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A Mixed Poisson Model with Varying Element Sizes

Abstract

The data of Bissell (1972a) are counts of the number of flaws in rolls of textile fabric of
different lengths. Cox and Snell (1981) remark that ”the probability distribution of the
number of faults is of interest, especially in its relation to that expected if they occur at
random at a fixed rate per unit of length”. Given that the simple Poisson model is rejected
due to overdispersion, we propose to analyse the data by means of a general family of
discrete laws, indexed by a parameter that distinguishes several well-known distributions.
Our methodology provides some insight into the quality of the production and a relatively
straightforward way to evaluate the probability distribution of the aggregate cost of the
defects, avoiding the evaluation of convolutions.

Keywords

Infinitely divisible mixed Poisson process, recursions, convolution, Hofmann process, maxi-
mum likelihood.

1 Introduction

When analysing the number of defects in an industrial production process where the events
are counted on sample elements of equal magnitude, it is usual to fit the data with a particular
distribution and to test the goodness of fit with a standard χ2 test. Often, it is difficult to
reject the proposed choice due to the small number of degrees of freedom. This approach
does not give much information on the distribution of defects and hence on the quality of
the production.
The problem is different whenever the data are reported on sample elements of different
magnitude. Moreover, as indicated in Bissell (1972a) : ”notably in industrial sampling, the
records may contain only the element sizes and the number of events for each element”. The
data reported in that paper give the number of faults in rolls of textile fabric with varying
length. This constitutes a rare example of data reported on variable element sizes; however,
little information is available about the data. They contain only the length of the rolls (in
meters) and the number of faults for each roll.

In industrial production, it is hoped that the defects are purely random. In this case,
the number of defects is analysed by a homogeneous Poisson process for which the variance
is equal to the mean. For Bissell’s data, Hinde and Demetrio (1998) observed that the
mean and the variance of the number of faults increase with the length of the roll and that
overdispersion is present. Therefore, if we let N(t) be the counting process of the number
of defects in the interval (0, t], with N(0) = 0, the index of overdispersion of the proposed

model VarN(t)
EN(t)

should be an increasing function of t.
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The methodology we propose describes a natural and large family of discrete probability
laws indexed by a parameter that is applicable to such variations in element sizes and to
overdispersion. Fitting various members of this family reveals that the majority of defects
are purely random and that the other defects correspond to a plausible situation, to be
expected in practice.

Our model allows an easy way to obtain a prediction of the number of defects in elements
of unequal length and an evaluation of the aggregate cost of the defects by recursive formulae,
easier to use than classical convolution formulae.

The data of Bissell have been examined on several occasions. Bissell (1972a,b) proposes
two formulations of the negative binomial distribution, which is a particular case of our
model. Hill and Tsai (1988) used the data as an illustration of the efficiency of maximum
quasilikelihood estimation in a negative binomial model reduced to one parameter. Azzalini
et al. (1989) used the data as an illustration of nonparametric regression. Hinde and
Demetrio (1998) used the data in a comparison of estimation procedures in an overdispersion
model. Lindsey (1999) combined a simple loglinear Poisson regression for the counts and a
normal probability law for the mixing distribution.

The rest of the paper is set out as follows : Section 2 describes the model. Section 3
proposes a parametric choice within the general framework. Section 4 gives the numerical
application. Section 5 discusses the evaluation of aggregate cost and section 6 concludes.

2 The Model

Two formulations have been proposed to explain overdispersion relative to the Poisson prob-
ability law. The first is to choose a mixed Poisson probability law for which

Π(n, t) = P[N(t) = n] =

∫

∞

0

e−λt (λt)n

n!
dU(λ),

where U is the mixing distribution function. Many models have been built by a particular
choice of the mixing distribution but this function is not observable from the data and its
estimation reveals some problems. We therefore prefer to follow a new avenue. We observe
that knowledge of Π(0, t) = P[N(t) = 0] =

∫

∞

0
e−λtdU(λ), which is the Laplace-Stieltjes

transform of U , and thus a completely monotonic function of t, is equivalent to that of U ,
and that the probabilities Π(n, t) = (−1)n tn

n!
Π(n)(0, t) are obtained directly by differentiation

of Π(0, t). In this formulation, integration is not necessary. Knowledge of Π(0, t) identifies
not only the mixing function U but also the probability law of N(t), as the probability
generating function of N(t) is the function of u, given by P (u, t) = Π(0, t(1 − u)).

The second formulation explaining overdispersion relative to the Poisson case consists
of choosing a compound Poisson probability law that is always infinitely divisible. As the
data do not allow us to distinguish between these models, we propose to assume that N(t)
is an infinitely divisible mixed Poisson process (see Grandell (1997)) that allows a twofold
interpretation. This is simply obtained by restricting Π(0, t) to the form Π(0, t) = e−η(t),
where η is a Bernstein function (η ≥ 0, η

′

completely monotonic, η(0) = 0), see Feller (1971).
The most general form of η is equivalent to η

′

(t) = δ+θ
′

(t) where δ is a positive constant
and θ

′

is a completely monotonic function (see Berg and Forst (1975)). The probability
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generating function of the most general case is Π(0, t(1−u)) = e−δt(1−u)e−θ(t(1−u)) indicating
that, in the most general case, N(t) is the sum of two independent components

N(t) = N1(t) + N2(t),

where

- N1(t) obeys a Poisson probability law with mean δt and describes the purely random
defects.

- N2(t) obeys an infinitely divisible mixed Poisson probability law, which we interpret
as being related to the quality of production.

Our model is related to the models described in Gupta et al. (2004) where an additive
model and a multiplicative model are introduced. The multiplicative model corresponds to
our mixed Poisson model whereas the additive model corresponds to the convolution of a
Poisson distribution with another counting distribution. Our model makes sure that the
retained distribution is an infinitely divisible mixed Poisson distribution. This happens for
the convolution of a Poisson distribution and another distribution such that the convolution
is itself a mixed Poisson distribution. In particular, our model shows that the solution is the
sum of two (and not more) independent components, one of them being Poisson distributed.

The probability law of N(t) is the convolution of the probability laws of N1(t) and N2(t).
However, thanks to the extended Panjer’s algorithm (see Panjer (1981) and Sundt and Jewell
(1981)), we are able to evaluate the probability law of N(t) by recursion. We have

Π(0, t) = e−δt−θ(t),

Π(1, t) = (δt + tθ
′

(t))Π(0, t), (1)

Π(n, t) = (δt + tθ
′

(t))
Π(n − 1, t)

n
+

n
∑

i=2

(−1)i−1

n

ti

(i − 1)!
θ(i)(t)Π(n − i, t) , n ≥ 2.

In our formulation, whenever you know the number of faults in [0, t], you can obtain
information for the future since the intensity of the process is E[N(t+h)−N(t)|N(t) = k] =

hk+1
t

Π(k+1,t)
Π(k,t)

. In particular, when k = 0,

E[N(t + h) − N(t)|N(t) = 0] = hη
′

(t). (2)

Remark : in order to build our model, it suffices to know the expression of Π(0, t) or
of η

′

(t), but as the number of observed zero counts is not given, we are unable to estimate
those functions directly. We are also unable to use a nonparametric method and to find an
estimate for the mixing function U . There are two main reasons : on the one hand, the
procedure initiated by Simar (1976) has not been extended to situations of data reported on
elements of various sizes and on the other hand, the number of data is such that the result of
Mc Kay (1996) applies : ”on a sufficiently large class of densities (of U), any estimator must
converge more slowly than n−α for any positive α”. Therefore it seems natural to choose the
parametric option.
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3 The Choice of the Model

In our formulation, it suffices to choose the function θ
′

. We take θ
′

(t) = p

(1+ct)a , a choice

proposed by Hofmann (1955) and studied by Walhin and Paris (2002). The parameter a

distinguishes among the probability laws for N2(t) : a = 0 (Poisson), a = 0.5 (Poisson
Inverse Gaussian, PIG for short), a = 1 (Negative Binomial, NB for short), a = 2 (Polya-
Aeppli), a → ∞, c → 0, ac → b (Neyman Type A, NTA for short). Clearly δ and p are not
identifiable when a = 0.

The evaluation of the probability function of N(t) is given by formula (1) :

Π(0, t) = e−θ(t)−δt,

Π(1, t) =

(

δt +
pt

(1 + ct)a

)

e−θ(t)−δt,

Π(n, t) =
1

n

(

δt +
pt

(1 + ct)a

)

Π(n − 1, t) +

pt

n(1 + ct)a

n
∑

i=2

1

(i − 1)!

(

ct

1 + ct

)i−1
Γ(a + i − 1)

Γ(a)
Π(n − i, t) , n ≥ 2.

In the most general model we always have limt→∞ P[N(t) = 0] = 0 if δ > 0. However if
δ = 0, we can have limt→∞ P[N(t) = 0] > 0 if a > 1, indicating that there is a positive
chance that infinite rolls do not produce any defect due to the quality of the production,
which seems impossible in practice. So if we assume δ = 0, we have to restrict the choice of
the probability law to 0 ≤ a ≤ 1, which explains the popular use of the Negative Binomial
(a = 1) and Poisson Inverse Gaussian (a = 0.5) distributions. Bissell’s (1972a,b) model
(NB) is obtained by δ = 0 and a = 1.

Mean and variance can be obtained by different methods. The easiest method is the use
of the factorial cumulant generating function of N(t) (see Kendall and Stuart (1962) p75)
which reduces to −η(−tu) and gives by differentiation

EN(t) = (δ + p)t

VarN(t) = (δ + p)t + pact2.

In the general model, the index of overdispersion depends on the four parameters of the
model :

VarN(t)

EN(t)
= 1 +

pact

p + δ
= 1 +

act

1 + δ
p

.

For a good production, δ + p has to be low but a high standard of quality of production
requires that the fraction δ

p
be large. In that case, most defaults are purely random.

Note that if δ = 0 and a particular value of a is chosen, then the index of overdispersion
is reduced to depend only on c.

4 The Fit

Let us assume that there are n observations (ti, N(ti)).
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The parametric approach has the advantage that the parameters may be estimated by
maximum likelihood. Standard numerical maximization techniques (all the calculations have
been done using Microsoft Excel, and in particular the optimization module of Excel) allow
these estimates.

To compare the possible models, we will use the following goodness of fit criteria :

- l : the maximized loglikelihood.

- AIC = l − r : the Akaike Information Criterion (see Akaike (1973)).

- BIC = l − 1
2
r ln(n) : the Bayesian Information Criterion (see Schwartz (1978)).

where r is the number of estimated parameters. Table 1 summarizes the numerical results.

Model δ p c a ac l AIC BIC

1 Poisson 0 0.0151 0 −93.91 −94.91 −95.64
2 Hofmann 0 0.0150 0.0086 0.2402 −87.53 −90.53 −92.72
3 PIG 0 0.0150 0.0037 0.5 −87.54 −89.54 −91.00
4 NB 0 0.0153 0.0024 1 −88.01 −90.01 −91.47
5 NTA 0 0.0151 0.0015 −88.02 −90.02 −91.48
6 PIG + Poisson 0.0066 0.0083 0.0076 0.5 −87.35 −90.35 −92.54
7 NB + Poisson 0.0097 0.0055 0.0077 1 −87.35 −90.35 −92.54
8 NTA + Poisson 0.0117 0.0032 0.0099 −86.93 −89.93 −92.12

Table 1: Summary details of fitting various members of the class of models

The first model estimates the parameter of the Poisson probability law. In model 2,
we assume δ = 0 and we estimate the three parameters of the general probability law. In
models 3, 4, 5 we assume δ = 0 and we restrict the choice of the law by assuming respectively
a = 0.5, a = 1, a → ∞. As Lindsey (1999) observed, ”the change in AIC for the effect of
length is much less when overdispersion is taken into account”. In models 6, 7 and 8 we leave
the parameter δ free and restrict respectively a = 0.5, a = 1 and ac being constant.

With our model, equation (2) becomes

E[N(t + h) − N(t)|N(t) = 0] = hη
′

(t)

= h[δ + pe−act] in the NTA+Poisson case

= h[δ +
p

(1 + ct)a
] else.

Due to the fact that e−act ≤ 1
(1+ct)a , we see from (2) that the data indicate a high quality of

production. Indeed a good production process is such that a roll of a certain length without
defect implies the smallest frequency of defects in a longer roll.

From the point of view of the penalized goodness of fit criteria, we observe that PIG and
NB may be acceptable choices within our general family. However, the absence of a purely
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random component does not seem tenable for physical reasons, even if both distributions
have the property limt→∞ P[N2(t) = 0] = 0. This illustrates what was announced in the
introduction on the validation of a statistical model. We therefore retain the NTA + Poisson
model even if it is a little overfitting.

5 Aggregate Cost

In this section we provide some additional information regarding the use of our model. We
assume that the distributions of both the number of defects and the cost of defects are known
a priori. It is interesting to obtain the distribution of the aggregated cost, e.g. for insurance
buying purposes. We will see that this is obtainable at a relatively low cost, thanks to some
recursion formulae.
We assume that the cost for repairing a fault is given by a random variable X that is discrete
and distributed along equidistant mass points. We also assume that the realizations of X

are independent and independent of N(t). We are interested in the probability distribution
of the total cost S(t) = X1 + · · ·+XN(t), where N(t) is the number of flaws in a roll of length
t. This kind of model is well known in actuarial sciences.
The usual way to obtain the probability distribution of S(t) is to use the convolution formula:

fS(t)(x) =
∞

∑

n=0

Π(n, t)f ∗n
X (x),

where fX(x) = P[X = x] is the probability function of X,
fS(t)(x) = P[S(t) = x] is the probability function of S(t),
f ∗n

X (x) = P[X1 + · · · + Xn = x] is the probability function of the n-fold convolution
of X with the convention that f ∗0

X (0) = 1.
But with Hofmann’s distribution, a double recursion may be performed in order to find the
distribution of S(t) (see Walhin (2000) for details) avoiding the evaluation of convolutions.
As the probability law of N(t) is infinitely divisible, we can write N(t) = ξ1 + · · · + ξL(t)

where the ξi are integer valued random variables having probability law depending on t and
L(t) is a Poisson random variable.

We then define an intermediate random variable V (t) as V (t) = X1 + · · · + Xξ. Its
distribution is given by

fV (t)(0) = 1 −
θ(t − tfX(0)) + δ(t − tfX(0))

θ(t) + δt
,

fV (t)(x) =
1

1 − ct
1+ct

fX(0)

[

ct

1 + ct

x
∑

i=1

(1 + (a − 2)
i

x
)fX(i)fV (t)(x − i)

+p1fX(x) + (p2 −
ct

1 + ct

a

2
p1)f

∗2
X (x)

]

, x ≥ 1,

where p1 = tθ′(t)+δt

θ(t)+δt
and p2 = − t2

2
θ
′′

(t)
θ(t)+δt

.
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Then the distribution of S(t) is obtained from the distribution of V (t) by :

fS(t)(0) = e−θ(t)(1−fX(0)),

fS(t)(x) =
θ(t) + δt

x

x
∑

i=1

ifV (t)(i)fS(t)(x − i) , x ≥ 1.

For our particular model NTA+Poisson, the recursive formulae reduce to

fV (t)(0) = 1 −
p(1 − e−bt(1−fX(0))) + δbt(1 − fX(0))

p(1 − e−bt) + δbt

fV (t)(x) =
bt

x

x
∑

i=1

ifX(i)fV (t)(x − i) + α1fX(x) + α2f
∗2
X (x) , x ≥ 1

α1 = bt
pe−bt + δ

p(1 − e−bt) + δbt

α2 = −
b2t2δ

2(p(1 − e−bt) + btδ)

fS(t)(0) = e−( p

b
(1−e−bt)+δt)(1−fX(0))

fS(t)(x) =
p(1 − e−bt) + δbt

bx

x
∑

i=1

ifV (t)(i)fS(t)(x − i) , x ≥ 1.

Assuming a discrete uniform distribution for the cost of repairs between 0 and 4, i.e.
fX(i) = 0.2, i = 0, 1, 2, 3, 4, we are able to compute the distribution of the aggregate costs
at different times. Table 2 gives the distribution for t = 200 as a numerical illustration.

x fV (200)(x) fS(200)(x)
0 0.187 0.119
1 0.189 0.059
2 0.190 0.074
3 0.192 0.092
4 0.195 0.113
5 0.010 0.079
6 0.009 0.078
7 0.008 0.073
8 0.006 0.064
9 0.004 0.049
10 0.003 0.042
11 0.002 0.035
...

...
...

Table 2: Distribution of the aggregate cost at t = 200
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6 Conclusion

We have shown in this paper that the Hofmann process, convolved with a Poisson process,
may be of interest in order to analyse industrial problems where defects are counted on
varying element sizes. The model has interesting properties that can be given a physical
interpretation in the case of data like that of Bissell (1972a). Moreover, it is tractable due
to the recursions giving the probability function. It is also easy to obtain the law of the
aggregate cost of defects thanks to a two-stage recursion. As the model encompasses many
models encountered in the literature and remains tractable, it is an appropriate means for
analysing such industrial processes.
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