
Iterative Hypothesis Testing for Multi-object
Tracking with Noisy/Missing Appearance

Features

Amit Kumar K.C., Damien Delannay, Laurent Jacques, and Christophe De
Vleeschouwer

{amit.kc, laurent.jacques, christophe.devleeschouwer}@uclouvain.be,
damien.delannay@keemotion.com

ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium??

Abstract. This paper assumes prior detections of multiple targets at
each time instant, and uses a graph-based approach to connect those de-
tections across time, based on their position and appearance estimates.
In contrast to most earlier works in the field, our framework has been
designed to exploit the appearance features, even when they are only
sporadically available, or affected by a non-stationary noise, along the
sequence of detections. This is done by implementing an iterative hy-
pothesis testing strategy to progressively aggregate the detections into
short trajectories, named tracklets. Specifically, each iteration considers
a node, named key-node, and investigates how to link this key-node with
other nodes in its neighbourhood, under the assumption that the target
appearance is defined by the key-node appearance estimate. This is done
through shortest path computation in a temporal neighbourhood of the
key-node. The approach is conservative in that it only aggregates the
shortest paths that are sufficiently better compared to alternative paths.
It is also multi-scale in that the size of the investigated neighbourhood is
increased proportionally to the number of detections already aggregated
into the key-node. The multi-scale and iterative nature of the process
makes it both computationally efficient and effective. Experimental val-
idations are performed extensively on a 15 minutes long real-life basket-
ball dataset, captured by 7 cameras, and also on PETS’09 dataset.

1 Introduction and Overview

Multi-object tracking is a fundamental issue in computer vision. It supports
high-level semantic scene analysis in numerous and various applications. Vehicle
trajectories are, for example, collected to control traffic monitoring solutions
[1]. People displacement analysis is important to improve the security of public
spaces [2], or to understand sport actions [3], for example.

Due to the recent improvement in object detection, many detection-based
approaches have been proposed to handle the multi-target tracking problem. In

?? Part of the work is supported by the Belgian NSF and by the WIST3 Walloon Region
project SPORTIC.



2 Amit Kumar K.C. et al.

such approaches, plausible object locations are first estimated in each individual
frame,together with some features characterizing the appearances of the detected
objects. Afterwards, graph-based solutions are generally envisioned to match the
detections in consecutive frames. For example, in [4], authors explicitly model
the spatial layout and mutual occlusion constraints, and use linear programming
relaxation to solve the multi object tracking problem. The K-shortest paths
approach has been investigated in [5], while the authors in [6] use min-cost flow
network and greedy approach to estimate the number of tracks, as well as their
birth and death states. In [7], the problem is formulated as a global maximum a
posteriori estimation over a directed acyclic hyper graph. Similarly, [8] casts the
problem into finding maximum weighted independent sets of a graph.

As a main limitation, most of these methods implicitly assume that the ap-
pearance features are known with the same level of reliability all along the time.
Therefore, they exploit them in a uniform manner with time. In practice, how-
ever, most features are subject to non-stationary noise, and their ability to dis-
criminate objects varies with the scene context. For example, colour histograms
appear to be quite noisy in presence of occlusions, and object positions do not
help to disambiguate a clutter of detections. In some other cases, highly discrim-
inant appearance features are only available sporadically (and under certain
configurations only). For example, in sports, a number on a jersey is visible only
when facing the camera. In such time-varying observation process, the task of
tracking of objects, while taking into account the position and all the available
appearance features, is non-trivial.

To illustrate this, we now explain the limitations of conventional graph-based
approaches when dealing with sporadic/noisy features. In short, graph-based ap-
proaches assign a node to each detection. Edges are then defined to connect the
nodes, and each edge gets a cost that reflects the dissimilarity between the two
nodes it connects. Afterwards, a (K-)shortest-path algorithm is generally applied
to find the trajectories of the (K) targets. The approach has proven to be effec-
tive in scenarios for which the features are collected with same level of accuracy
for each detection. In contrast, the approach is not appropriate in cases for which
appearance features are noisy or missing at some time instants. This is because
the (in)consistency of the appearances observed along a path cannot any more be
measured simply based on the accumulation of the appearance (dis)similarities
measured between pairs of consecutive nodes, since the relevance of those dis-
similarity measurement directly depends on the availability and reliability of the
corresponding appearance estimates. Hence, most graph-based methods fail to
properly exploit noisy or sporadic appearance cues.

To address the above limitations, our paper introduces a new paradigm to ag-
gregate detections into objects trajectories. Similar to numerous previous works,
it adopts a graph-based formalism, but fundamentally goes from a paradigm that
builds on comparisons of appearances between consecutive nodes towards a new
paradigm that investigates the graph under some target appearance hypothesis.

Each iteration of the algorithm works as follows. A node, named key-node,
is selected to define a target appearance hypothesis. Given this hypothesis, a



Iterative Hypothesis Testing for Multi-object Tracking 3

shortest-path computation algorithm is considered to investigate how to aggre-
gate the key-node with its temporal neighbours in the graph, while promoting
the nodes that share this target appearance hypothesis. The process is repeated
iteratively, each node becoming a key-node at some step of the algorithm, and
each tracklet defining the nodes of the updated graph to be used in subsequent
iterations of the algorithm. To limit the computational complexity while giving
the opportunity to build long trajectories, we adopt a multi-scale strategy to
define the size of the temporal neighbourhood to investigate around a key-node.
Specifically, the size of the observation window is made proportional to the size
of the key-node, i.e. to the number of detections that have been aggregated into
the key-node during the earlier steps of the algorithm. In addition, to avoid
misleading the overall multi-object tracking process due to a wrong aggregation
decision, e.g., caused by some inappropriate appearance hypothesis, the shortest-
path connecting the key-node to the extremity of its observation neighbourhood
is only validated when it is sufficiently shorter than the alternative paths con-
necting each one of its extremities to the opposite extremity of the observation
window.

The advantages of our proposed approach can be summarized as follows.
Primarily, it naturally favours the aggregation of detections that share a similar
appearance, even if those detections are not adjacent in time. It can also natu-
rally account for different levels of reliability in the observation process, typically
by giving more credit to the reliable appearance measurements when defining
the cost associated to the discrepancy between the target appearance hypoth-
esis and a node appearance estimate. Hence, the algorithm becomes able to
effectively exploit sporadic or noisy features, which is a significant step forward
compared to the state-of-the-art. As a second advantage, the multi-scale and
progressive nature of the algorithm not only mitigates its computational load,
but also helps in selecting long term matching based on more reliable tracklet
appearance estimations, which directly benefits to the overall accuracy of the
algorithm.

To the best of our knowledge, the only graph-based previous work exploiting
sporadically available appearance cues has been presented in [9]. In this work,
the authors assume a discrete set of N possible appearances, and end up in
a K-shortest paths computation on a N -layered graph, K being the number
of targets, and N corresponding to the number of appearance hypothesis. Our
method is more flexible than [9], in the sense that it does not require prior
knowledge of the discrete set of possible appearances, as required in [9]. Our
approach naturally adapts to the observation of new appearances in the scene,
and can handle an arbitrary number of appearances. In addition, our approach is
computationally efficient due of its iterative and multi-scale nature. In particular,
it avoids the (slow) linear programming optimization required in [9]. Moreover,
we avoid the computational burden associated to the construction of a N -layer
graph by embedding the hypothesis testing within an iterative local aggregation
framework.

The rest of the paper is organized as follows. Section 2 defines the graph
terminology. The tracking algorithm is explained in Section 3. Section 4 discusses



4 Amit Kumar K.C. et al.

the experimental results and demonstrates the approach on a real-life basketball
dataset.

2 Graph Formalism and Notations

As an input, the algorithm receives the set of candidate targets detected inde-
pendently at each time instant, as described in [10]. Apart from the detection
time t and the location x, the detector computes K appearance features f i
(1 ≤ i ≤ K) for a target. Since a feature might be noisy or even missing, the
detector outputs a confidence value ci ∈ [0, 1] for each feature (ci = 0 standing
for a missing feature). A detection d is therefore characterized by the vector

d = (t,x,F , c),

where F = {f1, · · · ,fK} and c = (c1, · · · , cK). The set of detections at a given
time t is denoted as Dt. As introduced in Section 1, the proposed algorithm
adopts a graph-based formalism to progressively aggregate the detections into
tracklets using a graph-based formalism. We define a graph G = (V, E ,W) by:

– a set of nodes, with each node corresponding to a tracklet, i.e., V = {vk :
1 ≤ k ≤ #V},

– a set of edges, E ⊂ V ×V, defining the connectivity between the nodes in V,

– and a set of weights, W : E → R+, weighting these nodes and edges.

Initially, individual detections define the nodes of the graph. Detections are
then aggregated into tracklets, which define the nodes of the updated graph.
The proposed iterative aggregation process is presented in details in Section 3,
including the definition of cost and edges between nodes. Here, we only introduce
the associated terminology. Formally, along the aggregation process, a tracklet v

is defined to be collection of chained detections, i.e., v =
(
d(1),d(2), · · · ,d(N)

)
,

N being the length of the tracklet, also denoted as L(v) = N . Notice that the
chain is ordered, in the sense that the detection times td(i) , 0 < i ≤ N , are

such that t
(s)
v = td(1) < td(2) < · · · < td(N) = t

(e)
v , with t

(s)
v and t

(e)
v respectively

denoting the starting and ending time of the tracklet. Figure 1 depicts how the
tracklets are gathered into a graph in the proposed framework.

Fig. 1: Our graph formalism. The kth detection at time t is denoted by dtk. Some
of them are aggregated into tracklets. Each node corresponds to a tracklet. An
edge that connects two nodes u and v has a cost W(u, v).



Iterative Hypothesis Testing for Multi-object Tracking 5

Notice that pairs of tracklets are connected only between their extremities,
in such a way that each connection maintains the increasing ordering of the
detection times composing the two tracklets. The weight W(u, v) is introduced
to denote the linking cost between two nodes u, v ∈ V. It is formally defined in
Section 3. In short, it typically decreases with the likelihood that nodes u and v
correspond to the same physical target. In addition, we introduce the inner cost
W(v, v) of a node v to denote the cost of traversing tracklet v from its starting
time to its ending time. It typically depends on the length L(v) of the node, i.e.,
W(v, v) = ρL(v), and is introduced to avoid that long nodes create ’short-cuts’
in the graph.

In the sequel, we use two more graph notations. Since we consider a recursive
algorithm that incorporates new detections at each time instant t, the graph is
continuously incremented with time, and is denoted Gt at a given time t. Second,
Gt[t1,t2] represents a graph formed by selecting in Gt = (Vt, Et,Wt) the tracklets

v ∈ Vt having at least one extreme time component inside the temporal window
[t1, t2]. The connectivity Et and the weight Wt are restricted accordingly from
these selected tracklets in order to form Et[t1,t2] and Wt

[t1,t2].

3 Iterative Hypothesis Testing

The global flow of our proposed iterative aggregation algorithm is presented in
Algorithm 1. We observe that the graph manipulated by our method is con-
tinuously incremented by the new detections, encountered as time is evolving.
Once all the detections computed at time t have been connected to the previous
graph, the algorithm iteratively investigates how each node of the graph can
be aggregated with its neighbours. This investigation starts with a node, named
key-node, and is performed either in the forward or in the backward direction. As
controlled by the dir flag in Algorithm 1, the direction of investigation changes
at each time instant to propagate the appearance hypothesis associated to the
key-node both towards the future and the past of this key-node, thereby making
the global process symmetric with respect to time.

The remainder of the section details the behaviour of the two functions in-
troduced in Algorithm 1, namely IncrementGraph and IterativeAggregation. The
incrementation of the graph with time is presented in Section 3.1. The core of
our proposed multi-scale and iterative aggregation strategy is then explained in
Section 3.2.

3.1 Incrementing the Graph with Time

At time t = 1, the graph is just a set of detections at that instant, i.e., G1 =(
D1, ∅

)
. At time t > 1, the graph is obtained by adding new detections to the

so-called previous graph, Gt−1, resulting from earlier steps of the algorithm, up
to time t− 1.

The procedure is referred to as IncrementGraph in Algorithm 1. It connects
the detections Dt at time t to the graph Gt−1. All nodes ending later than time
t−τmax are linked to all the current detections. We set τmax = 120. This allows to
investigate connections up to 6 seconds (at the frame rate of 20 fps) in the past,
which is sufficient to make the algorithm robust to most practical occurrence of



6 Amit Kumar K.C. et al.

Algorithm 1 Recursive aggregation of tracklets with time

Input: Set of detections, Dt
Output: Graph at time t, Gt
Procedure:
dir ← +1 {/* Note: dir=1 means forward and -1 means backward aggregation */}
for each time instant t do

if t = 1 then
Gt =

(
Dt, ∅

)
else
Gt ← IncrementGraph(Gt−1,Dt) {/* See Section 3.1 */}
Gt ← IterativeAggregation(Gt, dir) {/* See Section 3.2 */}
dir ← -dir

end if
end for

missed detections. We present the effect of this parameter on the performance in
the supplementary material. The set of links (or edges), connecting the detections
computed at t, is denoted Et. Those edges are directed and “time-forwarded”.
Therefore, the graph Gt is directed and acyclic (DAG), and permits only causal
traversals. Nevertheless, the graph can be globally reversed in order to allow
anti-causal paths for processing purposes (see Section 3.2). Each edge e ∈ Et is
characterized by a cost which measures the distance between two nodes. As the
appearance features are often unreliable or even unavailable for most elements
in Dt, the distance between a node v ∈ Vt−1 and a new detection d ∈ Dt, is
computed based only on the position and motion related parameters. Specifically,
the cost Wt(v, d) is defined as

Wt(v, d) =

{[
1 + γ × (t− t(e)v − 1)

]
gsp(v, d) if t− t(e)v ≤ τmax,

∞ else,
(1)

with the metric gsp measuring the distance between detection d and the predicted
position of the object corresponding to node v. It is defined as:

gsp(v, d) =
∥∥x(s)

d − x(e)
v − ẋ(e)

v

(
t− t(e)v

)∥∥
2
, (2)

where the term ẋ(e)
v is the velocity, at the end of tracklet v. It is zero for

unit length tracklets, and is computed from the last 2 detections of the tracklet
otherwise. The factor γ > 0, typically set to 3, introduces penalty for missed
detections.

Track creation, deletion and duplicate detections Here, we provide a brief
remark on how a track is created and deleted. Each node corresponds to a track
and we create node as soon as a novel detection is introduced. It is removed
either if it is aggregated with other nodes, or if its length is too small compared

to its distance to the current time, i.e., L(v) � t − t(e)v . In the latter case, we
consider it as false positive.



Iterative Hypothesis Testing for Multi-object Tracking 7

In a typical tracking scenario, duplicate detections arise which might result
in two tracklets that partly overlap in time; despite they correspond to the same
object. Such time overlap prevents the desired aggregation of the tracklets in
a graph that is only composed of forward links. To mitigate this, we introduce
backward links in such a way that the graph is still directed and acyclic. They
make the aggregation of overlapped tracklets possible.

3.2 Iterative Tracklet Aggregation

Once the graph has been incremented with novel detections, the objective is
to aggregate the nodes that correspond to the same physical object. To exploit
appearance cues that are noisy, or only available sporadically. Therefore, we can-
not rely on conventional propagation of appearance similarity measures between
consecutive nodes. Instead, we promote a novel aggregation paradigm, founded
on iterative hypothesis testing process.

Overview of the contribution In this approach, each iteration selects a node,
named key-node, and studies how to aggregate this key-node with its forward
or backward neighbourhood, under the assumption that the observed key-node
appearance defines the reference appearance of the tracked object. Given this
hypothesis, paths that go through nodes that do (not) share the key-node appear-
ance are promoted (penalized). This is done simply by decreasing (increasing)
the cost to go through a node of the graph when the appearance of that node is
similar (different) to that of the key-node. Hence, all appearance cues, even the
sparse or inaccurate one, can be exploited to drive the selection of aggregated
paths within the graph. Since the process is repeated with each node being the
key-node, all observed appearance hypotheses are examined.

The hypothesis testing approach is complemented by a multi-scale strategy.
It consists of defining the size of the neighbourhood to be proportional to the
length of the key-node. The advantages are twofold. First, the approach makes
sense from the tracking efficiency point of view, since longer nodes are more
likely to have accumulated reliable and accurate knowledge about their appear-
ance, which should be exploited to connect them with other nodes with the same
appearance, even if they are far away. Second, with respect to the computational
complexity, the fact that long time frame neighbourhoods are only investigated
when detections already got the opportunity to be aggregated into tracklets
of sufficient length reduces the actual number of nodes to be considered when
dealing with large neighbourhood windows. Moreover, our approach adopts an
extreme caution while aggregating the nodes in the graph. A plausible aggrega-
tion computed during an iteration will only be validated and integrated to the
graph structure for subsequent iterations if it is reliable enough.

We now detail the practical implementation of the the algorithm, which is
presented in Algorithm 2.

Multiscale Iterative Hypothesis Testing Formally, the key-node is denoted
vkey. It is selected at each iteration among the set of nodes, Rt, that have not
yet been investigated at time t. The aggregation of the key-node with its neigh-
bours is then investigated in an observation window that precedes or follows



8 Amit Kumar K.C. et al.

the key-node, depending on the sign of the dir flag. The size of the observation
window is proportional to the length of the key-node. As explained earlier, this
proportional definition allows traversal in different time-scales. We use ∆ to de-

note the observation window interval. Hence, ∆ = [t
(e)
vkey , t

(e)
vkey + κL(vkey)] in the

forward mode (dir = 1), or ∆ = [t
(s)
vkey − κL(vkey), t

(s)
vkey ] in the backward mode

(dir = −1), where κ is the window proportionality constant. We use κ = 5.
Detailed results on varying κ are provided on the supplementary material.

Given the key-node vkey and its observation window ∆, we define the graph
G∆ to investigate how the key-node can be aggregated with its neighbours to
define an appearance-consistent path under the assumption that the tracked
object appearance is defined to be the key-node appearance. The function is
named GraphHypothesis because it returns the graph that is used to test
the key-node appearance hypothesis. The graph G∆ is directly derived from
the graph Gt, by cutting Gt according the limits of the observation window, and
updating the inner costs of the nodes within the window to reflect the hypothesis
made about the target appearance. In short, the inner cost W(v, v) of a node
v ∈ V∆ is increased (decreased) if it has a different (similar) appearance than
the one of the key-node.

The inference of the tracklet features based on the features observed in the
set of detections directly depends on the characteristics of the features obser-
vation process. If, for example, the observation process is affected by outliers,
a RANSAC approach could help in capturing the right appearance model. On
the other hand, if the observations are independent and affected by Gaussian
noise, then a weighted average provides an appropriate inference. In this paper,
we use a weighted average for the tracklet appearance as an example of practical
implementation. Then, the average ith feature of a node v is computed as:

f
(v)

i = 1
Ci

L(v)∑
t=1

c
(t)
i,vf

(t)
i,v, (3)

where Ci =
∑L(v)
i=1 c

(t)
i,v. In particular, f

(ref)

i denotes the average ith feature of
the key-node, used as an hypothesis reference. Let D(v) denote the value by
which the inner cost of node v is incremented due to its dissimilarity with the
appearance of the key-node. Then,

D(v) = N

K∑
i=1

(
αi
∥∥f (ref)

i − f
(v)

i

∥∥
1

+ (1− αi)w(fix)
i

)
︸ ︷︷ ︸

:=w
(v)
i

(4)

The parameter αi is introduced to give less weight to the appearance features
that are computed on short tracks as they are prone to error. L1 norm is cho-
sen for the computational reasons, but could be replaced by other metrics like
Bhattacharyya distance, etc.

αi =


0 if Ci ≤ Cmin,

1 if Ci ≥ Cmax,
Ci−Cmin

Cmax−Cmin
otherwise.

(5)



Iterative Hypothesis Testing for Multi-object Tracking 9

Algorithm 2 IterativeAggregation

Input: Graph at time t, Gt; Direction of aggregation, dir
Output: Updated graph at time t, Gt

Procedure:

Initialize: Rt ← Vt {/* Rt is the set of nodes that are yet to be scheduled for
hypothesis testing. */}
while Rt 6= ∅ do
vkey ← Schedule(Rt)
∆← Limits of the observation window
G∆ ←GraphHypothesis(Gt,∆, vkey)
vagg ← Aggregate(vkey,G∆)
if vagg 6= vkey then
Gt ← Simplify

(
Gt, vagg

)
end if
Rt ←Rt \ vagg

end while

Aggregate: Refer to Figure 2 for the illustration.

Input: Key-node, vkey; Windowed graph for testing key-node hypothesis, G∆
Output: Set of nodes that can be aggregated, vagg
Procedure:
(Sb, Ssb)← Best and second best shortest paths from vkey to the other extremity of
G∆
if Cost(Sb)� Cost(Ssb) then {/* Here� signifies that path Sb is sufficiently better
than path Ssb. */}
G−∆ ←ReverseDirection(G∆)
(Sb′ , Ssb′) ← Best and second best shortest paths from vb to the other extremity

of G−∆
if Cost(Sb′) � Cost(Ssb′) then

if vb′ = vkey then
vagg ← Sb

end if
end if

else
vagg ← vkey

end if

In Algorithm 2, the function Schedule selects a node for hypothesis testing that has
not yet been scheduled. Different scheduling mechanisms can be envisioned. However,
in this paper, we select the nodes that are “sufficiently long” and “not so far from
t”. That is, we schedule the nodes in decreasing order of L(v)/max{1, t− t(e)v }. Since
long nodes are more likely to have accumulated sufficient appearance features, they get
more priorities. Similarly, by exploring nodes that are recent in time, we prevent the
fast growth of the graph.



10 Amit Kumar K.C. et al.

where Cmin and Cmax are the limits to define if the feature is considered reliable
or not. We set Cmin = 20 and Cmax = 100. An analysis of effect of these values
on the performance is presented in the supplementary material. When αi → 1,

w
(v)
i →

∥∥f (ref)

i − f
(v)

i

∥∥
1

and when αi → 0, w
(v)
i → w

(fix)
i . The term w

(fix)
i

is introduced so that a node, which definitely looks similar to the key-node
(D(v) ≈ 0), is favoured compared to a node for which no appearance features is

available
(
D(v) ≈ N

∑
i w

(fix)
i

)
. It corresponds to the noise level, affecting the

feature. Empirically, we set w
(fix)
i = 5 for all 1 ≤ i ≤ K and is related to the

unit of the detection. After the inner costs of the nodes have been incremented
by D(v), a shortest path algorithm is applied. For this, the DAG shortest path
algorithm is preferred because of the inherent directed and acyclic nature of the
graph. The cost of a path is defined to be the sum of costs of the edges and
the inner costs of the nodes along it, and is given by the function Cost in the
algorithm.

Even though it seems that updating the costs requires additional scanning
of the graph, it is mitigated by the concept of visitors in the shortest path
algorithm. The visitors allow to update the costs of the nodes or edges “in
place” by invoking various events.

Path Ambiguity Estimation and Validation Having the cost of edges been
defined in order to take the displacement as well as the appearance into con-
sideration, the shortest path Sb, which connects the key-node to a set of nodes
within the window, reasonably corresponds to a single physical object (same
appearance, and coherent motion) and that could thus be aggregated into a sin-
gle node. To limit the risk of connecting nodes that correspond to two distinct
objects, we check the level of ambiguity of the shortest path by comparing its
cost to the costs of a set of paths that could constitute reasonable alternative
to connect the extremities of the shortest path to the opposite extremity of the
observation window. Figure 2 illustrates this process.

This validation process is run in two steps. In the first step, the shortest Sb
and the second shortest Ssb paths are considered. Moreover, the ends of the best
and second-best paths are denoted as vb and vsb respectively. The shortest path
Sb is considered being sufficiently better than Ssb only if several conditions are
met: (i) Cost

(
Sb

)
< K1, (ii) Cost

(
Sb

)
/Cost

(
Ssb

)
< K2, and (iii) Cost

(
Ssb

)
> K3.

The thresholdsK1 andK3 vary linearly with∆. We setK2 = 1/3. The sensitivity
on varying K2 is detailed in the supplementary material.

If all conditions are met, the second step of the validation process is consid-
ered. For this, the graph is reversed by flipping the direction of all the edges of
G∆. It is mentioned as ReverseDirection in the algorithm. The shortest (Sb′)
and second shortest (Ssb′) paths linking vb with the opposite extremity of the
observation window are then computed. If Sb′ leads to the original key-node, i.e.,
if vb′ = vkey, and if a similar set of conditions hold for Sb′ and Ssb′ , then the path
Sb is considered to be unambiguous, and is replaced by a single node in the path.
This procedure is called Simplify in the algorithm. It updates the appearance
features of the node as in Equation 3 and also the motion parameters. It keeps
only the edges connecting the extremities of the aggregated path to the rest of



Iterative Hypothesis Testing for Multi-object Tracking 11

the graph. Other connections involving intermediate nodes are removed. Since
all the nodes along Sb are aggregated into a single node (and thus the interme-
diate nodes are removed from the graph), it resembles the greedy matching of
the nodes and is thus suboptimal.

Fig. 2: Illustration of the Aggregate function in Algorithm 2. Within the win-
dow, the best (thick arrow) and the second best (thin arrow) paths are searched.
Blue and red arrows represent forward and backward directions respectively.

4 Evaluation
The proposed algorithm has been evaluated on the APIDIS dataset [11]. The
dataset has been generated by 7 cameras distributed around a basket-ball game.
The candidate detections on the ground plane at each frame are independently
computed, as described in [10]. The ID and the position of players have been
manually defined at every second of a 15 minutes period. This provides the
reference ground truth used in our evaluation.

In the remainder of the section, we first present the appearance features that
are considered to support the tracking algorithm. We then discuss the multi-
object tracking evaluation metrics, followed by the results and comparison with
other approaches.

4.1 Appearance Features

In the APIDIS dataset, the jersey colour and the digit printed on it (K = 2),
are computed for each candidate detection. Specifically, a rectangular box is
positioned at the expected height of the player shirt. The first feature is the
average colour, which is computed as the average blue component divided by
the sum of average red and green components, over the silhouette of the player
within the rectangular box. However, depending on whether the detection is close
(far) from the camera, and also whether the detection is visible (occluded) in each
camera view, the measurement is considered (discarded). The second feature is
a set of candidate shirt digits, obtained by running a digit-recognition algorithm
in the same rectangular region. These features are computed for all available
cameras. Finally, the confidence of the feature is computed as the ratio of number
of cameras, for which features are computed, to the total number of available
cameras. A sample of such a measurement is shown in Figure 3 for a specific
player (digit=8, colour=0.25). It can be easily observed that the appearance
characteristics are noisy and sometimes missing in our scenario. Indeed, these
features cannot always be reliably measured for each frame because of occlusions,
illumination change, unfavourable shirt orientation with respect to the camera,
etc.



12 Amit Kumar K.C. et al.

0 200 400 600

0

5

10

15

Time (sec)

D
ig

it
 v

a
lu

e

Digit measurement

0 200 400 600

0

0.1

0.2

0.3

Time (sec)
C

o
lo

r 
v
a

lu
e

Shirt color measurement

Fig. 3: Shirt colour and digit measurement along time for a player (digit=8,
colour=0.25). Zero values indicate that no measurements are available.

4.2 Performance Metrics

We evaluate the performance of the proposed tracking algorithm based on the
well-known CLEAR-MOT metrics [12]. A standard metric for evaluating object
trackers is the Multiple Object Tracking Accuracy (MOTA), defined as:

MOTA = 1−
∑

t (mt + fpt + ret + swt)∑
t gt

, (6)

where gt is the number of ground-truth objects present at time t; mt, fpt, ret

and swt are the number of misses, false positives, track reinitializations and
track switches. We write, FP =

∑
t fpt,RE =

∑
t ret,SW =

∑
t swt,MS =∑

t mt,GT =
∑

t gt. A switching error occurs when the tracker starts following
another object, whereas a reinitialization error occurs when the tracker fails to
track the object at some time and a new track is assigned for the same object
later on. The error due to switching is more problematic as it might lead to
significant errors in higher level interpretation of the scene. An error due to a
miss means that the tracker does not have any estimate for the corresponding
ground truth. Similarly, a false positive represents that the tracker outputs some
estimate for which no ground truth position is available.

4.3 Results

Figure 4 compares the performance obtained by the proposed algorithm when
different set of appearance features are exploited. The results are obtained by
enabling (or disabling) certain features in the algorithm and running on the 15
minutes long video sequence. There are all together 7460 ground truth positions,
i.e., GT=7460. As we can see, the switches and re-initializations are reduced
substantially. However, the false positives increase slightly. When we incorporate
only the digit feature, it can be seen that digit features, even though they are
highly sparse, can disambiguate some tracks. However, the improvements are
not as ample as those from the colour feature. It can be justified due to the
fact that colour feature is available more often than the digit feature, and hence
some tracks might not have accumulated sufficient digit information. When both
features are used, not only the switches are reduced but also the gaps between
tracklets are bridged (thereby, reducing the re-initializations and misses). To
compute the tracking effectiveness, the authors of [9] applied their method on the
same APIDIS dataset. With their notion of MOTA, we achieve 94.5%, whereas
they achieve 92.8%.



Iterative Hypothesis Testing for Multi-object Tracking 13

SW RE FP MS
0

100

200

300

400

500

 

 

No appearance features, MOTA = 89.1%

Digit feature only, MOTA = 90.5%

Colour feature only, MOTA = 91.2%

Both features, MOTA = 92.2%

127117
81

64

229

158150
113

18 2027

441
412399 387

16

Fig. 4: Components of MOTA metric (15 min video) for different cases. Indeed,
exploitation of color and digit features help to reduce the errors.

We compare our results with other approaches namely [13, 14, 5, 7]. These
results have been adopted from [7] which have been computed just for 500 frames.
Therefore, we also ran our algorithm on the same 500 frames. The results are
shown in Table 1. As the results in [7] were computed only with colour, we also
used just the colour feature. From Table 1, we can see that the proposed method
outperforms several popular state-of-the-art methods, in scenarios relying on
target appearance estimation, but also in scenarios that only exploit detections
positions as input features. We explain the benefit observed in this latter case
by the progressive and conservative nature of our proposed aggregation process.
In case of matching ambiguities, instead of validating the shortest path (and
possibly committing an error), the algorithm waits for more observations. When
validating other unambiguous paths, their motion parameters are estimated more
accurately which, in turn, can benefit in resolving the ambiguities.

Table 1: MOTA metric, computed on 500 frames of the APIDIS dataset
Method MOTA

Track-before-detect [13] 0.614
Trajectory association [14] 0.781
K-shortest path [5] 0.586
Second order with exclusion [7] 0.735

Baseline: proposed method (position only) 0.828
Proposed method (position+colour feature) 0.864

In addition, our approach is applied on camera view 1 of the PETS’09 S2.L1
dataset. First, targets are detected by using the deformable parts model [15].
Then, 8-bin histograms are computed on RGB channels separately, which are
then stacked to obtain a 24-bin feature vector. The feature is considered reliable
only if the overlap between the bounding boxes is less than 20%. It takes only 42
seconds in MATLAB (3GHz 4-core CPU, 4 GB RAM), to estimate the feature
and process all 795 frames. It results in (MOTA, MOTP)=(0.83, 0.74), which
is competitive to several other tracking algorithms like Berclaz et al.[5] (0.82,
0.56), Breitenstein et al.[16] (0.75, 0.60) and Andriyenko et al. [17] (0.89, 0.56).
These performance metrics are extracted from [17].

5 Conclusion and Future Perspectives

The paper proposed a framework for matching of detections while exploiting
partial appearance features. It proceeds with hypothesis testing in an iterative



14 Amit Kumar K.C. et al.

framework which considers the input data at different time scales. The itera-
tive principle helps in aggregating the appearance observations on tracklets by
computing unambiguous local paths, thereby creating nodes with more reliable
appearance cues. It also reduces the size of the graphs, and thus the complexity,
handled by successive iterations of the algorithm. The multi-scale aspect allows
matching decisions to be taken at different time horizons and is elegantly em-
bedded in the framework. Future work will focus on the generalized inference of
tracklet appearance and also on investigating different scheduling mechanisms
for selecting key-node.

References

1. Ocakli, M., Dermirekler, M.: Video tracker system for traffic monitoring and anal-
ysis. In: IEEE Signal Processing and Communication Applications. (2007)

2. Piciarelli, C., Micheloni, C., Foresti, G.: Trajectory based anomalous event detec-
tion. IEEE Transactions on Circuits and Systems for Video Technology (2008)

3. Alahi, A., Boursier, Y., Jacques, L., Vandergheynst, P.: Sports players detection
and tracking with a mixed network of planar and omnidirectional cameras. In:
ICDSC, Como, Italy. (2009)

4. Jiang, H., Fels, S., Little, J.: A linear programming approach for multiple object
tracking. In: CVPR. (2007)

5. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-
shortest paths optimization. PAMI 33 (2011) 1806–1819

6. Pirsivash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms
for tracking a variable number of objects. In: CVPR. (2011)

7. Russell, C., Setti, F., Agapito, L.: Efficient second order multi-target tracking with
exclusion constraints. In: BMVC. (2011)

8. Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum weight
independent set. In: CVPR. (2011) 1273 –1280

9. Shitrit, H.B., Berclaz, J., Fleuret, F., Fua, P.: Tracking multiple people under
global appearance constraints. In: ICCV. (2011)

10. Delannay, D., Danhier, N., Vleeschouwer, C.D.: Detection and recognition of
sports(wo)men from multiple views. In: ICDSC, Como, Italy. (2009)

11. : (http://www.apidis.org/dataset/)
12. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance:

the clear mot metrics. J. Image Video Process. 2008 (2008) 1:1–1:10
13. Taj, M., Cavallaro, A.: Multi-camera track-before-detect. In: ICDSC, Como, Italy.

(2009)
14. Anjum, N., Cavallaro, A.: Trajectory association and fusion across partially over-

lapping cameras. In: AVSS. (2009) 201–206
15. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection

with discriminatively trained part based models. PAMI 32 (2010) 1627–1645
16. M. D. Breitenstein, F. Reichlin, B.L.E.K.M., Gool, L.V.: Online multiperson

tracking-by-detection from a single, uncalibrated camera. PAMI 33 (2011)
17. Anton Andriyenko, K.S., Roth, S.: Discrete-continuous optimization for multi-

target tracking. In: CVPR. (2012)


