
transitions); 

 Support for runtime adaptation of the user interface via 
localization, and the use of styles to change the look of 
the interface; 

 An architecture designed to support the integration of 
new plugins and new graphical interfaces modeling 
and/or programming languages. 

At this stage, a number of future lines of work is open. 
Some of the possible improvements and areas for future 
work include: 

 Creating new plugins – for example, a model editor; 

 Extending the widget library and the layout managers, 
in order to provide a wider set of user interface repre-
sentations – thus supporting the creation of more real-
istic user interfaces; 

 Supporting the generation of prototypes for different 
devices and platforms – while the tool can be run on a 
number of platform due to the AIR runtime, no attempt 
is made at this stage to adapt the generated interface to 
the device being used; 

 Implementing parsers for new UIDLs, and generating 
the user interfaces using different programming lan-
guages and technologies. 

ACKNOWLEDGMENTS 
The authors would like to thank Jean Vanderdonckt and 
Michael D. Harrison for their helpful comments on previ-
ous versions of this paper. Sandrine Mendes would also 
like to thank her employer, Alert Life Sciences Computing, 
for sponsoring this work. 

REFERENCES 

1. Puerta, A., and Eisenstein, J. XIML: A common repre-
sentation for interaction data. In Proc. of the 7th Intl. 
Conf. on Intelligent User Interfaces, ACM, 69-76. 

2. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., 
Abrams, M., Coyette, A., and Vanderdonckt, J. Human-
Centered Engineering with the User Interface Markup 
Language. In Human-Centered Software Engineering. 
Chapter 7, Seffah, A., Vanderdonckt, J., Desmarais, M. 

(Eds.), HCI Series. Springer, London (2009), pp. 141-
173. 

3. Argollo, M. Jr., and Olguin, C. Graphical user interface 
portability. CrossTalk: The Journal of Defense Software 
Engineering, 10(2):14–17, 1997. 

4. Bäumer, D., Bischofberger, W.R., Lichter, H., and Zül-
lighoven, H. User interface prototyping - concepts, 
tools, and experience. In Proc. of the 18th Int. Conf. on 
Software Engineering ICSE '96. IEEE Computer Socie-
ty, Los Alamitos (1996), pp. 532-541. 

5. Coyette, A., Kieffer, S., and Vanderdonckt, J. Multi-
Fidelity Prototyping of User Interfaces. In Proc. of 11th 
IFIP TC 13 Int. Conf. on Human-Computer Interaction 
INTERACT’2007 (Rio de Janeiro, September 10-14, 
2007). Lecture Notes in Computer Science, vol. 4662. 
Springer-Verlag, Berlin (2007), pp. 149-162. 

6. Denis, V. Un pas vers le poste de travail unique : 
QTKiXML, un interpréteur d'interface utilisateur à par-
tir de sa description, M.Sc. thesis, Université catholique 
de Louvain, Belgium, September 2005. 

7. Kaklanis, N., Gonzalez, J.M., Vanderdonckt, J., and 
Tzovaras, D. A Haptic Rendering Engine of Web Pages 
for Blind Users. In Proc. of 9th Int. Conf. on Advanced 
Visual Interfaces AVI'2008 (Naples, May 28-30, 2008). 
ACM Press, New York (2008), pp. 437-440. 

8. Michotte, B., and Vanderdonckt, J. GrafiXML, A Mul-
ti-Target User Interface Builder based on UsiXML. In 
Proc. of 4th Int. Conf. on Autonomic and Autonomous 
Systems ICAS’2008 (Gosier, 16-21 March 2008). D. 
Greenwood, M. Grottke, H. Lutfiyya, M. Popescu 
(Eds.). IEEE Computer Society Press, Los Alamitos 
(2008), pp. 15-22. 

9. Mozilla foundation. XUL Tutorial, https://developer. 
mozilla.org/en/XUL_Tutorial. Last accessed on No-
vember 22, 2010.  

10. Paternó, F., and Santoro, C. One model, many interfac-
es. In Proc. of the 4th Int. Conf. on Computer-Aided De-
sign of User Interfaces CADUI’2002. Ch. Kolski, J. 
Vanderdonckt (Eds.). Kluwer Academics Publishers, 
Dordrecht (2002), pp. 143-154. 

11. Silva, E. Sistemas interactivos. Departamento de 
Computação, Universidade Federal de Ouro Preto. 
2006. 

12. Guerrero-García, J., González-Calleros, J.M., Vander-
donckt, J., and Muñoz-Arteaga, J. A Theoretical Survey 
of User Interface Description Languages: Preliminary 
Results. In Proc. of Joint 4th Latin American Confer-
ence on Human-Computer Interaction-7th Latin Ameri-
can Web Congress LA-Web/CLIHC'2009 (Merida, No-
vember 9-11, 2009). E. Chavez, E. Furtado, A. Moran 
(Eds.). IEEE Computer Society Press, Los Alamitos 
(2009), pp. 36-43. 



 168

13. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Refe-
rence Framework for Multi-Target User Interfaces. 
Interacting with Computers 15,3 (2003) 289-308. 

14. Limbourg, Q., and Vanderdonckt, J. UsiXML: A User 
Interface Description Language Supporting Multiple 
Levels of Independence. In Engineering Advanced Web 
Applications, M. Matera, S. Comai, S. (Eds.). Rinton 
Press, Paramus (2004), pp. 325-338. 

15. Goffette, Y., and Louvigny, H.-N. Development of mul-
timodal user interfaces by interpretation and by com-
piled components : a comparative analysis between In-
terpiXml and OpenInterface, M.Sc. thesis, UCL, Lou-
vain-la-Neuve, 28 August 2007 

16. Vanderdonckt, J., Guerrero-Garcia, J., González-
Calleros, J.M., A Model-Based Approach for Develop-
ing Vectorial User Interfaces. In Proc. of Joint 4th Latin 
American Conference on Human-Computer Interaction-
7th Latin American Web Congress LA-Web/CLIHC'-
2009 (Merida, November 9-11, 2009), E. Chavez, E. 
Furtado, A. Moran (Eds.), IEEE Computer Society 
Press, Los Alamitos, 2009, pp. 52-59. 

17. Souchon, N. and Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages. In 
Proc. of 10th Int. Conf. on Design, Specification, and 
Verification of Interactive Systems DSV-IS’2003 (Ma-
deira, 4-6 June 2003). J. Jorge, N.J. Nunes, J. Cunha 
(Eds.). Lecture Notes in Computer Science, vol. 2844, 
Springer-Verlag, Berlin (2003), pp. 377–391. 

18. Vanderdonckt, J. Model-Driven Engineering of User 
Interfaces: Promises, Successes, and Failures. In Proc. 
of 5th Annual Romanian Conf. on Human-Computer In-
teraction ROCHI’2008 (Iasi, September 18-19, 2008), 
S. Buraga, I. Juvina (Eds.). Matrix ROM, Bucarest 
(2008), pp. 1–10. 

 
 



 169

Model-Driven Engineering of Dialogues 
for Multi-platform Graphical User Interfaces  

Efrem Mbaki1, Jean Vanderdonckt1, Marco Winckler2 
1 Louvain School of Management (LSM), 

Université catholique de Louvain, 
Place des Doyens, 1 

 B-1348 Louvain-la-Neuve (Belgium) –
{efrem.mbaki@student, 

jean.vanderdonckt@}uclouvain.be 

2IRIT 
Université Paul Sabatier, 
118 Route de Narbonne 

F-31062 Toulouse CEDEX 9 
 winckler@irit.fr  

ABSTRACT 
This paper describes a model-driven engineering of interac-
tive dialogues in graphical user interfaces that is structured 
according to the three lowest levels of abstraction of the 
Cameleon Reference Framework: abstract, concrete, and 
final user interface. A dialogue model captures an abstrac-
tion of the dialogue as opposed to a traditional presentation 
model that captures the abstraction of the visual compo-
nents of a user interface. The dialogue modeled at the ab-
stract user interface level can be reified to the concrete user 
interface level by model-to-model transformation, which in 
turn leads to code by model-to-code generation. Five target 
markup and programming languages are supported: HTML 
V4.0, HTML for Applications (HTA), Microsoft Visual 
Basic for Applications V6.0 (VBA), and DotNet V3.5 
framework. Two computing platforms support these lan-
guages: Microsoft Windows and Mac OS X. Five levels of 
dialogue granularity are considered: object-level (dialogue 
of a particular widget), low-level container (dialogue of 
any group box), intermediary-level container (dialogue at 
any non-terminal level of decomposition such as a dialog 
box or a web page), intra-application level (application-
level dialogue), and inter-application level (dialogue across 
different interactive applications). A Dialog Editor has 
been implemented that holds abstractions pertaining for 
expressing the dialogue at an abstract level and then pro-
ducing a final user interface.  

Author Keywords 
Dialogue model, event-condition-action rule, model-driven 
engineering, user interface description language. 

General Terms 
Algorithms, Design, Languages, Theory. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distribut-
ed systems – Distributed applications. D2.2 [Software 
Engineering]: Design Tools and Techniques – Modules 
and interfaces; user interfaces. D2.m [Software Engineer-
ing]: Miscellaneous – Rapid Prototyping; reusable soft-
ware. H5.2 [Information interfaces and presentation]: 
User Interfaces – graphical user interfaces, user interface 
management system (UIMS). 

INTRODUCTION 
We hereby refer to dialogue as being the dynamic part of a 
Graphical User Interface (GUI) such as the physical and 
temporal arrangement of widgets in their respective con-
tainers and their evolution over time depending on the us-
er’s task. The dialogue regulates the ordering of these 
widgets so as to reflect the constraints imposed by the us-
er’s task. The dialogue has been also referred to as behav-
ior, navigation, or feels (as opposed to look for presenta-
tion) [1,2,12]. Here are some typical examples of dia-
logues: when the end user selected her native language in a 
list box, a dialog box is translated accordingly; when a par-
ticular value has been entered in an edit field, other edit 
fields are deactivated because they are no longer needed; 
when a validation button is pressed, the currently opened 
window is closed and another one is opened for pursuing 
the dialog. 

Conceptual modeling [1], model-based design [4] or mod-
el-driven engineering [20] of the dialog has already been 
introduced since years [12] in order to be derived from a 
task model [11,17,25,31,33], perhaps combined with a do-
main model [30] or a service model [4], to derive its soft-
ware architecture from its model [23], to analyze its proper-
ties [5,32], to foster component reuse [10], to check some 
dialogue or usability properties [32], to support adaptation 
[19], to automatically keep trace of interaction and analyze 
them afterwards [25]. Dialog models have been used in 
several domains of applications, such as web engineering 
[3,5], information systems [18], multi-device environments 
[27], multimedia applications [23,24], multimodal applica-
tions [28], and workflow systems [29,30]. 

Dialogue modeling has however often been considered 
harmful for several reasons which may impediment further 
research and development in this area: 

1. Choosing the modeling language paradigm is a dilem-
ma: an imperative or procedural language is often more 
suitable and convenient to represent a GUI dialogue 
than a declarative language. The last could introduce a 
verbose representation of something that could be ex-
pressed in a straightforward way in the latter. The cur-
rent trend goes in favor of scripting languages. 



 170

2. Abstracting the right concepts is complex: finding the 
aspects of a dialog that should lead to abstraction is not 
straightforward and turning them into an abstraction 
that is expressive enough without being verbose is hard. 
A dialogue model may benefit from a reasonable level 
of expressiveness, but will prevent the designer from 
specifying complex dialogues while another dialogue 
model may exhibit more expressiveness, but is consid-
ered complex to use. Which modeling approach is also 
an open question: taking the greatest common denomi-
nator across languages (with the risk of limited expres-
siveness) or more (with the risk of non-support). 

3. Heterogeneity of computing platforms is difficult to 
handle: Integrated Development Environments (IDEs) 
are often targeted to a particular programming language 
or markup language that is dedicated to a particular op-
erating system or platform. Some IDEs exist (e.g., 
Nokia QT (http://qt.nokia.com/products, QtK) that ad-
dress multi-platform GUIs, but they remain at the code 
level or their usage is still complex. 

4. Model-driven engineering of dialogue is more challeng-
ing than model-based design. Model-based GUI design 
only assumes that one or many models are used to de-
sign parts or whole of a GUI, while Model-Driven En-
gineering (MDE) [21] imposes at least one User Inter-
face Description Language (UIDL) [7] that should be 
rigorously defined by a meta-model (preferably ex-
pressed in terms of MOF language, but not necessarily). 
Model-based GUI design may invoke virtually any 
technique, while model-driven engineering imposes that 
everything is rigorously defined in terms of model 
transformations, which are in turn based on a meta-
model. 

This paper is aimed at addressing the aforementioned chal-
lenges by applying MDE principles to designing a dialog 
for GUIs belonging to different computing platforms. The 
remainder of this paper is structured as follows: Section 2 
reports on the main trends so far in dialogue modeling, 
Section 3 defines the conceptual model of dialogue used in 
this paper, Section 4 presents an overview of the methodo-
logical approach with three views: model & language, step-
wise approach, and software support. A running example is 
given to exemplify how this approach is executed. Section 
5 motivates our software implementation with multi-level 
dialog model editing, model-to-model transformation, and 
model-to-code generation. Section 5 concludes the paper 
and addresses some avenues. 

STATE OF THE ART 
Overview of dialogue modeling techniques 
A very wide spectrum of conceptual modeling and comput-
er science techniques has been used over years to model a 
dialogue [1-5, 8-14,16-35], some of them with some persis-
tence over time, such as, but not limited to: Backus-Naur 
Form (BNF) grammars [12,16], state-transition diagrams in 

very different forms (e.g., dialog charts [1], dialog flows 
[3], abstract data views [10], dialog nets [9], windows tran-
sitions [33]), state charts [14] and its refinement for web 
applications [5], and-or graphs coming from Artificial In-
telligence (e.g., function chaining graphs [18]), event-
response languages, and Petri nets [2]. Some algorithms 
[17] have been also dedicated to support the dialog design 
through models, such as the Enabled Task Set [22]. 

Rigorously comparing these models represents a contribu-
tion that is yet to appear. Green [9] compared three dia-
logue models to conclude that some models share the same 
expressivity, but not the same complexity. Cachero et al. 
examine how to model the navigation of a web application 
[5]. In [9], the context model drives a dialogue model at 
different steps of the UI development life cycle. 

So far, few attempts have been made to structure the con-
ceptual modeling of dialogues in the same way as it has 
been done for presentation, the notable exception being ap-
plying StateWebCharts [34] with Cascading style sheets 
[35] in order to factor out common parts of dialogues and 
to keep specific parts locally. 

Some recent dialogue modeling techniques 
The DIAMODL runtime [30] models the dataflow dialog as 
JFace Data Binding and includes extensions for binding 
EMF data to SWT widgets in order to link domain and dia-
logue models. Statechart logic is implemented by means of 
the Apache SCXML engine [36], while GUI execution uti-
lizes an XML format and renderer for SWT. 

The Multimodal Interface Presentation and Interaction 
Model (MIPIM) [28] could even model complex dialogues 
of a multimodal user interface together with an advanced 
control model, which can either be used for direct modeling 
by an interface designer or in conjunction with higher level 
models. 

Van den Bergh & Coninx [31] established a semantic map-
ping between a task model with temporal relationships ex-
pressed according to ConcurTaskTrees notation and UML 
state machines as a compact way to model the dialog, re-
sulting into a UML profile. 

Figure 1 graphically depicts some dialogue models in fami-
lies of models. Each family exhibits a certain degree of 
model expressiveness (i.e., the capability of the model to 
express advanced enough dialogues), but at the price of a 
certain model complexity (i.e., the easiness with which the 
dialogue could be modeled in terms specified by the meta-
model). At the leftmost part of Figure 1 are located (E)BNF 
grammars since they are probably the least expressive dia-
logue models ever. 

Then we can find respectively State Transitions Networks 
and their derivatives, then Event-Response Systems. Petri 
nets [2] are probably the most expressive models that can 
be used to model dialogues, but they are also the most 
complex to manipulate.  



 171

Model expressiveness

Model
complexity

BNF,
EBNF,…

STN,
ESTN,…

ERS

State charts,
StateWebCharts,

ADV

ECA
DISL

Petri nets
ICO

Our dialog model

Model expressiveness

Model
complexity

BNF,
EBNF,…

STN,
ESTN,…

ERS

State charts,
StateWebCharts,

ADV

ECA
DISL

Petri nets
ICO

Our dialog model

Figure 1. Expressiveness of Model Complexity. 

Dialogue modeling techniques in UIDLs 
Less expressive and less complex are Event-Condition-
Action (ECA) systems that are considered in several 
UIDLs such as DISL [27,28], UIML [15], MariaXML [22] 
and UsiXML [35], probably because they are convenient to 
describe according to a declarative paradigm, that is often 
predominant in defining models in UIDLs. But their ex-
pressivity is limited by the model concepts coverage. 

In UIML [15], a dialogue is defined as a set of condition-
action rules that define what happens when a user interacts 
with any GUI element, such as a button, a group box, a 
window. In MariaXML [22], a dialog model describes par-
allel interaction between a GUI and its end user through 
connections. A connection indicates what the next active 
presentation will be when a given interaction takes place: 
elementary connection, complex connection (in which a 
logical formula composes elementary conditions), or a 
conditional connection (when specific conditions are asso-
ciated with it). 

In UsiXML [35], a behavior is defined as a set of ECA 
rules, where: an event can be any UI event that is relevant 
to the level of abstraction (abstract or concrete), a condition 
can state any logical condition on a model, a model ele-
ment, or a mapping between models, an action can be any 
operation on widgets (abstract or concrete). 

The Cameleon Reference Framework 
Several UIDLs [7] are structured according to the four 
steps of the Cameleon Reference Framework (CRF) [6], 
that are now recommended to consider by W3C [7]: 

1) Task & Concepts (T&C): describe the various user’s 
tasks to be carried out and the domain-oriented con-
cepts required by these tasks to be performed.  

2) Abstract UI (AUI): defines abstract containers (AC) 
and individual components (AIC), two forms of Ab-
stract Interaction Objects (AIO)  by grouping subtasks 
according to various criteria (e.g., task model structural 
patterns, cognitive load analysis, semantic relationships 
identification). As in Guilet Dialog Model [26], a navi-
gation scheme between the container and selects ab-
stract individual component for each concept so that 
they are independent of any interaction modality. The 
AUI is said to be independent of any interaction modal-
ity. 

3) Concrete UI (CUI): concretizes an abstract UI for a 
given context of use into Concrete Interaction Objects 
(CIOs) so as to define widgets layout and interface nav-
igation. It abstracts a final UI into a UI definition that is 
independent of any computing platform. A CUI as-
sumes that a chosen interaction modality, but the CUI 
remains independent of any platform. 

4) Final UI (FUI): is the operational UI i.e. any UI run-
ning on a particular computing platform either by inter-
pretation (e.g., through a Web browser) or by execution 
(e.g., after compilation of code in an IDE). 

CONCEPTUAL MODELING OF DIALOGUE 
In order to apply MDE techniques, we need to define a dia-
log model that is expressive enough to accommodate ad-
vanced dialogues at different levels of granularity and dif-
ferent levels of abstraction, while allowing some structured 
design and development of corresponding dialogue. The 
BCHI Dialogue Editor described in this paper will rely on 
this conceptual model. For this purpose, our conceptual 
modeling consists of expanding ECA rules towards dia-
logue scripting (or behavior scripting) in a way that is in-
dependent of any platform. This dialogue scripting is struc-
tured according to a meta-model that is reproduced in Fig-
ure 2 that enables defining a dialogue at five levels of 
granularity: 

1. Object-level dialogue modeling: this level models the 
dialogue at the level of any particular object, such as a 
CIO or a AIO. In most cases, UI toolkits and IDEs 
come up with their own widget set with built-in, prede-
fined dialogue that can be only modified by overwriting 
the methods that define this dialogue. Only low-level 
toolkits allow the developer to redefine an entirely new 
dialogue for a particular widget, which is complex. 

2. Low-level container dialogue modeling: this level mod-
els the dialogue at the level of any container of other 
objects that is a leaf node in the decomposition. Typi-
cally, this could be a terminal AC at the AUI level or a 
group box at the CUI level in case of a graphical inter-
action modality. 

3. Intermediary-level container dialogue modeling: this 
level models the dialogue at the level of any non-
terminal container of objects, that is any container that 
is not a leaf node in the container decomposition. If the 
UI is graphical, this could be a dialog box or the vari-
ous tabs of a tabbed dialog box. 

4. Intra-application dialogue modeling: this level models 
the dialogue at the level of top containers within a same 
interactive application such as a web application or a 
web site. It therefore regulates the navigation between 
the various containers of a same application. For in-
stance, the Open-Close pattern means that when a web 
page is closed, the next page in the transition is opened. 



 172

 

Figure 2. A Conceptual model of dialogue as a basis for model-driven engineering (implemented in Moskitt). 

5. Inter-applications dialogue modeling: since the action 
term of an ECA rule could be either a method call or an 
application execution, it is possible to specify a same 
dialogue across several applications by calling an exter-
nal program. Once the external program has been 
launched, the dialogue that is internal to this program 
(within-application dialog) can be executed. 

Levels of dialogue granularity 
Now that these five levels are defined, we introduced the 
concepts used towards the conceptual modeling of dia-
logues that could be structured according to the five afore-
mentioned levels of granularity. These concepts are intro-
duced, defined, and motivated in the next sub-sections. 

Interactive Object. An interactive object is the core com-
ponent of the conceptual model as it consists of any object 
perceivable by the end user who could act on it. Interactive 
objects are further sub-divided into three levels of abstrac-
tion depending on the CRF [6]: abstract, concrete, and fi-
nal (Figure 3 shows how this hierarchy is implemented in 
the BCHI Dialogue Editor respectively at the three levels). 
 
Abstract Interactive Objects. They describe interactive 
objects at the Abstract User Interface (AUI) level of the 
CRF. In the BCHI Dialog Editor, they are implemented as 
abstract classes compliant with Morfeo’s Abstract UI mod-
el (http://forge.morfeo-project.org/wiki_en/index.php/ 
Abstract_User _Interface_Model) which has been selected 
for the following reasons: Morfeo’s AUI is one of the most 

recent effort to define AUI that has been successfully im-
plemented in the Morfeo project and has therefore been 
recommended as a reference model for European NESSI 
platform (www.nessi.eu) through the FP7 Nexof-RA pro-
ject (www. nexofra.eu) which promotes a reference soft-
ware architecture for interactive systems, including the 
GUI part. Morfeo’s AUI model holds two object types: an 
interactor manipulates data as input, output, or both, 
through simple interaction mechanism (e.g., a selection) or 
through complex ones (e.g., a vector, a hierarchy); a con-
tainer could contain interactors and/or other containers. 
Figure 3 details the definition of the abstract class imple-
mented for the Free object that serves for general-purpose 
input/output. 
  
Concrete Interactive Objects. They describe interactive 
objects at the Concrete User Interface (CUI) level of the 
CRF. In the BCHI Dialog Editor, they are implemented as 
abstract classes for one modality at a time. Figure 3 shows 
that graphical and vocal modalities are included, but only 
the graphical part is the subject of this paper. Such concrete 
interactive objects may range from simple widget such as a 
push button, a slider, a knob to more complex ones such as 
group box, dialog box, tabbed dialog box. 

If we abstract an interactive object from its various physi-
cal representations that belong to the various computing 
platforms and window managers, any interactive object is 
be characterized by its attributes and dialogue. An object 
may react to the end user’s actions by handling events gen-



 173

erated by this object. Therefore, a class could introduce an 
abstraction of object characteristics, including its attributes 
(fields or properties), its methods (through which a con-
crete interactive object could be manipulated) and its events 
(that could be generated by, or received by, a concrete in-
teractive object). A class is hereby considered as a model 
of interactive objects of the same type. For example, a 
TextBox of a GUI consists of a rectangular widget for en-
tering text, characterized by attributes including width, 
height, backgroundColor, maxLength or the currentText. 
Textbox operators are also associated such as appendText, 
giveFocus, selectAll or clearEntry. A textbox generates 
events such as textBoxSelected when the textbox has been 
selected by any mean (e.g., by clicking in it, by moving the 
tabulation until reaching the object) or textBoxEnter when 
the GUI pointer enters in the object (e.g., by moving the 
mouse into it or by touching it). 

 

Figure 3. The hierarchy of interactive objects classes 
as implemented in the BCHI Dialog editor. 

Final Interactive Objects. They describe interactive ob-
jects at the Final User Interface (FUI) level of the CRF. In 
the BCHI Dialog Editor, they are implemented as real clas-
ses corresponding to various toolkits supported (Figure 3 
shows the four toolkits that are currently supported with the 
hierarchy expanded for Visual Basic V6.0). For each inter-
active object, only the common native dialogue is factored 
out and rendered as a sub-class of the toolkit. This is why 
final interactive objects are represented as native objects in 
Figure 2, while abstract and concrete interactive objects are 
represented as user-defined classes in Figure 2. We hereby 
assume that the native dialogue of any final interactive ob-
ject is preserved. For defining non-native dialogues of a fi-
nal interactive object, dedicated methods exist, such as the 

Interaction Object Graph (IOG) [8]. Since defining custom 
dialogue at the control level requires complex and dedicat-
ed programming, it is not supported unless such a dialogue 
can be characterized as an interactive object. 

 

Figure 4. Internal and external representation of 
toolkits. 

Toolkit. In order to support GUIs for multiple computing 
platforms, each supported toolkit of a particular platform is 
characterized by its name, its level (e.g., a version), its ex-
tensions, and a series of templates describing how this 
toolkit implements particular dialogues. Three values are 
accepted depending on which level of abstraction it is con-
sidered: abstracted (AUI), concrete (CUI) or final (FUI). 
Figure 4 shows the correspondence of the external repre-
sentation of a toolkit that is visible to the end user and the 
internal representation inside the BCHI Dialogue Editor. 

Library. A library gathers a series of particular interactive 
object at any level so as to refer to them as a whole, which 
is helpful for keeping the same definitions for one target 
computing platform, typically a toolkit. For the moment, 
HTML V4.0 is one of the supported toolkits by its corre-
sponding library. Any newer version of HTML, e.g., V5.0, 
requires implementing a new library for this toolkit. 

Instance. An instance is any individual object created as 
an instance of any interactive object class. While a class 
defines the type of an interactive object, any actual usage 
of this class is called "instance".  Each class instance pos-
sesses different values for its attributes. At any t time, the 
instance state is defined by the set of its attributes values. 
By respecting the encapsulation i.e., the process of hiding 
all of the attributes of an object from any outside direct 
modification, object methods can be used to change an in-
stance state. In order to have a login+password, two in-
stances should be created that share the same definition, but 
with different instance states. 

User Interface. A User Interface (UI) as it is considered 
in this conceptual model may consist of any UI at any level 
of abstract (i.e., abstract, concrete, or final). Therefore, 
such a UI consists of a set of instances each belonging to 
the corresponding level of abstraction. 

Interactive objects are struc-
tured according to abstract, con-
crete, and final levels of the 
Cameleon Reference Frame-

Class definition of an inter-
active object at the abstract

Classes definition of interactive ob-
jects at the final level, here in 4 tar-

External representa-
tion of a toolkit

Internal representation of a toolkit 



 174

Project. A project is considered as a set of UIs for a same 
case study for a particular toolkit. In a same project, one 
can typically find one AUI, one CUI, and one FUI. Of 
course, for the same AUI, different CUIs could be created 
that, in turn, lead to their corresponding FUIs. Actually, a 
project could hold as many CUIs and FUIs as model-driven 
engineering has been applied to the same AUI. This is 
achieved through the mechanism of mapping.  

Mapping. In order to support model-driven engineering, a 
mapping is hereby referred to as any set of transformation 
rule from one source toolkit to a target toolkit. Note that 
source and target toolkits could be identical. A transfor-
mation rule is written as a PERL regular expression applied 
from a source class of interactive objects to a target class of 
interactive objects. In order to support Model-to-Model 
(M2M) transformation, a transformation rule may be ap-
plied from one or many classes of abstract interactive ob-
jects to one or many classes of concrete interactive objects. 
For Model-to-Code (M2C) generation, a transformation 
rule is applied from one or many classes of concrete inter-
active objects to one or many classes of final interactive 
objects (so-called native objects). Let us consider again the 
login and the password example. At the abstract level, two 
instances of entry fields are created to be mapped onto ob-
jects belonging to a particular toolkit. In HTML, both fields 
are transformed into Input objects, respectively of type 
Text and Password. In VB6, they are transformed into two 
text boxes. For the password, IsPassword is set to True. 

 

Figure 5. Internal and external representation of map-
pings. 

Figure 5 shows both, the external representation of a map-
ping that is visible to the end user and its internal represen-
tation inside the BCHI Dialogue Editor. Note that the 
Cameleon Reference Framework [6] enables multiple de-
velopment paths, and not just forward engineering. In for-
ward engineering, transformations are supposed to trans-
form elements of a model into elements belonging to an-
other model whose level of abstraction is inferior (this pro-
cess is referred to as reification). In reverse engineering, 
transformations are supposed to transform elements of a 

model into elements belonging to another model whose 
level of abstraction is superior (this process is referred to as 
abstraction). In lateral engineering, transformations are 
applied on models belonging to the same level of abstrac-
tion, possibly the same one. Mappings as supported by the 
Dialogue Editor support the three types of engineering: 

(1) Forward engineering, where mappings transform 
successively the AUI model into a CUI model that, 
in turn, is transformed into a FUI for the fours fol-
lowing targets: HTML V4.0, HTML for Applica-
tions (HTA), Microsoft Visual Basic for Applica-
tions V6.0 (VBA), and DotNet V3.5 framework. 
HTML V4.0 and HTA are running on both MS 
Windows and Mac OS X platforms. 

(2) Reverse engineering, where mappings transform 
something concrete into something abstract. Figure 
6 depicts a mapping for reverse engineering Visual 
Basic V6.0 code directly into an AUI model by es-
tablishing a correspondence between native objects 
(Figure 2) and their corresponding user objects 
(Figure 2), two sub-classes of interactive objects. 

(3) Lateral engineering, where mappings transform 
model elements belonging to a same level of ab-
straction, but for another context of use. 

Before continuing, we must emphasize that our conceptual 
and technical choices are guided by a desire to easily inte-
grate our results into the usiXML environment. Indeed, 
conceptual model of dialogues has been implemented as 
UML V2.0 class diagram in Moskitt (www.moskitt.org) 
(Figure 2) that gave rise to a XML Schema. 

 

Figure 6. Example of a mapping for 
reverse engineering. 

Note also that in this example, the reverse engineering does 
not need necessarily to work between two subsequent lev-
els. The mapping depicted in Figure 6 goes from FUI di-
rectly to AUI without passing by the intermediary CUI lev-
el. This type of mapping is called cross-cutting as it repre-
sents a shortcut between two non-consecutive levels of ab-
straction. For example, Figure 7 depicts a mapping for for-
ward engineering from an AUI model directly to Visual 
Basic V6.0 code. 



 175

 

Figure 7. Example of a mapping for reverse engi-
neering. 

In the Cameleon Reference Framework, multi-target is also 
described in terms of different contexts of use. Therefore, 
any mapping that goes from one context of use to another 
one is referred to as lateral engineering. The BCHI Dia-
logue Editor also supports this through mappings at the 
same level of abstraction, but across two different contexts 
of use, such as between VB6 and HTML V4.0 (Figure 8). 

 

Figure 8. Example of a mapping for lateral 
engineering. 

Dialogue Script. A dialogue script (or behaviour script) 
is a sequential text expressing the logic and conditional el-
ements. It describes the actions to be achieved according to 
a given interaction scenario. An action can be the change of 
an attribute value, the call of a semantic function belonging 
to the functional core, or the opening or the closing of an-
other user interface. Three levels of script are possible:  

1. Elementary dialogue scripts. These scripts are related to 
instances found in a given project. Often, these scripts 
are systematically generated accordingly to a template-
based approach.  They can come from: 
 A change of an attribute value: for example, a read 

only field implies automatic database requests in its 
dialogue script ; 

 A layout positioning: for example, two interactive 
objects may be laid out in their parent according to 
an adaptation mechanism.   

2. User interface Scripts. These scripts relate to the im-
plicit or explicit data exchanges between two or several 

interactive components having a common interactive 
ancestor. For example, an interactive object is activated 
or deactivated depending on the state of another object. 
The verification of a login+password can be initiated 
only after both fields are properly filled in.  

3. Project scripts. These scripts express the data exchang-
es between two or many interactive objects that are in-
dependent as they do not share any parent.  

 

Figure 9. Definition of a dialogue script. 

Any dialogue script is structured into three parts (Figure 9): 
a condition of realization, the event to consider and a list of 
actions to be undertaken when the event is fired and the 
condition is satisfied. A single script language has been de-
fined in common for all the three types of dialogue scripts. 
These scripts use in harmony three models of dialogues; 
transition networks, grammars, and events [13]. Scripts of 
dialogues at the abstract and concrete levels are written 
with a generic language that we described using a BNF 
grammar.  At final level, the code generator translates from 
generic scripting to specific language relative to a target 
model.  It should be noted that some of these scripts are au-
tomatically deducted through some attribute values.  

A simple example is to associate the exit of an interactive 
task with the click of a button.  Such a script is generated 
automatically. As in useML editor [21], other scripts are 
derived semi-automatically. Indeed, by combining the 
event of an interactive object to a function call, the devel-
oper will have to make the links between the function pa-
rameters (input and output) with the attributes of interactive 
objects. Then, the editor automatically builds the script. 

History. A history consists of a set of time-stamped opera-
tions applied to dialogue scripts over time in order to pre-
serve the design history. In this way, some traceability of 
dialogue scripts (i.e., who created, retrieved, updated, de-
leted which dialogue script over tie in the same project) and 
some reusability (i.e., copy/paste an already existing dia-
logue script) are ensured (Figure 10). Any dialogue script 
definition can be validated for a particular toolkit. 



 176

 

Figure 10. Recovering a previously saved history. 

MODEL-DRIVEN ENGINEERING OF DIALOGUES 
The four main phases of model-driven engineering 
In order to achieve the goal of Model-Driven Engineering 
of dialogues for multi-platform GUIS based on the concep-
tual model of Figure 2, the process supported by the BCHI 
Dialogue Editor (Figure 12) is decomposed into four main 
phases (Figure 11): (i) project editing includes all facilities 
required to create, retrieve, update, and delete any UI pro-
ject during the development life cycle; (ii) project trans-
forming is aimed at supporting the creation of new map-
pings between levels and applying them via a mapping edi-
tor (Figures 6,7,8 provide significant examples of map-
pings that support AUI to CUI reification or others), re-
spectively the transformation engine; (iii) scripting is 
aimed at specifying any desired dialogue script at any time, 
before or after transformation; (iv) code generating calls 
the mappings corresponding to the target platform for 
which the code of the FUI should be produced. 

 
Figure 11. Four phases of dialogue model-driven engi-

neering. 

 

Figure12. The Dialogue Editor for model-driven 
engineering. 

Applying model-driven engineering on a simple case 
In this sub-section, an overview is provided of how the 
four main phases of model-driven engineering are applied 
on a running example (i.e., the login+password – Figure 
13), whose simplicity has been selected for fostering un-
derstandability.  

 

Figure 13. Final User Interfaces of Login+Password. 

Project editing. Figure 12 explains the main first steps for 
creating a new UI Project in the BCHI Dialogue Editor, 
which basically consists of choosing the starting level of 
abstraction (typically, the AUI), the ending level (typically, 
one FUI), the toolkit, possibly with some extension, and 
the library of mappings to be used. Note that one can start 



 177

also at any other level such as FUI or CUI since multiple 
types of mappings are supported. 

For the login+password example, we limit ourselves to use 
five properties: two properties (i.e., left and top) determine 
the location of each interactive object, two others proper-
ties (i.e., height and width) specify the dimensions of each 
interactive object and a fifth property (i.e., label) gives the 
object label text. 

The values of these attributes are taken into account during 
future transformations. Therefore, the resulting UI Project 
holds the login+password with a quintuplet <Label, Left, 
Top, Height, Width> for each interactive object (Table 1). 

IO	
Name	

Par‐
ent	

Description	 Type	 Properties	

FrmEx‐
ist	

 Main Form Con-
tainer 

<Connect,	
3615,60,450,6360>	

fraIdent	 frmE
xist 

Secondary 
Form 

Con-
tainer 

<Identification,	
2295,120,240,6135>	

lbLogin	 fraId
ent 

Login invita-
tion 

Free <Login,300,480,480,	
1000>	

txtLogin	 fraId
ent 

Login contain Free <,300,1200,480,2535>	

lbPwd	 fraId
ent 

Password in-
vitation 

Free <Pass‐
word,300,480,1200,10
00>	

txtPwd	 fraId
ent 

Password 
contain 

Free <,300,1200,1200,2535
>	

btnOk	 frmE
xist 

Validation 
Trigger 

Com-
mand 

<Connect,	
300,3000,2880,1455>	

btnCan‐
cel	

frmE
xist	

Cancel	 Trig‐
ger	

Com‐
mand	

<Cancel,	
300,4800,2880,1455>	

Table 1. Interactive objects of the login+password ex-
ample. 

Project transforming. Let us assume that we want to ap-
ply Model-to-Model transformation (M2M) from AUI to 
CUI. For this purpose, Table 2 lists some mappings that 
have been implemented for this purpose, here for a vocal 
UI and a GUI, both appearing at the CUI level: Container 
is translated to questionnaire/Form if its name begin by frm 
or SubQuestionnaire/SubForm if its name begin by fra. 
Free object change to Request/Label if its name begin by lb 
or to Answer/Text Box if its name begin by txt. 

Command object is expressed as verbal validation or a but-
ton depending on the interaction modality. By applying the 
mappings for a GUI, we obtain a CUI with a graphical mo-
dality. 

Code generating. In order to transform this CUI into a 
FUI (say here that we want both the VB6 and HTA GUIs), 
Table 3 lists some mappings that have been implemented. 

 

Abstract	UI Vocal	UI Graphical	UI

Container frm*  Questionnaire 

fra*  Sub Questionnaire 

frm* Form

fra*	Sub	Form	

Free	 Lb*  Request 

Txt*  Answer 

Lb*		Label	

Txt*		Text	

Command Validation Button

Table 2. Mapping from Abstract to Concrete. 

Graphic  Visual Basic HTA 

Form/Sub 
form 

frm*  Form 

fra*  Frame 

frm* Form/Page 

fra* FieldSet 

Text/Label Lb*  Label 

Txt*  Textbox 

Lb*  Input (Text) 

Txt*  Input (Text or Password) 

Command CommandButton Button 

Ratio 1 0.05 

Table 3. Mappings from Concrete to 
Final User Interface. 

DESCRIPTION OF THE BCHI DIALOGUE EDITOR 
Software architecture of the BCHI Dialogue Editor 
The software architecture of BCHI Dialog Editor is com-
posed of four components depicted in the UML Class Dia-
gram of Figure 14 corresponding to the four phases of 
model-driven engineering of dialogues (Figure 11): the De-
sign meta-class supplies facilities to edit any UI project 
(e.g., create, read, update, delete) during the project editing 
(Figure 11, first swim lane); the meta-class transformation 
manages mappings as defined in Figure 2 (e.g., it enables 
transforming a UI project of a given toolkit towards anoth-
er one, possibly the same) in order to support project trans-
forming (Figure 11, second swim lane); the meta-class Be-
haviour manages and interprets scripts at any of the three 
levels for the scripting (Figure 11, third swim lane); the 
meta-class generation parses any dialogue script, validates 
it, and transforms into code for a particular target platform 
in order to support the code generating (Figure 11, fourth 
swim lane). 

 
Figure 14. UML Class Diagram of the Dialogue Editor. 



 178

Implementation of the BCHI Dialogue Editor 
The BCHI Dialogue Editor has been entirely programmed 
with Visual Studio 6 (Basic 6-VB6) and Visual Basic for 
Applications (VBA). To standardize the GUI look & feel 
produced by the BCHI Dialog Editor interfaces, an OCX 
component has been developed for every interactive object 
at any level (e.g., Input/output, TextBox, Combox, Check-
Box). These OCX components are gathered in a library that 
is used in the videos demonstrating how the BCHI Dia-
logue Editor could be used to generate multi-platform dia-
logues are available on YouTube (Table 4).  

Description URL 
Global View http://www.youtube.com/watch?v=x3CtCj47iZQ 

Architecture http://www.youtube.com/watch?v=Nx3d-w19Oug 

Project Edit-
ing 

http://www.youtube.com/watch?v=GRKWwq5cQzU 

Mappings http://www.youtube.com/watch?v=gVQ8bz9wEXY 

Scripting http://www.youtube.com/watch?v=EZGtL7fXtlE 

Code Gen-
eration 

http://www.youtube.com/watch?v=n7YlgpDihtY 

Table 4. Video demonstrations of the 
BCHI Dialogue Editor. 

The underlying conceptual model of dialogues has been 
implemented as UML V2.0 class diagram in Moskitt 
(www.moskitt.org) (Figure 2) that gave rise to a XML 
Schema according to a systematic procedure from Moskitt. 
Based on this XML Schema, the conceptual model of Fig-
ure 2 is stored and maintained in the BCHI Dialogue Editor 
through RecordSet internal data structures from which an 
XML file could be exported and to which a XML file could 
be imported. 

A RecordSet has been implemented for both native objects 
(Figure 15) and user objects. The UIDL that is maintained 
by the BCHI Dialogue Editor is therefore based on this 
XML Schema. Therefore, any project created in the editor 
is compliant with the XML Schema (Figure 16). 

 

Figure 15. A RecordSet for native objects. 

 

Figure 16. An excerpt of a XML file corresponding to a 
UI Project according to the UIDL of the BCHI Dialog 

Editor. 

CONCLUSION 
This paper introduced an approach for conducting Model-
Driven Engineering of dialogues for multi-platform GUIs 
that are compliant with the CRF [6]. For this purpose, a 
BCHI Dialogue Editor has been implemented that ultimate-
ly automatically generate code for four different targets 
(i.e., HTML V4.0, HTA, VBA V6.0, and DotNet V3.5) for 
two different computing platforms (Windows 7 and Ma-
cOS X) as a proof-of-concept. The main originality of this 
editor relies in its capability to always maintain a corre-
spondence between native objects (belonging to the targets) 
and user objects (at AUI and CUI levels) and to support 
four types of mappings (i.e., forward, reverse, lateral, adap-
tation) possibly between two consecutive levels or not 
(cross-cutting). The BCHI Dialogue Editor however only 
holds mappings for GUIs only, although interactive objects 
have been introduced for addressing Vocal User Interfaces. 
Future work will be dedicated towards this goal and to in-
tegrate the conceptual model of dialogue into UsiXML 
V2.0 in an adequate way. 

ACKNOWLEDGMENTS 
The authors would like to acknowledge the support of the 
ITEA2-Call3-2008026 USIXML (User Interface extensible 
Markup Language – www.itea2.usixml.org) European pro-
ject and its support by Région Wallonne DGO6 as well as 
the FP7-ICT5-258030 SERENOA (Multidimensional con-
text-aware adaptation of Service Front-ends) project sup-
ported by the European Commission. 

REFERENCES 
1. Ariav, G. and Calloway, L.-J. Designing conceptual 

models of dialog: A case for dialog charts, SIGCHI 
Bulletin, 20, 2 (1988) 23–27. 

2. Bastide, R. and Palanque, P. A Visual and Formal 
Glue Between Application and Interaction. Journal of 



 179

Visual Language and Computing, 10, 5 (October 
1999) 481–507. 

3. Book, M., Gruhn, V., and Richter, J. Fine-grained 
specification and control of data flows in web-based 
user interfaces. In Proc. of ICWE’2007 (Como, 16-20 
July 2007). LNCS, Vol. 4607, Springer-Verlag, Ber-
lin, 2007, 167–181. 

4. Breiner, K., Maschino, O., Görlich, D., Meixner, G. 
Towards automatically interfacing application ser-
vices integrated in a automated model based user in-
terface generation process. In Proc. of 
MDDAUI'2009. 

5. Cachero, C., Melia, S., Poels, G., and Calero, C. To-
wards improving the navigability of Web Applica-
tions: a model-driven approach. European J. of ISs, 
16 (2007) 420–447. 

6. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (2003) 289–308. 

7. Cantera, J.M., González Calleros, J.M., Meixner, G., 
Paternò, F., Pullmann, J., Raggett, D., Schwabe, D., 
Vanderdonckt, J. Model-Based UI XG Final Report. 
W3C Incubator Group Report, 4 May 2010. Available 
at: http://www.w3. org/2005/Incubator/model-based-
ui/XGR-mbui/ 

8. Carr, D. Specification of interface interaction objects. 
In Proc. of CHI’94. ACM Press, New York, 1994. 

9. Clerckx, T., Van den Bergh, J., and Coninx, K. Mod-
eling Multi-Level Context Influence on the User In-
terface. In Proc. of PERCOMW'2006. IEEE Press, 
2006, pp. 57–61. 

10. Cowan, D. and Pereira de Lucena, C. Abstract Data 
Views: An Interface Specification Concept to En-
hance Design for Reuse. IEEE Trans. on Soft. Eng. 
21,3 (1995) 229–243. 

11. Dittmar, A. and Forbrig, P. The Influence of Im-
proved Task Models on Dialogues. In Proc. of CA-
DUI’2004, pp. 1–14. 

12. Elwert, T. Continuous and Explicit Dialogue Model-
ling. In Proc. of EA-CHI'96. 

13. Green, M. A Survey of Three Dialogue Models. ACM 
Transactions on Graphics, 5, 3 (July 1986) 244–275. 

14. Harel, D. Statecharts: A visual formalism for complex 
systems. Science of Computer Programming, 8 (1987) 
231-274. 

15. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., 
Abrams, M., Coyette, A., Vanderdonckt, J. Human-
Centered Engineering with the User Interface Markup 
Language. In “Human-Centered Software Engineer-
ing”, Chapter 7, HCI Series, Springer, London, 2009, 
pp. 141–173. 

16. Jacob, R.J.K. A specification language for direct ma-
nipulation user interfaces. ACM Transactions on 
Graphics, 5, 4 (1986) 283–317. 

17. Luyten, K., Clerckx, T., Coninx, K., and Vander-

donckt, J. Derivation of a Dialog Model from a Task 
Model by Activity Chain Extraction. In Proc. of DSV-
IS’2003. LNCS, Vol. 2844, Springer-Verlag, Berlin, 
2003, pp. 203–217. 

18. Mbaki, E., Vanderdonckt, J., Guerrero, J., and Winck-
ler, M. Multi-level Dialog Modeling in Highly Inter-
active Web Interfaces. In Proc. of IWWOST’2008, 
CEUR Workshop Proc., Vol. 445, 2008, pp. 38–43. 

19. Menkhaus, G. and Fischmeister, S. Dialog Model 
Clustering for User Interface Adaptation. In Proc. of 
ICWE'2003. LNCS, Vol. 2722, Springer-Verlag, 
2003, pp. 194–203. 

20. Meixner, G., Görlich, D., Breiner, K., Hußmann, H., 
Pleuß, A., Sauer, S., Van den Bergh, J. Proc. of 4th 
Int. workshop on model driven development of ad-
vanced user interfaces. MDDAUI'2009. In Proc. of 
IUI 2009, pp. 503–504. 

21. Meixner, G., Seissler, M., Nahler, M., Udit – A 
Graphical Editor for Task Models. In Proc. of 
MDDAUI'2009. 

22. Paternò, F., Santoro, C., and Spano, L.C. MARIA: A 
universal, declarative, multiple abstraction-level lan-
guage for service-oriented applications in ubiquitous 
environments. ACM Trans. Comput.-Hum. Interact. 
16, 4 (November 2009) 

23. Pleuß, A. Modeling the User Interface of Multimedia 
Applications. In Proc. of MoDELS 2005, pp. 676–
690. 

24. Pleuß, A. MML: A Language for Modeling Interac-
tive Multimedia Applications. In Proc. of ISM'2005, 
pp. 465–473. 

25. Reichart, D., Dittmar, A., Forbrig, P., and Wurdel, M. 
Tool Support for Representing Task Models, Dialog 
Models and User-Interface Specifications. In Proc. of 
DSV-IS’2008. LNCS, Vol. 5136, Springer, Berlin, 
2008, pp. 92–95. 

26. Rückert, J. and Paech, B. The Guilet Dialog Model 
and Dialog Core for Graphical User Interfaces. In 
Proc. of EIS'2008. LNCS, Vol. 5247, Springer, 2008, 
pp. 197–204. 

27. Schaefer, R., Bleul, S., and Müller, W. Dialog Model-
ing for Multiple Devices and Multiple Interaction 
Modalities. In Proc. of TAMODIA’2006. Lecture 
Notes in Computer Science, Vol. 4385, Springer-
Verlag, Berlin, 2007, pp. 39–53. 

28. Schaefer, R., Bleul, S., and Müller, W. A Novel Dia-
log Model for the Design of Multimodal User Inter-
faces. In Proc. of EHCI-DSV-IS’2004. LNCS, Vol. 
3425. Springer-Verlag, Berlin, 2005, pp. 221–223. 

29. Traetteberg, H. Dialog modelling with interactors and 
UML Statecharts. In Proc. of DSV-IS’2003. LNCS, 
Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 346–
361. 

30. Traetteberg, H. Integrating Dialog Modeling and Do-
main Modeling – the Case of DIAMODL and the 
Eclipse Modeling Framework. JUCS 14, 19 (2008), 



 180

3265–3278. 
31. Van den Bergh, J. and Coninx, K. From Task to Dia-

log model in the UML. In Proc. of Tamodia’2007, pp. 
98–111. 

32. van Welie, M., van der Veer, G.M.C., and Eliëns, A. 
Usability Properties in Dialog Models. In Proc. of 
DSV-IS’99. 

33. Vanderdonckt, J., Limbourg, Q., Florins, M., Deriv-
ing the Navigational Structure of a User Interface. In 
Proc. of 9th IFIP TC 13 Int. Conf. on Human-
Computer Interaction INTERACT’2003 (Zurich, 1-5 
September 2003), M. Rauterberg, M. Menozzi, J. 
Wesson (Eds.), IOS Press, Amsterdam, 2003, pp. 
455-462. 

34. Winckler, M. and Palanque, P. StateWebCharts: A 
formal description technique dedicated to navigation 
modelling of web applications. In Proc. of DSV-
IS’2003. LNCS, Vol. 2844, Springer-Verlag, Berlin, 
2003, pp. 61–76. 

35. Winckler, M., Trindade, F., Stanciulescu, A., and 
Vanderdonckt, J. Cascading Dialog Modeling with 
UsiXML. In Proc. of 15th Int. Workshop on Design, 
Specification, and Verification of Interactive Systems 
DSV-IS’2008 (Kingston, July 16-18, 2008). Lecture 
Notes in Computer Sciences, vol. 5136. Springer, 
Berlin, 2008, pp. 121-135. 

36. W3C State Chart XML (SCXML), State Machine No-
tation for Control Abstraction, Working Draft, 16 
May 2008. Accessible at http://www.w3.org/TR/ 
SCXML. 

 



 181

Inspecting Visual Notations for UsiXML 
Abstract User Interface and Task Models  

Ugo Sangiorgi1, Ricardo Tesoriero1,2, François Beuvens1, Jean Vanderdonckt11 
1Louvain Interaction Laboratory, Louvain School of Mnaagement, Université catholique de Louvain 

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium) 
{ugo.sangiorgi, Ricardo.tesoriero, francois.beuvens,jean.vanderdonckt}@uclouvain.be 

2University of Castilla-La Mancha. Computing Science Department  
Av.  España S/N. (02071) Campus Universitario de Albacete. Albacete, Spain 

ricardo.tesoriero@uclm.es

ABSTRACT 
In this paper, we analyze the current state of visual nota-
tions in UsiXML models for Abstract User Interface and 
Tasks model. A systematic analysis is presented according 
to Visual Variables framework – a widely considered work 
in graphic design field. Some directions on evolution of the 
visual notations are also presented.  

Author Keywords 
Measurement, Design, Human Factors, Standardization, 
Theory. 

General Terms 
Design, Human Factors, Theory 

Categories and Subject Descriptors 
D2.2 [Software Engineering]: Design Tools and Tech-
niques – Modules and interfaces; user interfaces. D2.m 
[Software Engineering]: Miscellaneous – Rapid Prototyp-
ing; reusable software. H.1.2 [Information Systems]: 
Models and Principles – User/Machine Systems. H5.2 [In-
formation interfaces and presentation]: User Interfaces – 
Prototyping; user-centered design; user interface man-
agement systems (UIMS). 

INTRODUCTION 
Diagrams have the power of expressing ideas in a very ef-
fective way, because we are able to summarize concepts in-
side an image that would take pages to explain in textual 
form – textual representations are one-dimensional (linear), 
while visual representations are two-dimensional (spatial) 
[7]. Also, expressing ideas in visual and spatial medium 
makes comprehension and inference easier, since a quarter 
of the human brain is devoted to vision, which is a bigger 
percentage than all other senses combined [6]. 

It is not an easy task to design visual notations, in part due 
to the lack of scientific methodologies available to analyze 
them and to make conclusions regarding what makes a 
good diagram. Yet, diagrams play a critical role in all areas 
inside software development from requirements engineer-
ing through to maintenance.  

Although the Software Engineering community has suc-
ceeded to develop methods to evaluate and design model’s 
semantics, the same is not true to models visual syntax. 

This work’s aim is to do an inspection of currently availa-
ble visual notations of UsiXML, mainly focusing on Ab-
stract User Interface and Tasks models (and not yet for 
Concrete User Interface, Domain and Context models). The 
two chosen models for this analysis are more central to 
UsiXML than the others, and therefore are where an analy-
sis such as the one presented on this work is expected to 
have more value. The driving question of the inspection is: 
Are all the elements and relations of the meta-model repre-
sented on the visual notations? We try to address it in 
terms of how to represent what is missing. Thus, this work 
does not intent to define what the meta-models should rep-
resent, but only whether the visual notation comprises to 
what is stated on the meta-model.  

The next section first presents some definitions of visual 
notations in the domain of Software Engineering (SE), and 
then we present the Visual Variables framework and the 
conceptual basis for the analysis. The section 3 presents the 
analysis itself along with some recommendations of use for 
each variable. We conclude with some preliminary work on 
graphical editors, which are along with evidences that they 
comprise with the recommendations. 

STATE OF THE ART 
In order to describe what visual notations are, some basic 
concepts need to be presented. The first and most basic is 
that diagrams are encoded as two-dimensional geometric 
symbolic representation of information, and this infor-
mation refers to something that is outside of the diagram it-
self.  

 
Figure 1. Theory of diagrammatic communication. 

(Source: [11]). 



 182

In general, the communication process using diagrams can 
be described as in Figure 1: a diagram creator (the sender) 
encodes information (message) in the form of a diagram 
(signal) and the diagram user (receiver) decodes this signal. 
The diagram is encoded using a visual notation (code), 
which defines a set of conventions that both sender and re-
ceiver understand. The medium (channel) is the physical 
form in which the diagram is presented (e.g., paper, white-
board, and computer screen). Noise represents random var-
iation in which the signal can interfere with communica-
tion.  

The match between the intended and received messages 
defines the effectiveness of communication. In this sense, 
communication consists of two complementary processes: 
encoding (expression) and decoding (interpretation).  

As pointed out by [11], in order to optimize communication 
both sides need to be considered: of the encoding: What 
are the available options for encoding information in visu-
al form? This defines the design space: the set of possible 
graphic encodings for a given message; and of the decod-
ing: How are visual notations processed by the human 
mind? This defines the solution space: principles of human 
information processing provide the basis for choosing 
among the infinite possibilities in the design space. 

Design Space 
For the design space, we can account for the visual varia-
bles defined by Semiology of Graphics [1], a widely con-
sidered work in graphic design field. Like showed in Fig-
ure 2, it defines a set of atomic building blocks that can be 
used to construct any visual representation in the same way 
the periodic table can be used to construct any chemical 
compound.  

 
Figure 2. Visual variables. 

The visual variables thus define the dimensions of the 
graphic design space. The visual variables also define set 
of primitives (a visual alphabet) for constructing visual no-
tations: Graphical symbols can be constructed by specify-
ing particular values for visual variables (e.g., shape = rec-
tangle, color = green). Notation designers can create an un-
limited number of graphical symbols by combining the var-
iables together in different ways. 

Solution Space 
For the solution space, we take into consideration that hu-
mans can be viewed as information processing systems 
[NS92], so designing cognitively effective visual notations 
can be seen as a problem of optimization of this processing 
(Figure 3). 

 
Figure 3. Information processing by the human mind. 

(Source: [11]). 

The more evident benefit of using diagrams is perhaps the 
computational offloading, which is the shift of the pro-
cessing burden from the cognitive system to the perceptual 
system, which is faster and frees up the scarce cognitive re-
sources for other tasks. 

The stages in human graphical processing are: 

Perceptual discrimination: Features of the retinal image 
(color, shape, etc.) are detected by specialized feature de-
tectors and based on this, the diagram is parsed into its 
constituent elements, separating them from the background 
(figure-ground segregation) [13].  

Perceptual configuration: Structure and relationships 
among diagram elements are inferred based on their visual 
characteristics [13]. Winn had made a study to investigate 

Attention management: All or part of the perceptually pro-
cessed image is brought into working memory under con-
scious control of attention. Perceptual precedence deter-
mines the order in which elements are attended to [13]. 

Working memory: This is a temporary storage area used for 
active processing, which reflects the current focus of atten-
tion. It has very limited capacity and duration and is a 
known bottleneck in visual information processing [4].  

Long-term memory: To be understood, information from 
the diagram must be integrated with prior knowledge stored 
in long-term memory. This is a permanent storage area that 
has unlimited capacity and duration but is relatively slow 
[6]. Differences in prior knowledge (expert-novice differ-
ences) greatly affect speed and accuracy of processing. 

One could argue to use another frameworks such as Cogni-
tive Dimensions [2]. However, despite of its wide use over 
time to evaluate all sorts of artefacts, there are several rea-
sons for this framework does not provide a scientific basis 
for evaluating and designing visual notations. As pointed 
out by [11]: 

 It is not specifically focused on visual notations and 
only applies to them as a special case (as a particular 
class of cognitive artefacts) [5]. 

 The dimensions are vaguely defined, often leading to 
confusion or misinterpretation in applying them [5].  

 It excludes visual representation issues as it is based 
solely on structural properties.  

 Its level of generality precludes specific predictions, 
meaning that it is unfalsifiable.  

Physics of Notation covers the aforementioned shortcom-
ings of Cognitive Dimensions. As it is a more theory-



 183

grounded framework, it was the chosen one for evaluating 
UsiXML notations. However this paper focuses on the de-
sign space for its inspection, thus it begins with Visual 
Variables, as it is part of the Physics of Notations frame-
work. For the solution space a broader analysis needs to be 
taken, this time based on the whole Physics of Notation 
framework. 

Visual Variables 
The analysis uses the visual variables arranged around 
eight axis (one for each variable) in a way similar to Galac-
tic Dimensions [3], but instead of comparing different lan-
guages on the same graphic, we are comparing different 
versions of the same language (current and future). There-
fore, three steps are considered on each axis (Figure 4): 

Relevant / Good use: the variable is relevant to the visual 
notation according to some concept on the meta-model. In 
other words, the concept of which the variable refers is 
clearly represented on the diagram. 

Ambiguous / Bad use: the variable does not represent any 
concept of the meta-model but is present on the diagram, or 
the variable is used to represent more than one concept. 

 
Figure 4. Visual variables and one example analysis. 

Not relevant: If the variable is not present on the diagram 
thus not representing any element on the meta-model. 

A visual variable can be relevant or irrelevant to the model 
(thus in a consistent state with the meta-model) but may 
never be ambiguous.  

Two graphs are plotted over the axis: the darker and solid 
one represents the current state of the visual notation and 
the lighter and dotted one the improvements that can be 
made. For instance, if the Color variable is on the Ambigu-
ous state, it is either changed to Relevant (the diagram can 
use Color to represent ‘Object Type’, for example) or Not 
relevant (Color should not be present, thus no suggestion is 
made regarding what concept to map using this variable). 

ANALYSIS 
Having the frameworks presented before, this section will 
analyze the current state of the visual notations of 
UsiXML. This section, however, do not intent to define 

what the meta-model should represent, but only if the visu-
al notation comprises to what is stated on the meta-model.  

Therefore, the fundamental question to be answered when 
evaluating the current state of UsiXML visual notations is: 
Are all the elements and relations of the meta-model repre-
sented on the visual notations? In other words, is the ex-
pressivity of the meta-model diminished or augmented onto 
its correspondent diagram? 

This section will present the analysis of the following visu-
al notations of the UsiXML models: Abstract, and Tasks. A 
visual notation can be inspected based on the visual varia-
bles that compose the design space.  

Abstract User Interface 
The AUI model is an expression of the UI in terms of in-
teraction spaces (or presentation units), independently of 
which interactors are available and even independently of 
the modality of interaction (graphical, vocal, haptic, etc) 
[8]. In this analysis we chose IdealXML’s Abstract Model 
Editor [10] (Figure 5) as it is the most used visual notation 
for AUI, based on the high number of references on 
UsiXML related publications. Some other visual notations 
for AUI were proposed and it was based on already exist-
ing propositions (but not implemented). 

An AUI defines interaction spaces by grouping AUIs (and 
implicitly tasks of the task model) according to various cri-
teria (e.g., task model structural patterns, cognitive load 
analysis, semantic relationships identification). 

 
Figure 5. AUI model in IdealXML [10]. 

A set of abstract relationships is provided to organize AIOs 
in such a way that a derivation of navigation and layout is 
possible at the concrete level. An AUI is considered to be 
an abstraction of a CUI with respect to modality [8]. 

Based on these definitions, we can observe that the most 
important concepts are: 

 Grouping – which AUIs contains other units 

 Hierarchy – which AUIs have a higher level of im-
portance 

 Ordering – which AUIs have a higher level of prece-
dence 



 184

 

 
Figure 6. Abstract User Interface analysis. 

 

Dimen-
sion 

Current state analysis  

Improvement proposition 

 
Position 

As previously observed, position should not 
matter for an abstract user interface model, 
since the human brain is capable of perceiv-
ing the slightest differences on this planar 
variable, positioning demands attention for 
irrelevant details, ultimately misleading the 
interpretation. 

Ex: In IdealXML the small accidental dif-
ferences yields unintended meaning about 
element’s positioning. (Those differences 
are marked with the symbol  on the figure 
below, for sake of visualization. The color 
is removed for the same purpose.) 

Fine positioning should not be considered in 
a visual notation that is intended to be inde-
pendent of modality, for the bi-dimensional 
space does not exists on the abstract level. 
However, even though diagrams need to be 
represented on a bi-dimensional space, some 
care need to be taken in order to avoid the 
designer to make statements about the posi-
tion of elements. One effective strategy to 
diminish its importance is to make the ele-
ments aligned all the same. 

 
Size 

Size is very relevant for representing group-
ing among the entities in the model.  

Size should indeed be relevant for represent-
ing grouping. However, in order to not give 
meaning to units with different heights or 
even to prevent the designer to worry about 
those details, they should have the same 
size. 

 
Shape 

Shape has a big relevance in the notation 
used by IdealXML, since the icons’s shape 
at the side of the labels is the only indication 
of the functionality of a given abstract unit.  

However, there is an ubiquitous check icon 
( ) that is not used to represent anything in 
the meta-model. 

Icons can be used as a complement, over-
loading the semantics yielded by other vari-
ables such as Color and Texture.  

Brightness 

This dimension is not used on the visual no-
tation 

This dimension could be used to represent 
the frequency attribute, for instance. 

Texture 

This dimension is not used on the visual no-
tation  

This dimension could be used instead/in 
complement of icons. 

Color 

This dimension is only used in the icons 

This dimension could be used to represent 
the importance attribute, for instance. 

 
Orientatio

n 

This dimension is not used on the visual no-
tation 

No proposition 

 

Tasks 
The Task model describes the interaction among tasks as 
viewed by the end user perspective with the system. A 
Task model represents a decomposition of tasks into sub-
tasks linked by task relationships. In this analysis we chose 
CTT (ConcurrentTaskTrees) [12] (Figure 7) as it is the 
most used visual notation for Task modeling, based on the 
high number of references on UsiXML related publica-
tions.  

 
Figure 7. ConcurrentTaskTrees model. 



 185

Is important to note that in CTT (and in largely all task 
models) what is represented in its hierarchical diagram is 
not importance, but composition or structure. Further-
more, in CTT the sub-tasks are always related to each other 
through operators, which represents behavior as well. 

 

 

 
Figure 8. Tasks model analysis. 

 

Dimension 
Current state analysis  

Improvement proposition 

 
Position 

Vertical and horizontal positions have mean-
ing of precedence between tasks (from left to 
right and from up to bottom). 

Precedence is a crucial concept on tasks mod-
els, no proposition is made to change the rep-
resentation of precedence. 

 
Size 

Size has no relevance on the current model 

Winn has analyzed how people naturally in-
terpret spatial relations in [14]. The findings 
were grouped in Sequence, Subclass, Intersec-
tion and Hierarchy [11]: 

 
Except for the inclusion of text describing the 
relationship type (|||, |>, [>, |[]|, D[],  N[], I[]) 
there is no difference between a node-leaf 
connection (structure relationship) and a node-
node/leaf-leaf connection (behavior relation-

ship). 

Size is relevant for representing structural 
composition, while connections are more fit-
ted to represent sequence/causality. 

In the image below, spatial enclosure and 
overlap (right side) convey the concept of 
overlapping subtypes in a more semantically 
transparent way than connecting lines [11]. 

 
Therefore, a significant improvement would 
be made if a notation could represent struc-
ture with subclass/subset and behavior with 
sequence/ causality.  

 
Shape 

The shape variable maps to the nature proper-
ty of the task, with one symbol for each: 
NONE, USER, SYSTEM, INTERACTIVE 

No changes are suggested; each task type 
should be distinguishable. 

 
Brightness 

Brightness has no relevance on the current 
model. 

Together with an eventual tool support the 
model entities in the diagram could have dif-
ferent brightness levels according to one of 
the following attributes:  

optional: the optional elements would have 
50% brightness, the mandatory 0%; 

iterative: the less iterative tasks would be 
brighter than the ones with more iterations; 

criticity: the less critical tasks would be 
brighter than the more critical ones; 

frequency: the less frequent tasks would be 
brighter than the more frequent ones; 

centrality: the less central tasks would be 
brighter than the more central ones; 

 
Texture 

Texture has no relevance on the current mod-
el. 

Texture can be used to support the task’s rela-
tionship by overloading the information pre-
sent in the operators (|||, |>, [>, |[]|, D[],  N[], 
I[]) 

 
Color 

Color has no relevance on the current model. 

Color can be used to complement shape, giv-
ing each task type a different color. 



 186

 
Orientation 

Orientation has no relevance on the current 
model. 

No changes are suggested. 

 
DIAGRAMS AND TOOL SUPPORT 
We believe tool support to be important to make UsiXML 
popular and foster model usage. For this purpose, there is 
work in progress on making the proposed visual notations 
usable with editors. 

The propositions made by this work cannot be fully applied 
without proper tool support, for which we are developing a 
set of editors for each model in order to provide an inte-
grated environment based on Eclipse. This platform was 
chosen because it is a multi-platform environment already 
well-know from the developers and provides a set of 
frameworks allowing developing modeling tools such as 
EMF, GMF, … Moreover, it supports modeling standards 
defined by the OMG (Object Management Group). 

The current state of the proposed diagrams is presented on 
the next section together with their tool support. As it is a 
work in progress, not all the improvement suggestions are 
implemented with the tools. 

AUI Diagram 
The preliminary proposition for Abstract UI model is 
shown on Figure 9 (modeled for the same scenario of Fig-
ure 5) 

 
Figure 9. Preliminary proposition for Abstract UI, with 

different colors for each AIU type. 

Since the bi-dimensional space does not exist on the ab-
stract level, the diagram should not let the designer to spec-
ify position constraints. 

The AUI notation in this work was designed in order to be 
truly independent of modality on the visual level as well 
(not only in the meta-model level). The tool support for 
AUI is showed on Figure 10, as an Eclipse integrated 
graphical editor. The left side shows the model being edited 
graphically on the right side; there is a palette with the ele-
ments from the meta-model to be dragged to the diagram.  

All the elements are self-organized so the designer does not 
need to worry about the fine positioning, only on the order 
of the elements (horizontal positioning), as recommended 
by the analysis. 

 
Figure 10. Abstract UI editor on Eclipse. 

Task Diagram 
As said in the analysis, a significant improvement would be 
made if a notation could represent structure with sub-
class/subset and behavior with sequence/causality. In this 
sense, with proper tool support the designer would be able 
to switch between both views (structural and behavioral) 
on the same model.  

Therefore, the Task model proposition is presented in Fig-
ure . It is similar to [9] in respect to the structure, since it 
represents a tree structure without connecting lines, but in-
stead using grouping. However present on the meta-model 
level, the notation still doesn’t visually shows the task type 
(system, user, abstract, interactive). 

With this notation is possible to define alternative paths (or 
Temporalizations) for tasks depending on context situa-
tions. In the upper part of Figure 11 we show a task Fill 
Form with two subtasks Fill Data that enables Submit. 

In the bottom part we show the same tasks, except that Fill 
Data has three other subtasks. Inside Fill Data two differ-
ent flows are presented, for Desktop – in which the order of 
field filling does not matter; and Mobile – in which the or-
der must be strict, since it is constrained by the device’s 
screen size.  

CONCLUSION 
This work aimed to present an analysis of currently availa-
ble visual notations of UsiXML models in terms of a popu-
lar framework in graphic design.  

By reviewing the driving question (Are all the elements 
and relations of the meta-model represented on the visual 
notations?) we can observe that:  

 

 

 



 187

 
Figure 11. Preliminary Task Model with simplified and 

detailed visualizations. 

 
Figure 12. Task Model editor in Eclipse. 

 In IdealXML not all the concepts on the meta-
model are reflected in the diagrams. We have 
presented some possibilities of representation 
using visual variables;  

 Vertical Position and Shape were ambiguous on 
IdealXML’s notation. This work proposed 
solution for this problem; 

 The Task model is more semantically transparent 
[11] because it uses components instead of lines to 
represent subsets of tasks; 

 Variables such as Texture and Brightness can be 
used to represent importance, criticity or 
frequency. 
 

As future works, as said in Section 2, this paper focused 
only on the design space. An inspection for the solution 
space needs to be taken, based on Physics of Notation [11]. 

Also, the remaining improvement suggestions are to be in-
cluded on the notations such as Shape, Brightness and Tex-
ture for AUI and Brightness, Color and Texture for Tasks. 

ACKNOWLEDGMENTS 
The authors would like to acknowledge of the ITEA2-
Call3-2008026 USIXML (User Interface extensible Markup 
Language) European project and its support by Région 
Wallonne DGO6. 

REFERENCES 
1. J. Bertin, Semiology of graphics, University of Wis-

consin Press, 1983. 

2. A. Blackwell and T. Green, “Notational systems–the 
cognitive dimensions of notations framework,” HCI 
Models, Theories and Frameworks: Toward a multi-
disciplinary science, 2003, p. 103–134. 

3. P. Campos and N.J. Nunes, “Galactic dimensions: A 
unifying workstyle model for user-centered design,” 
Human-Computer Interaction-INTERACT 2005, 
2005, p. 158–169. 

4. G.L. Lohse, “The Role of Working Memory in 
Graphical Information Processing,” Behaviour and 
Information Technology, vol. 16, 1997, pp. 297-308. 

5. T. Green, a Blandford, L. Church, C. Roast, and S. 
Clarke, “Cognitive dimensions: Achievements, new 
directions, and open questions,” Journal of Visual 
Languages & Computing, vol. 17, Aug. 2006, pp. 
328-365. 

6. S.M. Kosslyn, “Graphics and human information pro-
cessing: A review of five books,” Journal of the 
American Statistical Association, vol. 80, Dec. 1985, 
p. 499–512. 

7. J. Larkin and H. Simon, “Why a Diagram is (Some-
times) Worth Ten Thousand Words,” Cognitive Sci-
ence, vol. 11, 1987, pp. 65 - 100. 

8. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouil-
lon, L., López Jaquero, V. UsiXML: a Language 
Supporting Multi-Path Development of User Interfac-
es. In Proc. of 9th IFIP Working Conf. on Engineer-
ing for Human-Computer Interaction. EHCI-
DSVIS’2004, Springer, 2005, pp. 200-220. 

9. F. Martinez-Ruiz, J. Vanderdonckt, and J.M. Arteaga, 
“TRIAD: Triad-based Rich Internet Application De-



 188

sign,” 1st Int Workshop on User Interface Extensible 
Markup Language UsiXML (2010), vol. 2010, 2010. 

10. F. Montero, M. Lozano, and P. González, IDE-
ALXML: an Experience-Based Environment for User 
Interface Design, Albacete: Citeseer, 2005. 

11. D. Moody, “The ‘Physics’ of Notations: Toward a 
Scientific Basis for Constructing Visual Notations in 
Software Engineering,” IEEE Transactions on Soft-
ware Engineering, vol. 35, 2009, pp. 756-779. 

12. F. Paterno, “Model-based Design of Interactive Ap-
plications,” intelligence, vol. 11, 2000, p. 26–38. 

13. S. Palmer and I. Rock, “Rethinking perceptual organ-
ization: The role of uniform connectedness,” Psycho-
nomic Bulletin & Review, vol. 1, 1994, p. 29–55. 

14. W. Winn, “Encoding and retrieval of information in 
maps and diagrams,” IEEE Transactions on Profes-
sional Communication, vol. 33, 1990, pp. 103-107. 



 189

Adaptive Dialogue Management and 
UIDL-based Interactive Applications  

Frank Honold, Mark Poguntke, Felix Schüssel, Michael Weber 
Institute of Media Informatics, Ulm University 

89081 Ulm, Germany 
{frank.honold, mark.poguntke, felix.schuessel, michael.weber}@uni-ulm.de

ABSTRACT 
Different approaches exist to describe user interfaces for 
interactive applications and services in a model-based way 
using User Interface Description Languages (UIDLs). The-
se descriptions can be device and platform independent and 
allow adaptivity to the context of use, although this adap-
tivity has to be predefined. In this paper we motivate the 
use of UIDLs in a broader view: As the basis for building 
adaptive, flexible and reliable systems using adaptive dia-
log management. The goal is to provide the user with the 
right service and the right interface at the right time. We 
present different requirements for adaptive models with 
UIDLs and discuss future work to achieve this vision.  

Author Keywords 
Adaptivity, dialogue modeling, multimodality, fission, fu-
sion, UML, User Interface Description Language, require-
ments. 

General Terms 
Design, Human Factors, Theory 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – User-centered design. 

INTRODUCTION 
In the vision of ubiquitous computing different services do 
not only work separately for strictly defined use cases. The 
user may have a goal that requires the combination of dif-
ferent services. This may not be planned in advance by the 
individual service providers. Also, different users may pre-
fer different modalities and may approach their goal in var-
ious ways. An adaptive interface for different devices and 
services to the user is desired. 

With UIDLs abstract definitions of user interfaces can be 
achieved to allow a more flexible adaptation to different 
devices and modalities. However, the adaptation of a user-
system dialogue is only possible if all context dependencies 
and the respective adaptations were defined in advance. We 
present requirements to achieve a flexible basis for adap-
tive dialogue management with flexible UIs based on exist-
ing approaches for UIDLs. 

Major challenges are exemplified with a scenario for the 
combination of different services to achieve a user’s goal. 

User Interface Modeling 
Model-based methods are wide-spread for the development 
process within a software project. The Unified Modeling 
Language (UML) provides a standard notation that has 
proven its applicability for modeling different aspects of 
software in many research and industry projects. For mod-
eling user interfaces (UI) no de facto standard exist. How-
ever, model-based user interface development holds the 
advantages of reusability, readability and easier adaptabil-
ity of UIs amongst others [14]. Several approaches provide 
notations that are independent of any concrete implementa-
tion and can be used during the process of user interface 
development. Reported approaches allow user interface de-
signers to specify interaction on a very high-level UIDL 
without any details on particular input and output devices 
or platform information. Examples for UIDLs include 
UsiXML [19], TERESA XML [15] and UIML [17]. These 
are special notations and require new modeling tools or 
plug-ins to existing tools to work with them. 

 

Figure 1. Transformation steps and involved infor-
mation to derive a XAML GUI from an abstract task 

description in UML. 



 190

Several researchers motivate the use of UML for user inter-
face modeling [5,6,7]. De Melo analyzed different user in-
terface modeling approaches and defined decision criteria. 
UML was identified as most flexible and extendable ap-
proach with best tool support [6]. Our approach in [12] 
builds the basis for further considerations concerning adap-
tivity. We use the Cameleon Reference Framework [3] and 
start with a task model created with UML. Figure 1 illus-
trates the required transformation steps to derive the final 
UI. Based on pre-defined search criteria UML structures 
representing specific interaction schemas are then found 
and transformed to an abstract UI model described in 
XML. This is used to derive a concrete executable UI mod-
el. We illustrated this with the model of a radio application 
and the derivation of different XAML-based concrete user 
interfaces [12]. 

SCENARIO 
We introduce the need for adaptive dialogue management 
with the following scenario: 

The user is listening to a song played in a radio application 
on their smartphone. The song seems familiar and the user 
wants to get some info on the artist. The user wants to get 
more information on tour dates of this artist. Browsing the 
tour calendar it shows a concert in the user’s home city in a 
few months. Finally, the user decides to buy a ticket for this 
concert. 

For all these different tasks a number of services exist the 
user would have to use separately to finally get the concert 
ticket. An intelligent system could use adaptive dialogue 
management to assist the user in succeeding their goal by 
automatically offering the different services when needed. 
This can be facilitated by the use of UIDLs providing ab-
stract interfaces to the services. Figure 2 illustrates this 
within our given scenario. 

  
Figure 2. Realizing abstract dialogue acts for the exam-
ple scenario using different UIDL based applications. 

Furthermore these interfaces could even be adapted to 
available devices and modalities in a given context. In the 
following, adaptive dialogue management is introduced. 
Then, requirements for adaptive dialog management for 
UIDL-based interactive applications are derived. 

ADAPTIVE DIALOGUE MANAGEMENT 
Continually available systems like smartphones or in-car 
infotainment systems are ubiquitous in nowadays society 
and their individual success is to a great part based on user-
friendly interface design and flexible integration of diverse 
applications. As these systems are usually already configu-
rable in their look and feel and may be adapted individual-
ly, the next step in this area is adaptivity at runtime to the 
current state of the user (e. g. the emotion, the situation, his 
expertise) and their surroundings. Adaptivity should not 
only be restricted to a single application, we call this intra-
application adaptivity, but should span all applications 
available which we call inter-application adaptivity. 

Such systems would not only combine the information 
gathered by multi-sensor networks, but could also extend 
the interaction possibilities for the user to all devices capa-
ble of interaction. This allows for a more natural way of in-
teraction and does not constrain the user to a predefined 
limited set of modalities. The basis for such kind of sys-
tems is an adaptive multimodal dialogue management that 
is able to manage multiple applications (or parts of a single 
application) as well as different devices for input and out-
put. For this purpose the underlying dialogue model needs 
to be at a high level of abstraction, so that dialogues can be 
invoked independently of their concrete user interface, de-
pending only on their purpose for the user. 

A lot of work has already been done on this topic regarding 
multimodal dialogue system architectures [4,9,13] and 
complete systems like in [11, 20]. We propose a goal based 
dialog management in the style of spoken language dialog 
systems (SLDS) that can be easily modeled using a graph-
ical tool [1]. 

In our scenario a computer system assists a user in succeed-
ing his goal. The envisioned system owns a model of the 
state of the world as it is and a model of how it should be. 
The system’s AI planner owns the ability to identify and 
structure abstract tasks from a given service repository in 
that way, that it generates a planned sequence of certain 
tasks ordered by causal links to achieve the aforementioned 
goal (cf. [2]). These tasks are then passed over to the dia-
logue management (DM) as abstract dialogue acts, which 
need to be realized via a suitable user interface. This could 
be done with the use of UIDLs. The DM identifies all ser-
vices which can realize the given task. Each service pro-
vides its own UIDL description. So in co-operation with 
the interaction management (IM) the DM decides for one 
service to be integrated. The service gets integrated into the 
current dialogue sequence and the IM is responsible for the 
UI-refinement including fission and fusion. The IM looks 
up all available interfaces, or even compositions of such in-
terfaces to offer the right interface at the right time (cf. Fig. 
3). 

  



 191

  
Figure 3: Realizing adaptive dialogues. Starting from a 
planned task, the dialogue management in co-operation 
with the interaction management selects and structures 

suitable UIDL fragments from a UIDL set to derive 
concrete user interfaces for a certain dialogue 

(sequence). 

MODALITY ARBITRATION 
For dynamic use in ubiquitous environments novel systems 
will co-operate with capable devices and make use of their 
different input and output components. Starting from ab-
stract UI descriptions the interaction management (IM) 
shall derive an appropriate UI by reasoning about unimodal 
or multimodal output and the corresponding concrete UIs. 
Throughout the process of modality arbitration the IM has 
to get knowledge about the later user interface’s interaction 
concepts, the interaction interfaces. The IM analyzes the 
UI description, and explores all capable components which 
support the needed interaction for input and output. The 
IM’s fission component is capable for output organization. 
If not yet modeled, a concrete UI will be derived from the 
abstract UI description within the fission process, as moti-
vated by [3,7]. The fusion component analyses the occur-
ring interaction input and checks, if it could be mapped to 
the UI’s given interaction interface. If possible, the interac-
tion gets assigned and passed back via the dialogue man-
agement to the linked service or application. 

REQUIREMENTS 
As motivated above future systems shall compose the user 
interface at runtime in a very flexible way. The adaptive-
ness of the single UI components as well as their combina-
tion is influenced by the user model, the device and com-
ponents model, the surroundings model, the task model, the 
available widgets, and the information which shall be 
communicated.  

To reason on a concrete user interface rises requirements 
for a UIDL-concept, which offers the possibility to de-
scribe the UI on different abstraction levels. The (device- 
and modality-independent) abstract level for the dialogue 
management and the concrete description to realize the UI. 

To identify suitable pre-described widgets, each widget has 
to provide information about its purpose, its needs for and 
effects of a possible applicability. To seamlessly interact 
with a realized UI via different interaction metaphors 
(speech, touch, gesture, etc.), the UI description must re-
veal a description of its interaction interface. 

The next issue addresses multi-tasking and interaction 
mapping support. In our scenario we described the situation 
where the user listens to the music and asks for the artist. 
The dialogue manager handles the w-words10 interaction, if 
the current application can not do this; here: “Who is the 
artist playing on the radio? ” So the system identifies a new 
goal, the planner integrates it, because the system retrieved 
a suitable application. Next, the dialogue manager inte-
grates the service at runtime and the interaction manage-
ment is responsible to communicate the music database’s 
UI towards the user, and so on (see Fig. 2). 

There may be temporarily at least two concurrent applica-
tions running in parallel. Due to the UIs described interac-
tion interfaces and the fusion’s interaction mapping (cf. 
sec Error! Reference source not found.) different input 
components can be assigned to different applications if 
they support the same interaction for a user input. This 
goes along with some of the needs for interaction model-
ling named in [8,16]. 

We summarize the requirements for future UIDLs for a 
better applicability in dialogue management and modality 
arbitration as follows:  

• A UIDL-concept shall allow to describe user interfac-
es on different levels of abstraction (including con-
crete and abstract layout or arranging descriptions)  

• There shall be a way to describe a UI in an device- 
and modality-independent way  

• The UIDL-concept shall allow to describe the purpose 
of a modeled UI  

• It shall be possible to describe a UI’s needs for ap-
plicability as well as its resulting effects  

• UIDLs shall allow to describe interaction interfaces 
for seamless interaction integration with different de-
vices and components  

• UIDLs for core-interaction have to provide binding 
mechanisms to link the UI with the functional core  

• To support interaction, event mechanisms shall be de-
scribable  

• The UIDL shall allow to describe reusable compo-
nents for different purposes  

                                                           
10 who, what, when, where, why, which, whom, … 



 192

• Information – expressed or gathered via a user inter-
face – shall be describable or referenceable by the ex-
pressiveness of a UIDL. To allow to model an ab-
stract UI for abstract information and a concrete UI 
for concrete information.  

It is unlikely that a single UIDL will evolve for all kinds of 
applications, since there are different fields of application. 
According to [10,18] there are differences between UIs for 
“command/control oriented interfaces, where the user initi-
ates all action” and an interface which “is more modeled 
after communication, where the context of the interaction 
has a significant impact on what, when, and how infor-
mation is communicated.” Thus a system can be designed 
using an interaction based or an information based ap-
proach. 

The requirements for multimodal interaction modeling (cf. 
[8]) are different to the one of user interface modeling. We 
understand UML as a modeling language which offers pos-
sibilities to model both. In [5] we focus on interaction 
modeling, whereas in [12] we focus on user interface mod-
eling, both utilizing UML. 

CONCLUSION AND FURTHER WORK 
We illustrated important challenges with future adaptive 
dialogues in combination with adaptive user interfaces. The 
approach to add adaptivity to an overall user-system dia-
logue with different services described with UIDLs implies 
different requirements. The derived requirements have to 
be an essential part of future user interface descriptions and 
can be fulfilled by different types of UIDLs. We highlight 
the need to describe the UI on different levels of abstrac-
tion, device- and modality-independent, and the addition of 
different goals a user interface, respectively the underlying 
application, can fulfill. The work on adaptive dialogue 
management for abstract user interfaces is currently ongo-
ing. UIDLs have to meet different requirements whether 
they shall support an interaction based or an information 
based approach. The requirements shall be used as basis for 
further discussions and push future research to achieve 
adaptive, flexible and reliable systems – so called Compan-
ion Systems. 

ACKNOWLEDGMENTS 

This work is originated in the Transregional Collaborative 
Research Centre SFB/TRR 62 “Companion-Technology 
for Cognitive Technical Systems” funded by the German 
Research Foundation (DFG). 

REFERENCES 
1. G. Bertrand, F.  Nothdurft, F. Honold, and F. Schüs-

sel. CALIGRAPHI – Creation of Adaptive diaLogues 
usIng a GRAPHical Interface. In COMPSAC 2011: 
35th IEEE Annual Computer Software and Applica-
tions Conference, pages 393–400, July 2011. 

2. S. Biundo, P. Bercher, T. Geier, F. Müller, and 
B. Schattenberg. Advanced user assistance based on 
AI planning. Cognitive Systems Research, 12(3-

4):219–236, April 2011. Special Issue on Complex 
Cognition. 

3. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, 
L. Bouillon, and J. Vanderdonckt. A unifying refer-
ence framework for multi-target user interfaces. Inter-
acting with Computers, 15(3):289–308, 2003. 

4. J. Coutaz. PAC, an object oriented model for dialog 
design. In Interact’87, 1987. 

5. M. Dausend and M. Poguntke. Spezifikation multi-
modaler interaktiver Anwendungen mit UML. In 
Mensch & Computer, pages 215–224. Oldenbourg 
Verlag, 2010. 

6. G. de Melo. Modellbasierte Entwicklung von Inter-
aktionsanwendungen. PhD thesis, Universität Ulm, 
2010. 

7. G. de Melo, F. Honold, M. Weber, M. Poguntke, and 
A. Berton. Towards a flexible ui model for automotive 
human-machine interaction. In AutomotiveUI ’09: 
Proceedings of the 1st International Conference on 
Automotive User Interfaces and Interactive Vehicular 
Applications, pages 47–50, New York, NY, USA, 
September 2009. ACM. 

8. B. Dumas, D. Lalanne, and S. Oviatt. Multimodal in-
terfaces: A survey of principles, models and frame-
works. In D. Lalanne and J. Kohlas, editors, Human 
Machine Interaction – Research Results of the MMI 
Program, volume 5440/2009 of Lecture Notes in 
Computer Science, chapter 1, pages 3–26. Springer-
Verlag, Berlin, Heidelberg, March 2009. 

9. G. Ferguson, J. Allen, B. W. Miller, E. K. Ringger, 
and T. S. Zollo. Dialogue Systems: From Theory to 
Practice in TRAINS-96, pages 347–376. Handbook of 
Natural Language Processing. Marcel Dekker, New 
York, 2000. 

10. M. Horchani, L. Nigay, and F. Panaget. A platform 
for output dialogic strategies in natural multimodal 
dialogue systems. In IUI ’07: Proceedings of the 12th 
international conference on Intelligent user interfaces, 
pages 206–215, New York, NY, USA, 2007. ACM. 

11. M. Johnston, S. Bangalore, G. Vasireddy, A. Stent, 
P. Ehlen, M. Walker, S. Whittaker, and P. Maloor. 
MATCH: An architecture for multimodal dialogue 
systems. In ACL ’02: Proceedings of the 40th Annual 
Meeting on Association for Computational Linguis-
tics, pages 376–383, 2002. 

12. V. Kluge, F. Honold, F. Schüssel, and M. Weber. Ein 
UML-basierter Ansatz für die modellgetriebene Gen-
erierung grafischer Benutzerschnittstellen (to appear). 
In Informatik 2011: Informatik schafft Communities, 
Beiträge der 41. Jahrestagung der Gesellschaft für 
Informatik e.V. (GI), LNI. GI, 2011. 

13. O. Lemon, A. Bracy, A. Gruenstein, and S. Peters. 
The witas multi-modal dialogue system i. In EU-
ROSPEECH, pages 1559–1562, 2001. 



 193

14. G. Meixner. Entwicklung einer modellbasierten Ar-
chitektur für multimodale Benutzungsschnittstellen. 
PhD thesis, TU Kaiserslautern, 2010. 

15. G. Mori, F. Paterno, and C. Santoro. Design and de-
velopment of multidevice user interfaces through 
multiple logical descriptions. IEEE Trans. Softw. 
Eng., 30:507–520, August 2004. 

16. S. Sire and S. Chatty. The markup way to multimodal 
toolkits. In W3C Multimodal Interaction Workshop 
(2004). W3C, June 2004. 

17. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., 
Abrams, M., Coyette, A., and Vanderdonckt, J. Hu-
man-Centered Engineering with the User Interface 
Markup Language. In Human-Centered Software En-
gineering. Chapter 7, Seffah, A., Vanderdonckt, J., 
Desmarais, M. (Eds.), HCI Series. Springer, London 
(2009), pp. 141-173.. 

18. M. Turk. Multimodal human-computer interaction. In 
Real-Time Vision for Human-Computer Interaction, 
number 3, chapter 16, pages 269–283. Springer US, 
2005. 

19. J. Vanderdonckt, Q. Limbourg, B. Michotte, L. Bouil-
lon, D. Trevisan, and M. Florins. Usixml: a user inter-
face description language for specifying multimodal 
user interfaces. In Proceedings of W3C Workshop on 
Multimodal Interaction WMI’2004, pages 1–7. W3C, 
2004. 

20. W. Wahlster. Smartkom: Symmetric multimodality in 
an adaptive and reusable dialogue shell. Technical re-
port, DFKI, 2003. 

 



 194

An Extension of UsiXML Enabling the Detailed Description 
of Users Including Elderly and Disabled  

Nikolaos Kaklanis1,2, Konstantinos Moustakas1, Dimitrios Tzovaras1 
1Informatics and Telematics Institute 

Centre for Research and Technology Hellas 
Thessaloniki, Greece 

nkak@iti.gr, moustak@iti.gr 

2Department of Computing 
University of Surrey 

Guildford, United Kingdom 

ABSTRACT 
The present paper proposes an extension of UsiXML that 
enables the detailed description of users, including elderly 
and people with disabilities. Furthermore, an application 
that enables the automatic extraction and editing of User 
Models, according to the proposed extension, is presented. 
Finally, a test case is presented, which shows how the pro-
posed user models can be put into practice.  

Author Keywords 
Disabled, elderly people, UsiXML, user interface descrip-
tion language, user model editor, virtual user. 

General Terms 
Design, Human Factors, Theory 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – User interfaces. H.5.2 [Information Interfaces 
and Presentation]: User Interfaces – User-centered de-
sign. 

INTRODUCTION 
The research community has shown interest in user model-
ling and user profiling over the last years. Many different 
user models have been introduced, including abstract user 
descriptions, like Personas [9], ontology-based user models 
or XML-based models. However, there is a lack of a uni-
fied user modelling technique able to describe user charac-
teristics in detail with focus on the elderly and disabled. 
The present paper introduces an extension of UsiXML lan-
guage that enables the detailed description of the user, in-
cluding possible disabilities, the affected by the disabilities 
tasks as well as physical, cognitive and behavioral/psycho-
logical user characteristics. A user model editor that ena-
bles the extraction of user models, according to the pro-
posed extension, as well as a test case showing how the 
proposed user modeling technique can be put into practice 
are also presented. 

RELATED WORK 
User models are represented in the literature using different 
syntaxes and implementations, varying from flat file struc-
tures and relational databases to full-fledged RDF with 
bindings in XML. The notion of ontology-based user mod-
els was first developed by Razmerita et al. in 2003 [10] that 
presented the OntobUM, a generic ontology-based user 
modelling architecture. OntobUM integrated three ontolo-

gies: a user ontology characterizing the users, a domain on-
tology defining the relationships between the personaliza-
tion applications, and a log ontology defining the semantics 
of user-application interaction. A similar, but way more ex-
tensive approach for ontology-based representation of the 
user models was presented by [4]. In [2] GUMO is pro-
posed, which seems to be the most comprehensive publicly 
available user modelling ontology to date. The need for a 
commonly accepted ontology for user models is also justi-
fied. These works are natural extensions of earlier works 
on general user modelling systems [5,7,7]. Such a general 
user model ontology may be represented in a modern se-
mantic web language like OWL, and thus be available for 
all user-adaptive systems. 

XML-based languages for user modelling have also been 
proposed [11]. UserML [1,3] has been introduced as a user 
model exchange language. A central conceptual idea in Us-
erML’s approach is the division of user model dimensions 
into the three parts auxiliary, predicate and range. For ex-
ample, if one wants to say something about the user’s in-
terest in football, one could divide this so-called user mod-
el dimension into the auxiliary part has interest, the predi-
cate part football and the range part low-medium-high. Ad-
ditionally, further important meta attributes have been iden-
tified for the user modeling domain, like the situation (like 
start, end, durability, location and position), privacy (like 
key, owner, access, purpose, retention) and explanation 
(like creator, method, evidence, confidence). 

There are also many existing standards related to user 
modelling. The ETSI ES 202 746 standard specifies user 
preferences, including needs of people with disabilities; 
device related preferences and provides UML class dia-
grams describing the structure of the user profile. ETSI ES 
202 746 builds on the user profile concept described in EG 
202 325. ISO/IEC 24751-1:2008 is another relevant to user 
modelling standard, as it provides a common framework to 
describe and specify learner needs and preferences on the 
one hand and the corresponding description of the digital 
learning resources on the other hand so that individual 
learner’s preferences and needs can be matched with the 
appropriate user interface tools and digital learning re-
sources. ETSI EG 202 116 contains definitions of user 
characteristics, including sensory, physical and cognitive 
abilities and also describes how user abilities are changing 
over years. 



 195

PROPOSED USIXML EXTENSION 
In order to create user models that could be automatically 
used by software tools/modules/frameworks, the use of a 
machine-readable format is essential. The goal of the cur-
rent research is to define a formal way to describe users, 
including elderly and people with disabilities. Thus, the de-
tailed description of user’s disabilities as well as the affect-
ed/problematic (due to the disabilities) tasks has to be sup-
ported. 

UsiXML [12] has been chosen to be the basis of the pro-
posed user modelling technique, as it can sufficiently de-
scribe user tasks, has some primal support for user descrip-
tion and it is easily extensible, due to its XML nature. Two 
new models are introduced and added to UsiXML’s 
uiModel (Figure 1):  

a) the disabilityModel (Figure 2) and  

b) the capabilityModel (Figure 3). 

 
Figure 1. uiModel - UML class diagram. 

The disabilityModel describes all the possible disabilities 
of the user as well as the affected by the disabilities tasks. 
Each disability element has a name and a type (e.g. motor, 
visual, etc.). Each affectedTask element has the following 
attributes:  

 id: task’s unique identity. 
 type: the type of the task (e.g., motor, visual, etc.). 
 name: task’s name. 
 taskObject (optional): the name of the task object (e.g. 

“door handle” may be the task object for task “open 
door”). 

 details (optional): some details/comments concerning 
the execution of the task. 

 failureLevel: an indicator showing the failure level of 
the task due to the disabilities [accepted values: 1 to 5] 
– failureLevel=5 means that the user is unable to per-
form the specific task. 

On the other hand, the capabilityModel describes in detail 
the physical, cognitive and the behavioral/psychological 

user characteristics. The majority of the parameters of the 
proposed user model concerns the physical characteristics, 
as most of them are measurable and independent from the 
environment, in contrast with the cognitive and behavior-
al/psychological ones. 

 
Figure 2. disabilityModel – UML class diagram. 

More specifically, the capabilityModel contains the follow-
ing basic elements: 

 general: container for some general characteristics (e.g. 
gender, ageGroup). 

 generalPreferences: container for user’s needs/prefe-
rences (e.g., preferred input/output modality, preferred 
sound volume). 

 anthropometric: container for the anthropometric data 
(e.g., weight, stature, head length, sitting height bidel-
toid breadth).  

 motor: container for the motor parameters (e.g., wrist/-
elbow/shoulder flexion, hip abduction).  

 vision: container for the visual parameters (e.g., visual 
acuity, glare sensitivity, spectral sensitivity).  

 hearing: container for the hearing parameters (e.g., res-
onance frequency, hearing thresholds).  

 speech: container for the speech parameters (e.g., voice 
pitch, fundamental frequency, syllable duration).  

 Cognition: container for the cognitive parameters (e.g., 
memory).  

 Behaviour: container for the behavioral parameters 
(e.g., valence, emotional intelligence).  

 

As an example, if we suppose a user with arthritis that af-
fects hand fingers’ flexion, causing reduction of hand’s 
movement and, thus, making grasping a problematic task, 
the corresponding user model would include: 

 An abstract description of arthritis and the definition of 
the affected task “grasping”, in the disabilityModel. 

 The angles of flexion of each finger for both hands, 
which would be reduced compared with the corre-
sponding angles of a person having no disabilities, in 
the capabilityModel. 



 196

 
Figure 3. capabilityModel – UML class diagram. 



 197

 

USER MODEL EDITOR 
In this section, an editor is presented that has been devel-
oped to enable the easy creation of user models in UsiXML 
format, according to the proposed extension, as described 
in the previous section. The user is able to create a new us-
er model or load a previously saved user model and edit it, 
as presented in Figure 4. Through the graphical user inter-
face (GUI) of the application, the value of each supported 
parameter can be set (e.g. Figure 6 depicts a form where 
hip parameters can be set). Moreover, all the possible disa-
bilities can be defined through the GUI (Figure 7). 

 
 

Figure 4. User Model editor – Main screen. 

 

 
Figure 5. User Model preview. 

 

At the beginning of the user model’s creation process, the 
User Model Editor sets all the parameters, using a set of de-
fault values that have been found in the literature. These 
default values correspond to a typical user having no disa-
bilities. 

The User Model Editor provides also a preview of the User 
Model in a human readable format (Figure 5). The pro-
duced User Model can be automatically extracted in the 
proposed UsiXML format, as depicted in Table 1. 

 

 



 198

 
Figure 6. Edit hip parameters form. The user is able to define the range of hip’s abduction, adduction, flexion, 

extension, internal and external rotation for each hip.  

 

 
Figure 7. Add/edit disabilities form. The user can easily define the type, name and details of 

all the possible disabilities. 

 

  



 199

<?xml version="1.0" encoding="UTF-8"?> 
<uiModel xmlns="http://www.usixml.org" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" 
xsi:schemaLocation="http://www.usixml.org/spec/Usi
XML-ui_model.xsd" id="User_Model" name="Exported 
Virtual User Model" creationDate="2011/07/04 
13:39:51" schemaVersion="1.8.0"> 
  <head> 
    <version modifDate="2011/07/04 
13:39:51">1.0</version> 
    <authorName>Automatically generated by the 
VERITAS User Model Editor</authorName> 
    <comment>This model has been generated using 
the VERITAS User Model Editor</comment> 
  </head> 
  <disabilityModel> 
    <disability type="Motor" name="Spinal Cord In-
jury"> 
      <disabilityDetails>Spinal cord injury (SCI) 
refers to an injury to the spinal cord. It can 
cause myelopathy or damage to nerve roots or mye-
linated fiber tracts that carry signals to and 
from the brain. Depending on its classification 
and severity, this type of traumatic injury could 
also damage the grey matter in the central part of 
the cord, causing segmental losses of interneurons 
and motor neurons.</disabilityDetails> 
    </disability> 
    <affectedTasks> 
      <affectedTask id="walking_ID" type="motor" 
name="walking" taskObject="" details="inability to 
effectively transfer weight between legs, abnormal 
step rhythm, excessive plantar flexion during 
swing phase, falling during activities"    fail-
ureLevel="2" /> 
      </affectedTasks> 
  </disabilityModel> 
  <capabililtyModel> 
    <generalPreferences> 
<unsuitableInputModali-
ty>Undefined</unsuitableInputModality> 
      ... 
    </generalPreferences> 
    <motor> 
      <upperLimb leftRight="left"> 
        <pullForce measureUnits="N" 
maxValue="335.0"/> 
        <hand> 
          <finger fingerID="thumb"> 
            <flexionA measureUnits="degrees" min-
Value="0.0" maxValue="35.0"/> 
            ... 
          </finger> 
          ... 
        </hand> 
        <wrist> 
          <radialDeviation measureUnits="degrees" 
minValue="0.0" maxValue="27.5"/> 
          <ulnarDeviation measureUnits="degrees" 
minValue="0.0" maxValue="35.0"/> 
`         ... 
        </wrist> 
        <forearm> 
          <pronation measureUnits="degrees" min-
Value="0.0" maxValue="85.0"/> 
          <supination measureUnits="degrees" min-
Value="0.0" maxValue="85.0"/> 
        </forearm> 
        <elbow> 
          <flexion measureUnits="degrees" minVal-
ue="0.0" maxValue="142.5"/> 
          <hyperExtension measureUnits="degrees" 
minValue="0.0" maxValue="10.0"/> 
        </elbow> 
        <shoulder> 
          <flexion measureUnits="degrees" minVal-

ue="0.0" maxValue="86.0"/> 
          <extension measureUnits="degrees" min-
Value="0.0" maxValue="40.0"/> 
          <abduction measureUnits="degrees" min-
Value="0.0" maxValue="21.0"/> 
          <adduction measureUnits="degrees" min-
Value="0.0" maxValue="30.0"/> 
          ... 
        </shoulder> 
      </upperLimb> 
      <upperLimb leftRight="right">...</upperLimb> 
      <lowerLimb leftRight="left"> 
        <hip> 
          <abduction measureUnits="degrees" min-
Value="0.0" maxValue="37.5"/> 
          ... 
        </hip> 
        <thigh>...</thigh> 
        <knee>...</knee> 
        <ankle>...</ankle> 
        <footToe footToeID="1"> 
          <flexion measureUnits="degrees" minVal-
ue="0.0" maxValue="35.0"/> 
          <extension measureUnits="degrees" min-
Value="0.0" maxValue="35.0"/> 
        </footToe> 
        ... 
      </lowerLimb> 
      <lowerLimb leftRight="right">...</lowerLimb> 
      <neck>...</neck> 
      <spinalColumn>...</spinalColumn> 
      <gait> 
        <stepLength>0.75</stepLength> 
        ... 
      </gait> 
    </motor> 
    <vision> 
      <eye leftRight="left"> 
        <glareSensitivity>0.845</glareSensitivity> 
        ... 
      </eye> 
      <eye leftRight="right">...</eye> 
    </vision> 
    <hearing>...</hearing> 
    <speech>...</speech> 
    <cognition>...</cognition> 
    <behaviour>...</behaviour> 
  </capabililtyModel> 
</uiModel> 
 

Table 1. User Model example – UsiXML source code. 

 
THE PROPOSED USER MODELING TECHNIQUE IN 
PRACTICE 
In this section, a use case is presented, where the pro-
posed user modeling technique is used. In the context of 
the FP7 VERITAS EU funded project (FP7 – 247765), a 
framework that performs automatic simulated accessibil-
ity testing of designs in virtual environments has been de-
veloped. The Simulation Module is the core component 
of the VERITAS Simulation Framework. As depicted in 
Figure 8, the Simulation Module gets as input: 

 A Virtual User Model expressed in UsiXML (ac-
cording to the proposed extension) describing a virtual 
user with disabilities. 

 A Simulation Model expressed in UsiXML (using 
the taskmodel of UsiXML) describing the functionali-
ty of the product/service to be tested. 



 200

 One or more Task Models expressed in UsiXML (us-
ing the taskmodel of UsiXML) describing in detail 
how the complex tasks (e.g. driving, computer use, 
etc.) are decomposed into primitive tasks (e.g. grasp, 
pull, etc.) 

 A 3D Virtual Prototype (like the one presented in 
Figure 9) representing the product/service to be tested. 

 
Figure 8. Veritas Simulation Framework architecture. 

The Simulation Module, then, simulates the interaction of 
the virtual user (as it is defined in the Simulation Model) 
within the virtual environment. The disabled virtual user 
is the main “actor” of the physically-based simulation that 
aims to assess if the virtual user is able to accomplish all 
the necessary actions described in the Simulation Model, 
taking into account the constraints posed by the disabili-
ties (as described in the Virtual User Model). 

 
Figure 9. Virtual environment example representing a 

common car interior [6]. 

In [6] the VERITAS Simulation Framework is described 
in detail and two test cases are presented revealing some 
accessibility issues of a virtual car interior for an elderly 
virtual user and a virtual user with spinal cord injury. 

DISCUSSION 
The proposed user modeling technique seems very prom-
ising as it enables the detailed users’ description, includ-
ing elderly and people with disabilities. The basic ad-
vantage of the proposed user models against the personas, 

which is probably the most popular existing technique of 
describing a user, is the machine-readable format. Addi-
tionally, the structure of the proposed user model is easily 
extensible by to its XML nature. The introduced user 
model is strictly correlated with user tasks. Thus, the fact 
that the new user modeling technique is based on 
UsiXML offers another advantage, as UsiXML can suffi-
ciently describe user tasks. The proposed user models 
could be used in various simulation platforms, enabling 
the simulation process for virtual users with different 
characteristics or in adaptive user interfaces, where the 
user interface of an application could dynamically change 
in order to fulfill user’s needs/preferences. Possible future 
extensions will be considered, in order to enable the de-
scription of more human body parameters that could be 
affected by a disability. 

CONCLUSION 
In the present paper, an extension of UsiXML that ena-
bles the detailed description of a user, including users’s 
possible disabilities, the affected by the disabilities tasks 
as well as physical, cognitive and behavioural/psycholo-
gical characteristics was presented. A User Model Editor 
that has been developed, in order to support the proposed 
user modeling technique, was also presented. Finally, an 
indicative use case showed how the proposed technique 
can be put into practice. The great importance of the pro-
posed user modelling technique lies to the fact that it ena-
bles for the first time the description of the elderly and 
disabled users in a formal way. Additionally, the ma-
chine-readable format allows the produced user models to 
be used by different systems/applications. 

ACKNOWLEDGMENTS 
This work is supported by the EU funded project VERI-
TAS (FP7 – 247765). 

REFERENCES 
1. Heckmann, D. Introducing situational statements as an 

integrating data structure for user modeling, contex-
tawareness and resource-adaptive computing. In Proc. 
of ABIS’2003 (Karlsruhe, 2003), pp. 283–286. 

2. Heckmann, D. Ubiquitous User Modelling. Akade-
mische Verlagsgesellschaft Aka GmbH, Berlin (2006). 

3. Heckmann, D. and Krüger, A. A user modeling 
markup language (UserML) for ubiquitous computing. 
Lecture Notes in Artificial Intelligence, vol. 2702. 
Springer, Berlin (2003), pp. 393–397. 

4. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, 
M., and von Wilamowitz-Moellendorff, M. GUMO – 
The General User Model Ontology. In Proceedings of 
the 10th International Conference on User Modelling 
UM’2005 (Edinburgh, 2005). Lecture Notes in Artifi-
cial Intelligence, vol. 3538. Springer, Berlin (2005), 
pp. 428–432. 

5. Jameson, A. Modelling both the context and the user. 
Personal Technologies 5, 1 (2001), pp. 29–33. 



 201

6. Kaklanis, N., Moschonas, P., Moustakas, K., and 
Tzovaras, D. A Framework for Automatic Simulated 
Accessibility Assessment in Virtual Environments. In 
Proc. of Int. Conf. on Human-Computer Interaction 
HCI International’2011 (July 2011). 

7. Kay, J. The UM toolkit for reusable, long term user 
models. User Modelling and User-Adapted Interac-
tion 4, 3 (1995), pp. 149-196. 

8. Kobsa, A. Generic user modelling systems. User 
Modelling and User-Adapted Interaction 11, 1-2 
(2001), pp. 49–63. 

9. Pruitt J. and Grudin, J. Personas: Practice and Theory. 
In Proc. of ACM Conf. on User Experience 
DUX’2003. ACM Press, New York (2003). http:// 
research.microsoft.com/en-us/um/people/jgrudin/ 

10. Razmerita, L., Angehrn, A., and Maedche, A. Ontolo-
gy-based User Modeling for Knowledge Management 
Systems. In Proc. of the Ninth International Confer-
ence of User Modeling UM’2003. 2003. 

11. Souchon, N. and Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages. In 
Proc. of 10th Int. Conf. on Design, Specification, and 
Verification of Interactive Systems DSV-IS’2003 (Ma-
deira, 4-6 June 2003). J. Jorge, N.J. Nunes, J. Cunha 
(Eds.). Lecture Notes in Computer Science, vol. 2844, 
Springer-Verlag, Berlin (2003), pp. 377–391. 

12. Vanderdonckt, J. Model-Driven Engineering of User 
Interfaces: Promises, Successes, and Failures. In Proc. 
of 5th Annual Romanian Conf. on Human-Computer 
Interaction ROCHI’2008 (Iasi, September 18-19, 
2008), S. Buraga, I. Juvina (Eds.). Matrix ROM, Bu-
carest (2008), pp. 1–10. 



 202

Issues in Model-Driven Development of 
Interfaces for Deaf People 

Paolo Bottoni, Fabrizio Borgia, Daniel Buccarella, Daniele Capuano, 
Maria De Marsico, Anna Labella, Stefano Levialdi 

Computer Science Department, “Sapienza” University of Rome 
Via Salaria 113, 00198, Rome (Italy) 

(bottoni, capuano, demarsico, labella, levialdi)@di.uniroma1.it, danielbuccarella@yahoo.it 

ABSTRACT 
Model-driven development of interfaces for deaf users 
encounters specific problems: interaction must be based 
on visual communication, either graphical or through ges-
tures, but standard solutions for developing visual inter-
faces are not adequate and one must consider specific, 
possibly unusual, ways of structuring interaction. We dis-
cuss such issues in relation to the development of a Deaf-
centered E-Learning Environment. Moreover, we consid-
er problems related to the modeling of Sign Languages, 
both in written and gestural form. 

Author Keywords 
Storytelling, Deaf-centered E-Learning Environment, 
MOF, UIDL, UsiXML, SignWriting. 

General Terms 
Design, Human Factors, Theory 

Categories and Subject Descriptors 
H.5 [Information Interfaces and Presentation]: User 
Interfaces 

INTRODUCTION 
Web contents accessibility for deaf users is a hidden 
problem as one might think that the intact visual channel 
is enough for deaf people to grasp all visual information, 
texts included [6]. Instead, deafness as a sensorial deficit 
hinders deaf people's acquisition of both written and vo-
cal language skills, which raises important issues with re-
spect to interfaces for e-learning [1]. Moreover, including 
Sign Language (SL) videos in web pages as translation of 
textual contents is not an adequate solution, since signifi-
cant portions of the deaf community do not learn their na-
tional SL and prefer to communicate through verbal lan-
guage, due to social constraints and prejudice. On the 
other hand, both signing and non-signing deaf people 
show similar difficulties in verbal language comprehen-
sion [1]. Hence, the use of e-learning to cover this literacy 
gap must adopt creative ways of presenting and coordi-
nating interactive visual materials, providing different 
ways of access to content comprehension.  

The Deaf-centered E-Learning Environment (DELE) tar-
gets adult deaf people attending university. In DELE, all 
information is presented visually, without using text. DE-
LE structure design is based on Conceptual Metaphors 
(based on the Embodied Cognition paradigm [11,12]) and 

Storytelling [4,13] and explores how metaphors based on 
interaction between humans and their environment (e.g. 
container, path), can facilitate learning. Moreover, we 
"translate" typical concepts from Web sites and social 
networks (e.g. personal pages, forums) into domain-
specific entities, generating familiar environments. 

The central metaphor in DELE is that of the university 
campus. Users can browse the campus environment via 
personal avatars, exploiting intuitive body-based actions. 
An exhaustive mapping links e-learning concepts to the 
environment (e.g. the campus main square represents the 
forum, personal houses stand for users' personal pages.).  

In DELE, the whole learning process is seen as a story, 
following a path from a starting place to a conclusion, 
through several steps and detours. A visual representation 
is given by moving an avatar along the path, and the pro-
cess is told as an entirely visual story, omitting textual in-
formation unless it is part of the didactic contents.  

A StoryEditor integrated into DELE allows a tutor to de-
sign arbitrary learning paths as stories. A story-path is 
specified by composing several types of nodes, generat-
ing object code for web pages. Process execution relies 
on the mapping of stories onto workflows, enacted by a 
suitable engine. Navigational, graphical, and behavioral 
structures of the story pages are specified with the 
UsiXML (www.usixml.org) User Interface Description 
Language (UIDL). UsiXML was chosen due to its several 
models encompassing the different aspects of DELE de-
sign: in fact, since StoryEditor allows the generation of 
final web pages starting from an abstract formal descrip-
tion of story-paths, the different levels of abstraction 
available with UsiXML descriptions fit the need to deal 
with task coordination, flexible style of presentation, and 
domain concepts (in the e-learning domain) found in the 
different steps of code generation. Model-to-model trans-
formations have been defined to move from the definition 
of stories as paths to the concrete organization of the en-
vironment. Moreover, we have used intra-model trans-
formations to specify important behaviors. We illustrate 
the model-driven design of stories in DELE via the Sto-
ryEditor and the adopted transformation patterns. 

One missing aspect of UsiXML is the possibility of speci-
fying gesture-based interaction. As we are concerned with 
Sign Languages (SL), and we are introducing writing fa-



 203

cilities based on Sign Writing (SW – www.signwriting. 
org), we discuss a meta-model of SW abstract syntax, 
currently at the basis of the SWift graphical editor- With 
SWift, a user composes SW sentences using visual sym-
bols (glyphs) to represent SL configurations, movements 
and facial expressions.  

Paper organization. After discussing related work, we 
present the use of UsiXML for the formal description of 
fully iconic interactive contents. Then, we illustrate the 
use of StoryEditor to produce web pages from abstract 
models, and the different UsiXML models involved. Fi-
nally, we discuss representation of signs and gestures and 
propose a meta-model for SW. 
 
RELATED WORK 
Storytelling is the basic abstraction behind the definition 
of storyboards in user interface development, and its inte-
gration with model-driven approaches is discussed in 
[10]. However, projects related to storytelling and e-
learning environments for deaf people have generally not 
been mainly preoccupied with interface development. 
 
The Signed Stories project (http://www.signedstories. 
com) makes children’s stories accessible in British Sign 
Language (BSL), using animation, pictures, text and 
sound to improve the literacy of deaf children. The 
MOODLE Course Management System (http://moodle. 
org) has been adapted at the University of Bristol Centre 
for Deaf Studies (CDS - http://www.bris.ac.uk/deaf) to 
deliver in BSL e-learning contents available in written 
English. The Digital Storytelling Program at Ohio State 
University (http://digitalstory.osu.edu) proposes showcas-
es, presentations, publications, and workshops where deaf 
and hearing participants learn to use digital tools and in-
teractive story circles to craft narratives.  
 
Little has been done as to Model-Driven Development of 
interfaces for Deaf People. Traditional approaches to 
model-driven assistive interfaces have focused more on 
support to blind people, for which the alternative audio 
channel can be exploited [9,20]. On the other hand, ges-
ture-based interaction has been prominently seen as an in-
tegration of speech (see e.g., [16]). Work on the MARIA 
framework is currently trying to integrate support for 
modeling of gesture-based interaction, but its model of 
gestures is typically related to movement sensors as avail-
able in games, or to multi-touch interfaces [15,17]. 

Concerning efforts to provide specifications of SLs, for 
example for generation of movements in avatars [7], the 
Hamburg Notation System is the basis for SiGML (Sign-
ing Gesture Mark-up Language) [8], which is concentrat-
ed on movements of hands and arms and not on the whole 
set of features in SLs, as is for SW. 

TELLING ICONIC STORIES 
Our approach tries to exploit storytelling in order to de-
velop an e-learning environment designed in a fully-
visual fashion. The visual modality is often a central part 
of storytelling, especially when children are involved 
[19]. 

It has been observed that stories activate visual thinking 
(www.learningandteaching.info/learning/dale bruner) and 
that they represent one of the most important tools by 
which human beings represent experienced life, before a 
symbolic level of understanding is fully acquired [4]. Alt-
hough this iconic modality is partially overcome by sym-
bolization in adults, deaf people maintain a deep connec-
tion between symbolic and iconic levels of meaning due 
to their visual approach to knowledge. In other words, 
deaf people are essentially visual [1]. In the development 
of storytelling environments, two parallel levels of de-
scription must be considered: 

1. A diachronic level representing the action flow along 
a story-path from the starting to the end place. 

2. An iconic level for appearance and “felt quality” 
[10]. 

Computational modeling tools able to describe both levels 
are needed to allow DELE tutors to design and run iconic 
stories from scratch. While workflows provide a compu-
tational model for the diachronic level, a formal tool able 
to adequately describe the iconic level is needed. 
 
UIDLs AND USIXML 
UIDLs represent an important resource in this direction. 
They allow the description of UIs in an implementation-
independent way, specifying the UI features at several 
levels of abstraction. These levels, as described in the 
Cameleon Reference Framework (CRF) [5], are: 

 Tasks & Concepts, describing user tasks which have 
to be realized independently of interaction modalities 
and concrete UI elements. 

 Abstract UI (AUI), providing a modality-independent 
description, showing a UI as a collection of abstract 
containers and components. 

 Concrete UI (CUI), including modality-specific con-
cerns, but without reference to specific platforms or 
implementations. 

 Final UI (FUI), describing the UI as users see it in 
specific hardware/software platforms.  

UsiXML implements the Cameleon Reference Frame-
work with different models for different levels of abstrac-
tion (with the exception of the Final UI which needs to be 
described directly in the target platform and is not speci-
fied in UsiXML). Model-to-model transformations are 
defined in a homogeneous formalism based on transfor-
mation rules, typically in the form of graph transfor-
mations. A rule is a triple (NAC, LHS, RHS) (see Figure 
1), where: 



 204

- LHS (Left Hand Side) specifies a graph pattern, an 
occurrence of which has to be found in the original 
graph G, for the rule to be applied. 

- RHS (Right Hand Side) specifies a different graph 
pattern, which has to replace the occurrence of LHS 
in G to produce the result graph G’. 

- NAC (Negative Application Condition) is an exten-
sion of LHS for which a match must not be found.  

Transformations allow designers to move from UsiXML 
Task Model, with relationships between tasks specified 
via the ConcurTaskTree [14] and LOTOS [2] formalisms, 
to the CUI Model, describing graphical and vocal modali-
ties of interaction with interface elements and the associ-
ated behaviours, through the AUI Model, where a UI is 
represented in terms of AbstractIndividualComponents 
(AICs) and AbstractContainers (ACs), thus specifying the 
UI abstract building blocks and their relationships. 

 
Figure 1. The UsiXML transformation rule system. 

Using UsiXML-based descriptions within an editor for 
object code generation, the abstract models – together 
with abstract-to-concrete transformation rules – represent 
the information needed by the environment to determine 
the input parameters for the generation process. We now 
describe model-aided generation activities in StoryEditor. 
 
STORYEDITOR 
The diachronic description level is the first perspective 
involved for iconic stories. From a computational point of 
view, we see stories as workflows: learning processes 
within an organization (e.g. university), in which tasks are 
assigned to actors (e.g. students and tutors). For DELE, 
we considered the YAWL (Yet Another Workflow Lan-
guage - http://www.yawlfoundation.org) workflow man-
agement system providing a workflow engine for story-
paths execution and an editor for their description (see 
Figure 2). 
 
YAWL is an open-source workflow specification lan-
guage extending Petri nets with dedicated constructs to 
capture Workflow Patterns (http://www.workflow 
patterns.com). 

 
Figure 2. The YAWL Components. 

DELE runtime environment is based on its engine, offer-
ing comprehensive support for the control-flow and re-
source patterns, but some problems arose with the YAWL 
Process Editor. This is a Java-based desktop application, 
while a major requirement for DELE was full and easy in-
tegration of the story editor as a browser-based applica-
tion. This motivates the decision to develop an ad-hoc 
visual editor. StoryEditor (Figure 3) extends the Wir-
ingEditor component of WireIt (http://neyric.github.com/ 
wireit), an open source JavaScript library to create wira-
ble Web interfaces for dataflow applications, visual pro-
gramming languages, graphical modeling or graph edi-
tors. 

WireIt is based on the YUI (Yahoo! User Interface) Li-
brary (http://developer.yahoo.com/yui), a set of utilities 
and controls, written in CSS and JavaScript, for building 
interactive web applications, and on inputEx, an open-
source JavaScript framework to build fields and forms for 
web applications (http://neyric.github.com/inputex). The 
WiringEditor provided some of the common features of 
most visual editors for the story-paths visual language. 
The following subsections give a detailed explanation of 
the three steps in the definition of interfaces for stories. 
 

First Step: Visual Language Definition 
By using StoryEditor, tutors are able to design both the 
structure and the visual, iconic content of a story. 

Story Structure Definition 
As arbitrary topological structures must be designable by 
didactic tutors, a formal meta-model has been defined to 
describe admissible learning paths, to eliminate ambiguity 
and to make automated syntax check possible.  
 
 



 205

 

Figure 3. A screenshot of StoryEditor. 

 

Figure 4. The formal meta-model for story-paths. 

 
 
 

 



 206

Figure 4 shows the DELE meta-model for story-paths ex-
pressed in MOF (OMG's Meta Object Facility - http:// 
www.omg.org/mof) syntax, with each class an instance of 
the Class meta-class. The abstract class Node defines the 
basic elements that can be connected together to build a 
path, represented by the Story class. This contains a Start 
node, a Stop node and a set of InternalNodes, with arbi-
trary links among them. Transition represents connections 
between two nodes. Every node can have any number of 
ingoing and outgoing transitions, but these are only per-
mitted among nodes within the same sub-story. 

A node along a path can be either a Task (where a student 
has to perform a proper learning activity) or a story in 
turn (i.e., a sub-story). The structure described by the me-
ta-model is high-level and there is no theoretical limit to 
the nesting of stories. As seen in Figure 4, from a task 
node a student can also access in-depth sub-stories. The 
latter do not belong to the normal path of the main story, 
but create entirely alternative paths which can be fol-
lowed by the student within the navigation. The last ex-
tension of the internal nodes class is the Laboratory node. 

The work students have to perform in a laboratory is di-
vided into several PersonalTasks and a single Coopera-
tiveTask. An activity of the first type is assigned to each 
student, who has to perform it alone and asynchronously, 
while cooperative tasks can be performed in different 
ways (e.g. through shared documents). 

Task Content Abstract Description 
For the iconic level of story description, Task node inter-
nals are described by UsiXML models. A few main cate-
gories have been developed for DELE story pages (e.g. 
“story container” or “star story access”), providing a uni-
form structure for each of them. In particular, abstract de-
scriptions have been developed in terms of page patterns, 
involving instances of the UsiXML's Abstract Interaction 
Objects (AIO) – either AIC or AC – and describing the 
structure of all pages in a category. To develop the mod-
els needed for a category, a Task Model is first given. 
Then the abstract page pattern is shown, and a first trans-
formation is provided between tasks and AIOs the in-
stances of which are defined in the pattern. Finally, graph 
transformation rules from AUI to CUI models are used.  

These have been defined using the AGG tool (http://user. 
cs.tuberlin. de/~gragra/agg/index.html), while Task Mod-
els have been specified in the IdealXML (http://www. 
usixml.org/index.php?mod=pages&id=15) editing envi-
ronment using LOTOS [2] syntax for temporal operators. 
The main structure for all pages within DELE is called 
StoryContainer. In a container, the main actions which 
can be performed by users within a story are defined, and 
adequate graphical structures for such actions are provid-
ed as the output of the reification process. The Task Mod-
el for StoryContainer is shown in Figure 5, where the two 
main task patterns are presented: 

1. InteractWithAnotherStory: the user can enter a story 
for which the current story has to be left. 

2. InteractWithAStoryNode: the user can enter a node 
from within the current story. 

In Figure 5 both “abstract” (StoryInteractionTasks) and 
“interaction” tasks (e.g. InteractWithAStoryNode) are 
shown via IdealXML standard icons. The alternate 
choice operator “[]” is the relationship between interac-
tion tasks.  

 
Figure 5. Task Model for StoryContainer. 

The page pattern for StoryContainer is given in Figure 6 
in terms of instances of AIC and AC classes from the 
UsiXML AUI model and of relationships between them. 

 

Figure 6. The page pattern for StoryContainer. 

A main PresentationContainer (an AC) and several AIC 
instances form the pattern. PresentationContainer is 
composed of several different “page contents” related by 
MutualEmphasis (i.e. they cannot be shown together). 
The AUI Model derives from the Task Model, where ei-
ther an AC or an AIC is associated with each task. Three 
transformations – one for each task pattern - generate the 
StoryContainer AUI Model. Figure 7 shows the rule for 
the InteractWithAntotherStory task. As in [18], we repre-
sent InterModelRelationship instances as associations be-
tween model components. A task is executed within an 
AIC, contained in an AC and composed of two facets: a 
control allows the AIC to activate a visualisation into an-
other component in the concrete UI, and an output allows 
reification of the AIC as an iconic image component. In a 
similar way, rhe CUI Model is obtained from the AUI 
Model. Each AIC in StoryContainer is implemented as an 
ImageComponent. Page dynamics is drawn as shown in 
Figures 8 and 9. 



 207

 
Figure 7. An example of transformation from the Task model to the AUI Model. 

 

 

Figure 8. The main part of a transformation rule for the StoryContainer's AUI-to-CUI reification. 

 

 

Figure 9. A transformation rule for the onMouseOver event. 



 208

 

 

Figure 11. Rules for the StarStoryAccess' Task-to-AUI transformation. 

 
To save space, the presentation of the rule for AUI-to-
CUI reification in Figure 8 omits the NAC, which simply 
duplicates the rule RHS. Two graphical behaviors are as-
sociated with the AIC. In particular, a click event causes a 
graphicalTransition to start on the connected graphical-
Container. In the second rule (see Figure 9), the mouseO-
ver event produces a graphical transformation in the AIC 
itself, i.e. it receives a colored border. Another example 
of UI description model is the StarStoryAccess structure.  
It represents the access door to “star” stories, i.e. stories 
where multiple paths can be entered by the user without 
an imposed order. The Task Model of such structures is 
quite simple and defines only two possible task patterns: 
users can either interact with a story-path or find infor-
mation about a path (Figure 10).  

 
Figure 10. Task Model for StarStoryAccess. 

The page pattern of StarStoryAccess extends the diagram 
shown in Figure 6, detailing the StarStoryAccess tree 
(Figure 12). The structure of StarStoryAccess simply 
states that a star story must have at least two paths which 
can be explored. In fact, if only one path can be followed, 

a “linear” path would result. Both task patterns described 
for this UI have to be executed in a single AIC instance, 
thus the AUI model has to provide a multi-faceted GIC. 
In particular, as shown in Figure 11, each task is associat-
ed with one of the two facets of the GIC: the Inter-
actWithAStoryPath task is responsible for the navigation 
facet, since the AIC itself will work as a navigation target 
when it is activated (as the CUI model below will show 
clearly). On the other hand, the InteractWithStory-
PathInfo task requires an output facet for the AIC, since a 
textual label will be shown to the user as a mouseOver 
event is performed. The transformations needed to com-
plete the CUI Model explain this. In particular, the two 
transformations for event management on the GICs are 
shown in Figure 13.  

 
Figure 12. The page pattern for StarStoryAccess. 

When a click event is triggered, the GIC has to display 
the page contents, expanding to full page size through an 
animation. In a similar fashion, the mouseOver event 
causes the GIC to react by visualizing information about 
the path it represents (i.e., a graphical output-text is put 
near the image component). 



 209

  

 

 

Figure 13. Rules for the event management of the StarStoryAccess GICs.

The set of models and transformation rules provide the 
needed input for StoryEditor to calculate the generation 
parameters: for example, as the page pattern shown in 
Figure 6 states that multiple AICs instances could be put 
in a StoryContainer, StoryEditor should require the exact 
number of these elements from the story designer; simi-
larly, since AUI-to-CUI transformation rules specify that 
AICs are to be reified as ImageComponent elements, the 
designer will be asked for these images, etc. After all the 
needed models have been provided, StoryEditor is ready 
to run.  On launching, StoryEditor reads the story content 
definition and structure from a JSON Language Defini-
tion module. 

Second Step: Story-Paths Editing 
In fact, in order to achieve format homogeneity between 
software modules, the UsiXML descriptions are translat-
ed into JSON as well. This organization makes visual 
language editing simpler, because it only means editing 
this definition file. Hence, all the changes that can possi-
bly be made to the structure or content meta-models are 
immediately reflected in the visual editor at launch. The 
resulting view is found in Figure 3. It gives a module list 
on the left side of its GUI layout. By selecting, dragging 
and dropping a module from the left tool panel to the 
main center drawing area, a node of that type is inserted 
into the diagram (i.e. created within the story). In order to 
facilitate the tutor in the process of designing a story-
path, each time a new sub-story is created, the editor au-
tomatically inserts start and stop pseudo-nodes in the dia-
gram. Visualization and navigation within sub-stories are 
made easier by creating a different window tab for each 
of them. In-depth sub-stories can be attached to a task 
node by linking it, for example, to some words of the 
node containing text. With respect to the needs they must 

satisfy, in-depth sub-stories can be created by the tutor, 
deriving from the past navigation of the students or added 
by the users themselves based on their personal interests 
[3]. A syntax check verifies the story correctness and 
completeness based on the meta-model descriptions, 
which provide the set of constraints that a story must re-
spect to be published. Finally, StoryEditor uses a JavaS-
cript adapter to provide loading and saving features. It 
connects to a MySQL database through AJAX calls to a 
PHP backend to store the wirings and bring them back. 
 
Third Step: Story-Paths Translation 
Once the editing phase is concluded and the syntax check 
has been passed, the new story can be published. The Sto-
ryEditor saves the story description in the form of  an 
XML string, specifying a workflow to the interpreter of a 
runtime environment based on the YAWL engine. More-
over, the UsiXML CUI Model is generated by the editor 
using the transformation rules provided. 
 
Story Structure Translation 
In order to translate the structure of a story into a YAWL 
workflow specification, a mapping has been defined be-
tween the structure meta-model and the YAWL formal 
foundation. This gives the story designers the possibility 
to use YAWL expressiveness, having to learn only the 
few simple rules described by the meta-model. Many 
YAWL constructs, such as conditions, AND and XOR 
splits and joins, are in fact handled transparently to the 
users of the StoryEditor. Tasks from the story-path visual 
language are translated into YAWL Atomic Tasks, while 
sub-story nodes become YAWL Composite Tasks. A 
“Correction and support” atomic task is inserted after 
each activity. This task is assigned to tutors so they can 



 210

verify how learning activities have been performed. Us-
ing YAWL Conditions, a cycle is eventually generated, in 
which tutors can support students inserting links towards 
in-depth sub-stories close to their errors, when they are 
not sufficiently assimilated. A difference between labora-
tories and simple tasks is that for collaborative activities 
tutor verification starts only after all the personal and co-
operative tasks have been completed by students. 
 
STORY ENGINE 
As stated before, DELE runtime environment is based on 
the YAWL Engine, enabling students to go through paths 
composed of learning activities and stories within stories. 
When all nodes within a sub-story have been visited, the 
latter is marked as completed and the global context of 
the parent sub-story (if present) is recreated. When navi-
gating along sub-stories, each time a sub-story is entered, 
and until there are nodes to be accessed, students can 
choose the next learning unit among “allowed” nodes. In 
a linear path, for example, the only allowed node is the 
first node at the beginning of the story. After choosing 
one node, a student can reach either a task node, another 
sub-story or a laboratory. Inside a laboratory, students can 
freely move between personal and cooperative task. The 
set of students attending the laboratory must always be 
known because a synchronization is required when one 
student tries to reach the cooperative task: in this case, in 
fact, a message is sent to all students which are not cur-
rently attending the cooperative task, and they are re-
quested to enter it. If all students accept the request, the 
synchronization has been reached and the shared work 
can be done. Otherwise, students are redirected to their 
personal tasks. According to the order by which students 
visits nodes or to the alternative paths they must - or 
choose to - follow as in-depth sub-stories during execu-
tion of a story-path, each student “lives” a personal story. 
Hence, different sets of Past Correlated Story-Paths and 
Personal In-Depth Story-Paths, one for each student, are 
maintained and shown in a laboratory. The latter is con-
sidered concluded when all its tasks (both personal and 
cooperative) are done and the final tutor verification is 
passed. 

StoryEditor generates XML strings conforming to YAWL 
specifications, describing each of the three perspectives 
of a process control flow (task sequences, splits, joins 
etc.), data (variables, parameters, predicates etc.) and re-
sources (participants, roles, allocators, filters etc.). At 
runtime, the YAWL Engine is only responsible for the 
correct scheduling of tasks and the management of in-
put/output data to/from tasks. Actual task execution is 
delegated by the engine to so-called YAWL Custom Ser-
vices, which are able to communicate with the YAWL 
Engine and to perform activities in a task. Communica-
tion between DELE and the YAWL Engine is realized by 
implementing an appropriate custom service: the DELE 
StoryEngine. It provides the actual execution environment 

for a story, taking its description as input and generating 
all the web pages needed for the story execution. 

Other, specific custom services are provided in order to 
execute each DELE node. At runtime, the data within 
each node instance will be selected for viewing and/or 
updating. When a task is scheduled, the Engine will noti-
fy whichever custom service has been associated with the 
task that there is an activity ready to be delegated to it. 
Hence, the custom service performs a checkout of the task 
data and generates an appropriate editing form based on 
the CUI description provided by the StoryEditor for that 
node. Two examples of generated Final User Interfaces 
are shown in Figure 14 and 15. They show two initial 
pages of “star” story-paths. In particular the screenshot in 
Figure 15 shows the presentation page of a star story-path 
encountered as a sub-story of a general linear path. 

 
Figure 14. Initial page of a "star" story-path. 

 
Figure 15. Initial page of a "star" sub-story. 

 

SIGN WRITING REPRESENTATION 
SignWriting (SW - http://www.movementwriting.org/ 
symbolbank/) is an alphabet, i.e. a list of symbols, used to 
produce a transcription of any Sign Language in the 
world. Compared with other notations, SW can express a 
signed sequence by itself, without the need for accessory 
descriptions, often written in a different language (typi-
cally the written form of a spoken language) as in the case 
of “glosses”. SW glyphs are all gathered in the Interna-
tional Sign-Writing Alphabet (ISWA), which therefore 
includes everything is needed to express any SL. ISWA is 



 211

available as an archive with tens of thousands of images 
(.png), each representing a SW glyph. Figure 16 shows 
examples of families. 

In the metamodel of Figure 17, we define an Utterance as 
an instance of a Concept, where a same concept can be 
expressed using many different expressions. Utterances 
are formed by smaller entities; if in a spoken language we 
have words, in SL (and SW) there are Sign elements, as 
represented by the association between these two classes. 
A sign is produced by one or more Occurrence of some 
Glyph representing the specification of a physical mani-
festation of an individual traceable element. While the 
term glyph is more typical of the definition of SW, we use 
it also to describe atomic elements common to both SW 
and SL specifications. 

Glyph examples  Family description 
Hand configurations. 

Contacts: where, how 
and how many times a 
hand comes into contact 
with a body part. 

 

Movements (of hands, 
wrists, forearms, etc.). 

Head (expressions, 
movements, etc.). 

 
Shoulders, arms, bust. 

 

Dynamics and move-
ment coordination. 
Punctuation. 

Figure 16. Some examples of families of glyphs. 

In this meta-model we also set an important difference be-
tween the specification of a glyph and its occurrences. 
This is motivated by two facts: first, the ISWA is com-
posed by tens of thousands of glyphs, so there might be 
glyphs not occurring in any sign, but which are worth be-
ing stored and coded, because they might be useful in the 
future; second, a specification also encompasses the ad-
missible variations which can be applied to each individ-
ual occurrence. In particular, a Category is an aggregate 
of glyphs subject to some constraint on each possible oc-
currence and the body parts and movements which can be 
used to generate their occurrences. Depending on the 
adopted concrete specification of the lexicon of signs, a 
category can be organized into sub-categories. Figure 17 
presents the collection of categories associated with the 
ISWA definition e.g. Configuration, ForearmMovement, 
HandMovements. 

An example of sub-categorisation in the ISWA definition 
(not shown in the metamodel, but which has been used in 
Swift, is the specialization of the HandMovement catego-
ry as StraightHandMovement and CircularHandMove-
ment. 

In Sutton’s original proposal for a concrete presentation 
of SW, of which our meta-model is a refinement, glyphs 
were organized according to the following hierarchy. We 
present it to give an idea of the complexity of the dimen-
sions involved. 

- Category: it distinguishes anatomical areas and other 
elements such as punctuation and contacts: configura-
tions, movements, head and face, body, dynamics and 
rhythm, punctuation, advanced annotation. 

- Group: each category is divided into a maximum of 
10 groups, distinguishing different areas within the 
category macro-area. Groups in a category can be het-
erogeneous, e.g. a single category gathers all move-
ments (of hands, forearms, wrists, and fingers) but al-
so contacts. 

- Base symbol: identifies a specific glyph in a group. 
- Variation: distinguishes different manifestations of 

some symbols; as an example, for the symbol repre-
senting the bended forefinger at knuckle, the two pos-
sible variations code the difference in angle of the 
knuckle. 

- Filling: they identify modifications of the same base 
symbol; as an example, filling in configurations are 
used to distinguish the visible side of the hand and the 
plane where the sign is performed: depending on 
whether the palm, the edge or the back of the hand are 
seen, and whether the hand rests on the vertical or 
horizontal plane, we have 6 different fillings. 

- Rotation: as for fillings, they identify modifications of 
a same base symbol; as an example, in some configu-
rations rotation allows users to distinguish hand orien-
tations, i.e. how it is turned, and the used hand (left or 
right). 

The main difficulty in the definition of a complete con-
crete for representations of  Sign Languages is in their 
four-dimensional quality (three spatial dimensions plus 
the temporal one) which requires a higher degree of free-
dom in arranging the base structures that express signs in 
two dimensions. As a consequence, the SWift interface 
allows great freedom in the composition and characteris-
tics of aggregated glyphs. The proposal of an abstract 
syntax through the meta-model drafted in Figure 17 is at 
the basis of SWift and can serve as a guide to build a 
software framework where signs might be synthesized as 
well as analyzed. Issues related to its incorporation into 
UsiXML are a matter of discussion. 

A first prototype has been implemented according to the 
concurrent design process performed with a group of deaf 
users (Figure 18). The interaction pattern reflects the ab-
sence of particular limitations on the sign composition. 
The user can select a specific body part, and is introduced 
to the set of variations and rotations provided for the 
glyphs pertaining to that group. Once the glyph has been 
chosen, it can be dragged and dropped in the board space. 



 212

 
Figure 17. Metaclasses and classes in a metamodel for Sign Languages and Sign Writing. 

 
Figure 18. A screenshot of Swift. 

 
CONCLUSION 
In this paper a model-driven approach to developing UIs 
for deaf people has been presented. A fully-iconic page 
structure is proposed to enhance deaf people’s motivation 
while navigating in virtual environments. In fact, the 
iconic modality aims at leveraging the deaf-peculiar visu-
al way of grasping information. 

This iconic structure is applied to the pages of story-based 
learning paths, and the StoryEditor visual editor has been 
presented as a powerful tool for manipulating the two 
levels of stories description, i.e. iconic and diachronic. 
Finally, the written representation of Sign Languages has 
been taken into account, proposing a meta-model for the 
SignWriting code extendible to Sign Languages in gen-
eral, and which can be the basis for incorporating specifi-
cations for this form of interaction into UsiXML. 

ACKNOWLEDGMENTS 
The preparation of this work was partially funded by the 
Italian Ministry of Education and Research (MIUR-
FIRB), Project E-learning, Deafness and Written 
Language/ VISEL – RBNE074T5L (2009-2012) 
http://www.visel.cnr.it. 
 
REFERENCES 
1. Antinoro Pizzuto, E., Bianchini, C.S., Capuano, D., 

Gianfreda, G., and Rossini, P. Language Resources 
and Visual Communication in a Deaf Centered Mul-
timodal E-Learning Environment: Issues to be Ad-
dressed. In Proc. of the first LREC 2010 Workshop 
on Supporting eLearning with Language Resources 
and Semantic Data (Valletta, May 22, 2010). P. 
Monachesi, Gliozzo, A.M., and Westerhout (Eds.). 
2010, pp. 18-23. Available at http://it.science.cmu. 



 213

ac.th/ejournal/modules/journal/file/11-04-26-16c22. 
pdf 

2. Bolognesi, T., and Brinksma, E. Introduction to the 
ISO Specification Language LOTOS. Computer 
Networks and ISDN Systems 14, 1 (1987), pp.25-59. 

3. Bottoni, P., Capuano, D., De Marsico, M., Labella, 
A., and Levialdi, S. DELE: a Deaf-centered E-
Learning Environment. Chiang Mai J. Sci. 38, 1 
(2011), pp. 31-57. 

4. Bruner, J.S. The Narrative Construction of Reality. 
Critical Inquiry 18, 1 (1991), pp. 1-21. 

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A unifying refer-
ence framework for multi-target user interfaces. In-
teracting with Computers 15,3 (200), pp. 289–308  

6. Capuano, D., De Monte, M.T., Roccaforte, M., To-
masuolo, E., and Groves, K.M. A Deaf-Centered e-
Learning Environment (DELE): challenges and con-
siderations. Journal of Assistive Technologies, spe-
cial issue on children with speech disabilities 5, De-
cember 2011 

7. Cox, S., Lincoln, M., Tryggvason, J., Nakisa, M., 
Wells, M., Tutt, M., and Abbott, S. TESSA, a sys-
tem to aid communication with deaf people. In Proc. 
of the 5th Int. ACM Conf. on Assistive technologies 
SIGCAPH’2002 (Edinburgh, July 08-10, 2002). 
ACM Press, New York (2002), pp. 205–212. 

8. Elliott, R., Glauert, J., Jennings, V., and Kennaway, 
R. An overview of the SiGML notation and 
SiGMLSigning software system. In Proc. of 4th Int. 
Conf. on Language Resources and Evaluation 
LREC’2004. O. Streiter and C. Vettori (Eds.), 2004, 
pp. 98–104. 

9. Göhner, P., Kunz, S., Jeschke, S., Vieritz, H., and 
Pfeiffer, O. Integrated Accessibility Models of User 
Interfaces for IT and Automation Systems. In Proc. 
of the ISCA 21st Int. Conf. on Computer Applications 
in Industry and Engineering CAINE’2008 (Honolu-
lu, November 12-14, 2008). ISCA (2008), pp. 280-
285. 

10. Haesen, M., Van den bergh, J., Meskens, J., Luyten, 
K., Degrandsart, S., Demeyer, S., and Coninx, K. 
Using Storyboards to Integrate Models and Informal 
Design Knowledge. In Model-Driven Development 
of Advanced User Interfaces. Hussmann, H., Meix-
ner, G., Zuehlke, D. (Eds.). Studies in Computa-
tional Intelligence, vol. 340. Springer, Berlin (2011), 
pp. 87-106.  

11. Johnson M. The meaning of the body. University of 
Chicago Press (2007). 

12. Lakoff, G., and Johnson, M. Metaphor We Live By. 
University of Chicago Press (1980). 

13. McDrury, J., and Alterio, M. Learning Through Sto-
rytelling in Higher Education: Using Reflection & 
Experience to Improve Learning. Dunmore Press 
(2002). 

14. Paternò, F. Model-Based Design and Evaluation of 
Interactive Applications. Springer, Berlin (1999). 

15. Paternò, F., Santoro, C., and Spano, L.D. MARIA: 
A universal, declarative, multiple abstraction-level 
language for service-oriented applications in ubiqui-
tous environments. ACM Trans. On Computer-
Human Interaction 16, 4 (2009). 

16. Sharma, R. et al. Speech-Gesture Driven Multimod-
al Interfaces for Crisis Management. In Proc. of the 
IEEE, 91, 9 (2003), pp. 1327–1354. 

17. Spano, L.D. A model-based approach for gesture in-
terfaces. In Proc. EICS’2011. ACM Press, New 
York (2011), pp. 327-330. 

18. Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., 
Michotte, B., and Montero, F. A Transformational 
Approach for Multimodal Web User Interfaces 
based on UsiXML. In Proc. of 7th Int. Conf. on Mul-
timodal Interfaces ICMI’2005 (Trento, 4-6 October 
2005). ACM Press, New York (2005), pp. 259-266. 

19. Szechter, L.E., and Liben, L.S. Parental Guidance in 
Preschoolers’ Understanding of Spatial-Graphic 
Representations. Child Development 75, 3 (2004), 
pp. 869-885. 

20. Van Hees, K., and Engelen, J. Non-visual Access to 
GUIs: Leveraging Abstract User Interfaces. In Proc. 
ICCHP'2006, pp. 1063-1070. 



 214

Concurrent Multi-Target Runtime Reification 
of User Interface Descriptions 

Kris Van Hees, Jan Engelen 
Katholieke Universiteit Leuven, ESAT/SCD/DocArch, Kasteelpark Arenberg 10, 

B-3001 Leuven-Heverlee (Belgium) 
kris@alchar.org, jan@docarch.be 

ABSTRACT 
While providing non-visual access to graphical user inter-
faces has been the topic of research for over 15 years, blind 
users still face many obstacles when using computer sys-
tems. Existing solutions are largely based on either graph-
ical toolkit hooks, queries to the application and environ-
ment, and scripting, or model-driven user interface devel-
opment or runtime adaptation. Parallel User Interface Ren-
dering (PUIR) provides a novel approach based on past and 
current research into Abstract User Interfaces (AUIs), User 
Interface Description Languages (UIDLs), and accessibil-
ity. The framework presented here provides a mechanism 
to render a user interface simultaneously in multiple forms 
(e.g., visual and non-visual). The research this paper is 
based on has a primary focus on providing accessibility for 
blind users. 

Author Keywords 
Accessibility, human-computer interaction, multi-modal in-
terfaces, universal Access, user interface description lan-
guage. 

General Terms 
Design, Human Factors, Theory 

Categories and Subject Descriptors 
H.5 [Information Interfaces and Presentation]: User In-
terfaces 

INTRODUCTION 
Over the past few years, our world has become more and 
more infused with devices that feature Graphical User In-
terfaces (GUIs), ranging from home appliances with LCD 
displays to mobile phones with touch screens and voice 
control. The emergence of GUIs poses a complication for 
blind users due to the implied visual interaction model. 
Even in the more specific field of general purpose comput-
er systems at home and in the work place, non-visual ac-
cess often still poses a problem, especially in Unix-based 
environment. While popularity keeps growing for this 
group of systems, advances in accessibility technology in 
support of blind users remain quite limited. Common exist-
ing solutions are built on toolkit extensions, scripting, and 
complex heuristics to obtain sufficient information in order 
to build an off-screen model (OSM) as basis for a non-
visual rendering [14,27,36]. Other approaches use model-
driven UI composition and/or runtime adaptation [7,26]. 

The flexibility of X Windows-based graphical environ-
ments introduces an additional level of complexity. Not on-
ly is the user faced with a primarily visual interaction mod-
el, but it is also very common to combine elements from a 
variety of graphical toolkits into a single desktop environ-
ment. Part and current research indicates that abstracting 
the User Interface (UI) offers a high degree of flexibility in 
rendering for a multitude of output modalities. Leveraging 
the adoption of UI development using abstract user inter-
face definitions, we can build a solid base for providing 
non-visual access as an integral component of the UI envi-
ronment [31,32,33,34,35]. Rather than providing a non-
visual rendering as a derivative of the visual form, repre-
sentations of the UI are rendered concurrently at runtime 
based on the same abstract UI description, presented as a 
UIDL document. This approach ensures coherence between 
the representations, and enhances collaboration between 
users with differing abilities. 

The remainder of this paper first presents related work on 
GUI accessibility, UIDLs, and UI abstraction. The third 
section provides a discussion of the design principles be-
hind the parallel user interface rendering approach, and is 
followed by the design of a proof-of-concept implementa-
tion. The fifth section discusses the use of a UIDL to speci-
fy the UI for runtime reification. Section six concludes this 
paper, offering conclusions and a view on future work. 

RELATED WORK 

Accessibility of GUIs for blind users has been the topic of 
research for many years. Mynatt and Weber discussed two 
early approaches [16], introducing four core design issues 
that are common to non-visual access to GUIs. Expanding 
on this work, Gunzenhäuser and Weber phrased a fifth is-
sue, along with providing a more general description of 
common approaches towards GUI accessibility [9]. Weber 
and Mager provide further details on the various existing 
techniques for providing a non-visual interface for X11 by 
means of toolkit hooks, queries to the application, and 
scripting [36]. 

Blattner et al. introduce the concept of MetaWidgets [3], 
abstractions of widgets as clusters of alternative representa-
tions along with methods for selecting among them. Fur-
thermore, any specific manifestation of a metawidget is in-
herently ephemeral, meaning that as time passes, the ap-
pearance will change. MetaWidgets can handle these tem-
poral semantics as part of the object state. 



 215

The “Fruit” system described by Kawai, Aida, and Saito 
[10] addresses an important aspect of user interface acces-
sibility: dynamic UI customisation. It is based on an ab-
stract widget toolkit, and the necessity to separate the user 
interface from the application logic. Application software is 
still written as if a graphical widget toolkit is being used, 
while the actual presentation of the user interface is han-
dled by device-specific components. The “Fruit” system 
does not support synchronised presentation in multiple mo-
dalities, nor does it provide any form of accessibility at the 
level of the windowing environment. 

Savidis and Stephanidis researched alternative interaction 
metaphors for non-visual user interfaces [21], which 
formed the basis for the HAWK toolkit [23]. It provides in-
teraction objects and techniques that have been designed 
specifically for non-visual access. The HOMER UIMS 
[21,22] uses this toolkit to provide blind users with a cus-
tom interface alongside the visual interface. This dual inter-
face concept builds on a UIDL-based source document for 
UI specification. 

The use of abstract user interfaces is largely based on the 
observation that application UIs and World Wide Web 
forms are very similar. Barnicle [1], Pontelli et al. [17], and 
Theofanos/Redish [28] all researched the obstacles that 
blind users face when dealing with user interaction models, 
confirming this observation. 

The Views system described by Bishop and Horspool [2] 
introduces the concept of runtime creation of the user inter-
face representation based on an XML specification of the 
UI. Independently, Stefan Kost also developed a system to 
generate user interface representations dynamically based 
on an abstract UI description [13]. 

His thesis centred on the modality-independent aspect of 
the AUI description, providing a choice of presentation 
toolkit for a given application. His work touches briefly on 
the topic of multiple interface representations, offering 
some ideas for future work in this area, while identifying it 
as an area of interest that faces some significant unresolved 
issues. 

User Interface Description Languages (UIDLs) have been 
researched extensively throughout the past eight to ten 
years. Souchon and Vanderdonckt [25] reviewed 10 differ-
ent XML-compliant UIDLs, finding that no single UIDL 
satisfies their requirements for developing fully functional 
UIs. Trewin, Zimmermann, and Vanderheiden [29, 30] pre-
sent technical requirements for abstract user interface de-
scriptions based on Universal Access and “Design-for-All” 
principles, and they evaluated four different UIDLs based 
on those requirements. The authors noted that further anal-
ysis at a more detailed level is required in order to provide 
a realistic assessment. 

User Interface eXtensible Markup Language (UsiXML) 
[15] is aimed at ”capturing the essential properties […] that 

turn out to be vital for specifying, describing, designing, 
and developing […] UIs”: [15]. Of special importance are:  

• The UI design should be independent of any modality 
of interaction.  

• It should support the integration of all models used dur-
ing UI development (context of use, user, platform, and 
environment, …).  

• It should be possible to express explicit mappings be-
tween models and elements.  

Building on the growing interest in AUI descriptions, Dra-
heim et al.  introduced the concept of “GUIs as documents” 
[5]. The authors provide a detailed comparison of four GUI 
development paradigms, proposing a document-oriented 
GUI paradigm where editing of the graphical user interface 
can take place at application runtime. In the discussion of 
the document-based GUI paradigm, they write about the 
separation of GUI and program logic: “This makes it pos-
sible to have different GUIs for different kinds of users, 
e.g. special GUIs for users with disabilities or GUIs in dif-
ferent languages. Consequently, this approach inherently 
offers solutions for accessibility and internationalization.” 
The idea did not get developed further, however. 

DESIGN PRINCIPLES 
Extensive research into the design of the graphical user in-
terface, universal access requirements, UIDLs, and existing 
approaches for assistive technology drove the formulation 
of four design principles that are fundamental to the design 
of the PUIR framework. This section discusses each design 
principle in some detail, highlighting the importance of 
each principle. 

A consistent conceptual model with familiar manipula-
tives as basis for all representations 
When circa 1974 a team at Xerox PARC developed the 
concept of the Graphical User Interface, they may not have 
realized that they actually laid the foundation of a much 
broader and powerful entity:  

Metaphorical User Interface (MUI): An 
abstract user interface that uses a metaphor of 
the physical world to model the operational 
characteristics of an application using 
concepts familiar to the user population.  

Central to the MUI is the metaphor of the physical world, 
essentially establishing a conceptual model that users are 
comfortable with. Smith et al. define a user’s conceptual 
model as [24]:  

Conceptual Model: The set of concepts a 
person gradually acquires to explain the 
behaviour of a system.  

Given the need to define a conceptual model for a user in-
terface, designers have essentially two choices: design the 
user interface based on a existing model employing famil-
iar metaphors, or develop a brand new model. 



 216

 
Figure 1. The role of the conceptual model. 

Extensive research done at Xerox PARC led to the conclu-
sion that the metaphor of a physical office is an appropriate 
model [24]. It is however important to note that this con-
clusion was reached in function of developing a user inter-
face for visual presentation, and non-visual interaction was 
therefore not taken into consideration. 

In view of the fact that the early GUI work can be general-
ised outside the constraints of any specific representation, 
one can conclude that the conceptual model is more of a 
“user illusion” [11] than a strict metaphor. It establishes a 
mental model that users can relate to (because it is based on 
familiar concepts), hiding the complexities of the internal 
working of the computer system. The presentation of the 
application UI based on the conceptual model is then ac-
complished by means of a perceptual mapping onto a mul-
ti-modal environment as described by Gaver [8] (Fig. 1). 

Can a single conceptual model serve users with distinctly 
different abilities?  The modality-independent nature of the 
model would indicate that there is no implicit visual aspect 
to it. While sighted (and many blind) individuals tend to 
use visual imaginary when reasoning about the metaphor of 
the virtual office or the desktop, research shows that this is 
not a necessity [6, 19]. Furthermore, the underlying con-
cepts are generally familiar to all users, regardless of their 
abilities. It is obvious that a blind individual can be quite 
productive in a physical office, regardless of the fact that 
the spatial configuration of offices is predominantly based 
on visual concepts. 

It is clear that a single conceptual model is appropriate for 
sighted and blind users if a clear separation between the 
perceptual and the conceptual is maintained. There is there-
fore no need to consider a separate non-visual UI design at 
the conceptual level. 

Use of multiple toolkits across the GUI environment 
Providing access to GUIs for blind users would be relative-
ly easy if one could make the assumption that all applica-
tions are developed using a single standard graphical 
toolkit and if that toolkit provides a sufficiently feature-
rich API for assistive technology. Unfortunately, this situa-
tion is not realistic. While the majority of programs under 
MS Windows are developed based on a standard toolkit, 
the provided API still lacks functionality that is necessary 
to ensure full accessibility of all applications. 

  
Figure 2. X11 session with multiple graphical toolkits. 

X Windows does not impose the use of any specific toolkit, 
nor does it necessarily promote one. It is quite common for 
users of a UNIX-based system to simultaneously use any 
number of applications that are each built upon a specific 
graphical toolkit. Some applications even include support 
for multiple graphical toolkits, providing the user with a 
configuration choice to select a specific one (see Figure 2). 
In order to be able to provide access to application user in-
terfaces regardless of the graphical toolkits they are devel-
oped against, the chosen approach must ensure that the 
provision of non-visual access is not only medium-
independent but also toolkit-independent. 

Collaboration between sighted and blind users 
In order to ensure that segregation of blind users due to ac-
cessibility issues can be avoided, appropriate support for 
collaboration between the two user groups is important. 
This collaboration can occur in different ways, each with 
its own impact on the overall requirements for the accessi-
bility of the environment. 

Savidis and Stephanidis [22] consider the need for collabo-
ration based on proximity between users. When consider-
ing a mix of sighted and blind users, proximity is however 
less relevant because the overall characteristics of interac-
tion remain the same regardless of whether the participants 
are local or remote, provided that an adequate communica-
tion channel is available. 

Upon analysis of the substance of the collaboration, it be-
comes clear that there are two distinct levels of interaction 
(applying [8] in the broader context of interaction between 
users): perceptual vs conceptual. When collaboration oc-
curs at the perceptual level, users discuss the details of ma-
nipulating specific controls in a specific modality. Concep-
tual collaboration involves interaction at a higher level, 
discussing the semantics of user interaction instead. At this 
level, users reason and interact based on a shared concep-
tual model that is independent from any modality. 



 217

Coherent concurrently accessible representations 
A common problem with existing approaches for non-
visual access to GUIs is related to the use of an off-screen 
model: lack of coherence between the visual and the non-
visual interfaces. Mynatt and Weber identified this as one 
of the important HCI issues concerning non-visual access 
[16]. 

 
Figure 3. Example of a visual layout that can confuse 

screen readers. 

  
Figure 4. Example of the effects of a viewport on text 

visualisation. 

The problem is most often related to the information gath-
ering process that drives the construction of the OSM. 
Kochanek provides a detailed description of the construc-
tion-process for an off-screen model for a GUI [12]. Limi-
tations in being able to obtain accurate information and/or 
to interpret the information tend to lead to this lack of co-
herence. Figure 3 shows an example where lack of seman-
tic relation information can confuse a screen reader (i.e. 
what is the label, if any, for each of the text input fields). In 
Figure 4, a blind user would typically be presented with an 
equivalent of the view at the left whereas a sighted user 
would be presented with the (more limited) view on the 
right. This leads to significant difficulties if the two users 
wish to collaborate concerning the operation of the applica-
tion and the content of the text area. 

By ensuring that representations are rendered based on a 
single source, it is possible to provide all users direct ac-
cess to the system. This is also a requirement for successful 
collaboration. The requirements to provide direct access for 
all are:  

• Users can access the system concurrently.  
• Users can interact with the system using metaphors 

designed to meet their specific needs.  
• Coherence between UI representations is assured.  

PARALLEL UI RENDERING 
Using the design principles presented in the previous sec-
tion, a framework has been designed for providing access 
to graphical user interfaces for blind users. This section 
provides details on the various components.  

  
Figure 5. Schematic overview of 

Parallel User Interface Rendering. 

Figure 5 provides the schematic overview of the Parallel 
User Interface Rendering approach. Rather than construct-
ing the UI programmatically with application code that ex-
ecutes function calls into a specific graphical toolkit, appli-
cations provide a UI description in abstract form, expressed 
in a UIDL. This authoritative AUI description is processed 
by the AUI engine, and a runtime model of the UI is con-
structed. The application can interact with the AUI engine 
to provide data items for UI elements (e.g. text to display in 
a dialog), to query data items from them (e.g. user input 
from a text input field), or to make runtime changes in the 
structure of the UI. The AUI engine implements all appli-
cation semantics, ensuring that the functionality does not 
depend on any specific modality. 

The representation of the UI is delegated to modality spe-
cific rendering agents, using the UI model at their source of 
information. At this level, the AUI is translated into a con-
crete UI (CUI), and the appropriate widget toolkit (typical-
ly provided by the system) is used to present the user with 
the final UI (FUI) by means of specific output devices. 
Therefore, the UI model that is constructed by the AUI en-
gine serves as information source for all the different ren-
dering agents. All representations of the UI are created 
equally, rather than one being a derivative of another11. The 
application cannot interact with the rendering agents direct-
ly, enforcing a strict separation between application logic 
and UI representation. 

                                                           
11 It is important to note that it is not a requirement that all 

representations are generated at runtime, although devel-
opment time construction of any representations could 
imply that dynamic updates to the UI structure are not 
possible. 



 218

The handling of user interaction events from input devic-
es12 occurs at the AUI engine level. The PUIR framework 
is based on meaningful user interaction, and therefore only 
semantic user interaction events are given any considera-
tion. Given that events are typically presented to toolkits by 
means of OS level device drivers, and the fact that these 
event sources are very generic13, additional processing is 
required in order for the PUIR framework to receive the 
semantic events it depends on. 

RUNTIME REIFICATION OF UI DESCRIPTIONS 
The design principles and the actual design described in the 
previous sections do not impose a specific requirement that 
the PUIR approach be based on UI descriptions in any spe-
cific UIDL, or in any source format whatsoever. It is con-
ceivable to implement this framework based on program-
matically specified UI designs. Program code can construct 
the UI as if the widgets at the AUI engine level actually 
comprise a UI user interface toolkit (Rose et al. describe 
such a system [18]). Why then does the PUIR design in-
corporate the concept of runtime reification of UI descrip-
tions?  

The specification of user interface semantics within the 
context of the conceptual model establishes an abstraction 
of the UI, regardless of how that AUI is represented. Lim-
bourg et al. provide definitions for some important con-
cepts [15]:  

Abstract User Interface (AUI): A canonical 
expression of the rendering of domain 
concepts and tasks (conceptual model) in a 
way that is independent from any modality of 
interaction. 
Concrete User Interface (CUI): A reification 
of an AUI within the context of an abstracted 
modality, defining a specific “Look & Feel”, 
independent from any computing platform 
(devices). 

Final User Interface (FUI): A final represen-
tation of a CUI within the context of a specific 
computing platform (devices).  

The only truly valid source of information for providing 
multiple coherent representations is at the AUI level be-
cause it is modality independent. From an implementation 
perspective there is very little difference between encoding 
the AUI in the application and providing it as a UIDL-
based description. Both approaches result in an object hier-
archy that forms the basis for rendering the UI in the re-

                                                           
12 The physical devices that the user employs to perform 

operations of user interaction with the application. 
13 Device drivers at the OS level are meant to serve all pos-

sible consumers. The events they generate are most 
commonly very low-level events. 

quired modalities. However, the use of a textual description 
does offer a great degree of flexibility in various areas:  

• Maintainability: Various changes can take place in the 
UI description without requiring a program code re-
build.  

• Customisation: Many modalities allow for custom at-
tributes to be associated with widgets, ranging from 
background and foreground colours, fonts to iconic im-
ages. Since the AUI layer cannot know the various sup-
ported attributes, such information can only be encoded 
in the application as arbitrary data items, not unlike tex-
tual specifications.  

• Expandability: In view of Universal Access and the 
multitude of needs that users might have, an almost 
endless range of custom modalities may present them-
selves. Providing support for as yet unknown rendering 
agents is quite complex, and textual UI descriptions of-
fer a greater level of flexibility in handling this situa-
tion.  

• Appeal: While less scientific in nature, the overall ap-
peal of the approach can be significant. Developers are 
less likely to adopt a change in how they operate unless 
they find a compelling reason to do so. Writing pro-
gram code to build a UI based on an abstract widget 
toolkit, just to have that construct be transformed into a 
CUI, and then being presented to the user as the FUI, is 
less than ideal. But when a change to UIDL-based UI 
descriptions allows for the previous three benefits, the 
new approach is likely to be more appealing.  

• Familiarity: When comparing a form on a web page 
with an application UI where data entry is expected to 
occur, striking similarities can be observed. Both fea-
ture almost identical UI elements: buttons, drop-down 
lists, text entry fields, and labels. In addition, the obsta-
cles that blind users face when using web forms [17,28] 
are known to be very similar to the obstacles they face 
when interacting with GUIs [1]. Furthermore, HTML 
documents are essentially abstract descriptions although 
specific modality dependent information can be embed-
ded in the document as augmentation to the abstract de-
scription.  

One possible solution could be to make the AUI descrip-
tion available alongside the application, to be used as an in-
formation source in support of AT solutions (i.e. the Glade 
project [4]). Because the implementation of the UI is still 
generally hardcoded in the application, this approach does 
open up the possibility that inconsistencies between the ap-
plication and the UI description occur (This is a common 
problem in any circumstance where essentially the same in-
formation is presented in two different locations). In sup-
port of the coherence design principle, the PUIR frame-
work is designed on the concept that all representations are 
to be reified from the same AUI. This is a significant para-
digm shift from the majority of AT solutions that are still 
implemented as a derivative of the GUI. 



 219

This paradigm shift from representing the UI by means of 
program code in the application to utilising a system that 
interprets and renders the UI based on an AUI description 
document has slowly been taking place for the past ten to 
twelve years. Yet, the shift has not progressed much past 
the point of using the AUI description as part of the devel-
opment process. The preceding discussion shows that it is 
possible (and necessary for this work) to complete the shift 
to what Draheim, et al. refer to as “the document-based 
GUI paradigm” [5]. Expanding the notion of the represen-
tation of the UI description to the realm of concurrent al-
ternative representations, this can be extended as “the doc-
ument-based UI paradigm”. The advantages of this ap-
proach are significant, although there are also important 
trade-offs:  

• Separation of concerns between UI and application 
logic. This has been identified as (part of) an important 
technical requirement for AUI description languages, 
but the very use of AUI descriptions also enforces this 
concept through the need for a well-defined mechanism 
to incorporate linking UI elements to program logic. 
This also implies a trade-off in flexibility because the 
application logic is limited in its ability to directly in-
teract with the UI. 

• Maintainability of the application. When a UI is de-
scribed programmatically as part of the application, it 
typically will have a stronger dependency on system 
features such as the presentation toolkit that it is devel-
oped for. AUI descriptions do not exhibit this complica-
tion because because they are toolkit independent. In 
addition, the document-based nature of AUI makes it 
much easier to modify the UI for small bug fixes, 
whereas a code-based UI requires changes in the appli-
cation program code.  

• Adaptability. The adaptability of code-based UIs is 
generally limited to toolkit-level preference-controlled 
customisation, whereas the ability to make changes to 
the AUI description at runtime (e.g., by means of trans-
formation rulesets) provides for a high level of adapta-
bility.  

The document-based UI paradigm is powerful, but it im-
poses some limitations on the designer and developer. 
Toolkits for code-based UI development generally offer a 
higher level of flexibility to the developer because they 
make lower level (lexical and/or syntactic) elements avail-
able. A rendering agent that creates a UI representation 
based on an AUI description provides higher level con-
structs, offering a higher level of consistency and stability, 
but at the cost of some flexibility. 

The AUI → CUI → FUI reification transformation process 
that essentially takes place when a UI description is used to 
create the actual UI representation in the context of a mo-

dality commonly requires14 additional information that 
cannot be determined automatically. 

Given a sufficiently expressive UIDL, the UI description 
can incorporate annotations or attributes that are rendering 
specific. While the AUI engine has no use for this infor-
mation, it can be made available to one or more specific 
rendering agents. Since the information can be associated 
as a widget level, a high degree of customisation in terms 
of presentation is possible. This approach is different from 
e.g. systems where the UI description encapsulates multiple 
object hierarchies, one for each level of abstraction (i.e., 
AUI, CUI, and FUI). 

CONCLUSION 
Parallel User Interface Rendering is proving to be a very 
powerful technique in support of the Design-for-All and 
Universal Access principles. It builds on a solid base of re-
search and development of abstract user interfaces and 
UIDLs, and it provides a framework where non-visual ren-
dering of the UI operates at the same level as the visual 
rendering rather than as a derivative. The design principles 
build a foundation for a very powerful approach. Especially 
user collaboration benefits greatly from this system because 
of the coherence between all renderings, allowing commu-
nication about user interaction to be based on a substantial-
ly similar mental model of the user interface. 

The current proof-of-concept implementation is based on a 
custom UIDL, but for further development15 collaboration 
with a UICL is expected. The decision to continue with a 
broader interpretation of the original GUI design principles 
drives the choice of underlying UIDL. The ability of e.g. 
UsiXML to capture the UI with models at different levels 
of abstraction can be a real asset to this novel approach. 

The PUIR framework can contribute to the field of accessi-
bility well beyond the immediate goal of providing non-
visual access to GUIs. The generic approach behind the 
PUIR design lends itself well to developing alternative 
rendering agents in support of other disability groups. Be-
cause rendering agents need not necessarily execute local 
to applications, accessible remote access is possible as 
well. The PUIR framework may also benefit automated ap-
plication testing, by providing a means to interact with the 
application programmatically without any dependency on a 
specific UI rendering. 

ACKNOWLEDGEMENTS 

The research presented in this paper is part of the author’s 
doctoral work at Katholieke Universiteit Leuven, Belgium, 
under supervision by Prof. dr. ir. Jan Engelen (ESAT - 
SCD - Research Group on Document Architectures). 

                                                           
14 Or at a minimum, ”benefits from” because presentation 

details are important to many users. 
15 And in order to work towards a possible future adoption 

as an AT support solution. 



 220

REFERENCES 
1. Barnicle, K. Usability testing with screen reading 

technology in a windows environment. In Proceedings 
of the ACM Conf. on Universal Usability CUU’2000. 
ACM Press, New York (2000), pp. 102–109. 

2. Bishop, J. and Horspool, N. Developing principles of 
GUI programming using views. In Proc. of the 35th 
SIGCSE Technical Symposium on Computer science 
education SIGCSE’2004. ACM Press, New York 
(2004), pp. 373–377. 

3. Blattner, M., Glinert, E., Jorge, J., and Ormsby, G. 
Metawidgets: towards a theory of multimodal interface 
design. In Proceedings of the 16th Annual International 
Computer Software and Applications Conference 
COMPSAC’1992. IEEE Computer Society Press, Los 
Alamitos (September 1992), pp. 115–120. 

4. Chapman, M. Create user interfaces with Glade. Linux 
J. 87 (July 2001), pp. 90–94. 

5. Draheim, D., Lutteroth, C., and Weber, G. Graphical 
user interfaces as documents. In Proc. of the 7th ACM 
SIGCHI New Zealand chapter’s International 
Conference on Computer-human interaction: design 
centered HCI CHINZ’2006. ACM Press, New York 
(2006), pp. 67–74. 

6. Edwards, A.D.N. The difference between a blind 
computer user and a sighted one is that the blind one 
cannot see. Interactionally Rich Systems Network. 
Working Paper No. ISS/WP2 (1994). 

7. Gajos, K. and Weld, D. S. SUPPLE: Automatically 
generating user interfaces. In Proceedings of the 9th 
ACM Int. Conf. on Intelligent User Interfaces IUI’2004. 
ACM Press, New York (2004), pp. 93–100. 

8. Gaver, W.W. The sonicfinder: an interface that uses 
auditory icons. Human-Computer Interaction 4, 1 
(March 1989), pp. 67–94. 

9. Gunzenhäuser, R. and Weber, G. Graphical user 
interfaces for blind people. In Proc. of 13th World 
Computer Congress WCC’94, Volume 2. K. Brunnstein 
and E. Raubold (Eds.). Elsevier Science B.V., 
Amsterdam (1994), pp. 450–457. 

10. Kawai, S., Aida, H., and Saito, T. Designing interface 
toolkit with dynamic selectable modality. In Proc. of 
the 2nd Annual ACM Conf. on Assistive Technologies 
ASSETS’1996. ACM Press, New York (1996), pp. 72–
79. 

11. Kay, A.C. User interface: A personal view. In The Art 
of Human-Computer Interface Design. B. Laurel (Ed.), 
Addison-Wesley Publishing Co., New York (1990), pp. 
191–207. 

12. Kochanek, D. Designing an offscreen model for a GUI. 
In Computers for Handicapped Persons. W. Zagler, 
G. Busby, and R. Wagner (Eds.). Lecture Notes in 
Computer Science, vol. 860. Springer, Berlin (1994), 
pp. 89–95. 

13. Kost, S. Dynamically generated multi-modal appli-
cation interfaces. PhD thesis, Technische Universität 
Dresden, Dresden (2006). 

14. Kraus, M., Völkel, T., and Weber, G. An off-screen 
model for tactile graphical user interfaces. In 
Computers Helping People with Special Needs, 
K. Miesenberger, J. Klaus, W. Zagler, and A. Karshmer 
(Eds.). Lecture Notes in Computer Science, vol. 5105. 
Springer, Berlin (2008), pp. 865–872. 

15. Limbourg, Q. and Vanderdonckt, J. UsiXML: A User 
Interface Description Language Supporting Multiple 
Levels of Independence. In Engineering Advanced Web 
Applications, M. Matera, S. Comai, S. (Eds.). Rinton 
Press, Paramus (2004), pp. 325-338. 

16. Mynatt, E. D. and Weber, G. Nonvisual presentation of 
graphical user interfaces: contrasting two approaches. 
In Proc. of the ACM Conf. on Human factors in 
Computing Systems CHI’1994. ACM Press, New York 
(1994), pp. 166–172. 

17. Pontelli, E., Gillan, D., Xiong, W., Saad, E., Gupta, G., 
and Karshmer, A. I. Navigation of HTML tables, 
frames, and XML fragments. In Proc. of the 5th ACM 
Int. Conf. on Assistive Technologies ASSETS’2002. 
ACM Press, New York (2002), pp. 25–32. 

18. Rose, D., Stegmaier, S., Reina, G., Weiskopf, D., and 
Ertl, T. Non-invasive adaptation of black-box user 
interfaces. In Proc. of the 4th Australasian User 
Interface Conference on User interfaces AUIC’2003. 
Vol. 18 . Australian Computer Society, Inc. (2003), pp. 
19–24. 

19. Sacks, O. The mind’s eye: What the blind see. The New 
Yorker (28 July 2003), pp. 48–59. 

20. Savidis, A. and Stephanidis, C. Building non-visual 
interaction through the development of the rooms 
metaphor. In Conference companion on Human factors 
in computing systems CHI ’95. ACM Press, New York 
(1995), pp. 244–245. 

21. Savidis, A. and Stephanidis, C. Developing dual user 
interfaces for integrating blind and sighted users: the 
HOMER UIMS. In Proc. of the ACM Conf. on Human 
factors in computing systems CHI’95. ACM 
Press/Addison-Wesley Publishing Co., New York 
(1995), pp. 106–113. 

22. Savidis, A. and Stephanidis, C. The HOMER UIMS for 
dual user interface development: Fusing visual and non-
visual interactions. Interacting with Computers 11, 2 
(1998), pp. 173–209. 

23. Savidis, A., Stergiou, A., and Stephanidis, C. Generic 
containers for metaphor fusion in non-visual 
interaction: the HAWK interface toolkit. In Proc. of the 
Interfaces ’97 Conference (1997), pp. 194–196. 

24. Smith, D. C., Harslem, E. F., Irby, C. H., Kimball, 
E. B., and Verplank, W. L. Designing the Star User 
Interface. BYTE (April 1982), pp. 242–282. 

25. Souchon, N., and Venderdonckt, J. A review of XML-
compliant user interface description languages. In 



 221

Interactive Systems. Design, Specification, and Verifi-
cation, J.A. Jorge, N. Jardim Nunes, and J. Falcāo e 
Cunha (Eds.). Lecture Notes in Computer Science, 
vol. 2844. Springer, Berlin (2003), pp. 391–401. 

26. Stephanidis, C. and Savidis, A. Universal access in the 
information society: Methods, tools, and interaction 
technologies. Universal Access in the Information 
Society 1, 1 (2001), pp. 40–55. 

27. Sun Microsystems. GNOME 2.0 desktop: Developing 
with the accessibility framework. Tech. report. Sun 
Microsystems (2003). 

28. Theofanos, M. F. and Redish, J. G. Bridging the gap: 
between accessibility and usability. Interactions 10, 6 
(November 2003), pp. 36–51. 

29. Trewin, S., Zimmermann, G., and Vanderheiden, G. 
Abstract user interface representations: how well do 
they support universal access?  In Proc. of the ACM 
Conf. on Universal Usability CUU’2003. ACM Press, 
New York (2003), pp. 77–84. 

30. Trewin, S., Zimmermann, G., and Vanderheiden, G. 
Abstract representations as a basis for usable user 
interfaces. Interacting with Computers 16, 3 (2004), pp. 
477–506. 

31. Van Hees, K. and Engelen, J. Abstract UIs as a long-
term solution for non-visual access to GUIs. In Proc. of 
the 3rd Int. Conf. on Universal Access in Human-
Computer Interaction UAHCI’2005. Springer, Berlin 
(2005). 

32. Van Hees, K. and Engelen, J. Abstracting the graphical 
user interface for non-visual access. In Proc. of 8th 
European Conference for the Advancement of Assistive 
Technology in Europe. A. Pruski and H. Knops (Eds.). 
IOS Press, Amsterdam (2005), pp. 239–245. 

33. Van Hees, K. and Engelen, J. Non-visual access to 
GUIs: Leveraging abstract user interfaces. In Proc. of 
Int. Conf. on Computers Helping People with Special 
Needs ICHPP’2006. K. Miesenberger, J. Klaus, 
W. Zagler, and A. Karshmer (Eds.). Lecture Notes in 
Computer Science, vol. 4061. Springer, Berlin (2006), 
pp. 1063–1070. 

34. Van Hees, K. and Engelen, J. Parallel User Interface 
Rendering: Accessibility for custom widgets. In Proc. 
of the 1st Int. ÆGIS Conf. (2010), pp. 17–24. 

35. Van Hees, K. and Engelen, J. PUIR: Parallel User 
Interface Rendering. In Proc. of Int. Conf. on 
Computers Helping People with Special Needs 
ICHPP’2010. K. Miesenberger, J. Klaus, W. Zagler, 
and A. Karshmer (Eds.). Lecture Notes in Computer 
Science, vol. 6179. Springer, Berlin (2010), pp. 200–
207. 

36. Weber, G. and Mager, R. Non-visual user interfaces for 
X windows. In Proc. of the 5th Int. Conf. on Computers 
helping people with special needs. Part II, R. Olden-
bourg Verlag GmbH (1996), pp. 459–468. 

 



 222

User Interface Description Language Support for 
Ubiquitous Computing 

Raúl Miñón, Julio Abascal 
Laboratory of HCI for Special Needs, University of the Basque Country, 

Euskal Herriko Unibertsitatea, Manuel Lardizabal 1, 20018 Donostia (Spain) 
Tel.: +34 943 015113 - {raul.minon, Julio.abascal}@ehu.es 

ABSTRACT 
This paper introduces a proposal tool, called SPA4-
USXML, aimed to graphically create instances of task 
models, abstract user interfaces and multimedia resources 
models. This tool is feed with the description of services 
provided by ubiquitous environments and web services. 
The main goal is to help service designers to create abstract 
specifications of the services for the EGOKI adaptive sys-
tem. EGOKI automatically generates user interfaces 
adapted to the different needs and abilities of people with 
special needs, in order to provide access to services offered 
in ubiquitous environments. Therefore, SPA4USXML is 
aimed to complement the EGOKI system, in order to grant 
better user experience to people with special needs and to 
enhance their autonomy and security in their daily routines. 

Author Keywords 
Ubiquitous computing, Adaptive Systems, Accessibility, 
User Interface Description Language, Supportive Tool. 

General Terms 
Design, Human Factors, Theory 

Categories and Subject Descriptors 
H.5 [Information Interfaces and Presentation]: User In-
terfaces 

INTRODUCTION 
Diverse types of digital services are locally provided 
through local machines in ubiquitous environments or by 
means of remote web services (as described in the specifi-
cation of Web Services [31] or Google services [7]). In 
general, when a ubiquitous environment provides local ser-
vices, each machine has its own communication protocols, 
so it requires a middleware layer that is able to offer, 
among other features, a common communication protocol 
and standard access to the different services. In addition, 
the middleware layer usually handles the discovery, com-
munication and control of the different services [2]. Some 
types of middleware also provide abstract interfaces de-
scribing the functionality given by each of the services. 

For our ubiquitous environment we use the Universal Con-
trol Hub (UCH) [27], which is an implementation of the 
standard Universal Remote Console (URC). UCH gener-
ates a simple user interface to control each service. Since 
each person may have different needs the interface provid-
ed by UCH is not always accessible to everyone. 

In a previous project our Laboratory created the EGOKI 
system to avoid accessibility barriers [1]. EGOKI is an 
adaptive system devoted to provide accessible user inter-
faces to elderly people and people with special needs in 
ubiquitous environments. This system automatically gener-
ates final accessible user interfaces adapted to the needs of 
people requesting a specific service.  

In order to perform the adaptation, EGOKI requires an ab-
stract description of the user interface, provided by means 
of a User Interface Description Language (UIDL) [9, 25]. 
To this end, we adopted UIML (User Interface Markup 
Language), a declarative XML-compliant meta-language 
used to specify user interfaces. In the current version of 
EGOKI, UIML documents are created manually by the de-
signer of the ubiquitous service from a description of the 
functionality of the service provided by the middleware.  

The UIML document cannot be generated automatically 
because the information provided by the middleware is not 
enough. Therefore, the designer of the service must enrich 
the description of the functionality, associate the interactive 
multimedia resources with the interaction elements of the 
abstract interface, and provide a structure for generating the 
final user interface. 

This process has a number of disadvantages: 

 The manual creation by the service designer of the 
UIML text file for each service takes too long and 
is very time inefficient. 

 A textual representation of the abstract interface is 
less representative than a graphical interface mak-
ing it easy to commit mistakes in designing the 
user interface and in turn more difficult to detect 
them. 

 Maintaining and updating the user interface may 
be faster using a graphical (or mixed graphical-
textual) user interface for the designer. 

 The designer of the service must have a good 
command of XML [30] and UIML syntax.  

This paper proposes the development of a graphical tool 
called SPA4USXML (Service Provider Annotations for 
Ubiquitous Services through UsiXML) in order to avoid 
these drawbacks. This tool is intended to assist the service 
designer in the process of creating abstract user interfaces. 
Using it, the design process will take place in a much faster 
and intuitive way, allowing the detection of errors at design 



 223

time and facilitating the modification of the resulting inter-
faces. In addition, the tool will allow enriching the services 
with additional resources. In this way the adaptation of in-
terfaces, the service quality and the user experience will be 
improved. 

Although currently EGOKI uses the UIML syntax, the tool 
SPA4USXML will generate model instances compliant 
with the UsiXML syntax [29]. The reason is that UsiXML 
covers the requirements of the enhanced next version of 
EGOKI better than UIML [16]. For instance, UIML does 
not provide the task models that are required for the new 
version of EGOKI. However, UsiXML provides a task 
model based on the CTT model of Paternò [23]. 

The rest of the paper is organized as follows: section two 
presents the related work; section three describes an appli-
cation scenario. The architecture which integrates the tool 
and its objectives and functionality are described in section 
four; finally, in section five we discuss some open issues. 

RELATED WORK 
As it has been previously mentioned, the tool SPA-
4USXML is a complement for the adaptive system EGOKI. 
Therefore, we start the state of the art analyzing several 
systems that have similar features to EGOKI. Subsequently 
we will revise some tools related to SPA4USXML. 

In the last years the web has attracted the attention of nu-
merous researches, who have developed several adaptive 
web systems [3]. However, there are few examples of sys-
tems devoted to adapt the content, presentation or naviga-
tion for people with special needs. Among them, we can 
mention AVANTI [26], which provides hypermedia infor-
mation to adapt the content, navigation and presentation to 
people with disabilities. 

On the other hand, SADIE [13] adapts news websites for 
blind users and SUPPLE [6] generates graphical user inter-
faces mainly for people with motor impairments.  

Following these ideas, EGOKI adapts the user interface to 
the capabilities of people with special needs, selecting the 
most appropriate interaction resources to allow the user in-
teraction.  

Among the systems that provide access to ubiquitous ser-
vices, the framework ViMos [10] supplies an architecture 
to dynamically generate user interfaces allowing the visual-
ization of service information available in a particular con-
text. 

When the user devices used to access the ubiquitous ser-
vice are diverse, each user interface requires a different 
configuration suited to each service and adapted to the us-
er, such as the Ubiquitous Interactor [21]. In this case it 
may be required the use of a User Interface Description 
Language [9, 25]. 

For instance, Vermeulen et al. (2007) [32] propose a 
framework to design services that automatically present a 
suitable user interface on a wide variety of computing plat-

forms. Their main aim is to provide mobile users with flex-
ibility to interact with services in a city environment. 
UIDLs allow the development of abstract user interfaces 
independent of the modality and the platform. This is also 
the approach followed for EGOKI, allowing the generation 
of different configurations of interfaces for a wide range of 
platforms and modalities. 

Several tools have been developed to graphically generate 
diverse types of UIDLs. For example, Liquid Apps [12] al-
lows graphically editing abstract user interfaces and after-
ward generating code compliant with the UIML syntax. On 
the other hand, GUMMY [14] is a generic multi-platform 
GUI builder designed to create user interfaces incremental-
ly for a wide range of computing platforms. UIML is also 
the underlying UIDL used in Gummy.  

There exist numerous tools that conform to the UsiXML 
syntax [11]. This syntax allows taking advantage of its ar-
chitecture [4] and applying the language to different areas, 
such as the ubiquitous environments. Some of them have 
features that are coincident with our approach: 

 IdealXML [19] is a tool that provides a simple editor 
used by application designers also to share knowledge. 
This tool allows the edition of task models (based on 
the tool CTTE [17]), abstract user interfaces models, 
domain models, and mapping models. 

 SketchiXML [5] is a multi-agent application able to 
handle several kinds of hand-drawn sources as input 
and to provide the corresponding specification in 
UsiXML. 

 GUILayout++ [18] is a tool for designing user-centric 
interfaces through an iterative process based on proto-
typing and evaluation. It is able to automatically gener-
ate abstract user interfaces compliant with the UsiXML 
syntax starting from the prototype created. 

 GrafiXML [15] allows designing and generating several 
UIs simultaneously for different contexts of use. 

  
Ideal 
XML 

Sketchi 
XML 

GUI Lay-
out ++ 

Grafi 
XML 

Service Processing 
& Standardization 

No No No No 

Set Tasks Rela-
tionships 

Yes No No No 

Modify an AUI Yes No Yes Yes 

Associate Interac-
tion Resources to 

AIO 
No No No No 

Generate task 
models in UsiXML 

Yes No No No 

Generate AUI 
models in UsiXML 

Yes No Yes Yes 

Generate Resource 
models in UsiXML No Yes No No 

Table 1. Comparison of tools. 



 224

 
Figure 1. User Interface generated by the adaptive system EGOKI. 

These tools have been compared in the table 1, taking into 
account the tasks required. Some of the required function-
alities, such as Service Processing & Standardization and 
Associate Interaction Resources to AIO, are not covered by 
any of these tools. 

For this reason, a new tool is required. Nevertheless, when 
possible, parts of these tools will be reused. For instance, 
the graphical notation provided by IdealXML for the 
UsiXML elements task model and the AUI model will be 
probably used for our tool.  

To conclude, although these tools share some features with 
our approach, our tool will serve a different purpose. 
SPA4USXML is devoted to provide interaction resources 
adapted to people with special needs being valid for differ-
ent types of ubiquitous services.  

APPLICATION SCENARIO 
Imagine a subway station that provides diverse ubiquitous 
services. When users enter the station with their mobile de-
vices the ubiquitous environment announces the available 
services. If a user selects one of the services, the middle-
ware downloads a specific user interface to the mobile user 
device. The user interface must be accessible for each spe-
cific user. Consequently, a unique user interface will not be 
valid for every people. Therefore the user interfaces pro-
vided by the ubiquitous environment are adapted to the 
abilities of each user and to his or her personal device. 

The services offered are:  

1. Underground ticket dispenser 

2. Trains arrival information 

3. Elevator 

4. Automatic Teller Machine 

5. Information kiosk 

6. News Service. 

The middleware layer designed to manage the ubiquitous 
environment provides abstract descriptions of the services 
to access them. In our case, UCH takes this function. 

The EGOKI adaptive system creates the accessible adapted 
final user interfaces from the abstract user interfaces pro-
vided by the designer of the service (who knows its seman-
tics and functionality). Abstract specifications of services 
are not enough for this purpose because additional infor-
mation is required, for instance, to assign some semantics 
to the interaction widgets. 

Therefore one of the duties of service designers is the gen-
eration of an abstract user interface for each service. For 
this task they use the tool SPA4USXML that allows the 
generation of the abstract user interfaces graphically, from 
the description of the functionality of a ubiquitous service 
without the need of mastering the inner syntax. 

The tool must be very intuitive and has to guide the design-
er through all steps of the process, making possible to cre-
ate the AUI in a very short period of time.  

The Abstract User Interface (AUI) generated is an input to 
the EGOKI adaptive system. EGOKI matches the AUI with 
the user profile and with the available interaction resources 
in order to build the adapted and accessible final user inter-
face. 



 225

 
Figure 2. Architecture of the ubiquitous environment. 

Let us consider an elderly user with mild cognitive re-
strictions. The user wants to buy an underground ticket to 
travel to a specific station. Figure 1 illustrates the interface 
that will be built for this user. 

Part A guides the user, offering an automatically updated 
checklist of the steps required to successfully complete 
each task. This list of steps is user tailored, selecting the 
most suitable resources for the user.  

Part B displays notifications and warnings to guide and 
warn users. This information is obtained from rules related 
to each service [16]. In order to create the messages, the 
user`s features, the task he or she is performing and the 
context characteristics are taken into account. Since these 
parameters can frequently change, the system periodically 
updates them and sends these updates to the user interface 
if necessary. 

The Final User Interface for the service selected by the user 
is rendered in part C. This interface offers all the service 
functionality allowing the user to interact with the service 
without barriers. The UCH middleware layer updates the 
state of the variables when necessary. 

Therefore, the generated interface is suitable for the specif-
ic user, since the most appropriate interaction resources to 
his or her capabilities have been selected. In addition, 
EGOKI performs further adaptations [1]. 

THE TOOL SPA4USXML 
SPA4USXML is an ongoing research aimed at developing 
a high-level tool to allow designers of ubiquitous services 
generating from the description of the services, abstract us-
er interfaces instances, task instances and multimedia re-
source instances compliant with UsiXML. The tool will 
have a easy to use graphical user interface, to avoid the 
need of writing XML code. The instances generated allow 
the adaptive system EGOKI to provide these services in an 
accessible way to people with special needs. 

This tool will allow designers to offer their ubiquitous ser-
vices with higher quality, providing greater amount of in-
formation to cover a larger number of diverse user interfac-
es, for a given service and offer interfaces compliant with a 
wider range of special needs. 

Architecture Overview 
Figure 2 illustrates the architecture where SPA4USXML 
will be integrated. The context is a ubiquitous environment 
where various services are offered locally. These services 
are controlled through a middleware layer devoted to han-
dle access, communication and control to the diverse ma-
chines available on the local environment. As it has been 
previously mentioned, the middleware used is the UCH 
implementation [27] of the URC specification [28]. The 
UHC interoperability layer identifies the type of service re-
quested by the user, the structures needed to invoke it, and 
procures user-transparent access to the service. However, 
the explanation of this layer goes beyond the objectives of 
this article. 

Besides the services offered by different machines 
available in the environment, this architecture allows 
access to other services accessible through Internet, based 
on the Web services specification [31] or not (such as those 
offered by Google [7]). Remote services have been 
included in the architecture because they can provide some 
added value to the user. In addition, the combinatiuon and 
integration of various services will allow improved 
functionality, as described in the section "Future 
Capabilities”. 

To summarize, SPA4USXML must be used to create the 
abstract user interface for each service to be integrated in 
the ubiquitous environment, because the output of the tool 
is the required input for the EGOKI adaptive system to be 
able to automatically generate a user interface accessible 
and adapted to the needs of the user. 

This tool takes as input the abstract description of the 
services functionality provided by the ubiquitous 
environment and generates enriched instances of task 
models, abstract user interfaces and multimedia resources 
models. 

Non Functional Requirements 
In addition to the functional requirements, the tool must 
meet some other requirements: 

 



 226

 
Figure 3. Task model of the tool SPA4USXML. 

 Graphical user interface: the objective is to provide a 
graphical tool with textual labels to ease the work of 
the designer of the service. In addition, the tool must 
support the edition of the UsiXML code in textual 
mode. 

 Easy to use: in order to implement the tool, usability 
principles must be considered [20]. The tool must be 
intuitive and the user should be able to use it correctly 
and immediately. 

 Accessible: everybody must be able to use the tool to 
provide enriched service descriptions. The tool must 
conform to the usual accessibility criteria, such as the 
Authoring Tool Accessibility Guidelines (ATAG) [2]. 

Basic Functionalities 
The SPA4USXML will provide the basic functionality to 
get abstract user interface descriptions. In addition, abstract 
containers and abstract individual components are associat-
ed with different interaction resources in order to allow 
EGOKI the construction of multiple CUI following the ap-
proach proposed by Limbourg et al. (2004) [11].  

This functionality is achieved through a process divided in-
to several steps. In Figure 3 you can see the distribution of 
tasks designed to define the different phases in this process 
and the dependencies between tasks. This tool will be both 
graphically and textual, to facilitate their use and to do the 
learning curve for the designer as minimum as possible. 

The first task for the system designer is to upload the files 
with the description of the services’ functionality. There 
will be a file for each type of ubiquitous service handled by 
the system. Once uploaded to the system, the description of 
the functionality of the services must be standardized to be 
independent of the type of service. To do it, the type of 
service must be identified and the correspondent transfor-
mation entities must be selected in order to transform the 
functionality descriptions to a common format.  

The next step of the process is to get the functionality pro-
vided by the service and to represent it as task, from the 
files with the functionality uploaded to the platform. The 
representation of tasks will be carried out using the syntax 
proposed by the UsiXML task model. Once the task repre-
sentation is built, the designer will have the possibility of 
editing the temporal relationships among them. The tool 
IdealXML [19] can be considered as an example for editing 
task dependencies. In this way the task model is provided 
with further information facilitating the generation of the 
different abstract models. 

After that, the structure of an abstract user interface model 
is showed to the designer, allowing him or her to edit and 
enrich the structure. On this model the user can modify the 
relationships between different "abstract individual compo-
nents" (AIC) and "Abstract Containers" (AC). This allows 
the service designer to decide, based on his or her experi-
ence as service provider and creator, what is the best way 
to interact with the different services.  

Finally, the system displays all the available interaction el-
ements in the abstract user interface through a list where 
the designer will be able to associate different types of in-
teraction resources to each interaction element. The interac-
tion resources considered, among others, are texts, icons, 
icons in high contrast, audio, transcripts of audio, video, 
video with captions, 3D elements, etc. 

After the association of resources to different abstract in-
teraction objects, EGOKI will be able to concrete different 
types of interfaces according to the users’ needs and the 
system platform. 

Future Functionalities 
Besides the basic functionality that is planned to be de-
signed and developed in the short term, further iterations 
with new functionalities are considered: 



 227

Services Combination. It is intended to offer the designer 
the possibility of combining services. The aim is to im-
prove the quality of services. For instance, to combine a 
service offering information about points of interest in out-
door sports installations with Google Maps [8]. In this way 
it is possible to identify where are located these points of 
interest. 

Layout. Currently the final user interfaces generated by the 
system are based on the styles offered by EGOKI. The fu-
ture functionality of this tool will allow users to associate 
different styles to both, abstract containers and abstract in-
dividual components. These styles are used for the system 
EGOKI to use when creating concrete interfaces, allowing 
them to use different styles. 

DISCUSSION 
We believe that the development of the tool proposed is 
feasible and, thanks to language UsiXML will be integrated 
with EGOKI properly. However, we would like to discuss 
some points: 

 When automating the analysis of different types of 
services and the subsequent transformation to gener-
ate basic instances of tasks and abstract user interfac-
es, is there any ambiguous element that requires addi-
tional information to be automated? Is it necessary to 
provide the designer with syntax knowledge to extend 
the information of the services?  

 Would it be feasible to create a general repository of 
multimedia resources, accessible through the Internet 
and tagged semantically, to provide resources to the 
designer of the service? 

 Could the system EGOKI use the abstract user inter-
faces developed by other tools such as IDEALXML 
or SketchiXML? In what contexts or scenarios would 
be applicable?  

ACKNOWLEDGMENTS 
This research work has been partly funded by the Depart-
ment of Education, Universities and Research of the 
Basque Government. In addition, Raúl Miñón enjoys a 
PhD scholarship from the Research Staff Training Program 
of the Department of Education, Universities and Research 
of the Basque Government. We thank the INREDIS pro-
ject, which has been the foundation for this work. 

REFERENCES 
1. Abascal, J., Aizpurua, A., Cearreta, I., Gamecho, B., 

Garay-Vitoria, N. and Miñón, R. Automatically Gener-
ating Tailored Accessible User Interfaces for Ubiqui-
tous Services. In Proc. of the 13th Int. ACM SIGAC-
CESS Conf. on Computers and Accessibility ASSETS 
2011. ACM Press, New York (2011). 

2. Authoring Tool Accessibility Guidelines (ATAG). 
Available at, http://www.w3.org/WAI/intro/atag.php 

3. Brusilovsky P., Kobsa A., and Nejdl W. (Eds.). 2007. 
The Adaptive Web: Methods and Strategies of Web Per-
sonalization. Springer-Verlag, Berlin, Heidelberg.  

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L. and Vanderdonckt, J. A unifying reference 
framework for multi-target user interfaces. Interacting 
with Computers 15,3 (200), pp. 289–308.  

5. Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q. and 
Vanderdonckt, J. SketchiXML: Towards a Multi-Agent 
Design Tool for Sketching User Interfaces Based on 
UsiXML, In Proc. of 3rd Int. Workshop on Task Models 
and Diagrams for user interface design TAMO-
DIA'2004 (Prague, November 15-16, 2004). Ph. Palan-
que, P. Slavik, M. Winckler (Eds.). Springer-Verlag, 
Berlin (2004), pp. 75-82. 

6. Gajos, K.Z., Weld, D.S. and Wobbrock, J.O. Automati-
cally generating personalized user interfaces with Sup-
ple. Journal of Artificial Intelligence 174, 12-13 (2010), 
pp. 910–950. 

7. Google Code. Available at http://code.google.com/intl/ 
es-ES/more/ 

8. Google Maps API Family. Available at http://code. 
google.com/intl/es/apis/maps/ 

9. Guerrero-García, J., González-Calleros, J.M., Vander-
donckt, J., and Muñoz-Arteaga, J. A Theoretical Survey 
of User Interface Description Languages: Preliminary 
Results. In Proc. of Joint 4th Latin American Confer-
ence on Human-Computer Interaction-7th Latin Ameri-
can Web Congress LA-Web/CLIHC'2009 (Merida, No-
vember 9-11, 2009). E. Chavez, E. Furtado, A. Moran 
(Eds.). IEEE Computer Society Press, Los Alamitos 
(2009), pp. 36-43. 

10. Hervás, R. and Bravo, J. Towards the ubiquitous visual-
ization: Adaptive user-interfaces based on the Semantic 
Web. Interacting with Computers 23, 1 (2011), pp. 40–
56. 

11. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, 
L., and Víctor López Jaquero. UsiXML: a Language 
Supporting Multi-Path Development of User Interfaces. 
In Proc. of 9th IFIP Working Conference on Engineer-
ing for Human-Computer Interaction jointly with 11th 
Int. Workshop on Design, Specification, and Verifica-
tion of Interactive Systems EHCI-DSVIS'2004 (Ham-
burg, July 11-13, 2004). Lecture Notes in Computer 
Science, vol. 3425. Springer, Berlin (2004), pp. 200-
220. 

12. LiquidApps application. Available at http://liquid 
apps.harmonia.com/features/ 

13. Lunn, D., Bechhofer S., and Harper, S. The SADIe 
transcoding platform. In Proc. of the 2008 Int. Cross-
disciplinary Conf. on Web Accessibility W4A’08 (Bei-
jing, China), 128-129.  



 228

14. Meskens, J., Vermeulen, J., Luyten, K. and Coninx, K. 
Gummy for multi-platform user interface designs: shape 
me, multiply me, fix me, use me.  In Proc. of the Work-
ing Conf. on Advanced Visual Interfaces, AVI 2008 
(Napoli, Italy, May 28-30, 2008), 233-240. 

15. Michotte, B., and Vanderdonckt, J. GrafiXML, A Mul-
ti-Target User Interface Builder based on UsiXML. In 
Proc. of 4th Int. Conf. on Autonomic and Autonomous 
Systems ICAS’2008 (Gosier, 16-21 March 2008). IEEE 
Computer Society Press, Los Alamitos (2008), pp. 15-
22. 

16. Miñon, R., and Abascal, J. Supportive adaptive user in-
terfaces inside and outside the home. In Procs. of the 
2nd Int. Workshop on User Modeling and Adaptation 
for Daily Routines (UMADR): Providing Assistance to 
People with Special and Specific Needs (Girona, Spain, 
July 11, 2011). Available at http://hada.ii.uam.es/ 
umadr2011/. 

17. Mori, G., Paternò, F., Santoro, C. 2002. CTTE: Support 
for developing and analyzing task models for interactive 
system design. IEEE Trans. on Soft. Eng. 28, 797–813.  

18. Montero, F. and López-Jaquero, V. Guilayout++: Sup-
porting Prototype Creation and Quality Evaluation for 
Abstract User Interface Generation. In Proc. of the 1st 
Workshop on USer Interface eXtensible Markup Lan-
guage (UsiXML’2010 (Berlin, June 20, 2010). Thalès, 
Paris (2010), pp 39-44. 

19. Montero, F., Lozano, M.D. and González, P. IDEAL-
XML: an Experience-Based Environment for User In-
terface Design and pattern manipulation, Technical re-
port DIAB-05-01-4, University of Castilla-La Mancha, 
Albacete, 24 January 2005. 

20. Nielsen J. (Ed). Designing Web Usability: The Practice 
of Simplicity. New Riders Publishing, Indianapolis 
(1999). 

21. Nylander, S. The Ubiquitous Interactor - Mobile Ser-
vices with Multiple User Interfaces. Licentiate thesis, 
Uppsala University. 2004. 

22. OASIS User Interface Markup Language (UIML). 
Available at http://www.oasis-open.org/committees/ 
tc_home.php?wg_abbrev=uiml 

23. Paternò, F. Model-Based Design and Evaluation of In-
teractive Applications. Springer-Verlag, London 
(1999). 

24. Philip, A. Bernstein. Middleware: a model for distribut-
ed system services. Communications of the ACM 39, 2 
(1996) 

25. Shaer, O., Green, M., Jacob, R.J.K, and Luyten, K. User 
Interface Description Languages for Next Generation 
User Interfaces. In Extended Abstracts of CHI'08. ACM 
Press, New York (2008), pp. 3949-3952. 

26. Stephanidis, C., Paramythis, A., Sfyrakis, M., and 
Savidis, A. A study in unified user interface develop-
ment: the AVANTI web browser. In User Interfaces for 
All: Concepts, Methods and Tools. Stephanidis, C. 
(Ed.). Lawrence Erlbaum Associates, Mahwah (2001), 
pp. 525-568.  

27. Universal Control Hub 1.0 (Draft). Available at http:// 
myurc.org/TR/uch 

28. Universal Remote Console Standard (ISO 2008). Avail-
able at http://myurc.org/whitepaper.php 

29. UsiXML, User Iahnterface eXtensible Markup Lan-
guage reference manual. Available at http://www. 
usixml.org/ index.php?mod=pages&id=5. 

30. XML, Extensible Markup Language Working Groups. 
Available at http://www.w3.org/XML/. 

31. Web Services Activity. Available at http://www.w3.org/ 
2002/ws/ 

32. Vermeulen, J., Vandriessche, Y., Clerckx, T., Luyten, 
K. and Coninx, K. Service-Interaction Descriptions: 
Augmenting Services with User Interface Models. 
In Proc.of Joint Working Conferences on Engineering 
Interactive Systems EIS’2007 (Salamanca, March 22-
24, 2007). Lecture Notes in Computer Science, 
vol. 4940. Springer, Berlin (2008), pp. 447-464. 



 229

A Theoretical Survey of User Interface Description 
Languages: Complementary Results 

Josefina Guerrero-García 
Juan Manuel González-Calleros 

Facultad de ciencias de la Computación  
Benemérita Universidad Autónoma de Puebla 

Ciudad Universitaria, C.P. 72400 
Puebla, México 

{jguerrero, juan. gonzalez}@cs.buap.mx  
Research and Development Unit, Estrategia360 

Puebla, México 

Jean Vanderdonckt 
Université catholique de Louvain 

Place des Doyens, 1 – B-1348 
Louvain-la-Neuve, Belgium 

jean.vanderdonckt@uclouvain.be 
Jaime Muñoz-Arteaga 
Sistemas de Información  

Universidad Autónoma de Aguascalientes  
Av. Universidad No. 940, Col. Bosques, 20100  

Aguascalientes, Aguascalientes  (México) 
jmunozar@correo.uaa.mx 

ABSTRACT 
This paper presents new work on our survey of user inter-
face description language (UIDL). There is limited change 
or improvements in previously UIDLs reviewed but there 
some new approaches that are good to use. Continuing our 
in-depth analysis, we consider the salient features that make 
these languages different from each other and identifying 
when and where they are appropriate for a specific purpose. 
The review is conducted based on a systematic analysis grid 
and some user interfaces implemented with these languages. 

Author Keywords 
User interfaces, User Interface Description Language, Ex-
tensible Markup Language, User Interface extensible 
Markup Language. 

General Terms 
Design, Human Factors, Theory 

Categories and Subject Descriptors 
I.6.3 [Computing Methodologies]: Simulation and Model-
ing—Applications; D.2.2 [Software]: Software Engineer-
ing—Design Tools and Techniques. 

INTRODUCTION 
The ITE2 UsiXML project aims at producing a UIDL that 
covers the “µ7” concept defined as multi-device, multi-
platform, multi-user, multi-linguality / culturality, multi-
organisation, multi-context, multi-modality. In order to se-
lect and collect the most valuable aspects of existing UIDLs 
a deep analysis has been conducted during the last year. In 
the past [10], we gathered and analyzed as much literature 
as possible on each UIDL. Then, depending on available 
tools, we systematically developed a multi-platform or mul-
ti-context UI for a simple dictionary so as to identify the ca-
pabilities of the UIDL and the ability of this UIDL to be 
supported by editing, critiquing, analysis tools, and, of 
course, tools for producing executable UIs, both by compi-
lation/execution and by interpretation.  

In this paper we extend this review by including recent de-
velopments in this field in our previous survey so as to keep 
it up to date. The remainder of this paper is structured as 
follows: Section 2 describes recent progress on UIDL. Sec-
tion 3 defines the comparison criteria used in the compari-
son analysis and provides the final analysis grid. Section 4 
presents the conclusion. 

RECENT ADVANCES ON USER INTERFACE DESCRIP-
TION LANGUAGES 
In this section we looked at our previous review [4,10] to 
identify if there is any advance on the UIDLs.  Those lan-
guages that did not experience any progress that we are 
aware of are: the eXtensible Interaction Scenario Language 
(XISL) [13]; The eXtensible mark-up language for Multi-
Modal interaction with Virtual Reality worlds (XMMVR) 
[19]; The Device Independent Authoring Language (DIAL) 
[31]; The delivery context [32]; The Extensible MultiModal 
Annotation Markup Language (EMMA) [34]; InkML [30]; 
VoiceXML [28]; XForms [33]; Dialog and Interface Speci-
fication Language (DISL) [24]; the Generalized Interface 
Markup Language (GIML) [15]; Interface Specification 
Meta-Language (ISML) [4]; Renderer-Independent Markup 
Language (RIML) [6];  Software Engineering for Embed-
ded Systems using a Component-Oriented Approach (See-
scoaXML) [17]; the Simple Unified Natural Markup Lan-
guage (SunML) [22]; User Interface Markup Language 
(UIML) [1]; The eXtensible Interface Markup Language 
(XIML) [7,8]; Web Service eXperience Language (WSXL) 
[2,12]; The eXtensible user-Interface Markup Language 
(XICL) [9].  Yet they are still of the interest for our review 
as the knowledge expressed there it is useful for the future 
of UIDLs specification.  

TeresaXML [20] is a UIDL for producing multiple final UIs 
for multiple computing platforms at design time. The lan-
guage evolved in Time and turned into MariaXML 20. This 
language support dynamic behaviors, events, rich internet 
applications, multi-target user interfaces, in particular those 
based on web services. In this way, it is possible to have a 



 230

UI specified in MariaXML attached to a web service. Mari-
aXML relies on the multi-layer levels of the Cameleon Ref-
erence Framework [4]. Thus it describes concepts like: Data 
objects manipulated by interactors,   Events for abstract and 
concrete UI, Dialogue Model with conditions and CTT op-
erators for event handlers, scripts like Ajax; and dynamic 
set of user interface elements. All these models are support-
ed by the software Mariae (Maria Environment) using task 
modeling (using ConcurTaskTrees notation) and UI model-
ing (MARIA language). 

UserML [12] is a UIDL to model users. This approach 
models are semantically using an OWL ontology, called 
GUMO, and it is syntactically described using the UserML 
language. The main concept is the situational statement rep-
resenting: user model entries, context information or low-
level sensor data [12]. Figure 1 shows the metamodel in-
cluding the five elements that compose a situational state-
ment.  

The Mainpart is an extension of the Resource Definition 
Framework (RDF) to represent information about the user 
using the interactive system, including aspects such as 
range of values and auxiliary to point to other ontologies. 
The Privacy models keeps information about the permis-
sions to share the statement with tusers. The Explanation 
model helps to clarify conflicts or problems that the user 
might confront; it defines the source of the problem, the 
creator, collect the evidence, the degree of confidence, and 
the method used to identify the problem. The Administra-
tion model describes the role relation of the statement with 
the organization.  The Situation model represents temporal 
(start, end, durability) and spatial (location and position) as-
pects of the user action. Each user model is used as infor-
mation to model context-aware systems in ubiquitous envi-
ronments targeting mobile, speech, virtual and graphical 
UIs.  

 
Figure 1. User Meta-Model in UserML. 

XooML [28] is language that describes aspects for support-
ing the development of software tools to collaborate and 
share documents. There is a XML Schema that is used by 

three different tools: Plantz (providing information to han-
dle documents and other forms of information exchange), 
QuickCapture (capturing elements that can be related to in-
formation exchange), FreeMindX (mind-mapping). The 
XooML structure is minimal as it is composed of fragments 
that served as indivisible grouping of information, establish-
ing a context for the comprehension of an selection amount 
its constituent associations. Although XooML is not a genu-
ine UIDL it comprises aspects related to UIs that are of rel-
evance when considering the definition of software tools 
supporting UIDL.  

USer Interface eXtensible Markup Language (UsiXML) 
[27] is structured according to different levels of abstraction 
defined by the Cameleon reference framework 3. The 
framework represents a reference for classifying UIs sup-
porting a target platform and a context of use, and enables 
to structure the development life cycle into four levels of 
abstraction: task and concepts, abstract UI (AUI), concrete 
UI (CUI) and final UI (FUI). Thus, the Task and Concepts 
level is computational-independent, the AUI level is mo-
dality-independent (In the cockpit it can be several physical, 
Vocal, GUI, Tactile) and the CUI level is toolkit-indepen-
dent. UsiXML relies on a transformational approach that 
progressively moves among levels to the FUI. The trans-
formational methodology of UsiXML allows the modifica-
tion of the development sub-steps, thus ensuring various al-
ternatives for the existing sub-steps to be explored and/or 
expanded with new sub-steps. UsiXML has a unique under-
lying abstract formalism represented under the form of a 
graph-based syntax.  

USER INTERFACE DESCRIPTION LANGUAGES COM-
PARISON 
We kept the same protocol for the comparison as we did be-
fore, in accordance to a previous study conducted in [25], 
this work slightly updates and extends our previous survey 
[10] considering the latest results along the following di-
mensions: 

 Specificity indicates if the UIDL could be used in one or 
multi platforms or devices. 

 Publicly available: depending on the availability of the 
language deep analysis can be done. This category was 
used to discard many languages that lack on documen-
tation or that is confidential. The possible values are: 0 
= no information available; 1 = not available; 2 = poor-
ly available or very limited information was available 
so no way to get the details to generate their meta-
models; 3 = moderately available, an understanding of 
the language was possible so as to get the meta-models; 
4 = completely available in the format of the language 
and 5 = completely available including meta-models. 

 Type criterion informs whether the UIDL is a research 
or industry work. 

 Weight of the organization behind denotes the organiza-
tion to which the UIDL belongs. Efforts from Universi-



 231

ties are significant, particularly, those where more than 
one university has adopted the use of the UIDL. Those 
UIDL coming from the industry have more impact and 
this is reflected in its level of usage. 

 Level of usage: depending on the usage of the language, 
which was computed based on the organization weight 
and the research community supporting the use of the 
tool, we create the following categories: 0 = unknown, 
no information was available, 1 = one person, research 
of an individual, 2 = small research group, 3 = one or-
ganization or research community, 4 = two or more or-
ganizations or research communities and 5 = wide us-
age, globally adopted and used.  

Due to its number of concepts, UsiXML has been intention-
ally removed from Table 2 and it is used to illustrate the 
comparison protocol (Figure 2). On the left a series of de-
velopments steps compliant with the Cameleon reference 
framework 3, to the right the supported concepts and the 
transformations applied to UsiXML. Details on this compar-
ison can be found in the model based incubator group [35] 
where this work has been reported. Table 2 compares the 
properties of the different UIDLs according the eight crite-
ria:  

 Component models: this criterion gives the aspects of 
the UI that can be specified in the description of the 
UIs. The task model is a description of the task to be 
accomplished by the user; the domain model is a de-
scription of the objects the user manipulates, accesses, 
or visualizes through the UIs; the presentation model 
contains the static representation of the UI, and the dia-
log model holds the conversational aspect of the UI. 

 Methodology: different approaches to specify and mod-
el UIs exist: 1) Specification of a UI description for 
each of the different contexts of use. As a starting point, 
point, a UI specification for the context of use consid-
ered as representative of most case, the one valid for the 
the context of use considered as the least constrained or 
finally the one valid for the context of use considered as 
as the most comprehensive is specified. From this start-
ing UI specification, corrective or factoring out decora-
tions [25], (e.g., to add, remove, or modify any UI de-
scription) are applied so that UI specifications can be 
derived for the different contexts of use. 2) Specifica-
tion of a generic (or abstract) UI description valid for all 
all the different contexts of use. This generic UI de-
scription is then refined to meet the requirements of the 
different contexts of use. 

 Tools: some of the languages are supported by a tool 
that helps designer and renders the specification to a 
specific language and/or platform. 

 Supported languages: specify the programming lan-
guages to which the XML-based language can be trans-
lated. 

 Supported platforms: specify the computing platform on 
which the language can be rendered by execution, 
interpretation or both. 

 Coverage of concepts: depending on the level of ab-
straction, each UIDL may introduce some specific vs. 
generic concepts (e.g., a given presentation model vs. 
any model, each custom-defined), their properties (e.g., 
to what extent can a concrete presentation be specified), 
and their relations. 

CONCLUSION 
Eight years from now, a first review of UIDLs was con-
ducted [25]. That work was reviewed and updated two years 
ago 10, accordingly to the progress of those UIDLs. While 
some works have continued their research in this field, there 
were works with not reported update since then, at east 
nothing that we were aware of, based on their websites and 
research papers. To extend our previous work, new UIDLs 
and concepts were included in this update. The goal of this 
work remains to be a guide for authors to decide what UIDL 
to use for their projects. There is currently such a large 
number of UIDLs available that choosing among them can 
be time consuming and difficult to do, this comparison can 
assist UI designers in choosing a language suited to their 
purposes. The future work comprises the validation of the 
criteria with groups of researchers to determine the useful-
ness of the criteria to check if the purpose of the comparison 
is achieved. 
ACKNOWLEDGMENTS 
We gratefully acknowledge the support of the Repatriacion 
CONACYT program (www.conacyt.mx) supported by the 
Mexican government, the ITEA2 Call 3 UsiXML project 
under reference 20080026 and its support by Région Wal-
lonne DGO6, and the PROMEP net Project under Contract 
UAA-CA-48. 
 

REFERENCES 
1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Wil-

liams, S. & Shuster, J. (1999), UIML: An Appliance-
Independent XML User Interface Language. In Proc. of 
8th Int. World-Wide Web Conference WWW’8 (Toronto, 
May 11-14, 1999). Elsevier Science Publishers, Amster-
dam, 1999 

2. Arsanjani, A., Chamberlain, D. and et al. (2002),  
(WSXL) web service experience language version, 
2002. Retrieved from: http://www-106.ibm.com/devel 
operworks/library/ws-wsxl2/. 

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. Inter-
acting with Computers 15, 3 (June 2003), pp. 289–308. 

4. Cantera Fonseca, J.M. (Ed.). Model-based User Inter-
face XG Final Report, W3C Incubator Group Report, 
W3C, 4 May 2010. Accessible at: http://www.w3.org/ 
2005/Incubator/model-based-ui/XGR-mbui-20100504/ 



 232

5. Crowle, S., and Hole, L. ISML: An Interface Specifica-
tion Meta-Language. In Proc. of DSV-IS 2003 (Funchal, 
June 11-13, 2003). Lecture Notes in Computer Science, 
vol. 2844. Springer, Berlin (2003). 

6. Demler, G., Wasmund, M., Grassel, G., Spriestersbach, 
A., and Ziegert, T. Flexible pagination and layouting for 
device independent authoring, In Proc. of WWW2003 
Emerging Applications for Wireless and Mobile access 
Workshop. 

7. Eisenstein, J., Vanderdonckt, J., and Puerta A. Adapting 
to Mobile Contexts with User-Interface Modeling. In 
Proc. of 3rd IEEE Workshop on Mobile Computing Sys-
tems and Applications WMCSA’2000 (Monterey, 7-8 
December 2000). IEEE Press, Los Alamitos (2000), pp. 
83-92. 

8. Eisenstein J., Vanderdonckt J., and Puerta A. Model-
Based User-Interface Development Techniques for Mo-
bile Computing. In Proc. of 5th ACM Int. Conf. on Intel-
ligent User Interfaces IUI’2001 (Santa Fe, 14-17 Janu-
ary 2001), Lester, J. (Ed.). ACM Press, New York 
(2001), pp. 69-76. 

9. Gomes de Sousa, L., and Leite, J.C. XICL: a language 
for the user's interfaces development and its compo-
nents. In Proc. of the Latin American conference on 
Human-computer interaction (Rio de Janeiro, Brazil, 
August 17 - 20, 2003). ACM Press, New York (2003), 
pp. 191-200.  

10. Guerrero-García, J., González-Calleros, J.M., Vander-
donckt, J., and Muñoz-Arteaga, J. A Theoretical Survey 
of User Interface Description Languages: Preliminary 
Results. In Proc. of Joint 4th Latin American Conference 
on Human-Computer Interaction-7th Latin American 
Web Congress LA-Web/CLIHC'2009 (Merida, Novem-
ber 9-11, 2009). E. Chavez, E. Furtado, A. Moran 
(Eds.). IEEE Computer Society Press, Los Alamitos 
(2009), pp. 36-43. 

11. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., 
Abrams, M., Coyette, A., anf Vanderdonckt, J. Human-
Centered Engineering with the User Interface Markup 
Language. In Human-Centered Software Engineering, 
A. Seffah, J. Vanderdonckt, M. Desmarais (Eds.), Chap-
ter 7, HCI Series, Springer, London, 2009, pp. 141-173. 

12. Heckmann, D. Ubiquitous User Modelling, Akad-
emische Verlagsgesellschaft Aka GmbH, Berlin, ISBN 
3-89838-297-4 and ISBN 1-58603-608-4, 2006. 

13. IBM (2002), WSXL specification, April 2002, retrieved 
on Janury 2nd 2009.  

14. Katsurada, K., Nakamura, Y., Yamada, H., and Nitta, T., 
XISL: A Language for Describing Multimodal Interac-
tion Scenarios, Proceedings of the 5th International 
Conference on Multimodal Interfaces ICMI’03 (Van-
couver, Canada. 

15. Kost, S. Dynamically generated multi-modal application 
interfaces. Ph.D. Thesis, Technical University of Dres-
den and Leipzig University of Applied Sciences, Dresden 
(2004) 

16. Lucent (2000), Sisl: Several Interfaces, Single Logic, 
Lucent Technologies, Available online:  http://www. 
bell-labs.com/user/lalita/sisl-external.html 

17. Luyten, K., Abrams, M., Vanderdonckt, J. & Limbourg, 
Q. Developing User Interfaces with XML: Advances on 
User Interface Description Languages, Sattelite work-
shop of Advanced Visual Interfaces 2004, Gallipoli 
(2004).  

18. Michotte, B., and Vanderdonckt, J. GrafiXML, A Multi-
Target User Interface Builder based on UsiXML. In 
Proc. of 4th International Conference on Autonomic and 
Autonomous Systems ICAS’2008 (Gosier, 16-21 March 
2008). IEEE Computer Society Press, Los Alamitos, 
2008. 

19. Olmedo, H., Escudero,D., and Cardenoso,V.: A Frame-
work for the Development of Applications Allowing 
Multimodal Interaction with Virtual Reality Worlds. In 
Communications Proceedings 16th International Con-
ference in Central Europe on Computer Graphics, Visu-
alization and Computer Vision'2008 WSCG’2008 (Plzen 
- Bory, Czech Republic, February 4-7), University of 
West Bohemia Press (2008), pp. 79-86. 

20. Paternò F., Santoro C., and Spano L.D. MARIA: A Uni-
versal Language for Service-Oriented Applications in 
Ubiquitous Environments. ACM Transactions on Com-
puter-Human Interaction 16, 4 (November 2009), 
pp.19:1-19:30. 

21. Paternò, F., and  Santoro, C. A Unified Method for De-
signing Interactive Systems Adaptable to Mobile and 
Stationary Platforms. Interacting with Computers 15, 
(2003), pp. 349-366. 

22. Picard, E., Fierstone, J., Pinna-Dery, A-M., and M. Ri-
veill. Atelier de composition d'IHM et évaluation du 
modèle de composants. Livrable l3, RNTL ASPECT, La-
boratoire I3S, mai 2009.  

23. Puerta A.R. The Mecano Project: Comprehensive and 
Integrated Support for Model-Based Interface Develop-
ment. In Proc. of 2nd Int. Workshop on Computer-Aided 
Design of User Interfaces CADUI’96 (Namur, 5-7 June 
1996). J. Vanderdonckt (Ed.). Presses Universitaires de 
Namur, Namur (1996), pp. 19-35. 

24. Schaefer, R., Steffen, B., and Wolfgang, M. Task Mod-
els and Diagrams for User Interface Design. In Proc. of 
5th Int. Workshop TAMODIA'2006 (Hasselt, Belgium, 
October 2006). Lecture Notes in Computer Science, vol. 
4385, Springer-Verlag, Berlin (2006), pp. 39-53. 



 233

25. Souchon, N., and Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages. In 
Proc. of 10th Int. Conf. on Design, Specification, and 
Verification of Interactive Systems DSV-IS'2003  (Ma-
deira, 4-6 June 2003). Jorge, J., Nunes, N.J., Falcao e 
Cunha, J. (Eds.), Lecture Notes in Computer Science, 
Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 377-391. 

26. Thevenin, D. Adaptation En Interaction Homme-
Machine : Le Cas de la Plasticité. PhD thesis, Université 
Joseph Fourier, Grenoble, 21 December 2001. 

27. Vanderdonckt, J. A MDA-Compliant Environment for 
Developing User Interfaces of Information Systems. In 
Proc. of 17th Conf. on Advanced Information Systems 
Engineering CAiSE'05 (Porto, 13-17 June, 2005). O. 
Pastor & J. Falcão e Cunha (Eds.). Lecture Notes in 
Computer Science, vol. 3520. Springer-Verlag, Berlin 
(2005), pp. 16-31. 

28. Jones, W. XooML: XML in support of many tools 
working on a single organization of personal infor-
mation. In Proc. of the iConference’2011 (Seattle, Feb-
ruary 8-11, 2011). ACM Press, New York (2011), pp. 
478-488. 

29. W3C, Voice Extensible Markup Language (VoiceXML) 
Version 2.0, W3C recommendation, 16 March 2004, 
W3C Consortium. Available online: http://www.w3.org/ 
TR/voicexml20. 

30. W3C, W3C InkML: Digital Ink Markup Language, 
W3C recommendation, 24 October 2006, W3C consor-
tium. Available online: http://www.w3.org/2002/mmi/ 
ink 

31. W3C, Dial: Device Independent Authoring Language, 
W3C Working Draft, 2007. W3C consortium. Available 
online: http://www.w3.org/TR/dial/ 

32. W3C, Content Selection Primer 1.0, W3C Working 
Draft, 2007, W3C consortium. Available online: 
http://www.w3.org/TR/cselection-primer/ 

33. W3C, XForms 1.0 (Third Edition), W3C recommenda-
tion, 29 October 2007, W3C consortium. Available 
online: http://www.w3.org/TR/2007/REC-xforms-2007 
1029/ 

34. W3C, EMMA: Extensible MultiModal Annotation 
markup language, W3C Proposed Recommendation, 
W3C consortium. Available online: http://www.w3.org/ 
TR/emma. 

35. W3C Model-based User Interfaces Incubator Group 
http://www.w3.org/2005/Incubator/model-based-
ui/wiki/Task_Meta_ModelsXML User Interface Lan-
guage (XUL) 1.0. 

 

 

Abstract User Interface
(PSM)

Concrete User Interface
(PIM)

Final User Interface

Task & domain
(CIM)

User, platform,
environment

Tr
an

sf
or

m
at

io
ns

Markup: Flash, VRML, WML, XHTML, X+V
Programming: C++, Java, Java3D

M
od

el
 to

 C
od

e 
ge

ne
ra

tio
n 

(M
2C

)
G

en
er

at
iv

e 
pr

og
ra

m
m

in
g,

T
em

pl
at

e 
ba

se
d 

ap
pr

oa
ch

AUI = hierarchy of abstract containers (ACs) and Abs. Indiv.
Comp. (AICs) and relations
AIC = faceted computing: input, output, control, navigation
Relations = structural, temporal

CUI = hierarchy of concrete interaction objects (CIOs) + behaviour
CIO = graphical / auditory / 3D / hapget
Graphical CIO = containers (window, dialog box,…) or indiv. (check box)
Auditory CIO = form, group, field, value (VoiceXML)
Behaviour = set of ECA rules (events, conditions, actions)
Hapget = 3D CIO augmented with haptic parameters

M
od

el
 to

 M
od

el
 tr

an
sf

or
m

at
io

n
T

ra
ns

fo
rm

at
io

n 
= 

G
ra

ph
 g

ra
m

m
ar

M
ap

pi
ng

 , 
tr

an
sf

or
m

at
io

n 
m

od
el

Task = extended CTT, based on Markopoulos LOTOS desc.
Domain = UML class diagram + extensions in a profile

User population = hierarchy of user stereotypes with param.
Platform = subset of CC/PP (UAProf)
Environment = physical, psychological, organisat. properties

 
Figure 2. Comparison protocol exemplified with UsiXML. 

 

 

 

 

 

 



 234

 

UIL Specificity Publicly 
available 

Type Weight of the organization behind Level 
of us-
age 

DISL Multimodal UIs for mobile de-
vices 

2 Research Paderborn University 3 

GIML Multimodal 3 Research Technical University of Dresden and Leipzig University 
of Applied Sciences 

2 

ISML GUI, multiplatform, 

 multidevice 

2 Research Bournemouth University 1 

RIML Mobile devices 0 Industry Industry: SAP Research, IBM Germany, and Nokia Re-
search Center along with CURE, UbiCall, and Fuijitsu 
Invia 

3 

SeescoaXML Multiplatform, multidevice, 
dynamic generation UI 

2 Research Expertise Centre for Digital Media 

Limburgs Universitair Centrum 

3 

SunML Multiplatform 4 Research Rainbow team, Nice University 3 

UIML Multiplatform 4 Industry Harmonia, Virginia Tech Corporate Research (OASIS) 3 

WSXL multiplatform, multidevice 4 Industry IBM 3 

XICL Multiplatform 3 Research Federal University of Rio Grande do Norte 3 

XIML multiplatform, multidevice 4 Research Redwhale Software 3 

XWT multiplatform, multidevice 5 Industry Google Inc. 5 

UserML multiplatform, multidevice, 
multimodal 

4 Research University of Saarlandes 3 

TeresaXML Multiplatform, multidevice, 4 Research HCI Group of ISTI-C.N.R. 3 

XooMl None 4 Research University of Washington 2 

UsiXML Multiplatform 5 Research UsiXML Consortium 4 

Table 1. General features of UIDLs. 

 

 
 



 235

 

UIL Models Methodology Tools Supported lan-
guages 

Supported 
platforms 

Concepts 

DISL Presenta-
tion, dia-
log and 
control  

Specification of 
a generic, plat-
form-
independent 
multimodal UI 

Rendering en-
gine 

VoiceXML, Java 
MIDP, Java 
Swing, Visual 
C++ 

Mobile and 
Limited De-
vices 

Head element, interface classes (structure, 
style, behavior), state, generic widgets 

GIML Presenta-
tion, dia-
log, and 
domain 

Specification of 
a generic inter-
face description. 

GITK (General-
ized Interface 
Toolkit) 

C++, Java, Perl Not specified Interface, dialog, widget, objects 

ISML Presenta-
tion, task,  
dialog, 
domain 

Specification of 
a generic UI de-
scription 

Under construc-
tion 

Java, Microsoft 
foundation class, 
Java swing classes 

Desktop PC, 
3D Screen 

Mappings and constrains, action events, 
meta-objects, display parts, controller 
parts, interaction definition 

RIML There is 
no infor-
mation 

Specification of 
a generic UI de-
scription 

There is no in-
formation 

XHTML, 
XFORMS, 
XEvents, WML 

Smart Phone, 
PDA, Mobile, 
Desktop PC 

Dialog, Adaptation, layout, element 

See-
scoaXM
L 

Task, 
Presenta-
tion, dia-
log 

Specification of 
a generic UI de-
scription 

CCOM (Be-
taVersion 1.0 
2002) 

PacoSuite MSC 
Editor 

Java AWT, 
Swing, HTML, 
java.microedition, 
applet, VoxML, 
WML Juggler 

Mobile, 
Desktop PC, 
Palm III  

Component, port, connector, contract, par-
ticipant, blueprint, instance, scenario, plt-
form, user, device 

SunML Presenta-
tion, dia-
log, do-
main 

Specification of 
a generic UI de-
scription 

SunML Com-
piler 

Java Swing, 
voiceXML, 
HTML, UIML,  

Desktop PC, 
PDA 

Element, list, link, dialog, interface, gener-
ic events, synchronization 

UIML Presenta-
tion,  dia-
log, do-
main 

Specification of 
a generic UI de-
scription 

UIML.net, 
VoiceXML ren-
derer, WML 
renderer, 
VB2UMIL 

HTML, Java, 
C++, VoiceXML, 
QT, CORBA,  

 and WML 

Desktop PC, 
Handheld 
Device, TV, 
Mobile 

interconnection of the user interface to 
business logic, services 

WSXL Presenta-
tion,dialo
g, do-
main 

Specification of 
a generic UI de-
scription 

WSXL SDK HTML PC, Mobile CUI=XForms, WSDL, Mapping=XLang 
Workflow=WSFL, Logic=XML event 

XICL Presenta-
tion,dialo
g, 

Specification of 
a generic UI de-
scription 

XICL STUDIO  

 

HTML, ECMAS-
cript, CSS e 
DOM.  

 

Desktop PC Component, structure, script, events, prop-
erties, interface 

XIML Presenta-
tion, task,  
dialog, 
domain 

Specification of 
a generic UI de-
scription 

XIML Schema HTML, java 
swing, WLM 

Mobile, 
Desktop PC, 
PDA 

Mappings, models, sub models, elements, 
attributes and relations between the ele-
ments 

XWT Presen-
tation, 
context  

Specification of 
a generic UI 
description 

Google Web 
Toolkit 

Java, JQuery PC, Mobile Context= language; location 

CUI = presentation (Java), layout, 
Mapping = Widget morphing; data 
binding 

Dialog = Java + JQuery 

UserML Context Specification of 
a generic UI 
description 

UbisWorld, 
UbisOntology 
Editor 

Java + XForms PC, Mobile, 
PDA 

Context = User (MainPart, Privacy, Ex-
planation, Situation, Administration), 
Location; 

CUI = Mobile, PC, PDA, XForms 

Mapping (Match, filter, control) 

Tere-
saXML 

Presen-
tation, 
task,  di-
alog, 

Specification of 
a generic UI 
description 

CTTE Tool for 
task Models 

Teresa, Mariae  

Markup: Digital 
TV, VoiceXML, 
XHTML/SVG, 
X+V 

DigitalTV, 
Mobile, 
Touch-based 
Smartphone, 

AUI = Interface, Interactor, Grouping, 
Connection, dialog expression, composi-
tion.  

AUI Interactors = selection, edit, con-



 236

domain, 
context 

Programming: 
C#  

Vocal, Mul-
timodal  
X+V 

trol, output 

Mappings, models, platform,  

 

XooMl Domain Specification of 
generic mind-
mapping doc-
ument ex-
change 

Plantz, 
QuickCapture, 
FreeMindX 

None None Domain = Documents, fragments  

Mapping= association Attributes 

Table 2. Properties Comparison of UIDLs. 

 



 237

Automated User Interface Evaluation based on 
a Cognitive Architecture and UsiXML 

Jan-Patrick Osterloh, Rene Feil, Andreas Lüdtke 
OFFIS Institute for Information Technology 

Escherweg 2 
26121 Oldenburg Germany 

+49 441 9722 524 
osterloh, luedtke@offis.de 

Juan Manuel Gonzalez-Calleros 
Faculty of Computer Sciences,  

Benemérita Universidad Autónoma de Puebla, 
Ciudad Universitaria, 72592 Puebla, Mexico 

Research and Development Unit, Estrategia 360 
Puebla, Mexico 

juan.gonzalez@cs.buap.mx 

ABSTRACT 
In this paper, we will present a method for automated UI 
evaluation. Based on a formal UI description in UsiXML, 
the cognitive architecture CASCaS (Cognitive Architecture 
for Safety Critical Task Simulation) will be used to predict 
human performance on the UI, in terms of task execution 
time, workload and possible human errors. In addition, the 
UsabilityAdviser tool can be used to check the UI descrip-
tion against a set of usability rules. This approach fits well 
into the human performance and error analysis proposed in 
the European project HUMAN, where virtual testers 
(CASCaS) are used to evaluate assistant systems and their 
HMI. A first step for realizing this approach has been made 
by implementing a 3D rendering engine for UsiXML. 

Author Keywords 
User Interface evaluation, UsiXML, cognitive architecture, 
CASCaS, UsabilityAdviser 

General Terms 
Design, Reliability, Human Factors, Theory 

Categories and Subject Descriptors 
I.6.3 [Computing Methodologies]: Simulation and Model-
ing—Applications; D.2.2 [Software]: Software Engineer-
ing—Design Tools and Techniques. 

INTRODUCTION 
Today, human factor analysis of aircraft cockpit systems 
like autopilot or flight management systems is based on ex-
pert judgment and simulator-based tests with human sub-
jects (e.g., test pilots) when first prototypes exist. This is in 
general a very expensive and time-consuming approach, 
because a number of subjects have to be hired for the simu-
lation and necessary changes can only be realized with 
huge effort in the usually late stage of system development. 
In order to further reduce the cost for Human-Machine In-
terface (HMI) design of complex assistant systems in 
transportation, while reducing human error and increasing 
usability at the same time, the HMI development process 
has to be improved, by integrating the evaluation of User 
Interfaces (UIs) into the design process of manufacturers. 
The European project HUMAN (7th Framework Pro-
gramme) aimed at developing virtual testers, in order to 

improve the human error analysis of new assistance sys-
tems, including User Interfaces. The virtual testers are 
based on a fully equipped cognitive architecture CASCaS 
(Cognitive Architecture for Safety Critical Task Simula-
tion). In HUMAN, this approach has been extensively test-
ed and improved by applying the method to a new assistant 
system, with focus on the system and the interaction with 
the system (see [11]), but not so much on the UI itself. In 
this paper, we will describe how the method could be fur-
ther extended in future, so that cognitive models can also 
be used to improve the development of complex UIs. The 
objective is to provide a tool for automated UI evaluation, 
in terms of predicting cognitive workload, execution times, 
human error as well as compliance to HMI guidelines. A 
similar approach has already been tackled in CogTool [8], a 
UI prototyping tool, which uses a predictive human per-
formance model to automatically evaluating GUI design. 

In the next section, we will discuss CogTool and its appli-
cation in the industrial process. Then, we will propose an-
other approach for UI evaluation, which should improve 
some of CogTools shortcomings, and could be integrated in 
the industrial design process. 

STATE-OF-THE-ART 
Currently there are different approaches to evaluation of UI 
designs. Beside the classical approach of evaluation with 
test users, automatic evaluation with tools is used. The 
common major shortcoming of any evaluation tool is that 
the evaluation logic is hard coded in the evaluation engine 
[14], for example, two leaders of the web evaluation mar-
ket, Bobby and A-Prompt only provide the choice between 
the guidelines of W3C or Section 508, which makes them 
very inflexible for any modification of the evaluation logic 
or any introduction of new guidelines. In addition, many of 
them do not offer much possibilities of controlling the 
evaluation process like choosing which guideline to evalu-
ate, or the level of evaluation at evaluation time. Not only 
existing tools cannot accommodate different and multiple 
bases of guidelines or usability knowledge but also they 
force the evaluator to evaluate the GUI in a predefined 
way: it is not possible to focus the evaluation on only some 
parts of the GUI, for instance by considering only those 
guidelines that are concerned with the contents. The goal 



 238

here is to develop an evaluation tool that addresses the 
above shortcomings, such as the support of multiple bases 
of guidelines (accessibility, usability, or both) on-demand 
(partial or total evaluation), with different levels of details 
(a presentation for a developers and a presentation for the 
person who is responsible for attributing the accessibility 
certification). For this purpose, an evaluation engine should 
be developed that perform guidelines evaluation or other 
independently of guidelines and usability knowledge. 

Another, newer approach is the evaluation based on cogni-
tive models. CogTool is a general purpose UI prototyping 
tool, which uses a predictive human performance model to 
automatically evaluating GUI design [3,8]. In order to per-
form an analysis, the analyst defines first a prototype of the 
interface (based on standard set of UI widgets, like buttons, 
sliders, menus), including possible transitions between dif-
ferent interfaces. Then, a number of tasks are demonstrated 
on the design, which are recorded and build the basis for 
the interaction tasks. Then the cognitive architecture ACT-
R [1] is used to predict e.g. cognitive workload, and task 
execution times.  

While CogTool allows fast prototyping and evaluation, the 
UI prototype itself can only be imported and exported as 
HTML code, and cannot be reused for the final interface. 
In the transportation domain, model driven development 
has become standard for development of assistance sys-
tems. Using CogTool in an industrial process would require 
that a given design has to be re-implemented in CogTool, 
and after the improvements are made within CogTool, the-
se have to be implemented in the final version of the sys-
tem, as CogTool is currently neither integrated in a UI de-
velopment tool, nor in a modelling tool used in the industry 
(like Scade - www.esterel-technologies.com, Matlab - 
www.mathworks.com/products/matlab/, or Rhapsody - 
www.ibm.com/software/awdtools/rhapsody/).  

In addition, the need to demonstrate the tasks performed in 
each scenario from start to the end seems for a larger set of 
scenarios to time consuming. Re-usage of the UI prototype 
that allows model driven development, as well as re-usage 
of the tasks that are performed, are main requirements for 
the proposed method.  

METHOD 
In the HUMAN project, a method for system evaluation 
has been proposed, that integrates virtual testers into the 
design process of aircraft manufacturers- Main idea is to 
use the system models (e.g. defined in Matlab) in a simula-
tion together with virtual testers, in order to test the system 
in an early design phase. The virtual testers are built based 
on the fully-equipped cognitive architecture CASCaS. For 
the UI development, we propose to use UsiXML, which 
stands for USer Interface eXtensible Markup Language. 
UsiXML is a XML-compliant markup language that de-
scribes the UI for multiple contexts of use, i.e. interactive 
applications with different types of interaction techniques, 
modalities of use, and computing platforms can be de-

scribed in a way that preserves the design independently 
from the physical computing platform. Figure 1 shows a 
possible architecture for automated UI evaluation, with 
UsiXML, and the cognitive architecture CASCaS.  

 

Figure 1. Architecture for automated UI evaluation. 

The first step in the proposed method is to model the sys-
tem functionality in a design tool like Matlab or Scade, and 
to model the UI using UsiXML. There are multiple tools, 
based on UsiXML, which support the design process of 
UIs to create and evaluate rapid prototypes in UsiXML, 
e.g., SketchiXML [6], with no need for writing XML di-
rectly. In the next step, a simulation is used for the evalua-
tion: A newly developed rendering engine for UsiXML is 
used to display the UsiXML to the virtual tester, or a hu-
man user respectively. 

On the same time, it controls the interaction between the 
system model and the UI, i.e. if the virtual tester presses a 
button this is propagated to the system model and the UI. 
Each interaction may result in changes on the UI, which are 
then retranslated into a UsiXML description and send to an 
online evaluation tool. This evaluation tool calculates then 
online the workload that is needed for this status of the UI. 
The cognitive model, which is described in more detail in 
the next section, also calculates workload (e.g. for motor 
actions, goal switches, etc.) for the overall simulation, as 
well as task execution times, gaze distribution and predicts 
possible human errors. A simulator provides additional in-
formation, e.g. route, traffic and weather information. In an 
offline evaluation, it is also possible to use the Usabil-
ityAdviser 3 for analysing the UI on compliance to certain 
usability rules, like certain undesired colour combinations 
(e.g. yellow on white background).  

Cognitive Model 
The cognitive architecture CASCaS has initially been de-
veloped in the 6th European Commission Framework Pro-
gramme project ISAAC [10], and has been widely extend-
ed and used in other projects since then. CASCaS has been 
used to successfully model perception [9], attention alloca-
tion [16], decision making (of drivers) [15] and human er-
rors [10,11] of aircraft pilots and car drivers.  

CASCaS is based on the concepts of ACT-R [1] and has 
been extended with Rasmussen’s [13] three behaviour lev-



 239

els in which cognitive processing takes place: skill-based, 
rule-based and knowledge-based behaviour. The levels of 
processing differ with regard to their demands on attention 
control dependent on prior experience: skill-based behav-
iour is acting without thinking in daily operations, rule-
based behaviour is selecting stored plans in familiar situa-
tions, and knowledge-based behaviour is coming up with 
new plans in unfamiliar situations. Anderson [2] distin-
guishes very similar levels, but uses the terminology of au-
tonomous, associative, and cognitive level, which will be 
used throughout the paper. Figure 2 gives an overview on 
the components of CASCaS. These components form the 
following control loop: The “Perception” component re-
trieves the current situation from the “Simulation Environ-
ment”, and stores the information in the “Memory” compo-
nent. The “Processing” component contains components 
for the behaviour layers. 

These layers can retrieve information from the memory and 
process this information according to their cognitive cycle 
(rule-based or knowledge-based). The layers may store 
new information in the memory, or start motor actions in 
the “Motor” component. Each component is based on psy-
chologically and physiologically sound theories, e.g. from 
cognitive psychology, e.g. the memory component imple-
ments theories for forgetting as well as learning. 

Each component implements detailed models of timing, 
e.g. for eye movements, such that CASCaS allows predic-
tion of task execution times. In addition, the attention allo-
cation can be predicted, based on top-down (rules) and bot-
tom-up (peripheral view/selective attention) processes [9]. 
For the calculation of eye- and hand movements, CASCaS 
needs information on the positioning of the instruments. 
We call this information the “topology”, which is currently 
defined in a customized XML format, which should be ex-
changed by a UsiXML format in future implementations.  

 

Figure 2. Architecture and components of CASCaS. 

During the simulation, CASCaS will predict the task per-
formance, performed actions (motor actions), memory con-
sumption, as well as performed percepts (gaze distribu-
tion).  

UsiXML 
UsiXML is a XML-compliant markup language which 
consists of a declarative User Interface Description Lan-
guage (UIDL). It describes user interfaces for multiple con-
texts of use such as Graphical User Interfaces (GUIs), Au-
ditory- and Multimodal User Interfaces and their constitut-
ing elements such as widgets, controls and containers [7]. 
Using UsiXML, a UI developer is able to model a descrip-
tion of interactive applications with different types of inter-
action techniques and modalities in a device and computing 
platform independent notation.  

UsiXML provides an MDE approach for the specification 
of user interfaces and is based upon the architecture of the 
CAMELEON Reference Framework [5]. This framework 
defines UI development steps for multi-context interactive 
applications. Figure 3 shows a simplified version of this 
development process. The rendering engine is placed be-
tween the layers three and four in Figure 3. A UsiXML 
Concrete User Interface description serves as input data. 
This description is converted by a UsiXML parser and for-
warded to the rendering engine. The result after this step is 
a Final User Interface according to the CUI.  

 
Figure 3. The Cameleon Reference Framework [5]. 

Rendering Engine 
Figure 4 shows the architecture of the rendering engine 
which consists of four main parts. First, a UsiXML parser, 
which conforms to a language processing system, converts 
a CUI description into an internal and renderable format. 
After this step, the converted data is passed to the rendering 
engine for further handling. The second component is 
based upon the MVC architectural pattern and handles the 
user actions, provides the user interface, stores the convert-
ed CUI data, supplies the application's main loop and de-
livers strategies for the program flow. Configuration files 
and log files are handled by this part of the application, too. 
The fourth component is a mathematical library including a 
useful set of algebraic and calculus functions. Finally, the 
rendering engine itself consists of 6 ancillary parts, as 
shown in Figure 5.  



 240

 

Figure 4. Architecture for Rendering Engine. 

 

Figure 5. Components of the Core Rendering Engine. 

A further component shown in Fig 4 is a module for inter 
process communication (IPC). This part is planned for fu-
ture implementation steps, e.g. to connect the system mod-
el, or CASCaS.  

The main component of the Core Rendering Engine is an 
OpenGL core profile renderer, which includes the func-
tionality for drawing primitives and complex geometric ob-
jects, and allows geometry and scene management respec-
tively manipulation. Summarized, it serves as a program-
ming framework for creating and preparing the input for 
OpenGL. Further, this part includes a font system for font 
rendering, a buffer manager, a shader16 manager for load-
ing and preparing shader programs including a common set 
of shader pairs, and a resource manager for loading exter-
nal resources like textures, fonts and additional shaders. 
The sixth component is an object library which contains a 
pre-rendered set of GUI objects like buttons and labels. 
OpenGL itself is a low-level rendering API. It does not in-
clude functions for drawing geometric objects like cylin-
ders or spheres or GUI elements like buttons. It's up to the 
application developer to implement algorithms for drawing 
these objects. For that reason there is a need for the devel-
opment of such an object library. The included object li-
brary is in an early stage and accordingly limited. 

                                                           

16 Programmable shading is the current state of the 
art in real-time computer graphics. Today's graphics cards 
are highly programmable and the term of shader refers to 
according programs, written in high level languages like 
GLSL, HLSL or Cg, which are executed by programma-
ble chips on modern graphics card. 

UsabilityAdviser 
The global process for automatic evaluation with the Usa-
bilityAdviser is depicted in Figure 6. The “Knowledge 
Base” contains a formalisation of rules for good usability 
and accessibility. These rules are a collection from ergo-
nomic guidelines, for instance, structures (Smith and 
Mosier) or various recommendations that are encoded in a 
formal format, using the UsiXML language. For example, a 
rule that selects appropriate color combinations can be 
written for widgets (a slider in this example) as follows:  

i Slider :  (SliderColor(i,white)  LabelColor (i,yellow)) 

This formula expresses that yellow text on a white back-
ground is undesired. The knowledge base is used by the 
“Formal rules compiler” to load and parse the rules. Once 
this internal structure is created the tool performs a data 
analysis of the UI, encoded in UsiXML, which may be de-
veloped in a UsiXML editor. The UsabilityAdviser search 
for violations of rules formalized through the automatic 
evaluation of UI data. Finally, a report on the found viola-
tions of ergonomics and accessibility is presented. One ma-
jor challenge is to create and update the knowledge base on 
ergonomic rules, which requestes a complete review and 
compilation of existing rules from different sources. These 
rules are often expressed in a natural language that is nor-
mally more complex and open compared to a programming 
language. Anyway, the UsabilityAdviser provides an ex-
tensible way of evaluation from multiple sources (e.g. ISO 
9126, ARINC 661) of guidelines for (parts of) a User Inter-
face.  

 
Figure 6. Global process for automatic evaluation. 

SUMMARY AND NEXT STEPS 
We proposed an approach for automated UI evaluation 
with a cognitive architecture, which is usable in industrial 
application. It uses a model driven approach, and is con-
nectable to tools that are already in use in the industry, like 
Matlab or Scade, which allows re-use of the models de-
fined by the system designers. UsiXML provides a model 
driven development for the industry. Up to now, these tools 
have not been connected together for automated UI evalua-
tion. In order to implement the proposed method in a proto-
typical tool, a rendering engine is needed as a connection 
between the cognitive model, UsiXML and the Design 



 241

Tools. We started to implement such a rendering engine in 
a first version. A main open issue is the connection be-
tween the design tools and UsiXML. As tools like Matlab 
or Scade use the mechanism of Events for interaction, an 
extension to UsiXML with a mapping to such events could 
be the solution. The rendering engine could then be ex-
tended to trigger such events when there is interaction with 
the UI elements, e.g. on button clicks, and to transfer 
events back to certain changes in the UI (e.g., opening of a 
dialog). 

ACKNOWLEDGMENTS 
The research leading to these results has received funding 
from the European Commission Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n° 
211988 (Project HUMAN, www.human.aero), as well as 
funding from ARTEMIS JU under grand agreement n° 
269336 (Project D3CoS, www.d3cos.eu). Juan Gonzalez 
would like to acknowledge of the ITEA2-Call3-2008026 
USIXML (User Interface extensible Markup Language) 
European project and its support by Région Wallonne 
DGO6. 

REFERENCES 
1. Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S. 

A., Lebiere, C., and Qin, Y. An Integrated Theory of 
Mind. Psychological Review 111, 4 (October 2004), pp. 
1036-1060. 

2. Anderson, J. R. Learning and Memory. John Wiley & 
Sons, Inc. (2000) 

3. Bellamy, R., John, B. E., Richards J., and Thomas J.  
Using CogTool to model programming tasks. In Proc. 
of Evaluation and Usability of Programming Lan-
guages and Tools PLATEAU’2010. ACM Press, New 
York (2010), Article 1, 6 pages 

4. Bossche, P. vanden. Développement d'un outil de cri-
tique d'interface intelligent : UsabilityAdviser, M.Sc. 
thesis, Université catholique de Louvain, Louvain-la-
Neuve (2006). 

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L., and Vanderdonckt, J. A Unifying Refer-
ence Framework for Multi-Target User Interfaces. In-
teracting with Computers 15, 3 (2003), pp. 289–308. 

6. Coyette, A., Vanderdonckt, J., and Limbourg, Q.  
SketchiXML: A Design Tool for Informal User Inter-
face Rapid Prototyping. In Proc. of International Work-
shop on Rapid Integration of Software Engineering 
techniques RISE'2006 (Geneva, 13-15 September 
2006). N. Guelfi, D. Buchs (Eds.), Lecture Notes in 
Computer Science, vol. 4401. Springer-Verlag, Berlin 
(2007), pp. 160-176. 

7. Guerrero García, J., Lemaigre, C., González Calleros, J. 
M., and Vanderdonckt, J. Model Driven Approach to 
Design User Interfaces for Workflow Information Sys-

tems. Journal of Universal Computer Science 14, 19 
(2008), pp. 3160-3173. 

8. John, B.E. Using Predictive Human Performance Mod-
els to Inspire and Support UI Design Recommenda-
tions. In Proc. of CHI’2011. ACM Press, New York 
(2011) 

9. Lüdtke, A. and Osterloh, J.-P. Simulating Perceptive 
Processes of Pilots to Support System Design. In Proc. 
of IFIP TC13 Int. Conf. on Human-Computer Interac-
tion INTERACT’2009. Springer, Berlin (2009), pp. 471-
484. 

10. Lüdtke, A., Cavallo, A., Christophe, L., Cifaldi, M., 
Fabbri, M., and Javaux, D. Human Error Analysis 
based on a Cognitive Architecture. In Proc. of Int. 
Conf. on Human-Computer Interaction in Aeronautics 
HCI-Aero’2006 (Seattlee, 20-22 September 2006). F. 
Reuzeau, K. Corker, G. Boy (Eds.). Cépaduès-Editions, 
Toulouse (2006) pp. 40-47 

11. Lüdtke, A., Osterloh, J.-P., Mioch, T., Rister F. and 
Looije, R. Cognitive Modelling of Pilot Errors and Er-
ror Recovery in Flight Management Tasks. In Proc. of 
IFIP TC13.5 Working Conf. on Human Error, Safety 
and Systems Development HESSD’2009 (Brussels, Sep-
tember 2009). Lecture Notes in Computer Science, vol. 
5962. Springer-Verlag, Berlin (2010), pp. 54-67. 

12. Molina, J.P., Vanderdonckt, J., Montero, F., and Gon-
zález, P. Towards Virtualization of User Interfaces 
based on UsiXML. In Proc. of Web3D 2005 Symposi-
um, 10th International Conference on 3D Web Tech-
nology (Bangor, 29 March-1 April 2005). ACM Press, 
New York (2005), pp. 169-178 

13. Rasmussen, J. Skills, Rules, Knowledge: Signals, Signs 
and Symbols and other Distinctions in Human Perfor-
mance Models. IEEE Transactions: Systems, Man and 
Cybernetics, SMC-13 (1983), pp.257-267. 

14. Vanderdonckt, J., and Beirekdar, A. Automated Web 
Evaluation by Guideline Review. Journal of Web Engi-
neering 4, 2 (2005), pp. 102-117. 

15. Weber, L., Baumann, M., Lüdtke, A., and Steenken, R. 
Modellierung von Entscheidungen beim Einfädeln auf 
die Autobahn. In A. Lichtenstein, C. Stößel, C. Clem-
ens (Hrsg), 8. Berliner Werkstatt, Mensch-Maschine-
Systeme. VDI Verlag, Düsseldorf (2009), pp. 86-91. 

16. Wortelen, B. And Lüdtke, A. Ablauffähige Model-
lierung des Einflusses von Ereignishäufigkeiten auf die 
Aufmerksamkeitsverteilung von Autofahrern. In 
Mensch-Maschine-Systeme,  A. Lichtenstein, C. Stößel, 
C. Clemens (Hrsg.), 8. Berliner Werkstatt, VDI Verlag, 
Düsseldorf, pp. 80-85. 

 



 242

User Interface Generation for Maritime Surveillance:  
An initial appraisal of UsiXML V2.0 

Charles R. Robinson1, Frédéric Cadier2 

 1THALES Research and Technology, Campus Polytechnique 
1, Av Augustin Fresnel 91767 PALAISEAU Cedex (France) 

charles.robinson@thalesgroup.com 
2Institut TELECOM, TELECOM Bretagne, Technopôle Brest Iroise, 

CS 83818, 29238 Brest Cedex3 (France) 
frederic.cadier@telecom-bretagne.eu 

ABSTRACT 
In the capacity of being among the first to implement the 
latest version of UsiXML, a language for user interface de-
velopment and implementation, this article describes some 
initial work in its application to a real world situation. After 
presenting a general approach for the use of this standard, a 
scenario is described from the domain of Maritime Surveil-
lance. With a model driven focus, UsiXML recommends 
creating a model of the tasks as the first stage for generat-
ing user interfaces. A discussion is provided on our imple-
mentation of this particular stage and the available tools 
that were used.  

Author Keywords 
Task model, user interface generation, real-life applica-
tions, maritime surveillance, model-driven engineering, 
UsiXML. 

General terms 
Application, Design, Interfaces. 

INTRODUCTION 
In general the use of standards for development means as-
surance that the end product will have particular character-
istics. Their use can be for a great range of reasons such as:  

1. Safety, security or performance.  
2. The ability to compare different products.  
3. Guidelines for development processes, providing 

best practices for high quality. 
4. Interoperability between different products and 

reuse for new applications. 

UsiXML has been created to be a standard for the purpose 
of user interface development and deployment.  It enables 
several of the above properties, such as using the model 
driven engineering (MDE) approach of the OMG (Object 
Management Group). The structure of the UsiXML lan-
guage provides the interoperability and flexibility to realise 
the µ7 concept that means interfaces may be developed 
with multi-device / user / linguality / organisation / context 
/ modality and multi-platform applicability. 
 
The ability to dynamically present the same information 
through different devices and in different environments is 
crucial to being able to respond quickly to threatening situ-

ations and to support emergency services. Whilst UsiXML 
is still being fine tuned, and its associated tools being de-
veloped, this article discusses the first stages of applying 
UsiXML in the context of maritime surveillance. This is a 
suitable domain for the application of UsiXML because 
there are many people involved who are tasked with differ-
ent responsibilities, operating at different terminals and re-
quiring tailored methods for the presentation of similar in-
formation. 

OVERVIEW OF USIXML 
UsiXML is currently funded by ITEA2 for the definition, 
validation and standardisation of a user interface definition 
language (UIDL).  It has evolved over the past ten years 
and is the result of several joint international projects [1] 
including Cameleon [2] and Salamandre [3]. UsiXML 
specifies four levels that should be attained in order to real-
ise an interface for an end user.   Similar to the MDE ap-
proach, UsiXML includes equivalents to the task layer, 
platform independent layer and platform specific layer.  In 
UsiXML, the task layer encompasses task and domain 
models.   The platform independent model corresponds to 
the Abstract User Interface level of UsiXML and the plat-
form specific level is represented by the Concrete User In-
terface. The remaining level of UsiXML is the Final User 
Interface which is the implementation of the modelled in-
terface for the end user (Figure 1). 

Task and Domain

Abstract User Interface

Concrete User Interface

Final User Interface

Context 1

Task and Domain

Abstract User Interface

Concrete User Interface

Final User Interface

Context 2

 

Figure 1.  The four stages of a user interface.  Trans-
formation or translation is used to move between stages 

or to other contexts. 



 243

Figure 2. The models that may be used for generating an interface. 
 
In addition to these four levels, there exist models for 
context, workflow, transformation between the four levels 
and mapping (translation) to the same level in a different 
context. Two further models were introduced recently for 
usability and programming. A UML representation of the 
different models that can be used to build the final inter-
face is shown in Figure 2. It is important to note that not 
all are necessarily required for creating a user interface - 
it depends on the application. 

A MARITIME SURVEILLANCE SCENARIO 
Maritime surveillance is the monitoring of activity at sea, 
usually with the assistance of aircraft. It has many appli-
cations including the detection of illegal trafficking, im-
migration and piracy, monitoring of fishing lanes and 
search and rescue activities. There can be many personnel 
involved in such operations, often each person having dif-
ferent information requirements, or requiring a different 
representation of the same information. 

The initial scenario that we draw on uses an aircraft, simi-
lar to a Dassault Falcon, and two unmanned aerial vehi-
cles (UAVs) like the Watchkeeper. The aircraft and 
UAVs are equipped with video and EO/IR sensors (elec-
tro-optical and infra-red) that capture information about 
objects of interest. The vehicles are in direct communica-
tion with a ground command post.   At such a command 
post we consider four types of operator that require a user 
interface in order to participate in the surveillance mis-
sion: 

1. TACCO: Tactical operations, this person leads 
the mission by directing the surveillance activi-
ties. 

2. SENSO: Operate sensors on the piloted aircraft 
in order to analyse nearby targets. 

3. UAV-Ctrl: Responsible for tasking and control of 
UAVs, either through commands in autonomous 
mode or remotely piloting the vehicle. 

4. UAV-Mis: Sensor operations of the UAV to 
analyses targets that are nearby. 

The physical system in the ground control centre is made 
up of a multi-touch table for the TACCO and all coopera-
tive tasks, and some individual workstations for the SEN-
SO and UAV operators. 

The TACCO operates at the table, where he has a global 
tactical view of his zone of operation and all the objects 
within this range detected by radar on-board the vehicles.   
His role is to maintain a so-called tactical situation 
awareness by monitoring these objects, checking that they 
are correctly identified by sensor operators and engaging 
mission specific action when needed, depending on what 
has been identified. 

The aircraft and UAVs are used to assist with the identifi-
cation.   The TACCO and the UAV-Ctrl cooperate at the 
table to divide the tactical area into a zone assigned to the 
plane and one or two zones with an assigned drone. Fol-
lowing this, the TACCO and UAV-Ctrl define navigation 
patterns that will allow the vehicles to cover the whole ar-
ea, taking the sensors ranges into account. 

Objects are then identified by the SENSO or UAV-Mis 
when the manned or unmanned aircraft, respectively, ap-
proach a target.  In turn, this identification is validated by 
the TACCO. Should an object be found requiring more 
investigation, the aircraft is reassigned to gather more da-
ta on the object of interest.  The drones are then directed 
to survey other locations, where, for the time of this spe-
cific investigation, the UAV-Ctrl and UAV-Mis are re-
sponsible for maintaining the tactical situation.    

 

CREATING A TASK MODEL WITH USIXML 
The first step taken, and perhaps the most challenging, 
has been to create a generalised model of the flow of op-
erations that take place in order to realise the aforemen-
tioned scenario. Figure 3 groups these operations into the 
main activities: mission planning, allocation of zones to 
the three aircraft and then either general surveillance of 
targets in these areas, or the manned aircraft conducts an 
in-depth investigation of a particular target. Each of these 



 244

activities contains a set of operations, all of which will re-
quire representation in UsiXML.  With four operators in-
volved, a separate Task Model is required to be developed 
for each one.  Not all the sub-operations or activities from 
the generalised model will be represented in each user 
model as the operators have different requirements.  
 

 
Figure 3. Main operations in this maritime 

surveillance scenario. 
 
As an example, we describe our implementation of the 
Task Model for the SENSO, focusing on the operation of 
classifying nearby targets (or target identification).  It is 
shown initially as a higher level flow of operations (Fig-
ure 4).  Later we break this down its constituent subtasks 
and represent it in UsiXML using the Task Editor (TE). 
 
The cycle of operations, or workflow, that the SENSO 
carries out when involved with the surveillance activity of 
target identification is depicted in Figure 4. This activity 
follows on from the zone allocation and it is the responsi-
bility of the SENSO to direct the sensors at each target the 
aircraft approaches and obtain sufficient information to 
classify and profile this target.  The same role also applies 
to the UAV-Mis, but in the context of the unmanned air-
craft.  For clarity we shall only refer to the SENSO in this 
section. The operations shown in Figure 4 represent the 
principal tasks, each being composed of subtasks that will 
need to be realised on the interface of the SENSO in order 
to carry-out an operation.    
 

 
Figure 4. Operations for target identification during 
general surveillance.  An activity of both the SENSO 

and UAV-Mis. 
 
The TE for UsiXML initially represented the tasks and 
subtasks in a tree structure, with subtasks branching out 
from higher level tasks.   A temporal link could be placed 
between each successive subtask in a particular node to 
indicate their order of execution.  Properties of a task, 
such as optional or looping, can be described by adding a 

decoration component containing relevant fields.   The 
characteristics of, and relationships between, the various 
tasks are stored using the UsiXML format in an XML file.   
This tree structure was useful for visualisation purposes, 
and as such using the initial TE, Figure 6 presents the 
previously described principal tasks and subtasks that 
need representation for the SENSO.    
 
In the current framework of UsiXML, there are circum-
stances where one must add virtual tasks to the model in 
order to represent some properties of a group of user 
tasks. That is, elements that are used as placeholders, hav-
ing no bearing on an a actual task.  For example, a task 
that loops may be decorated with an iterative property.   
However, when several tasks need to be encompassed 
within a loop, one needs to create a task to represent the 
‘looping’ behaviour. This group of tasks are then placed 
as subtasks of the looping task. This is also the case 
where a temporal link from one task affects several other 
tasks.       
 
The TE has since evolved to a more compact form, repre-
senting the tasks within a box structure. The outer box 
represents the top level task where lower level subtasks 
are boxes contained within.   This alternative expression 
of our Task Model is shown in Figure 7 and Figure 8.   
Two particular changes with the new version are that 
tasks now have their decorations and temporal associa-
tions described in the higher level task.   This provides 
one with the capability to express different properties or 
task relationships for different circumstances.  A case in 
point being situations that require some tasks to be carried 
out in a particular order at system start-up but may run  
concurrently afterwards. In the example provided, the 
outer loop represents the task of exploration/target identi-
fication and will have this iterative property set at the 
higher level in the task model.  For demonstrative purpos-
es we name the inner cycle ‘Loop’, where the user has the 
option to return to task “Accumulate track properties”.  
However, generally loops have a purpose and it is this 
that should be used as the name (in this case the purpose 
being to change incorrect identifications).  
 
FUTURE WORK AND THOUGHTS ON USIXML 
In terms of our application of UsiXML, the next step, us-
ing the recently released Domain Editor tool, will be to 
create the Domain Model.  This model may be thought of 
as a template that describes the attributes within the sys-
tem that the user may manipulate.   One defines here the 
classes of interface components, their functions and re-
quired variables. Given this structure, UsiXML draws on 
UML (the Unified Modelling Language) to represent the 
Domain Model.  
 



 245

Figure 5. UsiXML model of the tasks required by the SENSO for general surveillance. 

 

Figure 6. Task Model of the operations carried out by the SENSO during exploration/surveillance of the aircraft.   
For manageability, the TE provides the capability to hide subtasks, this has been done for the task “Classification”. 

 

Figure 7. The Classification task - A subtask of the Exploration/Target identification Task Model. 
 
 



 246

When the Domain Model has been completed we will need 
to define the transformation rules to convert the first level 
UsiXML models to the second level, the AUI model.   A 
transformation engine will be needed to gather the appro-
priate information from the initial level and populate the 
AUI model with the relevant data.   Out of the options 
available, the general consensus within the UsiXML com-
munity has converged on the use of ATL (the Atlas Trans-
formation Language) to define the necessary rules. 
Turning to thoughts of UsiXML, being immersed in the 
language at the moment, one finds it provides a most intui-
tive structure for interface development.   In the current 
project, the underlying models of UsiXML have undergone 
some serious refinement and development over the past 
years and is the reason why new versions, or completely 
new tools are currently appearing. There are still some fea-
tures that it would be useful to see addressed, or developed 
further.  

Regarding the UsiXML Task Editor, the new box layout 
provides important benefits over the tree-structure.  This 
includes a more efficient representation and the ability to 
describe different temporal relationships or task properties 
for different situations.   However, in larger models it can 
be difficult to visualise the overall picture.  The TE offsets 
this to an extent by providing the developer with the ability 
to hide any subtasks that are not currently being consid-
ered.   Perhaps the UsiXML workflow model, currently be-
ing developed, will be better able to address this aspect of 
design.    

It also seems a bit restrictive in the TE to have a SISO rela-
tionship between tasks (single input and single output). Of 
course there are ways one can over come this to an extent.  
For example, to have one task (T1) that enabled three tasks 
(ABC), we could group these three tasks inside another 
task (T2).  We could then set an enabling link between T1 
and T2 and set A, B and C as concurrent.   However, when 
a series of such instances are required, the model can 
quickly become rather unwieldy, with many tasks simply 
acting as containers. It would also be difficult to model one 
task having a different affect on several tasks.    

Another tool that will be desirable in the near future would 
provide the means to select tasks from a library of previ-
ously designed interfaces.   This would then auto-complete 
the associated links to all the required models.   This then 
provides the ability for the user to automate generation of 
the associated subtasks, domain functions, etc. up to the 
point of code generation for the FUI. 

With respect to the UsiXML language in general, one thing 
that may have become apparent during the course of this 
article is that after we considered the overall flow of opera-
tions, a separate task model was developed for each opera-
tor.  There is no mechanism within UsiXML to define a 
global task model with multiple users, that has the capacity 
to derive the individual user task models.   In general each 

user interface is rather a stand-alone entity.  As seen in the 
paper by Frey et al. [4], it is tricky to represent tasks that 
require external data to commence, or tasks that are ena-
bled by the completion of the tasks of other users.   In the 
short-term we plan to introduce a central system as a fifth 
user that can act as a repository for the information ex-
change among the operators.   It would be desirable in the 
longer term to have a feature that included techniques or 
methods for representing the effects of events outside a 
particular interface. This would  represent tasks occurring 
at other interfaces, or tasks separate from the computerised 
element such as a task requiring direct communication be-
tween users for resolving unforeseen problems.   

With the current foundation of UsiXML, there is good 
groundwork in place for developing other technologies re-
lated to user interfaces.   For example agent-related tech-
nology will have an important role, particularly in situa-
tions such as maritime surveillance.   One can envisage 
them taking the form of decision aids, or indeed represent-
ing sensor platforms or vessels within a zone, augmenting 
or simplifying an operators interface as the environment 
changes.  Another technology that will benefit from the 
UsiXML framework is the development of techniques and 
methods that learn about the user and are able to adapt in-
terfaces for different operators.  
 
CONCLUSION 
UsiXML is a UIDL that provides a model driven approach 
for the creation and application of user interfaces with high 
degrees of flexibility. An international project is currently 
in progress to bring this language to the point where it has 
suitable quality and robustness for standardisation. In this 
article we focus on the first level of the UsiXML user inter-
face development process and introduce the Task Editor.   
Using the latest version of UsiXML, we apply it to the 
generation of four user interfaces for performing the mari-
time surveillance activity of target classification and inves-
tigation.   These interfaces provide communication chan-
nels for the operation of sensor platforms and different lev-
els of awareness of the tactical situation.   While there re-
main some features it would be nice to see integrated into 
the UsiXML framework, it nevertheless provides a solid 
foundation and freedom for flexible interface design and 
implementation.   
 
ACKNOWLEDGMENTS 
This work is being undertaken with the support of the 
ITEA2-Call3-2008026 USIXML (User Interface Extensible 
Markup Language – www.itea2.usixml.org) European pro-
ject.  Special thanks go to David Faure (Thales), Olivier 
Grisvard (Télécom Bretagne) and PY-Automation for their 
expert knowledge and contribution to the implementation 
of the UsiXML demonstrator that has been discussed in 
this paper. 
 
 



 247

 
REFERENCES 
1. Limbourg, Q. and Vanderdonckt, J. UsiXML: A User 

Interface Description Language Supporting Multiple 
Levels of Independence. In Engineering Advanced 
Web Applications, M. Matera, S. Comai, S. (Eds.). 
Rinton Press, Paramus (2004), pp. 325-338 

2. Chesta, C., Paternò, F., and Santoro, C. Methods and 
Tools for Designing and Developing Usable Multi-
Platform Interactive Applications. PsychNology Jour-
nal 2, 1 (2004), pp. 123-139. 

3. Vanderdonckt, J. A MDA-Compliant Environment for 
Developing User Interfaces of Information Systems. 
In Proc. of 17th Conf. on Advanced Information Sys-
tems Engineering CAiSE'05 (Porto, 13-17 June, 
2005). O. Pastor & J. Falcão e Cunha (Eds.). Lecture 
Notes in Computer Science, vol. 3520. Springer-
Verlag, Berlin (2005), pp. 16-31.  

4. García Frey, A., Céret E., Dupuy-Chessa, S., and Cal-
vary, G. QUIMERA: A Quality Metamodel to Im-
prove Design Rationale. In Proc. of the 3rd ACM 
SIGCHI Symposium on Engineering interactive com-
puting systems EICS’2011 (Pisa, June 13-16). ACM 
Press, New York (2011).



 248

 
 



UsiXML’2011
UsiXML'2011, the 2nd International Workshop on User Interface
eXtensible Markup Language, was held in Lisbon, Portugal
(September 6, 2011) during the 13th IFIP TC13 International
Conference on Human-Computer Interaction Interact'2011
(Lisbon, September 5-9, 2011).age. This edition is devoted to
software support for any User Interface Description Language.

A User Interface Description Language (UIDL) is a formal
language used in Human-Computer Interaction (HCI) in order to
describe a particular user interface independently of any
implementation. Considerable research effort has been devoted
to defining various meta-models in order to rigorously define the
semantics of such a UIDL. These meta-models adhere to the
principle of separation of concerns. Any aspect of concern should
univocally fall into one of the following meta-models: context of
use (user, platform, environment), task, domain, abstract user
interface, concrete user interface, usability (including accessi-
bility), workflow, organization, evolution, program, transformation,
and mapping. Not all these meta-models should be used
concurrently, but may be manipulated during different steps of a
user interface development method. In order to support this kind
of development method, software is required throughout the user
interface development life cycle in order to create, edit, check
models that are compliant with these meta-models and to
produce user interfaces out of these methods.

Published by
Thales Research & Technology France, 

September, 2011

The UsiXML project is the ITEA 2 project # 08026.
ITEA 2 is the Eureka Project # 3674

Supported by
DGO6, Département des

Programmes de Recherche,
Service Public de Wallonie, Belgium

& by
DGCIS - Ministère de l'Économie, des Finances 

et de l'Industrie, France
September, 2011

ISBN 978-2-9536757-1-9                         

EAN 9782953675719                         


