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Abstract

Loosely speaking, actuaries believe that the heterogeneity of the risks tends to increase
dangerousness. This is turn leads to requiring more economic capital. This paper aims to
formalize this intuitive idea. More specifically, vectors of compound sums will be considered,
with different claim frequency distributions and/or different claim severity distributions. The
effect of increasing the heterogeneity will be studied with the help of majorization, allowing
for comparing the dispersion of the components of two vectors of real numbers. Various
multivariate integral stochastic orderings will be used to compare situations according to
their level of heterogeneity.

Key words and phrases: Majorization, Schur-increasingness, univariate and multivariate
stochastic orders, risk measures.



1 Introduction and motivation

Consider an insurance company with n lines of business. The number of claims of business
i in a certain period of time (one year, say) is a random variable Ni, where the random
variables N1, N2, . . . , Nn are independent. Claim amount of business i is represented as a
compound sum Xi =

∑Ni
j=1Ci,j where the claim severities Ci,j are independent and iden-

tically distributed, and independent of Ni. Moreover, X1, X2, . . . , Xn are assumed to be
independent. Note that we could also consider Ni as the number of claims filed by policy-
holder i, the Ci,j’s being the corresponding claim costs. In this case, Xi is the total amount
of claim for policy i.

Assume that the distribution of Ni belongs to some parametric family, that is, Pr[Ni ≤
t] = Fθi(t), t ∈ R, i = 1, . . . , n, where F = {Fθ, θ ∈ Θ} is a given parametric family of
distribution functions. Henceforth, we will sometimes denote Ni as Nθi to emphasize the
dependence on the parameter θi.

Now, consider another portfolio, where the claim amount of business i is Yi =
∑Nγi

j=1Di,j

where Nγi has distribution function Fγi in F . If we assume that the Ci,j’s and Di,k’s are
identically distributed then the two portfolios differ in the vector parameters θ = (θ1, · · · , θn)
and γ = (γ1, · · · , γn) of claim counts. The more dispersed the θi’s, the more heterogeneous
the portfolios. More precisely, switching from θ to γ larger in the sense of majorization,
that is increasing the heterogeneity, leads to an increase in dangerousness, as it will be
demonstrated in this paper. The dangerousness will be measured with the aid of reinsurance
premium (associated with stop-loss and largest claims reinsurance treaties) and economic
capital computed on the basis of classical risk measures (like TVaR and other coherent
Yaari-Wang distorted expectations).

Let us keep assumption that the Ci,j’s and Di,j’s are identically distributed for all the
values of i and j. If F is closed under convolution (or satisfies the semi-group property), in
the sense that the convolution Fθ1 ?Fθ2 of Fθ1 and Fθ2 is equal to Fθ1+θ2 , then it is clear that

n∑

i=1

θi =
n∑

i=1

γi ⇒
n∑

i=1

Xi =d

n∑

i=1

Yi,

where =d stands for the equality in distribution and means “is distributed as”. Provided∑n
i=1 θi =

∑n
i=1 γi, the heterogeneity has thus no effect on the aggregate claim amount.

This is the case for instance with Poisson distributed claim frequencies. In such a case, the
heterogeneity has no effect on the amount of economic capital. Nevertheless, we will see that
it does matter if we do not compare aggregate claims, but well functions f : Rn → R of the
Xi’s. In that respect, we will establish various multivariate stochastic inequalities between
the random vectors X and Y .

We will also consider the case where the Ci,j’s are identically distributed for fixed i, but
are allowed to have different distributions for different values of i. Then the distributional
equality between

∑n
i=1 Xi and

∑n
i=1 Yi no more holds and the heterogeneity will affect the

amount of economic capital and/or reinsurance premiums.
The paper is organized as follows. In Section 2, we recall the definition and some ba-

sic properties of the tools used in this paper. The concept of majorization, central in this
paper, is related to several classes of functions Rn → R. These functions generate multivari-
ate stochastic orderings that appear to be useful in risk theory. Section 3 considers claim
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severities Ci,j identically distributed for all i and j. The heterogeneity is at the frequency
level. The Poisson case is first considered, because of its importance in actuarial applica-
tions. Then, other count distributions with the semi-group property are examined. Section
4 allows for heterogeneity at the severity level. More precisely, the Ci,j’s are now assumed to
be independent and identically distributed for fixed i, but may have different distributions
for different values of i. The claim frequencies for the two portfolios are now identically
distributed. Two cases are discussed: first, Ci,j’s with the semi-group property and then
Ci,j’s in the same location-scale family. Section 5 considers that the heterogeneity is present
at both the frequency and the severity levels. To this end, a bivariate version of majorization
will be needed. The final Section 6 concludes.

To end with, let us stress the original point of view developed in this paper. Many papers
have recently been devoted to the increase in economic capital induced by the positive
dependence between the Xi’s. The main result is that the more the Xi’s are positively
dependent (in the sense of supermodular order, for instance), the more capital the insurer
needs (for any risk measure in agreement with the stop-loss order). In this paper, we keep
the mutual independence assumption about the Xi’s, and we examine the impact of the
heterogeneity of the portfolio on the economic capital required for the insurer or on various
reinsurance treaties. Departing from the homogeneous case turns out to be as dangerous as
departing from mutual independence.

2 Majorization, related classes of functions and inte-

gral stochastic orders

2.1 Majorization

In this section, we describe the concept of majorization arising as a measure of diversity of
the components of a n-dimensional vector. This concept will be used to compare θ and γ
involved in the distributions of the claim counts. Majorization has been comprehensively
treated by Marshall & Olkin (1979); a brief introduction is given by Arnold (1987)
and Denuit et al. (2005).

We aim to formalize the idea that the components of a vector x are “less spread out”
or “more nearly equal” than the components of y. In many cases, the appropriate precise
statement is “y majorizes x”. Majorization is a partial order defined on the positive orthant
Rn+. For a vector x ∈ Rn+ we denote its elements ranked in descending order as

x(1:n) ≥ x(2:n) ≥ . . . ≥ x(n:n).

Thus x(1:n) is the largest of the xi’s, while x(n:n) is the smallest.

Definition 2.1. Let x,y ∈ Rn+. The vector y is said to majorize x, which is denoted as
x�majy, if

k∑

i=1

x(i:n) ≤
k∑

i=1

y(i:n) for k = 1, 2, . . . , n− 1 and

n∑

i=1

xi =

n∑

i=1

yi
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or, equivalently, if

n∑

i=k

x(i:n) ≥
n∑

i=k

y(i:n) for k = 1, 2, . . . , n and

n∑

i=1

xi =

n∑

i=1

yi.

2.2 Schur-increasingness and related properties

Let us now recall several properties for functions f : Rn → R. To this end, remember that
an n× n matrix Π is said to be a permutations matrix if each row and column has a single
unit, and all other entries are zero. For a vector x ∈ Rn, the vector Πx is obtained by a
permutation of the elements of x.

Definition 2.2. Let x,y ∈ Rn, and f be a function Rn → R:

(i) f is increasing if x ≤ y coordinatewise, implies f(x) ≤ f(y); f is decreasing if −f is
increasing.

(ii) f is convex if for all α ∈ [0, 1], the inequality f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)
holds. This condition is equivalent to the Hessian matrix (∂2f/∂xi∂xj) being positive
semidefinite if f has second partial derivatives. f is concave if −f is convex.

(iii) f is convex in each variable, or componentwise convex, if the function fi : R → R
defined by

fi(ξ) = f(x1, . . . , xi−1, ξ, xi+1, . . . , xn)

is convex for every choice of x1, . . . , xi−1, xi+1, . . . , xn and for each i = 1, · · · , n. If
f has second partial derivatives this condition is equivalent to ∂2f/∂x2

i ≥ 0 for each
i = 1, . . . , n. f is componentwise concave if −f is componentwise convex.

(iv) f is supermodular if for any 1 ≤ i < j ≤ n and any nonegative ε, δ the following
inequality holds:

f(x1, · · · , xi + ε, · · · , xj + δ · · · , xn) + f(x1, · · · , xi, · · · , xj, · · · , xn)

≥ f(x1, · · · , xi + ε, · · · , xj, · · · , xn) + f(x1, · · · , xi, · · · , xj + δ · · · , xn).

The condition is equivalent to ∂2f/∂xi∂xj ≥ 0 for all i 6= j if f has second partial
derivatives. f is submodular if −f is supermodular.

(v) f is symmetric if for any permutation matrix Π, f(x) = f(xΠ).

(vi) f is Schur-increasing if f(x) ≤ f(y) for every pair x,y for which x�majy. f is Schur-
decreasing if −f is Schur-increasing.

Schur-increasing functions thus preserve majorization. Note that a Schur-increasing (de-
creasing) function must be a symmetric function in its arguments.
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2.3 Characterization of majorization

Let us now consider the following classes of functions:

C1 = {f : Rn → R|f is Schur increasing} .

C2 = {f : Rn → R|f is convex and symmetric} .

C3 =
{
f : Rn → R|f(x) =

∑n
j=1 g(xi) for some convex function g on R

}
.

C4 =
{
f : Rn → R|f(x) =

∑j
i=1 x(i:n) for some j = 1, . . . , n, or f(x) = −∑n

i=1 x(i:n)

}
.

C5 = {f : Rn → R|f is symmetric, submodular and componentwise convex} .

The first four classes have been introduced in Marshall & Olkin (1979, Chapter
11); class C5 has been introduced by Chang (1992). Marshall & Olkin (1979, p. 316)
established the following chain of inclusions:

C1 ⊃ C2 ⊃ C3 and C2 ⊃ C4. (2.1)

Chang (1992) supplemented this result with

C3 ⊂ C5 and C4 ⊂ C5. (2.2)

The following result is stated and proved in Chang (1992).

Property 2.3. For any x,y ∈ Rn, x �maj y ⇔ f(x) ≤ f(y) for all f ∈ C1 (resp. C2, C3,
C4, C5).

The concept of majorization can thus be alternatively defined with respect to any of the
5 classes of functions introduced above.

2.4 Univariate integral stochastic orders

2.4.1 Definition

Integral stochastic orders are defined with respect to some given classes of functions R→ R.
More specifically, given a class D of functions f : R → R, the integral stochastic order �D
generated by the class D is defined as follows: having two random variables X and Y , X is
smaller than Y in the �D-sense if E[f(X)] ≤ E[f(Y )] for al the functions f in D for which
the expectations exist. Integral stochastic orders �D have been studied, e.g., by Whitt
(1986) and Marshall (1991) for various choices of D. Stochastic dominance, stop-loss and
convex orders can be obtained in this way, as it will be seen below.

This section gives the definitions of the univariate stochastic orderings used in this paper,
as well as some intuitive interpretations. For more details about stochastic orderings, we
refer the reader, e.g., to Denuit et al. (2005).
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2.4.2 Stochastic dominance

Taking forD the class of the increasing functions yields the well-known stochastic dominance.
More specifically, given two random variables X and Y , X is said to be smaller than Y in the
stochastic dominance, written as X �st Y , if the inequality E[f(X)] ≤ E[f(Y )] holds true
for all the increasing functions f , provided the expectations exist. In the framework of von
Neumann-Morgenstern expected utility theory, �st thus expresses the common preferences
of all the profit-seeking decision-makers.

2.4.3 Stop-loss order

Taking for D the class of the increasing convex functions yields the increasing convex order,
better known as the stop-loss order in the actuarial community. More specifically, considering
two risks X and Y , X is said to be smaller than Y in the stop-loss order, henceforth denoted
by X �sl Y , if E[f(X)] ≤ E[f(Y )] holds for all the increasing and convex functions f for
which the expectations exist. Intuitively, the claim amount X is thus “less risky” than Y ,
since all decision makers with non-decreasing and concave utility functions, i.e. those being
profit seeking and risk averse, will prefer a loss of amount X to a loss of amount Y .

2.4.4 Convex order

Taking for D the class of the convex functions yields the convex order. This order can be
seen as a strengthening of the stop-loss order, obtained by requiring in addition that the
means of the risks to be compared are equal. More precisely, if X and Y are two risks,
X is said to be smaller than Y in the convex order, henceforth denoted by X �cx Y (or
sometimes by X �sl,= Y in the actuarial literature), if E[X] = E[Y ] and X �sl Y . The term
“convex” is used since X �cx Y ⇔ E[f(X)] ≤ E[f(Y )] for all convex functions f for which
the expectations exist, so that �cx expresses the common preferences of all the risk-averse
decision-makers.

2.5 Multivariate integral stochastic orders

2.5.1 Definition

The definition of the multivariate integral stochastic orders is a direct extension of the
univariate case, considering D as a class of functions Rn → R. In this paper, we will
consider the orderings obtained in this way with the classes C1, C2, C3, C4 and C5 introduced
above. More precisely, given two n-dimensional random vectors X and Y , if

E[f(X)] ≤ E[f(Y )] for all f ∈ Ci, (2.3)

provided the expectations exist, then X is said to be smaller than Y in the �Ci-order, which
is denoted as X �Ci Y . Applications of the �Ci-orders in reliability can be found in Chang
(1992).

The actuary can take advantage of the fact that a stochastic inequality of the type
X �Ci Y holds true, as it is shown in the next couple of examples.
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Example 2.4 (Excess-of-loss reinsurance and �C3). Let us assume that Xi represents
the total claim amount for policy i, i = 1, 2, . . . , n. If X �C3 Y is valid then the inequality

n∑

i=1

E[(Xi − di)+] ≤
n∑

i=1

E[(Yi − di)+] (2.4)

holds true for every set of retentions d1, . . . , dn. The pure premium for an excess-of-loss
treaty with retention di for policy i will be higher for the insurer facing Y than for the
insurer facing X.

Example 2.5 (Largest claims reinsurance and �C4). Ammeter (1964) proposed the
largest claims reinsurance treaty. In such a case, the reinsurer covers the claims for the j
policies with the highest costs. The reinsurer’s payout is then

∑j
i=1 X(i:n). If X �C4 Y is

valid then the inequality
j∑

i=1

E[X(i:n)] ≤
j∑

i=1

E[Y(i:n)] (2.5)

holds true for any j = 1, . . . , n.

We will see below that some of the �Ci-orders are well-known in the literature.

2.5.2 Stochastic majorization: (2.3) with C1

Nevius, Proschan & Sethuraman (1977) introduced the notion of stochastic majoriza-
tion as a tool to compare random vectors. Basically, Y is said to stochastically majorize X
when (2.3) holds with C1. Note that when X �C1 Y , we have that

∑n
i=1 Xi =d

∑n
i=1 Yi,

since both functions x 7→∑n
i=1 xi and x 7→ −∑n

i=1 xi are Schur-increasing.
The order �C1 is used in the next example, related to the results established in the next

sections of this paper.

Example 2.6. Recall that the family {fθ, θ ∈ Θ} of (discrete or continuous) probability
density functions possesses the semi-group property in θ if the convolution fθ1 ? fθ2 equals
fθ1+θ2. Equivalently, having independent random variables Xθ1 and Xθ2 with respective
densities fθ1 and fθ2, Xθ1 +Xθ2 has density fθ1+θ2 .

Let us consider a family {fθ, θ ∈ Θ} satisfying the semi-group property in θ as well as
the TP2-inequality

fθ1(x1)fθ2(x2) ≥ fθ2(x1)fθ1(x2) for all θ1 ≤ θ2 and x1 ≤ x2.

This condition means that the corresponding densities increase in θ in the likelihood ratio
order. A prominent example is furnished by the Poisson distribution.

Having g ∈ C1, let us now consider the auxiliary function g? : Θn → R defined as

g?(θ) = E[g(Xθ1, . . . , Xθn)]

for independent random variables Xθ1 , . . . , Xθn with respective probability density functions
fθ1 , . . . , fθn. Proschan & Sethuraman (1977) proved that the family {fθ, θ ∈ Θ} pos-
sesses the stochastic Schur-increasing property, in the sense that the Schur-increasingness is
transmitted from g to g?, that is g ∈ C1 ⇒ g? ∈ C1. This in turn implies

θ �maj γ ⇒ (Xθ1 , . . . , Xθn) �C1 (Xγ1 , . . . , Xγn).
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See also Nevius, Proschan & Sethuraman (1977, Theorem 3.3). Thus a deterministic
property (majorization) of the vector of risk parameters θ is transformed into a corresponding
stochastic property (stochastic majorization) of the random vector (Xθ1 , . . . , Xθn).

This example contains all the ingredients of the reasonings held in this paper. For g in
one of the classes Ci defined above, we will study the properties of the associated functions
g?. This in turn leads to stochastic inequalities involving �Ci .

2.5.3 Symmetric convex order: (2.3) with C2

If X �C2 Y holds then X is said to be smaller than Y in the symmetric convex order.
Clearly,

X �C2 Y ⇒
n∑

i=1

Xi �cx

n∑

i=1

Yi.

A discussion regarding the order �sym-cx can be found in Chapter 7 by Tong in Shaked
and Shanthikumar (1994).

2.5.4 Relationships between the multivariate integral orders �Ci
From the inclusions (2.1) and (2.2), we deduce that

X �C1 Y ⇒X �C2 Y ⇒
{
X �C3 Y
X �C4 Y

as well as

X �C5 Y ⇒
{
X �C3 Y
X �C4 Y .

2.6 Risk measures and economic capital

2.6.1 Definition

Since risks are modelled as non-negative random variables, measuring risk is equivalent to
establishing a correspondence % between the space of random variables and non-negative real
numbers R+. The real number denoting a general risk measure associated with the risk X
will henceforth be denoted as %[X]. Thus, a risk measure is nothing but a functional that
assigns a non-negative real number to a risk. See Denuit et al. (2005) for an overview.

In this paper, we will stick to the following meaning of the risk measure: we focus on risk
measures that can be used for determining provisions and capital requirements in order to
avoid insolvency. Specifically, if X is a possible loss of some financial portfolio over a time
horizon, we interpret %[X] as the amount of capital that should be added as a buffer to this
portfolio so that it becomes acceptable to an internal or external risk controller. In such a
case, %[X] is the risk capital of the portfolio.

Example 2.7. Prominent examples of risk measures include value-at-risk

VaR[X;α] = inf{x ∈ R|Pr[X ≤ x] ≥ α},
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tail value-at-risk

TVaR[X;α] =
1

1− α

∫ 1

α

VaR[X; ε]dε

and other Yaari-Wang risk measures

%g[X] =

∫ +∞

0

g
(

Pr[X > t]
)
dt

with the distortion function g non-decreasing with g(0) = 0 and g(1) = 1.

2.6.2 Risk measures and stochastic orderings

Risk measures agree with appropriate stochastic order relations. Specifically, VaR and all
the Yaari-Wang risk measures agree with �st in the sense that

X �st Y ⇔ VaR[X;α] ≤ VaR[Y ;α] for all α ∈ [0, 1]

⇔ %g[X] ≤ %g[Y ] for all the distortions g.

Analogously, TVaR and Yaari-Wang risk measures associated with concave distortions agree
with �sl (and thus also with �st and �cx) in the sense that

X �sl Y ⇔ TVaR[X;α] ≤ TVaR[Y ;α] for all α ∈ [0, 1]

⇔ %g[X] ≤ %g[Y ] for all the concave distortions g.

2.6.3 Economic capital derived from risk measure

Insurance companies as well as banks should hold some capital cushion against unexpected
losses. The most common way to quantify risk capital is the concept of economic capital
(EC): EC is defined with respect to some risk measure % as

EC[S] = %[S]− E[S]

where S is the total loss.
The reason for reducing the risk measure %[S] by the expected loss E[S] is due to the

“best practice” of decomposing the total risk capital %[S] into a first part E[S] covering
expected losses and a second part EC[S] meant as a cushion against unexpected losses.

3 Heterogeneity in the arrival processes

In this section, we assume that the Ci,j’s are independent and identically distributed for all
the values of i and j.
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3.1 Poisson arrivals

Considering independent Poisson random variables Nλ1 , · · · , Nλn with respective means
λ1, . . . , λn, Example 2.6 shows that, defining the function g? as g?(λ) = E[g(Nλ1 , · · · , Nλn)],
the implication g ∈ C1 ⇒ g? ∈ C1 holds true. Furthermore, Marshall & Olkin (1979)
mentioned that g ∈ C2 ⇒ g? ∈ C2 also holds in this case. The next result considers compound
Poisson distributions (and shows that the implication g ∈ C5 ⇒ g? ∈ C5 is valid).

Proposition 3.1. ConsiderX = (X1, · · · , Xn) and Y = (Y1, · · · , Yn), where Xi =
∑Nλi

j=1 Ci,j,

and Yi =
∑Nνi

j=1Ci,j. Let Nλ1 , · · · , Nλn , Nγ1 , · · · , Nγn be independent Poisson random vari-
ables with respective means λ1, . . . , λn, γ1, . . . , γn. Suppose that the Ci,j’s are independent and
identically distributed for all i = 1, · · · , n and j = 1, 2, · · · , and independent of Nλ1 , · · · , Nλn ,
Nγ1 , · · · , Nγn . Then,

λ �maj ν ⇒X �C5 Y .

Proof. Let us define g? as

g?(λ) = E


g




Nλ1∑

j=1

C1,j, · · · ,
Nλn∑

j=1

Cn,j




 .

The proof consists in establishing the implication

g ∈ C5 ⇒ g? ∈ C5. (3.1)

To see that (3.1) gives the announced result, it suffices to note that for any function g ∈ C5,

E[g(X)] = g?(λ) ≤ g?(ν) = E[g(Y )]

where the inequality follows from λ �maj ν considering Property 2.3.
Let us now establish (3.1). To this end, let us first write

g?(λ) =
+∞∑

z1=0

· · ·
+∞∑

zn=0

E

[
g

(
z1∑

j=1

C1,j, · · · ,
zn∑

j=1

Cn,j

)]
n∏

i=1

e−λiλzii
zi!

.

Let Ci,0 be distributed as Ci,1 and independent of Xi, i = 1, . . . , n. If we differentiate g?

with respect to λk we obtain

∂

∂λk
g?(λ) =

∂

∂λk

∞∑

zk=0

e−λkλzkk
zk!

E

[
g

(
X1, · · · , Xk−1,

zk∑

j=1

Ck,j, Xk+1, · · · , Xn

)]

= −
∞∑

zk=0

e−λkλzkk
zk!

E

[
g

(
X1, · · · , Xk−1,

zk∑

j=1

Ck,j, Xk+1, · · · , Xn

)]

+

∞∑

zk=1

e−λkλzk−1
k

(zk − 1)!
E

[
g

(
X1, · · · , Xk−1,

zk∑

j=1

Ck,j, Xk+1, · · · , Xn

)]

= E [g (X1, · · · , Xk−1, Ck,0 +Xk, Xk+1, · · · , Xn)− g (X)] .
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Considering k 6= h, the same reasoning gives

∂2

∂λk∂λh
g?(λ) = E

[
g (X1, · · · , Xh−1, Ch,0 +Xh, Xh+1, · · · , Xk−1, Ck,0 +Xk, Xk+1, · · · , Xn)

−g (X1, · · · , Xh−1, Xh + Ch,0, Xh+1, · · · , Xn)

−g (X1, · · · , Xk−1, Xk + Ck,0, Xk+1, · · · , Xn) + g (X)
]
≤ 0

where the last inequality comes from the submodularity of g and the fact that Ck,0 and Ch,0
are non-negative random variables independent of X1, · · · , Xn. Thus g? is also submodular.
Similarly, since g is convex in each variable we obtain that

∂2

∂2λk
g?(λ) = E

[
g
(
X1, · · · , Xk−1, Ck,0 + C̃k,0 +Xk, Xk+1, · · · , Xn

)

−2g
(
X1, · · · , Xk−1, Xk + C̃k,0, Xk+1, · · · , Xn

)
+ g (X)

]
≥ 0 (3.2)

where Ck,0 and C̃k,0 are independent and identically distributed, and independent ofX1, · · · , Xn.
Inequality (3.2) ensures that g? is convex in each variable. The symmetry of g? follows from
the symmetry of g.

Proposition 3.1 indicates that an increase in the heterogeneity among Poisson distributed
claim counts yields more dangerousness. Since

∑n
i=1 Xi =d

∑n
i=1 Yi under the assumptions of

Proposition 3.1 ρ[
∑n

i=1 Xi] = ρ[
∑n

i=1 Yi] for any risk measure in Example 2.7. Nevertheless,
we have in particular that the inequalities (2.4) and (2.5) hold, which shows that any excess-
of-loss or largest claims reinsurance cover will be more expensive for the insurer facing Y
than for the one facing X.

3.2 Arrival processes with the semi-group property

Let us now consider claim count distributions with the semi group property. Thus we
assume that given independent random variables Nλ and Nν, Nλ + Nν is distributed as
Nλ+ν. In addition to the Poisson distribution, prominent examples of such families include
the Binomial distribution with parameter (ν, p), for fixed p, with

Pr[Nν = n] =

(
ν
n

)
pn(1− p)ν−n, n = 0, 1, · · · , ν,

and the Negative Binomial distribution with parameter (ν, p), for fixed p, with

Pr[Nν = n] =

(
n+ ν − 1
ν − 1

)
pν(1− p)n, n = 0, 1, · · · .

We keep the homogeneity assumption on the claim sizes. The next result is similar to
Proposition 3.1, but with �C5 replaced with �C2 .

Proposition 3.2. ConsiderX = (X1, · · · , Xn) and Y = (Y1, · · · , Yn), where Xi =
∑Nλi

j=1 Ci,j

and Yi =
∑Nνi

j=1 Ci,j. Assume that the Nλ’s are independent non-negative integer valued ran-
dom variables with the semi-group property. The random variables Ci,j are independent and

10



identically distributed for all the values of i and j, and independent of Nλ1 , . . . , Nλn , Nν1, . . . , Nνn.
Then,

λ �maj ν ⇒X �C2 Y ,
that is, X is smaller than Y in the symmetric convex order.

Proof. Without loss of generality we assume that λ and ν differs only in two components,
components i and j say. To simplify notation we consider only the case n = 2 and we
assume that (λ1, λ2) �maj (ν1, ν2) holds. The proof is similar to the proof of proposition F.6
in Marshall & Olkin (1979, p. 314). Without loss of generality we may assume that
(λ1, λ2) �maj (ν1, ν2) implies that ν1 > λ1 ≥ λ2 > ν2 and λ1 + λ2 = ν1 + ν2. We can then
write

ν1 = ν2 + (λ2 − ν2) + (λ1 − λ2) + (ν1 − λ1)

λ1 = ν2 + (λ2 − ν2) + (λ1 − λ2) (3.3)

λ2 = ν2 + (λ2 − ν2).

Let us define

A =

N(ν1−λ1)∑

j=1

C1,j, B =

N(λ1−λ2)∑

j=1

C2,j , C =

N(λ2−ν2)∑

j=1

C3,j, (3.4)

D =

N ′
(λ2−ν2)∑

j=1

C4,j , E =

Nν2∑

j=1

C5,j, G =

N ′ν2∑

j=1

C6,j,

where N ′(λ2−ν2) and N ′ν2
are distributed as N(λ2−ν2) and Nν2 , respectively, all the random vari-

ables being independent. Note that A,B,C,D,E,G are independent non-negative random
variables. Moreover, E and G are independent and identically distributed.

The semi-group property and equations (3.3) and (3.4) imply that

E[g(X1, X2)] = E


g




Nλ1∑

j=1

C1,j,

Nλ2∑

j=1

C2,j






= E[g (B + C + E,D +G)]

= E[g ((B + C,D) + (E,G))]

E[g(Y1, Y2)] = E


g




Nν1∑

j=1

Z1,j,

Nν2∑

j=1

Z2,j






= E[g (A +B + C +D + E,G)]

= E[g ((A +B + C +D, 0) + (E,G))].

Let us define U = (B + C,D), W = (A + B + C, 0) and T = (E,G). Thus, Pr[U �maj

W ] = 1, and for every g ∈ C1, we have that Pr[g(U) ≤ g(W )] = 1.
Let Π be a 2× 2 permutation matrix. Let g ∈ C2 be a symmetric convex function (and

thus Schur increasing). Note that defining g̃ as g̃(u) =
∑

Π g(u+ xΠ) over all permutation

11



matrices Π defines another symmetric convex function (i.e. g̃ ∈ C2). Then, denoting as F
the joint distribution function of the pair (E,G),

E[g(X1, X2)] = E[g(U + T )]

=

∫
E[g(U + t)]dF (t) =

∑

Π

∫
E[g(U + tΠ)]dF (t)

=

∫
E

[∑

Π

∫
E[g(U + tΠ)]

]
dF (t) ≤

∫
E

[∑

Π

∫
E[g(W + tΠ)

]
dF (t)

= E[g(W + T ) = E[g(Y1, Y2)],

which ends the proof.

Again, the result shows that an increase in the heterogeneity leads to an increase in risk
even if, exactly as for the Poisson case,

∑n
i=1 Xi =d

∑n
i=1 Yi. Implications (2.4)-(2.5) still

hold. It is interesting to compare Proposition 3.1 to Proposition 3.2. Even if both results
hold true in the Poisson case, only the latter applies to Binomial and Negative Binomial
distributions.

4 Heterogeneity in the claim severities

In this section, we allow for different distributions for the Ci,j’s, when i varies from 1 to
n (but for fixed i, we keep identically distributed Ci,j’s), and we now consider N1, . . . , Nn

identically distributed. The heterogeneity is now at the severity level.

4.1 Claim sizes with the semi-group property

Assume that the Ni’s are independent and identically distributed. The amount Ci,j of claim
j in business i is distributed as Cθi . We assume that the family {Cθ, θ ∈ Θ} possesses the
semi-group property, that is, the sum Cα +Cβ of two independent random variables Cα and
Cβ is distributed as Cα+β.

Proposition 4.1. ConsiderX = (X1, · · · , Xn) and Y = (Y1, · · · , Yn), where Xi =
∑Ni

j=1Cγi,j

and Yi =
∑Ni

j=1Cηi,j. Assume that the Ni’s are independent and identically distributed non-
negative integer valued random variables. The random variables Cγi,j, j = 1, 2, . . . (resp.
Cηi,j, j = 1, 2, . . .) are independent and distributed as Cγi (resp. Cηi), and are independent
of the Ni’s, where the Cθ’s possess the semi group property in θ. Then,

(i) γ �maj η ⇒X �C3 Y ;

(ii) γ �maj η ⇒
∑n

i=1 Xi �cx

∑n
i=1 Yi.

Proof. (i) Without loss of generality, we may assume that n = 2. Assume that γ1 ≥ γ2 and
η1 > η2. Note that γ �maj η implies that there is α ∈ (0, 1), such that

γ1 = αη1 + (1− α)η2 = η2 + α(η1 − η2)

γ2 = αη2 + (1− α)η1 = η2 + (1− α)(η1 − η2).
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Consider f ∈ C3 so that there is a convex function g such that f(x) = g(x1) + g(x2). Then,

E[f(X)] = E [g(X1) + g(X2)]

= E
[
g
(∑N1

j=1 Cγ1,j

)
+ g

(∑N2

j=1Cγ2,j

)]

= E
[
g
(∑N1

j=1 Cη2,j +
∑N1

j=1Cα(η1−η2),j

)
+ g

(∑N2

j=1 Cη2,j +
∑N2

j=1C(1−α)(η1−η2),j

)]
.

Similarly,

E[f(Y )] = E [g(Y1) + g(Y2)]

= E
[
g
(∑N1

j=1Cη1,j

)
+ g

(∑N2

j=1 Cη2,j

)]

= E
[
g
(∑N1

j=1Cη2,j +
∑N1

j=1 Cα(η1−η2),j +
∑N1

j=1C(1−α)(η1−η2),j

)
+ g

(∑N2

j=1Cη2,j

)]
.

Recall that the random variables N1 and N2 are identically distributed. The convexity of g
then implies that :

E[f(Y )]− E[f(X)]

= E

[
g

(
N1∑

j=1

Cη2,j +

N1∑

j=1

Cα(η1−η2),j +

N1∑

j=1

C(1−α)(η1−η2),j

)
− g

(
N1∑

j=1

Cη2,j +

N1∑

j=1

Cα(η1−η2),j

)]

−E
[
g

(
N2∑

j=1

Cη2,j +

N2∑

j=1

C(1−α)(η1−η2),j

)
− g

(
N2∑

j=1

Cη2,j

)]
≥ 0

which ends the proof of (i).
Let us now turn to (ii). Let {Cη2,j, j = 1, 2, . . .}, {Cα(η1−η2),j, j = 1, 2, . . .}, {C ′η2,j

, j =
1, 2, . . .}, and {C(1−α)(η1−η2),j, j = 1, 2, . . .} be independent sequences of independent and
identically distributed nonnegative random variables. Let us define the following sums:

Sη2(n) =

n∑

j=1

Cη2,j, Sα(η1−η2)(n) =

n∑

j=1

Cα(η1−η2,j)

S(1−α)(η1−η2)(n) =
n∑

j=1

C(1−α)(η1−η2,j), S
′
η2

(n) =
n∑

j=1

C ′η2,j

as well as, for some convex function g, the function Ψ : N4 → R as

Ψ(n1, n2, n3, n4) = E
[
g
(
Sη2(n1) + Sα(η1−η2)(n2) + S(1−α)(η1−η2)(n3) + S ′η2

(n4)
)]
.

Then, we can write

E[g(X1 +X2)] = E[Ψ(N1, N1, N2, N2)]

=
∑

n1>n2

Pr[N1 = n1, N2 = n2]
(

Ψ(n1, n1, n2, n2) + Ψ(n2, n2, n1, n1)
)

+
∑

n

Pr[N1 = N2 = n]Ψ(n, n, n, n)
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and similarly

E[g(Y1 + Y2)] = E[Ψ(N1, N1, N1, N2)]

=
∑

n1>n2

Pr[N1 = n1, N2 = n2]
(

Ψ(n1, n1, n1, n2) + Ψ(n2, n2, n2, n1)
)

+
∑

n

Pr[N1 = N2 = n]Ψ(n, n, n, n)

Assume that n1 > n2. Since g is convex the following inequality holds:

Ψ(n1, n1, n1, n2)−Ψ(n1, n1, n2, n2)− Ψ(n2, n2, n1, n1) + Ψ(n2, n2, n2, n1)

= E
[
g
(
Sη2(n1) + Sα(η1−η2)(n1) + S(1−α)(η1−η2)(n1) + S ′η2

(n2)
)

−g
(
Sη2(n1) + Sα(η1−η2)(n1) + S(1−α)(η1−η2)(n2) + S ′η2

(n2)
)]

−E
[
g
(
Sη2(n2) + Sα(η1−η2)(n2) + S(1−α)(η1−η2)(n1) + S ′η2

(n1)
)

−g
(
Sη2(n1) + Sα(η1−η2)(n1) + S(1−α)(η1−η2)(n2) + S ′η2

(n1)
)]
≥ 0,

which concludes the proof.

As it was the case for the heterogeneity at the frequency level, increasing the heterogeneity
at the severity level leads to an increase in risk. Note that in this case,

∑n
i=1 Xi and

∑n
i=1 Yi

are no more identically distributed. The convex inequality in (ii) shows that the economic
capital computed on the basis of any risk measure in agreement with the convex order will
be higher for Y than for X. In particular,

γ �maj η ⇒ TVaR

[
n∑

i=1

Xi;α

]
≤ TVaR

[
n∑

i=1

Yi;α

]
for all α ∈ [0, 1]

⇒ ρg

[
n∑

i=1

Xi

]
≤ ρg

[
n∑

i=1

Yi

]
for any concave distortion g.

4.2 Claim severities in the same location-scale family

Let us now assume that the claim severities Ci,j’s belong to the same location-scale family,
that is, Cij = aiZij + si, i = 1, . . . , n, where the Zij’s are independent and identically
distributed. In order to compare this portfolio with another one whose claim severities
are of the form Di,j = biZij + ti, we need a bivariate extension of majorization (in order
to compare the n × 2 arrays (a, s) with (b, t)). To this end, let us recall that a linear
transformation T : Rn → Rn is said to be a T-transformation (or T-transform) if T has the
form

T = αI + (1− α)Π, (4.1)

where 0 ≤ α ≤ 1, I is the identity matrix, and Π is a permutation matrix that just
interchanges two coordinates. Thus Tx has the form:

Tx = (x1, · · · , αxi + (1− α)xj, · · · , xj−1, αxj + (1− α)xi, xj+1, · · · , xn).
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Such a T-transform is particularly appealing for actuaries in the context of heterogeneous
portfolios. Starting with a vector x, the T-transform applied with α = 1/2 leads to another
vector Tx where the heterogeneous xi and xj have been replaced with (xi+xj)/2. Consider-
ing the xi’s as heterogeneity parameters, switching from x to Tx homogeneizes policies i and
j (replacing the original heterogeneous policies i and j with a couple of homogeneous ones).
Arnold (1987) called the T-transform a Robin Hood transform (for obvious reasons), and
the matrix T defined by (4.1) a Robin Hood matrix. We will adhere to this intuitive name
in the remainder of this paper.

Let R+
n×m be the set of all n × m matrices with non-negative real elements. That is

M ∈ R+
n×m if M = (x(1), · · · ,x(m)), where x(j) is an n−dimensional column vector with

non-negative elements.

Definition 4.2. Let M 1,M 2 ∈ R+
n×m. Then, M 1 is said to be majorized in the Robin

Hood sense by M 2, which is denoted as M 1 �RH M 2, if there exists a finite set of Robin
Hood matrices (of the form (4.1)) T 1, · · · ,TK such that M 1 = T 1T 2 · · ·TKM 2.

Note that x(j) �maj y
(j) for j = 1, . . . , m, does not imply that M 1 �RH M 2. A com-

parison in the �RH-sense is thus stronger than the simple column-wise comparison in the
�maj-sense.

We are now in a position to state the following result, which extends Proposition 4.1 to
location-scale families of claim severities.

Proposition 4.3. ConsiderX = (X1, · · · , Xn) and Y = (Y1, · · · , Yn), where Xi =
∑Ni

j=1(aiZij+

si), and Yi =
∑Ni

j=1(biZij + ti), i = 1, · · · , n, where the Zij’s are independent and identically
distributed random variables, and the Ni’s are independent and identically distributed integer
valued random variables, all the random variables being independent. Then,

(a, s) �RH (b, t)⇒X �C3 Y .

Proof. To simplify notations we consider n = 2. Assume that

b2 < a2 < a1 < b1

t2 < s2 < s1 < t1.

Then, (a, s) �RH (b, t) ensures that there is a number β, 0 < β < 1 such that

a1 = βb1 + (1− β)b2

a2 = (1− β)b1 + βb2

s1 = βb1 + (1− β)b2

s2 = (1− β)t1 + βt2.

Thus, considering f ∈ C3, there is a convex function g such that f(x) = g(x1) + g(x2) and
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we can represent f(Y ) and f(X) as

f(Y ) = g

(
N1∑

j=1

(b2Z1j + t2) + β

N1∑

j=1

(
(b1 − b2)Z1j + (t1 − t2)

)

+ (1− β)

N1∑

j=1

(
(b1 − b2)Z1j + (t1 − t2)

))
+ g

(
N2∑

j=1

(b2Z2j + t2)

)

f(X) = g

(
N1∑

j=1

(b2Z1j + t2) + β

N1∑

j=1

(
(b1 − b2)Z1j + (t1 − t2)

))

+ g

(
N2∑

j=1

(b2Z2j + t2) + (1− β)

N2∑

j=1

(
(b1 − b2)Z2j + (t1 − t2)

))
.

Thus,

E[f(Y )− f(X)]

= E

[
g

(
N1∑

j=1

(b2Z1j + t2) + β

N1∑

j=1

(
(b1 − b2)Z1j + (t1 − t2)

)

+(1− β)

N1∑

j=1

(
(b1 − b2)Z1j + (t1 − t2)

))

− g
(

N1∑

j=1

(b2Z1j + t2) + β

N1∑

j=1

(
(b1 − b2)Z1j + (t1 − t2)

))]

−E
[
g

(
N2∑

j=1

(b2Z2j + t2) + (1− β)

N2∑

j=1

(
(b1 − b2)Z2j + (t1 − t2)

))
− g

(
N2∑

j=1

(b2Z2j + t2)

)]
≥ 0

where the last inequality follows from the convexity of g.

5 Heterogeneity in both the arrival processes and claim

severities

Next we consider heterogeneity in the claim arrival processes and in the claim amounts. To
this end, let us consider the subclass C↑3 of C3 made of the functions f : Rn → R that can be
represented as f(x) =

∑n
i=1 g(xi) with g non-decreasing and convex.

Proposition 5.1. Let {Nθ, θ ∈ Θ} be a family of counting random variables, indexed by a
parameter θ ∈ Θ ⊆ R, with the semi-group property in θ. Let {Cλ, λ ∈ Λ} be a family of
positive random variables, indexed by a parameter λ ∈ Λ ⊆ R, with the semi-group property

in λ. Consider X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn), where Xi =
∑Nλi

j=1 Cγi,j and

Yi =
∑Nνi

j=1 Cηi,j, i = 1, · · · , n, where the Cγi,j’s are independent and distributed as Cγi , and
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the Cηi,j’s are independent and distributed as Cηi . All the random variables are assumed to
be independent. Then

(λ,γ) �RH (ν,η)⇒X �C↑3 Y .

Proof. Consider n = 2. Assume that

ν2 < λ2 < λ1 < ν1

η2 < γ2 < γ1 < η1.

The fact that (λ,γ) �RH (ν,η) then implies that there is β, 0 < β < 1 such that

λ1 = ν2 + β(ν1 − ν2)

γ1 = η2 + β(η1 − η2)

λ2 = ν2 + (1− β)(ν1 − ν2)

γ2 = η2 + (1− β)(η1 − η2).

We can now write

E[f(Y )] = E


g




Nν2∑

j=1

C
(1)
η2,j

+

Nν2∑

j=1

C
(1)
β(η1−η2),j +

Nν2∑

j=1

C
(1)
(1−β)(η1−η2),j

+

Nβ(ν1−ν2)∑

j=1

C
(2)
η2,j

+

Nβ(ν1−ν2)∑

j=1

C
(2)
β(η1−η2),j +

Nβ(ν1−ν2)∑

j=1

C
(2)
(1−β)(η1−η2),j

+

N(1−β)(ν1−ν2)∑

j=1

C
(3)
η2,j

+

N(1−β)(ν1−ν2)∑

j=1

C
(3)
β(η1−η2),j +

N(1−β)(ν1−ν2)∑

j=1

C
(3)
(1−β)(η1−η2),j






+E


g




Nν2∑

j=1

Cη2,j






where all the random variablesNν2 , Nβ(ν1−ν2), N(1−β)(ν1−ν2), C
(i)
η2,j

, C
(i)
β(η1−η2),j, and C

(i)
(1−β)(η1−η2),j

are independent. Similarly, E[f(X)] can be written as

E[f(X)] = E


g




Nν2∑

j=1

C
(1)
η2,j

+

Nν2∑

j=1

C
(1)
β(η1−η2),j

+

Nβ(ν1−ν2)∑

j=1

C
(2)
η2,j

+

Nβ(ν1−ν2)∑

j=1

C
(2)
β(η1−η2),j






+E


g




Nν2∑

j=1

C
(1)
η2,j

+

Nν2∑

j=1

C
(1)
(1−β)(η1−η2),j

+

N(1−β)(ν1−ν2)∑

j=1

C
(3)
η2,j

+

N(1−β)(ν1−ν2)∑

j=1

C
(3)
(1−β)(η1−η2),j




 .
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Since g is convex non-decreasing, we obtain the following inequality:

E[f(Y )]− E[f(X)]

≥ E


g




Nν2∑

j=1

C
(1)
η2,j

+

Nν2∑

j=1

C
(1)
β(η1−η2),j +

Nν2∑

j=1

C
(1)
(1−β)(η1−η2),j

+

Nβ(ν1−ν2)∑

j=1

C
(2)
η2,j

+

Nβ(ν1−ν2)∑

j=1

C
(2)
β(η1−η2),j

+

N(1−β)(ν1−ν2)∑

j=1

C
(3)
η2,j

+

N(1−β)(ν1−ν2)∑

j=1

C
(3)
(1−β)(η1−η2),j




−g




Nν2∑

j=1

C
(1)
η2,j

+

Nν2∑

j=1

C
(1)
β(η1−η2),j +

Nβ(ν1−ν2)∑

j=1

C
(2)
η2,j

+

Nβ(ν1−ν2)∑

j=1

C
(2)
β(η1−η2),j






−E


g




Nν2∑

j=1

C
(1)
η2,j

+

Nν2∑

j=1

C
(1)
(1−β)(η1−η2),j +

N(1−β)(ν1−ν2)∑

j=1

C
(3)
η2,j

+

N(1−β)(ν1−ν2)∑

j=1

C
(3)
(1−β)(η1−η2),j




− g




Nν2∑

j=1

C
(1)
η2,j




 ≥ 0,

which ends the proof.

This result shows that an increase in heterogeneity increases the risk, in the sense that
the inequality (2.4) is valid. The price of an excess-of-loss reinsurance treaty is higher for
the reinsurer facing Y than for the one facing X.

6 Conclusion

Denuit & Frostig (2005) examined the effect of heterogeneity in the individual model
of risk theory, where the claim amount for policy i writes Xi = JqiCi with Jqi Bernoulli
distributed with mean qi (Jqi = 1 if at least one claim has been reported by policyholder i,
that is, if Xi > 0, and 0 otherwise). The random variable Ci is then the total cost of all
these claims. All the random variables are assumed to be mutually independent as in the
present paper.

Considering another portfolio, with individual claims Yi = KpiCi, with Kpi Bernoulli
distributed with mean pi, the main finding was that switching from q = (q1, . . . , qn) to
p = (p1, . . . , pn) larger in the sense of the majorization, that is increasing the heterogeneity
of the portfolio, leads to a decrease of the dangerousness, in the sense that

q �maj p⇒
n∑

i=1

Yi �cx

n∑

i=1

Xi,

provided the Ci’s are identically distributed.
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In general, the Ci’s need not to to be identically distributed. IfXi = JqiCi and Yi = KpiCi,
i = 1, . . . , n, with

(i) p1 ≥ . . . ≥ pn and q1 ≥ . . . ≥ qn,

(ii) Cn �st Cn−1 �st . . . �st C1

(iii) q �maj p.

Then, the inequality

E

[
g

(
n∑

i=1

Yi

)]
≤ E

[
g

(
n∑

i=1

Xi

)]

holds true for any decreasing convex function, provided the expectations exist. This intu-
itively means that

∑n
i=1 Yi tends to be larger, but less variable than

∑n
i=1 Xi. Thus, increas-

ing the degree of heterogeneity yields higher payments for the insurance company, but less
variability. Since the danger comes from the variability, we can conclude that increasing the
degree of heterogeneity decreases the risk.

Several other situations were investigated in that paper (severities in a location-scale
family of distributions or with the semi-group property), and the conclusion was that in
most cases, increasing the level of heterogeneity lead to a decrease in the dangerousness.
The conclusion in the collective model of risk theory studied in this paper is different, in the
sense that increasing the level of heterogeneity leads to an increase in the dangerousness of
the portfolio. This shows that the effect of heterogeneity depends on the context.
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