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Abstract

This paper discusses the type of dependence induced by the Generalized Additive Mixed
Model (GAMM) approach to regression analysis with correlated data. In this framework,
random effects are added on the same scale as the fixed effects. Dependence between out-
comes is thus generated by their sharing of common/correlated latent variables. In many
cases, this results in strong positive association.
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1 Introduction and Motivation

1.1 GAM’s

Generalized Additive Models (GAM’s) unify regression methods for a variety of discrete and
continuous outcomes; a standard reference for GAM’s is Hastie & Tibshirani (1990).
The basis of GAM’s is the assumption that the data are sampled from a one-parameter
exponential family of distributions. This happens for instance with data conforming to
binomial law, Poisson law, Normal law with a known variance or Gamma law with a known
dispersion parameter. Specifically, consider a single observation y; GAM’s admit a log-
likelihood of the form

!(θ,φ; y) =
yθ − b(θ)

φ
+ c(y,φ) (1.1)

where θ denotes the canonical parameter and φ > 0 is the dispersion parameter (assumed
known). It is easily seen that

µ = E[Y ] = b′(θ) and Var[Y ] = b′′(θ)φ = v(µ)φ (1.2)

where v(·) is called the variance function. A link function relating the mean µ to the linear
predictor is then specified. More precisely, given a vector (x, w) of explanatory variables,
where the components of x = (x1, . . . , xp)t are continuous and those of w are further binary
covariates (coding categorical explanatory variables) and a vector β of regression coefficients,
the additive predictor takes the form

η =
p∑

j=1

fj(xj) + wtβ (1.3)

where f1(·), . . . , fp(·) are unknown smooth functions of the covariates. The score η is then
related to the mean by η = a(µ). The function a(·) is called the link function and the special
case a(µ) = θ is called the canonical link function.

1.2 GAMM’s

Several extensions of GAM’s involve models with random terms in the linear predictor.
Such Generalized Additive Mixed Models (GAMM’s) are useful e.g. for accomodating the
overdispersion for count data and for modeling the dependence in longitudinal studies or the
correlation arising from covariates that are omitted or inadequately measured.

Given an unobserved vector of random effects (Λi = (Λi1,Λi2 . . .Λini), say), the ni ob-
servations Yi1, Yi2, . . . , Yini relating to the ith subject are assumed to be conditionally inde-
pendent with means that depend on the linear predictor through a specified link function
and conditional variances that are specified by a variance function, and a scale factor, in the
spirit of (1.1)-(1.2)-(1.3).

Assume now that m random vectors Y 1, Y 2, . . . , Y m of respective dimensions n1, n2, . . . , nm

are observed. The Y i’s are mutually independent, but their components may be correlated
(for instance because of repeated measures on the same individuals). GAMM’s rely on the
two following assumptions:
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A1 Given Λi = λi the responses Yit, t = 1, . . . , ni, are mutually independent and admit a
log-likelihood !(θit,φ; yit) of the form (1.1) where

µit(λit) = E[Yit|Λit = λit] and vit = Var[Yit|Λit = λit]

satisfy
a(µit(λit)) = ηit + λit and vit = v(µit)φ

where the score ηit is as in (1.3), a(·) and v(·) are known link and variance functions,
respectively.

Henceforth, we restrict our study to the special case of the canonical link function, that
is, a(µit(λit)) = θit. This does not really restrict the generality of our results (most
of them relying on the monotonicity of the function a(·)) but greatly facilitates the
exposition. Moreover, we treat ηit as a constant.

A2 The vectors of random effects Λ1, . . . , Λm are mutually independent with a common
underlying multivariate distribution.

Often, the Λi’s are assumed to conform to the multivariate normal distribution. We
restrict our attention to this important case in the present paper. Most results derived in
this paper remain nevertheless valid for other choices of distributions.

1.3 GAMM’s in actuarial science

There are numerous applications of the GAMM’s in risk theory. Those techniques encompass
most of the classical actuarial procedures. We will here describe a few typical examples, that
we will use throughout the remainder of the paper.

Example 1.1. (Credibility with static random effects)
GAMM’s are widely used by actuaries, since they form the basis of credibility theory,

as shown by Nelder & Verrall (1997). In this context, Yit represents the number or
amount of claims reported to the insurance company by policyholder i in year t. Random
effects Λi represent hidden features influencing the risk covered by the insurer.

The classical credibility model assumes the time-invariance of the random effects. More
precisely, all the components of Λi are equal to some random variable Λi, that is, Λi =
(Λi, . . . ,Λi). So, Λi has perfectly dependent components (i.e. Λi is comonotonic) and one
could expect strong dependence between the Yit’s for fixed i.

Example 1.2. (Credibility with dynamic random effects)
Recently, Pinquet, Guillén & Bolancé (2001), among others, allow for random ef-

fects that develop over time. This is justified since unobservable factors influencing the risk
are not constant and policyholders may adjust their efforts for loss prevention according to
their experience with past claims, the amount of premium and awareness of future conse-
quences of an accident (due to experience rating schemes). The main technical interest of
letting the random effects evolve over time is to take into account the date of claims. This
reflects the fact that the predictive ability of a claim depends on its age: a recent claim is a
worse sign to the insurer than a very old one.
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In this paper, Λi will be taken multivariate normally distributed N (µ, Σ) with covariance
matrix Σ featuring the temporal dependence. Classical ARMA models are often used for
Λi.

Example 1.3. (Credibility with AR1 random effects)
A particularly simple and efficient dynamic credibility model is obtained by assuming

that Λi has an autoregressive structure of order one, that is,

Λit = &Λi,t−1 + εit, t ≥ 2,

where εit ∼ N (0, σ2(1 − ρ2)) are iid, |&| < 1,, and εi1 ∼ N (0, σ2). In this model, the
heterogeneity Λit for period t is influenced by the preceding period Λi,t−1 but has also its
own characteristics εit.

Example 1.4. (Credibility with exchangeable random effects)
Another model (see e.g. Pinquet (2000)) postulates that there is a static baseline

heterogeneity Ri for policyholder i which is perturbated by iid annual effects Si1, Si2, . . . .
Specifically, Λit = Ri + Sit where the Sit’s are iid and independent from Ri, and they all
conform to the Normal law. The vector Λi is exchangeable.

1.4 Aim of the work

This paper purposes to examine the kind of dependence generated by GAMM’s. We believe
that this will be particularly useful for applied modelling. Indeed, a better understanding of
the features of GAMM’s will enable actuaries to draw more appropriate conclusions from the
model fit. This is especially true when predictions are made from conditional expectations
(given past observations). The type of dependence between the components of Y i will
strongly affect the forecast.

In GAMM’s, correlation among observations Yi1, Yi2, . . . , Yini relating to subject i arises
from their sharing unobservable correlated latent variables Λi1,Λi2, . . . ,Λini. It will be seen
that the classical GAMM construction may entail strong positive dependence between the
observations provided the outcomes are “increasing” in the random effects. This intuitive
idea is formalized in a number of stochastic inequalities, each one enjoying a nice actuarial
interpretation.

The theoretical results will be applied to the four examples listed in the preceding sub-
section; this will enhance their relevance for actuarial modelling.

1.5 Technical aspects

Important concepts in the analysis of dependence induced by GAMM’s include likelihood ra-
tio order together with multivariate total positivity, as well as stochastic dominance together
with association. The main technical argument is the stochastic monotonicity of GAM’s in
their canonical parameter with respect to the likelihood ratio order. Intuitively speaking,
this ensures that the outcome tends to become larger (in some sense) when the canonical
parameter increases.

3



The present study expands on several premvious works. Shaked & Spizzichino (1998)
established positive dependence properties for mixed models built from stochastically in-
creasing parametric families of continuous distributions. Purcaru & Denuit (2001, 2002)
studied mixed Poisson models in an actuarial context and derived condition on the mixing
parameter to generate positive dependence between Poisson counting outcomes. We show
here that similar results apply to the whole GAMM family, because of stochastic monotonic-
ity properties shared by all GAM’s.

The major innovation of the paper is to apply the results to the credibility framework and
to draw conclusions useful for the understanding of the models commonly used by actuaries.
To the best of the authors’ knowledge, credibility models have never been investigated from
that point of view so far in the literature.

1.6 Agenda

In Section 2, we introduce various stochastic order relations (namely univariate and mul-
tivariate versions of stochastic dominance and likelihood ratio order), i.e. binary relations
aiming to compare random variables or random vectors. These relations purpose to express
for random variables/vectors the intuitive ideas of “being larger than”. The main result of
that section will be the stochastic monotonicity of the members of the GAM family with
respect to the canonical parameter.

Section 3 is devoted to positive dependence concepts (namely, positive orthant depen-
dence, association, conditional increasingness, multivariate total positivity and comonotonic-
ity), i.e. ways to formalize the fact that large values for a component of a random vector
tend to be associated with large values for the others.

The remaining sections contain the main results. Section 4 basically states that the
structure of dependence exhibited by the components of Λi is transmitted to the components
of Y i. Section 5 considers the a posteriori distribution of the vector Λi of random effects
and proves its stochastic monotonicity in Y i. Section 6 intends to formalize the intuitive
idea that increasing the strength of dependence between the components of Λi yields more
positively dependent components of Y i. Section 7 deals with the predictive distributions. It
aims to answer the following question: how do past claims influence future claims? We will
see that in many cases, the future is increasing in the past, in a sense to be precised later.
The final Section 8 concludes.

2 Stochastic increasingness of GAM’s in the canonical
parameter

Since the random effects have been added on the scale of the fixed effects, we must investi-
gate whether an increase of the canonical parameter makes the GAM outcome “larger” or
“smaller”. In order to formalize this monotonicity, we need stochastic orderings; for more
details about these probabilistic tools, we refer the reader e.g. to Kaas, Van Heerwaar-
den & Goovaerts (1994), Müller & Stoyan (2002) or Shaked & Shanthikumar
(1994).
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2.1 Univariate likelihood ratio order

Let us recall the definition of the likelihood ratio order, and provide the reader with some
intuitive interpretations of it. Given two random variables X and Y with respective (discrete
or continuous) probability density functions fX and fY , X is said to be smaller than Y in
the likelihood ratio order, denoted as X %lr Y , if

fX(u)fY (v) ≥ fX(v)fY (u) for all u ≤ v ∈ R. (2.1)

Considering (2.1), a ranking in the %lr-sense can be given the following nice interpretation.
Provided X and Y are independent (which can be assumed without loss of generality), the
left-hand side of (2.1) can be regarded as the likelihood of the event “X is small and Y is
large” whereas the right-hand side of this relation reads “X is large and Y is small”. Then,
(2.1) expresses the fact that the latter event is less likely to occur than the first one.

2.2 Univariate stochastic dominance

Another intuitive interpretation for a ranking in the %lr-sense is as follows. Let t ∈ R.
Integrating (or summing in the discrete case) both sides of (2.1) over u ∈ (−∞, t] and
v ∈ (t, +∞) yields

Pr[X ≤ t] Pr[Y > t] ≥ Pr[X > t] Pr[Y ≤ t]

⇔
(
1 − Pr[X > t]

)
Pr[Y > t] ≥ Pr[X > t]

(
1 − Pr[Y > t]

)

⇔ Pr[Y > t] ≥ Pr[X > t].

The latter inequality shows that Y is indeed “larger” than X since the probability for Y
to be large (i.e. to exceed the treshold t) is bigger than the probability for X to be large.
When Pr[X > t] ≤ Pr[Y > t] holds for all t ∈ R, we will write X %st Y and say that X is
smaller than Y in the stochastic dominance. Clearly, X %lr Y ⇒ X %st Y . It can be shown
that the latter implication is strict.

It is worth mentioning that since any non-decreasing function can be obtained as the
uniform limit of a sequence of non-decreasing step functions, we also have X %st Y ⇔
E[ψ(X)] ≤ E[ψ(Y )] for any non-decreasing function ψ, provided the expectations exist.

2.3 Univariate %lr-increasingness of GAM’s

The following property will be extremely useful in the remainder of our work. In the model
A1-A2, all covariates being observed (fixed), it expresses the %lr-increasingness of the re-
sponse in the random parameter. Henceforth, given a random variable X and an event A,
we denote as [X|A] a random variable with distribution function x +→ Pr[X ≤ x|A].

Property 2.1. In the model A1-A2, [Yit|Λit = λit] is increasing in λit in the %lr-sense,
that is,

λit ≤ λ′
it ⇒ [Yit|Λit = λit] %lr [Yit|Λit = λ′

it] for any i and t.
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Proof. Since ηit + λit = θit, the announced implication is the same as

θit ≤ θ′it ⇒ [Yit|Θit = θit] %lr [Yit|Θit = θ′it]

where Θit = ηit + Λit. The (discrete or continuous) probability density function of the
response has the form:

f(y; θit,φ) = exp

(
yθit − b(θit)

φ
+ c(y,φ)

)

Since the ratio
f(y; θit,φ)

f(y; θ′it,φ)
= exp

(
y(θit − θ′it) − (b(θit) − b(θ′it))

φ

)

is clearly decreasing in y provided θit ≤ θ′it, we get the announced result from (2.1).

2.4 Multivariate likelihood ratio order

The multivariate version of %lr is defined by extending (2.1) to joint densities. More precisely,
given two n-dimensional vectors X and Y , with (discrete or continuous) probability density
functions f and f , respectively, X is said to be smaller than Y in the likelihood ratio
order, written as X %lr Y , if

f (x)f (y) ≤ f (x ∧ y)f (x ∨ y), (2.2)

where ∨ and ∧ denote, respectively, the componentwise maximum and minimum. The
inequality in (2.2) defining multivariate %lr can be interpreted as (2.1).

2.5 Multivariate stochastic dominance

In case we want to compare random vectors, an intuitively acceptable strategy consists
in transforming those vectors into random variables using increasing mappings, and then
to compare the resulting outcomes with univariate stochastic orderings. This yields the
following definition for multivariate %st: given two random vectors X and Y , X is said to
be smaller than Y in the stochastic dominance, written as X %st Y , if ψ(X) %st ψ(Y ) for
every non-decreasing function ψ : Rn → R. It can be shown that, as in the univariate case,
X %lr Y ⇒ X %st Y .

2.6 Multivariate %lr-increasingness of GAM’s

The next property is the multivariate counterpart of Property 2.1. It applies in particular
to GAMM’s. Henceforth, an inequality between two real vectors has to be interpreted
componentwise.

Property 2.2. In the model A1-A2, [Y i|Λi = λi] is increasing in λi in the %lr-sense, that
is,

λi ≤ λ′
i ⇒ [Y i|Λi = λi] %lr [Y i|Λi = λ′

i].
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Proof. Under A1-A2, [Y i|Λi = λi] is a random vector with independent components. More-
over, by virtue of Property 2.1, the stochastic inequalities

[Yi1|Λi1 = λi1] %lr [Yi1|Λi1 = λ′
i1]

[Yi2|Λi2 = λi2] %lr [Yi2|Λi2 = λ′
i2]

...
...

...

[Yini|Λini = λini ] %lr [Yini|Λini = λ′
ini

]

hold true for any λi1 ≤ λ′
i1, λi2 ≤ λ′

i2, ... λini ≤ λ′
ini

. Since a comparison in the multi-
variate %lr-sense reduces to a componentwise %lr-ranking when both random vectors have
independent component (this is an immediate consequence of (2.2) when the joint probabil-
ity density functions factor in the product of the marginal probability density functions), we
get that [Y i|Λi = λi] %lr [Y i|Λi = λ′

i] holds true provided λi ≤ λ′
i, as announced.

3 Positive dependence concepts

There are many ways to express that the components of a random vector are positively de-
pendent. Most often, the purpose is to formalize the fact that large values of one component
tend to be associated with large values of the others. In this section, we briefly review the
most relevant dependence notions, from the weakest to the strongest. For more details, the
reader is referred e.g. to Müller & Stoyan (2002).

3.1 Positive orthant dependence

Random variables X1, X2, . . . , Xn (or the random vector X) are said to be positively orthant
dependent (POD, in short) when the inequalities

Pr[X ≤ x] ≥
n∏

i=1

Pr[Xi ≤ xi] and Pr[X > x] ≥
n∏

i=1

Pr[Xi > xi] (3.1)

simultaneously hold for any x ∈ Rn. Intuitively, (3.1) means that X1, X2, . . . , Xn are more
likely simultaneously to have small/large values, compared with a vector of independent
random variables with the same corresponding univariate marginals. It is worth mentioning
that the inequalities (3.1) are usually referred to in Statistics as the Sidak inequalities, or as
the first order product-type inequalities.

3.2 Association

Random variables X1, X2, . . . , Xn (or the random vector X) are said to be associated when

Cov [ψ1(X),ψ2(X)] ≥ 0 (3.2)

for all non-decreasing functions ψ1 and ψ2 : Rn → R for which the covariances exist. It can
be shown that X associated ⇒ X POD.

The abstract characterization (3.2) of association is difficult to interpret, especially in a
concrete statistical model. The main interest of association is that it is usually easy to be
established and that it implies the weaker POD, whose interpretation is clear.
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3.3 Conditional increasingness in sequence

Random variables X1, X2, . . . , Xn (or the random vector X) are said to be conditionally
increasing in sequence (CIS, in short) if, for any i = 2, 3, . . . , n, the following conditions
hold:

[Xi|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1] %st [Xi|X1 = x′
1, X2 = x′

2, . . . , Xi−1 = x′
i−1]

for any x1 ≤ x′
1, x2 ≤ x′

2, . . . , xi−1 ≤ x′
i−1 in the support of the Xi’s.

This dependence notion is particularly useful when the components of the random vector
are naturally ordered (as in repeated measures, for instance). In this case, CIS expresses the
monotonicity of the future given the past.

It can be shown that CIS is a stronger dependence notion than association, i.e. X CIS
⇒ X associated.

3.4 Multivariate total positivity

A random vector X with (discrete or continuous) probability density function f is MTP2

if f is an MTP2 function, that is, if the inequality

f (x)f (y) ≤ f (x ∨ y)f (x ∧ y) (3.3)

holds for any x, y in Rn. In the case of a bivariate density function, MTP2 reduces to the
standard TP2.

The following result, due to Kemperman (1977), will play an important role in the
remainder of the work. It basically says that MTP2 reduces to TP2 in pairs, making MTP2

much easier to establish.

Characterization 3.1. Suppose the support of X is a lattice (that is, if x and y are in the
support of X, then so are x∨y and x∧y). Then X is MTP2 if, and only if, its (continuous
or discrete) probability density function f is TP2 in each pair of its variables when the
other n − 2 variables are held fixed, that is

f (x1, . . . , xi, . . . , xj, . . . , xn)f (x1, . . . , x′
i, . . . , x′

j , . . . , xn)

≥ f (x1, . . . , x′
i, . . . , xj, . . . , xn)f (x1, . . . , xi, . . . , x′

j , . . . , xn)

whenever xi ≤ x′
i and xj ≤ x′

j, xk, k /= i, j held fixed.

The implication X MTP2 ⇒ X CIS holds true.

3.5 Comonotonicity

Random variables X1, X2, . . . , Xn (or the random vector X) are said to be comonotonic when
there exists a random variable Z and non-decreasing functions ψ1,ψ2, . . . ,ψn : R → R such
that X is distributed as (ψ1(Z),ψ2(Z), . . . ,ψn(Z)). Comonotonicity can thus be regarded
as perfect positive dependence: increasing any of the Xi’s makes the other Xj ’s larger.

It can be established that X comonotonic ⇒ X MTP2.
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4 Dependence in GAMM’s

Our aim is to show that in many cases, GAMM’s induce positive dependence between the
Yit’s, in the sense that “large” (or “small”) values of the random variables tend to occur
together. This is formally stated in the next result, which uses the increasingness of the
conditional distribution in the mixing parameter established in Property 2.1.

Proposition 4.1. In the model A1-A2,

(i) Λi associated ⇒ Y i associated;

(ii) Λi MTP2 ⇒ Y i MTP2.

Proof. (i) From Property 2.2, we know that [Y i|Λi = λi] %st [Y i|Λi = λ′
i] whenever λi ≤ λ′

i.
This is equivalent to

E[ψ(Y i)|Λi = λi] being nondecreasing in λi for every nondecreasing ψ. (4.1)

Now, we have to establish that Y i is associated, that is, Cov[ψ1(Y i),ψ2(Y i)] ≥ 0 for every
pair of functions ψ1 and ψ2 wich are nondecreasing in each of their arguments. Reformulating
the covariance yields

Cov[ψ1(Y i),ψ2(Y i)] = E
[
Cov[ψ1(Y i),ψ2(Y i)|Λi]

]

+Cov
[
E[ψ1(Y i)|Λi], E[ψ2(Y i)|Λi]

]
.

Given Λi = λi, the components of Y i are independent and the first term is positive (since
independent random variables are associated, as shown in Barlow & Proschan (1975,
Theorem 2.2, p31)). The second term is positive according to (4.1), so that Y i is indeed
associated, as announced.

(ii) We will show that the density of Y i is TP2 in pairs, whence the announced implication
then results from Characterization 3.1. We show it for components s and t. According to
Property 2.1, we have that the (discrete or continuous) probability density function fis(y|λis)
of [Yis|Λis = λis] and fit(y|λit) of [Yit|Λit = λit] are TP2 in (y,λis) and in (y,λit), respectively.
Since fis(y|λis) = fis(y|λi) and fit(y|λit) = fit(y|λi), both fis(y|λi) and fit(y|λi) are MTP2

in (y, λi). Since Λi is assumed to be MTP2, its joint probability density function g(λi) is
known to be MTP2. Now, fixing the values of yij, j /= s, t, the function

(yis, yit) +→ f(yi) =

∫

i∈ ni

{
ni∏

j=1

fij(yij|λi)

}
g(λi)dλi

=

∫

i∈ ni

fis(yis|λi)fit(yit|λi)

{
∏

j $=s,t

fij(yij|λi)

}
g(λi)dλi

is TP2 in (yis, yit) invoking (1.14) and (1.15) in Karlin & Rinott (1980).

Let us now illustrate the usefulness of the results of Proposition 4.1 in actuarial problems.
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Example 4.2. (Credibility with static random effects)
If Λi = (Λi, . . . ,Λi) then Λi is MTP2 (since it is comonotonic), and so is Y i, invoking

Proposition 4.1(ii). This first example shows that the dependence among the Yit’s in the clas-
sical credibility model is very strong, though not perfect. Broadly speaking, the dependence
between the observed outcomes Yi1, . . . , Yini is always weaker than the dependence between
the hidden random effects Λi1, . . . ,Λini. In the present case, comonotonicity is transformed
into MTP2.

Example 4.3. (Credibility with dynamic random effects)
Assume that Λi is multivariate normal with covariance matrix Σ = {σst}. Pitt (1982)

showed that the condition σst ≥ 0 for all s, t is necessary and sufficient for Λi to be associated.
In this case, Proposition 4.1(i) ensures that Y i is also associated.

Further, Tong (1990) established that provided Σ is invertible (denote as R its inverse,
i.e. R = {rst} = Σ−1), Λi is MTP2 (and hence Y i from Proposition 4.1(ii)) if, and only if,
rst ≤ 0 for all s /= t.

Example 4.4. (Credibility with AR1 random effects)
Since,

Cov[Λis,Λit] = σ2&|s−t|

the elements σst of Σ are given by:

σtt = σ2, σst = σts = &|s−t|σ2 for |s − t| ≥ 1.

Therefore the off-diagonal elements of the matrix R = Σ−1 are

rt,t+1 = rt+1,t = − &

σ2
and rst = 0 for |s − t| ≥ 2

and are all non positive when & ≥ 0. Hence & ≥ 0 ⇒ Λi MTP2 which in turn ensures that
Y i is MTP2 by virtue of Proposition 4.1(ii).

Example 4.5. (Credibility with exchangeable random effects)
Note that the normal distribution has a log-concave density (i.e. the logarithm of the

normal probability density function is concave). Karlin & Rinott (1980, Proposition 3.8)
showed that, provided each Sit is governed by a log-concave density function then Λi (where
Λit = Ri + Sit) is MTP2. In this case also Y i is MTP2 in application of Proposition 4.1(ii).

5 A posteriori distribution of the random effects

Let us now consider the posterior distribution of Λi given the observations Y i = yi, denoted
as g(·|yi) (whereas g(·) denotes the a priori probability density function of Λi). Let us prove
the following result, which is in the vein of Whitt (1979) and Fahmy et al. (1982). It
basically states that observing large outcomes Y i increases unobservable latent variables (in
the %lr-sense).

Proposition 5.1. In the model A1-A2, [Λi|Y i = yi] %lr [Λi|Y i = y′
i] whenever yi ≤ y′

i.
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Proof. We have that

f(yi|λi) =
ni∏

j=1

fij(yij|λij)

=
ni∏

j=1

exp

(
yijθij − b(θij)

φ

)
exp (c(yij,φ))

=

{
ni∏

j=1

exp (c(yij,φ)) exp

(
yijηij

φ

)} {
ni∏

j=1

exp

(
−b(λij + ηij)

φ

)}{
ni∏

j=1

exp

(
yijλij

φ

)}

≡ h1(yi)h2(λi)
ni∏

j=1

exp

(
yijλij

φ

)
.

Hence, we can express the posterior probability density function of Λi given Y i = yi as

g(λi|yi) =
f(yi|λi)g(λi)

f(yi)

=
h1(yi)h2(λi)

{∏ni

j=1 exp
(

yijλij

φ

)}
g(λi)

f(yi)
.

Now, we have to show that for yi ≤ y′
i, the inequality

g(λi|yi)g(λ′
i|y′

i) ≤ g(λ′
i ∧ λi|yi)g(λ′

i ∨ λi|y′
i)

holds true, which immediately follows from the TP2 property of the function

(yij,λij) +→ exp

(
yijλij

φ

)

together with Characterization 3.1. The proof is now complete.

In a Bayesian framework, it is common to predict Λi by means of the posterior mean,
that is

Λ̂i(yi) = E[Λi|Y i = yi].

Proposition 5.1 ensures that Λ̂i(yi) ≤ Λ̂i(y′
i) whenever yi ≤ y′

i.

6 More positively dependent Λit’s induce more posi-
tively dependent Yit’s

It seems natural to expect that increasing the strength of the positive dependence between
the latent Λit’s will induce more association between the observed outcomes Yit’s. This
section precisely aims to formalize this intuitive idea. For this purpose, we resort to the su-
permodular ordering (see e.g. Shaked & Shanthikumar (1997) for a general presentation
and Bäuerle & Müller (1998) for applications in actuarial science), which will be seen
to be an appropriate tool to compare the strength of dependence.
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6.1 Supermodular order

The supermodular order is based on the comparison of expectations of supermodular func-
tions. Let us recall that a real-valued function ψ : Rn → R is called supermodular if

ψ(x ∨ y) + ψ(x ∧ y) ≥ ψ(x) + ψ(y), (6.1)

for all x, y ∈ Rn. It is interesting to contrast the inequality (6.1) defining supermodularity
with the inequality (3.3) defining multivariate total positivity; this reveals that supermodu-
larity is a kind of log-MTP2 notion.

Then, given two random vectors X and Y , X is said to precede Y in the supermodular
order, denoted as X %sm Y , if E[ψ(X)] ≤ E[ψ(Y )] for all supermodular function ψ for
which the expectations exist.

Since the functions y +→ I[y > x] and y +→ I[y ≤ x] are supermodular for each fixed x,
it is immediate that

X %sm Y ⇒ Pr[X > x] ≤ Pr[Y > x] and Pr[X ≤ x] ≤ Pr[Y ≤ x]. (6.2)

This expresses well the fact that the components of Y are more POD than those of X. Note
that from (6.2) it follows that if X %sm Y then Xi and Yi are identically distributed for
i = 1, 2, . . . , n. Therefore, if X %sm Y then X and Y have necessarily the same univariate
marginals.

Supermodular ordering turns out to be a useful tool for comparing dependence structures
of random vectors. Indeed, since all functions ψ(x) = xixj for i /= j are supermodular.
Hence,

X%smY ⇒ Cov[Xi, Xj] ≤ Cov[Yi, Yj] for any i /= j.

Further, the values of the Pearson’s, Spearman’s and Kendall’s correlation coefficients are
always larger for Y than for X .

6.2 Ordering the strength of dependence

We are now in a position to state the following result, which formalizes our intuition.

Proposition 6.1. In the model A1-A2, Λi %sm Λ′
i ⇒ Y i %sm Y ′

i.

Proof. The result straightly follows from Property 2.1 together with Theorem 4.1(a) in De-
nuit & Müller (2002).

Coming back to the interpretation of %sm as a positive dependence order, the statement
in Proposition 6.1 reads “more positively dependent Λit’s yield more positively dependent
Yit’s”, as expected.

We apply the result of Proposition 6.1 in the two examples where it makes sense (obvi-
ously, two vectors of static random effects cannot be ordered in the %sm-sense, and the same
remark applies to the exchangeable random effects, because only distributions with the same
marginals can be compared in the supermodular sense).
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Example 6.2. (Credibility with dynamic random effects)
Assume that Λi and Λ′

i both conform to the multivariate normal distribution, with
identical univariate marginals and Cov[Λis,Λit] ≤ Cov[Λ′

is,Λ
′
it] for all s /= t. Then, Theorem

3.13.5 of Müller & Stoyan (2002) ensures that Λi %sm Λ′
i and Proposition 6.1 yields in

turn Y i %sm Y ′
i.

The dynamic credibility model thus conforms to the intuition: increasing the correlation
between each pair of random effects makes the annual claims more dependent.

Example 6.3. (Credibility with AR1 random effects)
Since Cov[Λis,Λit] = σ2&|s−t|, Proposition 6.1 together with the preceding example en-

sures that & ≤ &′ ⇒ Y i %sm Y ′
i. In this model, the amount of dependence is thus controlled

by the parameter &: a large value of & will increase the importance of past claims history in
the determination of future premiums.

7 Predictive distributions

Before studying predictive distributions, let us first examine the monotonicity of a subset of
Y i, given the other components.

Proposition 7.1. Let Y iJ (resp. Y iK) be the random vector with components Yij, j ∈ J
(resp. Yik, k ∈ K). In the model A1-A2, if Λi is MTP2 then [Y iJ |Y iK = yK ] %lr

[Y iJ |Y iK = y′
K ] for any yK ≤ y′

K ∈ R#K, for any partition of {1, 2, . . . , ni} in J and K.

Proof. Considering Proposition 4.1(ii), we know that Y i is MTP2. Let us denote as f(yJ |yK)
the conditional probability density function of Y iJ given Y iK = yK . We have to prove that

f(yJ ∧ ỹJ |yK)f(yJ ∨ ỹJ |y′
K) ≥ f(yJ |yK)f(ỹJ |y′

K)

holds for any yJ , ỹJ ∈ R#J provided y′
K ≤ yK . Since the joint probability density function

f of Y i is MTP2, we know that

f(yJ ∧ ỹJ , yK)f(yJ ∨ ỹJ , y′
K) ≥ f(yJ , yK)f(ỹJ , y′

K)

holds true, whence the desired inequality follows by dividing each side by fK(yK)fK(y′
K),

where fK is the probability density function of Y iK .

The intuitive explanation behind the results stated in Proposition 7.1 is clear: when the
components of Λi exhibit strong positive dependence (MTP2), observing large outcomes for
some of the Yij’s (those in K) makes the others (those in J) larger (in the %lr-sense).

Let us now apply these results to predictive distributions. The very aim of credibility
theory is indeed to predict future claim behaviour. In that respect, predictive distributions
are of prime interest: these are the distributions of claim characteristics for next year, given
past observations.

Example 7.2. (Credibility with static random effects)
Since Λi is MTP2, we have that [Yini+1|Y i = yi] %lr [Yini+1|Y i = y′

i] whenever yi ≤ y′
i.

This indicates that a bad claim record is a worse sign for the future than a good one, whatever
the distributions of the Λi’s.
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Example 7.3. (Credibility with dynamic random effects)
Provided the covariance matrix Σ fulfills the condition of Example 4.3 that ensures

(Λi1, . . . ,Λini,Λini+1) to be MTP2, we reach the same conclusion than for static credibility
models. Again, future claims Yini+1 are increasing in the past claims Y i in the %lr-sense.

Example 7.4. (Credibility with AR1 random effects)
Provided & ≥ 0, Λi is MTP2 so that Yini+1 increases in Y i in the %lr-sense.

Example 7.5. (Credibility with exchangeable random effects)
Since Λi is always MTP2 in that case, the increasingness of the future given the past

applies to this situation.

8 Conclusions

This paper studies the kind of dependence induced by the introduction of random effects. A
prime example of such a construction in actuarial science is of course credibility theory, to
which the paper is focussed. Other possible applications include ratemaking by geographical
area in the framework of Boskov & Verrall (1994).

The main message addressed to practicians is that in the linear exponential family of
distributions (with loglikelihood of the form (1.1)) most credibility systems will behave as
intuitively expected, that is

1. increasing the past claims will make the unobservable random effects “larger”, making
the policyholders more dangerous on the unobservable characteristics;

2. increasing the past claims will increase the future claims;

3. increasing the temporal dependence (for instance by increasing the number of missing
explanatory variables) will increase the dependence between past and future claims, so
that the a posteriori corrections induced by the credibility model will be more severe.

This paper makes these points clear using stochastic orderings and dependence notions.
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