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Abstract

Consider a heteroscedastic regression model Y = m(X)+σ(X)ε, where m(X) =
E(Y |X) and σ2(X) = Var(Y |X) are unknown and the error ε is independent of
the covariate X. We propose a new type of test statistic for testing whether the
regression curve m(·) belongs to some parametric family of regression functions. The
proposed test statistic measures the distance between the empirical distribution
function of the parametric and of the nonparametric residuals. The asymptotic
theory of the proposed test is developed and the proposed testing procedure is
illustrated by means of a small simulation study and the analysis of a data set.
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1 Introduction

Let (X, Y ) be a random vector, where Y denotes a possible transformation of the variable

of interest and X is a covariate, and assume X and Y satisfy the following heteroscedastic

regression model :

Y = m(X) + σ(X)ε, (1.1)

where the error variable ε is independent of X, m(X) = E(Y |X) is the unknown regression

function and σ2(X) = Var(Y |X) is the conditional variance function. Finally, let (Xi, Yi),

i = 1, . . . , n, denote independent replications of (X, Y ).

We like to test the hypothesis

H0 : m ∈ M versus H1 : m /∈ M, (1.2)

where M = {mθ : θ ∈ Θ} is some parametric class of regression functions and Θ ⊂ IRp.

Over the last ten years the literature related to problem (1.2) has been growing rapidly.

Many of the different proposals are based on estimating

D2 = min
θ∈Θ

∫
(m(x) − mθ(x))2 dFX(x),

where FX is the distribution function of X. This idea was carried out either by estimating

D2 directly (see Dette and Munk (1998) or Dette, Munk and Wagner (2000)), or by

estimating related quantities, like the difference of the variances under the null and under

the alternative (see Dette (1999), for example).

Alternatively, other authors estimate D2 by

D̂2 =
∫

(m̂(x) − mθ̂(x))2 dF̂X(x),

where m̂ is a nonparametric estimator of the regression function, θ̂ is an estimator of

the parameter and F̂X is the empirical distribution of X. See, for example, Härdle and

Mammen (1993) where m̂ is taken to be the Nadaraya-Watson estimator, and Alcalá et

al. (1999) where m̂ is taken to be a local linear estimator.

Simultaneously, another family of tests was developed on the basis of estimating the

integrated regression function, M(x) =
∫ x
−∞ m(u) dFX(u) = E(Y I{X≤x}), and then dealing

with functionals of Kolmogorov-Smirnov or Cramér-von Mises type, defined over the

empirical regression process (see Stute (1997)):

√
n

(
M̂(x) − Mθ̂(x)

)
=

1√
n

n∑

i=1

(Yi − mθ̂ (Xi)) I{Xi≤x}.
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Other tests based on empirical likelihood ratio have been considered recently (see Fan

et al. (2001), Chen et al. (2003)).

One way to compare the different approaches is given by the capacity of the tests

to detect contiguous alternatives, H0 : m(·) = mθ0(·) + bnr(·), where r is a function

orthogonal to the space of functions M = {mθ : θ ∈ Θ} and bn → 0.

In this paper a new type of test is introduced based on the distance between the empiri-

cal distribution of the parametric residuals (under the null) and that of the nonparametric

residuals (in the general situation). We use Kolmogorov-Smirnov and Cramér-von Mises

type of statistics to measure the distance between the two empirical distributions. The

proposed test can detect alternatives at the rate n−1/2, typical for the tests based on

empirical regression processes.

The paper is organised as follows. In the next section we will explain the proposed

testing procedure. Section 3 contains the theoretical results. In Section 4 we show some

simulations to assess the behaviour of the test in several examples, and we apply it to a

real data set. Finally, the Appendix contains the proofs of the main results.

2 Proposed test

Consider the random vector (X, Y ) satisfying model (1.1). Let Fε(y) = P (ε ≤ y),

F (y|x) = P (Y ≤ y|X = x) and FX(x) = P (X ≤ x). The probability density functions of

Fε(y) and FX(x) will be denoted respectively by fε(y) and fX(x).

We first estimate the distribution of ε in a nonparametric way. Define for x in the

support [a, b] of X,

m̂(x) =
n∑

i=1

Wi(x, hn)Yi, σ̂2(x) =
n∑

i=1

Wi(x, hn)Y 2
i − m̂2(x), (2.1)

where

Wi(x, hn) =
K

(
x−Xi

hn

)

∑n
j=1 K

(
x−Xj

hn

)

are Nadaraya-Watson weights, K is a known probability density function (kernel) and

{hn} is an appropriate bandwidth sequence. This leads to

F̂ε(y) = n−1
n∑

i=1

I(ε̂i ≤ y), (2.2)

where ε̂i = (Yi − m̂(Xi))/σ̂(Xi) are the nonparametric residuals. This estimator has been

proposed and studied by Akritas and Van Keilegom (2001).
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Next, under H0 we estimate m(x) by the least squares method for nonlinear regression,

i.e. we estimate m(x) by mθ̂(x), where θ̂ is a minimizer (over θ ∈ Θ) of the expression

Sn(θ) = n−1
n∑

i=1

(Yi − mθ(Xi))
2. (2.3)

Basic properties of this estimator have been studied by Wu (1981), White (1981, 1982),

Seber and Wild (1989) among others. This leads to

F̂ε0(y) = n−1
n∑

i=1

I(ε̂i0 ≤ y), (2.4)

where ε̂i0 = (Yi − mθ̂(Xi))/σ̂(Xi) are the residuals estimated under H0.

The test statistics that we will use are the Kolmogorov-Smirnov type statistic

TKS = n1/2 sup
−∞<y<∞

|F̂ε(y) − F̂ε0(y)|

and the Cramér-von Mises type statistic

TCM = n
∫

[F̂ε(y) − F̂ε0(y)]2 dF̂ε(y).

To study the local power of these statistics, consider the local alternative

H1 : m(·) ≡ mθ0(·) + n−1/2r(·),

for some function r, and where θ0 is the true value of θ under H0.

Define the following additional notation :

S0(θ) = E[σ2(X)] + E[(mθ(X) − mθ0(X))2],

Ω =

{

E

[
∂mθ0(X)

∂θr

∂mθ0(X)

∂θs

]}

r,s=1,...,p

,

ηθ(x, y) = Ω−1∂mθ(x)

∂θ
(y − mθ(x)),

where
∂mθ(x)

∂θ
=

(
∂mθ(x)

∂θr

)

r=1,...,p

is a (p × 1)-vector and θ = (θ1, . . . , θp)′. Note that S0(θ) equals the expected value of

Sn(θ) under H0.

Remark 2.1 An alternative estimator for σ2(x) under H0 is given by

σ̂2
alt(x) =

n∑

i=1

Wi(x, hn)Y 2
i − m2

θ̂
(x),
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which, in contrast to σ̂2(x), makes explicitly use of the form of m(x) under H0. However,

this estimator has the drawback that it can attain negative values. We therefore prefer

to work with σ̂2(x).

The main results below require the following regularity conditions :

(A1)(i) nh4
n → 0 and nh3+2δ

n (log h−1
n )−1 → ∞ for some δ > 0.

(ii) K has compact support,
∫

uK(u) du = 0 and K is twice continuously differentiable.

(A2)(i) FX is three times continuously differentiable and infa≤x≤b fX(x) > 0.

(ii) m and σ are twice continuously differentiable and infa≤x≤b σ(x) > 0.

(A3) F ′(y|x) is continuous in (x, y) and supx,y |y2F ′(y|x)| < ∞, and the same holds for

all other partial derivatives of F (y|x) with respect to x and y up to order two.

(A4)(i) Θ is a compact subspace of IRp.

(ii) mθ(x) is continuous in θ for all x.

(iii) For all θ ∈ Θ, m2
θ(x) ≤ M(x) for some integrable function M .

(iv) For all ε > 0, inf‖θ−θ0‖>ε E[(mθ(X) − mθ0(X))2] > 0 (‖ ·‖ denotes the Euclidean

norm).

(v) E[σ2(X)] < ∞.

(A5)(i) θ0 is an interior point of Θ.

(ii) Ω is non-singular.

(iii) mθ(x) is twice differentiable with respect to θ for all x.

(iv) E
(∥∥∥∂mθ0

(X)

∂θ

∥∥∥
2)

< ∞ and E
(∥∥∥∂2mθ0

(X)

∂θ∂θ′

∥∥∥
2)

< ∞.

(v) For k = 0, 1, 2,
∥∥∥
∂kmθ1

(x)

∂θk − ∂kmθ0
(x)

∂θk

∥∥∥ ≤ hk(x)‖θ1 − θ0‖ for all θ1 ∈ Θ, where Eh2
k(X)

< ∞ ( ∂2

∂θ2 stands for ∂2

∂θ∂θ′ ).

(A6) E[r2(X)] < ∞ and E
[
r(X)

∂2mθ0
(X)

∂θ∂θ′

]
< ∞.

3 Main results

Theorem 3.1 Assume (A1)-(A5). Then, under H0,

F̂ε(y) − F̂ε0(y)

= fε(y)n−1
n∑

i=1

{

σ−1(Xi)[Yi − m(Xi)] −
∫

σ−1(x)

(
∂mθ0(x)

∂θ

)′

dFX(x) ηθ0(Xi, Yi)

}

+Rn(y),
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where sup−∞<y<∞ |Rn(y)| = oP (n−1/2).

Corollary 3.2 Assume (A1)-(A5). Then, under H0, the process n1/2(F̂ε(y) − F̂ε0(y))

(−∞ < y < ∞) converges weakly to fε(y)W , where W is a zero-mean normal random

variable with variance

Var(W ) = E

[

σ−1(X)[Y − m(X)] −
∫

σ−1(x)

(
∂mθ0(x)

∂θ

)′

dFX(x) ηθ0(X, Y )

]2

.

Note that the limiting process has an extremely simple structure, as it factorizes in a

deterministic function only depending on y and a random variable independent of y.

As an immediate consequence, we obtain the limiting distribution of the Kolmogorov-

Smirnov and Cramér-von Mises statistic :

Corollary 3.3 Assume (A1)-(A5). Then, under H0,

TKS
d→ sup

−∞<y<∞
|fε(y)| |W |

TCM
d→

∫
f 2
ε (y) dFε(y) W 2

We consider now the limiting behavior of the two test statistics under the local alter-

native H1 :

Theorem 3.4 Assume (A1)-(A6). Then, under H1,

TKS
d→ sup

−∞<y<∞
|fε(y)| |W + b|

TCM
d→

∫
f 2
ε (y) dFε(y) (W + b)2

where

b = −
∫

σ−1(x)

(
∂mθ0(x)

∂θ

)′

dF (x) Ω−1
∫

r(x)
∂mθ0(x)

∂θ
dF (x) +

∫
σ−1(x)r(x)dF (x).

4 Simulations and data analysis

We have carried out some simulations to assess the behaviour of the proposed test with

small to moderate sample sizes.

To apply the test in practice, we use a bootstrap procedure based on the residual dis-

tribution (see e.g. González-Manteiga et al. (1994) and Mammen (2000)) to approximate
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the distribution of the test statistics. To this end, let ε̃1, . . . , ε̃n be obtained by standard-

izing the residuals ε̂i (i = 1, . . . , n), and let F̃ε(y) be the (slightly) smoothed empirical

distribution of ε̃1, . . . , ε̃n (since the representation in Theorem 3.1 depends on the density

fε(y), slight smoothing is necessary here. In other related problems smoothed resampling

has been proved useful, see e.g. Hall et al. (1989) and González-Manteiga et al. (1994)).

Next, draw independent random variables ε∗1, . . . , ε
∗
n from F̃ε and define

Y ∗
i = mθ̂ (Xi) + σ̂(Xi)ε

∗
i i ∈ {1, . . . , n}.

From the bootstrap sample a bootstrap version of the test statistic is obtained. In

practice, the critical values of the original test statistic are approximated from B replicates

of its bootstrap version.

The simulated model was taken to be

Yi = θXi + a (Xi) +
1

2
(1 + Xi) εi i ∈ {1, . . . , n}

where the null hypothesis consists in the parametric model

H0 : m(x) = θx with θ ∈ R,

the term a(Xi) represents the deviation from the null hypothesis, X1, . . . , Xn are inde-

pendent and uniformly distributed on the unit interval, and ε1, . . . , εn are independent

standard normal random variables. The true parameter was taken to be θ0 = 5, and three

alternatives were considered: a(x) = 0.6(x − 0.5), a(x) = 2x2 and a(x) = 0.5sin(4πx).

Data sharpening methods, proposed by Choi et al. (2000), were employed to improve

the nonparametric estimators of the regression function and of the conditional variance,

preventing from border effects.

The following table shows the percentage of rejections obtained with the test statistics

TKS and TCM for one thousand samples, and approximating the distribution of the test

statistic by bootstrap of the standardized residuals as described above and on the basis of

five thousand replicates. The nominal level was 5%. The table contains the percentages

of rejections under the null hypothesis and under different values of the deviation (repre-

sented by the function a), and for different values of the sample size and the bandwidth.

These results show a good approximation to the nominal level under the null hy-

pothesis. Under the alternative, the power increases with the sample size, and it is not

much influenced by the bandwidth. The results obtained with Kolmogorov-Smirnov and

Cramér-von Mises type of statistics are also quite similar.
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a(x) = 0 a(x) = 0.6(x − 0.5) a(x) = 2x2 a(x) = 0.5sin(4πx)

n h TKS TCM TKS TCM TKS TCM TKS TCM

50 0.25 6.7 5.0 19.1 10.5 28.0 17.1 21.4 25.5

50 0.30 5.3 4.4 21.8 14.1 25.9 15.1 20.7 24.8

50 0.35 4.3 2.9 18.5 10.2 22.9 12.5 23.9 27.8

100 0.20 6.1 4.7 44.9 40.4 53.5 48.9 49.5 55.2

100 0.25 5.0 3.8 44.3 38.2 53.2 46.9 43.8 48.9

100 0.30 5.4 4.7 40.7 35.2 49.1 42.8 37.0 44.9

200 0.20 5.7 4.7 79.3 79.8 88.3 88.3 82.3 85.8

200 0.25 6.1 6.3 76.7 75.4 85.8 85.8 77.0 80.5

200 0.30 4.8 4.0 71.0 70.3 81.8 82.6 68.8 75.2

Table 1. Percentage of rejections (nominal level 5%).

Application to the milk yield data. Now the new test is applied to the data as given

in table 4 of Weihrather (1993). These data present the average daily milk yields per

week (in liters) for a cow for a period of 41 weeks. A common model to describe lactation

curves is Wood’s curve

L(t) = β0t
β1 exp (β2t) ,

where L(t) denotes the theoretical milk yield at time t. Taking logarithms, we arrive at

the linear model

m(t) = θ0 + θ1 log t + θ2t.

The goodness-of-fit of this model was checked by using the test proposed in this pa-

per, both with the Kolmogorov-Smirnov and the Cramér-von Mises type statistics. The

covariate ’time’ is transformed to the interval [0,1]. Two bandwidths were employed,

h = 0.15 and h = 0.20. For each bandwidth, the test statistics were calculated, and

critical values for the significance level of 5% were approximated by the bootstrap of the

standard nonparametric residuals. For the bootstrap approximation 100,000 replicates

were taken, and also used to obtain the p-values. All these results are shown in Table

2. As a conclusion, Wood’s curve should be rejected as a model for this type of data.

This conclusion was also attained by Weihrather (1993) and Stute et al. (1998), from the

application of their respective tests to this data set.
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TKS TCM

Statistic Critical value p-value Statistic Critical value p-value

h = 0.15 1.4056 1.0932 0.00063 0.6538 0.1648 0.00001

h = 0.20 1.4056 1.0932 0.00055 0.5967 0.1856 0.00001

Table 2. Results of the proposed test with the milk yield data.

Appendix : Proofs

We start with two lemmas that state the consistency and an asymptotic representation

for θ̂ under H1. To obtain the analogues of these results under H0 it suffices to take r ≡ 0

and to drop condition (A6). Note that Wu (1981), Seber and Wild (1989) among others,

obtained similar results for the special case of a homoscedastic model that satisfies H0.

Lemma A.1 Assume (A4) and let E[r2(X)] < ∞. Then, under H1,

θ̂ − θ0
P→ 0.

Proof. First note that by Lemma 2 in Jennrich (1969), θ̂ is measurable. We prove

the result by verifying the conditions of Theorem 5.7 in van der Vaart (1998, p. 45) for

Mn = −Sn and M = −S0. From the definition of θ̂ and condition (A4)(iv), it follows that

it suffices to show that supθ |Sn(θ) − S0(θ)| →P 0. The latter can be proved by making

use of Theorem 2 in Jennrich (1969).

Lemma A.2 Assume (A4)–(A6). Then, under H1,

θ̂ − θ0 = n−1
n∑

i=1

ηθ̃0n
(Xi, Yi) + Ω−1n−1/2

∫
r(x)

∂mθ0(x)

∂θ
dF (x) + oP (n−1/2),

where θ̃0n is the minimizer of

E[(m(X) − mθ(X))2].

Proof. First note that θ̂ − θ0 = oP (1) (using Lemma A.1) and θ̃0n − θ0 = o(1). The

latter can be shown in a similar way as in Lemma A.1, by using however S̃0n(θ) =

9



E[σ2(X)] + E[(mθ(X) − m(X))2] instead of Sn(θ). Hence, it follows from assumption

(A5)(i) that θ̂ and θ̃0n are interior points of Θ for n large enough. Now write

∂Sn(θ̂)

∂θ
− ∂Sn(θ̃0n)

∂θ
=

∂2Sn(θ1n)

∂θ∂θ′
(θ̂ − θ̃0n),

for some θ1n between θ̂ and θ̃0n. Then,

θ̂ − θ̃0n = −
(
∂2Sn(θ1n)

∂θ∂θ′

)−1
∂Sn(θ̃0n)

∂θ
. (A.1)

First,
∂Sn(θ̃0n)

∂θ
= −2n−1

n∑

i=1

(Yi − mθ̃0n
(Xi))

∂mθ̃0n
(Xi)

∂θ
.

Next,

∂2Sn(θ1n)

∂θ∂θ′

= 2n−1
n∑

i=1

∂mθ1n(Xi)

∂θ

(
∂mθ1n(Xi)

∂θ

)′

− 2n−1
n∑

i=1

(Yi − mθ1n(Xi))
∂2mθ1n(Xi)

∂θ∂θ′

= 2n−1
n∑

i=1

∂mθ0(Xi)

∂θ

(
∂mθ0(Xi)

∂θ

)′

− 2n−1
n∑

i=1

(Yi − mθ0(Xi))
∂2mθ0(Xi)

∂θ∂θ′
+ oP (1),

using a similar derivation as in the proof of Theorem 3.15 p. 139 in Sánchez Sellero (2001),

and using the fact that θ̂−θ0 = oP (1) (see Lemma A.1). The first term on the right hand

side equals

2E

[
∂mθ0(X)

∂θ

(
∂mθ0(X)

∂θ

)′]

+ oP (1) = 2Ω + oP (1),

while the second term can be written as

−2E

[

(Y − mθ0(X))
∂2mθ0(X)

∂θ∂θ′

]

+ oP (1) = oP (1),

since m(X) − mθ0(X) = n−1/2r(X). Hence,

θ̂ − θ̃0n = n−1
n∑

i=1

ηθ̃0n
(Xi, Yi) + oP (n−1/2).

(Note that E[(m(X) − mθ̃0n
(X))

∂mθ̃0n
(X)

∂θ ] = 0, which implies that the numerator on the

right hand side of (A.1) is OP (n−1/2).) Next, since θ̃0n minimizes S̃0n(θ), we have for some

θ2n between θ0 and θ̃0n,

θ̃0n − θ0 = −
(
∂2S̃0n(θ2n)

∂θ∂θ′

)−1
∂S̃0n(θ0)

∂θ

= Ω−1n−1/2
∫

r(x)
∂mθ0(x)

∂θ
dF (x) + o(n−1/2),
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where the last equality follows in a similar way as for θ̂ − θ̃0n. This gives the result.

Proof of Theorem 3.1. It follows from the proof of Theorem 1 in Akritas and Van

Keilegom (2001) (hereafter called AVK) that

F̂ε(y) − Fε(y) = n−1
n∑

i=1

I(εi ≤ y) − Fε(y)

+fε(y)
∫

σ−1(x)[y{σ̂(x) − σ(x)} + m̂(x) − m(x)] dFX(x) + Rn1(y),

where supy |Rn1(y)| = oP (n−1/2). Note that AVK assume that m and σ are L-functionals

that depend on a certain score function J . It is straightforward to show that the results

of AVK can be extended to the choice J ≡ 1, which leads to the conditional mean and

variance that we consider in this paper (it suffices to replace Propositions 3–5 in AVK by

their analogues for the estimators of the conditional mean and variance).

We next need a similar representation for F̂ε0(y) − Fε(y), i.e. we need to show that

Theorem 1 in AVK can be adapted to the case where m̂(x) is replaced by mθ̂(x). Careful

investigation of the proof of Lemma 1 in AVK reveals that the class C1+δ
1 (RX) (defined in

that proof) can be replaced by the class MΘ(RX) = {x → (mθ(x)−m(x))/σ(x) : θ ∈ Θ},
since P ((mθ̂(x) − m(x))/σ(x) ∈ MΘ(RX)) → 1 as n → ∞, and since the bracketing

number N[ ](ε2, MΘ(RX), L2(P )) can be easily seen to be O(ε−2p) for any ε > 0 (using

condition (A5)), which is smaller than for the class C1+δ
1 (RX). (Note that by working

with MΘ(RX) instead of with C1+δ
1 (RX) we do not need to show that m̂ in Propositions

3–5 can be replaced by mθ̂.) It now follows that

F̂ε0(y) − Fε(y) = n−1
n∑

i=1

I(εi ≤ y) − Fε(y)

+fε(y)
∫

σ−1(x)[y{σ̂(x) − σ(x)} + mθ̂(x) − m(x)] dFX(x) + Rn2(y),

where supy |Rn2(y)| = oP (n−1/2). Hence,

F̂ε(y) − F̂ε0(y) = fε(y)
∫

σ−1(x)[m̂(x) − mθ̂(x)] dFX(x) + oP (n−1/2),

uniformly in y. Next,

m̂(x) − m(x) = n−1
n∑

i=1

Kh(x − Xi)

fX(x)
[Yi − m(x)] + OP ((nhn)−1),

uniformly in x, where Kh(·) = h−1
n K(·/hn). Since by Lemma A.2 and condition (A5),

∫
σ−1(x)[mθ̂(x) − m(x)] dFX(x)
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=
∫

σ−1(x)

(
∂mθ0(x)

∂θ

)′

dFX(x) n−1
n∑

i=1

ηθ0(Xi, Yi) + oP (n−1/2),

we have that

F̂ε(y) − F̂ε0(y)

= fε(y)n−1
n∑

i=1

∫
σ−1(x)Kh(x − Xi)[Yi − m(x)] dx

−fε(y)
∫

σ−1(x)

(
∂mθ0(x)

∂θ

)′

dFX(x) n−1
n∑

i=1

ηθ0(Xi, Yi) + oP (n−1/2)

= fε(y)n−1
n∑

i=1

{

σ−1(Xi)[Yi − m(Xi)] −
∫

σ−1(x)

(
∂mθ0(x)

∂θ

)′

dFX(x) ηθ0(Xi, Yi)

}

+oP (n−1/2), (A.2)

uniformly in y, where the last equality follows from a Taylor expansion of order two.

Proof of Corollary 3.2. Since the expression on the right hand side of (A.2) factorizes

in a deterministic component fε(y), and a sum of i.i.d. terms not depending on y, the

weak convergence of the process n1/2(F̂ε(y)− F̂ε0(y)) (−∞ < y < ∞) follows immediately.

Proof of Corollary 3.3. The convergence of the Kolmogorov-Smirnov statistic follows

directly from the continuous mapping theorem. For the Crámer-von Mises statistic it

suffices to show that dF̂ε(y) can be replaced by dFε(y). Using the notation Wn(y) =

fε(y)n−1/2 ∑n
i=1 Wni, where Wni is the expression between brackets on the right hand side

of (A.2), we have that

|
∫

W 2
n(y) d[F̂ε(y) − Fε(y)]| = 2|

∫
[F̂ε(y) − Fε(y)]Wn(y)W ′

n(y) dy|

≤ oP (1)
∫

fε(y)|f ′
ε(y)| dy

≤ oP (1) sup
y

|f ′
ε(y)| = oP (1),

since supy |F̂ε(y) − Fε(y)| = oP (1) (see Theorem 2 in AVK).

Proof of Theorem 3.4. First note that E[
∂mθ̃0n(X)

∂θ (m(X) − mθ̃0n
(X))] = 0, and hence

E[ηθ̃0n
(X, Y )] = 0. It follows that θ̂ − θ0 = OP (n−1/2) and hence, using Lemma A.2,

∫
σ−1(x)[mθ̂(x) − m(x)]dFX(x)

12



=
∫

σ−1(x)

(
∂mθ0(x)

∂θ

)′

dFX(x) n−1
n∑

i=1

ηθ̃0n
(Xi, Yi)

+
∫

σ−1(x)

(
∂mθ0(x)

∂θ

)′

dFX(x) Ω−1n−1/2
∫

r(x)
∂mθ0(x)

∂θ
dF (x)

−n−1/2
∫

σ−1(x)r(x) dFX(x) + oP (n−1/2).

It is easily seen that the asymptotic distribution of n−1 ∑n
i=1 ηθ̃0n

(Xi, Yi) under H1 equals

the asymptotic distribution of n−1 ∑n
i=1 ηθ0(Xi, Yi) under H0. The rest of the proof is

similar to the proofs of Theorem 3.1 and Corollaries 3.2 and 3.3.
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Stute, W., González Manteiga, W. and Presedo Quindimil, M. (1998). Bootstrap approx-

imations in model checks for regression. J. Amer. Statist. Assoc., 93, 141–149.

van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge Univ. Press. Cambridge.

14



Weihrather, G. (1993). Testing a linear regression model against nonparametric alterna-

tives. Metrika, 40, 367–379.

White, H. (1981). Consequences and detection of misspecified nonlinear regression models.

J. Amer. Statist. Assoc., 76, 419–433.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica,

50, 1–25.

Wu, C.F. (1981). Asymptotic theory of nonlinear least-squares estimation. Ann. Statist.,

9, 501–513.

15


