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Abstract

Consider a semiparametric time-varying coefficients regression model of the fol-

lowing form: φ(S(z|X)) = βββ(z)tXXX, where φ is a known link function, S(·|X)

is the survival function of a response Y given a covariate X, XXX = (1,X,X2,

. . . ,Xp) and βββ(z) = (β0(z), . . . , βp(z))t is the unknown vector of regression co-

efficients. This model reduces for special choices of φ to e.g. the additive hazards

model or the Cox proportional hazards model with time dependent coefficients. The

response is subject to left truncation and right censoring. An omnibus goodness-of-

fit test is developed to test whether the model fits the data. A bootstrap version,

to approximate the critical values of the test, is proposed and proved to work from

a practical point of view as well. The test is also applied to real data.
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1 Introduction

In survival analysis, many models exist that account for the relationship between the

survival function and a certain number of covariates, e.g. the Cox proportional hazards

model, the log-logistic model or the accelerated failure time model. Cao and González-

Manteiga (2007) considered a very general model, which includes as special cases the above

mentioned models and where the response can also be subject to truncation, not only to

censoring as in the previous models. In all these models the influence of the covariates is

assumed to be constant over time except for variations in the baseline hazard function.

This is an unrealistic assumption in many applications (for instance the prognostic value

of a covariate measured at the begining of a study may decline over the follow-up period),

so it is important to develop methods that take into account this fluctuation. In the case of

censoring, many authors extended the Cox model to allow for time-dependent coefficients,

see e.g. Zucker and Karr (1990), Murphy and Sen (1991), Nan and Lin (2003), Cai and

Sun (2003), Lambert and Eilers (2004) and Kauermann (2005), among others. Also, other

time-dependent survival models have been considered, like the additive hazards model, see

for example Aalen (1980), Huffer and McKeague (1991) or McKeague and Sasieni (1998).

Jung (1996) extended the general model in Cao and González-Manteiga (2008) to allow

for time-varying coefficients, but only in the case where the observations are censored, the

covariates are discrete and the censoring is independent of the covariates. Subramanian

(2001) improved Jung’s model by relaxing the hypothesis of independence between the

censoring time and the covariates and Subramanian (2004) extended the model, to allow

for a one-dimensional continuous covariate. Teodorescu et al. (2008) extended this general

model, by allowing the response to be subject to right censoring and/or left truncation

and they used a least squares procedure instead of the maximum likelihood method used

in the above models.

It is of great use to have at hand a method to check the validity of the above mentioned

models. When the coefficients are time-independent, some work is available, like Andersen

(1982), Arjas (1988), Schoenfeld (1980), Gill and Schumacher (1987), Parzen and Lipsitz

(1999) for the Cox model, Yang (1998), Rossini, Wei and Ying (1996) and Chen (2001)

for the accelerated failure time model, Akritas (1996) for a general polynomial regression

model, Grigoletto and Akritas (1999) with a unifying methodology for the Cox model,

the additive risk model and the proportional odds model and Cao and González-Manteiga

(2008) for an extention of the work in Akritas (1996) and Grigoletto and Akritas (1999).

When the coefficients are time-dependent, little work is available, see e.g. Marzec and
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Marzec (1997) who proposed a goodness-of-fit test for the Cox model with time-dependent

coefficients and Kim and Lee (1998), Yuen and Burke (1997), Amir and McKeague (2000)

for the additive hazards model. Klein and Moeschberger (1997) proposed a graphical

method for assessing the fit of the additive hazards model.

We extend the methodology of Cao and González-Manteiga (2008) to the case when

the coefficients are time-dependent. We study this problem in the framework of the

generalized linear model presented in Teodorescu et al. (2008). We develop formal tests

of hypothesis, where previously only ad-hoc graphical methods were available. We show

that our approach works well on simulated data and apply it to data from a study on

larynx cancer.

More precisely, let Y denote the survival time, T the truncation time and C the

censoring time. When data are left-truncated and right-censored we observe (Z, T, δ)

only if Z ≥ T , where Z = min{Y, C} and δ = I{Y ≤C}. Let (Zi, Ti, δi, Xi), i = 1, . . . , n

be an iid sample from (Z, T, δ, X), where X is a (one-dimensional) covariate. We are

interested in the relationship between the survival function of Y , S(z|X) = P (Y > z|X)

and X. We like to test whether this relationship is of polynomial type, via a known

monotone transformation φ : [0, 1] → IR of the survival function, i.e.:

φ(S(z|X)) = β0(z) + β1(z)X + . . . + βp(z)Xp, (1.1)

for some known p. No assumption is made on the form of the survival function S(z|X),

except for the usual smoothness assumptions. Particular choices of φ give well known

models in survival analysis, but extended to time-dependent coefficients. The choice

φ(u) = log( u
1−u

) gives the logistic model, φ(u) = − log(u) gives the additive risk model

and φ(u) = log(− log(u)) leads to the proportional hazards model.

The appropriateness of the parametric modelling of regression data may be judged

by comparison with a semi-parametric estimator of the response. For this purpose one

may use a squared deviation measure between the two fits. The sum of the squared

deviation over all the values of the covariates may be used as a test statistic for testing the

parametric model where the critical value is determined from the asymptotic distribution

of this statistic. The convergence to the distribution may be slow, so a bootstrap method

is proposed in order to estimate the critical values.

The paper is organized as follows. In the next section we introduce the test statistic

and its asymptotic distribution, while in Section 3 we present a bootstrap based method

for the approximation of the critical values of the test. Section 4 shows some numerical
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results, while the analysis of data on cancer of the larynx is conducted in Section 5.

Finally, Section 6 contains the proofs.

2 The test statistic

Let us first introduce the following notations: M(x) = P (X ≤ x), F (y|x) = P (Y ≤ y|x),

G(y|x) = P (C ≤ y|x) , L(y|x) = P (T ≤ y|x), H(y|x) = P (Z ≤ y|x), H1(y|x) =

P (Z ≤ y, δ = 1|x), L(y) = P (T ≤ y), H(y) = P (Z ≤ y), H1(y) = P (Z ≤ y, δ = 1),

C(y|x) = P (T ≤ y ≤ Z|x), and α(x) = P (T ≤ Z|X = x), which is the probability of

absence of truncation conditionally on X = x. For any distribution function W (t) =

P (η ≤ t), we denote the left and right support endpoints by aW = inf{t|W (t) > 0} and

bW = sup{t|W (t) < 1}, respectively. We define W ∗(t) = P (η ≤ t|T ≤ Z). Finally, let m

denote the density of X and m∗ the density of X conditionally on T ≤ Z.

If model (1.1) holds, then the coefficients βββ(z) can be estimated via a weighted least

squares procedure presented in Teodorescu et al. (2008). More precisely,

β̂̂β̂β(z) = (β̂0(z), β̂1(z), . . . , β̂p(z))t = (XXX tWWWXXX)−1XXX tWWWφ̂φφ(z), (2.1)

where

XXX =















1 X1 . . . Xp
1

1 X2 . . . Xp
2

...
...

. . .
...

1 Xn . . . Xp
n















, φ̂φφ(z) =















φ(Ŝn(z|X1))

φ(Ŝn(z|X2))
...

φ(Ŝn(z|Xn))















,

WWW = diag(w(X1), . . . , w(Xn)) is a trimmed function defined in terms of a proper weight

function w̃, as precised in condition (H11) in the Appendix and Ŝ(z|x) is the estimator of

the conditional distribution, proposed by Iglesias-Pérez and González-Manteiga (1999):

Ŝ(z|x) = 1 − F̂ (z|x) =
n
∏

i=1

(

1 − 1{Zi≤z,δi=1}Bni(x)

Cn(Zi|x)

)

,

where

Bni(x) =
K
(

x−Xi

h

)

∑n
j=1 K

(x−Xj

h

)

are Nadaraya-Watson weights, K is a known probability density function (kernel), h =

hn → 0 a bandwidth sequence, and Cn(u|x) =
∑n

j=1 1{Tj≤u≤Zj}Bnj(x). See Teodorescu et

al. (2008) for further details and asymptotic properties.
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Now we want to check the appropriateness of the semi-parametric model (1.1). For a

given φ and p we would like to test

H0 : for all z there exists a vector βββ(z) ∈ R
p+1 such that (1.1) holds,

against Ha : there exists a z such that (1.1) does not hold for any βββ(z) ∈ R
p+1.

A natural way to proceed is to measure the distance between φ̂φφ(z) and the hypothesized

model (1.1) and to use this distance as test statistic. Here we study a kind of L2 - distance

between these two:

Φ̂n(β̂ββ(z)) =
1

n

n
∑

r=1

(

φ(Ŝ(z|Xr)) − (β̂0(z) + β̂1(z)Xr + . . . + β̂p(z)Xp
r )
)2

Hence, it is reasonable to reject H0 when Φ̂n(β̂ββ(z)) is large. We measure this distance

for all values of z lying in an interval [a, b], where a and b are defined in condition (H2)(d)

in the Appendix, and define :

Tn =

∫ b

a

Φ̂n(β̂ββ(z))dz (2.2)

We should also multiply this quantity by a normalizing sequence in order to have a

limiting distribution. This leads to the following test statistic: nh1/2Tn. In order to obtain

the limiting distribution of this statistic under the null hypothesis, some conditions are

to be imposed. The conditions needed, (H1)-(H12), are collected in the Appendix.

Let us state our main result:

Theorem 2.1 Suppose that conditions (H1) through (H12) hold. Then, under H0,

nh1/2Tn − b0h
d−→ N(0, V ),

where b0h = h−1/2K(2)(0)

∫ b

a

∫

x

g(z, z, x)dxdz,

V = 2K(4)(0)

∫ b

a

∫ b

a

∫

x

g2(z1, z2, x)dxdz1dz2, (2.3)

g(z1, z2, x) = φ
′

(S(z1|x))φ
′

(S(z2|x))S(z1|x)S(z2|x)

∫ z1∧z2

a

dH∗
1(u|x)

C2(u|x)
. (2.4)

K(4) is the convolution of K(2), and K(2) is the convolution of K, that is K(2)(u) =
∫

K(v)K(u + v) dv.
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Remark 1 In a similar way we can obtain the limiting distribution of the test statistic

nh1/2Tn when we have only discrete covariates or a combination of discrete covariates and

a one-dimensional continuous covariate. Note that in the case where we have only discrete

covariates, no smoothing is required, since the estimator of the survival function Ŝ(z|x)

is the Kaplan-Meier estimator extended to the case when we also have truncation (Tsai

et al (1987)).

3 Bootstrap version

The convergence of the distribution of the test statistic nh1/2Tn to a normal distribution

is quite slow, so that it seems more appropriate not to use the asymptotic critical values

in practice. We therefore compute the critical values based on a bootstrap method. The

procedure is as folows:

1. Choose a bandwidth h in the interval (0, µ(supp(X))) and a pilot bandwidth g

(larger than h), where µ is the Lebesgue measure.

2. For all z ∈ {Z1, . . . , Zn} and x ∈ {X1, . . . , Xn}:

a) Estimate S(z|x), G(z|x) and L(z|x) by Ŝg(z|x), Ĝg(z|x) and L̂g(z|x), respec-

tively, where

Ĝg(z|x) = 1−
n
∏

i=1

(

1 − 1{Zi≤z,δi=0}Bni(x)

Cn(Zi|x)

)

and L̂g(z|x) =

n
∏

i=1

(

1 − 1{Ti>z}Bni(x)

Cn(Ti|x)

)

,

and the subscript g indicates the bandwidth we are working with.

b) Replace S(z|x) by Ŝg(z|x) in (1.1) and estimate β0(z), . . . , βp(z) by the least

squares estimator in (2.1) to obtain β̂0,g(z), . . . , β̂p,g(z). Plug-in these estima-

tors into (1.1) and re-estimate S(z|x) by

S̃g(z|x) = φ−1(β̂0,g(z) + β̂1,g(z)x + . . . + β̂p,g(z)xp). (3.1)

3. For b = 1, . . . , B:

a) For every i = 1, . . . , n draw random observations Y ∗
i , C∗

i and T ∗
i from S̃g(·|Xi),

Ĝg(·|Xi) and L̂g(·|Xi), respectively. Compute Z∗
i = min{Y ∗

i , C∗
i }, δ∗i = 1{Y ∗

i
≤C∗

i
}

and simulate new values Y ∗
i , C∗

i and T ∗
i if T ∗

i > Z∗
i .
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b) Use this resample {(T ∗
1 , Z∗

1 , δ
∗
1, X1), . . . , (T ∗

n , Z∗
n, δ

∗
n, Xn)} to estimate a bootstrap

version of the conditional survival function, Ŝ∗
h(z|Xi) (i = 1, . . . , n) using the

bandwidth h. This bootstrap version is used to obtain the bootstrap vector of

coefficients β̂ββ
∗(b)

h =
(

β̂
∗(b)
0,h (z), . . . , β̂

∗(b)
p,h (z)

)

using the least squares estimator,

and to obtain the bootstrap version Φ̂∗
n

(

β̂ββ
∗(b)

h (z)
)

of Φ̂n

(

β̂ββ(z)
)

.

c) Compute the bootstrap version of the test statistic nh1/2Tn, which is given by:

nh1/2T ∗
n,b = nh1/2

∫ b

a

Φ̂∗
n

(

β̂ββ
∗(b)

h (z)
)

dz.

4. Order the obtained test statistics and take nh1/2T ∗
n,[(1−α)B] which approximates the

(1 − α)-quantile of the distribution of nh1/2Tn under H0.

5. If nh1/2Tn > nh1/2T ∗
n,[(1−α)B], then reject H0, otherwise do not reject H0.

Remark 2 The asymptotic validity of a slight variation of the above bootstrap proce-

dure has been established by Iglesias-Pérez and González-Manteiga (2003). In fact, they

resampled from Ŝg(z|Xi), Ĝg(z|Xi) and L̂g(z|Xi) for each Xi (i = 1, . . . , n) in order to

obtain Y ∗
j , C∗

j and T ∗
j respectively. Bootstrapping from S̃ instead of Ŝ allows us to actu-

ally mimic the model.

Remark 3 Note that the estimator S̃(z|x) of the conditional survival function in (3.1) is

in general non-monotone. A convenient and satisfactory solution is to keep the estimator

constant until it starts decreasing again.

4 Numerical results

In this section, we study the finite sample properties of the proposed test. We will first

deal with the case of a one-dimensional continuous covariate, under censoring. Next, we

will study the performance of the test when truncation is also present.

Along the simulations, the following two models are considered:

φ(S(z|x)) = β0(z) + β1(z)x + β2(z) sin
(πx

2

)

(4.1)

φ(S(z|x)) = β0(z) + β1(z)x + β2(z) exp

(

2x

3

)

. (4.2)
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For model (4.1), X ∼ U [4, 10], Y |X=x ∼ Exp
(

4x + a1 sin
(

πx
2

))

, C|X=x ∼ Exp(d1x),

where d1 > 0 determines the censoring probability, T |X=x ∼ Exp(r1x), where r1 > 0 con-

trols the probability of truncation and φ(u) = − log(u) (additive hazards model), which

gives the true model φ(S(z|x)) = 4zx + a1 sin
(

πx
2

)

. The sample size is taken n = 100,

M = 1000 Monte Carlo simulations are conducted, B = 500 bootstrap resamples are

being generated, d1 is taken in order to give 20% and 40% of censoring, respectively,

r1 is taken in order to give 10% and 20% of truncation, respectively. Since we have a

one-dimensional continuous covariate, a bandwidth, h, is needed in order to estimate

S(z|x). We worked with h ∈ {1.2, 1.5, 1.8, 2.1, 2.4} and the pilot bandwidth in the boot-

strap procedure was taken to be g = 2h. This is a reasonable choice since g has to be

asymptotically larger than h2 (see Cao and González-Manteiga (2008) for more details

and Härdle and Mammen (1993) for some insight about possible choices of g in the re-

gression case). The Nadaraya-Watson weights are calculated based on the Epanechnikov

kernel K(u) = 1{−1≤u≤1} · 3(1 − u2)/4 and the weight function w̃(x) = 1{4.35≤x≤9.65} has

been chosen in order to avoid boundary problems. The level of the test was taken to be

α = 0.05, H0 is model (4.1) for a1 = 0, while as alternatives to H0 we have considered

model (4.1) for a1 ∈ {4, 8, 12, 16, 20}. As a1 becomes larger, the departure from H0 also

increases.

Table 1 displays the results for model (4.1) under censoring. We see that, as expected,

the results for 20% censoring are better than those for 40% censoring and that as a1

increases (we go further away from H0), the power of the test also increases, to get to

0.945 when a1 = 20 under 20% censoring. We also notice that the choice of h has an

influence on the results. Under H1 there are some cases where the power of the test varies

with 0.2 (see a1 = 20, 40% censoring), while generally we have a variation of 0.1 or less.

Under H0 we have smaller fluctuations (maximum of 0.05) and we see that usually the

power is either underestimated or overestimated.

Table 2 contains the results for model (4.1) under both censoring and truncation. The

results are similar to those of Table 1. We notice that the results for 20% censoring are

better than those for 40% censoring and also that 10% truncation displays better results

than 20% truncation.
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Cens H0 H1

perc h a1 = 0 a1 = 4 a1 = 8 a1 = 12 a1 = 16 a1 = 20

20 1.2 0.031 0.077 0.200 0.445 0.752 0.931

1.5 0.029 0.114 0.261 0.531 0.788 0.945

1.8 0.039 0.113 0.305 0.534 0.820 0.945

2.1 0.075 0.122 0.315 0.525 0.801 0.943

2.4 0.080 0.140 0.275 0.422 0.650 0.870

40 1.2 0.024 0.051 0.107 0.225 0.420 0.660

1.5 0.021 0.050 0.151 0.294 0.519 0.762

1.8 0.038 0.065 0.180 0.325 0.535 0.757

2.1 0.051 0.082 0.157 0.296 0.506 0.701

2.4 0.068 0.106 0.134 0.231 0.376 0.562

Table 1: Power of the test for model (4.1) under censoring.
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Cens Trunc h H0 H1

perc perc a1 = 0 a1 = 4 a1 = 8 a1 = 12 a1 = 16 a1 = 20

20 10 1.2 0.051 0.067 0.191 0.385 0.662 0.893

1.5 0.056 0.104 0.238 0.432 0.733 0.939

1.8 0.057 0.107 0.227 0.445 0.768 0.960

2.1 0.064 0.116 0.244 0.441 0.804 0.923

2.4 0.068 0.139 0.269 0.395 0.693 0.857

20 1.2 0.061 0.076 0.167 0.373 0.651 0.872

1.5 0.026 0.092 0.199 0.421 0.702 0.931

1.8 0.037 0.071 0.233 0.433 0.794 0.901

2.1 0.036 0.111 0.269 0.415 0.692 0.912

2.4 0.038 0.091 0.270 0.372 0.833 0.842

40 10 1.2 0.035 0.059 0.081 0.213 0.398 0.676

1.5 0.047 0.063 0.141 0.286 0.461 0.691

1.8 0.023 0.054 0.157 0.316 0.536 0.734

2.1 0.024 0.073 0.156 0.278 0.497 0.706

2.4 0.025 0.095 0.143 0.234 0.366 0.535

20 1.2 0.041 0.060 0.090 0.204 0.412 0.645

1.5 0.046 0.059 0.135 0.273 0.458 0.692

1.8 0.031 0.053 0.141 0.312 0.556 0.725

2.1 0.028 0.071 0.122 0.226 0.492 0.699

2.4 0.032 0.092 0.127 0.330 0.359 0.522

Table 2: Power of the test for model (4.1) under censoring and truncation.

For model (4.2), X ∼ U [4, 10], Y |X=x ∼ Exp
(

x + a1 exp
(

2x
3

))

, C|X=x ∼ Exp(d2x),

where d2 > 0 determines the censoring probability, T |X=x ∼ Exp(r2x), where r2 > 0

controls the probability of truncation and φ(u) = − log(u) (additive hazards model),

which gives the true model φ(S(z|x)) = zx + a2 exp
(

2x
3

)

. The sample size is taken
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n = 100, M = 1000 Monte Carlo simulations are conducted, B = 500 bootstrap resamples

are being generated, d2 is taken in order to give 20% and 40% of censoring, respectively,

r2 is taken in order to give 10% and 20% of truncation, respectively. We worked with

h ∈ {1.2, 1.5, 1.8, 2.1, 2.4}, g = 2h, the Nadaraya-Watson weights are computed as before,

based on the Epanechnikov kernel and the weight function w̃(x) is the same as for model

(4.1). The level of the test was taken to be α = 0.05, H0 is model (4.2) for a2 = 0,

while the alternative, H1, is model (4.2) for values of a2 in {0.01, 0.1, 1, 10, 100}. As a2

increases, we go further away from H0.

Cens h H0 H1

perc a2 = 0 a2 = 0.01 a2 = 0.1 a2 = 1 a2 = 10 a2 = 100

20 1.2 0.025 0.088 0.412 0.594 0.630 0.624

1.5 0.024 0.089 0.538 0.770 0.811 0.821

1.8 0.036 0.140 0.683 0.914 0.934 0.927

2.1 0.065 0.172 0.821 0.961 0.970 0.966

2.4 0.077 0.240 0.852 0.970 0.978 0.978

40 1.2 0.020 0.050 0.390 0.588 0.645 0.602

1.5 0.025 0.073 0.490 0.748 0.780 0.771

1.8 0.037 0.092 0.607 0.861 0.935 0.896

2.1 0.054 0.146 0.739 0.919 0.957 0.951

2.4 0.068 0.169 0.817 0.953 0.896 0.946

Table 3: Power of the test for model (4.2) under censoring.

Table 3 shows the results for model (4.2) under censoring. We remark more or less

the same features as for model (4.1) under censoring.
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Cens Trunc h H0 H1

perc perc a2 = 0 a2 = 0.01 a2 = 0.1 a2 = 1 a2 = 10 a2 = 100

20 10 1.2 0.056 0.104 0.417 0.621 0.662 0.644

1.5 0.062 0.126 0.495 0.723 0.749 0.780

1.8 0.043 0.157 0.580 0.829 0.862 0.829

2.1 0.074 0.153 0.653 0.859 0.890 0.893

2.4 0.080 0.175 0.733 0.908 0.931 0.928

20 1.2 0.054 0.091 0.456 0.595 0.637 0.691

1.5 0.069 0.088 0.528 0.702 0.736 0.759

1.8 0.078 0.145 0.615 0.789 0.845 0.860

2.1 0.080 0.143 0.695 0.835 0.885 0.885

2.4 0.076 0.169 0.721 0.886 0.900 0.915

40 10 1.2 0.043 0.074 0.378 0.598 0.603 0.601

1.5 0.041 0.097 0.442 0.669 0.702 0.719

1.8 0.055 0.118 0.525 0.732 0.780 0.814

2.1 0.069 0.129 0.568 0.821 0.844 0.854

2.4 0.068 0.155 0.637 0.896 0.888 0.906

20 1.2 0.061 0.088 0.405 0.578 0.607 0.622

1.5 0.059 0.123 0.470 0.682 0.709 0.712

1.8 0.075 0.140 0.550 0.765 0.777 0.800

2.1 0.062 0.144 0.573 0.792 0.829 0.848

2.4 0.098 0.153 0.627 0.794 0.870 0.871

Table 4: Power of the test for model (4.2) under censoring and truncation.

Table 4 displays the results for model (4.2) under both censoring and truncation and

they look similar to those of Table 2, for model (4.1) under censoring and truncation: the

power of the test decreases with the augmentation of the censoring and the truncation

percentage. We also notice that there is little difference between the power of the test
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for H1 with a2 = 10 and a2 = 100. That is because the multiplication factor for a2 is

exponential, and that as a2 becomes larger, the models (curves) become similar, in the

sense that while comparing them with a line, the difference is almost the same.

5 Data analysis

The methods presented in the previous sections have been applied to data on larynx cancer

previously studied by Klein and Moeschberger (1997). The data consist of 90 observations

about males suffering from larynx cancer. Patients are classified in four groups, according

to the stage of their disease. For each individual i (i = 1, . . . , 90) we observe the time-to-

death or on-study, Zi, the death indicator δi (0=alive, 1=dead), the stage of the disease

and the age at diagnosis.

The model considered by Klein and Moeschberger (1997) is the additive hazards model,

which can be written in the following form:

φ(S(z|XXX)) = β0(z) + β1(z)X1 + β2(z)X2 + β3(z)X3 + β4(z)X4, (5.1)

where φ(u) = − log(u), Xi is the indicator of being at stage i + 1 (i = 1, 2, 3) and X4 is

the age at diagnosis minus its mean (64.11 years).

They verified if the assumptions for the additive hazards model hold by two types of

diagnostic plots suggested by Aalen (1993) (see Chapter 11.7 in Klein and Moeschberger

(1997) for more details). Both plots showed no indication of incorrect modeling.

By using our proposed method, we will test

H0 : for all z there exists a vector βββ(z) ∈ R
5 such that (5.1) holds,

against Ha : there exists a z such that (5.1) does not hold for any βββ(z) ∈ R
5.

Under H0, Teodorescu et al. (2008) calculated the estimator (2.1) of the coefficients

βi(z) (i = 0, . . . , 4) and selected the optimal bandwidth h = 25 by means of a bootstrap

method (see Teodorescu et al. (2008) for more details on how to select the bandwidth based

on the bootstrap). In order to test H0 against Ha, we took h = 25, g = 1.5h, α = 0.05

and we conducted 10000 bootstrap simulations. The estimated p-value was found to be

0.1918. Hence, we do not reject H0, i.e. we conclude that the additive regression model

is appropriate for these data, which agrees with the graphical tests carried out by Klein

and Moeschberger (1997).
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6 Appendix

6.1 Conditions

We now state the conditions mentioned in Theorem 2.1. Conditions (H1)–(H6) below are

taken from Iglesias-Pérez and González-Manteiga (1999), on which our proof is based.

Condition (H2) comes from Dabrowska (1989) and is needed in order to stay away from the

boundaries of the domain of the covariate while estimating the survival function S(z|x),

to avoid boundary effects.

(H1) X, Y, T, C are absolutely continuous random variables (r.v.).

(H2) (a) Let I = [x1, x2] be an interval contained in the support of m∗, such that

0 < γ = inf{m∗(x) : x ∈ Iδ} < sup{m∗(x) : x ∈ Iδ} = Γ < ∞

for some Iδ = [x1 − δ, x2 + δ] with δ > 0 and 0 < δΓ < 1.

(b) For all x ∈ I the r.v. Y, T, C are independent conditionally on X = x.

(c) aL(·|x) ≤ aH(·|x) and bL(·|x) ≤ bH(·|x) for all x ∈ Iδ.

(d) There exist a < b ∈ R satisfying

inf{α−1(x)(1 − H(b|x))L(a|x) : x ∈ Iδ} ≥ θ > 0.

(H3) The first and second derivatives with respect to x of the functions m(x), m∗(x) and

α(x) exist and are continuous in Iδ and m∗(x) has bounded second derivative.

(H4) All first and second derivatives with respect to x and y of the functions L(y|x), H(y|x)

and H1(y|x) exist and are continuous and bounded in (y, x) ∈ [0,∞) × Iδ.

(H5) The corresponding (improper) densities of the distribution (subdistribution) func-

tions L(y), H(y) and H1(y) are bounded away from 0 in [a, b].

(H6) The kernel function K is a symmetric density vanishing outside (−1, 1) and the

total variation of K is less than some λ < +∞.

(H7) The function φ is thrice continuously differentiable and its first, second and third

derivatives are bounded by N1 < ∞, N2 < ∞ and N3 < ∞, respectively.
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(H8) There exists some N4 < ∞ such that P (|X| ≤ N4) = 1.

(H9) The matrix AAA = (aij)
p
i,j=0, with aij = E(X i+jw(X)), is nonsingular.

(H10) h → 0 as n → ∞ and
log3 n

nh3
→ 0, nh4 → 0.

(H11) The weights w(x) are given by w(x) = I{x∈I}w̃(x), with I as defined in condition

(H2) and where w̃(x) satisfies w̃(x) ≥ 0 for all x, supx w̃(x) ≤ B for some B < ∞.

(H12) g(z1, z2, x) defined in (2.4) has bounded second derivative with respect to x.

6.2 Proof of Theorem 2.1

Using (2.2), we can write

Tn = Tn,1 + Rn,1 + Rn,2, (6.1)

with

Tn,1 =

∫ b

a

1

n

n
∑

r=1

[

φ(Ŝ(z|Xr)) − φ(S(z|Xr))
]2

dz

Rn,1 =

∫ b

a

1

n

n
∑

r=1

[

φ(S(z|Xr)) − (β̂0(z) + . . . + β̂p(z)Xp
r )
]2

dz (6.2)

Rn,2 =

∫ b

a

2

n

n
∑

r=1

[

φ(Ŝ(z|Xr)) − φ(S(z|Xr))
] [

φ(S(z|Xr)) − (β̂0(z) + . . . + β̂p(z)Xp
r )
]

dz

(6.3)

where Rn,1 and Rn,2 are op(n
−1h−1/2) by Lemma 6.6 below. The leading term Tn1 of

equation (6.1) can be easily handled using a Taylor expansion of φ around S(z|Xr):

Tn,1 =

∫ b

a

1

n

n
∑

r=1

[

φ
′

(S(z|Xr))(Ŝ(z|Xr) − S(z|Xr)) +
1

2
φ

′′

(∆r(z))(Ŝ(z|Xr) − S(z|Xr))
2

]2

dz

= Tn,2 + Rn,3 + Rn,4

(6.4)
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with ∆r(z) in between S(z|Xr) and Ŝ(z|Xr),

Tn,2 =

∫ b

a

1

n

n
∑

r=1

φ
′

(S(z|Xr))
2(Ŝ(z|Xr) − S(z|Xr))

2dz

Rn,3 =

∫ b

a

1

n

n
∑

r=1

1

4
φ

′′

(∆r(z))2(Ŝ(z|Xr) − S(z|Xr))
4dz = op(n

−1h−1/2) (6.5)

Rn,4 =

∫ b

a

1

n

n
∑

r=1

φ
′

(S(z|Xr))φ
′′

(∆r(z))(Ŝ(z|Xr) − S(z|Xr))
3dz = op(n

−1h−1/2), (6.6)

where the order of Rn,3 and Rn,4 follows from the fact that sup
x∈I

sup
a≤z≤b

|Ŝ(z|x) − S(z|x)| =

Op

(

(ln n)1/2(nh)−1/2
)

(see Lemma 5 in Iglésias-Pérez and Gonzalez-Manteiga (1999)).

By the iid representation for Ŝ(z|Xr), given in Iglésias-Pérez and Gonzalez-Manteiga

(1999),

Tn,2 =

∫ b

a

1

n

n
∑

r=1

φ
′

(S(z|Xr))
2

[

S(z|Xr)
n
∑

i=1

Bni(Xr)ξ(Zi, Ti, δi, Xr, z) + R
′

n(z|Xr)

]2

dz

= Tn,3 + Rn,5 + Rn,6,

(6.7)

where

ξ(Z, T, δ, x, z) =
1{Z≤z,δ=1}

C(Z|x)
−
∫ z

0

1{T≤u≤Z}

C2(u|x)
dH∗

1 (u|x) (6.8)

and

sup
z∈[a,b]

x∈I

|R′

n(z|x)| = Op

(

( log n

nh

)3/4
)

. (6.9)

Tn,3 =

∫ b

a

1

n

n
∑

r=1

φ
′

(S(z|Xr))
2S(z|Xr)

2

[

n
∑

i=1

Bni(Xr)ξ(Zi, Ti, δi, Xr, z)

]2

dz

Rn,5 = op(n
−1h−1/2)

Rn,6 = Op

(

(Tn,3)
1/2 ·

(

ln n

nh

)3/4
)

. (6.10)

By Lemma 6.5 below, we get that Rn,6 = op(n
−1h−1/2).

The term Tn,3 can be decomposed in the following way:
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Tn,3 =

∫ b

a

1

n

n
∑

r=1

[

n
∑

i=1

Bni(Xr)ǫi(z) + ∆(7)
r (z)

]2

dz

=

∫ b

a

1

n

n
∑

r=1

[

n
∑

i=1

Bni(Xr)ǫi(z)

]2

dz +

∫ b

a

1

n

n
∑

r=1

[

∆(7)
r (z)

]2
dz

+

∫ b

a

1

n

n
∑

r=1

n
∑

i=1

Bni(Xr)ǫi(z)∆(7)
r (z)dz = Tn,4 + Rn,7 + Rn,8,

(6.11)

with

ǫi(z) = φ
′

(S(z|Xi))S(z|Xi)ξ(Zi, Ti, δi, Xi, z)

∆(7)
r (z) =

n
∑

i=1

Bni(Xr)
(

φ
′

(S(z|Xr))S(z|Xr)ξ(Zi, Ti, δi, Xr, z)−

− φ
′

(S(z|Xi))S(z|Xi)ξ(Zi, Ti, δi, Xi, z)
)

.

The terms Rn,7 and Rn,8 are op(n
−1h−1/2) by Lemma 6.4 below.

By defining bnij = n−1
∑n

r=1 Bni(Xr)Bnj(Xr), Tn,4 can be decomposed into two new

terms:

Tn,4 =

∫ b

a

1

n

n
∑

r=1

[

n
∑

i=1

Bni(Xr)ǫi(z)

]2

dz = Tn,5 + Rn,9 (6.12)

with Tn,5 =
∫ b

a
2
∑

i<j bnijǫi(z)ǫj(z)dz and

Rn,9 =

∫ b

a

n
∑

i=1

bniiǫ
2
i (z)dz. (6.13)

In Lemma 6.3 it is shown that

Rn,9 =
1

nh

(
∫ b

a

∫

x

g(z, z, x)dxdz

)

K(2)(0) + op(n
−1h−1/2). (6.14)

To analyse Tn,5, define b̃nij = n−1
∑n

r=1 B̃ni(Xr)B̃nj(Xr) with B̃ni(Xr) = (nh)−1

K
(

Xr−Xi

h

)

m∗(Xr)
−1. Then,

Bni(Xr) =
K
(

Xr−Xi

h

)

nh
· 1

m̂∗(Xr)
= B̃ni(Xr) + Bni(Xr)

m∗(Xr) − m̂∗(Xr)

m∗(Xr)
,

where m̂∗(x) is the Parzen-Rosenblatt estimator of m(x):
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m̂∗(x) =
1

nh

n
∑

i=1

K

(

x − Xi

h

)

,

which implies that

bnij = b̃nij +
1

n

n
∑

r=1

B̃ni(Xr)Bnj(Xr)
m∗(Xr) − m̂∗(Xr)

m∗(Xr)

+
1

n

n
∑

r=1

Bni(Xr)B̃nj(Xr)
m∗(Xr) − m̂∗(Xr)

m∗(Xr)

+
1

n

n
∑

r=1

Bni(Xr)Bnj(Xr)
(m∗(Xr) − m̂∗(Xr))

2

m∗(Xr)2
,

and this leads to Tn,5 = Tn,6 + Rn,10 + Rn,11 + Rn,12, with

Tn,6 =

∫ b

a

2
∑

i<j

b̃nijǫi(z)ǫj(z)dz (6.15)

Rn,10 =

∫ b

a

2

n

∑

i<j

n
∑

r=1

B̃ni(Xr)Bnj(Xr)
m∗(Xr) − m̂∗(Xr)

m∗(Xr)
ǫi(z)ǫj(z)dz (6.16)

Rn,11 =

∫ b

a

2

n

∑

i<j

n
∑

r=1

Bni(Xr)B̃nj(Xr)
m∗(Xr) − m̂∗(Xr)

m∗(Xr)
ǫi(z)ǫj(z)dz (6.17)

Rn,12 =

∫ b

a

2

n

∑

i<j

n
∑

r=1

Bni(Xr)Bnj(Xr)
[m∗(Xr) − m̂∗(Xr)]

2

m∗(Xr)2
ǫi(z)ǫj(z)dz. (6.18)

From Lemma 6.2 we have that Rn,10, Rn,11 and Rn,12 are op(n
−1h−1/2), while from

Lemma 6.1 we get that √
n2hTn,6

d−→ N(0, V ).

The result now follows, since we have shown that

Tn = Tn,6 +

12
∑

k=1

Rn,k,

where all Rn,k (k = 1, . . . , 12) are op(n
−1h−1/2), except Rn9, whose asymptotic expression

is given in (6.14).

6.3 Lemmas and proofs

For more details on the proofs of the following lemmas, see the PhD thesis of Teodorescu

(2008).
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Lemma 6.1 √
n2hTn,6

d−→ N(0, V ),

with Tn,6 and V defined in (6.15) and (2.3), respectively.

Proof: Write

Var(Tn,6) = Var

(

2
∑

i<j

b̃nij

∫ b

a

ǫi(z)ǫj(z)dz

)

= 4
∑

i<j

∑

k<l

Cov

(

b̃nij

∫ b

a

ǫi(z)ǫj(z)dz, b̃nkl

∫ b

a

ǫk(z)ǫl(z)dz

)

.

Using that i < j, k < l and E(ǫi(z)|Xi) = 0, we obtain (where X̃XX = (X1, . . . , Xn))

Cov

(

b̃nij

∫ b

a

ǫi(z)ǫj(z)dz, b̃nkl

∫ b

a

ǫk(z)ǫl(z)dz

)

= E

(

Cov

(

b̃nij

∫ b

a

ǫi(z)ǫj(z)dz, b̃nkl

∫ b

a

ǫk(z)ǫl(z)dz|X̃XX
))

+

+Cov

(

E

(

b̃nij

∫ b

a

ǫi(z)ǫj(z)dz|X̃XX
)

, E

(

b̃nkl

∫ b

a

ǫk(z)ǫl(z)dz|X̃XX
)

)

= E

(

b̃nij b̃nklCov

(
∫ b

a

ǫi(z)ǫj(z)dz,

∫ b

a

ǫk(z)ǫl(z)dz|X̃XX
)

)

=















E
(

b̃2
nijVar

(

∫ b

a
ǫi(z)ǫj(z)dz|Xi, Xj

))

= E

(

b̃2
n12g2(X1, X2)

)

, if i = k < j = l

0, otherwise

where

g2(X1, X2) =

∫ b

a

∫ b

a

g(z1, z2, X1)g(z1, z2, X2)dz1dz2,

with g(z1, z2, x) defined in (2.4). Hence,

Var(Tn,6) = 4 · n(n − 1)

2
E

(

b̃2
n12g2(X1, X2)

)

=
2(n − 1)

n(nh)4

[

(n−2)(n−3)E

(

K
(

X3−X1

h

)

K
(

X3−X2

h

)

m∗(X3)2
· K

(

X4−X1

h

)

K
(

X4−X2

h

)

m∗(X4)2
g2(X1, X2)

)

+(n − 2)E

(

K
(

X3−X1

h

)2
K
(

X3−X2

h

)2

m∗(X3)4
g2(X1, X2)

)

+4(n − 2)E

(

K (0) K
(

X1−X2

h

)

m∗(X1)2
· K

(

X4−X1

h

)

K
(

X4−X2

h

)

m∗(X4)2
g2(X1, X2)

)
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+2E

(

K (0)2 K
(

X1−X2

h

)2

m∗(X1)2m∗(X2)2
g2(X1, X2)

)

+E

(

K (0)2 K
(

X1−X2

h

)2

m∗(X1)4
g2(X1, X2)

)]

Standard calculations lead to

E

(

K
(

X3−X1

h

)

K
(

X3−X2

h

)

m∗(X3)2
· K

(

X4−X1

h

)

K
(

X4−X2

h

)

m∗(X4)2
g2(X1, X2)

)

= h3

∫

v

(K ∗ K(v))2dv

∫ b

a

∫ b

a

∫

x

g(z1, z2, x)2dxdz1dz2 + O(h4)

E

(

K
(

X3−X1

h

)

K
(

X3−X2

h

)

m∗(X3)4
g2(X1, X2)

)

= O(h2)

E

(

K(0)K
(

X1−X2

h

)

m∗(X1)2

K
(

X4−X1

h

)

K
(

X4−X2

h

)

m∗(X1)2
g2(X1, X2)

)

= O(h2)

E

(

K(0)2K
(

X1−X2

h

)2

m∗(X1)2m∗(X2)2
g2(X1, X2)

)

= O(h)

E

(

K(0)2K
(

X1−X2

h

)2

m∗(X1)4
g2(X1, X2)

)

= O(h)

So, by using (H10), we get

Var(Tn,6) =
2(n − 1)

n(nh)4

[

(n− 2)(n− 3)
[

h3

∫

v

K ∗K(v)2dv

∫ b

a

∫ b

a

∫

x

g2
1(z1, z2, x)dxdz1dz2

+O(h4)
]

+ O(n2h4) + O(nh2) + O(h)

]

=
2(n − 1)(n − 2)(n − 3)

n5h

(

K(4)(0)

∫ b

a

∫ b

a

∫

x

g2
1(z1, z2, x)dxdz1dz2

)

+O(n−2) + O(n−3h−2) + O(n−4h−3) + O(n−4h−4)

=
2

n2h
K(4)(0)

∫ b

a

∫ b

a

∫

x

g2
1(z1, z2, x)dxdz1dz2 + o(n−2h−1)

In order to prove the asymptotic convergence, we will use the central limit theorem for

double sums given by de Jong (1987). Using the notations of that theorem, let W (n) =

Tn,6, with Wnij(VVV i,VVV j) = 2b̃nij

∫ b

a
ǫi(z)ǫj(z)dz and VVV i = (Xi, Zi, Ti, δi).
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Note that E(Wnij(VVV i,VVV j)|VVV i) = 0 and that

σ2
ij = E(W 2

nij) = 4E

{

b̃2
nijVar

[

∫ b

a

ǫi(z)ǫj(z)dz|Xi, Xj

]

}

=
4

n4h

(∫

v

K ∗ K(v)2dv

∫ b

a

∫ b

a

∫

x

g2(z1, z2, x)dxdz1dz2

)

+ o(n−4h−1)

so 1
σ2(n)

max
i

∑

j σ2
ij = O(n2hn−3h−1) = O(n−1) → 0

Hence, the first condition in de Jong (1987) is satisfied.

In order to check the second condition, we will use the same terminology as in de Jong

(1987), page 266:

E(W (n)4) = E
(

(Tn,6)
4
)

= GI + 6GII + 12GIII + 24GIV + 6GV (6.19)

with

GI =
∑

i<j

E(W 4
ij)

GII =
∑

i<j<k

(

E(W 2
ijW

2
ik) + E(W 2

jiW
2
jk) + E(W 2

kiW
2
kj)
)

GIII =
∑

i<j<k

(

E(W 2
ijWkiWkj) + E(W 2

ikWjiWjk) + E(W 2
kjWijWik)

)

GIV =
∑

i<j<k<l

(E(WijWikWljWlk) + E(WijWilWkjWkl) + E(WikWilWjkWjl))

GV =
∑

i<j<k<l

(

E(W 2
ijW

2
kl) + E(W 2

ikW
2
jl) + E(W 2

ilW
2
jk)
)

.

It is easy to show that GI = O(n−6h−3), GII = O(n−5h−2), GIII = O(n−5h−2),

GIV = O(n−4h−1), GV = CV n−4h−2 + o(n−4h−2), for some CV > 0 and that σ4(n) =

2GV + o(σ4(n)). Hence,

E ((Tn,6)
4)

σ4(n)
=

6GV + o(n−4h−2)

2GV + o(σ(n)4)
→ 3

So we get the desired result.

Lemma 6.2 Rn,10, Rn,11 and Rn,12 defined in (6.16), (6.17) and (6.18), respectively, are

op(n
−1h−1/2).
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Proof:

Rn,10 =

∫ b

a

2

n

∑

i<j

n
∑

r=1

B̃ni(Xr)Bnj(Xr)
m∗(Xr) − m̂∗(Xr)

m∗(Xr)
ǫi(z)ǫj(z)dz

=
2

n

∑

i<j

n
∑

r=1

m∗(Xr) − m̂∗(Xr)

m∗(Xr)
B̃ni(Xr)Bnj(Xr)

∫ b

a

ǫi(z)ǫj(z)dz

= 2
∑

i<j

b̃
(1)
nij

∫ b

a

ǫiǫjdz

with b̃
(1)
nij = n−1

∑n
r=1

m∗(Xr)−m̂∗(Xr)
m∗(Xr)

B̃ni(Xr)Bnj(Xr). For any ǫ > 0 we have that

P (|Rn,10| > Kn−1h−1/2) = A1 · B1 + A2 · B2, with

A1 = P (Rn,10 > Kn−1h−1/2| inf
x

m̂∗(x) > ǫ), B1 = P (inf
x

m̂∗(x) > ǫ)

A2 = P (|Rn,10| > Kn−1h−1/2| inf
x

m̂∗(x) ≤ ǫ), B2 = P (inf
x

m̂∗(x) ≤ ǫ)

Note that B1 ≤ 1 and A2 ≤ 1. Moreover, E(Rn,10| inf
x

m̂∗(x) > ǫ) = 0 and similar

calculations as those done in the proof of Lemma 6.1 lead to Var(Rn,10| inf
x

m̂∗(x) > ǫ) =

o(n−2h−1), provided that sup
x

|m̂∗(x) − m∗(x)| = op(1). This proves that A1 = o(1).

Next we will prove that B2 = op(1).

It is clear that

m∗(x) ≤ m̂∗(x) + sup
x

|m̂∗(x) − m∗(x)|,

thus

inf
x

m̂∗(x) ≥ inf
x

m∗(x) − sup
x

|m̂∗(x) − m∗(x)|,

which implies that

B2 ≤ P

(

sup
x

|m̂∗(x) − m∗(x)| ≥ inf
x

m∗(x) − ǫ

)

→ 0, if ǫ < inf
x

m∗(x).

So we get Rn,10 = op(n
−1h−1/2).

In a similar way Rn,11 and Rn,12 are proved to be op(n
−1h−1/2).

Lemma 6.3

Rn,9 =
1

nh

(
∫ b

a

∫

x

g(z, z, x)dxdz

)

K(2)(0) + op(n
−1h−1/2)

where Rn,9 and g(z, z, x) are defined in (6.13) and (2.4), respectively.
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Proof: This term can be dealt with in the same way as the term ∆121 in the proof of

Theorem 2.1 in González-Manteiga and Cao (1993). Indeed,

Rn,9 =

∫ b

a

n
∑

i=1

bniiǫ
2
j (z)dz

=

∫ b

a

1

n3h2

n
∑

r=1

1

m̂∗(Xr)2

n
∑

i=1

K

(

Xr − Xi

h

)2

ǫ2
i (z)dz

= R
(1)
n,9 + R

(2)
n,9, (6.20)

where the terms R
(1)
n,9 and R

(2)
n,9 are given by

R
(1)
n,9 =

∫ b

a

1

n3h2

n
∑

r=1

1

m∗(Xr)2

n
∑

i=1

K

(

Xr − Xi

h

)2

ǫ2
i (z)dz

R
(2)
n,9 =

∫ b

a

1

n3h2

n
∑

r=1

m∗(Xr)
2 − m̂∗(Xr)

2

m̂∗(Xr)2m∗(Xr)2

n
∑

i=1

K

(

Xr − Xi

h

)2

ǫ2
i (z)dz =

∫ b

a

R
(3)
n,9(z)dz

Standard arguments, condition (H10) and Theorem B in Silverman (1978) imply that

R
(2)
n,9 ≤

∫ b

a

|R(3)
n,9(z)|dz ≤ Γ(1 + D)D

γ2
Rn9, (6.21)

where

D = sup
x

|m∗(x) − m̂∗(x)| = Op

(

(

ln h−1

nh

)1/2

+ h2

)

and

R
(2)
n,9 = Op

{[(

ln h−1

nh

)1/2

+h2

]

1

nh

}

= Op

{

n−3/2h−3/2(ln h−1)1/2 +n−1h
}

= op(n
−1h−1/2).

The mean and the variance of R
(1)
n,9 can be studied by using Taylor expansions:

E(R
(1)
n,9) =

1

nh

(
∫ b

a

∫

x

g(z, z, x)dxdz

)(
∫

t

K2(t)dt

)

+ O(n−1h),

Var(R
(1)
n,9) = O(n−4h−3),

which implies that

R
(1)
n,9 =

1

nh

(∫ b

a

∫

x

g(z, z, x)dxdz

)(∫

t

K2(t)dt

)

+ O(n−1h + n−2h−1.5) (6.22)

We now use (6.20), (6.21) and (6.22) to conclude.
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Lemma 6.4 Rn,7 and Rn,8 defined in (6.11) are op(n
−1h−1/2).

Proof: The term Rn,7 can be handled in a similar way as Tn5 in the proof of Theorem 2.1

in order to get rid of the random denominator in Bni(Xr). Thus, we get the following:

Rn,7 =

∫ b

a

1

n

n
∑

r=1

(

∆(7)
r (z)

)2
dz =

∫ b

a

(1 + op(1))
1

n

n
∑

r=1

n
∑

i,j=1

(

∆̃
(7)
rij(z)

)2

dz (6.23)

with ∆̃
(7)
rij(z) = B̃ni(Xr)B̃nj(Xr)ηri(z)ηrj(z) and

ηri(z) = φ
′

(S(z|Xr))S(z|Xr)ξ(Zi, Ti, δi, Xr, z) − φ
′

(S(z|Xi))S(z|Xi)ξ(Zi, Ti, δi, Xi, z).

It is clear that ∆̃
(7)
rij = 0 when r = i or r = j. On the other hand, using (6.8), we have

E(ξ(Z, T, δ, y, z)|X = x) =

∫ z

0

dH∗
1 (u|x)

C(u|y)
−
∫ z

0

C(u|x)

C(u|y)2
dH∗

1(u|y)

and

E(ξ(Z, T, δ, y, z)2|X = x) =

∫ z

0

dH∗
1 (u|y)

C(u|x)2

It is straightforward, but long and tedious to compute the order of E(∆̃
(7)
rij). Standard

arguments such as changes of variables and Taylor expansions lead to

E(∆̃
(7)
rij(z)) =



















0, if r = i or r = j

E(∆̃
(7)
123(z)) = O(n−2h4), if i 6= j 6= r

E(∆̃
(7)
122(z)) = O(n−2h−1), if i = j 6= r

uniformly in z. These results imply that

E

(

1

n

n
∑

r=1

n
∑

i,j=1

∆̃
(7)
rij(z)

)

= O(h4 + n−1)

which together with n−1
∑n

r=1

∑n
i,j=1 ∆̃

(7)
rij ≥ 0 and by Markov inequality, leads to

∫ b

a

1

n

n
∑

r=1

n
∑

i,j=1

∆̃
(7)
rij(z)dz = Op(h

4 + n−1).

Now (6.23) implies that

Rn,7 =

∫ b

a

1

n

n
∑

r=1

(

∆(7)
r (z)

)2
dz = Op(h

4 + n−1). (6.24)

24



Rn,8 may be bounded by means of the Cauchy-Schwarz inequality:

|Rn,8| =

∣

∣

∣

∣

∣

∫ b

a

2
1

n

n
∑

r=1

n
∑

i=1

Bni(Xr)ǫi(z)∆(7)
r (z)dz

∣

∣

∣

∣

∣

≤ 2

∫ b

a

[

1

n

n
∑

r=1

( n
∑

i=1

Bni(Xr)ǫi(z)

)2]1/2

·
[

1

n

n
∑

r=1

(

∆(7)
r (z)

)2
]1/2

dz = op(n
−1h−1/2),

where n−1
∑n

r=1

(

∑n
i=1 Bni(Xr)ǫi(z)

)2

= Op(n
−1h−1).

Lemma 6.5 Rn,6 defined in (6.10) is op(n
−1h−1/2).

Proof: Note that

Rn,6 = Op

(

(

Tn,3

)1/2 ·
( lnn

nh

)3/4
)

.

From Lemma 6.1, 6.2, 6.3, condition (H10) and the fact that Tn,4 = Rn,9 +Tn,5 we get

√
n2h

(

∫ b

a

1

n

n
∑

r=1

(

n
∑

i=1

Bni(Xr)ǫi(z)

)2

dz

− 1

nh

(
∫ b

a

∫

x

g(z, z, x)dxdz

)

K(2)(0)

)

d−→ N(0, V ).

This limit distribution together with Lemma 6.4 gives that

√
n2hTn,3 − h−1/2K(2)(0)

∫ b

a

∫

x

g(z, z, x)dxdz
d−→ N(0, V ). (6.25)

As a consequence, Tn,3 = Op(n
−1h−1), thus Rn,6 = Op(n

−6/5h−1/2) = op(n
−1h−1/2).

Lemma 6.6 Rn,1 and Rn,2 defined in (6.2) and (6.3), respectively, are op(n
−1h−1/2).

Proof: Write

Rn,1 =

∫ b

a

1

n

n
∑

r=1

[

φ(S(z|Xr)) − (β̂0(z) + . . . + β̂p(z)Xp
r )
]2

dz

≤ 1

n

n
∑

r=1

∫ b

a

[

sup
z

max
r

|φ(S(z|Xr)) − β̂ββ(z)Xr|
]2

dz = op(n
−1h−1/2),
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and

Rn,2 =

∫ b

a

2

n

n
∑

r=1

[

φ(Ŝ(z|Xr)) − φ(S(z|Xr))
] [

φ(S(z|Xr)) − (β̂0(z) + . . . + β̂p(z)Xp
r )
]

dz

=

∫ b

a

2

n

n
∑

r=1

[

φ(Ŝ(z|Xr)) − φ(S(z|Xr))
]

(1, Xr, . . . , Xp
r )(βββ(z) − β̂ββ(z))dz

= Op(n
−1) = op(n

−1h−1/2),

where sup
z∈[a,b]

|βββ(z) − β̂ββ(z)| = Op(n
−1/2) by Corollary 2.2 in Teodorescu et al. (2008), and

where
∫ b

a
2n−1

∑n
r=1[φ(Ŝ(z|Xr)) − φ(S(z|Xr))](1, Xr, . . . , Xp

r ) = Op(n
−1/2) uniformly in

z.
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