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Abstract

This paper proposes bootstrap procedures for expected ramining lifetimes and life annuity
single premiums in a dynamic mortality environment. Assuming a further continuation of
the stable pace of mortality decline, a Poisson log-bilinear projection model is applied to
the forecasting of the gender- and age-specific mortality rates for Belgium on the basis of
mortality statistics relating to the period 1950-2000. Bootstrap procedures are then used to
obtain confidence intervals on various actuarial quantities.
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1 Introduction and Motivation

Lee & Carter (1992) proposed a simple model for describing the secular change in mor-
tality as a function of a single time index. This model is fit to historical data. The resulting
estimate of the time-varying parameter is then modeled and forecast as a stochastic time
series using standard Box-Jenkins methods. From this forecast of the general level of mor-
tality, the actual age-specific rates are derived using the estimated age effects. For a review
of recent applications of the Lee-Carter methodology, we refer the interested readers to Lee
(2000).

The main statistical tool of Lee & Carter (1992) is least-squares estimation via singu-
lar value decomposition of the matrix of the log age-specific observed forces of mortality. The
mortality data (death counts and exposures-to-risk) have to fill a rectangular matrix which
may pose a problem. Singular value decomposition also implicitly means that the errors are
assumed to be homoskedastic, which is quite unrealistic: the logarithm of the observed force
of mortality is much more variable at older ages than at younger ages because of the much
smaller absolute number of deaths at older ages. Sithole, Haberman & Verrall (2000)
and Renshaw & Haberman (2003a,b) have recently implemented an alternative approach
to mortality forecasting based on heteroskedastic Poisson error structures. A closely re-
lated model has been proposed by Brouhns, Denuit & Vermunt (2002a,b), keeping the
Lee-Carter log-bilinear form for the forces of mortality but replacing ordinary least-squares
regression with Poisson regression for the death counts. There is thus a key difference be-
tween Renshaw & Haberman (2003a) and the method proposed by Brouhns et al.
(2002a,b) that is developed in the present paper: the difference centres on the interpretation
of time which in the Lee-Carter and Brouhns et al. (2002a,b) approach is modeled as a
factor and under the approach proposed by Renshaw & Haberman (2003a) is modelled
as a known covariate.

Of course, the projection of the mortality itself is affected by uncertainty. The effects
of uncertainty coming from projections are investigated. Such an analysis is particularly
important in demographic or actuarial applications. In Brouhns et al. (2002a), confidence
intervals (for annuities and life expectancies) were obtained by ignoring all the errors except
those in forecasting the mortality index. According to Appendix B of Lee & Carter (1992),
these errors dominate the others for annuities and expected remaining lifetimes. Because of
the importance of appropriate measures of uncertainty in an actuarial context, Brouhns
et al. (2002b) derived confidence intervals taking into account all the sources of variability.
The nonlinear nature of the quantities of interest makes an analytical approach not tractable
and therefore Monte-Carlo simulation (or parametric bootstrap) was used. In this paper, we
aim to continue the study initiated in Brouhns et al. (2002a,b) and to explore alternative
bootstrap procedures to derive error margins on life expectancies or annuity pure premiums.

The paper is organized as follows. Section 2 introduces the notation used in this paper.
In Section 3, the Poisson log-bilinear model for mortality projection is described. Section 4
is devoted to the derivation of confidence intervals for expected remaining lifetimes with the
help of the bootstrap. Belgian mortality statistics are investigated using these techniques.
The final Section 5 concludes.
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2 Notation, assumption and data

2.1 Notation

We analyze the changes in mortality as a function of both age x and calendar time t. Hence-
forth,

• Tx(t) is the remaining lifetime of an individual aged x on January the first of year t;
this individual will die at age x + Tx(t) in year t + Tx(t).

• qx(t) is the probability that an x-aged individual in calendar year t dies before reaching
age x + 1, i.e. qx(t) = Pr[Tx(t) ≤ 1].

• px(t) = 1− qx(t) is the probability that an x-aged individual in calendar year t reaches
age x + 1, i.e. px(t) = Pr[Tx(t) > 1].

• µx(t) is the mortality force at age x during calendar year t.

• ex(t) = E[Tx(t)] is the expected remaining lifetime of an individual aged x in year t.

• ETRxt is the exposure-to-risk at age x during year t, i.e. the total time lived by people
aged x in year t.

• Dxt is the number of deaths recorded at age x during year t, from an exposure-to-risk
ETRxt.

• Lxt is the number of individuals aged x on January 1 of year t.

2.2 Assumption

In this paper, we assume that the age-specific mortality rates are constant within bands of
age and time, but allowed to vary from one band to the next. Specifically, given any integer
age x and calendar year t, it is supposed that

µx+ξ(t + τ) = µx(t) for 0 ≤ ξ, τ < 1. (2.1)

Under (2.1), we have for integer age x and calendar year t that

px(t) = exp(−µx(t)) and ETRxt =
−Lxtqx(t)

ln(1 − qx(t))
. (2.2)

The formula giving ex(t) under (2.1) is

ex(t) =
1 − exp

(
− µx(t)

)

µx(t)

+
∑

k≥1

{
k−1∏

j=0

exp
(
− µx+j(t + j)

)
}

1 − exp
(
− µx+k(t + k)

)

µx+k(t + k)
. (2.3)
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The net single premium ax(t) of a life annuity sold to an x-year-old individual in year t is
then given by

ax(t) =
∑

k≥1

{
k−1∏

j=0

exp
(
− µx+j(t + j)

)
}

vk, (2.4)

where v is the (deterministic) discount rate.

2.3 Data

The data used to illustrate this paper relate to the Belgian population, males and females
separately. They cover the period 1950-2000 and have been provided by the National Insti-
tute of Statistics (they are available from the authors upon request). These data comprise
the series of Lxt for x = 0 to 94 and t = 1950 to 2000 as well as the corresponding death
counts Dxt. Formula (2.2) is used to derive the exposure-to-risk.

We assume that the remaining lifetimes of the Lxt individuals aged x on January 1 of year
t are independent and identically distributed. The unconstrained MLE of µx(t), denoted as
µ̂x(t), is thus given by the ratio of the observed number of deaths Dxt for age x and year t
to ETRxt, that is

µ̂x(t) =
Dxt

ETRxt
. (2.5)

3 Poisson log-bilinear methodology

3.1 Lee-Carter classical methodology

Before describing the Poisson model, we first recall the basic features of the classical Lee-
Carter approach. The latter is in essence a relational model

ln µ̂x(t) = αx + βxκt + εx(t) (3.1)

where µ̂x(t) is given by (2.5), the εx(t)’s are homoskedastic centered error terms and where
the parameters are subject to the constraints

∑

t

κt = 0 and
∑

x

βx = 1 (3.2)

ensuring model identification.
The model (3.1) is fitted to a matrix of age-specific observed forces of mortality using

singular value decomposition (SVD). Specifically, the α̂x’s, β̂x’s and κ̂t’s are such that they
minimize ∑

x,t

(
ln µ̂x(t) − αx − βxκt

)2

. (3.3)

The minimization of (3.3) consists in taking for α̂x the row average of the ln µ̂x(t)’s, and to
get the β̂x’s and κ̂t’s from the first term of a SVD of the matrix ln µ̂x(t) − α̂x. This yields a
single time-varying index of mortality κt.
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When the model (3.1) is fit by minimizing (3.3), interpretation of the parameters is quite
simple:

- the fitted value of αx exactly equals the average of ln µ̂x(t) over time t so that exp αx

is the general shape of the mortality schedule;

- the actual forces of mortality change according to an overall mortality index κt mod-
ulated by an age response βx. The shape of the βx profile tells which rates decline
rapidly and which slowly over time in response of change in κt.

Before modeling the parameter κ̂t as a time series process, the κ̂t’s are adjusted (taking
α̂x and β̂x estimates as given) to reproduce the observed number of deaths

∑
x Dxt, that is

the ̂̂κt’s solve ∑

x

Dxt =
∑

x

ETRxt exp(α̂x + β̂x
̂̂κt). (3.4)

The latter equation means that the κt’s are reestimated so that the resulting death rates
(with the previously estimated α̂x and β̂x), applied to the actual risk exposure, produce the
total number of deaths actually observed in the data for the year t in question. There are
several advantages to making this second stage estimate of the parameters κt. In particular,
it avoids sizable discrepancies between predicted and actual deaths (occurring because the
first step is based on logarithms of death rates). Other advantages are discussed by Lee
(2000).

The time factor ̂̂κt is intrinsically viewed as a stochastic process and Box-Jenkins tech-
niques are then used to estimate and forecast κt within an ARIMA times series model.

3.2 Poisson log-bilinear model

According to Alho (2000), the model described in equation (3.1) is not well suited to the
situation of interest. As already mentioned, the main drawback of the OLS estimation via
SVD is that the errors are assumed to be homoskedastic. This is related to the fact that for
inference we are actually assuming that the errors are normally distributed, which is quite
unrealistic. The logarithm of the observed force of mortality is much more variable at older
ages than at younger ages because of the much smaller absolute number of deaths at older
ages.

The approach of Brouhns et al. (2002a) consists in substituting Poisson random
variation for the number of deaths for an additive error term on the logarithm of mortality
rates keeping the log-bilinear form for the µx(t)’s unchanged. It is worth to mention that
the Poisson distribution is well-suited to mortality analyses; see e.g. Brillinger (1986) for
more details. Log-linear Poisson regression has been successfully applied by Renshaw &
Haberman (1996, 2003a) and Sithole, Haberman & Verrall (2000) to the forecasting
of mortality trends. Log-bilinear Poisson specifications are also considered in Renshaw &
Haberman (2003b).

We now consider that

Dxt ∼ Poisson
(
ETRxtµx(t)

)
with µx(t) = exp (αx + βxκt) (3.5)

4



where the parameters are still subject to the constraints (3.2). The force of mortality is thus
assumed to have the same log-bilinear form ln µx(t) = αx +βxκt as in the Lee-Carter model.
The meaning of the αx, βx, and κt parameters is essentially the same as in the classical
Lee-Carter model. Only the random part of the model is modified.

3.3 Maximum likelihood estimation

Instead of resorting to SVD for estimating αx, βx and κt, we now determine these parameters
by maximizing the log-likelihood

L(α, β, κ) =
∑

t

∑

x

{
Dxt(αx + βxκt) − ETRxt exp(αx + βxκt)

}
+ constant.

based on model (3.5). Details of the fitting procedure can be found in Brouhns et al.
(2002a); see also Renshaw & Haberman (2003b) for related results.

Differentiating the loglikelihood with respect to αx gives the equation
∑

t

Dxt =
∑

t

ETRxt exp(α̂x + β̂xκ̂t). (3.6)

So, the estimated κt’s are such that the resulting death rates applied to the actual risk
exposure produce the total number of deaths actually observed in the data for each age x.
Sizable discrepancies between predicted and actual deaths are thus avoided and there is thus
no need of a second-stage estimation like (3.4).

We apply the Poisson modelling to the Belgian population data. The Poisson parameters
αx, βx and κt involved in (3.5) are estimated via maximum likelihood, separately for men and
women. Figure 3.1 plots the estimated αx, βx and κt. We can see that the α̂x’s summarize
the average mortality accross time: the α̂x’s clearly increase in x, reflecting higher mortality
at older ages, as expected. The β̂x’s decrease with age but remain positive. The κ̂t’s exhibit
regular behavior revealing the improvements of mortality during the observation period.

Since we work in a regression framework, it is essential to inspect the residuals. With
Poisson random component, deviance residuals are appropriate to monitor the quality of the
fit. These residuals are defined as

sign(Dxt − D̂xt)

√

Dxt ln
Dxt

D̂xt

− (Dxt − D̂xt),

where
D̂xt = ETRxt exp(α̂x + β̂xκ̂t).

Figure 3.2 displays the evolution of residuals through time at different ages. The absence of
structure at most ages (except the very youngest ones that are usually not used in actuarial
computations) supports the model.

3.4 Modelling the index of mortality

As in the Lee-Carter methodology the time factor κt is intrinsically viewed as a stochastic
process. Box-Jenkins techniques are therefore used to estimate and forecast κt within an
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Figure 3.1: Estimations of the Poisson log-bilinear parameters involved in (3.5) (men are on
the left, women on the right).
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Figure 3.2: Deviance residuals for the Poisson log-bilinear model (3.5) applied to ages 0-94
(men are on the left, women on the right).
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ARIMA times series model. Henceforth, a superscript “m” (resp. “w”) indicates that the
corresponding quantity relates to men (resp. to women). The models selected on the basis
of the Box-Jenkins methodology are ARIMA(0,1,0)

κm
t − κm

t−1 = ρm + εm
t

for men and ARIMA(0,1,1) for women

κw
t − κw

t−1 = ρw + θwεw
t−1 + εw

t

where the εm
t ’s and εw

t ’s are white noises with variances σ2
m and σ2

w, respectively. Estimations
of the parameters are

Parameter Estimation

ρm −1.2735
ρw −1.6604
θw −0.4410
σm 2.3820
σw 2.7326

which all significantly differ from 0 (at 5%).

3.5 Projected lifetables

We are now ready to forecast the κt’s. Figure 3.3 displays the projection of the κt’s up to
2050, together with 95% confidence intervals.

Figure 3.3: ARIMA forecasts (with 95% confidence intervals) up to 2050 (men are on the
left, women on the right).

The projected κ2000+s, s = 1, 2, . . ., are inserted into the formulas giving the force of
mortality and provide

µ̂x(2000 + s) = exp(α̂x + β̂xκ̂2000+s).
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From these projected forces of mortality, we can build projected lifetables and compute life
expectations. Forecast mortality rates can also be computed as

µ̂x(2000 + s) = µ̂x(2000) exp(β̂xκ̂2000+s − κ̂2000)

thereby ensuring the forecasts are aligned to the latest available mortality rates µ̂x(2000).
As pointed out by Bell (1997), if the latest data are judged to generate atypically shaped
crude mortality shapes (by age), it is possible to average accross a few years at the end of
the observation period.

The interest of the approach developed in this paper is that we are now able to follow
a generation. Figure 3.4 displays the forces of mortality applicable to different generations
(i.e. those people born in 1950, 1960, . . . , 2000).

Figure 3.4: Forces of mortality for the generations born in years 1950 until 2000 obtained
from model (3.5) (men are on the left, women on the right).

4 Confidence intervals for actuarial indicators

4.1 Why bootstrapping?

In forecasting, it is important to provide information on the uncertainty affecting the fore-
casted quantities. In that respect, confidence intervals are particularly useful. However,
in the current application it is impossible to derive the relevant confidence intervals ana-
lytically. The reason for this is that two very different sources of uncertainty have to be
combined: sampling errors in the parameters of the Poisson model and forecast errors in the
projected ARIMA parameters. An additional complication is that the measures of interest
– mortality rates and life expectancies – are complicated non-linear functions of the Poisson
parameters αx, βx, and κt and the ARIMA parameters. The key idea behind the bootstrap
is to resample from the original data (either directly or via a fitted model) to create replicate
data sets, from which the variability of the quantities of interest can be assessed. Because
this approach involves repeating the original data analysis procedure with many replicate
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sets of data, it is sometimes called a computer-intensive method. Bootstrap techniques are
particularly useful when, as it will be the case in our problem, theoretical calculation with
the fitted model is too complex.

The two sources of uncertainty that have to be combined are the sampling fluctuation
in the αx, βx, and κt parameters and the forecast error in the κt parameters. Brouhns et
al. (2002b) sampled directly from the approximate multivariate normal distribution of the
maximum likelihood estimators α̂, β̂, κ̂. We propose here two alternative approaches.

4.2 Poisson bootstrap

Starting from the observations (ETRxt, Dxt), we create N bootstrap samples (ETRxt, Dn
xt),

n = 1, . . . , N , where the Dn
xt’s are realizations from the Poisson distribution with mean

ETRxtµ̂x(t) = Dxt.

The bootstrapped death counts Dn
xt are thus obtained by applying a Poisson noise to the

observed numbers of deaths.
For each bootstrap sample, the αx’s, βx’s and κt’s are estimated and the κt’s are then

projected on the basis of the reestimated ARIMA model. Note that we do not select a new
ARIMA model but keep the ARIMA(0,1,0) for men and ARIMA(0,1,1) for women selected
on the basis of original data. Nevertheless, the parameters of these models are reestimated
with bootstrapped data. This yields N realizations αn

x, βn
x , κn

t and projected κn
t on the basis

of which we compute the measure of interest.
We have applied this methodology to the Belgian data analyzed in Section 3. Specifically,

we purpose to derive a confidence interval for e65(2000), the expected remaining lifetime for
an individual aged 65 in year 2000 (separately for men and women). This represents the
expected retirement period for people getting retired in year 2000 (and is therefore a key
actuarial indicator for the management of public pension regimes).

Ten thousand bootstrapped samples have been generated, yielding e65(2000)n, n =
1, . . . , 10000. An histogram of these values is given in Figure 4.1. The average of the 10
000 e65(2000)n’s is 16.04 for men and 20.06 for women (to be compared with the point
forecasts 16.01 and 20.04). As 90% of the e65(2000)n’s fall in the interval [14.34;17.75] for
men and [20.07;21.26] for women, the latter intervals can be considered as approximate 90%
intervals for the unknown values of e65(2000). The larger width for men can be attributed
to less regular κt’s and corresponding higher order of the ARIMA model.

Let us now consider the net single premiums a65(2000). Based on the same 10 000
bootstrapped samples, we have computed a65(2000)n, n = 1, . . . , 10000. An histogram of
these values is given in Figure 4.2. The average of the 10 000 a65(2000)n’s is 10.71 for men
and 13.01 for women (to be compared with the point forecasts 10.69 and 13.02). As 90% of
the a65(2000)n’s fall in the interval [9.86;11.55] for men and [12.76;13.28] for women, the latter
intervals can be considered as approximate 90% intervals for the unknown values of a65(2000).
The accuracy of the projections can be assessed through the width of these intervals: a
relative error of 15.7% for men and 3.9% for women can be considered as reasonably accurate
(compared to the projection 50 years in the future required to perform these computations).

Remark 4.1. The bootstrapping procedure can also be achieved in a number of alternative
ways. For instance, we could follow here a “generation” (ETRxt, Dxt), (ETRx+1,t+1, Dx+1,t+1),
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Figure 4.1: Histograms for e35(2000) coming from Poisson bootstrap (men are above, women
below).
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Figure 4.2: Histograms for a65(2000) coming from Poisson bootstrap (men are above, women
below).
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(ETRx+2,t+2, Dx+2,t+2). Pseudo death counts Dn
xt, D

n
x+1,t+1, . . ., n = 1, . . . , N , are generated

from a multinomial distribution with exponent

D• =
∑

k≥0

Dx+k,t+k

and parameters
Dxt

D•
,

Dx+1,t+1

D•
, ...

We then proceed as described above. This approach is very close to the Poisson bootstrap
for the Dn

xt since the conditional distribution of the yearly death counts given their sum
conforms to the multinomial law when the yearly death counts are modelled by independent
Poisson random variables. Of course, the relation D• =

∑
k≥0 Dn

x+k,t+k is not necessarily
satisfied in the Poisson bootstrap.

Another possibility is to bootstrap from the residuals of the fitted Poisson log-bilinear
model. The deviance residuals should be independent and identically distributed (provided
the model is well specified). Therefore, it is possible to reconstitute bootstrapped residuals,
and therefrom bootstrapped mortality data.

5 Conclusion

This paper presents the Poisson log-bilinear mortality projection model proposed by Brouhns,
Denuit & Vermunt (2002a) and goes further into the use of bootstrap procedures for the
calculation of confidence intervals. The width of the confidence intervals derived for expected
remaining lifetimes e65(2000) and life annuity net single premiums a65(2000) is moderate
enough to allow for practical purposes.
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