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1. Introduction

We prove Pareto optimality of a golden rule equilibrium (gre) in an overlap-
ping generations (og) model in continuous time with production (and transfers).
From the very start ([1], [15], [19]) the og models were known to have non-Pareto
competitive equilbria, and since then the question of existence of a Pareto optimal
equilibrium allocation in such models has been open.1 The literature provides both
positive answers, e.g., [3], [8], [18], [12], [5]; as well as negative ones, e.g., [9]. It is
crucial, however, that the traditional optimality criterion is weak (“one-sided”), re-
quiring an equilibrium allocation not be dominated only starting from some point in
time (with the exception of, e.g., [14] studying endowment economies).2 Although
“irreversibility of time” might sound appealing (and so it is tempting to “forget
about the past”) using the weak notion of optimality one must accept as optimal,
a.o., all stationary equilbria with “under-accumulation” of capital, which are every-
where dominated by the gre. Hence, we turn back to the classical Pareto criterion
and show, building upon a careful characterisation of equilibria of the model in [16]
(e.g., not requiring neither prices nor capital to be everywhere positive), that gre

is Pareto. This is our first theorem.
The closest model is, probably, by Cass and Yaari [10], who analyse Pareto op-

timality and Malinvaud’s [15] efficiency (dominance by an aggregate consumption
path) in an economy with production in continuous time with logarithmic instan-
taneous felicities, constant life-time productivity, and no transfers. However, the
equilibrium characterisation employed there is constricted by a specific price path,3

and the notion of Pareto (and efficient) allocation, too, is one-sided (in addition,
for Pareto, limiting alternative paths to only those that improve the stream of
“instantaneous felicities” at any point in the life-time of an individual).

The second theorem extends Cass and Yaari’s [10, thm. 1]: a feasible consump-
tion is the highest if and only if its present value is. It is provided, in particular,
to highlight the intricacies of proving efficiency for an unrestricted set of feasible
paths in a model with transfers.

Our last result, lemma 1, demonstrates that the usual criteria for efficiency imply
that the net assets are zero, which, a.o. is true for the balanced growth equilibria
(bge) that are not gre, hence typically are neither efficient nor Pareto.

2. The model

Consider the basic og model from [16]: the life span of any individual born at
x ∈ R is [0, 1];

Ux =

∫ 1

0

e−βsu(ĉx,s)ds, with u(z) =
z1−

1
σ

1− 1
σ

, for σ 6= 1

is his life-time utility defined over the set of individual consumption plans ĉx,s,R+-valued Lebesgue-measurable functions of age s for every x. Individual life-time
income consists of individual- and age-specific transfers.

Aggregate total productive labour available at t is:

Lt = N0e
γt

∫ t

t−1

ζt−xe
νxdx = N0e

(γ+ν)t

∫ 1

0

ζse
−νsds

1The “optimum property of the biological interest rate” (in an exchange discrete model with
two period life-cycle) has been established by Samuelson [19], but optimality of an allocation there
requires it not to be dominated by just another stationary one (with a constant interest rate),
and hence is far weaker than the classical Pareto criterion.

2The characterisation of optimal no-trade equilibria in [14] inspired the initial direction we
took in proving our first theorem.

3The question of existence is omitted.
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where Nxdx
def
= N0e

νxdx (N0 > 0) individuals get born in [x, x + dx], ∀x ∈ R, ζs
is individual productivity, non-negative over a life-span [0, 1], and zero elsewhere,
ν is the rate of the population growth and γ is the per-capita productivity growth.
Aggregate capital evolves according to the differential equation K ′

t = It − δKt with
aggregate investment It and depreciation factor δ.

There is a constant-returns-to-scale instantaneous production function F (Kt, Lt),
F : R2

+ → R+ concave, continuous, positively homogeneous of degree 1, and differ-

entiable on R2
++. f(x)

def
= F (x, 1). The production set is the closed convex cone

spanned by the production function, free-disposal, and 2-way transformations of
output into consumption and investment.

Assumption 1 (Initial Condition). For any feasible path K, e(δ−f ′

∞
)tKt converges

exponentially to 0 at −∞, where f ′
∞

def
= limx→∞

f(x)
x

.

The word “exponentially” can be dropped here iff
∫∞

1
f(x)−xf ′

∞

x2 dx < ∞.

Notation 2.1. (i) Et,s =
Nt−sωt−s,s

Lt
,4 Ωt =

∫ 1

0 Et,sds, c
⊚
t,s =

Nt−sĉt−s,s

Lt
, (so

ct =
∫ 1

0
c⊚t,sds), kt =

Kt

Lt
, yt =

Yt

Lt
, it =

It
Lt

, ct =
Ct

Lt
.

(ii) ϕs =
e−νsζs∫

1
0
e−νuζudu

, η = (γ + ν)(1 − σ) + βσ, R = γ + ν + δ, Φ(x) = ex−1
x

;
(iii) φ(k) = f(k)−Rk, rt = R− f ′(kt)(= −φ′(kt));
(iv) For h : R→ R, ‖h‖∞,1 = supx

∫ x

x−1|h(t)|dt, and ‖E‖∞,1 = supx
∫ x

x−1

∫

|Et,s|dsdt.

Assumption 2. ‖E‖∞,1 < ∞.5 f ′
∞ < R, and ∃x : f(x) > Rx ; i.e., F (1, 0) < R <

F (1,∞).

Definition 1. (i) Stationary endowments mean ωx,s = eγxωs.
(ii) A balanced growth equilibrium (bge) is an equilibrium of an economy with

stationary endowments, such that Kt is an exponential function of time.
(iii) A bge is a golden rule equilibrium (gre) if ∀t, f(kt)−Rkt = maxk(f(k)−Rk).

Notation 2.2. For stationary endowments, we use Es =
e−(γ+ν)sωs∫
1
0
ζse−νsds

and Ω =
∫

Esds.

Definition 2. (i) A plan or allocation is by definition feasible: individual
consumptions belong to the consumption sets, production plans lie in the
production sets, and there is material balance,

(1) ct + it ≤ yt +Ωt

Equivalently, all equilibrium conditions are satisfied except for optimisa-
tion by firms and individuals.

A utility profile Ux, or a capital-consumption path (Kt, Ct), etc., is
feasible if it is induced by some feasible plan.

(ii) An allocation is Pareto optimal, resp., efficient, if it induces a maximal
point (with the usual order on R-valued Lebesgue-measurable functions)
in the set of feasible utility profiles Ux, resp., aggregate consumption Ct.

Comment 1. The concept of efficiency (due to [15]), as distinct from Pareto-op-
timality, has 2 potential interests: the first is to enable to distinguish sources of
non-optimality as being in the finite lives of the firms (production sector) or of the
consumers; the other is that, while Pareto-optimality is a tempting definition of
gre for economies with a single type of consumer, independently of the number of
goods of all sorts [17], it is efficiency that would seem a natural candidate in the
case of a single consumption good, but many types of agents and of all other goods.

4Et,s (resp., c⊚t,s) is the normalised [per unit of productive labour at time t] aggregate endow-

ment (resp. consumption) at time t of individuals of age s.
5So, individual endowments are not necessarily bounded, but have to be locally integrable.
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Remark 2. The material balance equation (1) and the capital accumulation equa-
tion derived in [16, cor. 2] imply that for any feasible path k′t ≤ φ(kt) + Ωt − ct.

Next, we reproduce [16, cor. 15]:

Corollary 1. Assume f ′(0) > R and the endowments are stationary.

(i) If Ω+ supk≥0(f(k)−Rk) ≥ 0 then there exists a gre.
(ii) Denote gre variables with superscript G. The gre are the solutions of

(a) f ′(kg) = R, so r
g= 0

(b) yg = f(kg)
(c) ig= Rkg

(d) cg = Ω + f(kg)− kgf ′(kg)
(e) pg

t = pg

0e
−(γ+ν)t, pI = pC = pY = pg

(f) wg

t = pg

0e
−νt(yg −Rkg), rgt = Rpg

t

(iii) Inequality (i) is necessary for the existence of a feasible path.

Proof. All the claims of the corollary but the last one, iii, are proved in [16]. The
last claim clearly follows from thm. 1 below, but can be shown to hold without its
additional assumption.

(iii): First, by assumption 2, supk≥0(f(k)−Rk) > 0 is attained at a finite k, and
by point (iid) of the corollary, cg = supk≥0 φ(k) + Ω. If inequality (i) is violated,
there is ǫ > 0 such that cg < −ǫ < 0.

Assume to the contrary that such economy can have a feasible path, so, ct ≥ 0
for all t. It follows that cg − ct < −ǫ for all t. This implies, by remark 2, that k′t ≤
φ(kt)+Ω−ct < φ(kt)+Ω−cg−ǫ ≤ −ǫ, for all t, therefore contradicting kt ≥ 0. �

3. The main result

Theorem 1. Assume lim infk→kg

φ(kg)−φ(k)
(k−kg)2 > 0. Then a gre allocation is Pareto

optimal.

Proof. By [16, lemma 1], it is sufficient to prove the result in the reduced economy,

E
′ where γ = ν = 0, N0 = 1,

∫ 1

0 ζds = 1.
We show a bit more: that any plan (ĉx,s, ct, kt, yt, it) with Ux

def
= U(ĉx) ≥ Ug

a.e. equals the gre a.e., where Ug = u(cg)[Φ(−η)]
1
σ is the life-time utility of any

individual in gre.

Step 1. Cx
def
=

∫ 1

0 ĉx,sds ≥ cg for a.e. x ∈ R.

Proof. Neglect the set of x where Ux < Ug (which is negligible). Then, since
γ = ν = 0, the price pt is constant in gre and can be set to 1, the integral is
the cost of a bundle in gre prices. And in gre the life-time income is the sum of

transfers,
∫ 1

0
Esds = Ω, and the wage income,

∫ 1

0
wg

x+sζsds, which is = yg−Rkg, by
cor. 1.iif, and since f ′(kg) = R by the same corollary (cond. iia), the income is equal
to cg (by cond. iid). Since ĉx + ε ≥ ε, U(ĉx + ε) > −∞, so since U(ĉx) ≥ U(ĉg),
ĉx + ε is strictly preferred to ĉg, thus

∫ 1

0 (ĉx,s + ε)ds > cg, hence the result. �

Step 2. At
def
=

∫∫

0≤t−x<s≤1
ĉx,sdxds is a primitive of Ct−ct ∈ Lloc

1 , and is bounded:

∃κ ∈ R, ∀a, b ∈ R :
∫ b

a
(Ct − ct)dt = Ab −Aa ≤ κ .

Proof. Suffices to do the proof for a ≤ b. Let Xt = {(x, s) | 0 ≤ t − x < s ≤ 1},
so At =

∫∫

Xt
ĉ. By [16, prop. 1.c], ĉ is integrable on any bounded subset ofR × [0, 1]. By Fubini’s theorem

∫ b

a
Cxdx is the integral of ĉ on a bounded set D

(= { a < x ≤ b, 0 ≤ s ≤ 1 }, interpreting
∫ b

a
as

∫

]a,b]), and
∫ b

a
ctdt is that on another

bounded set D′ (= { a < x+ s ≤ b, 0 ≤ s ≤ 1 }), and so the difference of the inte-
grals is well-defined, and equals the integral on D \D′ = Xb \Xa minus the integral
on D′ \D = Xa \Xb, i.e., Ab −Aa, which is again bounded by [16, prop. 1.c]. �
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Step 3. ∃κ ∈ R : ∀a ≤ b,
∫ b

a
(ct − Ω− φ(kt))dt ≤ ka − kb ≤ κ.

Proof. By feasibility, ct ≤ f(kt)− it +Ω, and kb − ka =
∫ b

a
(it −Rkt)dt. Combining

the two along with the bounds on kt from [16, prop. 1.a] we get the result. �

Step 4.
∫∞

−∞
(Ct−Ω−φ(kt))dt ≤ lim inf

a,b→∞
[(Ab−A−a)− (kb−k−a)] where Ct−Ω ≥ φ(kt)(1)

∫∞

−∞(Ct − cg)dt ≤ κ where Ct ≥ cg(2)
∫∞

−∞(φ(kg)− φ(kt))dt ≤ κ where φ(kg) ≥ φ(kt)(3)

Proof. Summing the inequalities of steps 2 and 3 implies that ∃κ, ∀a ≤ b :
∫ b

a
(Ct − Ω− φ(kt))dt ≤ Ab −Aa + ka − kb ≤ κ

By step 1, Ct ≥ cg a.e. Also cg − Ω = φ(kg) ≥ φ(kt), since φ(kg) = maxk φ(k).
Thus we get the inequalities, by monotone convergence. �

Our purpose in the following is to show that, in (1), both Ab − Aa and kb − ka
converge to 0, so that the integrals in steps 2 and 3 are 0, when viewed as improper
Lebesgue integrals from −∞ to +∞ (and forgetting the inequality due to possible
free-disposal in the latter). Since the integral in (1) is the sum of those in (3) and
(2), both of which have non-negative integrands, the conclusion will follow.

Step 5. ‖k − kg‖2 < ∞; so, lim inf|kt − kg| = 0 when t → ∞ and when t → −∞.

Proof. By [16, prop. 1.a] any feasible capital path is bounded by some κ. Majorise
φ(k) on [0, κ] by φ(kg) − ε(k − kg)2 (using unimodality of φ, compactness of the

interval, and the assumption lim infk→kg

φ(kg)−φ(k)
(k−kg)2 > 0). Then, by (3),

‖kt − kg‖22 =
∫∞

−∞(kt − kg)2dt ≤ κ/ε �

Step 6. Let F (x) =
√
x for 0 ≤ x ≤ 1, = 1

2x + 1
2 for x ≥ 1. ∃z : ‖ĉx − ĉg‖1 ≤

zF (Cx − cg) a.e. in x.

Proof. Assume first cg > 0. Let G(x) = F−1(|x|). Then ∃ε > 0 s.t., ∀s ∈ [0, 1] and

∀x > 0, e−
η
σ
s(u(x) − u(ĉgs )) ≤ (Φ(−η)

cg
)

1
σ (x − ĉgs ) − εG(

x−ĉgs
cg

), because ĉgs varies in

a compact interval, not containing 0 (since cg > 0), the first derivative of e−
η
σ
su(·)

at ĉgs equals (Φ(−η)
cg

)
1
σ , and the second is continuous and < 0.6

Use this to bound e−
η
σ
su(ĉx,s): Ux−Ug ≥ 0 yields

∫ 1

0G(
ĉx,s−ĉgs

cg
)ds ≤ κ(Cx− cg).

Then, since G(x) = G(|x|), Jensen’s inequality (convexity of G) yields (using
E for expectation) that, for a random variable X , in this case

ĉx,s−ĉgs
cg

where s
has the uniform distribution on [0, 1], EG(X) = EG(|X |) ≥ G(E|X |). Thus,
since G is monotone on R+, E|X | ≤ G−1(EG(X)). Hence ‖ĉx(·) − ĉg(·)‖1 ≤
cgF (

∫ 1

0 G(
ĉx,s−ĉgs

cg
)ds) ≤ cgF (κ(Cx−cg)). Choose then z s.t. ∀x, zF (x) ≥ cgF (κx),

which exists by concavity of F .
If cg = 0, i.e., Ω = −φ(kg), then the integrand in step 3 is the sum of the 2

non-negative functions ct and φ(kg) − φ(kt); since by step 5 lim inf(ka − kb) ≤ 0
when a → −∞, b → ∞, both functions are 0 a.e. by monotone convergence. And

6Indeed, by continuity u′′ < −2ε0 on that compact interval, thus also e−
η
σ
su′′. Hence, ∀ε < ε0,

the claimed upper bound majorises the left-hand member on that compact interval I, even with
G(x) = x2. By compactness (and u′′ < 0), decreasing ε0 further will also yield the inequality ev-
erywhere between 0 and that compact interval (in fact, for our specific u, this is not needed, because
u′′ decreases), and on an interval of length cg to the right of I, ending say at x0. u′′ < 0 implies

that ∃δ > 0∀s∀x ≥ x0 : e
−

η
σ
su′(x) < e−

η
σ
su′(cgs ) − 2δ. Since the G term is linear with slope 2 in

that region, any ε ≤ min{ε0, δ} will ensure that the slope of the upper bound is greater that that of
the left hand member ∀x ≥ x0. Therefore, the inequality extends also everywhere to the right of x0.
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by Fubini ct = 0 a.e. implies ĉx,s = 0 a.e., hence Cx = 0 a.e. Thus, a.e. in x,
ĉx,s = 0 = ĉgs ds-a.e.: ‖ĉx − ĉg‖1 = 0. �

Step 7. At −−−→|t|→∞ Ag: the primitive At is ≥ 0 and At − Ag ∈ C0, with Ag =
1
η
(1− 1

Φ(η) ).

Proof. |At−Ag| ≤
∫∫

0≤t−x<s≤1
|ĉx,s−ĉgs |dxds ≤

∫ t

t−1

∫ 1

0
|ĉx,s−ĉgs |dsdx =

∫ t

t−1
‖ĉx(·)−

ĉg(·)‖1dx ≤ z
∫ t

t−1
F (Cx − cg)dx, by step 6, ≤ zF (

∫ t

t−1
(Cx − cg)dx) by Jensen’s

inequality. By eq. (2), ∀ε > 0, ∃T :
∫

∁[−T,T ](Cx − cg)dx ≤ ε. Thus for |t| ≥ T + 1,

|At −Ag| ≤ zF (ε). �

Step 8. The allocation equals the gre allocation.

Proof. By step 5, lim inft→±∞|kt − kg| = 0, so by step 7, the right-hand member
in (1) is 0. Since its integrand is the sum of the non-negative integrands in (2) and
(3), it follows that Ct = cg and kt = kg a.e., so kt = kg ∀t, by continuity. By step 6,
Ct = cg a.e. implies ĉx,s = ĉgs a.e., and thus Ux = Ug a.e. too, and ct = cg a.e. by Fu-
bini. And, by the capital accumulation equation (formally, use [16, cor. 2]), kt = kg

implies it = ig = Rkg a.e., so, by material balance yt = yg a.e.: there is no unem-
ployment and no free-disposal, and the allocation equals the gre allocation a.e. �

�

4. Cass and Yaari’s necessary and sufficient condition for efficiency

The main idea of the proof stems from Cass and Yaari [10, thm. 1 p. 264].

Proposition 1. If f is strictly concave and C is efficient, there is a unique Kt s.t.
(Kt, Ct) is feasible.

Proof. Follows from the strict concavity of f(k). �

Theorem 2. Assume f is strictly concave. Let C be feasible.
If for every feasible C̃ there exists a feasible (K,C) s.t., for any t0 large enough

and pt = exp[
∫ t

t0
(δ − f ′(ks))ds], lim infb,−a→∞

∫ b

∗ a
pt(C̃t − Ct)dt ≤ 0 (with

∫

∗
being

the lower Lebesgue integral, and the usual convention ∞ × 0 = 0 for products,
cf. [16, fn. 4]), then C is efficient.

Conversely, if C is efficient then for every feasible C̃ there exists a feasible (K,C)
s.t., for every t0 and pt = exp[

∫ t

t0
(δ−f ′(ks))ds], lim infb,−a→∞

∫ b

∗ a
pt(C̃t−Ct)dt ≤ 0.

Remark 3. By [16, prop. 1.c], C̃ −C is a.e. well-defined and finite, so the integrand
is too.

Remark 4. I : f 7→ lim infb,−a→∞

∫ b

∗ a
ptftdt is R-valued, monotone and positively

homogeneous of degree 1 on the set of all R-valued Lebesgue-measurable functions,
with I(f + g) ≥ I(f) + I(g) (‘concavity’) when using ∞−∞ = −∞ on both sides.

Remark 5. There is no ‘justification’ for the formula for pt; even equilibrium re-
lations (e.g., [16, thm. 1.3], referring to [16, lemma 10.a5]) give it only modulo an
additional function πt, which can be neglected only when Kt never vanishes —
while those possible zeros of Kt are the main source of problems here.

An interpretation might be that efficient paths should behave as if Kt never
vanishes, i.e., recover as fast as possible after any zero (cf. the issue of multiplicity
of solutions after a zero in [16, fn. 27]). A confirmation of this might be if one could
prove from the theorem that, for efficient paths, Kt vanishes only on a null set.
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Proof. By [16, lemma 1], it is sufficient to prove the result in the reduced economy,

E
′ where N0 = 1,

∫ 1

0 ζds = 1, γ = ν = 0, so δ = R.
If c is not efficient, and c̃ a feasible improvement, choosing t0 large enough to

satisfy λ{t ≤ t0 | c̃t > ct} > 0 will ensure that pt > 0 on this set and thus that the
inequality is violated.

Conversely, assume the inequality does not hold for some such price system pt
and some c̃; then we have to show c is not efficient. Write c as c0, and c̃ as c1,
corresponding resp. to k0 (which defines p) and k1.

By the hypothesis,

(1) lim inf
b,−a→∞

Ia,b > 0 Ia,b
def
=

∫ b

a

pt(c
1
t − c0t )dt

Since δ = R in E
′,

pt = exp[

∫ t

t0

(R − f ′(k0s ))ds] = exp[−
∫ t

t0

φ′(k0s)ds](2)

Given the hypothesis, we construct the dominating capital-consumption path
(k2, c2) in a series of steps.

Step 1. Let m
def
= inf{t | pt < ∞}, M def

= sup{t | pt > 0}. Then 0 < pt < ∞ on
]m,M [, t 7→ φ′(k0t ) ∈ Lloc

1 (]m,M [); M < ∞ ⇒ kiM = 0 and m > −∞ ⇒ kim = 0,
both for i ∈ {0, 1}. Finally, lim infaցm,bրM Ia,b > 0.

Proof. Since f ′ ≥ 0, R − f ′(k0s ) ≤ R, so by (2) if s < t, pt ≤ pse
R(t−s) thus, for

a < b, the upward variation between a and b,
∑

i:a<si<si+1<b[psi+1 −psi ]
+, is below

pae
R(b−a). Therefore, if pt1 < ∞, then for any t > t1, p remains finite. Similarly, if

pt1 = 0, it remains zero for all t > t1. It follows that {t | 0 < pt < ∞} is an interval
T1, with t0 ∈ T1 (since pt0 = 1 by (2)), and that pt = ∞ to the left of T1 and = 0
to the right. Hence pt has bounded variation on every interval [a, b] s.t. pa < ∞.
Further, the restriction of pt to the closure of T1 is continuous, by the monotone
convergence theorem.

Since T1 6= ∅, m < ∞, thus t0 ≥ m, and pm = pm+ . In case m > −∞, it must
be that φ′(k0m) = ∞, which is only possible if f ′(0) = ∞, hence implying k0m = 0.
Then, for t < m, pt(c

1
t −c0t ) is either 0 or ±∞. So for the integrals to be well-defined

and > 0, one must have c1t ≥ c0t for −∞ < t < m. If strict inequality holds on a
set of positive measure there, then letting c2t = c1t for t < m and = c0t else yields a
feasible path, since k0m = 0 ≤ k1m. So c2 shows that c0 is not efficient: henceforth
we can assume that pt = ∞ ⇒ c1t = c0t . Also, k1m = k0m = 0 since otherwise, if
k1m > 0, it would have been possible to increase c1 on an open interval just before
m (by continuity of k1), hence contradicting the efficiency of c0.

Clearly, M > −∞. Similarly, if M < ∞ then k0M = 0, and one can assume
k1M = 0. Indeed, first, pM+ = 0 implies k0M = 0 and φ′(0) = ∞. If, to the contrary,

k1M > 0, then, by continuity of ki, for some T ∈ ]m,M [ it should be that k1t > k0t
for all t ∈ [T,M [, which implies it is feasible to increase consumption over c1 in
[T,M [; extending this then with c0, k0 after M yields another c1, k1 for which our
claim k1M = 0 holds.

Let ā = max{a,m}, b̄ = min{b,M}. Then, lim infb,−a→∞ Ia,b = lim infb,−a→∞ Iā,b̄.
Thus m < M by positivity of the lim inf. If a ≤ m and M ≤ b, since the
integral Ia,b is well-defined and > 0, the integrand is minorised by some Lebes-
gue integrable function on [m,M ]; hence by the monotone convergence theorem
Im+εa,M−εb → Im,M , and thus lim infεa,εbց0 Im+εa,M−εb = Im,M > 0. So, in any
case, lim infaցm,bրM Ia,b > 0. �
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Step 2. There is T ∈ ]m,M [, and ε : ]m,M [ → R such that either

case A: 0 < εt < k0t − k1t ≤ κ for T ≤ t < M or

case B: 0 < −εt < k1t − k0t ≤ κ for m < t ≤ T

with k0, k1 and ε locally absolutely continuous on ]m,M [.

Proof. By remark 2, k′t ≤ φ(kt) + Ωt − ct. For (k0, c0), there is no loss to assume
that it holds as equality i.e., that no free-disposal is occurring, else c0 can just be in-
creased there, thus finishing the proof. Also we can assume there is no free-disposal
of capital, i.e., a negative singular part ks of k, else, with ka = k − ks one still has
kat

′ = φ(kt) + Ωt − c0t a.e., and now ka > k on an open set, so the excess capital
can just be disinvested and consumed there. Thus one can assume k0 is locally
absolutely continuous and k0t

′ = φ(k0t ) + Ωt − c0t . Similarly for k1 and c1.
Use those equations to replace c0 and c1 in Ia,b, then

lim inf
aցm,bրM

∫ b

a

pt[φ(k
1
t )− φ(k0t )− k1t

′ + k0t
′]dt > 0

∫ b

a
pt[k

0
t
′−k1t

′]dt can be integrated by parts for a > m and b < M , since p and the ki

are absolutely continuous on [a, b], yielding pb(k
0
b−k1b )−pa(k

0
a−k1a)−

∫ b

a
(k0t −k1t )dpt.

By eq. 2, dpt = −ptφ
′(k0t )dt.

lim inf
aցm,bրM

∫ b

a

pt[φ(k
1
t )− φ(k0t )− (k1t − k0t )φ

′(k0t )]dt− pb(k
1
b − k0b ) + pa(k

1
a − k0a) > 0

Let then ηt = −pt[φ(k
1
t )− φ(k0t )− (k1t − k0t )φ

′(k0t )], ≥ 0 by concavity of φ, and,
with m < τ < M , Ht = pt(k

1
t − k0t ) +

∫ t

τ
ηsds: lim supaցm,bրM (Hb − Ha) < 0.

Thus either lim suptրM Ht < 0 or lim inftցm Ht > 0: ∃T ∈ ]m,M [ s.t. either
∀t : T ≤ t < M,Ht < 0 or ∀t : m < t ≤ T,Ht > 0.

By step 1, 0 < pt < ∞ for t ∈ ]m,M [. Thus we can divide by pt: let
εt = (pt)

−1
∫ t

τ
ηsds; then for some T ∈ ]m,M [, either k1t −k0t +εt < 0 ∀t ∈ [T,M [, or

k1t − k0t + εt > 0 for t ∈ ]m,T ]. Take also T > τ in the former case and T < τ else,
so εt is resp. ≥ 0 and ≤ 0. Also, the inequalities imply that in each case |εt| < |kit|,
which is ≤ κ by [16, prop. 1.a], so ηt is locally integrable, and the integral is lo-
cally absolutely continuous in t. Further, since pt is locally absolutely continuous
on ]m,M [, so is εt. Next, in the first case ε > 0 in [T,M [, since else εt0 = 0 for
some t0 ∈ [T,M [ and k1t0 − k0t0 + εt0 < 0 imply k1 6= k0 in a neighbourhood of t0
(by continuity of k0, k1) which implies η > 0 there by strict concavity of f , hence
contradicting εt0 = 0. Similarly, εt < 0 ∀t ∈ ]m,T ]. �

Step 3. The differential equation

(3) kt
′ = φ(kt) + Ωt − c0t − C, C > 0

with initial condition kT = k0T has a unique (Caratheodory) solution7 on an interval
]t1, t2[ such that T ∈ ]t1, t2[ and either ti = ∞ or limt→ti kt = 0 for i = 1, 2.

Proof. Let ht =
∫ t

0 (Ωs − c0s − C)ds. If f ′(0)(= φ′(0)) = ∞ then any feasible
capital path is strictly positive a.e. inside interval T1 (since φ′(ks) has to be in-
tegrable there), so choosing a slightly smaller T if needed assures kT > 0. Then
let D = {(x, t) ∈ R2 | x + ht > 0}, otherwise, (if f ′(0) < ∞), let D = R2 and
extend f to, say, f(x) = f(0) + xf ′(0) for x ≤ 0 (thus, to be continuous and
Lipschitz of D). Further, in both cases on the corresponding domain D , define
G(x, t) = φ(x + ht). The differential equation x′

t = G(xt, t) with initial condition

7I.e., a locally absolutely continuous function kt satisfying the initial condition and s.t. plugging
kt and k′t into the differential equation yields equality a.e. It is easy to prove that there exists no

classical solution, except if Ωt − c0t is everywhere the derivative of its (own) primitive.
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xT = k0T − hT has a unique (classical) solution on an interval ]t1, t2[ such that
T ∈ ]t1, t2[ and either ti = ∞ or limt→ti xt + ht = 0 for i = 1, 2. Indeed, on
D , G(x, t) is continuous, and locally Lipschitz in the first argument, since for any
x, y ≥ x0 > 0, |G(x, t)−G(y, t)| = |φ(x+ ht)− φ(y + ht)| ≤ (f ′(x0) +R)|x− y| by
concavity of f . Further, any solution to that differential equation is locally bounded
at any finite t: indeed, by the differential equation and the triangular inequality

|xt| ≤ |xT | +
∫ t

T
|G(xz , z)|dz, and since φ is continuous, it attains the supremum

of its absolute value, φ̂, between T and t, so the integral is majorised by |T − t|φ̂.
Hence xt exists and is unique on ]t1, t2[, by claim 1 in App. A.

Let kt = xt + ht. Then kT = k0T , k is locally absolutely continuous, and satisfies
the differential equation (3) wherever ht is differentiable with h′

t = Ωt − c0t − C,
thus, a.e. So k is a Caratheodory solution of (3). Conversely, for any Caratheodory
solution k of (3), let xt = kt−ht. Then x′

t = G(xt, t) a.e., and this right hand mem-
ber is continuous, so, since x is locally absolutely continuous, it coincides with the
primitive of the right hand member: x is C1, and the equation x′

t = G(xt, t) holds
everywhere. Hence uniqueness of x, by the argument above — and thus uniqueness
of k. �

Step 4. kt > k0t on [t1, T [; kt < k0t on ]T, t2]; t1 = −∞.

Proof. Let ξt
def
= kt − k0t . Since k0t

′ = φ(k0t ) + Ωt − c0t , and k satisfies (3), and since

k and k0 are locally absolutely continuous, ξt = C(T − t) +
∫ t

T
[φ(ks) − φ(k0s )]ds,

∀t ∈ [t1, t2] by continuity, when defining k by continuity as 0 (cf. def. of ti) at ti
if ti 6= ∞. Then for any t ∈ [t1, t2], using a one-sided derivative if t = ti 6= ∞,
ξt = 0 ⇒ kt = k0t , so ξ′(t) exists and = −C < 0. Thus ξ can have at most one zero
in [t1, t2]. But ξT = 0, so kt < k0t on ]T, t2] and kt > k0t on [t1, T [, so, t1 = −∞. �

Step 5. Let T ′ be inf{t ≥ T : kt = k0t −εt} in case A, and sup{t ≤ T : kt = k0t −εt}
in case B. In case A, T ′ ≤ t2 ≤ M and t2 < ∞ implies both inequalities are strict.
In case B, m ≤ T ′ and if m > −∞, the inequality is strict.

Proof. In case A, first, t2 ≤ M by step 4 and since both k, k0 are continuous
on [T, t2] and [T,M [ correspondingly. So if t2 < ∞ then t2 < M . Then, since
kt2− = 0 < k0t − εt for t ∈ [T,M [ (by step 2), kT = k0T > k0T − εT and kt is
continuous on [T, t2[, it had to cross k0t −εt (continuous on ]m,M [) on [T, t2[, hence
T ′ < t2. Clearly, otherwise T ′ ≤ t2 = ∞.

In case B, similarly, if m > −∞, k0m = k1m = 0 implies that limtցm εt = 0, so
km > 0 = k0m − εm, but kT = k0T < k0T − εT , so the statement follows by continuity
of k, k0, ε on ]m,T ]. �

Step 6. The segment between T and T ′ is of positive length.

Proof. By step 5, T, T ′ are between t1 and t2 in both cases. If T ′ = ∞ in case A
(or = −∞ in case B), the claim holds because −∞ < T < ∞. Otherwise, it follows
from continuity of k on [t1, t2] and kT ′ = k0T ′ − εT ′ 6= k0T = kT , as εT ′ 6= 0 by step
2 in each case. �

Now we define the dominating path k2:

Step 7. Let k2 = k0 beyond [m,M ]; k2 = k (the Caratheodory solution of (3))
between T and T ′ and, from T ′ till M in case A, or m in case B, k2t = k0t −εt. Then
k2 is well-defined, locally absolutely continuous (except possibly at M and m) and
non-negative.

Proof. For the segments beyond [m,M ] the statement is obvious. Since T, T ′ are
in [t1, t2] by step 5, k2 is well-defined strictly between T and T ′, it is absolutely
continuous there by step 3. The same step also assures absolute continuity at
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T ∈ ]t1, t2[. Also, by step 5, t2 < ∞ ⇒ T ′ < t2, so in this case absolute continuity
of k at T ′, too follows from step 3. So, whenever |T ′| < ∞, k2 is well defined and
absolutely continuous between T and T ′ including the endpoints.

If m 6= −∞, k0m = k1m = 0 implies that limtցm εt = 0, so, if T ′ = m, since
k0t < k2t < k0t − εt on ]m,T [, limtցm k2t = 0, so k2m = 0 and k2 can indeed be
continued continuously with k0 beyond m. Similarly, k2 is continuous at M < ∞.

Finally, for the third segment ([T ′,M [ in case A and ]m,T ′] in case B), the local
absolute continuity of k2 follows from that of k0 and of ε, and k2t = k0t − εt > 0 in
each case. Further, if M < ∞ or if m 6= −∞, the inequalities imply as before that
εt and k2t converge to 0 when t ր M (resp. t ց m) : again k2m = k2M = 0. �

Step 8. There is a feasible capital-consumption path (k2, c2) (with k2 defined in
step 7) that dominates (k0, c0).

Proof. Let now c2 satisfy equation k2t
′ = φ(k2t ) + Ωt − c2t . Remains to show, for

feasibility of (k2, c2), that the initial condition (assumption 1) is satisfied, that k2

is locally absolutely continuous at m and M (if either is finite) and that c2 ≥ 0.
Finally, to show that c1 is inefficient we need that c2t ≥ c0t a.e. This last point
will imply c2 ≥ 0 and the local absolute continuity. Indeed, if m 6= −∞ (M < ∞
resp.), since k2t

′ = φ(k2t )+Ωt− c2t and φ is bounded and Ω ∈ Lloc
1 , that the positive

increments of k2 are summable on [m,T ′] ([T ′,M ] resp.), hence k2 being continuous
is of bounded variation there: local absolute continuity of k2 holds at m (M) too.

The initial condition is satisfied, in the first case because initially k2t = k0t , and in
the other because, if m = −∞, ∀t ≤ T, k2t ≤ k0t −εt < k1t and else k2t = k0t for t ≤ m.

Remains thus to show that c2t ≥ c0t a.e. This is obvious in the first 2 segments:
recall on the second segment (of positive length by step 6) the inequality is strict.
On the last one, {t : φ′(k0t ) = ∞} is negligible, we get, with all equalities taken in
the a.e. sense, as derivatives of locally absolutely continuous functions:

c2t − c0t = φ(k2t )− φ(k0t )− k2t
′ + k0t

′

= φ(k2t )− φ(k0t ) + εt
′

= φ(k2t )− φ(k0t )− p′

t

pt
εt − φ(k1t ) + φ(k0t ) + (k1t − k0t )φ

′(k0t )

= φ(k2t )− φ(k1t )− (−φ′(k0t ))(k
0
t − k2t ) + (k1t − k0t )φ

′(k0t )

= φ(k2t ) + (k1t − k2t )φ
′(k0t )− φ(k1t )

To prove that the last expression is ≥ 0: our previous inequalities imply, if t ≥ T ,
k1 < k2 < k0, and if m < t ≤ T , k0 < k2 < k1. So in any case, to minimise the
expression over k0 means setting k0 = k2; hence the result by concavity of φ. �

�

5. A sufficient condition for zero net assets

Since long ([13], [19]) the literature has alluded to a possible connection between
(Pareto) efficiency and the amount of net assets the difference between aggregate
consumer savings and the value of capital, in terms of Arrow-Debreu prices.8 As
is shown in [16, thm. 2], net assets are constant in any equilibirum (of the model
adopted here). In gre the constant is typically different from zero, whereas in
a pure bge (inefficient for a.e. capital share parameter α in the Cobb-Douglas
production case) it is zero by [16, cor. 16].

Here we provide a sufficient condition for net assets to be zero in any equilibrium.

8Cf. [16, def. 4]. Cass and Yaari’s “real money balances” are equivalent to net assets in our
model. In both models if real money balances (net assets) are positive at some point in equilibrium,
they remain so asymptotically, as t → ∞.
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Lemma 1. In an equilibrium where pC = pI = pY (= p), Kt > 0 and inft ptLt = 0,
net assets are zero, m = 0.

Proof. By [16, def. 4], mt is the difference between net consumer savings, St and
aggregate value of capital, ptKt(= ptLtkt). Net savings can be represented, by

Fubini, ([16, lemma 14]) and notation 2.1, as St =
∫ 1

0

∫ t

t+s−1
Lzpz[Ξz,s − c⊚z,s]dzds,

where Ξ(t, s)
def
= Et,s + (f(kt)− f ′(kt)kt)ϕs.

Next, by [16, lemma 10.a5], ptLt = L0p0e
∫

t

0
rvdv, and by [16, thm. 2], net assets

are constant in any such equilibrium, so

m = L0p0e
∫

t−1
0

rvdv
(

∫ 1

0

∫ t

t−1+s

e
∫

z

t−1
rvdv[Ξz,s − c⊚z,s]dzds− e

∫
t

t−1
rudukt

)

;(1)

Since rt ≤ R,
∫ t

t−1 rudu ≤ R and since t − z ≤ 1,
∫ z

t−1 rudu ≤ |z − t + 1|R ≤ R,

hence the term in the parenthesis is majorised by eR
(

∫ 1

0

∫ t

t−1+s
[Ξz,s−c⊚z,s]dzds−kt

)

.

Take its absolute value, apply the triangular inequality for the term in the brackets,
majorise |

∫

| by
∫

|·|, extend the integral to 0 ≤ s ≤ 1; t − 1 ≤ z ≤ t, use Fubini
to change the order of integration, and the triangular inequality for the integrand.
Then (1) implies

∣

∣

∣

m

p0L0eR

∣

∣

∣
≤ e

∫
t−1
0

rvdv
(

∫ t

t−1

∫ 1

0

[|Ξz,s|+ |c⊚z,s|]dsdz + |kt|
)

(2)

The inf of the first term, e
∫

t−1
0

rvdv, is zero by assumption. It is then left to show
that the term in parenthesis in eq. 2 is bounded. Indeed,

∫ 1

0

[|Ξz,s|+ |c⊚z,s|]ds ≤ |Ωz|+ |f(kz)− kzf
′(kz)|+ |cz|

By assumption 2, ‖E‖∞,1 < ∞ and so
∫ t

t−1
|Ωz|dz is bounded, and by [16, prop. 1.c],

the integral over the unit interval of |cz| is bounded as well. By [16, prop. 1.a], kt ≥ 0
is uniformly bounded, and so is f(kt) ≥ 0, further, since the wage rate is positive by
[16, lemma 5.c], so is f(kt)− ktf

′(kt) by [16, lemma 10.a3] and since ktf
′(kt) ≥ 0,

f(kt)− ktf
′(kt) is bounded too, and so the conclusion follows. �

6. Concusions

(Classical) Pareto efficiency of the gre (our first theorem) for the og economy
with production has not been established before, to the best of our knowledge.

The second theorem, a necessary and sufficient condition for (strong) efficiency,
is a generalisation of the first theorem in [10].

In his path-breaking work (analysing an og model with production) Malinvaud
[15] provides a sufficient criterion for (weak) efficiency: it is strikingly elegant, yet
too permissive, requiring just the existence of price under which firms minimize costs
and the value of (fully depreciating) capital to converge to zero as the time extends
to the infinite future. Notice this is implied by the hypothesis of our lemma 1 for a
(reduced) economy with a fixed population and without productivity growth (Lt =
L0). Cass [7] offered a necessary and sufficient condition for efficiency in a smooth
neoclassical model, which requires the infinite sum (from time zero on) of f ′(kt)
along a feasible path to diverge (thus, excluding paths with “over-accumulation of
capital”). Balasko and Shell [2] provide a counter-part of the criterion for a smooth
og model with pure exchange, it is commonly referred to as “Cass criterion” ([4],
[6]): the infinite sum from some point on of the reciprocals of prices should diverge



12 J.-F. MERTENS AND A. RUBINCHIK

for a path to be efficient. All the above criteria mark as efficient all bge with
r = R− f ′(k) < 0 which are clearly dominated by the gre.9

Appendix A. The maximal solution of a differential equation.

Claim 1. For D open in R2, let G : D → R be continuous, and Lipschitz in the
first argument. For (x0, t0) ∈ D , the differential equation x′

t = G(xt, t) has a unique
solution for t ∈ ]t−, t+[, (t− < t0 < t+), where t− > −∞ ⇒ limtցt− xt is the point
at infinity in the one-point compactification of D , and similarly at t+.

Proof. By [11, thm. 10.4.5 pp. 289], there exists a unique solution over some interval
]t−, t+[. Take then a solution with a maximal such interval. If the claim would not
hold, there would be a sequence tn ց t− such that xtn → x̄, (x̄, t−) ∈ D . Then
∃ε > 0: G is bounded on [x̄ − ε, x̄ + ε] × [t− − ε, t− + ε] ⊆ D , say |G(x, t)| ≤ M .
Then on [t−, t− + ε/M ] one must have xt in this rectangle, thus |G(xt, t)| ≤ M , so
xt has bounded variation, and thus has a right-hand limit at t−, which can only
be x̄: limtցt− xt = x̄. Let thus xt−

def
= x̄; by continuity of G conclude first that

x′
t → G(xt− , t−), next that G(xt− , t−) is indeed the right-hand derivative of xt

at t−: we have a solution on [t−, t+[. Taking now (xt− , t−) ∈ D as new initial
point yields then by [11, thm. 10.4.5 pp. 289] a solution on some larger interval,
contradicting the maximality assumption. �
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