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1 Introduction

Univariate and multivariate GARCH (generalized auto-regressive conditional heteroskedastic

models) are widely used to forecast volatilities and correlations. However GARCH models

with fixed parameters are restrictive since financial time series are prone to exhibit breaks,

especially over long periods. From time to time, the level of volatilities increases sharply, due

to financial tensions, and decreases when they end, and these changes also affect the levels of

correlations. Ignoring these breaks by assuming constant parameters in econometric models

typically leads to forecasts that are far from realizations (see for example Stock and Watson

(1996)) and often gives the spurious impression of a nearly integrated property of the time

series (see, e.g., Diebold (1986), Lamoureux and Lastrapes (1990), and Hillebrand (2005)). An

important econometric challenge is therefore to detect a structural break as soon as possible.

An interesting way to introduce breaks in GARCH models is enriching them with a dynamic

discrete latent state Markov process (say ST ), in such a way that the parameters can abruptly

switch from one value to another. These models are called Markov-switching (MS) GARCH

models when the Markov chain is recurrent (see e.g. Francq and Zakoian (2008) and Bauwens,

Preminger, and Rombouts (2010)) and change-point (CP) GARCH models, see e.g. He and

Maheu (2010) and Bauwens, Dufays, and De Backer (2011), when the states are not recurrent.

Estimation of these models by the method of maximum likelihood is numerically infeasible,

due to the path dependence problem. This occurs because the conditional variance at time

t depends on the entire sequence of regimes visited up to time t. Bayesian estimation by a

MCMC algorithm is practicable, by embedding the vector of states in the parameter space,

and therefore simulating them, as done by Bauwens, Preminger, and Rombouts (2010)) and

Bauwens, Dufays, and Rombouts (2011)).

Choosing the number of regimes in an MS or CP model can be done, in Bayesian inference,

by maximizing the marginal likelihood with respect to the number of regimes. Doing this

for MS- and CP-GARCH models requires the estimation of the model for a given number of

regimes, followed by the marginal likelihood computation itself (see Bauwens, Dufays, and

Rombouts (2011)). This procedure is repeated several times, up to a maximum number

of regimes, which makes the search for the best model very time-consuming. The sticky

infinite hidden Markov chain model (IHMM), proposed by Fox, Sudderth, Jordan, and Willsky

(2007)), allows us to bypass these repeated computations by treating the number of regimes
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as an unknown parameter. It relies on a Markov-chain with a potentially infinite number of

states (regimes) and is suited for series exhibiting persistence. The structure encompasses the

MS and the CP specifications as special cases. Its building blocks are the Dirichlet process

(Ferguson (1973) and Sethuraman (1994)) and the hierarchical Dirichlet process (Teh, Jordan,

Beal, and Blei (2006)). The sticky IHMM has already been applied in fields such as genetics

(Beal and Krishnamurthy (2006)), visual recognition (Kivinen, Sudderth, and Jordan (2007)),

and economics (Jochmann (2010) and Song (2011)) for models without path dependence. Our

main contribution is to develop Bayesian inference for sticky infinite hidden Markov-GARCH

and DCC models, thus for models with path dependence.

More precisely, our contribution is twofold. Though one can apply the forward-backward

algorithm (Rabiner (1989), Hamilton (1989) and Chib (1996)) within a Gibbs sampler for

inferring on a model with structural breaks1, this does not apply to models subject to path

dependence. We circumvent the issue by employing a Metropolis-Hastings algorithm, where

the proposal density is based on the model of Klaassen (2002), which is used as an ap-

proximation to the MS-GARCH model2. We show that this preserves the invariance of the

posterior distribution. We additionally illustrate that the new algorithm outperforms the ex-

isting MCMC alternatives in term of computational time, while the mixing properties remain

competitive with respect to the Particle MCMC algorithm (PMCMC) of Bauwens, Dufays,

and Rombouts (2011). Our method renders inference on MS- and CP-GARCH models almost

as fast as inference on MS- and CP-ARCH models without adding much complexity in the

computational structure.

Moreover, even if our algorithm can be used to compute the marginal likelihood using

Chib’s formula (see Chib and Jeliazkov (2001)), so that we can maximize this criterion in

order to select a specific number of regimes, we avoid such a time-consuming approach. This

leads to our second contribution: we use an MCMC algorithm to determine directly the

number of regimes as well as the specification (MS or CP), by incorporating the sticky IHMM

1 Hamilton (1989) used a forward algorithm to integrate the latent variables ST and by doing so, was able

to compute the likelihood at any parameter value. Chib (1996) embedded a backward step in the algorithm in

order to ease the sampling of the latent variables. These methods rely on the assumption that the likelihood

at time t only depends on the current state (i.e. no path dependence).
2 MS-GARCH models that circumvent the path dependence problem were proposed by Gray (1996),

Klaassen (2002) and Haas, Mittnik, and Paolella (2004).
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into our MS-GARCH model. Currently this approach is limited to models without path

dependence (Jochmann (2010) and Song (2011)). Thus we extend the scope of the IHMM

modeling framework to richer models, such as GARCH (instead of ARCH).

In the next section, we present the infinite hidden Markov-switching GARCH model

(IHMS-GARCH) and the Bayesian estimation algorithm of its parameters. In Section 4,

we compare the new algorithm with existing methods and illustrate this on simulated data.

We highlight that the IHMS-GARCH model accurately estimates CP- and MS-GARCH mod-

els. Section 5.1 provides detailed results on the S&P500 index daily series and we compare

our results with those of Bauwens, Dufays, and Rombouts (2011) for the MS-GARCH model.

We finally apply the new method to the IHMS-DCC model in Section 6. Conclusions are

presented in the last section. A brief review of the IHMM modeling framework is provided in

Appendix C.

2 Model definition

In this section, we develop a Markov-switching framework with an undetermined number

of regimes for univariate and multivariate GARCH models. The model rests on the sticky

infinite hidden Markov model (sticky IHMM) that is shortly presented in Appendix C. Before

stating the model in subsection 2.2, we briefly define the Dirichlet process as well as its useful

stick-breaking representation since they are directly used in our specification.

2.1 Dirichlet process and its stick-breaking representation

The Dirichlet process G, denoted by G ∼ DP (η,G0), where the parameter G0 is called the

base distribution and the scalar η ∈ <+ the concentration parameter, has been introduced by

Ferguson (1973). It can be seen as an extension of the Dirichlet distribution to continuous

spaces.

The Dirichlet process with base distribution G0 is the unique distribution over the support

Θ of G0 (where Θ ∈ <d), such that the relation

G(A1), G(A2), ..., G(An) ∼ Dir(ηG0(A1), ..., ηG0(An))

holds for every natural number n and every n-partition {A1, A2, ..., An} of Θ. The notation

Dir(a1, ..., an) corresponds to a Dirichlet distribution with parameters ai, i = 1, ..., n (see
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Balakrishnan and Nevzorov (2005)).

Sethuraman (1994) demonstrated that the DP has a stick-breaking representation. It is

based on two independent sequences of i.i.d random variables {πk}∞k=1 and {Θk}∞k=1 and is

constructed by the following formulas (δΘk is the probability measure concentrated at Θk) :

βk ∼ Beta(1, η), Θk ∼ G0,

πk = βk

k−1∏
l=1

(1− βl), G =
∞∑
k=1

πkδΘk ,

which ensures that G ∼ DP (η,G0).

The distribution over π is sometimes written π ∼ GEM(η)1 or π ∼ Stick(η).

2.2 The model

To ease the discussion we explain the model for the univariate case and in particular for the

Markov-switching GARCH(1,1) model (MS-GARCH). Nevertheless this modeling approach is

applicable to other models exhibiting path dependence. For instance, in Section 6 we provide

the extension to a MS Dynamic Conditional Correlation models (MS-DCC).

Let YT = {y1, ..., yT }′ be a time series where T denotes the sample size. The infinite hidden

MS-GARCH(1,1) model (IHMS-GARCH) consists in the following set of equations :

yt = σtεt (1)

σ2
t = ωst + αsty

2
t−1 + βstσ

2
t−1 (2)

εt ∼ N(0, 1) (3)

st|st−1 = i, pi ∼ pi = {pi1, pi2, pi3, ..., ..., ...} (4)

pi|π, λ, κ ∼ DP (λ+ κ,
λπ + κδi
λ+ κ

) (5)

π|η ∼ Stick(η) (6)

{ω̃, α̃, β̃}|µ,Σ ∼ N(µ,Σ) (7)

µ ∼ N(µ,Σ) (8)

Σ−1 ∼ Wishart(V , v) (9)

1GEM refers to Griffiths, Engen and McCloskey
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where δi denotes the probability measure concentrated at i.

• Equations (1) to (3) define a standard Markov-switching model with GARCH param-

eters of the regime st equal to {ωst , αst , βst}. The random variable st takes integer values

in [1,∞] and denotes the current regime. We define the state vector ST = {s1, ..., sT }′.

• Equations (4) to (6) specify the first hierarchical structure of the model which is the

sticky IHMM. We assume that the latent state process {st} is first order Markovian

with the transition matrix

P =



p11 p12 p13 ...

p21 p22 p23 ...

... ... ... ...

pi1 pi2 pi3 ...

... ... ... ...


,

where pi = {pi1, pi2, pi3, ..., ..., ...} is the transition probability distribution of moving

from state i to another state (including the state i). This transition matrix characterizes

a MS model with infinite regimes. The sticky parameter κ captures the persistence in the

time series by setting more weights to the self-transition pii since E(pii|π, λ, κ) = λπi+κ
λ+κ .

The (infinite dimensional) vector π is driven by a stick-breaking process (π ∼ Stick(η)).

We denote the set of random Dirichlet parameters HDir = {η, λ+ κ, ρ} where ρ = κ
λ+κ .

Their prior distributions are detailed in Section 4.

• Equations (7) to (9) describe the second hierarchical structure, which bears on the

GARCH parameters. We assume that the parameters are driven by a Normal distribu-

tion so we map our GARCH parameters on the real line. The one-to-one transformation1

is denoted by {ω̃, α̃, β̃}. We also define the set Θ = {ω̃1, . . . , ω̃∞, α̃1, . . . , α̃∞, β̃1, . . . , β̃∞}

which includes all the GARCH parameters of the model and the set Θi = {ω̃i, α̃i, β̃i}

which contains all the relevant GARCH parameters of the regime i. The hierarchical

structure takes full advantage of volatility parameters from past regimes. It enhances

1ω̃i = log(ωi), α̃i = log( αi
1−αi

), β̃i = log( βi
1−βi

)
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the proposed parameters of new regimes since if a new state is born, we draw related

GARCH parameters from N(µ,Σ) whose expectation and variance-covariance matrix

are updated by taking into account parameters of previous regimes.

The same kind of setting (4)-(9) has already been proposed by Song (2011) for an autore-

gressive model. Other distributional assumptions than the normal or other models than

GARCH(1,1) can be handled.

3 Estimation by Bayesian inference

Bayesian inference is feasible by treating explicitly ST as a parameter. We also augment our

parameter set by an auxiliary variable UT = {u1, ..., uT } to deal with the infinite structure.

Based on the slice sampler (Neal (2003)) this technique, the beam sampler from Van Gael,

Saatci, Teh, and Ghahramani (2008), will be detailed in the next subsection. Our sampling

scheme iteratively draws from each full conditional distribution of Table 1.

1. f(ST |Θ, P,HDir, π, UT , YT ) 5. f(µ,Σ|Θ, P,HDir, π, UT , ST , YT )

2. f(UT |Θ, P,HDir, π, ST , YT ) 6. f(HDir|Θ, P, π, UT , ST , YT )

3. f(P |Θ, HDir, π, UT , ST , YT ) 7. f(π|Θ, P,HDir, UT , ST , YT )

4. f(Θ|µ,Σ, P,HDir, π, UT , ST , YT )

Table 1: IHMS-GARCH Gibbs sampler

Updating the state vector ST from its full conditional distribution is the most challenging

part of the Gibbs sampler. The other full conditional distributions have already been detailed

in the literature. The last two distributions and f(P |ST ,Θ, HDir, π, YT ) constitute the sticky

IHMM of which the sampling has been described in Fox, Sudderth, Jordan, and Willsky

(2007). The hierarchical structure µ,Σ has the usual Normal-Wishart prior in order to get

conjugate posterior distributions. Drawing from the full conditional of Θ is standard. In this

paper, we use an adaptive Metropolis method with delayed rejection (see Haario, Saksman,

and Tamminen (2001) and Mira (2001)). The entire MCMC sampler is detailed in Appendix

A. We now concentrate on the sampling of a complete state vector.
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3.1 Sampling the state vector ST

Updating each state st separately given the others (Bauwens, Preminger, and Rombouts

(2010)) produces poor mixing properties due to the dependence of the states. We therefore

propose another strategy for sampling the state vector. It is worth noticing that we could

also use the Particle MCMC algorithm of Bauwens, Dufays, and Rombouts (2011) but our

approach is less time consuming and easier to implement. The method relies on the forward-

backward algorithm of Chib (1996). However a straightforward application is infeasible due

to the infinite number of regimes and to the path dependence problem. We use the beam

sampler to circumvent the first issue. The second one will be tackled by using the model of

Klaassen (2002) as an approximation, conjugated with a Metropolis-Hastings step.

Beam sampler

The random variables UT have been embedded to ease the update of ST . They act as a slice

sampling to truncate the infinite summation that appears in the forward-backward algorithm

into a finite one. The methodology lets invariant the full posterior distribution. In the initial

paper the distribution of ut|st, st−1, P is uniform : U [0, pst−1,st ]
1. To sample an entire vector

UT , we use the decomposition :

f(UT |ST , P ) = f(uT |sT , sT−1, P )f(uT−1|sT−1, sT−2, P )...f(u2|s2, s1, P )f(u1|s1, P )

where f(u1|s1, P ) =
δ{0≤u1≤ps1,s1}

ps1,s1
.

The size of the finite set directly affects the mixing properties of the sampler. The proba-

bility of staying in a same state for the next period is generally high for time series due to their

persistence. This stylized fact can drastically decrease the size of possible paths allowed by

the beam sampler at each MCMC iteration. Consequently the draws of the forward-backward

algorithm can become highly dependent. To avoid this problem we use a modified uniform

distribution that concentrates more probabilities on small values of ut. The modified density

is as follows

f(ut|st, st−1, P ) =
k

pst−1,st

If 0 ≤ ut ≤ k1pst−1,st

=
k2

pst−1,st

If k1pst−1,st < ut ≤ pst−1,st
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where k, k1, k2 are constants. In the empirical exercise we respectively set k = 20 and k1 =

0.01. The last constant k2 is derived from
∫ pst−1,st

0 f(ut|st, st−1, P )dut = 1.

Klaassen’s approximation

The forward-backward algorithm fails when it faces a GARCH model due to the path de-

pendence induced by the lag of the conditional variance. We propose a Metropolis-Hastings

approach that avoids the path dependence problem. We first sample an entire state vector

from an approximate GARCH model that allows us to apply the forward-backward algo-

rithm and the proposal is accepted or rejected according to the Metropolis-Hastings ratio

that preserves the required balance. Although an approximate model is used to sample the

state vector, the posterior distribution is not altered thanks to the Metropolis-Hastings step.

Relying on earlier studies of Gray (1996) and Klaassen (2002), we consider the following

approximation of the MS-GARCH model :

yt = σtεt

σ2
t = ωst + αsty

2
t−1 + βst σ̃

2
t−1,st (10)

where σ̃2
t−1,st = E[σ2

t−1|Yt−1, st, UT ,Θ, P ]. We derive the computation of σ̃2
t−1,st in Ap-

pendix B. The approximation gets rid of the path dependence problem since the likelihood

f(yt|Yt−1,Θ, st) of the approximation only depends on the current state.

Procedure for updating the state vector

A draw of ST is recursively obtained from the proposal distribution as follows (letting Si =

{si, ..., sT } and omitting the condition to the sets of parameters Θ and P) :

q(ST |YT , UT ) = q(sT |YT , UT )q(sT−1|YT , sT , UT )q(sT−2|YT , ST−1, UT )...q(s1|YT , S2, UT )

Since there is no path dependence any more, each conditional density q(st|YT , UT , St+1) is

proportional to

q(st|YT , UT , St+1) ∝ q(st|Yt, Ut)f(ut+1|st, st+1)f(st+1|st)

∝ q(st|Yt, Ut)(kδ{0≤ut+1≤k1pst,st+1} + k2δ{k1pst,st+1<ut+1≤pst,st+1})
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and q(st|Yt, Ut) is computed by forward looking :

q(st|Yt, Ut) ∝ f(yt|st, ut)
∞∑
i=1

f(ut|st, st−1)f(st|st−1 = i)q(st−1 = i|Yt−1, Ut−1)

∝ f(yt|st, ut)
∞∑
i=1

(kδ{0≤ut≤k1psit−1,st
} + k2δ{k1psit−1,st

<ut≤psit−1,st
})q(s

i
t−1|Yt−1, Ut−1)

where sit−1 stands for st−1 = i and the infinite sum of the last equation is handled thanks

to the beam sampler. It becomes a finite one because only some states satisfy the constraint

{0 ≤ ut ≤ pst−1,st}.

The new state vector S′T is then accepted according to the Metropolis-Hastings ratio :

α(ST , S
′
T |YT ,Θ, P, UT ) = min{1,

f(S′T |YT , UT ,Θ, P )q(ST |YT , UT ,Θ, P )

f(ST |YT , UT ,Θ, P )q(S′T |YT , UT ,Θ, P )
}

= min{1,
f(YT |S′T , UT ,Θ, P )f(UT |S′T , P )f(S′T |P )q(ST |YT , UT ,Θ, P )

f(YT |ST , UT ,Θ, P )f(UT |ST , P )f(ST |P )q(S′T |YT , UT ,Θ, P )
}.

The proposal distribution is not always a good approximation of the full conditional one.

It occasionally leads to stick the algorithm at a fixed state vector. In order to avoid this

situation we sample the state vector by randomized blocks instead of drawing an entire one in

a single piece. At each MCMC iteration we randomly set the size of the block. The method

has been proposed in a different context by Chib and Ramamurthy (2010). In our empirical

exercise the block size randomly varies from fifty observations to the whole sample size.

It is worth emphasizing that the proposed sampler does not need the IHMM to operate.

Applications where the number of regimes K is a priori fixed (for instance Bauwens, Pre-

minger, and Rombouts (2010), Henneke, Rachev, Fabozzi, and Nikolov (2011)) could also

benefit from the current algorithm. The number of regimes could then be determined using

the marginal likelihood computed by the Chib’s formula (Chib and Jeliazkov (2001)).

4 Illustration on artificial data

The algorithm is illustrated on simulated data in this section. First we document our prior

choices and some practical issues for the MCMC implementation. We devote the next three
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subsections to detail results on simulated series from five different data generating processes

(DGP). We start by describing our simulation strategy that includes the chosen DGP. The

second subsection is dedicated to the mixing properties of the algorithm. These are compared

with mixing properties of existing alternatives. The last subsection exposes summary statistics

of the posterior distributions of several simulated data.

4.1 Starting point, priors, burn-in and label switching

As it is shown in Table 2, we use standard prior distributions for the model. We set the

same prior distributions on the Dirichlet process parameters as Fox, Sudderth, Jordan, and

Willsky (2007) and Jochmann (2010). The hyper-parameters have been chosen to reflect the

persistence of high frequency time series. The expectation of λ+ κ and ρ are respectively set

to 1000 and 0.9994. The choice of the persistence is really close to the one set by Bauwens,

Dufays, and Rombouts (2011). GARCH parameters of each regime are independently driven

by Normal distributions.
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Prior Distributions of the Dirichlet processes

η ∼ G(10, 1
2) λ+ κ ∼ G(1000, 1) ρ = κ

λ+κ ∼ Beta(10000, 6)

Prior Distributions of the GARCH parameters

For each regime i : {ω̃i, α̃i, β̃i} ∼ N(µ,Σ)

Hierarchical parameter : µ Hierarchical parameter : Σ

µ ∼ N(µ,Σ) Σ−1 ∼ W(V ,v)

µ = {0, log(0.2
0.8), log(0.8

0.2)} V = 1
5v I3

Σ = I3 v = 5

Table 2: Prior Distributions. The d-dimensional identity matrix is denoted by Id.

The starting point of an MCMC algorithm is also a relevant practical issue. Typically,

MCMC algorithms start at the ML estimates but these cannot be computed in the presence

of structural breaks. Our MCMC starting point for each simulation is the ML estimate of

a GARCH(1,1) model without breaks. The starting values of λ, κ and η are set to 1.2,1000

and 3, respectively.

The posterior distribution is invariant to the labels of regimes. As a consequence a label

of one regime can switch to another one during the MCMC simulation. If this label switching

happens, summary statistics that are label dependent, such as the posterior means of the

parameters, are misleading. Some methods have been proposed to alleviate the permutation

in the MCMC by imposing some constraints on parameters or to build a sample of coherent

labels at the end of the MCMC simulation by maximizing a loss function. In this paper we

circumvent the problem by using statistics that are invariant to label switching. For instance,

instead of showing posterior means of each regime, we display posterior means over time

(≈ E(Θt|YT )) which do not depend on the state label. We thus allow for switching of labels

during the simulation as advocated by Geweke (2007).

For assessing the MCMC convergence we use Geweke’s diagnostic (Geweke (1992)) on

some of the GARCH parameters over time : Θt|YT . We select ten parameters Θt|YT equally

spaced in time in order to cover the whole sample and we apply Geweke’s diagnostic to them.

Once the MCMC has converged for these ten variables we save the next 50000 samples as
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draws of the posterior distribution.

The IHMS-GARCH program coded in c++ is available for Windows platform on Arnaud

Dufays’ website.

4.2 Simulation

The IHMM encompasses the Markov-switching and the Change-point models. We thus revisit

some simulations of the CP and the MS literature. We consider the same simulations as

He and Maheu (2010) (HM), Bauwens, Preminger, and Rombouts (2010)(BPR), Bauwens,

Dufays, and Rombouts (2011) (BDR) and a series without break. The DGP of He and

Maheu consists in a CP model with three regimes. The BPR simulation is a MS model with

two regimes. Eventually BDR consider a Change-point and a Markov-switching DGP. The

last series does not exhibit any break for testing the IHMS-GARCH ability to estimate a

standard specification. All the simulated DGP are summarized in Table 3. Each series has

3000 observations except the BPR simulation (1500 observations).

Name Type Regimes Break point ω α β

DGPHM CP 3 {1000, 2000} obs. {0.2; 0.6; 0.1} {0.1} {0.8}

DGPBDR1 CP 3 {1000, 2000} obs. {0.2; 0.7; 0.4} {0.1; 0.2; 0.2} {0.8; 0.7; 0.4}

Name Type Regimes Tr. Matrix ω α β

DGPBPR MS 2 P =

0.98 0.02

0.04 0.96

 {0.3; 2} {0.35; 0.1} {0.2; 0.6}

DGPBDR2 MS 2 P =

0.9999 0.0001

0.0005 0.9995

 {0.6; 0.4} {0.1; 0.2} {0.8; 0.4}

DGPnoBreak — 1 — {0.5} {0.2} {0.7}

Table 3: Data Generating Processes of the five simulated series.

The CP specification of HM assumes structural breaks in the unconditional variance while

the persistence parameters (α and β) remain constant over regimes. The (local) unconditional

variance (i. e.
ωst

1−αst−βst
) before the first break is equal to 2 and then increases to 6. It

decreases to 1 at the end of the sample. It tries to mimic a financial market that switches

from quiet to more volatile periods. On the contrary each parameter of the DGP in BDR
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varies across regimes. The unconditional variance evolves from 2 to 0.67 with an intermediate

state where it is equal to 7.

The two Markov-switching specifications differ among others things by their transition

matrix. The BPR DGP assumes an expected duration of remaining in the first and second

states of 50 and 25 observations respectively whereas the transition probabilities of the BDR

MS model are very low (with duration of 10000 and 2000 observations).

4.3 Comparison with other algorithms

We first compare our sampling method (called Kl-MH for Klaassen-Metropolis-Hastings) of

the state vector with two other MCMC samplers (BPR for Bauwens, Preminger, and Rom-

bouts (2010) and PMCMC for Bauwens, Dufays, and Rombouts (2011)). Bauwens, Pre-

minger, and Rombouts (2010) draw each state one by one which leads to a highly autocor-

related samples. It requires many MCMC iterations to explore the entire support of the

posterior distribution. The second method samples the entire state vector in one block using

a Sequential Monte Carlo (SMC) algorithm within the MCMC. The mixing properties are

by far improved but at a computational cost. The complexity order of the SMC is O(NT )

where N stands for the number of particles. They choose N = 250 for an MS model and

N = 150 for a CP model. We expect that the mixing properties of our MH method lies in

between the two of them since we randomize the size of the block we sample and we use a M-H

step. However the computation time is drastically reduced compared to the SMC algorithm.

Indeed the computational burden is equivalent to the forward-backward algorithm (O(KT )

where K denotes the number of regimes). To compare the different methods we launch the

three algorithms on simulated series from the four DGP that exhibit structural breaks. We

fix the number of regimes and the volatility parameters at the MLE given the true state

vector. We use CP models for CP DGP and MS settings for the other ones. Finally we store

10 000 posterior draws for each simulation. Table 4 displays the maximum autocorrelation

time computed by batch means (see Geyer (1992)) and defined as 1 + 2
∑∞

i=1 ρi where ρi

is the autocorrelation coefficient of order i between the posterior draws of a state variable.

The Kl-MH displays much better autocorrelation times than the BPR approach for all the

simulated data. The comparison between the PMCMC and the Kl-MH is more delicate. The

PMCMC method always exhibits better autocorrelation times than the Kl-MH algorithm but
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the differences are very small.

Name Type BPR PMCMC Kl-MH

DGPHM CP 450.96 1.94 2.88

DGPBDR1 CP 478.51 1.30 2.70

DGPBPR MS 116.96 1.18 4.98

DGPBDR2 MS 477.49 1.50 2.28

Table 4: Autocorrelation time of posterior structural break draws. Kl-MH stands for ’Klaassen

Metropolis-Hastings’ and denotes the method documented in the paper. The minimum au-

tocorrelation times are in bold. For MS model, the autocorrelation time is computed on the

number of observations in each regime.

Table 5 shows the elapsed time for MCMC simulations. All the simulations have been

executed on the same computer and the programs only differ in the way of sampling ST .

While the Kl-MH is competitive with BPR for CP models, it clearly becomes the fastest

method for MS models.

Name Type BPR PMCMC Kl-MH

DGPHM CP 1 mn 160.9 mn 3.4 mn

DGPBDR1 CP 1 mn 161.1 mn 3.4 mn

DGPBPR MS 104.9 mn 178 mn 2.9 mn

DGPBDR2 MS 413.7 mn 351.3 mn 6.3 mn

Table 5: Elapsed time in minutes for a MCMC simulation of 10000 draws

4.4 Results on simulated data

We present results of the IHMS-GARCH model on the different simulated data generated from

the DGP of Table 3. Table 6 displays the posterior probability of having a specific number

of regimes and for each simulation, probabilities are maximized at the true one. Also it is

worth noticing that we never underestimate the number of regimes. However more regimes

are sometimes counted but the algorithm quickly comes back to the true setting. As the
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likelihood does not decrease by adding more parameters, it is not surprising to observe such

a pattern.

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5

DGPHM 0 0 0.9812 0.0176 0.0012

DGPBDR1 0 0 0.9152 0.0812 0.0036

DGPBPR 0 0.9652 0.0340 0.0008 0

DGPBDR2 0 0.9164 0.0824 0.0012 0

DGPnoBreak 0.9964 0.0036 0 0 0

Table 6: Posterior probabilities of the number of regimes for five simulated series generated

from DGP displayed in Table 3. The true number of regimes is bolded.

Figure 1 shows the posterior means of the parameters and the maximum likelihood esti-

mates given the true states over time for each simulation. The IHMS-GARCH model closely

tracks the MLE and sharply identifies the break points. It seems capable to reproduce Change-

point and Markov-switching behaviors. Finally the acceptance rate for a new state vector

does not decrease below 70 percent for all the simulated data.

15



HM - ω
1−α−β HM - α HM - β

BDR1 - ω
1−α−β BDR1 - α BDR1 - β

BPR - ω
1−α−β BPR - α BPR - β

BDR2 - ω
1−α−β BDR2 - α BDR2 - β

no break - ω
1−α−β no break - α no break - β

Figure 1: ML estimates given the true states (solid grey lines) compared to the posterior
means (dashed black lines). Results for each simulated data are presented in row in the same
order as in Table 3 (i.e. HM, BDR1, BPR, BDR2 and no break). The first column of graphics
displays the (local) unconditional variance ( ωt

1−αt−βt |YT ) whereas the two others respectively
show the parameters αt|YT and βt|YT
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5 Illustration on financial time series

We have shown that the algorithm performs well for artificial data. We now turn to illustrate

the IHMS-GARCH model on empirical time series. Detailed results on the S&P500 daily

index are documented in subsection 5.1. We next shortly provide posterior results for three

commodities, namely Brent, Gold and Silver. This will help to devolatilize the returns in

order to apply the DCC model in Section 6.

5.1 S&P500 daily index

In this section we revisit the empirical exercise of Bauwens, Dufays, and Rombouts (2011).

They use a MS and a CP model on the S&P500 daily percentage returns from May 20, 1999

to April 25, 2011 (3000 observations). They further choose the optimal model and the number

of regimes with the marginal likelihood. They find evidence in favor of a Markov-switching

model with two regimes.

The IHMS-GARCH posterior distribution covers five different numbers of regimes (2 to

7). The most observed one is 2. Table 7 displays the posterior distribution of the number of

regimes.

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 Regime 6 Regime 7

Prob. 0 0.6046 0.2075 0.1455 0.0224 0.0196 0.0004

Table 7: Posterior probabilities of the number of regimes for the S&P500 daily index

Figure 2 displays the time series with the estimated mode of the state vector at the

most likely number of regimes. The regime switches occur at the same period as the best

MS-GARCH model of Bauwens, Dufays, and Rombouts (2011).
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BDR - PMCMC IHMS-GARCH

Figure 2: The left graphic shows the S&P500 daily index with structural breaks estimated
by the PMCMC algorithm of BDR in vertical lines. The right one displays the same time
series with structural breaks estimated by the IHMS-GARCH model.

As label invariant statistic we show the posterior means of the parameters over time

in figure 3 below. We easily identify the regime switches on the graphic. A spike in the

unconditional volatility occurs at February 27, 2007. The crisis had just begun to affect the

financial sector five days before when HSBC, the world’s largest bank at that time, laid off

its US mortgage head for the loss of 10.5 billion dollar. It stresses the flexibility of the IHMS-

GARCH model that accommodates extreme values. Also, the persistence of the volatility

(α + β) is in some period smaller than 0.9. It is another evidence that capturing structural

breaks decreases the persistence exhibited by financial time series. PMCMC posterior means

are also reported and they only show small deviations from the estimated posterior means of

the IHMS-GARCH model.
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S&P500 - ω
1−α−β

S&P500 - α

S&P500 - β

Figure 3: Posterior means of IHMS-GARCH parameters (black lines) with 95% percent con-
fidence interval (dashed lines) for the S&P500 daily index compared to the posterior means
of PMCMC parameters (dash-dot grey lines) over time. The graphic at the top displays
the (local) unconditional variance ( ωt

1−αt−βt |YT ) while the two others respectively show the
parameters αt|YT and βt|YT
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5.2 Other financial time series

We briefly provide results on three other financial time series. These estimations are helpful

for the multivariate correlation model of the next section that requires devolatilized time

series as inputs. We shortly summarize in Table 8 the posterior distributions of three com-

modity percentage returns from July 3, 2000 to December 30, 2011 on a daily basis (3000

observations). Detailed results are available on request.

Table 8: Summaries of posterior distributions

Series Number of regimes Local Unc. Var. Local Persistence (α+ β)

Min. Mode Max. Min. Mean Max. Min. Mean Max.
BRENT 2 3 8 2.86 5.48 31.81 0.65 0.90 0.97
GOLD 4 5 11 0.26 1.61 8.18 0.09 0.54 0.97

SILVER 5 6 11 0.45 5.84 130.25 0.21 0.65 0.97

Descriptions of the time series : BRENT (Crude Oil-Brent Current Month FOB USD/BBL ), GOLD (Gold
Bullion LBM USD/Troy ounce) and SILVER (Silver Fix LBM Cash Cents/Troy ounce)

Figure 4 shows the devolatilized commodity returns with respect to the GARCH(1,1)

and the IHMS-GARCH(1,1) models. The graphic emphasizes the lack of flexibility of the

GARCH(1,1) model since some values are extreme compared to the standard Normal distri-

bution that they should follow. On the contrary the IHMS-GARCH(1,1) devolatilized returns

does not exhibit so much extreme values.
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BRENT - GARCH GOLD - GARCH SILVER - GARCH(1,1)

BRENT - IHMS-GARCH GOLD - IHMS-GARCH SILVER - IHMS-GARCH

Figure 4: Devolatilized financial time series with respect to the standard GARCH(1,1) (top)
and to the IHMS-GARCH(1,1) (bottom) models.

6 Multivariate extension

The presented methodology is not limited to the univariate GARCH model. As an example

we incorporate a infinite hidden MS framework in the Dynamic Conditional Correlation model

(IHMS-DCC).

Let YT = {y1, ...,yT } be a set of devolatilized variables where T denotes the sample size

and yt is a d-dimensional vector. The IHMS-DCC model is defined by equations (11)-(13)

together with the hierarchical distributions defined by equations (4) to (9) in Section 2:
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yt = εt where εt ∼ N(0,Σt) (11)

Σt = diag{Qt}−
1
2Qtdiag{Qt}−

1
2 (12)

Qt = Q∗st(1− αst − βst) + αstεt−1ε
′
t−1 + βstQt−1 (13)

The constraint conditions are a definite positive matrix Q∗st , αst ∈ [0, 1] and βst ∈ [0, 1] for

each regime to insure definite positive matrices.

The estimation procedure is very similar to the one exposed in Section 2. The parameters

α and β are sampled by Metropolis steps while each matrix Q∗st is targeted to the sample

covariance matrix of the regime. Sampling the matrices Q∗ are feasible but it somehow

complicates the MCMC sampler and is not of principal interest for the present discussion.

We also need to derive the appropriate approximation for the forward-backward Metropolis-

Hastings step. The calculations, closely related to the Klaassen’s approximation, are detailed

in Appendix B.

We estimate the multivariate model on the three commodity devolatilized percentage returns

(see subsection 5.2). The acceptance rate for the state vector amounts to 90.7 percent. Table

9 provides the posterior distribution of the number of regimes.

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 Regime 6 Regime 7 Regime 8

Prob. 0 0.0149 0.2984 0.2592 0.2419 0.0920 0.0860 0.0076

Table 9: Posterior probabilities of the number of regimes for the devolatilized daily commodi-

ties (IHMS-DCC model)

We display on figure 5 the posterior mean of each correlation over time. For the sake of

comparison, we also expose the standard DCC correlations also based on the IHMS-GARCH

devolatilized returns. The two dynamics are very similar although the standard DCC exhibits

more volatile correlations during the period starting from 2000 to mid 2005 than the IHMS-

DCC model. Over the same period of time, the IHMS-DCC correlations of the first two

graphics ((a) and (b)) also show a lower level than the standard DCC correlations.
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(a) Corr. BRENT - GOLD

(b) Corr. BRENT - SILVER

(c) Corr. GOLD - SILVER

Figure 5: IHMS-DCC(1,1) Correlation (in black) compared to DCC(1,1) correlations (in grey)
for different commodities.

The graphic of the IHMS-DCC parameters lies in Appendix D. As a summary, the poste-

rior mean of the persistence parameter α + β stabilizes around 0.63 over the period starting

from 2000 to mid 2004. Afterwards it rises quickly to reach its highest value (0.96) at which

it stays until the year 2010. At the end of the sample it sharply decreases to 0.38.
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7 Conclusion

The GARCH model with fixed parameters has drained all its potential and more flexible mod-

els are now required. We first propose an IHMS-GARCH model that allows for a potentially

infinite number of regimes. Our Gibbs sampler relies on the sticky infinite hidden Markov

model that has already been applied to autoregressive models but never to volatility models.

Furthermore it accommodates the path dependence problem by using a novel Metropolis-

Hastings method. As a result an entire state vector is sampled in a few blocks and with small

autocorrelations. A comparison of the algorithm with existing MCMC alternatives confirms

that the sampler outperforms the others in term of computational time although the mixing

properties remain as good as the best known MCMC method. The IHMM encompasses the

CP and the MS models. Some simulations in the paper show that the IHMS-GARCH model

accurately estimates the two different specifications. We also detail results for the S&P500

from May 20, 1999 to April 25, 2011 (3000 observations). The number of regimes that is

needed oscillates between 2 and 7. We highlight strong similarities with the MS-GARCH

results of Bauwens, Dufays, and Rombouts (2011). The last section is devoted to a multivari-

ate GARCH model in order to show the ability of the current algorithm to deal with more

general configurations. We successfully estimate an IHMS-DCC model. The algorithm could

also handle other distributional assumptions than the Normal distribution. Further research

will investigate this feature as well as its use and potential benefit to forecast financial time

series.

Appendix

A IHMS-GARCH Gibbs sampler : Implementation

Before developing the implementation of the sampler, we summarize some useful notations.

The sum are denoted by dots. For instance
∑

a xa,b = x.,b and
∑

a

∑
b xa,b = x.,.. The vector

{x1, x2, ..., xr} is briefly denoted by x1:r. Vectors are in row and the transpose operator is

designated by ′. The number K stands for the number of regimes. Some confusion can

rise about the density function of the Gamma distribution. In the paper we always use the
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following one :

X ∼ G(k, θ) if f(x|k, θ) =
1

θkΓ(k)
xk−1e

−x
θ .

After finding a starting point (see subsection 4.1), we iterate until convergence between the

following steps.

1. Sampling UT from f(UT |ST , P ) : for t=2,...,T, sample ut ∼ Ũ [0, pst−1,st ] and u1 ∼

Ũ [0, ps1,s1 ] where Ũ [a, b] denotes the modified Uniform distribution described in 3.1 on

the interval (a,b).

2. Generate new required states : while(max{pi,K+1}Ki=1) > min({ut}Tt=1) :

• Sample pK+1,1:K+1 ∼ Dir(λπ1:K+1 + κδK+1)

• Break the last stick of π :

(a) Draw ξ ∼ Beta(1, η)

(b) Set πK+2 = (1− ξ)πK+1 and πK+1 = ξπK+1

• Increase the dimension of each vector pi : for i=1,...,K+1

(a) Draw ξi ∼ Beta(λπK+1 + κ1{i=K+1}, λπK+2)

(b) Set pi,K+2 = (1− ξi)pi,K+1 and pi,K+1 = ξipi,K+1

• Draw ΘK+1 ∼ N(µ,Σ)

• Set K = K+1.

3. Sampling ST from f(ST |Θ, P,HDir, π, UT , YT ) = f(ST |Θ, P, UT , YT ) : see Section 3.1

4. According to the new vector ST , remove the unvisited states and adapt K,π,Θ, P .

5. Sampling P from f(P |ST ,Θ, HDir, π, YT ) : for i=1,...,K, sample pi,1:K+1 ∼ Dir(λπ1 +

ni,1, ..., λπi + κ+ni,i, ..., λπK+1) where ni,j denotes the number of transition from state

i to j observed in the state vector ST .

6. Sampling HDir from f(HDir|π,Θ, P, ST , YT ) :

(a) Introduce auxiliary variables :

• Sampling m : For j=1,...,K, and k=1,...,K. Set mj,k = 0. For i=1,...,nj,k

sample xi ∼ Bernoulli(
λπk+κ1{j=k}

i−1+λπk+κ1{j=k}
) and increment mj,k = 0 if xi = 1.
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• Sampling r : For j=1,...,K. rj ∼ Binomial(mj,j ,
ρ

(1−ρ)πj+ρ
) where ρ = λ

λ+κ

• set m̄j,k = mj,k if j 6= k and m̄j,k = mj,k − rj if j = k

• set K̄ = 0, for k=1,...,K, if m̄.,k > 0 then increment K̄

(b) Sampling λ and κ

• Sample auxiliary variables : for i=1,...,K, qi ∼ Beta(λ + κ + 1, ni,.) and si ∼

Bernoulli(
ni,.

ni,.+λ+κ)

• Sample ρ = κ
λ+κ ∼ Beta(ρhyp1 + r., ρhyp2 + m.,. − r.) where ρhyp1 and ρhyp2

denotes the hyper-parameters of ρ (see Table 2)

• Sample λ+κ ∼ G(ahyp +m.,.−s., ( 1
bhyp
− log q.)

−1) where ahyp and bhyp denotes

the hyperparameters of λ+ κ (see Table 2)

• set λ = (1− ρ)(λ+ κ) and κ = ρ(λ+ κ)

(c) Sampling η

• Sample auxiliary variables : q̃ ∼ Beta(η + 1, m̄.,.) and s̃ ∼ Bernoulli(
m̄.,.

m̄.,.+η
)

• Sample η ∼ G(ηhyp1 + K̄ − s̃, { 1
ηhyp2

− log q̃}−1) where ηhyp1 and ηhyp2 denotes

the hyper-parameters of η (see Table 2)

7. Sampling π from f(π|HDir,Θ, P, ST , YT ) ∼ Dir(m̄.,1, m̄.,2, ..., m̄.,K , η).

8. Sampling Θ from f(Θ|ST , µ,Σ, YT ) by delayed rejection adaptive Metropolis algorithm

(see Haario, Saksman, and Tamminen (2001) and Mira (2001)).

9. Sampling µ from f(µ|Σ,Θ) ∼ N(µ̄, Σ̄) where µ̄ = Σ̄(
∑K

i=1 Σ−1Θi + Σ−1µ) and Σ̄ =

(KΣ−1 + Σ−1)−1

10. Sampling Σ−1 from f(Σ−1|µ,Θ) ∼Wishart({
∑K

i=1(Θi − µ)(Θi − µ)′ + V −1}−1, v +K)
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B Klaassen’s approximations

First we derive the useful expression f(st−1|st, Yt−1, UT ,Θ, P ). This distribution will be used

in the approximations derived next.

f(st−1|st, Yt−1, UT ,Θ, P ) =
f(st, st−1, U

t|Yt−1, Ut−1,Θ, P )

f(st, U t|Yt−1, Ut−1,Θ, P )

=
f(st−1|Yt−1, Ut−1,Θ, P )f(st|st−1, P )f(ut|st, st−1, P )f(U t+1|st, P )

f(st, U t|Yt−1, Ut−1,Θ, P )

=
f(st−1|Yt−1, Ut−1,Θ, P )f(st|st−1, P )f(ut|st, st−1, P )∑∞
i f(sit−1|Yt−1, Ut−1,Θ, P )f(st|sit−1, P )f(ut|st, sit−1, P )

=
f(st−1|Yt−1, Ut−1,Θ, P )δ{0≤ut≤pst−1,st}∑∞
i f(sit−1|Yt−1, Ut−1,Θ, P )δ{0≤ut≤psit−1,st

}

where sit−1 stands for st−1 = i and we assume f(ut|st, st−1, P ) ∼ U [0, pst−1,st ].

B.1 Approximate GARCH : computation of the modified variance

We remind that σ̃2
t−1,st = E[σ2

t−1|Yt−1, st, UT ,Θ, P ].

E[σ2
t−1|Yt−1, st, UT ,Θ, P ] =

∞∑
i=1

σ2
t−1,sit−1

f(sit−1|st, Yt−1, UT ,Θ, P )

=

∞∑
i=1

(ωsit−1
+ αsit−1

y2
t−2 + βsit−1

σ̃2
t−2,sit−1

)f(sit−1|st, Yt−1, UT ,Θ, P )

B.2 Approximate DCC : computation of the modified Correlation matrix

We omit the condition to the sets of parameters Θ and P for saving space.

E[Qt−1|Yt−1, st, UT ] =

∞∑
i=1

Qt−1,sit−1
f(sit−1|st,Yt−1, UT )

=
∞∑
i=1

((Q∗st−1
(1− αsit−1

− βsit−1
) + αsit−1

εt−2ε
′
t−2 + βsit−1

Q̃t−2,sit−1
)

f(sit−1|st,Yt−1, UT )

27



C The sticky infinite hidden Markov model

The sticky infinite hidden Markov model is based on Dirichlet processes and hierarchical

Dirichlet processes. The Section 2 defines the Dirichlet process and its stick-breaking repre-

sentation. We go further by reviewing the concept of hierarchical Dirichlet process and the

sticky infinite hidden Markov model.

C.1 The Hierarchical Dirichlet process

The infinite hidden Markov Model assumes an infinite number of states. It models a Markov

chain that can move from one state to any other state and it should be the case that each

state is linked to others states by the same set of states. For instance the state one should

always be related to the same parameter Θ1. The hierarchical Dirichlet process has been

designed on this purpose. The hyper-parameters of the hierarchical Dirichlet process (HDP),

(Teh, Jordan, Beal, and Blei (2006)) consist of the base distribution G0 and concentrated

parameters η ∈ <+ and λ ∈ <+. The HDP is defined as follows

G|η,G0 ∼ DP (η,G0) and Gj |λ,G ∼ DP (λ,G) ∀j = 1, . . . , n

So Gj |G⊥Gi if i 6= j. As G is a random probability measures over Θ (the support of the base

distribution G0), the hierarchical process defines a set of random probability measures Gj ,

one for each group, over Θ. The stick-breaking representation of a HDP can be formulated

as follows :

G =
∞∑
k=1

πkδΘk and Gj =
∞∑
k=1

pjkδΘk where ∀j = 1, . . . , n

where Θk ∼ G0, π = {πk}∞k=1 ∼ Stick(η) are mutually independent, δΘk is the probability

measure concentrated at Θk and {pjk}∞k=1|λ, π ∼ DP (λ, π) (as shown in Teh, Jordan, Beal,

and Blei (2006)). Notice that by definition of the DP, each Gj (∀j ∈ {1, ..., n}) has the same

support which is the support of G. This property of the HDP is essential to develop an infinite

hidden Markov model.

The hidden Markov-switching model is driven by two stochastic processes. On one hand

a Markov-chain determines a discrete state vector {s1, ..., sT } and on the other hand the
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observations follow a specific distribution conditioned to the state vector and the parameters

of each regime (yt|st, {Θk}∞k=1 ∼ F (Θst)). The hierarchical Dirichlet process can build this

kind of structure with an infinite number of state (and of Dirichlet processes) :

1. Dirichlet process : G =
∑∞

k=1 πkδΘk ∼ DP (η,G0)

π ∼ Stick(η) Stick-breaking representation of the Dirichlet Process

Θk ∼ G0 Θk : Parameters of the model related to the state k

2. Hierarchical Dirichlet processes : Gj |G =
∑∞

k=1 pjkδΘk ∼ DP (λ,G)

pj = {pjk}∞k=1 ∼ DP(λ, π) Each row of the transition matrix is driven by a DP

3. Markov-switching model

st|st−1, {pj}∞j=1 ∼ pst−1 First order Markovian with transition matrix {pj}∞j=1

yt|st, {Θk}∞k=1 ∼ F (Θst) Each state shares the same support (of G0)

Table 10: Infinite hidden Markov Model (IHMM)

C.2 The sticky parameter

Persistence of regimes is a well-known stylized fact of time series. However the IHMM proba-

bility transition matrix does not exhibit any persistence (i.e. E[pjk|λ, π] = πk ∀j (see Table

10)). The IHMM transition actually does not differ between a self-transition and a transition

to another state, an unrealistic feature for time series.

Fox, Sudderth, Jordan, and Willsky (2007) have developed a IHMM framework which

excludes a high probability posterior with rapid switching. They called it ’the sticky HDP-

HMM’ or ’the sticky IHMM’. They specify a new parameter κ for self-transition bias and set

a separate prior on this parameter. Their specification is as follows :

π|η ∼ Stick(η)

∀j = 1, . . . , n pj |λ, π, κ ∼ DP (λ+ κ,
λπ + κδj
λ+ κ

)

An amount κ > 0 is added to the jth component of the (infinite) vector λπ. The new

parameter implies a higher probability of staying in the same state in the next period than
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the original model (i.e. E[pkk|λ, κ, π] = λπk+κ
λ+κ ). Note that if κ = 0, we come back to the

former specification (i.e the original IHMM of Table 10).

D Multivariate extension

The graphic 6 displays the IHMS-DCC parameters over time along with their respective

standard deviations and the posterior mean of the standard DCC parameters. The parameter

αt|YT does not change over time except at the end of the sample. It is close to the value of

the standard DCC parameter. On the other hand the parameter βt|YT exhibits structural

breaks. It sharply increases in 2004 to reach its highest level (0.96) in 2007. At the end of

the time series its value drops to 0.33.

αt|YT

βt|YT

Figure 6: Posterior means of IHMS-DCC parameters (black lines) with 95% percent confi-
dence interval (dashed lines) for three commodities (Brent,Gold and Silver) compared to the
posterior means of standard DCC parameters (grey lines) over time. The graphic at the top
displays the parameter (αt|YT ) while the other shows the parameter βt|YT
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