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1. Introduction

Consider the classical (Cass and Yaari [4]) 1-commodity, 1 type of consumer over-
lapping generations (og) model with exogenous labour-saving technological growth,
constant-returns-to-scale production function and time-separable ces utility. Time
is the real line, individual life-span is [0, 1], labour is supplied inelastically as in
[4] and, in addition, life-cycle productivity is a non-negative function of age, which
could be taken, for instance, as 1 in the first half of life, and 0 in the second, as
in Samuelson’s model [22]. We add arbitrary endowments, in particular, lump-sum
transfers, as a template for general policies, and give an easy characterisation of
competitive equilibria, that allows in [20] to justify (and provide an algorithm for)
comparative statics with respect to policies, this being our main goal.

Recent variations of Cass and Yaari’s model either provide a partial characteri-
sation for very specific cases (output linear in capital, [6]; exchange economy with
logarithmic preferences, [9]) or are obscure, mixing the description of the economy
with equilibrium conditions.

The main contribution of this paper is the characterisation of competitive equi-
libria based on the classical general equilibrium approach: avoiding any ad-hoc
restrictions on equilibrium variables, and deriving all properties of prices and quan-
tities (finiteness, positivity, continuity, differentiability, etc.) from the equilibrium
(i.e., optimisation) conditions. To the best of our knowledge we provide the first
careful equilibrium analysis of this model, especially for non-stationary transfers
(endowments). In particular, our price equation, lemma 10.a4-a5, shows that the
standard form of no-arbitrage condition, taken for granted in the literature, is, in
general, incorrect and holds only for equilibria where capital is never zero; other-
wise, prices might not be smooth.

Our analysis further allows for irreversibility constraints, which can generate
inequality of equilibrium prices (for consumption and output, for example).

We also establish finiteness of the number of balanced growth equilibria (bge)
(where the capital path is exponential), and that there is no 0-equilibrium: under
mild conditions imposed on the production function, all bge are interior.

For endowment economies (with discrete time starting from zero) the number
of stationary equilibria is known to be finite: [15, 3]. Gale [13], who analysed a
discrete-time pure-exchange og economy, demonstrated it has two types of equi-
libria: balanced ones (where net savings equal the value of the capital stock) and
the golden rule.1 Further, Diamond [10] showed the latter case is implied by some
weak form of efficiency. Cass and Yaari’s connection between positive net assets and
(their notion of) Pareto efficiency is not applicable here, in particular, due to their
reliance on logarithmic utility, non-Cobb-Douglas production, no transfers and con-
stant life-time productivity.2 We show that Gale’s insight is still true for “station-
ary” equilibria in the present setup: in a golden rule equilibrium (gre) net savings
almost always differ from the value of accumulated capital, while in any other bal-
anced growth equilibrium (bge) the two are equal; see section 6 for this dichotomy.

Not all classical results extend though: for instance, the number pure bge (with
zero net assets) is not necessarily odd, as was found in [15]. In particular, without
any transfers, the number of pure bge is even if the minimal working age exceeds
the intertemporal elasticity parameter (by cor. 18). This is then in accord with the
non-existence of pure bge claimed in [7] for a similar economy without production.

1Other work related to the dichotomy [2] is discussed in comment 32.
2We analyse the related efficiency issues in [18].
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While pure (lump-sum) transfers across contemporary consumers do not change
gre (cor. 15), their presence can affect even the parity of pure bge (cor. 18). Pos-
itive aggregate transfer can lead to nonsensical (overinvestment) equilibria where
aggregate consumption is strictly less than the aggregate endowment (see sect. 5.1).

In addition, under a mild restriction on technology, we find that there are no
‘trivial’ equilibria where capital is identically zero (see comm. 20). Ruling out equi-
libria where capital is sometimes zero, is far from trivial in this model (see cor. 12),
although to the best of our knowledge in the previous literature such equilibria were
ruled out by assumption (often made implicitly).

Absence of financial bubbles (i.e., “overpriced” capital stock) often taking the
form of a transversality-like condition follows in the present set-up from profit
maximisation of finitely-lived investment and production firms, see comment 19.

Finally (at least in case of Cobb-Douglas production), indeterminacy (as in [16])
disappears in this model, as is shown in [19], which was one of the basic reasons to
use for time — as also partially confirmed since then in [9].

As to the model itself, it includes the following new features:
Individual productivity is an arbitrary positive function of age. Among others, it

crucially affects the parity of bge.
The distinction between production firms, transforming capital and labour in-

stantaneously into ‘output’, merchandising firms, transforming output into either
consumption or investment, and finitely-lived investment firms, whose technology
is the capital accumulation equation: they buy the investment good from the mer-
chandising firms and rent capital out to the production firms. Of course, any other
setup (including, e.g., consumers being themselves the investment firms, as in [10])
with the same aggregate production possibilities is equivalent, and leads to the
same equilibria. But the present distinction allows to focus on the main geometric
aspects of the aggregate production set (of production and merchandising firms),
and in particular to think properly about the irreversibility aspects for each type of
transformations. If investment is a.e. strictly positive and strictly less than output
(so the irreversibility constraints are not hit), we can speak of “interior equilibria”;
those are independent of the irreversibility constraints, and there output, invest-
ment and consumption behave as a single good, with a single price, which is then
also the price of capital.

Allowing individual consumption and prices (more generally, flows and their
prices) to be any non-negative extended-real valued Lebesgue-measurable functions
of time (or equivalence classes of such functions). With such definitions, equilib-
ria are fully determined by the usual maximisation and market-clearing conditions
only, without imposing them to lie in addition in some predetermined spaces. Since
indirect utility can be infinite even if prices are positive and finite over the life-time,
we use only very basic optimisation techniques to characterise individual demand
(sect. 3.2). We extend accordingly (sect. 3.6, app. A) the classical approach [1, 8] to
derive the demand correspondence.

Sect. 2 contains the model, sect. 4 the equilibrium equations (with preparations
in sect. 3), sect. 5 characterisation of bge, and several examples (the nonsensical
bge and all bge of Cobb-Douglas economies without transfers); sect. 6 Gale’s di-
chotomy, and finiteness and parity results for bge are in sect. 7. Conclusions follow.

2. The setup

2.1. Individuals. Nxdx
def
= N0eνxdx (N0 > 0) individuals get born in [x, x + dx],

∀x ∈ , and live for 1 unit of time.

2.1.1. Individual preferences over consumption c, a +-valued Lebesgue-measu-
rable function of age s, are represented as a discounted sum of homogeneous
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instantaneous “felicity” functions with intertemporal substitution σ > 0: letting
u(z) = z1− 1

σ

1− 1
σ

for σ #= 1, extended by continuity to [0,+∞], individual utility equals

U(c) =

ˆ 1

0
e−βsu(c(s))ds

2.1.2. Labour. An individual can rent his time endowment (1 at each instant,
=100%) partly out as labour; its efficiency varies with age s according to a non-null
integrable function ζs ≥ 0. Further, labour productivity grows with time at rate γ,
as is classical in exogenous growth. So, total productive labour available at t equals:

Lt = N0e
γt

ˆ t

t−1
ζt−xe

νxdx = N0e
(γ+ν)t

ˆ 1

0
ζse

−νsds

His time sells for
´ 1
0 wx+sζsds, where x is his birth-date and wt is the (per unit-

efficiency) wage rate at time t, an -valued Lebesgue measurable function of time.

2.1.3. Endowments. His initial endowment of consumption goods is ωx,s at age s.
ω is locally integrable.3 Its sign is not restricted, in order to represent a.o. arbitrary
transfer policies. Similarly, ĉx,s denotes a point in his consumption set.

Denote the price of consumption goods by pC , an +-valued Lebesgue-measurable
function of time. The cost of any consumption bundle c,

´ 1
0 p

C
x+sc(s)ds, is then well-

defined.4 Shares in profits are null (constant returns to scale production), so the
individual’s lifetime wealth is the value of his endowment (of consumption goods and
of leisure), Mx

def
=
´ 1
0 (p

C
x+sωx,s +wx+sζs)ds, provided that integral is well-defined.5

2.1.4. Consumer optimisation. Allowing agents to buy commodities outside their
lifetime will not change the the aggregates in the equilibria characterised here.6

By 2.1.3, the budget set (paths of consumption and leisure) is now well-defined
whenever Mx is, and hence so is utility-maximisation over the budget set. Thus,
the criterion for consumer optimisation is that almost all agents with well-defined
Mx maximise their utility over their budget set.

In the equilibria we will characterise, Mx will be well-defined a.e.7

Comment 1. One might argue whether the above definition is correct in case where
both prices and wealth are infinite; but infinite prices will not occur in any equi-
librium, for other reasons,5 so we might as well have left individual demand to be
the whole positive orthant in that case, without affecting the results; the above
was chosen just for greater simplicity in the phrasing. Similarly, lemma 4 below
will show that, with a.e. finite prices, the maximal utility is always achieved; so the
above requirement of exact maximisation implies no further hidden restrictions: the
definition of equilibrium is the same as if consumer optimisation applied only when
further the consumer does have a maximal element in his budget set.

3A function is locally integrable on a topological space if every point has a measurable
neighbourhood where the function is integrable. Lloc

1 is the space of such functions.
4By the usual convention in measure theory, define any product of prices and quantities as 0 in

case of a product 0×∞ or ∞× 0. This allows to think of either prices or quantities as measures.
5Def. 1 and lemma 5.a imply pC is a.e. finite, and by local integrability ω is so too: the integrand

is a.e. well-defined. Thus, we mean here, either its positive or its negative part is summable.
6Cf. the proof lemma 11. Elsewhere we assume, for simplicity, that individual consumption

outside one’s life-time is nil.
7Of course, the above criterion (for consumer optimisation) makes sense only if it implies

that in equilibrium Mx is well-defined a.e. But requiring the latter as part of the definition of
equilibrium would be quite unsatisfactory: it would mean a restriction on the price-system, instead
of on primitives, and one that has no conceptual meaning whatsoever: it depends completely on
the integration theory used. Unreasonable solutions (price-systems) should be excluded by clear
equilibrium arguments, not by fiat.
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2.1.5. Aggregation of the demand correspondence is discussed in sect. 3.6.

2.2. Production. Firms have finite lives, for profits to be well-defined.

2.2.1. The instantaneous production set is a subset of 5 describing feasible trans-
formations of contracted productive labour Lt, capital Kt, investment It, consump-
tion Ct and an intermediate good Yt called ‘output’, produced using a constant re-
turns to scale technology with Yt = F (Kt, Lt), F : 2

+ → + concave, continuous,
positively homogeneous of degree 1, and differentiable on 2

++. f(x)
def
= F (x, 1).

The production set is any closed convex cone with free-disposal, containing the
graph of the production function and the activities of transforming output into con-
sumption and investment, and contained in the closed convex cone spanned by the
production function, free-disposal, and 2-way transformations of output into con-
sumption and investment. This allows thus for any possible form of ‘irreversibility’.8

Manufacturing produces undifferentiated output Yt, using the above technology,
from labour Lt, bought from individuals at price wt, and capital Kt, rented from
investment firms at rate rt.

Merchandising transforms Yt (with price pYt ) one-to-one into either the consump-
tion good Ct or the investment good It. This transformation may or may not be
partially reversible depending on the instantaneous production set. Ct is sold at
price pCt to individuals and It at price pIt to investment firms.

Comment 2. This distinction is just to give a convenient informal language; one
can’t distinguish 2 types of firm: it is not true that any instantaneous production
cone as above decomposes into the sum of 2 closed convex cones, one in (Y, L,K)-
space corresponding to manufacturing and one in (C, I, Y )-space for merchandising.

Note that if pYt = ∞, profits of any production plan with positive output are
either infinite or, if also wt or rt are ∞, undefined. This is incompatible with any
equilibrium concept, so we exclude it formally:

Definition 1. pYt < ∞ a.e.

2.2.2. Capital Kt accumulates as K ′
t = It − δKt; to make this precise, one would

need to spell out the exact differential equation theory used and the exact properties
required of the functions Kt and It. To this effect we reinterpret this in integral
form;9 formally: Kt = e−δ(t−t0)Kt0 +

´ t
t0
e−δ(t−s)Isds as a wide Denjoy integral.10

Cor. 2 will show that the above integral is in fact a plain Lebesgue integral.11,12

As any differential equation, the capital accumulation equation needs an initial
condition, which is part of the description of what is feasible, of the technology:13

Assumption 1 (Initial Condition). For any feasible K, e(δ−f ′

∞
)tKt converges ex-

ponentially to 0 at −∞, where f ′
∞

def
= limx→∞

f(x)
x .

8Y being a purely intermediate good could as well be netted out. One gets then a closed convex
cone in 4, contained in {C + I ≤ F (K,L)} and containing {max(C, I,C + I) ≤ F (K,L)}.

9The integral form yields the possibility to use arbitrary integrable It rather than exact
derivatives, which is crucial e.g. in [19]. Its interpretation is as direct as that of the differential
equation: Kt is what remains after depreciation from Kt0 and the intervening investments.

10For the right interpretation of the capital-accumulation equation, one needs, as argued in
[21], to use Denjoy rather than Lebesgue integration, in order to include the classical solutions
of this differential equation — and then one may as well use the most encompassing integration
theory: the integral above is meant as a wide Denjoy integral [e.g., 5, p. 27].

11Its proof does not use any specific properties of the wide Denjoy integral: it applies to any
monotone linear extension of the Lebesgue integral to some vector space of Lebesgue-measurable
functions for which primitives are locally bounded (or even just: in Lloc

1 ).
12And thus the corresponding differential equation theory can be taken as Caratheodory’s.
13Cf. app. B.3 for a more formal treatment of the aggregate production set, in this respect too.
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The word “exponentially” can be dropped here14 iff
´∞
1

f(x)−xf ′

∞

x2 dx < ∞.15,16

2.2.3. Investment Firms are finitely lived, for their profits to be well-defined. Dur-
ing its lifetime [tf0 , t

f
1 ], firm f buys and sells capital stock at price pt and an invest-

ment flow Ift at price pIt , and get rents rtKf
t from capital services rented out to

manufacturing firms. Its technology is the capital accumulation equation, and its
capital stock Kf

t must be non-negative at all times.
We assume, as in [21, sect. 3.1.2], that investment firms can disvest as well as

invest: all restrictions on disvestment are written in the instantaneous production
set, i.e., if disvestment is not possible for some capital good, any sale of that in-
vestment good by an investment firm can only be to another investment firm, and
can be interpreted as being the transfer of the corresponding capital.

We allow for a complete measure space (F,F , µ) of investment firms, a.o. to
include the case where the consumers would do all the investing, and assume:

Assumption 2. (a) tf0 and tf1 are measurable, tf0 < tf1 a.e.;
(b) ∀t∃ε : µ{f | tf0 < t+ ε , tf1 > t− ε} < ∞;
(c) ∀t, µ(Gt−)>0, µ(Gt+)>0, with Gt− = {f | tf0<t≤tf1}, Gt+ = {f | tf0≤t<tf1};

The corresponding production plans should satisfy the following — the need for
assumption 3.d is illustrated in app. B.1 (the “hot potato” example):

Assumption 3. (a) Ift and Kf
t are locally in t jointly integrable in (t, f), and

Kf
t is µ× ν-measurable for any bounded measure ν on ;

(b) Kf
t ≥ 0; and ∀t /∈ [tf0 , t

f
1 ],K

f
t = Ift = 0;

(c)
´

Ift µ(df) = It a.e.;
´

Kf
t µ(df) = Kt ∀t;

(d) ∀t,Kf
t− and Kf

t+ exist a.e., and lim infKt−ε > 0 ⇒
´

Kf
t− > 0, lim infKt+ε >

0 ⇒
´

Kf
t+ > 0.

Remark 3. For feasible allocations, the assumptions in sub d mean simply Kt > 0.
But we need the above phrasing for the discussion (prop. 2 in app. B.3).

Remark 4. Ass. 3.a means ∀t∃ε : Ift ,K
f
t are integrable on [t−ε, t+ε] × F . It, and

2.a,3.b, imply (Fubini) that {f | Ift or Kf
t /∈ L1} is a null set—which we will ignore.

Remark 5. Prop. 3 in app. B.3 shows assumptions 2 and 3 imply no restriction on
the aggregates. Further, given the equilibrium conditions we finally obtain, clearly
no firm f could profitably deviate even if it were allowed Denjoy-integrable Ift .17

Comment 6. Ass. 3 seems out of place: normally one defines production sets Zf for
each firm f , and the aggregate production set Z is just the integral of the corre-
spondence f ,→ Zf—i.e., the allowed production plans are the integrable selections
of this correspondence. And, e.g., part 3.d does not look at all like an integrability
requirement. We show nevertheless in app. B.3 that such a standard approach is
possible, and that ass. 3 is then an implication, and further that the whole paper
is consistent as well with this more standard approach (a.o., no implied aggregate
restrictions).

14Getting thus the initial condition of [21] in its weakest form, as in App. C loc. cit. It would
indeed have been unsatisfactory to require an exponentially fast convergence at −∞ when one of
the purposes of the dependent paper [19] is to establish such a stability property.

15This extends the “Strong No-Rabbit” condition of [21, App. C] to the present case, and covers
all “classical” cases like Cobb-Douglas or ces.

16Indeed, prop. 1.a implies that any feasible k is then bounded, which implies the exponential
convergence. The ‘only if’ aspect results from a careful reading of that proof.

17Indeed, the proof of sufficiency in lemma 7 remains applicable, and the profits formula it relies
on, from app. B.6, allows for arbitrary Denjoy primitives as K—no need for bounded variation.
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2.2.4. Investment profits. The evaluation of profits of the investment firms is dis-
cussed in app. B.4, B.6 (and B.1 for motivation). In particular, as mentioned in the
introduction, we refuse to impose additional restrictions on endogenous variables
like prices, that would stem from assuming them to belong to some ‘spaces’, instead
of proving that equilibrium forces them to be there. In particular, prices of flows
(Ct, It) are naturally thought as non-negative -valued Lebesgue-measurable func-
tions of time, but for the price of a stock, like capital, even Lebesgue-measurability
has no reason to be there. Thus the possible prices a priori cannot belong to the
space of continuous linear functionals on the topological vector space containing the
production sets, and we will have to resort to integration theory to define profits.
There will even be some combinations of a price system and a feasible production
bundle for which profits cannot be defined; so we will just assume that, whenever
profits are well-defined, they are non-positive, and prove that, in the final character-
isation thus obtained, profits are well-defined and ≤ 0 over all production sets Zf .

2.3. Equivalence Classes. Observe that for any individual consumption bundle
c any equivalent function (coinciding with c a.e.) has the same utility and the
same budget, so we will think of it as an equivalence class of +-valued measurable
functions. The same applies to all flows, Yt, It, Ct, labour- and capital-services, and
to their prices pY , pI , pC , w, and r. On the other hand capital is a stock, so it and its
price pt are defined pointwise, and no measurability restriction has a reason to apply.

2.4. Variants. The general model above allows for irreversibility, and, with it, is a
particular case of the model described in [21]. So it is this that we need to provide
in [17] the “proof of non-vacuity” for [21].

The—classic—variant is where consumption and investment are freely trans-
formable into each other, thus effectively defining a 1 good model; we will refer to
this as the basic model, which will be used to establish results for the general model.

2.5. Intensive variables. Let E denote the economy described above.

2.5.1. Further parameters for E. ϕs = e−νsζs
´ 1
0e

−νuζudu
, η = (γ + ν)(1 − σ) + βσ, Et,s =

Nt−sωt−s,s

Lt
,18 Ωt =

´ 1
0 Et,sds.

2.5.2. Further variables for E. Whatever the variables Kt, Yt, etc. stand for in the
context of a particular statement (referring e.g. to some specific feasible path, or to
demand or supply in a specific equilibrium candidate), we will use the shorthands
(with Nx and Lt from sect. 2.1 and 2.1.2) kt = Kt

Lt
, yt = Yt

Lt
, it = It

Lt
, ct = Ct

Lt
,

c!t,s =
Nt−sĉt−s,s

Lt
,18 (so ct =

´ 1
0c

!
t,sds).

2.5.3. The reduced economy. Define now a new economy E′ as the original one E

with the following parameters: γ = 0, ν = 0, δ = R, ζ = ϕ, σ = σ, β = η/σ,
ωx,s = Ex+s,s, N0 = 1 (so Lt = 1).

2.5.4. Isomorphism of E and E′. First we give a general definition of isomorphism
of economies,19 in case of constant returns to scale production, so profit shares can
be ignored. The general case is sketched in fn. 20.

18Et,s (resp., c!t,s) is the normalised [per unit of productive labour at time t] aggregate endow-
ment (resp. consumption) at time t of individuals of age s.

19Isomorphism here is in a sense somewhat generalised from that of [21] because the measure
on agents is changed in a non-constant way, i.e., the concept there is extended by the following
2 operations: (a) change the measure of an agent, re-scaling his endowment and preferences
accordingly, and (b) replace 2 identical agents by a single agent having as mass the sum of their
masses (“2 economies with the same distribution of characteristics are isomorphic”).
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Definition 2. Take two economies Ei (i ∈ {1, 2}) with the corresponding measure
spaces of agents (denoted by (Ai,Ai, αi)) and firms, production and consumption
sets, and preferences. An isomorphism between E1 and E2 is any composition of
the following 3 elementary isomorphisms and/or their inverses:20

(a) Rescaling agents: the map is the identity, except that α1 and α2 are mu-
tually absolutely continuous, s.t. if h = dα1

dα2
, then ω2(a) = h(a)ω1(a) and a

prefers x to y in E1 iff he prefers h(a)x to h(a)y in E2.
(b) Mapping agents: a measurable map of agents g : A1 → A2 which is measure-

preserving: for any coalition A ∈ A2, α2(A) = α1(g−1(A)). Further, ∀a ∈
A2, all agents in g−1(a) have the same preferences and endowments.21

(c) Commodity map: a linear map of commodity spaces, mapping production
sets, consumption sets, endowments and preferences of E1 onto those of E2.

Remark 7. When consumption sets are the positive orthant, a map as sub c reduces
to a bijection between names of commodities in both economies together with a
rescaling of each commodity (change of units).

Lemma 1. E and E′ are isomorphic, using the following sequence of elementary
isomorphisms: (a) Map all agents born at x to a single agent born at x. (b) Rescale
the mass N0eνxdx of agents born in [x, x + dx] to dx. (c) Map productive labour
and commodities dated t (It, Ct,Kt . . .) to themselves, dividing quantities by Lt.

Proof. The map is by definition an isomorphism, all agents born at x being identical;
so one has to show that its image is E′. The population measure is indeed Lebes-
gue measure, by definition. Consumption sets remain the same, being the positive
orthant, so unaffected by rescalings. Similarly, the instantaneous production set
remains the same, being a cone, so unaffected under rescaling by the constant Lt.

A commodity bundle ĉx for an agent born at x becomes N0eνxĉx by the rescal-
ing, then, by the commodity map, ĉ′x,s = N0eνxĉx,s/Lx+s which is c!x+s,s, and
ωx,s becomes Ex+s,s. By the homogeneity of degree 1 − 1

σ of u and the formula

for Lt,
´ 1
0 e−

η
σ su(ĉ′x,s)ds =

(´ 1
0 ζse−νsds

) 1
σ−1
´ 1
0 e−

η
σ se−(γx+(γ+ν)s)(1− 1

σ )u(ĉx,s)ds;

= [eγx
´ 1
0 ζse−νsds]

1
σ−1
´ 1
0 e−βsu(ĉx.s)ds by the formula for η, so utilities are pre-

served up to a multiplicative constant.
As to labour, an input of lx,s units of time in E becomes N0eνxlx,s units of time

after rescaling mass, i.e., N0eνxeγ(x+s)lx,sζs productive labour, so, after the com-

modity map (division by Lt), e−νslx,sζs/
´ 1
0e

−νudu = lx,sϕs, which is indeed the
productive labour corresponding to lx,s in E′, by our above formula.

Remains the technology of investment firms. For the capital accumulation equa-
tion, this is obvious (especially in the formal general form of sect. 2.2.2, eδtKt −
eδt0Kt0 =

´ t
t0
eδsIsds), and for the initial condition (in both forms) as well. !

20In general (absence of constant returns to scale), one needs also the following (we continue
to assume the standard convexity assumptions, and assume that profit shares are described by
a transition probability π from the measure space of firms to that of agents such that π(A|f) is
negligible for every null set A): (1) For mapping agents (b), require further that, ∀B ∈ A1,
∀S ∈ F ,

´

S
π1(B|f)µ(df) =

´

P(B|g−1(A2))
´

S
π2(da2|f)µ(df) (collapsed agents have the same

profit shares). (2) A rescaling as sub (a) for the firms. (3) As for (b), collapsing firms with
identical production sets into a single firm, in a mass-preserving way, and with as profit shares
the average of the original profit shares. (4) Collapsing firms with identical profit distributions
into a single firm, with as production set the integral of those of the constituent firms.

A.o., the above suffice to make any economy isomorphic to the corresponding private production
economy (which is, for our model, a classical interpretation for the investment sector). One might
then of course want to add Rader’s trick, to reduce those to pure exchange economies with 0
endowments, and then possibly, to get rid of irrelevant parts of the consumption sets, that 2
agents in such a pure exchange economy with identical excess demand functions can be identified.

21One could allow for different endowments in case of homogeneous preferences.
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2.5.5. Variables for E′. The variables Kt, Yt, It, Ct, ĉx,s for E′ are thus kt, yt, it, ct,
c!x+s,s; and, since Lt = 1 in E′, the “further variables” for E′ are the same.

3. Characterisation of Equilibria

Notation 3.1. λ denotes Lebesgue measure on . Φ(x) = ex−1
x . For h : → ,

‖h‖∞,1 = supx
´ x
x−1|h(t)|dt, and ‖E‖∞,1 = supx

´ x
x−1

´

|Et,s|dsdt. R = γ + ν + δ.

Assumption 4. ‖E‖∞,1 < ∞.
f ′
∞ < R,22 and ∃x : f(x) > Rx ; i.e., F (1, 0) < R < F (1,∞).

3.1. Some bounds stemming from feasibility.

Lemma 2. For a concave continuous function φ : + → , with φ(0) ≥ 0, φ′
∞ ∈ ,

and supx φ(x) > 0, let κ̄
def
= sup{x | φ(x) ≥ 0}. The solutions (Caratheodory or

classical) of the differential equation k′t = φ(kt) are of one of the following 4 types:
(a) kt for t ∈ is strictly convex and decreases from ∞ to κ̄, (b) kt = x ∀t, for
x ∈ {0, κ̄} ∩ , (c) If φ(0) > 0, k has domain [T,∞[ with kT = 0 and increases
strictly to κ̄, (d) If φ(0) = 0, kt has domain , and is 0 until some T , then increases
strictly from 0 to κ̄. T is finite iff 1/φ is locally integrable at 0, else T = −∞.

Further, in the non-constant parts of solutions, k is the inverse of a primitive of
1
φ ; and within each type the solutions differ only by a time-shift.

Comment 8. In particular, uniqueness fails iff φ(0) = 0 and 1/φ is locally integrable
at 0, with 0 as initial value (e.g., the Cobb-Douglas case).

Proof. φ is locally Lipschitz except possibly at 0, so the standard uniqueness the-
orem applies there. In particular, if κ̄ ∈ , kt = κ̄ is such a unique solution, so
any other solution lies everywhere either above it or below. The former are clearly
decreasing and strictly convex [since k′′t = φ′(kt)φ(kt)]; and since φ(x) ≥ xφ′

∞, they
cannot blow up to +∞ before t gets to −∞: they are defined on , and decrease
from +∞ to κ̄. It is then easily seen that their convergence to +∞ at −∞ and to
κ̄ at +∞ is exponential.

The others are strictly increasing when > 0, from 0 to κ̄, converging again to κ̄
at +∞, exponentially if φ′

∞ #= 0. Remains thus to check the case kt = 0.
If φ(0) > 0, kt ≡ 0 is not a solution, so let kt1 > 0. Since kt < κ̄ ∀t and is

increasing, its slope before t1 is bounded away from 0, so any solution hits 0 at a
finite time t0. And clearly there is no continuation (even Caratheodory) for t < t0:
solutions are defined on [t0,∞[, starting with the value 0 and a positive derivative.

If φ(0) = 0, kt ≡ 0 is a solution. And since any solution kt is increasing and
unique as soon as positive, ∃t0 ∈ : kt = 0 iff t ≤ t0. Then, for t > t0, the dif-
ferential equation is equivalent to dk

φ(k) = dt. Assume t0 < ∞, and fix t1 ∈ ]t0,∞[.
Let h(x) =

´ x
kt1

1
φ(z)dz, so t = t1 + h(kt). As seen above, kt remains after t0 in

{ k | φ(k) > 0 }, and there h(x) is well defined, strictly increasing and continuous,
and h(x) −−→

x→κ̄
∞, so the inverse function h−1 is well-defined from [h(0),∞[ to [0, κ̄[.

And when t ↘ t0 kt ↘ 0, so h(0) = t0 − t1. Thus kt = h−1(t− t1) ∀t > t0.
h(0) and thus t0 is finite iff 1

φ is locally integrable at 0, and then, as t ↘ t0,
kt ↘ 0 and so k′t = φ(kt) ↘ 0: letting kt = 0 ∀t ≤ t0 defines the solution on ,
and it is C1 even at t0. In the other case also, the solutions are defined on , but
then either strictly increasing or identically 0. !

Corollary 1. If φ(0) = 0 and φ′(0) = ∞, and kt solves the differential equation in
lemma 2 with kt0 = 0, then for all ε > 0 φ′(kt) is not integrable on [t0, t0 + ε].

22This is the sharp form of the ‘No-Rabbit’ assumption in [21].
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Proof. If kt > 0 ∀t > t0, then, by lemma 2, 1
φ(·) is locally integrable at 0, and with

h(x) =
´ x
0

1
φ(z)dz as in lemma 2, kt = h−1(t − t0) ∀t ≥ t0, so φ′(kt) = φ′(h−1(t −

t0)). Substituting t by t0 + h(k) in
´ t0+ε
t0

φ′(h−1(t− t0))dt we get
´ kε

0
φ′(k)
φ(k) dk, then,

substituting φ(k) by z,
´ φ(kε)
φ(0)

1
zdz, = ∞ as φ(0) = 0.

Else, by lemma 2, ∃ε > 0: kt = 0 ∀t ∈ [t0, t0 + ε], so φ′(kt) = ∞ on [0, ε]. !

Proposition 1. For any feasible allocation:

(a) ∃A,B : ∀ω, κ
def
= supt kt ≤ A‖Ω‖∞,1 +B. And supt yt ≤ f(κ).

(b) ‖i‖∞,1 ≤ (1 + R)κ+ 2(f(κ) + ‖Ω‖∞,1).
23

(c) Let c̄x,s be the consumption at age s of an agent born at time x. vx
def
=

e−γx(
´ 1
0 c̄1−

1
σ

x,s ds)
σ

σ−1 and ct are locally integrable; specifically, ‖c‖∞,1 ≤
‖Ω‖∞,1 + f(κ) + ‖i‖∞,1 and ‖v‖∞,1 ≤ 2e|γ|+|ν|‖c‖∞,1

´ 1
0ζse

−νsds.

Remark 9. Besides the bound for v sub c, b is basic: via cor. 2 below, it implies a
bound for all feasible ‖k‖∞ and hence ‖y‖∞ as sub a, and thus one for c as sub c.

Proof. a: Let ψ(x) = f(x) − Rx, φ = ψ + P with P = ‖Ω‖∞,1, and κP be the
positive root of φ(x) = 0. By concavity of f and ass. 4, ∃a, b > 0: ψ(x) ≤ −ax+ b,
so κP ≤ b+P

a . Suffices thus to prove that for any feasible path kt, kt ≤ κP + P .
Replace Ωt by |Ωt|, so Ωt ≥ 0. If else e.g. k0 > κP + P , then kt > κP on [−1, 0]:
indeed, even if all aggregate transfers Ωt for t ∈ [−1, 0] are pushed to time 0, then
k0− > κP , ≥ κ0, and thus kt must be decreasing on [−1, 0[, since even if all agents
work full-time and consume nothing it decreases by lemma 2. Thus kt > κP in this
case. And if part of the transfers occur earlier in [−1, 0[, the conclusion holds a
fortiori, since we are in a region where (additions to) capital cannot be maintained.

Any time-shift of the feasible allocation is still feasible. Do thus a convolution
(an average of time-shifts) of Ωt, it and kt with a uniform distribution on [0, 1]:
the new Ωt, it and kt are still feasible, by linearity, and concavity of f , and now
‖Ω‖∞ ≤ P and k0 > κP . We can then further increase Ω s.t. Ωt = P everywhere.

Let (for t ≤ 0) κt be the minimal amount of capital needed to reach k0 at time 0:
it is when agents work full-time and consume nothing, so it is (uniquely, cf. lemma 2)
given by the differential equation κ′

t = φ(κt): κt is a lower bound for kt, hence sat-
isfies a fortiori ass. 1: ∃ε > 0: atκt −−−→t→−∞

0 with a = e−φ
′

∞
−ε > 1. And φ(κ0) < 0.

Thus, by lemma 2, κt → ∞, hence κ
′

t

κt
→ φ′

∞: for t ≤ t0,
κ

′

t

κt
< φ′

∞ + ε, so
κt ≥ κt0e

(φ′

∞
+ε)(t−t0), contradicting atκt −−−→t→−∞

0.
For the second form of ass. 1, we paraphrase the end of the proof in [21, App. C,

prop. 4]. κ′
t = φ(κt) yields, with h(x) =

´ x
κ̄

dy
φ(y) , where κ̄ = κP + 1, h(κt) = t− a

for some a ∈ (since κt > κP ∀t). By ass. 1, e−φ
′

∞
tκt −−−→t→−∞

0. Thus, with x = κt

and tx = a + h(x), Hx
def
= lnx − φ′

∞tx → −∞. But Hx + aφ′
∞ − ln κ̄ =

´ x
κ̄ [

dz
z −

φ′
∞

dz
φ(z) ] =

´ x
κ̄
φ(z)−zφ′

∞

zφ(z) dz. Since zφ(z) is of the order −z2 for z ≥ κ̄, we get that
´ x
κ̄
φ(z)−zφ′

∞

z2 dz → ∞, hence, since the integrand is > 0 on +,
´∞
1

φ(z)−zφ′

∞

z2 dz = ∞.
Replacing now φ by ψ makes a difference of P

z2 in the integrand, which is integrable;
then the integrand is the same with f instead of ψ, contradicting thus the ‘Strong
No-Rabbit’ condition in the second form of ass. 1.

This argument also proves the ‘only if’ part in the second item of ass. 1.
b: i ≤ y − c + Ω ≤ f(κ) + Ω+ by a, so ‖i+‖∞,1 ≤ f(κ) + ‖Ω+‖∞,1. The

capital accumulation eqn. sub 2.2.2 becomes now eRtkt − eRt0kt0 =
´ t
t0
eRsisds,

still as a Denjoy integral. But by the above the positive part of the integrand is
Lebesgue integrable; so the whole integral is a Lebesgue integral: i ∈ Lloc

1 . Also
kt is locally absolutely continuous and a.e. differentiable, and is a primitive of its

23Lemma 6 in [21], plus app. C (ibidem) to deal with the weak initial condition, cannot be
used here, since those proofs crucially rely on irreversibility, which does not hold in the “basic
model”, where current proof applies, while relying on the 1 capital good aspect.
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derivative k′t. At any point where k is differentiable the left hand side in our above
formula has as derivative eRt(Rkt + k′t), so this must equal a.e. the integrand in
the right hand side: it = Rkt + k′t a.e. Thus (k being a primitive of its derivative)
´ x
x−1itdt = kx−kx−1−R

´ x
x−1ktdt. Hence

´ x
x−1i

−
t dt =

´ x
x−1i

+
t dt−

´ x
x−1itdt ≤ f(κ)+

‖Ω+‖∞,1−kx+kx−1+R
´ x
x−1ktdt, ≤ f(κ)+‖Ω+‖∞,1+(1+R)κ by a; thus the result.

c: ct is bounded by Ωt + yt + i−t , hence that result.
As to v, since Ct = N0

´

eν(t−s)c̄t−s,sds, Lt = N0e(γ+ν)t
´

ζse−νsds, and ct =
Ct/Lt, we get, with c̃x,s = e−γ(x+s)c̄x,s, that c̃t

def
=
´

c̃t−s,sds ≤
L0
N0

e|ν|ct.

By concavity of u, we have
´

u(c̃x,s)ds ≤ u(
´

c̃x,sds) (Jensen if the latter inte-
gral is finite, trivially else), so by monotonicity of u, u−1

(´

u(c̃x,s)ds
)

≤
´

c̃x,sds,

i.e.,
[´

c̃1−
1
σx,s ds

] σ
σ−1 ≤

´

c̃x,sds. Since vx ≤ e|γ|
[´

c̃1−
1
σx,s ds

] σ
σ−1 we get thus e−|γ|

´ t
t−1vxdx ≤

´ t
t−1

´

c̃x,sdsdx ≤
´ t+1
t−1 c̃z−s,sdsdz =

´ t+1
t−1 c̃zdz ≤ L0

N0
e|ν|
´ t+1
t−1czdz. !

Corollary 2. In any feasible plan, Kt = e−δt
´ t
−∞ Iseδsds as a Lebesgue integral.

Proof. Since R>0, b implies that eRsis = L−1
0 eδsIs is Lebesgue integrable on ]−∞, t]

∀t. Use then ass. 1 to let t0→−∞ in the capital accumulation eqn. sub 2.2.2. !

Corollary 3. Ux ≤ exp
(

sign(σ − 1)[sign(1− σ)β]+
)

u(eγxvx) for any feasible plan.

Proof. Bound u−1(Ux) =
[´

e−βsc
1− 1

σ
x,s ds

] σ
σ−1 in terms of eγxvx. !

3.2. Individual demand. Since utilities can be ±∞, marginal utility of income
is not necessarily defined, so classical techniques (e.g., Lagrange theorem) do not
apply, and we have to apply Lagrange-type techniques from scratch. Such utilities
can be consistent with prices, income and consumption being positive and finite
everywhere, as shown in lemma 4, so they have a-priori nothing pathological. For
example, for σ < 1 the utility can be −∞ for a consumer whose life-time includes a
region (of time) when price of the consumption good is “too high” (but can be finite
throughout), more precisely, when p1−σ is not locally integrable, so his lifetime util-
ity equals −∞ for any consumption with finite life-time budget. Since the demand
can be multivalued (e.g., any point in the budget set can be optimal), clearly, it
can not always be written as a “dynamic system” (or a differential equation) for an
arbitrary price-income combination.

Next Fenchel-duality result is elementary; it will be used, in particular, to derive
individual demand in lemma 4.

Lemma 3. (a) ∀a > 0, ∀p ∈ +, max0≤z≤∞[au(z)− pz] = 1
σ−1a

σp1−σ, where
the left hand member is defined by continuity in z at ∞.

(b) z = (ap )
σ is the unique maximiser.

Lemma 4. For any budget M ∈ + and price-system ps (s ∈ [0, 1], ps ∈ +), let

(1) zs =
ps
M

, χs = e−βσsz1−σs , c∗s =
(eβszs)−σ
´ 1
0 χtdt

where 0
0 is defined as 0, a negative power of 0 as +∞, and ∞

∞ is left undefined ≥ 0.

Let also J =
´ 1
0 z

1−σ
s ds and U∗ = σ

σ−1

[´ 1
0 χsds

]
1
σ . Then:

(a) Indirect utility (maximal — on the budget set) equals U∗ and is achieved.
(b) U∗ ∈ iff J < ∞.
(c) Demand is unique (as an equivalence class) iff either U∗ ∈ or (σ < 1 and)

zs = ∞ a.e. Also, demand is unique (= 0) at all s such that zs = ∞.
(d) Whenever demand is unique, c∗s is well-defined a.e., and demand is given by

the equivalence class of c∗s.
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Proof. Point (b) is obvious.
If M = 0 and pt > 0 a.e., the result is obvious: ct = 0 on the budget set, so

c∗ = 0, and if σ > 1, then U∗ = 0, while if σ < 1, then U∗ = −∞.
When M = 0, σ > 1, and λ{pt = 0} > 0, many feasible bundles achieve U∗ = ∞,

so demand is not unique, hence the lemma is established in this case.
When M = 0, σ < 1, and 0 < λ{pt = 0} < 1, the agent’s instantaneous

optimal consumption is clearly ct = ∞ when pt = 0, ct = 0 otherwise; but since
λ{pt = 0} > 0 this gives him utility −∞, so any point in his budget set is optimal,
and the lemma is established in this case too. And if pt = 0 a.e., ct = ∞ a.e., so
zt = 0 a.e., U∗ = 0, and this case is covered too.

Thus the lemma is established when M = 0. So, henceforth M > 0.
Assume now M < ∞. To calculate the indirect utility, consider, after Lagrange,

for µ > 0 the maximum of L(c)
def
=
´ 1
0

[

µe−βtu(ct)− ptct
]

dt. By lemma 3, it equals
1

σ−1µ
σ
´ 1
0 e−βσtp1−σt dt, and the equivalence class of c̃t = (µe

−βt

pt
)σ is a maximiser,

unique iff the maximum of L is finite, i.e., iff J < ∞ clearly.
For J < ∞, the budget M1 =

´ 1
0 ptc̃tdt = µσ

´ 1
0 e−βσtp1−σt dt is finite.

In particular, if 0 < J < ∞, by varying µ we can obtain M1 = M for any 0 <
M < ∞; so for any such M , and the corresponding µ(M), we obtain c̃(µ(M)) = c∗

and U(c∗) = U∗ as in the statement.
And c∗ is the agent’s unique optimal choice given his budget M : for any c′ #= c∗

s.t. 〈p, c′〉
def
=
´

ptc′tdt ≤ M , the integrability of pc′ implies µU(c′)−〈p, c′〉 = L(c′) <
L(c∗) = µU(c∗)−〈p, c∗〉 = µU∗−M , where the strict inequality is by the uniqueness
property of the maximiser c̃. So 〈p, c′〉 ≤ M and c′ #= c∗ implies U(c′) < U∗.

Thus the statement is proved for 0 < J < ∞ and M < ∞.
When 0 < M < ∞, J = 0 means, since pt < ∞ a.e., that σ < 1, pt = 0 = zt a.e.,

so c = ∞ = c∗, and the utility U∗ = 0 is attained, thus this case is settled too.
To summarize, the lemma is proved when M < ∞ and either M = 0 or J < ∞.
If J = ∞ (and, recall, 0 < M < ∞), then, for σ < 1, L(c) = −∞ ∀c. So,

whenever ptct is integrable, the indirect utility is
´ 1
0µe

−βtu(ct)dt = −∞, hence all
points in the budget set are utility maximisers. Thus this case is solved too.

So, in case 0 < M < ∞ it remains to prove the lemma for J = ∞ and σ > 1,
which then is assumed to hold for the next two paragraphs.

Consider the indirect utility function V (M) (for fixed price system p): by homo-
geneity, it must be of the form vu(M) for some v ≥ 0. Assume now v < ∞. Then
by lemma 3 for any µ > 0, max0<M<∞(µV (M) − M) = 1

σ−1 (µv)
σ. So for any c

such that ptct is integrable we get L(c) =
´ 1
0

[

µe−βtu(ct)− ptct
]

dt ≤ 1
σ−1 (µv)

σ. As

was shown above, the unique maximiser of L is c̃(µ). Let then cNt = min(Npt
, c̃t(µ)).

ptcNt being integrable, cNt satisfies our bound above. If pt = ∞ then c̃t(µ) = 0
and so is N

pt
for any N . Since then cNt increases to c̃t(µ), the corresponding inte-

grands in L(cNt ) are non-negative and increase to that for c̃t(µ): by the monotone
convergence theorem, c̃t(µ) still satisfies the same inequality, i.e., as seen above,
1

σ−1µ
σ
´ 1
0 e−βσtp1−σt dt ≤ 1

σ−1 (µv)
σ < ∞, contradicting J = ∞.

Thus v = ∞, i.e., V (M) = +∞. We claim that therefore, ∀M : 0 < M < ∞,
there exist (many) c in the budget set with U(c) = ∞. Indeed, note first that there
exists a partition of [0, 1] in 2 Borel subsets of equal Lebesgue measure such that J =
∞ on each (e.g., consider the distribution of the integrand of J , and on each atom
use non-atomicity of Lebesgue measure). Next re-use this on one of the subsets, etc.,
to obtain a Borel partition into a sequence Bn with λ(Bn) = 2−n s.t. J = ∞ on each
Bn. Hence for each Bn the supremum of utility derived on that subset of time with a
strictly positive finite budget should be infinite by the argument above. Choose thus
for each n a consumption plan ĉn on Bn costing ≤ 2−nM and with

´

Bn
u(ĉnt )dt ≥ 1:
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the resulting total consumption plan ĉ costs ≤ M and has infinite utility (and so
does θĉ for 0 < θ < 1): U∗ = +∞ is attained and demand is multivalued.

Remains thus only the case M = ∞. Then, since p < ∞ a.e., for σ > 1, U∗ = ∞
and demand is multivalued. While for σ < 1, U∗ = 0 and c∗ = ∞. !

3.3. Optimality of production.

Lemma 5. (a) pCt ≤ pYt ≥ pIt a.e.
(b) Wherever the constraint that consumption cannot be transformed into out-

put is not binding pCt = pYt a.e. Wherever the constraint that investment
cannot be transformed into output is not binding, pIt = pYt a.e.

(c) Let c(r, w) = inf(K,L)∈ 2
+
{ rK+wL | F (K,L) = 1 } on [0,∞]2 c is positively

homogeneous of degree one, concave and continuous on 2
+.24

Assume pYt < ∞. Then maximal profit of the production firms at time t
is 0 iff wt, rt ≥ 0, and c(rt, e−γtwt) ≥ pYt ≥ 0.

Proof. a-b: The zero profit condition in merchandising implies that pIt ≤ pYt and
pCt ≤ pYt a.e. (b) then follows.

c: c is u.s.c., and positively homogeneous of degree one and concave on 2
+, as

an inf of continuous linear functions. Continuity on 2
+ is then standard.

0 profits can always be achieved with K = L = Y = 0.
Thus, using r, w, p for rt, e−γtwt, pYt , we need that ∀(K,L) ∈ 2

+, Y ≤ F (K,L) ⇒
rK + wL − pY ≥ 0. For (K,L, Y ) = (0, 0,−1) (resp., (1, 0, 0) and (0, 1, 0)) this
yields p ≥ 0 (resp., r ≥ 0 and w ≥ 0), and then remains to express the condition
when Y = F (K,L) > 0: homogeneity of F of degree 1 yields then the result. !

We now reformulate the condition of lemma 5.c; we will need both formulations.

Corollary 4. Let g(k) = pf(k)−rk. Assume the price of output, p, is finite. Then
maximal profits of the production firm are 0 iff p ≥ 0, g′∞ ≤ 0 and supk≥0 g(k) ≤ w.

Proof. p ≥ 0 is by lemma 5.c. Next, profits are non-negative if for all feasible
(Y,K,L), pY − wL − rK ≤ 0. Not using free-disposal, i.e., setting Y = F (K,L)
can only increase profits, hence it is sufficient to verify that pF (K,L)−wL−rK ≤ 0.
If L = 0, this inequality is equivalent to pF (K, 0)− rK ≤ 0, which holds trivially

for K = 0. For K > 0, F (K, 0) = K limk→∞
f(k)
k = Kf ′

∞, so the condition becomes
pf ′

∞ − r ≤ 0, i.e., g′∞ ≤ 0. Observe this implies r ≥ 0.
If L > 0, the condition becomes pf(k) − rk − w ≤ 0 ∀k. For k = 0 this implies

w ≥ 0. Since p ∈ and r ≥ 0, this is equivalent to w ≥ g(k) ∀k (treat separately
the case where r = ∞, and similarly for w), hence w ≥ supk≥0 g(k). !

Lemma 6. Let g(k) = pf(k)− rk. Then, under the conditions of cor. 4:

(a) Any profit-maximising L is 0 iff g(k) < w ∀k.
(b) Any profit-maximising K is 0 iff g(k) < w ∀k > 0 and g′∞ < 0.
(c) Any profit-maximising Y is 0 iff g(k) < w ∀k > 0 and either f ′

∞ = 0 or
g′∞ < 0 and either f(0) = 0 or g(0) < w.

Proof. a: We need that L > 0 ⇒ pY − rK − wL < 0 for any feasible (Y,K,L).
Since p ≥ 0 (cor. 4), we can assume Y = F (K,L). Then, by homogeneity, one can
as well divide by L > 0: so pf(k)− rk − w < 0 ∀k.

b: Similarly we need K > 0 ⇒ ∀L, pF (K,L) − rK − wL < 0. The case L > 0
yields by homogeneity that g(k) < w ∀k > 0, and L = 0 that K > 0 ⇒ pF (K, 0)−
rK < 0, i.e., pF (1, 0)− r < 0, hence g′∞ < 0 since F (1, 0) = f ′

∞ (continuity of F ).

24In fact, the unit-cost function c is continuous wherever finite. Also, its definition implies that
´

c(r̃, w̃) ≤ c(
´

r̃,
´

w̃) for any [0,∞]-valued measurable functions r̃ and w̃ (“strong concavity”).
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c: Now we need F (K,L) > 0 ⇒ pF (K,L) − rK − wL < 0. But F (K,L) > 0
implies that either K > 0 or L > 0. Assume first L > 0: we get that f(k) > 0 ⇒
g(k) < w. Thus g(k) < w ∀k > 0 and either f(0) = 0 or g(0) < w. Dually K > 0
yields, if also L > 0, g(k) < w ∀k > 0, and if L = 0, F (1, 0) > 0 ⇒ pF (1, 0)−r < 0,
i.e., either f ′

∞ = 0 or g′∞ < 0. !

Corollary 5. Let D = { x | Mx
def
=
´ 1
0 (p

C
x+sωx,s + wx+sζs)ds is well-defined }.25

A.e. on D, Mx ≥ 0 and U∗
x of lemma 4 is well-defined and is the equilibrium utility.

Proof. D is Lebesgue measurable by the joint measurability of ω, and the same im-
plies Mx is Lebesgue measurable there. Mx ≥ 0 a.e. there is an obvious equilibrium
condition. That U∗

x is well-defined on D and is the equilibrium utility follows then
from lemma 4.a because pCt < ∞ by lemma 5.a and def. 1. !

Corollary 6. Let H#
x

def
=
´ x+1
x (pCt )

1−σdt, and Hx
def
= D(x)e−γxMxH#

x
1

σ−1 with
0 · ∞ = 0. Then:

(a) ‖H‖∞,1 ≤ K + L‖Ω‖∞,1 for some K,L ∈ .
(b) Mx < ∞ a.e. on D.
(c) D1

def
= {x ∈ | pCt =0 a.e. on [x, x+1]} is discrete and closed in ; D1 ⊆ D.

(d) H#
x > 0 outside D1, and is l.s.c. It is > 0 everywhere if σ > 1.

(e) If σ > 1, ∃D0 ⊆ D s.t. D \D0 is negligible and pCt > 0 a.e. on D0 + [0, 1].

Proof. By cor. 3 and 5, U∗
x ≤ Ku(eγxvx) with K = exp

(

sign(σ−1)[sign(1−σ)β]+
)

,

and by lemma 4, U∗
x = σ

σ−1

[´

e−βσsz1−σx,s ds
] 1

σ . Applying u−1 on both sides of the re-

sulting inequality we get
[´

e−βσsz1−σx,s ds
] 1

σ−1 ≤ K ′eγxvx with K ′ = exp(σ( β
1−σ )

+).

Now,
[´

z1−σx,s ds
] 1

σ−1 ≤ L
[´

e−βσsz1−σx,s ds
] 1

σ−1 with L = exp( σ
σ−1 (β sign(σ−1))+);

and thus
[´

z1−σx,s ds
] 1

σ−1 ≤ L′eγxvx with L′ = exp[σ( β−

σ−1 +
β+

|σ−1| )]. Denote the first

integral by Jx: in particular H∗
x

def
= e−γxJ

1
σ−1
x is well-defined and locally integrable

wherever Mx is well-defined, where by lemma 4, zx,s =
pC
x+s

Mx
with 0

0 = 0.
If Mx = ∞, then zx,s = 0 a.e., so H∗

x = ∞: this can only happen on a negligible
set, since H∗

x ≤ L′vx and v is locally integrable by prop. 1.c. Hence b. Then clearly
H∗

x = Hx when Mx > 0. If Mx = 0, then, for σ < 1, H∗
x < ∞ implies pCt is not a.e.

null on [x, x+ 1], and thus H∗
x = 0, = Hx. And for σ > 1, H∗

x < ∞ implies pCt > 0
a.e. on [x, x + 1] (implying thus e), and then H∗

x = 0, = Hx again.
Thus Hx ≤ L′vx, and since prop. 1 implies ‖v‖∞,1 ≤ K + L‖Ω‖∞,1 for some

K,L ∈ , a follows.
As to d, lower semi-continuity of H# is clear, since it is the limit of the increasing

sequence of continuous functions
´ x+1
x min{n, (pCt )

1−σ}dt. If σ > 1, H# > 0 follows
from pCt < ∞ a.e. And else, we just saw that a.e. on D, pCt > 0 on a non-negligible
subset of [x, x+ 1]. Clearly D1 ⊆ D, so the above implies D1 is negligible if σ < 1,
and e implies the same for σ > 1. Thus x #= y ∈ D1 implies |x − y| > 1: D1 is
closed and discrete. Thus also c. !

3.4. Optimal investment.

Lemma 7. Investment firms maximise profits at a feasible point iff pIt = pt < ∞
a.e., and ς(t)

def
= e−δtpt−

´∞
t rse−δsds ≥ 0 is decreasing, and constant where Kt > 0.

Comment 10. Observe the condition depends only on aggregates. Indeed, prop. 2
and 3 in app. B.3 imply that there always exists a disaggregation, satisfying the
strictest conditions, and for which the two notions of profits are equivalent (lemma
23): the one of app B.4 used for necessity, requiring bounded variation of the firm’s
capital and the more general one (in app. B.6), used for sufficiency.

25Since pC (by lemma 5.a and def. 1) and ω are a.e. finite, and ζ ≥ 0, w ≥ 0 (lemma 5.c), the
integrand is a.e. well-defined, so this means either its positive or negative part is integrable.



16 J.-F. MERTENS AND A. RUBINCHIK

Proof. We first prove the conditions are necessary. To show pt < ∞ ∀t, assume
else pt0 = ∞. But then investment firms alive just before t0 can make infinite
profits. Indeed, consider (ass. 2.c) ε > 0 s.t. µ{f | tf0 ≤ t0 − ε, tf1 ≥ t0} > 0; since
pIt ≤ pYt < ∞ a.e., ∃M < ∞ : λ{t ∈ [t0 − ε, t0] | pIt ≤ M} > 0. So if those firms
invest at unit rate during this set they get a positive amount of capital at finite
cost, that can be re-sold for ∞ at t0; contradiction.

Next, rt is locally integrable: if it was not integrable on [t0 − ε, t0], choose
0 < δ < ε s.t. µ{f | tf0 ≤ t0− ε, tf1 ≥ t0} > 0 (ass. 2.c), and let those firms buy some
capital at t0 − ε, cash its returns until t0, and sell it then, yielding infinite profit,
since pt < ∞. Similarly with Gt0+ if rt is not integrable on [t0, t0 + ε].

Consider a deviation (as in lemma 22 of app. B.2) where firms f s.t. Kf
t ≥ ε

for a<t<b buy, with δKf
t = ξe−δt ]a,b[, δK

f
a+

additional capital at time a, and sell
δKf

b− at time b, cashing the returns in between. Then δπf = ξ(g(b) − g(a)), with
g(t) = e−δtpt +

´ t
0 rse

−δsds, < ∞ since rs is locally integrable and pt < ∞.
Fix now t, and assume either Kt > 0 or ξ > 0. If ξ ≥ 0, the above deviation

is always feasible. Else, by assumption 3.d, ∃ε > 0: Kf
x > ε on [t, t + ε] × G,

with µ(G) > 0; and then the deviation is feasible ∀f ∈ G, ∀ξ : ξ ≥ −εeδteεδ
−

,
∀a, b : t ≤ a < b ≤ t + ε. So, since µ(G) > 0, absence of profitable deviations
implies g is decreasing on [t, t + ε] and is constant there if Kt > 0. Similarly on
[t− ε, t], thus, t being arbitrary, g is decreasing, and is constant wherever Kt > 0.

So ∀t ≥ 0 g(0) ≥
´ t
0 rse

−δsds, and g(0) < ∞, hence
´∞
0 rse−δsds < ∞; subtract-

ing this quantity from g(t) we get that ς(t) = e−δtpt −
´∞
t rse−δsds is decreasing

and (letting t → ∞) ≥ 0, and is constant wherever Kt > 0.
Next we show that pIt = pt a.e. Else, p being Borel by the previous conclusion,

there exists, by Lusin’s theorem, a compact set K with λ(K) > 0 to which pIt and pt
have a continuous restriction, with either (1) pt > pIt ∀t ∈ K or (2) pt < pIt ∀t ∈ K.

Let Kn = K∩Ln with Ln = [T −n−1, T ] in case 1 and [T, T +n−1] in case 2, for
some T ∈ K s.t. ∀n, λ(Kn) > 0. Gn is the set of firms alive on Ln; µ(Gn) > 0 for
n ≥ n0 by ass. 2.c. Let firms buy/sell additional investment δInt = ξ Gn(f) Kn(t),
where ξ

def
= sign(pT − pIT ), and, at time T , sell the additional accumulated capital,

resp., buy additional capital such that it will be exactly offset by δIn.
So δKn

t = e−δt Ln(t)
´ t
T±n−1eδsδIns ds. Observe that δKn

t is of bounded variation
and ≥ 0, and jointly measurable (in (f, t)) by the same property of δInt .

By the formula sub claim 10 in app. B.2, the induced variation in profit is:

(1) δπn = ξpT δK
n
T +

ˆ

Ln

(

rtδK
n
t − pIt δI

n
t

)

dt

The last term in the integrand is jointly integrable in (t, f), by the same property
of δInt and the continuity of pI on the compact set K, δInt being 0 outside of K.

And the first term, rtδKn
t , is the integral over s of ξrte−δtJ(s, t)eδsδIns , with

J(s, t) = T−n−1≤s≤t≤T in case 1 and T≤t≤s≤T+n−1 in case 2, and where all terms
are clearly jointly measurable and have a constant sign. Linearity of the integral
allows then to integrate both terms separately (the second being integrable); Fu-
bini’s theorem allows then, for the first term, to integrate first over t, yielding for
this term

´

Ln
eδsδIns

[´ T
s e

−δtrtdt
]

ds. Replacing also δKn
T by its value, we get thus,

re-using linearity of the integral, δπn =
´

Ln

[

pT eδ(t−T )+eδt
´ T
t e

−δsrsds−pIt
]

δInt dt =

ξ Gn(f)
´

Kn

[

pT eδ(t−T ) + eδt
´ T
t e

−δsrsds− pIt
]

dt.
Since µ(Gn) > 0, the coefficient of Gn must be ≤ 0. Since λ(Kn) > 0, ∃tn ∈ Kn

s.t. ξ
[

pT eδ(tn−T )+eδtn
´ T
tn
e−δsrsds−pItn

]

≤ 0. Since Kn shrinks to {T }, tn → T , so,
by continuity of pI and p on K, we get in the limit ξ(pT − pIT ) ≤ 0, contradiction.

Remains to show that with such prices, investment firms make zero profits, and
can’t do better. We allow here for any production plans satisfying def. 11 in app. B.6.
Accordingly the corresponding profits are π =

´

(rt − ptδ)Ktdt+
ffl

Ktdpt +
´

(pt −
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pIt )Itdt. Since pI = p a.e., the last term is zero. And the formula for pt implies
dpt = (ptδ − rt)dt + eδtdςt, so π =

ffl

eδtKtdςt. Since ς is decreasing and Kt ≥ 0,
indeed π ≤ 0 for any plan in the production set.

If however Kf
t is feasible, as an aggregate production plan, so Kt =

´

Kf
tµ(df)

is continuous (cor. 2). Further by ass. 3.a Kf
t is µ⊗(|dpt| + λ(dt))-measurable and

by ass. 3.d pt #= pt+ ⇒ limε↘0 Kf
t+ε = Kf

t+ a.e. and pt− #= pt ⇒ limε↘0 Kf
t−ε = Kf

t−

a.e. Let then Z = {t | Kt = 0}: ∀t ∈ Z, Kf
t = 0 a.e., and, by continuity of Kt and

Fatou’s lemma, also, at discontinuities of pt, Kf
t− = Kf

t+ = 0 a.e. and the conver-
gence is in L1, so all assumptions of lemma 25 are satisfied—pIt I

f
t is integrable since

pIt = pt is locally bounded, and for rtKf
t : since the integrand is ≥ 0, first integrate

over f (Fubini), then use that Kt is locally bounded and rt locally integrable. Since
dςt is carried by Z, clearly the aggregate π = 0, so by lemma 25 πf = 0 µ-a.e. !

Comment 11. As the “hot potato” example (app. B.1) shows, ass. 3.d is clearly
needed to derive the lemma. Without it, one cannot deduce the constancy of ςt, even
where Kt > 0 (though one can obtain that there ς(t) is the sum of countably many
jumps, i.e., its continuous part is 0, getting then similarly in thm. 1 the analog of
thm. 1(3) for such ςt). So the example presents really the pure form of the difficulty.

Corollary 7. pY = p implies p is locally bounded away from zero.

Proof. If, on the contrary, p is not locally bounded away from zero, then, by lemma
7, there exists a finite t0 such that limt↘t0 pt = 0 and pt = 0 for t > t0. But this
is impossible since pY ≥ pC a.e. by lemma 5.a and pC is distinct from zero on a
non-negligible set, by lemma 6.c. !

3.5. First conclusions about equilibria.

Lemma 8. Assume "D is negligible and either σ > 1 or (pC)1−σ is locally inte-
grable. Then, for a.e. agent, any addition to income increases his life-time utility.

Proof. Let Vx(M)
def
= u(M)(

´ 1
0 e−βσs(pCx+s)

1−σds)
1
σ , 0 ≤ M < ∞. Vx(M) is the

indirect utility of consumer born at x with income M by lemma 4.a. The integral
is > 0 a.e. (cor. 6.d), and finite for σ < 1, (pC)1−σ being locally integrable, so Vx is
well-defined even on [0,∞] and is strictly increasing in M . For σ > 1, assume first
it is finite. Then Vx is strictly increasing in M as above. While if the integral is
infinite, cor. 6.a implies that H < ∞ a.e., so Mx = 0. Since pCt > 0 a.e. (cor. 6.e),
this implies in lemma 4 that zt = ∞ a.e., so Jx = 0 and hence the equilibrium util-
ity U∗

x (cor. 5) is well-defined and = 0. On the other hand for M > 0, the integral
being infinite implies that Vx(M) is so too. Thus in this case too any increase in
budget increases utility — from 0 to +∞. Finally, since Mx < ∞ a.e. (cor. 6.b),
any addition to Mx increases the budget, and hence the utility. !

Corollary 8. Assume "D is negligible and either σ > 1 or (pC)1−σ is locally
integrable. Then a.e. wt > 0 implies full employment (labour contracted =Lt).

Proof. Assume contrary to the statement that the set T = { t ∈ | Lt = 0, wt > 0 }
is of positive measure. Let P = { s | ζs > 0 } and X = { x | hx

def
= λ(P ∩ (T − x)) >

0 }. X is a set of consumers who can increase their income by supplying labour and
hence by lemma 8 can improve their utility. Since

´

hxdx = λ(P )λ(T ) > 0, X is
non-negligible, contradiction. !

Lemma 9. (a) Ct is locally integrable, and pt is locally bounded.
(b) "D is negligible if either pC is locally bounded or ω ≥ 0.
(c) Assume "D negligible. Then pt is locally bounded away from 0 unless f is

bounded, σ < 1, and either (pC)1−σ /∈ Lloc
1 or "t0 : f ′(kt) > 0 a.e. on [t0,∞[.
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Remark 12. When it is known that pY = pI , cor. 7 is easier to use to establish that
pt is locally bounded away from 0, but point (c) will be used in lemma 12.

Proof. b is clear. For a: Ct is locally integrable by prop. 1.c. That pt is locally
bounded follows from lemma 7.

For c: Assume that pt is not locally bounded away from zero, then by lemma 7,
since ς is decreasing, there is t0 < ∞ such that limt↘t0 pt = 0. The same equation
in lemma 7 implies then ςs = rs = 0 a.e. on ]t0,∞[.

By cor. 6.c, pCt cannot be 0 a.e. on an interval of length > 1. So (lemma 5.a)
T

def
= { t > t0 | pYt > 0 } is non-null. By cor. 4, rt = 0 implies there supk≥0 fk ≤

e−γtwt/pYt . And wt < ∞ a.e.: else, since Mx is well-defined a.e., one would have
Mx = ∞ a.e. on the non-empty open set { x | λ{s | wx+s = ∞ , ζs > 0} > 0},
contradicting cor. 6.b. So f is bounded, and we can henceforth assume that either
σ > 1 or (pC)1−σ ∈ Lloc

1 .
Then, for a.e. t ∈ T , ∃k : fk ≥ e−γtwt/pYt . Indeed, if e−γtwt/pYt > fk ∀k, labour

contracted would be 0 by lemma 6.a, contradicting cor. 8 since wt > 0.
Thus ∃k̄, 0 < k̄ < ∞: fk = fk̄ iff k ≥ k̄ and, a.e. on T , e−γtwt/pYt = fk̄. So

wt > 0 a.e. on T . Cor. 8 implies contracted labour = Lt where wt > 0. Thus, a.e.
on T , kt < k̄ would yield negative profits in production, so a.e. on T , kt ≥ k̄, i.e.,
f ′(kt) = 0.

We claim finally that σ < 1. Indeed, else, by cor. 6.e pCt > 0 a.e., so T = [t0,∞[.
Since pYt ≥ pCt > 0 = pIt , no output nor consumption good can be transformed into
investment there: It = 0 there, hence kt = kt0e

−R(t−t0) will at some time get below
k̄, contradiction. !

Notation 3.2. For h : → , Dxh denotes the lower derivative of h at x, i.e.,
lim infy *=x,y→x

h(y)−h(x)
y−x , and similarly for the upper derivative D.

Remark 13. In the following, we also select w.l.o.g. canonical representatives within
equivalence classes, so as to make maximisation hold everywhere instead of just a.e.

Lemma 10. Assume pY = pI , and let gt = f ′(kt). Then, ∀t:

(a) (1) 0 ≤ pC ≤ p, p is locally bounded and locally bounded away from 0.
(2) yt = f(kt)
(3) wt = (f(kt)− ktf ′(kt))eγtpt, with kf ′

k defined as 0 at 0, by continuity.
(4) ptgt ≤ rt ≤ δpt −Dtp, and kt > 0 ⇒ ptgt = δpt −Dtp.
(5) pt = e−πt+

´

t
0(δ−gs)ds, with πt locally constant on kt > 0 and monotone.

(6) Mx
def
=
´ 1
0 [p

C
x+sωx,s + wx+sζs]ds ≥ 0 a.e., and is locally integrable.

(b) a2–a4, with 0 < pt < ∞ (from a1), imply that all firms maximise profits.
(c) Given 0 < pt < ∞, a5 is equivalent to the existence of rt s.t. a4 holds.
(d) Further, if f ′(0) = ∞ and f(0) = 0, and if either Ωt ≤ 0 ∀t (e.g., pure trans-

fers), or if consumption cannot be reverted to output (i.e., (C, I, Y, L,K)
feasible implies (C+, I, Y, L,K) feasible), then Kt > 0 ∀t.

Remark 14. Note that, since g ≥ 0, a5 implies that both πt and
´ t
0 gsds are ev-

erywhere real-valued. Indeed, both are increasing, and whenever one is finite the
other must be too, since pt ∈ ++; thus, since the integral is finite at 0, π0 is also
finite, hence for t > 0 they must be both finite (since else both +∞ contradicts
pt ∈ ++), and similarly if t < 0. Thus πt is -valued and g in Lloc

1 .

Remark 15. Also, a2 implies full output utilisation, and, iff either kt > 0, kt ≥
max{ k | f is linear on [0, k] } or f(0) > 0, full employment at time t.

Proof. a1: pt is locally bounded away from zero by cor. 7, and locally bounded by
lemma 7. By lemma 5.a, 0 ≤ pCt ≤ pt ∀t. Hence pC is locally bounded and by
lemma 9.b Mx is well-defined a.e. Thus cor. 8 is applicable.
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Let FL(K,L)
def
= limε↘0

F (K,L+ε)−F (K,L)
ε , FK(K,L)

def
= limε↘0

F (K+ε,L)−F (K,L)
ε .

a2: pt > 0 implies pYt > 0, hence no output is disposed off. Thus if there is full-
employment, the equation holds. Else, wt = 0 by cor. 8, and FL(Kt, L) = 0 at the
contracted labour L < Lt, so F (Kt, L) = F (Kt, Lt) and equation a2 again holds.
Further, increasing L to Lt preserves the equilibrium: since marginal product of
labour (FL(Kt, Lt)) is still zero, wages can be kept at 0, utility of agents and profits
of firms are not affected, nor is output, and still no positive profits are feasible: we
can assume full employment. Hence the use of f and k becomes meaningful.

Claim 1. A.e., ptgt ≤ rt with equality if kt > 0.

Proof of the claim. Optimal use of capital by production firms implies either pYt FK(Kt, Lt) =
rt or pYt FK(0, Lt) < rt and Kt = 0. Since Lt > 0 the two conditions are equivalent
to rt = pYt f

′(kt) or rt > pYt f
′(0) and kt = 0. !

a3: Similarly for labour, pYt FL(Kt, Lt) = e−γtwt or pYt FL(Kt, 0) < e−γtwt and
no labour is hired. But the latter condition implies wt > 0, in which case there is
full-employment (cor. 8): contradiction. So pt(f(kt)− ktf ′(kt)) = e−γtwt.

Since the equations a2-a3 hold a.e., we impose them now to hold everywhere
(thereby choosing the canonical representatives, see remark 13).

This implies the following facts, used in rest of the proof. pt is continuous where
Kt > 0 by lemma 7, so wt is locally bounded (since f is so), and gt is continuous
to +. By lemmas 7 and 5.c, rt ∈ Lloc

1 +.
a5: In the view of the above properties of pt and rt, the equation in lemma

7 can be differentiated term by term wherever Kt > 0, since there rt = ptgt is
real-valued and continuous. Doing this with zt = e−δtpt we get z′t = −gtzt, where
zt > 0 since pt > 0. g ∈ Lloc

1 , since ptgt ≤ rt a.e., r ∈ Lloc
1 and p is locally bounded

away from 0. Thus integrating from zero, with possibly a different constant z0 in
each interval where Kt > 0, zt = z0e−

´

t
0 gsds. a5 always holds for an appropriate

choice of πt, since pt > 0 and g is locally integrable; the above argument shows πt
(= − ln z0) is constant on each interval where kt > 0. Let Ht

def
= πt +

´ t
0 gsds: since

zt = e−Ht is decreasing by lemma 7, Ht is increasing, so πt = Ht−
´ t
0 gsds has locally

bounded variation; let πa
t and πs

t denote its absolutely continuous and singular
parts. By lemma 7, ςt

def
= e−Ht −

´∞
t e−δsrsds is decreasing; we first express that its

absolutely continuous part is so, by expressing that ς ′ exist a.e. and is a.e. ≤ 0. Since
rs ∈ Lloc

1 , the integral term in the right hand side is a.e. differentiable with finite
derivative e−δtrt; similarly, since H is increasing, e−Ht is a.e. differentiable with
finite derivative −H ′

te
−Ht ; thus rt ≤ eδtH ′

te
−Ht a.e., = ptH ′

t since eδt−Ht = pt, i.e.,
rt ≤ δpt − p′t a.e. Since H ′

t = π′
t + gt, we also get equivalently rt ≤ ptgt + ptπ′

t a.e.,
hence, since 0 < pt < ∞, by ptgt ≤ rt a.e. (by claim 1), that π′

t ≥ 0 a.e. on g < ∞,
hence, by g ∈ Lloc

1 , π′
t ≥ 0 a.e.: πa is increasing. And since

´ t
0 gsds is absolutely

continuous, πs is the singular part of Ht, which is increasing, thus so is πs.
Thus a5 is proved, and ptgt ≤ rt ≤ δpt − p′t a.e. By claim 1, replace rt by ptgt

when kt > 0 and by max{rt, ptgt} else: this changes it only on a null set, preserving
equilibrium.

b: We now prove that these inequalities, together with a2,a3 and 0 < pt < ∞,
imply firms maximise profits: this along with point c will then prove point b.
Clearly, a2 and a3, together with our conditions on rt, express the optimality of
instantaneous production. Remains to show that a5 implies the formula of lemma 7,
reversing the above argument. First, a5 implies that gt ∈ Lloc

1 (cf. rem. 14). Then a5,

with zt = e−δtpt = e−πt−
´ t
0 gsds, which is decreasing, yields ςt = zt−

´∞
t e−δsrsds, so

ςt has locally bounded variation. Since rt ≤ δpt−p′t a.e., ς ′t ≤ 0 a.e., so the absolutely
continuous part of ς is decreasing. And the singular part must be that of zt, hence
decreasing too. Thus ς is decreasing. Its equation above can be differentiated on
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intervals where kt > 0, because zt is differentiable there, πt being constant, and rt
locally equals ptgt a.e., which is locally bounded and continuous. Hence there we
get ς ′t = 0 identically (since p′t = pt(δ− gt)), and thus ςt is indeed constant on each
interval where Kt > 0. So, by lemma 7, the investment sector maximises profits too.

We will use below the following 2 easy statements:

Claim 2. h : → is weakly increasing iff Dh ≥ 0.

Claim 3. For f, g : → , if g(x0) = y0 and f is differentiable at y0 with
f ′(y0) > 0 and is weakly increasing, then Dx0(f ◦ g) = f ′(y0)Dx0g.

a4: We show that a5, with 0 < pt < ∞, implies that ptgt ≤ δpt − Dtp, and
kt > 0 ⇒ ptgt = δpt −Dtp; it is then indeed sufficient to replace rt by its min with
δpt−Dtp to satisfy a4, since p′t = Dtp a.e., p having locally bounded variation by a5.

By a5, πt =
´ t
0(δ−gs)ds−lnpt is increasing, hence a fortiori

´ t
0(δ−n∧gs)ds−ln pt is

so, ∀n. Thus by claim 2, since the integral term is differentiable, δ−n∧gt−Dt(ln p) ≥
0, ∀n. So Dt(ln p) ≤ δ − gt, hence ptgt ≤ δpt −Dtp by claim 3.

The part for kt > 0 is obvious, everything being differentiable there.
c: We have just shown that a5 implies the existence of a version of rt s.t. a4

holds. Conversely, assume such an r: then ptgt ≤ δpt −Dtp, with equality and pt
differentiable when kt > 0, and we have to prove a5.

Since pt > 0, our inequality yields, by claim 3, gt ≤ δ − Dt(ln p) = Dth with
ht = δt− ln pt real-valued. Since g ≥ 0, we first conclude that h is increasing, from
claim 2, and then that g ∈ Lloc

1 .
So we can define πt for each t by the equation in a5, since 0 < pt < ∞.
Constancy of π on each interval where kt > 0 follows trivially from ptgt = δpt−p′t,

everything being differentiable there (Dp = Dp).
If f ′(0) < ∞, then g is bounded and continuous, so Dtπ = δ − gt − Dt(ln p),

= 1
pt
(δpt − ptgt −Dtp) by claim 3, so Dtπ ≥ 0: π is increasing by claim 2.

If f ′(0) = ∞, by continuity of g, { g > δ } is a disjoint union of open intervals. On

each of those, we have Dtp ≤ pt(δ−gt) < 0, so pt and hence ln pt = −πt+
´ t
0 (δ−gs)ds

are decreasing; hence the singular part of that, which is the singular part of −πt, is
also decreasing. But π is singular, since π is constant on each of the open intervals
where gt < ∞: π is carried by their closed complement { g = ∞}, which is negligible
by local integrability of g. Thus π itself is increasing on any such interval. Since it is
also constant on each interval where g < ∞, it is locally increasing, thus increasing.

a6: The inequality follows from cor. 5. Local integrability follows from that of ω
and ζ, pC and w being locally bounded.

d: If Kt = 0 say for t = 0, the fastest way the capital can increase afterwards is
by having output equal to investment with full-employment in some interval after
0; the differential equation is then k′t = φ(kt) with φ(k) = f(k)− Rk, hence, since
f(0) = 0 and f ′(0) = ∞, gt = φ′(kt) is not locally integrable at 0, by cor. 1, and
thus similarly is so, for any smaller kt: contradiction. !

Comment 16. When f ′(0) = ∞, condition a5 is equivalent to the classical differ-
ential equation d ln pt

dt = δ− f ′(kt), under the interpretation that the equality holds
everywhere, and that derivatives may have values (but must be well-defined, so
py−px must be well-defined for y sufficiently close to x, so that p must be -valued
to be differentiable). Indeed, the increasing aspect of πt ensures that the derivative
is only decreased; but this happens only where Kt = 0, i.e., d ln pt

dt = −∞, so the
equality is preserved: pt solves the differential equation. Conversely, any solution
of the differential equation implies a pt as specified, using that a monotone function
H on [0, 1] is a.e. differentiable and H1 −H0 ≥

´ 1
0 H

′
tdt.

Corollary 9. Assume pY = pI . If f ′(0) = ∞, then, a.e., kt > 0 and wt > 0.
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Proof. Since gt = f ′(kt) ∈ Lloc
1 (rem. 14), if f ′(0) = ∞, kt > 0 a.e. Hence wt > 0

a.e., because f ′(0) = ∞ implies f(k)− kf ′(k) > 0 for k > 0. !

Corollary 10. Assume pY = pI . If ωx,s ≥ 0 a.e. in s and f is not linear on [0, kt]
for a.e. t ∈ [x, x + 1], then Mx > 0. In particular, if f(0) > 0 or f ′(0) = ∞, and
ω ≥ 0 a.e., then Mx > 0 a.e.

Proof. wt > 0 a.e. on [x, x+ 1], by a3. In particular, if f(0) > 0, f is not linear on
any interval [0, k], while if f ′(0) = ∞, then f is not linear on [0, kt] for kt > 0, and
kt > 0 a.e. by cor. 9. !

3.6. Aggregate demand. Following-up on the conventions at the start of this sec-
tion, note that for aggregate consumption the classic integration of correspondences
[1, 8] does not apply, as consumption bundles are equivalence classes of arbitrary

+-valued Lebesgue-measurable functions, so do not lie in any vector space. The
modification required is described in App. A.

The specificity and strength of next lemma is that the integral of the demand-
correspondence, instead of being an arbitrary convex set, is the set of all measurable
selections from a fixed correspondence C.

Lemma 11. Assume an equilibrium with pC locally bounded, and let

(1) Ct = N0

(

eβtpCt
)−σ
ˆ t

t−1
e(ν+βσ)x

Mx
´ 1
0(p

C
x+s)

1−σe−βσsds
dx

The integrand is a.e. well-defined, and the integral is finite, thus continuous in t.
A.e., the integrand is null iff Mx is so; thus Ct > 0 except if Mx = 0 a.e. on [t−1, t].

If the right hand side is undefined, involving thus ∞× 0, let Ct = +.
Then aggregate demand (the integral of individual demand) is the set of equiv-

alence classes of all measurable selections from Ct.

Proof. Neglect all negligible sets of birthdates x of cor. 6, and take as domain D
the remaining part of . In particular, Mx is everywhere well-defined on D and
∈ +, so lemma 4 is applicable, with Mx for M and s ,→ pCx+s for p, and demand
is everywhere well-defined and non-empty, by lemma 4.a.

The demand correspondence x ,→ Γ(x) from D to M (cf. app. A), has a measu-
rable graph, as the intersection of the following 3 measurable graphs: (a) {(x, c) ∈
D×M | ct = 0 a.e. for t /∈ [x, x+1]}, (b) {(x, c) ∈ D×M |

´∞
−∞ pCt ctdt ≤ Mx}.

(c) {(x, c) ∈ D×M | U(s ,→ cx+s) ≥ U∗
x}. Indeed, (a) is closed, measurability of

(b) follows from that of Mx (cor. 5) and the lower semi-continuity of c ,→
´∞
−∞ pCt ctdt

(Fatou), and of (c) from that of U∗ (cor. 5), of U on M[0,1] (being by Fatou lower
semi-continuous if σ > 1 and else upper semi-continuous), and from the continuity
of (x, c) ,→ (s ,→ cx+s) : ×M → M[0,1], which follows from the continuity of the
convolution of the point mass at −x and h ◦ c with h a homeomorphism from to
[0, 1] (see e.g., [20, prop. 2]) and of the projection from M to M[0,1].

Thus, the integral of Γ is well-defined — recall we allow for correspondences to
be defined only a.e., so equivalently, define, for x /∈ D where Γ(x) is not defined
(Mx being not defined, or /∈ +), Γ(x)

def
= M —, and is the set of integrals over

x ∈ of all jointly measurable functions c(x, t) s.t. s ,→ c(x, x+ s) ∈ Γ(x) ∀x.
Observe that requirement (a) was not part of our assumptions (cf. sect. 2.1.4),

nor did we prove that in equilibrium no agent would buy any goods dated outside
his life-span. But the same proof obviously shows that without this the demand-
correspondence is also measurable; we claim the integrals are the same, so our
result is independent of any such assumption. Indeed, take a selection c(x, t)
as above from the larger correspondence, and define c̃(x, t) = t−1≤x≤tc(x, t) +

1
Φ(−ν)

´

y/∈[t−1,t] e
ν(y−t)c(y, t)dy. Then clearly c̃ is measurable, has the same integral
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as c, and is a selection from the smaller correspondence: indeed, agents would have
bought something at times t outside their life-span only if pCt = 0, since by lemma 8
(which applies since pC is locally bounded, and also by lemma 9.b, "D is negligible)
any increase in budget would increase their utility, so almost nobody’s budget is
affected by the change.

Lemma 4.c and 4.d imply then that the selection c(x, t) must equal c∗t−x (ibidem)
when either U∗

x ∈ or pCt > 0 and Mx = 0. Since this is a measurable region, and
c∗t−x is jointly measurable on this region, we can assume equality up to a (joint) null
set, which does not affect the equivalence class of the integral. Further, using lemma
4.b, U∗

x ∈ ≡ (σ>1∨Mx>0) since by cor. 3 and 5 U∗
x < ∞ and since pCt is locally

bounded. Thus equality holds whenever σ > 1 or Mx > 0 or pCt > 0, i.e., since the
latter holds a.e. when σ > 1 (cor. 6.e), equivalently whenever Mx > 0 or pCt > 0.

Note that (1) follows at all t s.t. pCt > 0, by integration. And the integrand is a.e.
well-defined, since Mx < ∞ a.e. (cor. 6.b) and since the denominator is a.e. > 0 by
cor. 6.d. A.e., it is null iff Mx = 0: if Mx = 0, because the denominator is positive
(cf. supra); and if Mx > 0, because the denominator is finite, by local boundedness
of pC if σ < 1, and by cor. 6.a if σ > 1. Thus the integral is always well-defined; so,
pC being locally bounded, the right hand side is well-defined except where both the
integral and pCt are 0, i.e., iff Mx = 0 a.e. on [t−1, t] and pCt = 0, where it equals
∞× 0.

Thus we show now equality in (1) when pCt = 0 and Mx is not negligible on
[t−1, t]. As seen above, the right hand side is ∞ then, and, if Mx > 0, c(x, t) = c∗t−x,
= ∞ (lemma 4, finiteness of the denominator, since Mx > 0 ⇒ U∗ ∈ ). Hence a
non-negligible set of agents has infinite demand: aggregate demand is infinite too,
thus equality.

For the remaining case, where Mx = 0 a.e. on [t−1, t] and pCt = 0, i.e., the
“∞× 0” case, note σ < 1 then, since else pCt > 0 a.e. (cor. 6.e). Almost all living
agents have a null lifetime wealth; since they (almost) all face some non-negligible
period in their lifetime where pC > 0 by cor. 6.c, U∗

x = −∞, so any consumption
at times where pCt = 0 is both feasible and optimal for them.

Since by lemma 9.a aggregate demand is locally integrable, it is a.e. finite, and
thus so is the right hand side integral. Hence the integrand is locally integrable
everywhere, and so the integral is everywhere finite, and is continuous in t. !

3.7. Avoiding the null equilbrium.

Lemma 12. If either "D is negligible and no labour is used in production ∀t or
ω ≥ 0 then pYt , pCt and wt are locally integrable. Assume further either σ > 1 or
∃t0 : f ′(kt) > 0 a.e. on [t0,∞[. Then pt, pYt are locally bounded away from 0. If in ad-
dition f(0) > 0 or f ′(0) = ∞, then also wt, Yt > 0 a.e., and there is full-employment.

Proof. If ω ≥ 0, Mx < ∞ implies integrability of wx+sζs. Else, let θx,s =
pCx+sωx,s + wx+sζs: "D being negligible means that for a.e. x either θ+x,s or θ−x,s
is integrable. 0 ≤ Mx < ∞ a.e. (cor. 5 and 6.b) implies then that |θx,s| is inte-
grable for a.e. x. Further, if no labour is supplied, the agent’s budget constraint
implies that both pCx+scx,s and wx+sζs (spending on consumer goods and spending
on leisure) are integrable, since both are non-negative and the sum of their integrals
is ≤ Mx < ∞. Integrability of wx+sζs for a.e. x implies then by lemma 28 that
wt is locally integrable, and rt is locally integrable by lemma 7. By lemma 5.c
c(e−γtwt, rt) ≥ pYt , and c is concave and positively homogeneous, hence by Jensen’s
inequality pYt is locally integrable, and so is pCt by lemma 5.a. Thus either σ > 1 or
(pC)1−σ is locally integrable. Hence, if either σ > 1 or ∃t0 : f ′(kt) > 0 a.e. on [t0,∞[,
lemma 9.c implies that pt is locally bounded away from 0, and so is pYt (lemma 5.a).
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For the last point, lemma 7 implies rt is locally integrable and hence a.e. finite,
so, by cor. 4, e−γtwt ≥ supk g(k), with g(k)

def
= pYt f(k)− rtk, and supk g(k) > 0 a.e.

because pYt > 0 and rt is finite. Thus wt > 0 a.e. Therefore, by cor. 8, there is
full-employment. Since labour costs are > 0, one must have Yt > 0. !

Lemma 13. Assume f(0) = 0, f ′(0) = ∞. If ω ≥ 0, then Kt is not identically 0.

Proof. Else f ′(kt) > 0 ∀t, so Yt > 0 (lemma 12), so Kt > 0 by f(0) = 0. !

4. The equilibrium equations

We start with a general characterisation of competitive equilibria of this economy
and later focus on a special subclass of such equilibria, the balanced growth ones.

Definition 3. (a) Stationary endowments mean ωx,s = eγxωs.
(b) A balanced growth equilibrium (bge) is an equilibrium of an economy with

stationary endowments, such that Kt is an exponential function of time.
(c) A bge is a golden rule equilibrium (gre) if ∀t, f(kt)−Rkt = maxk(f(k)−Rk).

Notation 4.1. For stationary endowments, we use Es =
e−(γ+ν)sωs
´ 1
0ζse

−νsds
and Ω =

´

Esds.

Comment 17. Recall that in the basic model, zero-profits on the instantaneous
production cone forces pC = pY = pI .

Theorem 1. The set of equilibria with pC = pY = pI is the set of all solutions of
the following system that respect the irreversibility constraints (i.e., the aggregate
production (Yt − It, It, Yt, Lt,Kt) belongs to the instantaneous production set):

Yt = F (Kt, Lt)(1)

gt = f ′(kt), g is locally integrable(2)

pt = e−πt+
´

t
0 (δ−gs)ds, pI = p(3)

0 < p < ∞; πt is non-decreasing and constant on t : Kt > 0

wt = (f(kt)− f ′(kt)kt)e
γtpt, where kf ′(k) is defined as 0 at 0, by continuity.(4)

Ct =
(

eβtpt
)−σ
ˆ t

t−1

N0e(ν+βσ)xMx
´ 1
0 p1−σx+se

−βσsds
dx,(5)

Mx
def
=

ˆ 1

0
(px+sωx,s+wx+sζs)ds ≥ 0 a.e.

It = N0

ˆ 1

0
eν(t−s)ωt−s,sds+ Yt − Ct(6)

Kt = e−δt
ˆ t

−∞
Ise

δsds,with assumption 1(7)

Individual consumption is then ĉx,s = Mx
e−βσs(px+s)

−σ

´ 1
0 e−βσt(px+z)1−σdz

, and the rental rate of

capital, rt, must satisfy lemma 10.a4.

Proof. By lemma 7, pI = p.
Start with equation (5). By lemma 10.a1, pC is locally bounded, so lemma 11

applies, and pCt > 0 for all t, so aggregate consumption is a singleton. Hence, (5).
(7) comes from cor. 2, and (6) is “market clearing,” or the technology of the

merchandising firms. Lemma 10 implies the rest (using also lemma 4 for ĉ).
Conversely, given a solution of those equations, lemma 10 implies the production

sector maximises profits, pt is locally bounded and locally bounded away from 0, and
Mx is a.e. well-defined, finite, and ≥ 0. Hence, all agents have, by lemma 4.c,d, ĉx,s
as unique maximiser in their budget set, and those aggregate to Ct by lemma 11. !
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Remark 18. It follows from the theorem that in the basic model (i.e., with full
reversibility), for any equilibrium with Kt > 0 ∀t, the price-system pt is C1 and
non-null, so its logarithm has a continuous derivative, (δ−)rt in the terminology of
[24]. Note that continuity of rt is the basic assumption of [24], so the conclusions
of this classical paper (relied upon, implicitly or indirectly, everywhere in the liter-
ature) are, a posteriori, at least applicable in this case. In general, lemma 4, when
re-written for general u, is needed — and much more powerful.

If one has Kt > 0 ∀t in the basic model, a direct argument leads to the conclu-
sion, without relying on the full strength of our previous results: lemma 7 implies
then ln pt is C1, rt being trivially determined since Kt > 0, so [24] is applicable;
this line of argument leads then directly to cor. 11 below.

Picking equilibria as in cor. 11, however, does not help to understand which equi-
libria are missed, if at all. Cor. 12 below gives a number of cases where none are
missed; that, however, does rely on the full strength of our results.

Corollary 11. The set of equilibria where Kt > 0 and pC = pY = pI , is the set of
solutions (respecting the irreversibility constraints26) of the following system:

(a) k ,→ y : yt = f(kt)
(b) k ,→ r : rt = R− f ′(kt) (= γ + ν + p′

t

pt
)

(c) (r, E) ,→ N1 : N1,x =
´ 1
0 e
´ x+s
x

rtdtEx+s,sds

(d) (k, r) ,→ N2 : N2,x =
´ 1
0 e
´ x+s
x

rtdtϕs(f(kx+s)− kx+sf ′(kx+s))ds
(e) (N1,N2) ,→ N : N = N1 + N2, N ≥ 0

(f) r ,→ D : Dx =
´ 1
0 e−ηs+(1−σ)

´

x+s
x

rtdtds
(g) (N ,D) ,→ B : B = N

D

(h) (r,B) ,→ c : ct =
´ 1
0 e

−ηu−σ
´

t
t−u

rsdsBt−udu
(i) (y, E, c) ,→ i : it = yt +Ωt − ct
(j) i ,→ k̃ : k̃t = e−Rt

´ t
−∞eRsisds > 0, with assumption 1

The prices then can be computed as follows, using gt
def
= f ′(kt),

pt = p0e
´

t
0(δ−gs)ds, pI = p(1)

rt = ptgt(2)

wt = (f(kt)− ktf
′(kt))e

γtpt(3)

Proof. We start by showing that any equilibrium with Kt > 0 and pC = pI = pY

has to satisfy conditions (a)-(j) and the price equations (1)-(3).
Using thm. 1, Kt > 0 implies πt is constant in the price equation, so eq. (1) holds

with p0 = e−π0 ; eq. (2) is from lemma 10.a4 using Kt > 0, eq. (3) is from thm. 1(4),
because kt > 0.

Next, let px+s = pxψ(x, s) with ψ(x, s) = exp(δs−
´ x+s
x f ′(kv)dv). Now, substi-

tuting from thm. 1,

ct =
Ct

Lt
=

(

eβtpt
)−σ

e(γ+ν)t
´ 1
0 ζse−νsds

ˆ t

t−1
e(ν+βσ)x

´ 1
0 (px+sωx,s + wx+sζs) ds
´ 1
0 p1−σx+se

−βσsds
dx

=

ˆ t

t−1

e(ν+βσ)(x−t)−γt
´ 1
0 ζse−νsds

´ 1
0 ψ(x, s)

(

ωx,s + eγ(x+s)(yx+s − f ′(kx+s)kx+s)ζs
)

ds

(ψ(x, t− x))σ
´ 1
0 (ψ(x, s))

1−σe−βσsds
dx

Use now ωx,s = Ex+s,seγ(x+s)+νs
´ 1
0 ζue−νudu (cf. sect. 2.5), to re-write the numer-

ator of the second ratio:

ωx,s + ζse
γ(x+s)

(

yx+s − f ′(kx+s)kx+s

)

26So that the aggregate production component (Yt − It, It, Yt, Lt,Kt) of the solution belongs
to the instantaneous production set.
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= eγ(x+s)+νs
(

Ex+s,s

ˆ 1

0
ζue

−νudu + e−νsζs
(

yx+s − f ′(kx+s)kx+s

)

)

= eγ(x+s)+νs
(

ˆ 1

0
ζue

−νudu
)(

Ex+s,s + ϕs

(

yx+s − f ′(kx+s)kx+s

)

)

; so:

ct =

ˆ 1

0
eσ(
´

t
t−u

f ′(ks)ds)−(ν+γ+σ(β+δ))u
Bt−udu , where Bx

def
=

Nx

Dx
and:

Nx
def
=

ˆ 1

0
eRs−

´

x+s
x

f ′(kv)dv
(

Ex+s,s + ϕs

(

yx+s − f ′(kx+s)kx+s

)

)

ds

Dx
def
=

ˆ 1

0
es(δ−σ(β+δ))−(1−σ)(

´

x+s
x

f ′(kv)dv)ds

Using the definition of η (= (γ+ν)(1−σ)+βσ) we obtain now (b)-(h). Conditions
(a), (i) and (j) are from (1), (6) and (7) of thm. 1 respectively (with Kt > 0).

Conversely, a solution of the system (a)-(j) along with the price equations (1)-
(3) and pC = pI = pY is an equilibrium by thm. 1. Indeed, kt > 0 (from (j))
implies the local integrability of gt, and hence, first (2) in thm. 1, and, second,
0 < pt < ∞ by eq. 1 here, implying then (3) in thm. 1 with πt = − ln p0. The
equations for wages are identical. Conditions (1), (6) and (7) are from (a),(i) and
(j) respectively. Finally, eq. 5 follows now by reversing the above computation. !

4.1. Implications of the equilibrium conditions.

Corollary 12. Conditions a-j and 1-3 of corollary 11 characterise

(a) all equilibria of the general model, provided Ωt ≤ 0 ∀t (e.g., pure transfers),
f ′(0) = ∞ and f(0) = 0 and provided the production vector component
(Yt − It, It, Yt, Lt,Kt) of the solution belongs to the instantaneous produc-
tion set for all t;

(b) if f(0) = 0, f ′(0) = ∞, ω = 0, all equilibria of the general model in
which constraints on disvestment are not binding (i.e., pYt = pIt ), provided
the quantity component (Ct, It, Yt, Lt,Kt) of the solution belongs to the
instantaneous production set for all t;

(c) all equilibria of the general model where 0 < it < yt a.e., provided the
solution satisfies 0 < it < yt;

(d) if Kt is exponential, all bge of the basic model, if f ′(0) = ∞;
(e) if Kt is exponential, all bge of the general model with ω = 0, f(0) = 0 and

f ′(0) = ∞.

Proof. By cor. 11, any solution to the system (a)-(j) is an equilibrium with K > 0
and all prices equal. Remains to show that in each of the cases here an equilibrium
has K > 0 and all prices equal.

(a): by lemma 10.d.
(d): The equality of the prices is by lemma 5.b. Being exponential and bounded

(prop. 1.a), kt is constant, positive by cor. 9.
(b): Since pY = p by lemma 7, it follows from lemma 10.a1 that pC is locally

bounded, hence lemma 11 applies. Cor. 10 implies that Mx > 0 a.e., so equation
(1) of lemma 11 holds everywhere, and with the integral and Ct strictly positive,
so It < Yt and all prices are equal (p = pY = pI = pC).

Since the integral in the definition of aggregate demand (equation (1) of lemma
11) is locally bounded away from 0, and since pC is locally bounded, Ct itself is
locally bounded away from 0. Thus Kt = 0 is impossible: immediately after such
a time, it is impossible to have Ct bounded away from 0, if f(0) = 0.

(c): We have pC = pY = p a.e., using lemma 5.b, hence thm. 1 applies. Since
it > 0 by the capital accumulation equation (thm. 1(7)), we have kt > 0.
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(e): Kt is exponential iff kt is, and by prop. 1.a, kt is bounded, so constant.
Thus Kt = K0e(γ+ν)t. Since ω ≥ 0, K0 > 0 by lemma 13. Then, by the capital
accumulation equation, It = RKt is > 0 too, so constraints on disvestment are not
binding; so the rest follows by case b. !

Comment 19. No Bubbles: To get rid of the solutions of the equation in lemma 7
with (even constant) ς > 0 (“bubbles”), or: indeterminacy) one might expect to need
a transversality condition, e.g., limt→∞ e−δtpt = 0, or infinitely-lived investment
firms making arbitrage operations like buying some capital now and renting it out
forever after. But thm. 1 (eq. (3)) does imply ς = 0, provided f is strictly increas-
ing: prop. 1.a implies kt is bounded, so inf gt = inf f ′(kt) > 0, thus

´∞
0 gtdt = ∞,

and hence ς = limt→∞ e−δtpt = 0.

Comment 20. No Autarcy: The “intellectual reason” why the “0-equilibrium” (where
Kt = 0 ∀t) doesn’t exist is individual rationality: a single Robinson Crusoe with
no starting capital can produce output and capital and consumption goods in his
lifetime (at least if 1/f is locally integrable at 0, cf. lemma 2 and comment 8),
according to the maximal solution of lemma 227 where he works full-time and all
output is converted into investment. The problem with this “argument” is that if ζ
is identically 0 in some initial part of his lifetime, capital (and hence consumption
possibilities) will start to build up only after that initial segment, i.e., if σ < 1,
his lifetime utility is still −∞: that is why trading is needed with other Robinsons
born at different dates, and hence the whole apparatus of equilibrium analysis.

Comment 21. Clearly, all the previous results apply to the reduced economy E′

considered in section 2.5.3 as well. Since the map E to E′ is an isomorphism, it
maps, in each direction, equilibria to equilibria.

Thus, under the assumptions of cor. 11, in E′, individual consumption equals
c!x,s = Bx exp

(

−
´ x+s
x (σrt + η)dt

)

. Further, pt = p0 exp(
´ t
0 rsds) so that −rt is the

equilibrium interest rate (net of depreciation) in E′. Therefore, the map of the

prices is then, with P = p′

0
p0

: pt ,→ p′t = Pe(γ+ν)tpt, wt ,→ w′
t = Peνtwt, r ,→ r′ = r.

5. Balanced Growth Equilibria

It will be shown below that in a bge where k > 0 all quantities of the reduced
economy are constant with time, and so will be r = R − f ′(k). Finding the bge
amounts then to solving one market clearing equation for r, or simply k.

Notation 5.1. Let #(r)
def
= Φ(−rσ−η)

Φ(r(1−σ)−η) , and for a bounded measure h on [0, 1] (or

h ∈ L1([0, 1])) let H̃h(r)
def
=
´

h(ds)−#(r)
´

ersh(ds).

Remark 22. #(r) decreases from ∞ to (1− σ−1)+; #(0) = 1, so H̃h(0) = 0 for any
bounded measure h on [0, 1], and H̃h(r)/r is analytic (lemma 27). H̃ is linear in h.

Corollary 13. The set of bge satifying assumptions of cor. 11 is the set of constant
positive solutions k of the system

ˆ 1

0
ersΞsds ≥ 0, with Ξs

def
= Es + (f(k)− kf ′(k))ϕs, and(1)

kr = H̃Ξ(r), with r = R− f ′(k)(2)

with the rest of the (constant) quantities determined by the following conditions:

(a) r = R− f ′(k)
(b) y = f(k)
(c) i = Rk

27It is not unique, but it is feasible, and that is the only thing which matters.
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(d) N =
´ 1
0 ersΞsds

(e) c = #(r)N
(f) D = Φ

(

r(1− σ)− η
)

, B = N

D

and the prices determined by

pt = p0e
(r−γ−ν)t(3)

wt = (f(k)− kf ′(k))eγtpt(4)

rt = ptf
′(k)(5)

Remark 23. If f ′(0) = ∞, any non-negative solution k of (2) is strictly positive.
Hence cor. 12.d-e imply that bge of those models are characterised by cor. 13.

Proof. Being exponential and bounded (prop. 1.a), kt is constant, = k. By (a) in
cor. 11, yt = y is constant, and (j) there implies it = i is so. Since Ωt = Ω by
definition of bge, equation (i) implies ct = c is constant too.

For any fixed r, conditions (a)-(f) along with (1) of this corollary are equivalent
to conditions (a)-(j) (excluding cond. (i)) of cor. 11, for constant quantities. The
equivalence of the corresponding price equations is obvious.

Next, cond. (i) of cor. 11 for constant quantities, i.e., i = y+Ω− c, and (c) above
imply Ω− c+ y −Rk = 0, so, by substituting the rest of the conditions,

(6) Ω−#(r)

ˆ 1

0
ersEsds+

(

f(k)− kf ′(k)
)

(

1−#(r)

ˆ 1

0
ersϕsds

)

= kr

which is equivalent to (2), by notation 5.1. !

Remark 24. With E ≥ 0, N ≥ 0 ((1) in cor. 13) is always satisfied; and for E = 0,
and f(k) = Akα, A > 0, 0 < α < 1, equation (2) in cor. 13 can be represented as

(1) r

( H̃ϕ(r)

r
(R − r)− α

1−α

)

= 0

Remark 25. r is the growth rate of aggregate values (ptCt, ptYt, ptKt) in the bge,
by eq. (3) in cor. 13, since aggregate quantities grow at rate γ + ν.

5.1. Example: nonsensical (overinvestment) BGE. In this subsection assume
f ′(0) = ∞ in the basic model. Hence in all bge k > 0 by cor. 12.d.

Produced consumption is positive, i.e., y > i, if and only if k < κ, where κ > 0
satisfies f(κ) = Rκ (and so is uniquely defined by ass. 4).

Hence if k ≥ κ the whole production sector works for nothing, or even consumes
part of the “manna” Ω; no consumption good ever comes out of it.

Corollary 14. In the basic model, for any economy with f ′(0) = ∞, there is, for
any k > 0, a transfer policy Es such that k is consistent with a bge.

Proof. For the given economy take any value k > 0. If r = 0, pick any transfer policy
that satisfies cor. 13.1 and use the fact that H̃Ξ(0) = 0 by rem. 22 to construct a bge
(using cor. 13). Else, pick h ∈ L1([0, 1]) such that

´

esrh(ds) ≥ 0 and H̃h(r)/r > 0
(otherwise there are b1, b2 not both zero, such that b1H̃h(r)/r + b2

´

esrh(ds) = 0
for all h, which implies r = 0). For y = f(k), let z solve zyH̃h(r) = kr, then z > 0,
since y > 0 and H̃h(r)/r > 0. Let Es = yzhs− (y−kf ′(k))ϕs. Then Ξs = Es+(y−
kf ′(k))ϕs = yzhs, and by construction of z, and linearity of H̃h in h, the market

clearing condition (2) of cor. 13 holds. Since
´ 1
0 ersΞsds ≥ 0, (condition (1)) the ini-

tial k along with the constructed transfers are consistent with a bge by cor. 13. !

Remark 26. Since y − i = c − Ω and c ≥ 0 ((i) and (e) of cor. 11), a sufficient
condition to avoid nonsensical equilibria is to set transfers such that Ω < 0 and that
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satisfy the equilibrium condition (1) of cor. 13,
´ 1
0 ersΞsds ≥ 0, (assuring c ≥ 0).

Alternatively, one could use pure transfers, Ω = 0, and c > 0.

5.2. Golden rule equilibria.

Corollary 15. Assume f ′(0) > R and the endowments are stationary.

(a) If Ω+ supk≥0(f(k)−Rk) ≥ 0 then there exists a gre.
(b) Denote gre variables with superscript G. The gre are the solutions of

(1) f ′(kg) = R, so rg= 0
(2) yg = f(kg)
(3) ig= Rkg

(4) cg = Ω + f(kg)− kgf ′(kg) = N g

(5) pg

t = pg

0e
−(γ+ν)t, pI = pC = pY = pg

(6) wg

t = pg

0e
−νt(yg −Rkg), rgt = Rpg

t

(7) Dg= Φ(−η), where N , D are defined by conditions (c)−(h) of cor. 11.
(c) Inequality (a) is necessary for the existence of a feasible path, at least if

f ′′(kg) < 0.

Proof. (a): Since f ′(0) > R and f ′
∞ < R, and f is concave, and differentiable at

k > 0, there exists kg > 0 satisfying b1. Given kg define the rest of the variables
from conditions b2-b7. Then the result follows by point b.

(b): Take a solution of (b1)-(b7). Since pI = pY = pC = pg, by thm. 1 it is an
equilibrium. Since k is constant, it is a bge and it is a gre by the concavity of f
and condition (b1).

Conversely, take an arbitrary gre, then k > 0 has to satisfy (b1). By the capital
accumulation equation in section 2.2.2, (b3) has to hold. Then both k and i are
strictly positive. Hence a constraint that investment can not be transformed into
output is not binding, so, by lemma 5.b, pI = pY , and thus lemma 10 applies. Its
condition a2 implies (b2). This implies that y > i, since y − i = f(k)− f ′(k)k > 0
for k ≥ kg, as f ′(0) > R (indeed, f(k)− f ′(k)k = 0 implies f is linear on [0, k], so
f ′(k) = f ′(0) > R); so cor. 12.c applies. Thus, the gre should solve the system a-j
and the equations (1)-(3) of cor. 11, in addition to p = pI = pC = pY . It is easy
to verify that conditions (b4)-(b7) here are implied by the first three conditions,
(b1)-(b3) (which are consistent with (a), (b), (j) of cor. 11) and conditions (c)-(i)
in cor. 11 along with its price equations.

The last part of the statement, (c), follows by the Pareto property of gre [18,
thm. 1] implying no feasible aggregate consumption is strictly higher than cg. !

5.3. Examples of bge without transfers for f(k) = Akα. We plot here eq. (1)
of cor. 13, i.e., α

1−α as a function of x = 1− r/R = f ′(k)/R = αYt/It. This way one
can find the bges for any α by intersection with the corresponding horizontal line,

i.e., solving eq. (1) of remark 24 in x: 1−x
x

( H̃ϕ((1−x)R)
1−x x − α

1−α

)

= 0. With those
coordinates, 1) the relevant region is the positive orthant, 2) units are dimension-

less, thus easier to interpret, and 3) the function H̃ϕ(r)
r

is analytic (lemma 27), so
the graph, more reliable.

Figures 1–4 show the bge of economies with ϕ(s) = 1
b−a [a,b](s) and reasonable

parameters (time unit being 1 lifetime).
To illustrate, consider, for example, the economy described in fig. 2: working

period there is from .135 till .5. For α = 1/3 there are two balanced growth

(stationary) equilibria: one gre and one pure bge with x = f ′(k)
R $ 3.378 > 1,

hence under-investment (relative to the gre). If this is a reduced economy (with
γ = ν = 0) then the prices are falling and the elderly enjoy high levels of con-
sumption (r $ −26.2, life-time consumption increases exponentially with age: see
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Figure 1. R = 11, σ = .5, η = 2, a = .2, b = .75. Two equilibria ∀α.

G
ol

d
en

R
u
le

E
qu

il
ib

ri
u
m

0 1 2 3

0.5

αY
I

α
1−α

Figure 2. R = 11, σ = .25, η = 2, a = .135, b = .5. Two to four
equilibria.
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Figure 3. R = 10, σ = .25, η = 2.5, a = .25, b = .75. 1 equilibrium ∀α.
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Figure 4. R = 15, σ = .24, η = 1.9, a = .24, b = .55. 1 or 3 equilibria.
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comment 21). Surprisingly, using cor. 14, one can construct a nonsensical equilib-
rium (with ridiculous over-investment) even in this economy by adding transfers.
Pick k = 1.1κ, where κ satisfies f(κ) = Rκ (as in sect. 5.1). It can be supported as
a bge level of capital if individuals get, e.g., a subsidy of $ 71% of their wages (say,
claims to a natural resource) during their work-years. Although every individual
has zero assets at the end of his life, investment is perpetually above the output in
this equilibrium (yi $ 0.94), so on the aggregate, part of the ‘manna’ is never con-
sumed! In the reduced such economy prices are rising, marginal product of capital
is low and the agents are frantically saving for the old age, but still, the life-time
consumption decreases exponentially.28

One could make two general observations based on the graphs. First, Gale’s [13]
dichotomy, the distinction between gre and other bge, is quite visible and it is
made transparent in the next section using his classical net asset criterion. Second,
the number of pure bge can be either even or odd. Thm. 3 assures finiteness of
bge and provides simple conditions determining their parity.

6. Gale’s dichotomy

We first show that in any equilibrium the amount of net assets, the difference
between total consumer savings and the debts of all firms, is constant over time.
To give a meaningful definition of savings we will only consider equilibria where
pY = pI and so, by lemma 10, the “instantaneous savings” of a consumer are locally
integrable, and thus the total accumulated savings can be defined as a Lebesgue
integral of the instantaneous ones, as we show in lemma 14.

Definition 4. For any equilibrium with pY = pI let savings St
def
=
´ t
t−1

´ t−x
0 hx+s,sdsdx,

where hz,s
def
= N0eν(z−s)pCz (ωz−s,s − ĉz−s,s) +wzζs) denotes the instantaneous sav-

ings of an individual who is of age s at time z; and let net assets29 mt = St− ptKt.

Remark 27. By lemma 10 consumers work full-time and spend all of their income,
so St denotes their actual savings. ptKt is the total outstanding debt of all firms;
indeed, all firms but investment firms are instantaneous, so their debt is zero. Any
investment firm f has a finite life-span and its starting value is zero. So by the
zero-profit condition its value at any time t is also zero, hence its debt at time t
equals the value of its capital, ptK

f
t .

Lemma 14. hz,s = N0[pCz e
ν(z−s)(ωz−s,s−ĉz−s,s)+pz(f(kz)−kzf ′(kz))e(γ+ν)ze−νsζs]

is locally Lebesgue integrable, so S and m are well-defined.

Proof. By lemma 10.a3, wz = (f(kz) − kzf ′(kz))eγzpz. By lemma 10.a1, pz is
locally bounded, by prop. 1.a, f(kz) is locally bounded, and since by lemma 5.c,
w is non-negative, and also kzf ′(kz) ≥ 0, w is locally bounded. Hence, since ζ
is integrable, wzζs is locally integrable (in z, s). Next, pC is locally bounded by
lemma 10.a1, ω is locally integrable by assumption (section 2.1.3), and individual
consumption (ĉx,s) is locally integrable by prop. 1.c. It follows that h is locally
(Lebesgue-)integrable. !

Theorem 2. mt = m is constant in any equilibrium where pY = pI .

28One might rightfully argue that the example is somewhat extreme and may be unrealistic,
but could it elucidate the much-debated “paradox of thrift” — this time — in a neoclassical model?

29Or money, foreign credit.
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Proof. By lemma 14, h is locally integrable, so, by Fubini, St =
´ 1
0

´ t
t−1+s h(z, s)dzds.

Since for any a, b, c, d ∈ ,
´ b
a −
´ d
c =
´ c
a −
´ d
b ,

Sb − Sa =

ˆ 1

0
[

ˆ b

a
hz,sdz −

ˆ b−1+s

a−1+s
hz,sdz]ds

=

ˆ b

a

ˆ 1

0
hz,sdsdz −

ˆ b

a

ˆ 1

0
hx−1+s,sdsdx =

ˆ b

a

ˆ 1

0
hz,sdsdz

where the second equality holds because
´ 1
0 hx−1+s,sds, being the total life-time

savings of the individuals born at x − 1, is zero. It follows that S is the primitive
(in the sense of Lebesgue integral) of

´ 1
0 ht,sds, its a.e. derivative, S′

t.

Thus, using the definition of Lt, the notation in sect. 2.5.1 (
´ 1
0 N0et−sωt−s,sds =

ΩtLt,
´ 1
0 N0et−sĉt−s,sds = ctLt) and the formula for h in lemma 14, for a.e. t

S′
t =

ˆ 1

0
ht,sds = Lt(p

C
t (Ωt − ct) + pt(f(kt)− f ′(kt)kt))

Next we show that the firms’ debt, ptKt, is locally absolutely continuous.
Take an interval [a, b], let T0 be its subset where K is zero. Pick ε > 0. By

continuity of K there is δ0 > 0 such that for any t which is at least δ0-close to T0,
Kt < ε

2V (p) , where V (p) is the variation of p in [a, b]. V (p) < ∞ by lemma 10.a5
and by rem. 14.

Let Q be the closed δ0
2 -neighbourhood of T0.If Q is non-empty, it consists of non-

overlapping closed intervals of length of at least δ0/2 > 0. There can be at most
a finite number (n) of those intervals in [a, b]. Consider the complement of Q in
]a, b[, it is a union of at most n+1 disjoint open intervals. Let Z be the set of those
intervals. Since Kt > 0 on the closure of any z ∈ Z (being at least δ0/2 away from
the closest zero), ptKt is absolutely continuous there, so for any z, and any finite
collection of non-overlapping intervals [aj, bj ]j in the closure of z there is δz > 0 such
that

∑

j |pajKaj − pbjKbj | <
ε

4(n+1) whenever
∑

j |aj − bj| < δz. Let δZ = minz δz.

Then for any finite collection of non-overlapping intervals in the closure of [a, b]\Q,

(1)
∑

j

|aj − bj | < δZ ⇒
∑

j

|pajKaj − pbjKbj | <
ε

4

Choose any δ ∈]0,min{δ0/2, δZ}[. Then any finite collection of non-overlapping
intervals of total length less than δ can be partitioned into two groups: those that
intersect Q ([ai, bi]i); and those that do not ([aj , bj ]j , considered above). Since
δ < δ0/2, the intervals of the first group are in the closed δ0-neighbourhood of T0,
and hence B

def
=

∑

i|Kbi ||pai−pbi | <
ε

2V (p)V (p) = ε
2 . Since by cor. 2 Kt is absolutely

continuous, there is δk > 0 such that whenever
∑

i|ai−bi| < δk,
∑

i|Kai−Kbi | <
ε
4P ,

where P < ∞ is the supremum of p in [a, b]. Thus, A
def
= Σi|pai ||Kai − Kbi | <

P ε
4P = ε

4 . Hence if δ is also below δk, we have
∑

i|paiKai − pbiKbi | ≤ A+B = 3
4ε.

Combining with eq. (1) we get the absolute continuity of ptKt on [a, b].
Since St is absolutely continuous, being a Lebesgue primitive, their difference,

mt, is absolutely continuous too.
Next, by lemma 10.a5 ptLt = qtL0 with qt

def
= e−πt+

´

t
0 (R−f ′(kz))dz. So ptKt =

L0qtkt. Since qtkt is the product of two functions that are a.e. differentiable, the
derivative of the firms’ debt is

L0(qt(R− f ′(kt)− π′
t)kt + qt[it −Rkt]) = L0qt[−f ′(kt)kt + it]

where the last equality holds since π′
tkt = 0 by lemma 10.a5.
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Hence, for a.e. t, the difference, m′
t, of the two derivatives, S′

t and (ptKt)′, is
pCt Lt(Ωt − ct) + L0qt(f(kt) − it). If pCt < pt, then no output is transformed into
consumption, and no endowment is transformed into output, hence output equals
investment, so the last summand is zero. The only source of consumption is the en-
dowment, so the first summand is zero as well. Otherwise, by lemma 5.a, pCt = pt,
then m′

t = L0qt[Ωt − ct + f(kt) − it], which is 0 by material balance (feasibility).
Thus, m′

t = 0 a.e. Since mt is absolutely continuous, it is constant. !

Comment 28. Consider all transactions as being paid through individual- or firm-
accounts at a single bank, in the numeraire underlying our price system pt (so
an interest-free money). Think of all those payments being made on the date of
the corresponding physical transfer of goods, and of each account’s balance as a
function of time. Budget balance implies that only the accounts of currently living
consumers or investment firms have a non-zero balance. So the total credit mt

extended by this bank at time t is the sum of the balances of all currently living
agents. But since any transaction credits one account by the same amount it debits
another one, mt is constant over time in equilibrium.

Now we give a necessary condition for m to be non-zero, but only for bge.

Corollary 16. In any bge where kt > 0 and pI = pC = pY ,30

m = 0, i.e., k =
H̃Ξ(r)

r

either (it is a “pure bge”):

r = 0, so, m = L0p0
(

cg( 1η − 1
eη−1 )−

´ 1
0 sEsds+ (Ω− cg)

´ 1
0 sϕsds− kg

)

or (it is a gre):

where H̃ is as defined in notation 5.1 and Ξ is as defined in cor. 13.

Proof. By cor. 15 a bge with r = 0 is a gre. H̃Ξ(r)
r

is well-defined for all r by
lemma 27. By cor. 13 k, y are constant, and Et,s = Es, c!t,s = c!s . By cor. 13.3,
Ltpt = p0L0ert. Then, by the def. 4, and using lemma 14 along with the definition
of Ξs

def
= Es + (f(k)− kf ′(k))ϕs,

m = p0L0

[

ˆ t

t−1

ˆ t−x

0
er(x+s)

[

Ξs − c!s
]

dsdx− ertkt
]

(1)

By lemma 14 the integrand is locally integrable, so by Fubini, the first summand
in the brackets is

´ 1
0

´ t−s
t−1 er(x+s)[Ξs − c!s ]dxds and if r #= 0 it becomes ert

r

´ 1
0 (1 −

ers−r)[Ξs − c!s ]ds. Since
´ 1
0 ers[Ξs − c!s ]ds = 0 (the value of accumulated savings is

zero at death), this term simplifies to

ert

r

ˆ 1

0

[

Ξs − c!s
]

ds =
ert

r

(

ˆ 1

0
Ξsds− c

)

where by sect. 2.5.2, c =
´ 1
0 c!s ds and by cor. 13.e, c = #(r)

´ 1
0 ersΞxds.

So, for the case r #= 0, using the definition of H̃h, notation 5.1, we get

m = L0p0e
rt
( H̃Ξ(r)

r
− k

)

= 0

where the last equality is by cor. 13.2.
Remains to deal with the case r = 0 (gre). The double integral in equation

(1) is simply
´ 1
0 (1 − s)[Ξs − c!s ]ds. Next, using also comment 21, c!x+s,s = c!s =

30In particular, in any bge of the models in cor. 12.d-e, see remark 23.
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Be−s(σr+η). By cor. 15, N g = cg and Dg = Φ(−η), so c!s = e−ηs

Φ(−η) c
g. Substituting

this into eq. (1), and then using material balance,
´ 1
0 Ξ

g

sds = cg,

m = L0p0
(

ˆ 1

0
(1− s)

[

Ξg

s −
e−ηs

Φ(−η)
cg
]

ds− kg

)

= L0p0
( cg

Φ(−η)

( 1

−η
e−η −

ˆ 1

0

1

−η
e−ηsds

)

−

ˆ 1

0
sΞg

sds− kg

)

= L0p0
(

cg(
1

η
−

1

eη − 1
)−

ˆ 1

0
sEsds+ (Ω− cg)

ˆ 1

0
sϕsds− kg

)

!

Remark 29. With zero transfers, the first case yields the curve in fig. 1–4, and the
second, the vertical.

Remark 30. The two cases described in cor. 16 correspond to Gale’s (1973) di-
chotomy between “balanced” (where m = 0) and “golden rule” equilibria (where m
is typically non-zero). Also, whether m in the second alternative is positive or nega-
tive determines whether the model is “Samuelson” or “classical” in his terminology.31

7. Finiteness and Parity of bge

Notation 7.1. For h ∈ L1( ), ah
def
= inf Supp(htdt) ∈ (= inf{x |

´ x
−∞ htdt #= 0}).

Definition 5. q : → converges exponentially at rate almost z (to a limit) if it
converges exponentially at rate higher than z − ε for any ε > 0, and not at rate z.

Lemma 15. Assume f ′(0) = ∞. For h ∈ L1([0, 1])

(a) If ah ≥ σ, limk→0 H̃h(R− f ′(k)) =
´ 1
0 hsds. The convergence is exponential

in r = R− f ′(k) if ah > σ.
(b) If ah < σ and if there is b > ah such that, a.e. on [ah, b], h does not change

sign, then limk→0 H̃h(R− f ′(k)) equals −∞ if that sign is positive and +∞
otherwise. The convergence is exponential in r at rate almost min{σ, 1}−ah.

Proof. Since f ′(0) = ∞, by definition of H̃h (notation 5.1), its limit as k → 0 is

limr→−∞(
´

hsds−#(r)
´ 1
ah

ershsds) =
´ 1
0 hsds− limr→−∞ #(r)

´ 1
ah

ershsds.

(a): The statement is equivalent to limr→−∞ #(r)
´ 1
a ershsds = 0, with exponen-

tial convergence. Hence, first, by the dominated convergence theorem it suffices to
show, that, for σ < s < 1, #(r)ers is bounded uniformly in (r, s) and converges
a.e. to 0 as r → −∞. #(r)ers = −er(s−σ)−η 1−erσ+η

1−er(1−σ)−η

r(1−σ)−η
−rσ−η . The last ratio is

bounded by |1 − 1
σ |+ 1 for r sufficiently small and the middle ratio is bounded by

2. The first term is bounded, |er(s−σ)−η| ≤ e−η for r ≤ 0 and converges to 0.

Convergence is exponential, since, by a similar calculation, limr→−∞ #(r)
´ 1
ah
esrhsds

≤ 1−σ
σ limr→−∞ e(ah−σ)rgh, where gh

def
=
´ ah+ε
ah

|hs|ds for some ε > 0.

(b): It suffices to prove that if h is positive on [ah, b] then limr→−∞ #(r)
´ 1
ah

ershsds
= +∞, since if h is negative on [ah, b], one can use the same argument for −h.

Choose b < min{σ, 1}, and take v : a < v < b. Since r ≤ 0, shifting the
whole mass Zv

def
=
´ v
0 hsds > 0 on [a, v] to {v} yields

´ v
0 e

srh(s)ds ≥ evrZv. And,
since hs is positive on [v, b], for sufficiently small r ≤ 0,

´ 1
ve

rshsds ≥ 0 and so
´ 1
ah
ershsds ≥ ervZv.

31In our graphs, values of α corresponding to a point on the gre vertical lying above (below)
the curve correspond to a “classical” (“Samuelson”) model.
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Next, if σ < 1, #(r) = −e−rσ−η r(1−σ)−η
−rσ−η

1−erσ+η

1−er(1−σ)−η . The last ratio converges to

1, and r(1−σ)−η
−rσ−η → − 1−σ

σ . Hence as v < σ,

(1) lim
r→−∞

#(r)

ˆ 1

ah

esrhsds ≥ Zv
1− σ

σ
lim

r→−∞
er(v−σ)−η = +∞

Similarly #(r) = e−r r(1−σ)−η
−rσ−η

1−erσ+η

1−er(σ−1)+η , so, if σ > 1,

(2) lim
r→−∞

#(r)

ˆ 1

ah

esrhsds ≥ Zv
σ − 1

σ
lim

r→−∞
e(v−1)r = +∞

For the rate of convergence note that the above inequalities hold for v arbitrarily
close to ah (only Zv > 0 is needed). On the other hand,

´ v
ah
esrh(s)ds ≤ eahrZv; so,

for sufficiently low r ≤ 0,
´ 1
ah
esrh(s)ds ≤ 2eahrZb. Thus:

lim
r→−∞

#(r)

ˆ 1

ah

esrhsds ≤ 2Zb
1− σ

σ
lim

r→−∞
er(ah−σ)−η, if σ < 1

lim
r→−∞

#(r)

ˆ 1

ah

esrhsds ≤ 2Zb
σ − 1

σ
lim

r→−∞
e(ah−1)r, if σ > 1 !

Assumption 5. limk→0
ln(f(k)−kf ′(k))

f ′(k) = 0.32

Lemma 16. If f(0) = 0, ass. 5 is equivalent to each of the 2 following properties:

(a) ∀θ > 0, [f(k)− kf ′(k)]eθf
′(k) −−→

k→0
∞;

(b) ∀θ > 0, lim infk→0[f(k)− kf ′(k)]eθf
′(k) > 0;

Under ass. 5, if hk converges exponentially in |r| to ∞ at rate almost θ > 0 when
k → 0, so does [f(k)− kf ′(k)]hk.

Proof. b ⇒ ass. 5: Passing to logarithms, we have ∀θ > 0, ∃kθ, ∃M : ∀k ≤ kθ, θf ′
k +

ln(fk − kf ′
k) ≥ M . Since f(0) = 0, ln(fk − kf ′

k) → −∞, so θf ′

k

|ln(fk−kf ′

k)|
− 1 ≥ − 1

2 if

k ≤ kθ and |ln(fk−kf ′
k)| ≥ 2M . So, lim infk→0

f ′

k

|ln(fk−kf ′

k)|
≥ 1

2θ , ∀θ > 0, thus ass. 5.

ass. 5 ⇒ a: Since f(0) = 0, ln(fk − kf ′
k) → −∞, so < 0 for k sufficiently small.

Thus, since f ′(k) > 0 for k sufficiently small, ass. 5 implies ∀M∃k0 : ∀k ≤ k0, |ln(fk−
kf ′

k)| ≥ M and f ′
k ≥ M |ln(fk − kf ′

k)|. So ln
(

[f(k) − kf ′(k)]eθf
′(k)

)

= θf ′(k) −
|ln[f(k)− kf ′(k)]| ≥ (Mθ − 1)|ln[f(k)− kf ′(k)]|, which goes to ∞ when M ≥ 2

θ .
a⇒b trivially.
Ass. 5 implies f ′(0) = ∞ if f(0) = 0. Now r = R− f ′

k, so when k → 0, |r| → ∞,
and eθf

′

k in a equals eθ|r| up to a constant factor. ∀ε > 0 and for k sufficiently
large, by assumption hk ≥ e(θ−ε)|r| and, by a, (fk−kf ′

k)e
ε|r| > 1, so (fk−kf ′

k)hk ≥
e(θ−2ε)|r|. And since fk − kf ′

k → 0, clearly (fk − kf ′
k)hk ≤ eθ|r| for k large. !

Corollary 17. Assume aϕ < σ, f(0) = 0, and ass. 5. Then

lim
k→0

[f(k)− kf ′(k)]H̃ϕ(r) = −∞

The convergence is exponential in r at rate almost min{1, σ} − aϕ.

Proof. Note that ass. 5 and f(0) = 0 implies f ′(0) = ∞. Use then lemma 15.b and
the last statement of lemma 16. !

Theorem 3. Assume f is analytic on ++, f(0) = 0 and ass. 5 is satisfied. The
number of bge of the basic model, as well as that of the general model with ω = 0,
is finite, except possibly in cases a and c below when there exists no appropriate

32This includes the classical Cobb-Douglas case.
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ε. More precisely, let N be the number of positive roots (counting multiplicities)
of the equilibrium equation G(k)

def
= H̃Ξ(r) − kr. Then

(a) If σ ≤ min{aϕ, aE}, N is even if Ω < 0 and odd if Ω > 0, or if Ω = 0 and
either σ #= aE or Es ≤ 0 on [σ, σ + ε].

(b) If aϕ < min{aE, σ}, N is even.
(c) If aE ≤ aϕ and aE < σ then N is even (resp., odd) if ∃ε > 0 s.t. Es ≥ 0

(resp., Es ≤ −εϕs) a.e. on [aE , aE + ε].

Comment 31. The case Es ≤ −εϕs, which plays a rôle only if aE = aϕ (else it boils
down to Es ≤ 0), may seem non-generic. But models where taxing starts when
working does, with tax at least an ε-fraction of income, are not that implausible.

Proof. Since the assumptions imply f ′(0) = ∞, bge correspond, by rem. 23 and
cor. 13, to the positive solutions of G(k) = H̃E(r)+ (fk− kf ′

k)H̃ϕ(r)− kr = 0 where
also N ≥ 0. Since f is (real-)analytic on ++, and so are H̃E and H̃ϕ by lemma
27, thus G(k) is real-analytic on ++ as well.

As k → ∞, r = R− f ′
k → R− f ′

∞ > 0 by ass. 4. Since H̃h(R− f ′
∞) is finite and

since limk→∞
fk
k − f ′

k = f ′
∞ − f ′

∞ = 0, limk→∞
G(k)
k = f ′

∞ − R < 0, and G is not
identically zero. Thus its set of positive roots is discrete, and bounded, and the
multiplicity of each root is well-defined and finite.

So to prove finiteness, suffices to show that 0 is not a limit point of a sequence of
roots. We will thus evaluate the sign of G as k approaches zero. If the sign is nega-
tive (resp., positive), the number of roots counting multiplicities is even (resp., odd).

Note that r −−→
k→0

−∞ since f ′
0 = ∞, and kr = kR− kf ′

k −−→
k→0

0 since kf ′
k −−→

k→0
0.

a: If σ ≤ min{aE , aϕ} then by lemma 15.a, H̃E converges to Ω while the other
two terms [ (fk − kf ′

k)H̃ϕ and −kr ] converge to zero. Hence if Ω #= 0 the sign of G
is that of Ω. If Ω = 0, assume first σ < aE . Then the first term in G, H̃E , converges
exponentially (in r) to 0 by lemma 15.a, and H̃ϕ converges to 1, so the sum of the
last 2 terms, which are positive, is of the order of fk − kf ′

k − k(R− f ′
k) = fk −Rk,

i.e., of the order of fk since f ′
0 = ∞. Suffices thus to show that fk converges slower

than exponentially (in r) to 0, i.e., that fkeεf
′

k → ∞ ∀ε > 0, which is by lemma

16.a. Finally, if σ = aE ≤ aϕ, the first term is −#(r)
´ 1
σ ersEsds, it converges

exponentially to zero by lemma 15.a, and because r < 0, when E ≤ 0 on [σ, σ + ε],
it yields a positive term on that interval. Thus, since the other 2 terms are positive,
the argument is the same as in the previous case.

b: If aϕ < σ ≤ aE , then H̃E(r) −−−→
r→−∞

Ω by lemma 15.a, (fk − kf ′
k)H̃ϕ(r)

converges to −∞ (by cor. 17), and kr → 0 (cf. supra), so G is negative.
If aϕ < aE < σ then by cor. 17 (fk − kf ′

k)H̃ϕ(r) converges to −∞ exponentially
at rate almost min{σ, 1} − aϕ, which is higher than the rate (min{σ, 1} − aE) of
convergence of H̃E (to ±∞) by lemma 15.b, hence G is negative (since −kr ≤ ε|r|).

c: Let b = aE + ε. If aE < σ ≤ aϕ, then by lemma 15.a, (fk − kf ′
k)H̃ϕ(r) con-

verges to zero with fk − kf ′
k, and by lemma 15.b H̃E converges to ±∞ depending

on the sign of E on [aE , b], so the sign of G is the opposite of that one.
If aE ≤ aϕ < σ and E is positive on [aE , b], then H̃E and H̃ϕ converge to −∞

and G is negative. If aE < aϕ < σ and E is negative on [aE , b], then H̃E converges
faster (at rate almost min{σ, 1} − aE) than (fk − kf ′

k)H̃ϕ(r), by cor. 17, hence G is
positive. So we get the same conclusion as in the previous paragraph.

And if aE = aϕ < σ with Es ≤ −εϕs, then for any k > 0 s.t. fk − kf ′
k < ε/2,

Ξs = Es+(fk−kf ′
k)ϕs ≤ − ε

2ϕs on [aE , b]. So G has the sign of ϕ on [aϕ, b], > 0. !



36 J.-F. MERTENS AND A. RUBINCHIK

Corollary 18. Assume f is analytic on ++, f(0) = 0 and ass. 5 is satisfied. If,
in addition, E ≥ 0, then the number of bge, counting multiplicities, is odd iff
σ ≤ min{aϕ, aE}, else even.

Proof. By thm. 3, since for E ≥ 0, N ≥ 0, so N is the number of bge. !

Comment 32. The number of stationary equilibria is finite in the discrete time
exchange models of the literature ([15],[13]) as well. However when the time is
truncated at zero, it is claimed to be even, and at least two ([15],[3]), in contrast
to our results.

Similarly [2, prop. 3 and thm. 2] imply that there always exists a pure bge in
case of Cobb-Douglas production technology and no transfers, thus contradicting
our graph 3 exhibiting an economy that has only a gre for all values of α. The
graph, in turn, illustrates cor. 18.

Cor. 18 complements the claim in [14] about existence and uniqueness of pure
bge when σ ≥ 1 (≥ min{aϕ, aE}) and when there are no transfers.

Comment 33. If, with stationary endowments, there are non-bge equilibria, then
they form a continuum, by shift invariance.

8. Conclusions

We think of this model as a template for how to do policy analysis in a mostly
analytical way. Policy here is expressed in terms of transfers (endowments), i.e., of
their distribution across age-groups at each instant of time. We rely only on the
most standard definition of general equilibrium, i.e., optimisation by agents, with-
out any ad-hoc assumption, like forcing equilibrium variables to belong to specific
spaces, or to be non-zero. Our equilibrium characterisation suffices for the proof in
[19] of the validity of comparative statics (i.e., no indeterminacy) in this model.

Not all classical results extend, for example, the parity of bge depends on the
relative magnitude of the minimal working and tax ages, and the intertemporal
elasticity of substitution.

Several open questions still remain. First, do there (generically) exist equilibria
with stationary transfers that are not bge? Do they all converge to some bge
at +∞ and −∞? If so, what is the directed graph induced among bge? Next,
what is a complete characterisation of equilibria of the general model, where some
irreversibility constraints might be binding? Tackling this question is a prerequisite
for handling the several-commodity model of [21]. Finally, is there a generalisation
of Gale’s dichotomy to all equilibria (with non-stationary endowments), e.g., is
Pareto implied by non-zero net assets? The last question is partially answered in
[18]: the gre is Pareto in this model.

Appendix A. Aggregation of demand

To aggregate consumption the classic integration of correspondences [1, 8] does not ap-
ply, as consumption bundles are equivalence classes of arbitrary +-valued Lebesgue-meas-
urable functions, so do not lie in any vector space. We use the following very close analog.

Notation A.1. Let M (or M to denote the domain) be the set of all equivalence classes
of arbitrary +-valued Lebesgue-measurable functions with the topology of convergence
in measure on all compact sets, for any fixed distance on +.

The topology is independent of the distance, and is Polish, so the usual measurable
selection theorems hold.

Definition 6. Given a measurable space (X,X , µ), the integral of a measurable M-valued
function x !→ Fx is the unique point G in M s.t. ∀p ∈ M,

´

p(t)G(t)dt =
˜

p(t)Fx(t)dtµ(dx),
with the usual measure-theoretic convention that 0×∞ = ∞× 0 = 0.
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The integral of a measurable M-valued correspondence with a.e. well-defined and non-
empty values is the set of integrals of all its measurable (a.e.)-selections.

To prove the above is well-defined (and to show how it is used), observe that by Doob’s
[1953] classical martingale argument, there exists for any such F a jointly measurable
function f(x, t) s.t. f(x, ·) ∈ Fx ∀x (use first a homeomorphism of + with [0, 1] to reduce
to the case where supx‖Fx‖∞ ≤ 1). Fubini’s theorem implies then that

´

f(x, t)µ(dx)
satisfies the requirements for G. Uniqueness is obvious.

Conversely, given any jointly measurable -valued function f(x, t), F : x !→ f(x, ·) is
a measurable M-valued map. Indeed, assume first f is bounded; then F is measurable
to L∞ with the weak*-topology, since bounded subsets there are compact metric. But
those bounded subsets are Polish for the topology of convergence in measure on compact
sets, so the Borel structure is the same. For general f , approximate it by the sequence
fn = max{−n,min{f, n}}, n ∈ .

Note finally that, G being well-defined, it suffices to check the equality in the definition
with indicator functions of compact sets for p.

Appendix B. The evaluation of profits

Profits are an economic concept, but not a mathematical concept. Its translation to a
formal concept for the profits of investment firms that can make capital transactions in
continuous time is by no means obvious. The purpose of this appendix is to give a formal
definition of the profits of investment firms, and to motivate it by the economic concept.
Assumption 2, the description of investment firms, is a standing assumption here.

B.1. The “hot potato” example. To illustrate the need of assumption 3.d for the cor-
rect evaluation of profits, consider the following example: (F,F , µ) equals [−1, 1] with
Lebesgue measure; take as endowments ωx,s the negative of what would be the real wages
(i.e., in commodity terms) under the gre with 0 endowments. The “proposed equilibrium”
is the gre, except that pt is doubled for t < 0. Let tn = −1

n+1 (and t0 = −∞); for tn−1 ≤
t < tn, all capital is held and investment is done by the firms f with tn−1 ≤ f < tn (say uni-
formly spread), and for t ≥ 0, by the firms with f ≥ 0. Then all firms make 0 profits, while
on the aggregate they make a big loss (at time 0). Further, the technological constraint
Kf

t ≥ 0 prevents a profitable deviation by any firm. (Using the capital accumulation
equation to depreciate negative holdings of plant and equipment would seem far-fetched.)

The same example could be re-cast with finitely many firms: take 2 firms active before
time 0, exchanging the capital between them at times tn, and a third, active from time 0 on.

Thus we need a reliable way to evaluate profits, that aggregates properly: the equilib-
rium criterion for investment firms is that every coalition of them makes 0 profits on any
bounded interval of time (in particular, every coalition where ess supmax{|tf0 |, |t

f
1 |} < ∞

makes zero profits), and none can make more with production plans having well-defined
profits; so profits of coalitions are fundamental, and must be completely unambiguous. To
“aggregate well” is in particular to ensure this criterion is equivalent to asking the same for
a.e. firm; thus, for any coalition (in F) profits on such an interval from its aggregate activity
must equal the integral of its members’ profits on this interval. Further, there are at least
2 ways to evaluate profits (sect. B.4 and B.6), applicable to different classes of functions.

Definition 7. A formula π(K, I) for profits aggregates well over a plan (Kf, If) if ∀S ∈ F ,
π(
´

S
Kfµ(df),

´

S
Ifµ(df)) =

´

S
π(Kf, If)µ(df).

Notation. M(X) is the space of bounded measures on a measurable space X. B(X) is
the Borel σ-field on a topological space X. εx is the unit mass at point x.

B.2. The variation. Let Va,b(g) = supn supa≤ti−1≤ti≤b

∑n
i=1‖g(ti)− g(ti−1)‖, the varia-

tion of g on [a, b]. g has locally bounded variation if ∀[a, b], Va,b(g) < ∞. V = V−∞,∞. X
has locally integrable variation if ∀[a, b], the upper integral

´ ∗Va,b(X(f, ·))µ(df) < ∞.

Lemma 17. If X(f, t) is jointly measurable on F⊗B( ), then Va,b(X(f, ·)) is measurable.

Proof. Suffices to prove V n(f)
def
= supa≤ti−1≤ti≤b

∑n
i=1|X(f, ti) − X(f, ti−1)| is measu-

rable. Let T = { (ti)
n
i=0 | a ≤ ti−1 ≤ ti ≤ b }, and, for τ ∈ T , Yf,τ =

∑n
i=1|X(f, ti) −
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X(f, ti−1)|. Y is F ⊗ B(T )-measurable, so { f | V n(f) > α } is the projection of {(f, τ ) |
Yf,τ > α } ∈ F ⊗B(T ), hence measurable since F is complete and T compact metric. !

B.3. Transactions and production sets. The most standard concept of profits is that
of the value of net output under the price system. We need thus the cumulative net volume
of capital sales Ht for a production plan (Kt, It). It is indeed dHt that represents the cor-
responding net output vector of (dated) capital goods. Assume Kt has bounded variation.
If capital is purchased only once at time t0 < t then the capital accumilation equation
(cor. 2) becomes eδtKt −

´ t

−∞
eδsIsds = −dHt0e

δt0 (the sign since H represents sales). To
account for purchases at all times t0 < t we integrate w.r.t. −dHt0 , which yields Kt =
e−δt
´ t

−∞
eδs[Isds−dHs], so dHt = Itdt−e−δtd(eδtKt) and Ht =

´ t

−∞
(Is−δKs)ds−Kt.33 So:

Definition 8. Ht
def
=
´ t

0
(Is − δKs)ds−Kt denotes cumulative net sales of capital.

Lemma 18. For It ∈ Lloc
1 (resp., Ift as in ass. 3.a), Ht (resp., Hf

t ) has locally bounded
(resp., locally integrable) variation iff Kt (resp., Kf

t ) does.

Proof. By rem. 4, Ifs − δKf
s is a.e. in Lloc

1 , and by ass. 3.a, it is locally jointly integrable,
so its primitive has resp. locally bounded and locally integrable variation. !

Comment 34. For a feasible plan, let K =
´

Kfµ(df), and similarly for I and H . Then H
must be constant, since no other sector buys or sells capital. The equation in def. 8 yields
then the capital accumulation equation.

The production set Zf of an investment firm f is its set of feasible outputs of dated
goods: capital stock sold dHt, capital services sold Kt, and investment bought It.34

Since traditionally the aggregate production set Z is defined as the integral of the cor-
respondence f !→ Zf , we still need to specify a space embedding the Zf . This needs some
care, to ensure that Z satisfies ass. 1.35

Definition 9. (a) For N ∈ , let pN(I)
def
= ‖I [−N,N]‖1, pN(K)

def
= V (K [−N,N]). P

is the locally convex space { (H,K,−I) | Ht =
´ t

0(Is − δKs)ds−Kt, ∀N, pN (I) <
∞, pN(K) < ∞, kt bounded }, with the pN (I), pN (K), and ‖k‖L1(ν) (ν ∈ M( ))
as family of semi-norms, indexed by N and ν, and with kt as defined in sect. 2.5.2.

(b) For f ∈ F , the production set Zf
def
= { (H,K,−I) ∈ P | Kt ≥ 0, Kt = It =

0 for t /∈ [tf0 , t
f
1 ] }. The aggregate production set Z

def
=
´

Zfµ(df), with P -valued
integrals understood as Bochner integrals.

Remark 35. Endowing H with the same topology as K, one sees that H is a continuous
linear function of (I,K). Further, Kt = −Ht+e−δt

´ t

0
eδs(Is−δHs)ds shows that also K is a

33Alternatively, by rem. 4, It − δKt is in Lloc
1 , and, if there are no intervening sales, Kt is

locally absolutely continuous and a.e. differentiable with It − δKt as derivative, by cor. 2, so
that Kb − Ka =

´ b
a
(It − δKt)dt: It − δKt is net investment. Therefore, Kt + Ht, which is the

total amount of capital accumulated by the firm up to time t, including capital already sold and
excluding capital bought, must equal its total past net investment,

´ t(Is − δKs)ds.
34In principle one could equivalently forbid capital transactions; firms would then at the be-

ginning of their life-time build up capital stock by buying investment, and at the end deplete it by
disinvesting and selling the investment good. But in the absence of a market for capital there can
be no price for capital, so all prices would be prices of flows, and hence only equivalence classes of
measurable functions, making the whole language a bit more cumbersome and less transparent.
Since further this trick of transferring capital to another firm by disinvesting it and selling the
investment good is quite artificial and unappealing, we chose the present formulation.

35Indeed, the initial condition is a technological restriction (“how much coal was initially in
the ground”), so it has to be reflected in the production sets. And it is naturally in Z that
it has to appear (and not as a time-dependent restriction on how much capital can be used in
instantaneous production). Since obviously it has no counterpart in the Zf , which have compact
support, it must be implied by the aggreation procedure., i.e., by the concept of integral—and
thus ultimately by the choice of the embedding space and its topology. Thus, using a classical
approach of integrating firms’ production sets makes the treatment a bit more technical (adding
the boundedness requirement on the kt, and the semi-norms ‖k‖L1(ν), and thus leaving the realm
of Fréchet spaces), and hides behind abstract definitions of spaces what is now a very clear and
explicit economic assumption, the initial condition.
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continuous linear function of (I,H). Finally, H+K lies in the closed subspace of absolutely
continuous finctions; on this closed subspace, I is a continuous linear function of (H,K).

Remark 36. Recall, a function f with values in a locally convex space E is Bochner inte-
grable iff f takes values a.e. in some separable subspace of E, ϕ◦f is measurable ∀ϕ in the
dual E′, and the upper integral

´ ∗(p◦f) < ∞ for each p in a sub-basis of semi-norms for E.
The same holds then for any continuous semi-norm on E, and

´

f is defined in the algebraic
dual of E′ by ϕ ◦

´

f =
´

(ϕ ◦ f) ∀ϕ ∈ E′. If E is complete,
´

f ∈ E.36

Thus, to justify the above definition, we must prove P is complete.

Lemma 19. P is a complete locally convex space.

Proof. P being essentially the product of its I and K factors, separate proofs suffice.
For I , this is the space Lloc

1 , and results immediately from L1 being a Banach space.
For K, since pN is stronger than the sup[−N,N] norm, a Cauchy net kα converges locally

uniformly, hence pointwise, say to k. Then pN (kα − k) → 0 follows from the implication
yα → y pointwise ⇒ V (y) ≤ lim inf V (yα).

We now prove that k is bounded. Else, up to a sign change, ∀n∃tn : k(tn) ≥ 2n. Let
then νn =

∑
i<n 2−nεtn : since νn has bounded support, K !→

´

kdνn is a linear func-
tional φνn on P dominated by some pN , thus, by the above, φνn(kα) → φνn(k). But
νn ≤ ν∞ implies that, since kα is Cauchy in ‖·‖L1(ν∞), the kα are bounded and converge
uniformly on the νn: their pointwise limit φνn(k) is also bounded on the νn, contradicting
φνn(k) ≥

∑
i<n 2−n2n = n. So k is bounded. Hence, having locally bounded variation, it

corresponds to a point in P . Remains to show that ‖kα − k‖L1(ν) → 0 ∀ν ∈ M( ).
Repeating the previous argument with νN the restriction of ν to [−N,N ] shows that

φνN (kα) → φνN (k) uniformly in N . And since the kα and k are bounded, limN φνN (kα)
=
´

kα(t)ν(dt)
def
= φν(kα), and the same for k. Thus φν(kα) → φν(k) ∀ν ∈ M( ). In par-

ticular,
´

kα(t)f(t)ν(dt) →
´

k(t)f(t)ν(dt) ∀f ∈ L∞(ν). But the kα are uniformly Cauchy
on the unit ball of L∞(ν), so the convergence is uniform: kα → k in L1(ν). !

Lemma 20. A subspace of P is contained in a separable subspace iff the K’s are all
dominated by a single measure—i.e., all discontinuities fall into a single countable set,
and the measures represented by the continuous parts belong to some fixed Lloc

1 (ν) space.

Proof. Separability of Lloc
1 results from that of L1, hence I components are always sep-

arable. For K, given a dense sequence one constructs immediately the countable set of
discontinuities, and then, from the continuous parts, (locally) the dominating measure
ν. Conversely, any such subspace is separable—again the separability of Lloc

1 (ν) for the
continuous parts, and basically of l1 for the rest. !

Lemma 21. f !→ Kf
t ≥ 0 is Bochner-integrable iff it is measurable for each fixed t, separa-

bly valued (cf. lemma 20), has locally integrable variation, and t !→
´

kf
t µ(df) and each kf

t

are bounded. Kf
t is then F ⊗B( )-measurable, so pN (Kf ) and ‖kf‖L1(ν) are measurable.

Proof. Necessity: evaluation at t is a continuous linear functional, separability is by
lemma 20, boundedness is because k’s in P are bounded, and by lemma 19, implying
that

´

Kf
t µ(df) ∈ P , and the variation is locally integrable by definition.

F⊗B( )-measurability: Since Kf
t has locally bounded variation, it can be decomposed

into its right-continuous regularisation, which is F⊗B( )-measurable, and the difference,
which is non-null only at countably many tn (lemma 20), and clearly F-measurable at
each tn; hence the F ⊗B( )-measurability of Kf

t , so pN(Kf ) is measurable by lemma 17.
Sufficiency: For the measurability of any continuous linear functional φ, let φn(k) =

φ(k [−n,n]): since φn → φ pointwise, suffices to prove measurability of φn. Note that, on
our separable subspace, φn(h) has the form

´

hdν+
´

δ
gdh (cf. fn. 38), for some ν ∈ M( )

and a bounded Borel function g with compact support on δ, because by separability,
all measures dh fall into some L1 space on δ ∩ [−n, n], so continuous linear functionals
are represented by a bounded Borel function g. The measurability follows then, by first
approximating g as an a.e. limit of a uniformly bounded sequence of continuous functions

36The proof of [12, thm. 8.14.14 p. 570] holds also in abstract measure theory.
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with compact support on δ, then noting that, δ being totally disconnected, such a
continuous function is a limit of continuous simple functions: this reduces the problem
to the case where g is the indicator of a clopen set in δ, i.e., a finite union of compact
open intervals ]a2i, a2i+1[ in δ (ai < ai+1 ∈ ); for such an interval ]a, b[, the integral
of gdh is simply h(b) − h(a). Hence the measurability. Integrability of the pN follows
from its measurability and the locally integrable variation. As to that of the ‖kf‖L1(ν),
‖kf‖L1(ν) =

´

kf
t |ν|(dt), so

´

‖kf‖L1(ν)µ(df) =
˜

kf
t µ(df)|ν|(dt) by Fubini’s theorem (joint

measurability of Kf
t ), ≤ ‖ν‖ supt kt < ∞ by the boundedness of the integral k. !

The Bochner integral—the most restrictive—was chosen because it is the most classical,
and in order to give as safe aggregation as possible. We first prove that it is indeed suf-
ficient: that the implied allocations—the integrable selections from Zf—do satisfy ass. 3
and that Kf

t has locally integrable variation. And next, that this restrictive approach
entails no hidden restriction on aggregates: Z = { (H,K,−I) ∈ P | K ≥ 0 }.

Proposition 2. For Bochner-integrable (Hf
t ,K

f
t ,−Ift ) ∈ Zf , Ift has a F ⊗ B( )-meas-

urable version (choosing 1 point in the equivalence class ∀f) s.t.
´

Ift µ(df) exists for all t.
For any such version (even only dµ×dλ-measurable),

´

Ift µ(df) is a version of the integral,
ass. 3 holds, Kf

t is F ⊗ B( )-measurable and has locally integrable variation, and, with
K

def
=
´

Kfµ(df), Kt− =
´

Kf
t−µ(df) ∀t, and the same at t+ and t, and ass. 1 holds.

Proof. Denote the integral by (H,K,−I). By Doob’s [1953] classical martingale argument,
Ift has a jointly measurable version. Modify this s.t. Ift = 0 ∀t /∈ [tf0 , t

f
1 ]. Ift is then locally

in t jointly integrable, since the integral of a norm is finite for a Bochner integral. Thus
for a.e. t Ift is integrable w.r.t. f . Let Ift = 0 identically for the other t: now It =

´

Ift µ(df)
exists for all t, and is, by the local joint integrability, a version of the integral.

Kf
t is F⊗B( )-measurable and has locally integrable variation by lemma 21. A fortiori

it is also locally in t jointly integrable, since it is jointly measurable and its sup-norm on
[−N,N ] is integrable. Finally Kt =

´

Kf
t µ(df) ∀t, since evaluation at t is a continuous

linear functional. And since Kf
t ∈ Zf , Kf

t ≥ 0 and Kf
t = 0 ∀t /∈ [tf0 , t

f
1 ]: ass. 3.a–c hold.

Def. 8 yields then a correct version of H ; and the last point (which implies ass. 3.d) fol-
lows because, ∀t, K !→ Kt− and K !→ Kt+ are continuous linear functions on P : they exist,
since K ∈ P has locally bounded variation, and are then continuous since sup[−N,N]|Kt| ≤
pN(K). And ass. 1 is by ass. 4, k being bounded [12, thm. 8.14.14 p. 570]. !

Proposition 3. Z = { (H,K,−I) ∈ P | K ≥ 0 }. More precisely, ∀(H,K,−I) ∈ P , K ≥
0, ∃(Hf , Kf ,−If ) ∈ Zf with (H,K,−I) as Bochner integral s.t. Ift is measurable for the
product of F with the Lebesgue-measurable sets and s.t. ∀t It ∈ L1(µ) and

´

Ift µ(df) = It.
Further, the (Hf ,Kf ) can all be chosen absolutely continuous w.r.t. (H,K), with non-

negative densities, except for possible additional jumps in a fixed locally finite set D.

Proof. Inclusion ⊆ is by [12, thm. 8.14.14 p. 570].
Let first D0 = { t | µ(Gt+ ∩ Gt−) = 0 }. D0 is locally finite by ass. 2.c, thus so is

D1 = D0 ∪ . Let On enumerate the bounded, open intervals of "D1. By ass. 2.c, at the
boundary points a, b of On there exists ε > 0 s.t. a positive mass of firms are alive on
[a, a+ ε], similarly for [b− ε, b]. And by definition of D0, at any point t of On there exists
εt > 0 s.t. a positive mass of firms are alive on [t − εt, t + εt]. Thus, by compactness of
[a, b], there exists εn > 0 s.t. a positive mass of firms are alive on every subinterval of [a, b]
of length εn. Let now kn = 2ln2(ε−1

n )3, and D = D1 ∪
⋃

n{ i2
−kn ∈ On | i ∈ }. D is still

locally finite, and for any 2 successive points a, b ∈ D, µ{ f | tf0 ≤ a, tf1 ≥ b } > 0.
Let now T (f) = min{ t ∈ D | t ≥ tf0 }, S(f) = max{ t ∈ D | t ≤ tf1 }, F0 = { f | Tf <

Sf } ∈ F . Thus, on F0, tf0 ≤ Tf < Sf ≤ tf1 ; so if we replace F by F0, tf0 by Tf and tf1
by Sf , the new model still satisfies ass. 2 — point c because for any 2 successive points
a, b ∈ D, tf0 ≤ a ⇒ Tf ≤ a and tf1 ≥ b ⇒ Sf ≥ b, so µ{ f | Tf ≤ a, Sf ≥ b } > 0. Now tf0
and tf1 take values in the locally finite set D, and clearly a solution (Hf ,Kf ,−If ) for the
new model will also be one for the original model when setting (Hf ,Kf ,−If ) = 0 on "F0.

Thus we may assume in addition that tf0 and tf1 take values in a locally finite set D.
Let Jt = Gt+

[cf. ass. 2.c, Jf
t = [tf0 ,t

f
1 [(t)]: Jt is càdlàg (right-continuous with left-

hand limits) and has locally integrable variation by ass. 2.b since ∀f, V (Jf ) ≤ 2. So, by
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the dominated convergence theorem and ass. 2.b, mt = µ(Gt+) =
´

Jf
t µ(df) is càdlàg too,

and clearly has locally bounded variation. Since mt is locally bounded away from 0 by
ass. 2.c, 1/mt has locally bounded variation too, and so does Kt by definition. Thus Kf

t =
KtJ

f
t /mt has locally integrable variation too (decompose locally Kt/mt as a difference of 2

positive increasing functions, and Jf
t as a difference of 2 positive, increasing and integrable

processes). Thus each Kf ∈ Zf , having compact support. Further mt and Jt are pure
jump processes, with jumps only in the locally finite set D. Add to D the countable set
of jumps of the function Kt: now all discontinuities of Kf

t are in the countable set D, and
the continuous part is absolutely continuous w.r.t. the continuous part of the function Kt.
Thus Kf

t is separably-valued, by lemma 20: by lemma 21, Kf is indeed Bochner-integrable.
Let similarly Ift = ItJ

f
t /mt. Local joint integrability follows because mt is locally

bounded away from 0, and the rest is then obvious. !

B.4. Transactions-based evaluation of profits. Profits equal proceeds from sales (the
sum of capital sales dHt multiplied by their prices pt), minus expenditure on investment
plus rent of capital:

´

ptdHt −
´

pIt Itdt+
´

rtKtdt.

Comment 37. Here the integral w.r.t. dHt is really an integral w.r.t. a measure: even if at
some t, Ht−, Ht and Ht+ are all different (say Ht−Ht− represents the sales at time t whose
object is, on the transaction date, already registered in the name of the buyer, and Ht+−Ht

those where it was still registered in the name of the seller), all those transactions occured
on date t (hence valued at the single price pt) — i.e., the mass of dHt at t equals Ht+−Ht− .

The previous formula, with its integrals over , is for a production plan with bounded
support, say ∈ Zf . To compute the profits on a bounded interval J of an ongoing produc-
tion plan, say in Z, one must enter the thought experiment that right before the beginning
of J , say a, and right after the end, say b, available capital is sold and then re-bought,
and thus subtract and add to the above the value of capital at those 2 moments. Thus,
pa−

Ka−
if {a} is included in the interval, and pa+Ka+ else, and similarly at b. We obtain

thus for profits on J , if J = [a, b], pb+Kb+− pa−
Ka−

+
´

J
ptdHt −

´

J
pIt Itdt+

´

J
rtKtdt, and

if J = ]a, b[, replace there a− by a+ and b+ by b−, and similarly for [a, b[ and ]a, b]. Here
´

J
has the usual meaning in the sense of the above defined measures.

Definition 10. For a bounded interval J with endpoints a ≤ b, say J = [a, b], let π0
J (K, I)

be the expression pb+Kb+−pa−
Ka−

+
´

J
ptdHt+

´

J
(rtKt−pIt It)dt. If a (resp., b) is excluded

from J , replace a− above by a+ (resp. b+ by b−), and, for ]a, b[, require a < b.
Profits on J are π0

J (K, I) if Ht has locally bounded variation, both integrals and their
sum are well-defined, and either pb+ (resp., pa−

) exists in or Kb+ (resp., Ka−
) is 0.

Lemma 22. Assume (a) Hf
t has locally integrable variation, (b) pt and rtKf

t − pIt I
f
t are

jointly quasi-integrable on J , for µ(df) ⊗ dHf
t and µ(df) ⊗ λ(dt) resp., and the sum of

their integrals is well-defined, (c) Kf
b+ and Kf

a−
are the limit in L1 of Kf

b+ε and Kf
a−ε when

ε↘ 0, (d) either pb+ (resp., pa−
) exists in or Kf

b+
(resp., Kf

a−
) is zero a.e.—and similarly

for non-closed bounded intervals J . Then π0
J aggregates well over (Kf, If ).

Remark 38. The integrability w.r.t. the measure µ(df)⊗dHf
t on the product, rather than

w.r.t. its marginal on t, or even w.r.t. the cumulative t !→
´

V0,t(H(f, ·))µ(df), is essential.
When Hf is Bochner integrable, the latter does suffice. Cf. also cor. 19 below.

Proof. Use Fubini’s theorem. !

Next result relates aggregate profits over intervals to lifetime profits of firms — the
aggregation of the plan which is (H ′,K′,−I ′) on F0 and 0 elsewhere is trivial.

Corollary 19. Assume (H,K,−I) ∈ Z, and profits π0
J (K, I) are well defined and > 0.

Then ∃(H ′, K′,−I ′) ∈ ∩f∈F0Z
f with µ(F0) > 0 and π0 (K′, I ′) well defined and > 0.

Proof. We first increase J a bit, to make sure Kt = It = 0 outside of J . First set I to
0 outside of J . Let a, b be the endpoints of J . If b /∈ J or Kb+ = 0, set Kt = 0 for

t ≥ b, and else choose ε > 0 s.t. pb+ε ∼ pb+, and let Kt = e−R(t−b)Kb+ for t ∈]b, b + ε[,
= 0 for t ≥ b+ ε: computing now profits on J ′ = J∪]b, b+ ε] adds to profits the quantity

Kb+(pb+εe
−Rε−pb+, which is arbitrarily small with ε, plus the non-negative quantity

´ b+ε

b
:
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for ε sufficiently small, the new profits are still > 0. Do the same at a. Now Kt = It = 0
outside of (the new) J — so any larger J can as well be used. In particular, take its closure.

Construct now (Hf ,Kf ,−If ) ∈ Zf as in prop. 3, incuding the ‘further’ clause. Then
the assumptions of lemma 22 are satisfied: Hf

t has locally integrable variation by prop. 2
and lemma 18; pt is µ(df)⊗dHf

t -integrable by the further clause, since the locally finite
set D intersects the bounded interval J in a finite set, and any function is integrable for
a distribution with finite support; the limits like Kf

b+ are trivial and 0. Finally, the quasi-
integrability follows too, since Kf and If are piecewise proportional (with pieces which are
products) to K and I resp., with the same non-negative proportionality factor. Thus prof-
its are well defined, and aggregate to the positive aggregate profits. Finally, this piecewise
aspect implies that f !→ (Kf , If ) is a simple function, so one the values that it takes (on a
set of positive measure) must yield positive profits too. Let (H ′,K′,−I ′) be that value. !

Observe that this approach is one of “transactions-based” accounting: it is the cash-flow
stemming from transactions that is recorded when they occur, and summed.

But the above formulae are pretty cumbersome, and make no sense when Kf
t has

unbounded variation. This is addressed next.

B.5. Integration by parts. Assume we know now further (e.g., by lemma 7) that
pt has locally bounded variation. Then we want to use integration by parts in the
previous formula. To this effect, define the linear functional

ffl b

a
Ktdpt as, for a < b,

(pa+− pa)Ka+ + (pb − pb−)Kb− +
´

]a,b[
Ktdpt, where, at a jump t of pt inside ]a, b[, the

contribution of the jump is counted as (pt − pt−)Kt− + (pt+ − pt)Kt+ . Then, ∀a, b, c,
ffl b

a
+
ffl c

b
+
ffl a

c
= 0 and

ffl b

a
f(G(x))dF (G(x)) =

ffl G(b)

G(a)
f(x)dF (x) ∀G continuous and mono-

tone (weakly increasing or decreasing) — using those formulae to define
ffl b

a
for a ≥ b.

With
ffl b

a
+
ffl c

b
+
ffl a

c
= 0, the above is the right concept to define a primitive F , such as to

have
ffl b

a
= F (b)−F (a).37 To define the corresponding concept of integral over a bounded

interval J , denoted
ffl

J
, we want (cf. lemma 24) continuity w.r.t. monotone sequences of J ,

and additivity (whenever the union of 2 disjoint intervals is an interval). Thus
ffl

]a,b[
has the

usual meaning, except for the treatment of atoms inside ]a, b[, and thus amounts to F (b−)−
F (a+). Let also

ffl

[t,t]
Ktdpt = (pt−pt−)Kt− +(pt+−pt)Kt+ , just like for atoms inside ]a, b[

— i.e., F (t+) − F (t−) — , and let
ffl

]a,b]
=
ffl

]a,b[
+
ffl

[b,b]
,
ffl

[a,b[
=
ffl

[a,a]
+
ffl

]a,b[
, and

ffl

[a,b]
=

ffl

[a,a]
+
ffl

]a,b[
+
ffl

[b,b]
.38 Then the integration by parts formula becomes:

´

[a,b]
ptdKt =

pb+Kb+ − pa−
Ka−

−
ffl

[a,b]
Ktdpt,

´

]a,b]
ptdKt = pb+Kb+ − pa+Ka+ −

ffl

]a,b]
Ktdpt, etc.39

37F has locally bounded variation: decompose both pt and Kt as differences of 2 positive
increasing functions; by bilinearity one can assume both are such. Clearly then F is increasing too.

38One can view
ffl

as a usual integral: view the linear functional
ffl

as linear map from functions
pt of locally bounded variation to Radon measures dpt on the space τ = { t ∈ } ∪ { t− | t ∈

} ∪ { t+ | t ∈ }, τ being ordered in the obvious way (t− < t < t+), and endowed with the
order topology (having the open intervals as basis). τ is locally compact, by standard arguments,
and each singleton {t} is open, and has measure 0 under dpt, so the measure has its support in
the subspace δ (δ for 2, τ for 3) consisting only of the points t− and t+. δ is locally compact,
totally disconnected, and separable, but still the Borel σ-field (equals the Baire σ-field, or that
spanned by the intervals, or the inverse images of Borel sets of modulo a countable set) is not
separable. δ is the Stone-Čech space of the quotient (e.g., identified with the space of càdlàg
functions) of the space bounded functions on converging to 0 at ∞ and having everywhere left-
and right-hand limits (i.e., the Banach space (in the sup-norm) spanned by the indicator functions
of bounded intervals), by the subspace c0( ) of functions whose left- and right-hand limits are 0.

The conditions on Kt in def. 11 are then exactly those needed for a function K on to extend
unambiguously to an equivalence class in Lloc

1 for the Radon measure dpt on δ; and intervals J

in are mapped to their inverse images in δ. Everything extends thus to dpt-measurable sets J .
39Indeed, by linearity, suffices first to consider the case where Kt and pt are increasing, next

one can decompose both into their continuous part and a sum of jumps part, next, neglecting the
tail of the latter, one is reduced to the case where each of Kt and pt is either continuous or a single
jump t≥t0 or t>t0 . Further, since the value of Kt at points of discontinuity plays no rôle in the
formula, we can assume Kt right-continuous, so the integral w.r.t. dKt is a plain Stieltjes integral.
Thus, if pt is continuous, all integrals involved are Stieltjes integrals, and the formula is classical for
this case. Similarly if Kt is continuous, since then

ffl

[t,t]Ktdpt = (pt+−pt−)Kt, so the integral is the
Stieltjes integral that w.r.t. the right-continuous version of pt — and replacing pt by this version
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B.6. Marking to market.

Definition 11. Let pt have locally bounded variation, and Kt be locally integrable for
the continuous part of |dpt|+ λ(dt), and s.t. pt 6= pt+ ⇒ Kt+ exists and pt− 6= pt ⇒ Kt−

exists, and s.t.
∑

t∈J |pt+−pt|Kt++ |pt−pt−|Kt− < ∞. If
´

J
(rtKt−pIt It)dt is well-defined,

profits on a bounded interval J , πJ (K, I),
def
=
ffl

J
Ktdpt +

´

J
[(rt − δpt)Kt + (pt − pIt )It]dt.

In particular, any function Kt that has left- and right hand limits at every point satisfies
this for any p with locally bounded variation.

Lemma 23. πJ (K, I) = π0
J (K, I) whenever both are well-defined, i.e., whenever p and K

both have locally bounded variation, and
´

J
(rtKt − pIt It)dt is well-defined.

Proof. Use first lemma 18 and def. 8, and the fact that pt is a fortiori Lebesgue measurable
and locally bounded, to re-write π0

J (K, I) as pb+Kb+−pa−
Ka−

−
´

J
ptdKt+

´

J
[(rt−δpt)Kt+

(pt−pIt )It]dt. Then use the above integration by parts formula. !

Next lemma localises profits precisely in time:

Lemma 24. If the conditions of def. 11 hold for all bounded intervals J , πJ (K, I) is
well-defined for all bounded Borel sets J , and is a countably additive on them.

Proof. Follows from fn. 38, which implies that
ffl

B
Ktdpt is a measure on the Borel sets of

δ, and that those include the inverse images of all Borel sets of . The other integral in
πJ (K, I) is clearly countably additive w.r.t. J . !

Lemma 25. Assume that Kf
t is µ⊗(|dpt|+ λ(dt))-measurable, that

´

Kf
tµ(df) is, locally

in t, integrable under λ and the continuous part of |dpt|, that pt 6= pt+ ⇒ limε↘0 K
f
t+ε =

Kf
t+ a.e. and in L1 and pt− 6= pt ⇒ limε↘0 K

f
t−ε = Kf

t− a.e. and in L1, and that∑
t∈J |pt+ − pt|K

f
t+ + |pt − pt−|K

f
t− is integrable. If further rtK

f
t − pIt I

f
t is jointly quasi-

integrable on J , then πJ (K
f, If) is a.e. well-defined and aggregates well.

Proof. Profits are well-defined for a.e. firm by def. 11: local integrability of Kf
t in t follows

from the second assumption and Fubini, and since the countable sum of values of capital
is integrable in f , it is finite for a.e. f .

Profits for aggregate K, I are well-defined also by def. 11, since the convergence of Kf
t

at points of price discontinuities are in L1.
The profits aggregate well: the order of integration in the last integral over J in the

formula for profits in def. 11 is interchangeable by the joint quasi-integrability of rtKf
t−pIt I

f
t

and boundedness of pt, J , and local integrability of Kf
t and Ift . The first integral in that

formula can be decomposed, by its definition, into an integral of the discontinuous and
a continiuous part of p. The latter is a regular integral and so joint integrability of Kf

t

allows the use of Fubini. For the first term, it is sufficient to show that
´

Kf
t+

µ(df) = Kt+

and the same for Kt− , but that follows from the convergence in L1 of Kf
t+ε. !

If K has left- and right hand limits, the L1 convergence conditions are equivalent to: for
any monotone sequence tn, limn

´

Kf
tnµ(df) =

´

limnK
f
tnµ(df), or still equivalently, Kf

t is lo-
cally uniformly integrable.40 For a feasible production plan, Kt being continuous and Kf

t ≥
0, this is still equivalent to the more intuitive market clearing:

´

Kf
t−µ(df) =

´

Kf
tµ(df) =

´

Kf
t+µ(df). All conditions are satisfied when K has locally integrable variation.
This formula for profits is on the contrary a form of “marking to market” accounting: the

integral
ffl

J
Ktdpt shows that profits and losses are added daily to the account by adding to

past profits the impact of today’s price-variation on the value of the assets. Transactions at
arbitrage-free prices don’t alter the value of the portfolio, so are immaterial in this system.

does not change the other integral, by continuity of Kt. Remain thus the cases where pt = t≥t0
or pt = t>t0 , and Kt = t≥t1 (by right-continuity), with ti ∈ [a, b]. If t1 *= t0 the formula results
again from the classical formula for Stieltjes integrals, and for t1 = t0 the formulae result from a
straight computation (distinguishing the case where t0 is a boundary point of J from the others).

40Clearly, ass. 3.d is a weakening of this local uniform integrability.
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Comment 39. The more is known about p, the more plans can be evaluated this way. For
example, if pI = p is locally Lipschitz and lemma 10.a4 holds, then any jointly integrable
Kf

t satisfies the assumptions of lemma 25.
Because of this, there is no good reason to require anything more of K in the model

than local joint integrability; as a consequence however, this implies that as long as the
Lipschitz character of p is not proved, the only arbitrage arguments we can use are that
production plans satisfying the stronger assumptions above, would not be profitable.

Comment 40. Even equilibrium prices can have discontinuities and singular parts (as de-
scribed in thm. 1), so one really needs to allow for any pt of locally bounded variation—if
it was continuous, standard integration theory would suffice for the integration by parts.

Comment 41. In applying the above in lemma 7 to obtain the zero-profit conditions on
prices, we use for further strength only the most restrictive production plans, of lemma 22.

Appendix C. Analyticity properties of the bge graph

Lemma 26. For O ⊆ × n open and F : O → analytic, F (x,z)−F (y,z)
x−y

is so too on
{(x, y, z) | (x, z) ∈ O, (y, z) ∈ O}.

Proof. Suffices to prove analyticity at points of the form (x0, x0, z0). Replace F by its

power series around (x0, z0) ∈ O, getting an(z)
(x−x0)

n−(y−x0)
n

(x−x0)−(y−x0)
as a typical term, and

then verify that after division the resulting power series still has positive (e.g., the same)
radius of convergence. !

Lemma 27. For a bounded measure h on [0, 1] let Xh = #(r)
´

esrh(ds), and Hh :
4 →

: (r, R, σ, η) !→
´

h(ds)−Xh

r
. (Hh(r) =

H̃h(r)
r

). Hh is analytic except for poles at (1− σ)r−
η = 2nπi with n 6= 0.

Proof. Xh is analytic except for those poles: for #(r) notice that Φ(z) is entire by lemma
26 and has as only zeros 2nπi with n 6= 0. And

´

esrh(ds) is entire because h has compact
support. Remains thus to prove that H is analytic at any point with r = 0.41 Since
#(0) = 1 and Xh at r = 0 is just

´

h(ds), this follows by lemma 26. !

Appendix D. A lemma of B. Weiss

Next lemma is due to Weiss [B. 23].

Lemma 28. For f, g ≥ 0 Lebesgue-measurable on , if f is not locally integrable at x,
f . g = ∞ a.e. on x+ {g > 0}. So, if f . g < ∞ a.e. and g 6= 0, f is locally integrable.

Proof. Assume f is not locally integrable, say at 0; then ∃ϕ : 0 ≤ ϕ ≤ f , with compact
support, say [0, 1], and s.t.

´ 1

ε
ϕ < ∞ ∀ε > 0, and

´ 1

0
ϕ = ∞. Further g can be minorised

by a positive multiple of the indicator of a compact set K, which can be assumed to lie
in an interval of length 1, and shifted to [−1, 0].

With fn = min{ϕ, n} and In =
´

fn, hn = fn . K is carried by [−1, 1] and ≤ In. Then
‖hn‖∞ ≤ In, thus λ(K)In =

´

hn ≤ 2N + Inλ{x | hn ≥ N} ∀N ≥ 0, so λ{x | hn ≥ N} ≥
λ(K)− 2N

In
. Since In → ∞, 2 ≥ λ{x | h∞ ≥ N} ≥ λ(K), so λ{x | h∞ = ∞} ≥ λ(K).

For x /∈ K, h∞(x) =
´

x−K
ϕ < ∞, since x−K is a compact set disjoint from 0, and ϕ

is locally integrable there. Thus h∞ = ∞ a.e. on K. Since {g > 0} can be approximated
from inside by finite unions of such sets K, the conclusion follows. !
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