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Summary

The aim of this paper is to propose an improvement of a classical change of variables, useful to
solve multi-objective control design problems that can be formulated with Linear Matrix Inequalities
(LMIs). For multi-objective problems, the only approach guaranteed to converge to global optima
is to use an iterative approach where the order of the design parameter grows (until no improvement
is obtained to some relative decrease). The issue is that the order of the design parameter, and
the size of associated LMIs, may easily grow to unacceptably large values (computationally and/or
for implementation in practice). The change of variables considered here was proposed to mitigate
that issue, i.e. to reduce the inflation of number of variables of the corresponding optimization
problems. Here we propose a method exploiting this change of variables further, in order to obtain
a sequence of increasing order design parameters converging faster towards the global optimum.

Keywords: Bilinear and Linear matrix inequalities (BMIs and LMIs), Youla parameterization,
Multi-objective control

1 Introduction

The systems considered in this work are Linear finite-dimensional Time-Invariant (LTI) plants. The
objectives addressed are control design objectives that admit a Linear Matrix Inequalities (LMIs)
representation. For a direct comparison of the results of [1], discrete-time systems are considered.
Note however that the technique can be straightforwardly translated to the continuous-time case.

For single objective problems, there exists a well-known change of variables requiring full-order
controllers [2], leading to global optima. Here we consider multi-objective problems, for which that
change of variables cannot be used (except with an additional constraint, which imply that the solutions
thus found are suboptimal).

The current work proposes an improvement of the technique developed in [1]. It was already
known at the time of that work how to solve LMI-representable multi-objective control problems
toward globally optimal solutions: by optimizing Youla parameters confined to finite-dimensional
subspaces of increasing dimensions, belonging to the infinite-dimensional space RH∞ of all proper
and stable transfer matrices. By increasing the order of the Youla parameter and optimizing it, the
sequence of objective values decreases monotonously towards the global optimum (which result was
first proven in the SISO case in [3] and implemented for the MIMO case in [4]). The problem resided
already then in the inflation of size of the optimization problem. The work of [1] introduced a change
of variables, which allowed to considerably reduce the number of required variables compared to the
previous solutions of [3, 4]. The aim of the current work is to push this contribution further.

∗Correspondence to Emile Simon, Tel. +32 10478032, Fax +32 10472180, Email: Emile.Simon@uclouvain.be

1



The drawback of the change of variables proposed in [1] is that the state-space matrices Aq and
Bq of the Youla parameter Q must be fixed before each optimization. Because of this restriction,
obtaining an objective value close to the global optimum will typically lead to a Youla parameter with
a very large order. Such parameter is unpractical for implementation and requires to solve large LMIs
which will imply optimization problems (computing time, limit of memory, numerical issues).

Starting from the technique proposed in [1], we develop a method lifting this restriction and
(partially) removing its associated conservatism. This method is also solely based on solving LMIs
and is summarized as follows: at each optimization of the Youla parameter of a given order, instead
of solving only the LMI problem where the state-space matrices Aq and Bq are fixed, all four state-
space matrices are further improved with an iterative LMI algorithm. This approach can only lead to
better (or at least the same) objective values for each order of the Youla parameter than without this
improvement, which implies that the sequence of increasing order Youla parameters converges faster
with respect to the order to the global optimum (or at least as fast).

The structure of the paper is as follows. First the notations are given in Section 2, along with a
reminder of the results of [1]. Then the contributed method is presented in Section 3. An example of
obtained results compared to those of [1] is given in Section 4. The convergence of the algorithm is
discussed in Section 5. Finally the conclusions are drawn.

2 Notations and previous results

2.1 Notations

We consider the LTI generalized plant P with the following state-space representation:




x+

zj
y



 =





A Bi B

Cj Dij Ej

C Fi 0









x

wi

u



 (1)

where x is the state vector, w and z are respectively the input(s) and output(s) of the objective(s)
channel(s), u and y are respectively the control input(s) and the measured output(s). The + denotes
the value at the next sampling time. The indices i allow to designate each component of w and the
indices j each component of z. P is of minimal realization with McMillan degree n. The controller is
a LTI system represented by:

(

x+c
u

)

=

(

Ac Bc

Cc Dc

)(

xc
y

)

(2)

which must be designed to ensure good closed-loop properties. The closed-loop state-space represen-
tation is written as A, B, C, D for which the performance channel Tij : wi → zj has the realization:

(

A Bi

Cj Dij

)

=





A+BDcC BCc Bi +BDcFi

BcC Ac BcFi

Cj + EjDcC EjCc Dij + EjDcFi



 (3)

Note that it is assumed that (A,B) is stabilizable and (A,C) is detectable, which ensures the existence
of stabilizing controllers. Now the famous H2/H∞ multi-objective problem is recalled, which is the
main example considered in [1] and the most typical multi-objective control problem. This objective
is to impose two specifications on the closed-loop system which are to keep an upper bound γ1 on
the H2 norm of the first performance channel and an upper bound γ2 on the H∞ norm of the second
performance channel : ||T11||2 < γ1 and ||T22||∞ < γ2. The trade-off between these two objectives can
be drawn by minimizing the functional γ1 + λγ2 for several fixed values of the positive scalar λ.

The techniques developed in [1] and here rely on LMI optimization and thus require LMI - repre-
sentable objectives. We then recall the matrix inequalities formulation of the discrete-time H2/H∞

multi-objective.
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For the H2 norm: ||T11||2 < γ1 iff ∃X1, Z s.t.: tr(Z) < γ1,





X1 ∗ ∗
0 γ1I ∗

X1A X1B1 X1



 ≻ 0,





X1 ∗ ∗
0 γ1I ∗
C1 D11 Z



 ≻ 0 (4)

For the H∞ norm: ||T22||∞ < γ2 iff ∃X2 s.t.:









X2 ∗ ∗ ∗
0 γ2I ∗ ∗

X2A X2B2 X2 ∗
C2 D22 0 γ2I









≻ 0 (5)

The optimization variables are the following:

• Lyapunov matrices X1 = X ′

1 ≻ 0,X2 = X ′

2 ≻ 0

• Controller state-space matrices Ac, Bc, Cc,Dc

• Objective scalars γ1, γ2 > 0 and matrices Z1 = Z ′

1 ≻ 0, Z2 = Z ′

2 ≻ 0

The notations tr denotes the trace, ′ the transposed matrix, the ∗ indicates a symmetrical term and
M ≻ 0 denotes that the matrix M is strictly positive definite (i.e. all its eigenvalues are strictly
positive). Note that since only two performance channels are considered, the indices i, j and ij were
replaced by either 1 or 2 as in [1]. These inequalities also ensure the Hurwitz stability of A, thus
the asymptotic stability of the closed-loop system. Remark that without changing the variables these
matrix inequalities are Bilinear Matrix Inequalities (BMIs), because of the terms with products of the
Lyapunov matrices and the design parameter state-space matrices. It is well known that problems
involving BMIs are NP-hard in general [5], whereas solving LMIs can be done exactly and efficiently
with interior point methods [6]. Hence particular techniques are used to turn these (non-convex) BMI
problems into LMI reformulations or sub-problems. These transformations imply however in most
cases the introduction of some conservatism, i.e. the loss of optimality of the solution.

For example, the H2/H∞ problem already admitted a conservative full-order solution proposed in
[7], using the extra technical constraint of a unique Lyapunov matrix X = X1 = X2 and the change of
variables introduced by [2] (requiring full-order control). This solution (the so-called mixed controller)
is often used as an initial solution, which is the case in [1]. Note that the change of variables of [2]
provides the global solution for the single-objective H2 or H∞ problems with a full-order controller.

We now recall some key elements presented in [1] that will be useful for the development of the
contribution. The notations used in the current paper are consistent with those of that previous work.

2.2 Key previous results

The change of variables proposed in [1] requires to have the generalized plant P respecting a certain
triangular structure. The adequate tool to enforce this condition is the Youla parameterization. This
requires to choose an initial controller defined by two matrices K,L such that the matrices A + BK
and A + LC are stable (i.e. Hurwitz in continuous time or Schur in discrete time), and then the
original P can be extended into the new representation (so-called ‘observer structure’):

(

zj
ŷ

)

=









A+BK −BK Bi B
0 A+ LC Bi + LFi 0

Cj + EjK −EjK Dij Ej

0 C Fi 0









(

wi

û

)

(6)
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Then a Youla parameter Q ∈ RH∞, allowing to explore the set of all stabilizing controllers, is intro-
duced as û = Qŷ (more details are provided in [1, 8]). This extended P has the structure necessary
for the development in [1]. For convenience, the following notations are used for the extended P
representation:

(

zj
ŷ

)

=









A1 Â Bi1 B̂
0 A2 Bi2 0

Cj1 Cj2 Dij Ej

0 Ĉ Fi 0









(

wi

û

)

(7)

Note that [1] proposes a systematic (but not straightforward) choice to build K,L from the conserva-
tive mixed controller mentioned in the previous section. Such choice can also be used here, simpler
alternatives being to use pole placement or linear quadratic design (e.g. with functions place and
dlqr in Matlab c©). This choice is actually that of the initial solution and is not a point of interest
here. Indeed, our contribution is a technique to converge faster than [1] to the global optimum for
increasing orders of the Youla parameter.

Now we can replace the state-space matrices of the original P by those of the extended P and the
Ac, Bc, Cc,Dc matrices of the controller C by the Aq, Bq, Cq,Dq matrices of the Youla parameter Q
in the closed-loop representation. This gives the extended closed-loop representation which has the
structure required to apply the change of variables of [1].

With this change of variables, the matrix inequalities are then rewritten by replacing the terms Xij,
XijA, XijBi, Cj respectively by Xij(v), Aij(v), Bij(v), Cij(v) defined hereunder. Dij = Dij +EjDqFi

does not change. The new variables are denoted by v, where the Lyapunov matrices Xij have been
restructured and changed into Qij, Rij , Sij (see [1]).

A(v) =





A1Qij t1 t2
0 Rij11A2 +Rij12BqĈ Rij12Aq

0 R′

ij12A2 +Rij22BqĈ Rij22Aq



 ,

t1 = A1Sij1 − Sij1A2 − Sij2BqĈ + Â+ B̂DqĈ,

t2 = A1Sij2 − Sij2Aq + B̂Cq,

Bij(v) =





B̂DqFi +Bi1 − Sij1Bi2 − Sij2BqFi

Rij11Bi2 +Rij12BqFi

R′

ij12Bi2 +Rij22BqFi



 ,

Cij(v) =
(

Cj1Qij Cj1Sij1 + Cj2 − EjDqĈ Cj1Sij2 − EjCq

)

,

Xij(v) =

(

Qij 0
∗ Rij

)

, Rij =

(

Rij11 Rij12

∗ Rij22

)

.

These expressions are not written explicitly under that form in [1] but are easily derived from the
other expressions (as was made in [9] with other notations). Note that the notations are consistent
with those of [1], except for the additional detail of the indices ij (sometimes omitted or regrouped
as j in [1]) and the splitting of the terms Rij and Sij = (Sij1 Sij2). The reason for this is to have
expressions where all four matrices of Q appear explicitly. Also, note that Qij are new variables and
otherwise Q denotes the Youla parameter (like in [1]).

Then, the technique of [1] considers finite-dimensional subspaces of RH∞ for the Youla parameter
Q. The reason is that the expressions above are not yet affine in the optimization variables because
some products between variables still remain. Thus, Finite Impulse Response (FIR) expansions are
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used to define the realization of Q(z) = Q0 +Q1z
−1 + · · ·+Qpz

−nq as:

(

Aq Bq

Cq Dq

)

=



















0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

. . .
...

...
0 0 · · · 0 I 0
0 0 · · · 0 0 I

Qnq Qnq−1 · · · Q2 Q1 Q0



















(8)

This fixes the Aq, Bq matrices and hence renders the expressions affine: the BMIs are turned into
LMIs. Note that the order (i.e. number of states) of the Youla parameter is actually pnq, where nq

is the size of the FIR expansion and p is the number of inputs of the parameter (i.e. the number of
measurements in y = the number of columns in Bq). Also, we remark that an alternative formulation
can be used where the fixed matrices are Aq and Cq instead of Bq (in which case the order of the Youla
parameter becomes mnq, with m the number of inputs in u). The restriction of fixed Aq, Bq matrices
implies the conservatism of the approach in [1] for fixed-order parameters. Nevertheless, increasing
the order of the Youla parameter Q improves the objective value monotonously towards the global
optimum [3, 4]. The problem is that the order required for a given relative decrease might lead to too
big LMIs and Youla parameters. Therefore a technique will be proposed in the next section that will
lead to a faster convergence meaning smaller LMIs and Youla parameters.

3 Contribution

The contribution developed here stems from the key observation that we can identify three subsets
of variables: vα = {Sij2, Rij12, Rij22}, vβ = {Aq, Bq} and vγ = {Cq,Dq, Qij , Sij1, Rij11, γij , Zij}. The
technique developed in [1] only considers LMIs with the variables v1 = {vα, vγ} and defines vβ such
that Q is a FIR filter. Here we propose to also use LMIs with the variables v2 = {vγ , vβ}. Indeed,
observe that in the expressions obtained with the change of variables, only the vα variables are involved
in product terms with vβ (and the vγ variables always appear affinely). Thus, instead of fixing the vβ
variables, the vα variables can be fixed to turn the BMIs into LMIs.

Note that since each of the variables Sij2, Rij12, Rij22 of vα appear in product terms with each of
the variables Aq, Bq of vβ, there exists no meaningful alternative choice to split the variables. On a
related note, we remark that this choice of structuring the variables is actually very similar to what
was proposed by [10] (applicable for model reduction problems).

The main loop of the method proposed here is the same as the algorithm in [1]. At each iteration of
the loop, the order of the Youla parameter is increased. This leads to a sequence of Youla parameters
which corresponding costs converge to the globally optimal value of the multi-objective (MO) problem.

Main loop (= Outer loop)

1. Choose an initial controller to extend P into the observer structure (6).

2. Run the fixed-order Youla parameters optimizations, for increasing orders until no improve-
ment is obtained to a given relative decrease.

The improvement contributed here lies in the point 2., i.e. for each

Fixed-order Youla parameters optimizations

In [1], one fixed-order parameter optimization is performed as follows:
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A) Fix the matrices Aq, Bq (= vβ), according e.g. to FIR filters (8).

B) Optimize the variables v1 (∋ Cq,Dq) by minimizing the MO formulated under the LMI constraints
affine in v1.

Here, this optimization is performed further with the following algorithm (or inner loop):

A) Choose initial matrices Aq, Bq (= vβ).

B) Fix the variables vβ at the values obtained at the previous step and optimize the variables v1
(∋ Cq,Dq) by minimizing the MO problem formulated under the LMI constraints affine in v1.

C) Fix the variables vα at the values obtained at the previous step and optimize the variables v2
(∋ Aq, Bq, Cq,Dq) by minimizing the MO problem formulated under the LMI constraints affine in
v2.

D) Iterate successively B) and C), until the objective decreases less than a chosen relative decrease.

This type of algorithm can only lead to a monotonous decrease of the objective, and at worst
remains at the solution obtained after the first optimization. More comments will be made in Section
5 about the convergence of this inner loop algorithm. But at least, since the first two steps of this
inner loop are exactly the end of the method in [1], this algorithm can only lead to the same or a
better MO value than that obtained in [1] for each fixed order-parameter optimization. This means
that for the sequence of increasing order Youla parameters, the corresponding sequence of decreasing
costs can only converge faster with respect to the order (or at least as fast) to the global optimum of
the MO than the sequence obtained in [1].

This is the main point of the contribution, which deepens the results in [1]: i.e. it expands the
main contribution of [1], which implied already a considerable reduction of the growth of size of the
optimization problems compared to the previous solution from [3, 4]. Indeed, thanks to the highlighted
new insight on the change of variables [1] and resulting inner loop algorithm, the contribution of [1]
is pushed further by exploiting more thoroughly the benefits of that change of variables (that is, that
this change of variables leads not to one but two useful LMI formulations).

On top of the improvement of the inner loop algorithm, we also present the following additional
improvement. Considering that now the Aq, Bq matrices are also optimized with the inner loop
algorithm, it would be a waste of computational effort to start each optimization of fixed order from
the FIR filter matrices Aq, Bq from (8). Therefore, an additional improvement is to extend the solution
Qend,nq

, obtained after the optimization of the Youla parameter of order pnq, into a larger order initial
solution Qini,nq+1 for the optimization of the Youla parameter of order p(nq +1) at the initial step A)
of the inner loop algorithm. We propose to do this as follows:

Qini,nq+1 =





Aqnq
0 Bqnq

0 0 I

Cqnq
0 Dqnq



 ≡

(

Aqnq
Bqnq

Cqnq
Dqnq

)

= Qend,nq
(9)

where the zero and identity matrices have appropriate dimensions. Since the entry(ies) of the addi-
tional state(s) in the Cq matrix is(are) zero, we have that Qini,nq+1 ≡ Qend,nq

(i.e. these parameters
are equivalent in the input-output sense). Thus the closed-loop and its properties remain the same, in
particular the MO cost is not modified by this ‘extension’ of Q. This ensures that the sequence of MO
costs when increasing the order of the Youla parameter (or ‘Growing Youla’) decreases monotonously.
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4 Results on example

The results obtained with the H2/H∞ example used in [1] are now presented1. The discrete-time
plant P considered there is defined as follows:









x+

z1
z2
y









=





















0.5 1 1.5 1 1 0 0
−1 3 2.1 2 0 0 0
1 −1 −0.6 1 0 1 0
−2 2 −1 1 0 0 1

0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0





























x

w1

w2

u









(10)

The multi-objective used is chosen with λ = 1, i.e. to minimize ||T11||2 + ||T22||∞.
The choice of the initial controller K,L to extend P into the observer structure (6) (i.e. the step 1.

of the main loop) is not made like in [1], which is not straightforward to reproduce, but is obtained by
linear quadratic design for discrete-time systems (see the hyperlinked files for details). Anyhow this
choice does not affect the global optimum of the MO problem, to which the increasing order solutions
converge, as pointed out in [1].

4.1 Main results

The MO values obtained for the sequences of increasing order Youla parameters are given in Fig. 1.
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Figure 1: Comparison of the two sequences of MO values

The multi-objective values ‘FIR filters (Scherer 2000)’ are those obtained with the separated Youla
parameters designs of [1], where the matrices Aq, Bq are fixed for each order nq according to the FIR
definition (8)2.

The second set of results ‘Growing Youla’ is obtained with the contributed method, i.e. with
the inner loop algorithm improving the multi-objective value for each order nq, and where the solu-
tion obtained at a previous order nq is extended to be used as initial solution for the order nq + 1
optimization.

1Matlab files to reproduce the results available on http://www.mathworks.com/matlabcentral/fileexchange/36706.
2Note that in Fig. 5 of [1] the objectives values converged to another value than in Fig. 1 here. The technique of [1]

was however applied here with extreme care. This has been discussed with the author of [1]. The results in [1] should
correspond to a different P than that in (10).
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The objective of accelerating the convergence to the global optimum is fulfilled, for example the
growing controller converges to 102.9801 at nq = 9 (the solution at nq = 10 is smaller by a relative
decrease under 10−14), whereas FIR filters will require much larger orders to get such relative decrease
(actually with the desktop computer used3, such value could not be reached with FIR filters, e.g. the
relative decrease obtained between the solutions at nq = 14 and 15 is only of 10−4).

4.2 Computing time VS relative accuracies

In Fig. 1 above we observed that indeed the objective value of the Growing Youla was smaller for all
orders nq than the values reached by the FIR filters of [1]. This however does not give any information
regarding the computing time.

In the figure hereunder we draw a comparison of the computing times required against the relative
distances Γnq/Γopt − 1 reached, Γnq being the objective obtained at the size nq design and Γopt being
the best solution found (underestimated at 102.9799 ∼= 102.97996/(1+10−7)), for each order nq of the
Growing Youla or the FIR parameters.

The FIR designs are stopped at nq = 25 (after which are encountered memory problems) and
the growing Youla is stopped at nq = 10 (after which the relative decrease falls under the machine
precision). Note that for the growing Youla, the computing time of the size nq design is the total time

required to optimize Qnq and all the smaller order designs. Whereas for the FIR designs, it is only
the time needed for each Qnq independently (therefore this comparison favors the FIR designs, for
which in practice several optimizations of different increasing orders must be tried until no significant
improvement is observed). The results are drawn in Fig. 2.
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Figure 2: Relative distances reached VS computing times required

It appears clearly that for [1] the computing times and orders of the FIR expansion required
explode to obtain a small relative distance. This is not surprising since the number of variables in the
LMIs varies with the square of nq (with this example: n2

q + 18nq + 76 for FIR designs).
With the Growing Youla parameter optimizations, the computing time is larger for smaller orders

of the parameter, but then the corresponding sequence of multi-objective value converges much faster
towards the globally optimal value. This is due to the fact that most of the computing effort is used
for smaller orders optimizations, that bring the multi-objective value already close to the globally
optimal value for small orders, i.e. the sequence of solutions already reaches at moderate orders a
small relative distance to the best value found. This translates as requiring at first larger computing
times for smaller order optimizations, but is worth it since the Growing Youla is able to reach a small

3An HP Compaq dc7800 c©, Intel Q9300 c©, 2.5GHz, 3.48Go RAM, software Matlab 2007b c©, OS Windows XP.
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relative distance to the global optimum for moderate orders which require much less computing time
than the computing time that would be required to reach such relative distance with FIR parameters.

Indeed, we see in Fig. 2 that obtaining the Growing Youla of order nq = 5 or 6 required about
the same computing time than obtaining the FIR parameter of order 12, and that they have close
multi-objective values. Because of the quadratic increase of the number of variables with nq, such
threshold value for nq should exist for all systems. On a related note we remark that the Growing
Youla reaches the best value found 102.97996 at nq = 9, whereas such value could not be reached with
FIR filters (the FIR filter of order 25 required around five times more computing time to reach only
the objective value 102.9809).

The objective here is to propose a method which more quickly converges than [1] towards the
globally optimal value of the multi-objective problem, and not so much to propose a method for actual
implementation (such as PID optimization). The motivation is that once the globally optimal value
is known, the conservatism of other designs can be evaluated. To optimize controllers with specific
structure (thus with non-increasing order, unlike here), we recommend to use specialized non-smooth
non-convex methods, in particular the Matlab c©implementations HIFOO [11] and hinfstruct [12]
(which programs currently only handle continuous-time systems).

Similar results as above were observed with other examples. The presented example suffices to
illustrate that the proposed method converges at least as fast to the global optimum for increasing
order Youla parameters. This is guaranteed in theory, therefore the method should be systematically
considered to improve [1], and in practice we have observed here with one example that it was actually
significantly faster. Since fixed-order designs are shown NP-hard [13], a comparative complexity
analysis to observe the gain of complexity is difficult to develop, so the gain of performance cannot be
known a priori and is only observed a posteriori.

Still, it is of interest to discuss the convergence of the inner loop algorithm. This is done in the
following section.

5 Discussion

The question studied here is whether the inner loop algorithm may converge towards locally optimal
solutions for a fixed order design. Note that this property would be a nice bonus, but is not required.
Indeed, the FIR solutions of [1] are not at all locally optimal for the fixed-order problems, but the main
loop (i.e. the increasing order solutions) does converge to the global optimum of the multi-objective
problem.

The discussion developed in this section is first made by drawing several relevant observations from
the literature, concerning the convergence of iterative LMI algorithms. Then in a second subsection
we point out reasons behind the efficiency of the proposed inner loop algorithm4.

5.1 Convergence of iterative LMI algorithms

No formal proof can be given that the proposed inner loop algorithm is guaranteed to converge to a
locally optimal solution by starting from any feasible solution.

This is a common feature of many iterative LMI algorithms available in the literature, from which
we draw the following examples: the V -K iteration of [15], the cone complementary linearization of
[16] and the dual iteration of [17]. These methods consider the feasibility problem of stabilization
and the last two are very successful in practice for this problem. Nevertheless, they do not have a
formal proof of convergence to locally optimal solutions for minimizations problems (as also outlined
in [18, 19, Intro.], [17, Sec. II]). This is also the case with the algorithm proposed in [10], which is the
most similar to the algorithm proposed here.

4This discussion summarizes elements presented at [14] along with alternative insights.
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The local optimality is not guaranteed because the sequences of solutions of coordinate-descent
methods, though guaranteed monotonically nonincreasing, may lead to ‘partial optimal’ solutions or
‘stagnation’/‘dead’ points (depending on the authors). This was already outlined in [20], again more
specifically in [21] with a counter-example, and also in [22] providing evidence that such a scheme
should almost always fail to reach local optimality. The reason behind this can be simply stated as in
[19]: optimality in two fixed directions does not imply optimality in all possible directions.

Of course the convergence to global optima is also not guaranteed for the fixed-order problems.
This is clear here since these problems can be formulated under an LMI formulation plus a non-convex
rank constraint, shown to be NP-hard [13]. Remember that this NP-hardness applies to the fixed-
order problems and not to the increasing order sequence, for which the cost function converges to the
global optimum because the rank constraint disappears.

5.2 Reasons for efficiency in practice

On a more optimistic note, iterative LMI algorithms are heuristics that may be efficient to deal with
BMI algorithms. The question then is why.

An important reason why iterative LMI algorithms of coordinate-descent type (i.e. where different
subsets of variables are optimized alternatively) may be efficient in practice lies essentially in the choice
of the optimization variables, or coordinates. This choice is important for two reasons pointed out
at several places in the literature. The interested reader is advised to consult [14] and the references
therein presenting these reasons in details, only summarized here.

The first reason is that the choice of coordinates must lead to subsets (i.e. the feasible sets of the
conservative LMI formulations of the BMI problem) with better solutions at each iteration. This is
necessary to get an improving sequence of solutions and not to remain stuck at the same solution. This
last situation typically happens with the V -K iteration [15], for which the objective is not improved
at the steps where the controller is fixed.
With the inner loop algorithm proposed here, the controller is partly free (steps B) or entirely free
(steps C) and the successively explored convex subsets can generate an improving sequence of solutions.
Such improvement is guaranteed for the steps B) of the algorithm, under the very mild assumption
that the Cq,Dq matrices of the parameter are not already optimal for its Aq, Bq matrices towards
the desired objective. At the steps 3), only a part of the Lyapunov-related matrices is fixed and
Aq, Bq, Cq,Dq are free. Thanks to the fact that all four state-space matrices of Q are free, this allows
to benefit from the degree of freedom that LTI systems admit an infinity of equivalent state-space
representations. Therefore, this mitigates the impact of having to fix part of the Lyapunov-related
matrices at these steps. Such a similar hypothesis is likewise formulated in [10].

The second reason of the importance of the the choice of variables is its impact on the structure
of the resulting BMI problem. For instance, the change of variables of [1] implies the great benefit of
a set of variables vγ already appearing affinely in the BMI formulation. That is, the structure of that
problem can be written in a summarized fashion as ‘vαvβ + vγ ’. Thanks to this structure, the number
of variables involved in product terms (i.e. the so-called ‘complicating variables’, here vα and vβ) has
been reduced compared to the previous BMI formulation where almost all variables were complicating.

Next to the choice of variables, we also point out a technical improvement for the inner loop
algorithm, proposed in [14] and also used with the example results presented above. It consists of not
optimizing the objective at each step but rather solving the feasibility problem whether there exist a

better solution than the previous one. This means that at each step of the inner loop algorithm, we
do not completely minimize the objective but rather solve the problem of finding a strictly smaller
objective5. This modification proved useful in practice to avoid early convergence to dead points and

5In Matlab, at each step k of the inner loop algorithm, instead of using mincx to minimize the linear objective
Γk(=’cx’)s.t. LMIsk ≺ 0, use feasp to solve the feasibility problem LMIsk≺ 0∩Γk < Γk−1. See the hyperlinked files in
http://www.mathworks.com/matlabcentral/fileexchange/36706 for more details.
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led to better solutions, as illustrated with a fixed-order design example in [14, Fig. 2]. This technique
has similar features with the method of centers described in [23, Sec. 2.4] to solve LMIs. However the
proof of convergence given there does not apply for iterative LMI algorithms dealing with non-convex
BMIs.

6 Conclusion

The topic treated in this paper is that of multi-objective control design problems that can be formulated
with LMIs. The exact formulation of such problems involves BMIs constraints because of products
between optimization variables: the Lyapunov matrices and the state-space matrices of the design
parameter. The only approach with guaranteed convergence towards the global optima of these multi-
objective problems relies on using finite dimensional subspaces for the design parameter. By increasing
the order of the design parameter, and re-optimizing it after each increase, the objective value is
improved monotonously towards its global optimum. This approach was used in [1], where the main
contribution is a change of variables reducing the inflation of size of the optimization problems.

The aim of the current paper is to improve the method proposed in [1]. The issue with the way
the change of variables proposed in [1] was used in that paper is that the state-space matrices Aq and
Bq of the design parameter had to be fixed prior to optimization and could not be improved. Here
the observation is made that this change of variables actually allows to formulate, not just the affine
terms proposed in [1], but also another set of affine terms where the state-space matrices Aq and Bq

appear as free variables and other variables are fixed.
Thanks to this key observation, the fixed-order design parameters obtained in [1] can be directly

improved with the contributed iterative LMI algorithm: once an optimization is made with one set of
variables, a following optimization can be made with the other set of variables, and this is repeated
iteratively until no improvement is reached to a given relative decrease. Although this kind of scheme
is not guaranteed to converge to locally optimal solutions, monotonous decrease is guaranteed. This
means that the proposed algorithm can only improve the solutions obtained in [1], or at the very least
remain at the same solutions, which is not surprising since this scheme comes as a second layer on top
of the method of [1].

Since a fixed-order design can only be improved or at least remain at the same solution, the
sequence of increasing order design parameters obtained here can only converge faster or at least as
fast as in [1] to the global optimum of the multi-objective problem.

This is illustrated with the multi-objective H2/H∞ example from [1]. The objective values ob-
tained are indeed better than those from [1], which translates as a sequence of increasing order design
parameters converging faster (i.e. for smaller orders) to the global optimum. Thanks to this, a signif-
icantly smaller order design parameter is obtained for a given relative decrease than that obtained in
[1]. Moreover, the LMIs involved are smaller and therefore involve significantly less variables than in
[1], which in practice translates as a much shorter computing time required to reach a desired relative
decrease.

Then, the convergence of the proposed algorithm has been discussed. This discussion is based on
some main elements drawn from the literature regarding iterative LMI algorithms, as well as some more
practical observations. From these points, reasons are identified why the algorithm will in practice
improve the fixed-order design parameters obtained in [1], at least towards better solutions even if
not necessarily locally optimal ones. In the end, the method can only speed up the convergence of
the increasing order design parameters towards the global optimum and should therefore be used as
a systematic refinement of the method in [1].
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