
Constraints
DOI 10.1007/s10601-012-9125-z

Solving the quorumcast routing problem by constraint
programming

Quang Dung Pham · Yves Deville

© Springer Science+Business Media, LLC 2012

Abstract The quorumcast routing problem is a generalization of multicasting which
arises in many distributed applications. It consists of finding a minimum cost tree that
spans the source node r and at least q out of m specified nodes on a given undirected
weighted graph. This paper proposes a complete and an incomplete approach, both
based on the same Constraint Programming (CP) model, but with two different
specific search heuristics based on shortest paths. Experimental results show the
efficiency of the two proposed approaches. Our complete approach (CP model +
complete search) is better than the state of the art complete algorithm and our
incomplete approach (CP model + incomplete search) is better than the state of
the art incomplete algorithm. Moreover, the proposed complete search is better than
the standard First-Fail search in the same CP model.

Keywords Constraint programming · Quorumcast routing · Constrained optimum
trees · Graphs · Incomplete search

1 Introduction

Multicasting is the problem of delivering a message from a source to a given subset of
nodes, called multicast nodes, in a network. The quorumcast routing (QR) problem
is a generalization of multicasting in which we have to send a message from a source
to at least q out of n specified multicast nodes [2, 8, 11, 16]. This problem appears in
many distributed applications, for example, distributed synchronization and updating
a replicated resource (see [2] for more detail).

Q. D. Pham (B)
Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Viet Nam
e-mail: dungpq@soict.hut.edu.vn

Y. Deville
Université catholique de Louvain, 1348 Louvain-la-Neuve, Louvain, Belgium
e-mail: yves.deville@uclouvain.be

Constraints

The QR problem can be solved by complete (also called exact) approaches where
the optimal solution is computed together with a proof of its optimality. One can
also use incomplete approaches which compute an approximation to the optimal
solution. Incomplete approaches are of course much more efficient, but do not ensure
obtaining the optimal solution, which can be important in some applications.

Various incomplete approaches have been proposed in [2, 8, 16]. As far as we
know, only one complete algorithm has been proposed for solving this problem
[11]. A threshold was proposed and integrated in an exhaustive search for reducing
the problem size. The proposed algorithm was evaluated on small graphs (up to 30
nodes).

Constraint Programming (CP) is a paradigm for solving combinatorial optimiza-
tion problems using high-level formulations [14]. This approach has two main compo-
nents: propagation and search. The propagation component uses constraints to prune
values from the domain of variables that do not belong to any solution. The search
component specifies a search tree and different heuristics can be used to search for
the optimal solution. CP is a complete approach as the search component covers all
the solutions. It is however possible to also use CP for incomplete approaches by
restricting the search component to only a subset of the solutions.

In this paper, we propose a Constraint Programming model together with two
search components. The search components are the main contributions of the papers;
we develop a complete and an incomplete approach. Both search components
are based on the shortest-path heuristics used in [2] for solving the QR problem.
Our models are implemented in the Comet programming language [4], an object-
oriented programming language supporting Constraint-Based Local Search, Con-
straint Programming, and Mathematical Programming. We experimentally show that
our complete algorithm solves problems on larger graphs than [11] (graphs up to 60
nodes). Moreover, our incomplete algorithm (the CP model + incomplete search)
outperforms other state of the art incomplete algorithms such as those described in
[2] and our complete algorithm (the CP model + complete search) is more efficient
than the state-of-the-art exact algorithm of [11]. We also show the extensibility of the
proposed CP model when side constraints need to be added.

1.1 Problem formulation

Given a weighted undirected graph G = (V, E, w), each edge e ∈ E is associated with
a positive cost w(e). Given a source node r ∈ V, an integral value q, and a set S ⊆ V of
multicast nodes, the quorumcast routing problem consists of finding a minimum cost
tree T = (V ′, E′) of G spanning r and at least q nodes of S. The graph T = (V ′, E′)
should satisfy the following properties:

1. V ′ ⊆ V ∧ E′ ⊆ E
2. T is connected
3. ∃Q ⊆ S such that |Q| ≥ q ∧ Q ∪ {r} ⊆ V ′
4. The cost of T, defined as

cost(T) =
∑

e∈E′
w(e)

is minimal over all subgraphs of G with properties 1, 2, and 3.

Constraints

1.2 Related work

The state-of-the-art complete algorithm was proposed in [11]. In that paper, a partial
solution is defined to be a set of sub-trees that spans the source node and some
multicast nodes. A partial solution will be extended by adding one edge at each step
until a feasible solution is constructed (i.e., a tree that spans the source node and
at least q multicast nodes). A Conf ined Area Pruning (CAP) scheme was introduced
that allows to reduce that search space. Let Cmin be the cost of the best solution found
so far, and Dmax be the longest distance from the source node to a multicast node.1

A threshold value T is computed:

T =
{ Cmin + Dmax

2
if Cmin > Dmax

Cmin otherwise

If the cost of the shortest path from the source to a node v ∈ V exceeds the threshold
value T, then the node v cannot be in any optimal solution.

A particular case of the QR problem is the well-known Minimum Steiner Tree
(MST) Problem [1] where |S| = q. The QR problem could then be solved by succes-
sively considering all the possible subsests Q of S with |Q| = q. The QR problem
is thus reduced to

(|S|
q

)
(|S| choose q) MST problems. Although there exist efficient

exact algorithms for solving the MST problem [1], this approach is not relevant when(|S|
q

)
is large. In the experimental section, we will show that our complete algorithm

is able to solve QR problem where
(|S|

q

)
is large. Moreover, our proposed CP model

and heuristic searches are simple to implement and extensible while the algorithm
for the MST is very sophisticated to implement and difficult to extend with side
constraints.

The Connected Subgraph in wildlife conservation problem [5] is also related to
the MST problem, where each node of the given graph is associated with a cost and
a profit. One has to find a connected subgraph that spans a set of given terminals,
satisfying the constraint on the cost while maximizing the profit. In that paper,
different ILP-based modeling approaches have been proposed and compared.

An incomplete approach was proposed in [2] where three heuristics were de-
scribed: Minimal Cost Path Heuristic (MPH), Improved Minimum Path Heuristic
(IMP), and Modified Average Distance Heuristic (MAD). The idea of the MPH
heuristic is to construct the solution in a greedy way. It starts from a partial solution
(a tree under construction) containing only the source node r. At each step (called
a selection step), it selects the closest node v of S that does not belong to the partial
solution and inserts all the nodes of the corresponding shortest path from v to the
partial solution into the current partial solution, until the partial solution contains
q nodes of S. The main idea of the IMP algorithm is to repeat the MPH several
times but at each selection step, it does not consider the nodes of S that have been
selected in any of the previous MPH calls. The MAD heuristic consists of two stages.
The first stage selects q multicast nodes W ′ based on the idea of Kruskal’s algorithm
when solving the minimum spanning tree problem. The second stage reconnects the

1The distance between two nodes on a graph G is defined to be the cost of the shortest path between
these nodes in G.

Constraints

nodes of W ′ with the root using the MPH algorithm. Experimental results in [2] show
that among the three heuristics, the IMP heuristic produces the best solutions. The
idea of the MPH heuristic will be the basis of the two search components that we
propose for our CP model.

In [8], a multispace search heuristic was proposed for solving the particular QR
problem where S = V. It gives better results than the IMP and the MAD heuristics
on 12-node networks and 100-node networks. This approach is however no longer
applicable when S is a strict subset of V.

In [16], the authors considered the QR problem with additional constraints on
the total cumulative delay along the path from r to any destination node of Q
and proposed a distributed heuristic algorithm for solving it. Experiments were
conducted over graphs up to 200 nodes.

The minimum cost tree for multi-resource many cast (MRM) in networks [15] is
a generalization of the QR problem where each terminal node is associated with a
number of resource units and one has to find a minimum cost tree that spans the
source and at least k resource units. When each terminal node is associated with
exactly one resource unit, we obtain the QR problem. In that paper, four heuristic
algorithms were proposed for solving the MRM problem: Least Unit-Cost First
(LUF), Least Path-Cost First (LPF), Min-Cost Resource First (MCF), and Most
Available First (MAF). In these heuristics, the tree is constructed incrementally: at
each step, a terminal node v (v is not yet in the tree) is selected and all the nodes and
edges of the shortest path from the source to v are inserted into the tree until the tree
spans the required number of resource units. The selection of a terminal v is based
on a heuristic value h(v). In the LUF heuristic, h(v) is the ratio between the cost of
the shortest path from the source to v and the resource unit of v. In the LPF, h(v)

is the ratio between the cost of the shortest path from the source to v and the total
resource units along this path. In the MCF heuristic, h(v) is the cost of the shortest
path from the source to v. In the MAF heuristic, h(v) is the resource units of v. The
LUF, LPF and MCF heuristics choose a terminal v having the smallest value of h(v)

while the MAF heuristic selects a terminal v having the largest value of h(v). Our
proposed heuristics are closely related to MCF as they are all are based on a shortest
path measure for choosing the next node to integrate in the tree. The main difference
is that MCF is a greedy constructive approach while our heuristic is integrated in a
complete and incomplete search with backtracking. Our heuristic thus allows a better
exploration of the search space. When applied to the QR problem, MCF reduces
to the MPH algorithm of [2] which is less efficient than the IMP algorithm of the
same paper [2]. In the experimental section, we show that our incomplete algorithm
(the CP model + incomplete search) is better than IMP, hence better than the MCF
approach applied on the QR problem.

The above incomplete algorithms can tackle large instances in reasonable time,
but cannot guarantee optimality. A complete approach not only always finds the
optimal solution, but also proves its optimality. Such a proof of optimality might
be important and useful in many situations, especially when dealing with smaller
instances. Moreover, when side constraints are required, a complete approach such
as CP will be able to exploit these constraints to reduce the search space.

Different authors have proposed exact algorithms based on the Integer Program-
ming approach for solving the problem of determining a subtree under constraints
of a given graph [3, 10]. But these algorithms use sophisticated procedures for the

Constraints

search, applying specific techniques for the separation step in the branch-and-cut
scheme. This does not allow of handling side constraints flexibly and easily.

Global constraints for spanning trees have been proposed in the constraint
programming literature. The Minimum Spanning Tree constraint MST(G,T,W) [6]
is defined on two graph variables G, T, and a vector W of scalar variables which is
satisfied if T is a minimum spanning tree of G, where the weights of edges of G and T
are specified by W. The Weight-Bounded Spanning Tree constraint WBST(G,T,I,W)
[7] is defined on two graph variables G and T, a scalar variable I and a vector of
scalar variables W which is satisfied if T is a spanning tree of G whose total weight
is less than or equals to I, where the weights of edges of G and T are specified by
W. The weighted spanning tree constraint [13] is a simpler form of WBST(G,T,I,W)
which is defined on the neighbor representation of a graph G; each edge of G has a
cost and a value I. This constraint states that there exists a spanning tree in G whose
cost is at most I. None of these global constraints is available in existing constraint
solvers; only the underlying principles are described in the literature. Moreover, in
the Quorumcast Routing problem, the tree is not required to span the whole tree
but only a subset of its nodes. This makes the global constraint much more complex.
Only the MST(G,T,W) constraint [6], with non-fixed graphs G and T, and non-fixed
weight W would be relevant. Such a constraint also requires having high level graph
and tree domain variables, not available in existing solvers. Solving our QR problem
with a global constraint on spanning tree was thus not possible.

1.3 Structure of the paper

The rest of this paper is organized as follows. In Section 2, we propose the CP model
for this problem. The two search components will be presented in Section 3. Section 4
gives experimental results of the proposed model and Section 5 concludes the paper
and sketches some future research directions.

2 CP model

In [12], a CP model was proposed for solving the Diameter Constrained Minimum
Spanning Tree problem. The key idea in that paper for representing a spanning tree
with a so-called root r of a given graph G = (V, E) (r ∈ V) is to use, for each node v,
a variable x(v) representing the successor of v on the unique path from v to r of the
spanning tree (the solution) and a variable y(v) representing the length of the path
from v to r. By imposing the constraint y(v) = y(x(v)) + 1,∀v ∈ V \ {r}, cycles are
avoided and the set {x(v) | ∀v ∈ V} represents a spanning tree of the given graph.

We extend this model and propose a model for representing a subtree of a given
graph. To do this, we introduce a dummy node ⊥ such that ⊥ /∈ V.

2.1 Variables

For each node v ∈ V:

– The variable x(v) represents the successor of v on the unique path from v to r
on T. The domain of x(v) is denoted by D(x(v)) and is defined to be the set of

Constraints

adjacent vertices of v in G plus ⊥: D(x(v)) = {u ∈ V | (u, v) ∈ E} ∪ {⊥}. If v is
not in T, then x(v) = ⊥. Moreover, for the root r, we have x(r) = r.

– The variable y(v) represents the length of the path from v to r on T. It is
undefined if v /∈ T.

2.2 The CP model

min
∑

v∈V\{r}
w(v, x(v)) (1)

s.t.

x(v) �= ⊥ ⇒ y(v) = y(x(v)) + 1, ∀v ∈ V \ {r} (2)

x(u) = ⊥ ⇒ x(v) �= u, ∀u, v ∈ V (3)
∑

v∈S

(x(v) �= ⊥) ≥ q (4)

x(r) = r (5)

y(r) = 0 (6)

In the objective function (1), we assume that w(v,⊥) = 0,∀v ∈ V. The constraint
(2) plays the role of eliminating cycles. Constraint (3) specifies that if a node u is
not included in the solution, then it cannot be a successor of any other node v. The
constraint (4) states that the number of multicast nodes must be at least q (called the
quorum constraint). By convention, constraints (5) and (6) impose the successor of
the root and the length of the path from the root to itself.

The above CP model could be simplified by replacing the constraint (2) by the
constraints:

y(v) = y(x(v)) + 1, ∀v ∈ V \ {r} (7)

and by posting the constraint y(⊥) = −1. However, our experimental results showed
that this simplified model does not perform better than the model (1)–(6). In this
model, the guarded constraints (2) are delayed until the guard becomes true. This
avoids substantial time consuming calls to the propagation methods. Note also that
the CP model (1)–(6) differs from that of [12] by the appearance of the ⊥ value and
the guarded constraints. This allows of modeling the problems in which a subtree
under constraints of a given graph must be determined while the model of [12] can
only be applied to the problems of determining a spanning tree of a given graph.

We can see that the CP model can easily be extended for modeling other
constraints on trees. For instance, the constraint specifying that the degree of each
node of the tree cannot exceed a given bound D can be modeled as:

∑

v∈V

(x(v) = u) ≤ D − 1,∀u ∈ V \ {r}

∑

v∈V\{r}
(x(v) = r) ≤ D

Constraints

Fig. 1 The model

If each edge e ∈ E is associated with a delay d(e) > 0, we can also easily model the
constraint specifying that the total delay of each path from the source to a multicast
node cannot exceed a given value L. To do this, we use a variable y(v) for each
node v ∈ V representing the delay of the path from the source to v. We then replace
the constraint (2) of the CP model by x(v) �= ⊥ ⇒ y(v) = y(x(v)) + d(v, x(v)), ∀v ∈
V \ {r} and add the constraint x(v) �= ⊥ ⇒ y(v) ≤ L,∀v ∈ S to the model.

The model in Comet [4] is given in Fig. 1. Lines 2–3 declare the decision variables
x and y in which 1..n represents the nodes of the given graph. The variable x[i]
represents the successor of the path from the node i to r in the solution. D[i] is the
domain of x[i] which consists of the adjacent nodes of the node i plus the NULL
value (which represents the ⊥ value encoded by the value −1). The variable y[i]
represents the length of the path from the node i to r in the solution. The domain of
y[i] is 0..n. The objective function is stated in line 6. The constraint (2) is stated
in lines 8–9. The constraint (3) is stated in lines 11–13 and line 15 states the quorum
constraint (4). In line 9, we used the Comet blocking implication as the expression
y[x[i]] is meaningless when x[i]=NULL. The right hand side of the implication
is only considered when x[i]�= NULL. In line 12, we use the Boolean encoding
of an implication instead of the blocking implication “∼>” in order to enable the
propagation in two directions. When a variable x[j] is assigned to NULL, the value
j is removed from the domain of all other variables x[i]. When a variable x[i] is
assigned to j, the value NULL is removed from the domain of x[j].

3 The search

The search is a procedure that defines the search tree and specifies its traversal.
At each node of the search tree, we have a partial solution: some variables are
instantiated or assigned. When all the variables are instantiated, we then have a
solution. A branch and bound procedure is also used to handle the optimization
aspects.

Constraints

At any step of the search, the partial solution P can be represented by a directed
graph GP = (VP, AP) (as illustrated in Fig. 2) in which the set of nodes VP ⊆ V is
associated with a set of variables (each node v is associated with a variable x(v))
which are non-instantiated or are instantiated (but not to ⊥):

VP = {v ∈ V | 1 < |D(x(v))| ∨ D(x(v)) = {u} ∧ u �= ⊥}

Henceforth, we use the words nodes and variables interchangeably in the discussion.
If the variable x(v) is instantiated, we say the node v is instantiated. We denote by
BVP the set of nodes of VP that are already known to be included in the solution (⊥
has been removed from the domains of these nodes)

BVP = {v ∈ VP | ⊥ /∈ D(v)}

Each node of BVP is said bold node (see, for example, nodes r, 2, 3, 4, 5, 6, 7, 8, 9, 10,
16 in Fig. 2). The set of arcs AP is defined as follows:

AP = {(u, v) | u, v ∈ VP ∧ v ∈ D(x(u))}

Fig. 2 Partial solution: grey
nodes are multicast nodes, the
value of q is 6

r

2 3

4

5

6

7

8

9 10

11

1213

14

15

16

Constraints

Fig. 3 The First-Fail heuristic search

The set AP is partitioned into bold arcs set BAP (the arcs that are known to be in the
solution) and dashed arcs set DAP (the arcs that are not known to be or not to be in
the solution): (see Fig. 2)

BAP = {(u, v) ∈ AP | |D(x(u))| = 1}

DAP = {(u, v) ∈ AP | |D(x(u))| > 1}
The set of BAP induces a set of disjoint rooted trees FP. We denote RP the rooted

tree of FP with root r. We also use RP to denote the set of its nodes if there is no
ambiguity (in Fig. 2, RP = {r, 2, 3, 4}).

As usual, we will consider a depth-first traversal of the search tree. For the
definition of the search tree, different strategies will be considered.

3.1 First-Fail search

Our first search component is the standard labeling approach with a First-Fail
heuristic. At each node of the search tree, an (uninstantiated) variable is selected.
Then for each of the values in its domain, a child node is created with the variable
assigned to this value. Our First-Fail search component (FF), depicted in Fig. 3, is
a generic heuristic that can thus be applied to any problem. It considers the non-
instantiated variables in increasing order of the size of their domains for instantiation
(line 2). It then tries all values of its domain (line 3). Line 4 assigns the selected value
to the chosen variable. An increasing order of the different values in the domain of
the variable is taken, but this does not influence the strategy.

An extension of the FF heuristic is to use the IMP heuristic [2] for finding the
primal bound B0 and post a constraint saying that the objective function must be
smaller than B0 before starting the search. This version is denoted by BFF.

3.2 Shortest-Paths Heuristic search (SPH)

The First-Fail heuristic is efficient in many cases but it is generic: it cannot exploit
the problem structure. We propose here a heuristic which combines First-Fail with
a greedy heuristic based on Shortest-Paths. Such a search strategy quickly finds a
high-quality solution. This high-quality solution can then prune the search space
and improve the efficiency. The proposed heuristic is inspired by the MPH heuristic
of [2].

The SPH heuristic is as follows. If RP contains less than q multicast nodes, we
select the multicast non-instantiated node v having the shortest path in GP to RP,
such path being denoted by P(v). The next variables to be instantiated are the

Constraints

variables corresponding to nodes on P(v). For each node vi ∈ P(v), the first value
tried for x(vi) is the successor of vi on P(v). This gives directly a high-quality solution
without backtracking. All the other values are then considered to achieve a complete
search.

The SPH heuristic search is depicted in Fig. 4. The variable C1 (line 3) counts
the number of multicast nodes included in RP in which the variable RP represents
the set of nodes of RP. The variable S2 represents the set of multicast nodes that
are not in RP (see lines 4–7). At any step, if the number of multicast instantiated

Fig. 4 The SPH search

Constraints

Fig. 5 The incomplete search

and non NULL nodes plus the number of multicast non-instantiated nodes is less than
q, then the search backtracks because it cannot extend this to any feasible solution
(lines 9–10). Lines 12–33 perform the search when the number of multicast nodes in
RP is less than q. Lines 12–14 compute the shortest paths from all nodes of VP \ RP

to RP in which d[v] (line 13) is the distance (i.e., the cost of the shortest path)
from v to RP and pr[v] (line 14) is the successor of v in this shortest path. Line
16 selects the multicast node v of VP \ RP having the smallest distance to RP. If the
path from v to RP does not exist (line 17), then the search backtracks because this
cannot be extended to a feasible solution which contains at least q multicast nodes.
Otherwise, lines 20–31 try to assign values to variables corresponding to nodes on

Constraints

Fig. 6 Partial solution: BAP
contains only one rooted
tree (q = 6)

r

2 3

4

5

6

7

8

9 10

11

1213

14

15

16

the shortest path from v to RP: for each node vi, the search first tries the successor
fvi of vi for x[vi] (line 24). It then tries other values val for x[vi] (lines 27–28)
to ensure the completeness of the search. Lines 35–37 apply the First-Fail heuristic
when the number of multicast nodes in the current partial solution is greater than or
equal to q. These instructions will consider all the possible values for the remaining
uninstantiated variables, ensuring the completeness of the search. Thanks to the
completeness of SPH, the resulting solution implicitly contains a proof of optimality.

3.3 Incomplete shortest-paths heuristic search (IS)

We now consider an incomplete search component, depicted in Fig. 5. The
differences of IS from SPH are:

1. line 16 of Fig. 5 in contrast with line 16 of Fig. 4
2. lines 21–25 of Fig. 5 in contrast with lines 21–31 of Fig. 4
3. lines 29–31 of Fig. 5 in contrast with lines 35–37 of Fig. 4

The first two differences of IS from SPH are that IS tries all multicast nodes v ∈
VP \ RP (line 16 in Fig. 5) instead of selecting the multicast node v of VP \ RP having

Constraints

the smallest distance d[v] to RP (line 16 in Fig. 4). For each path from v to RP

(if it exists), the search assigns the successor fvi of vi to variable x[vi], for all
node vi, except the last one, of the considered path (see lines 20–25). It does not
try other values for x[vi] as in the SPH (see lines 25–29 in Fig. 4). This makes the
search incomplete. The last difference of IS from SPH is that if RP contains at least q
multicast nodes then IS assigns all other variables to NULL (see lines 29–31 in Fig. 5)
because BAP corresponds to a feasible tree, as shown in Proposition 1, while SPH
performs a non-deterministic program for instantiating all non-instantiated variables
because, with SPH, BAP does not always correspond to a tree (lines 35–37 in
Fig. 4).

Proposition 1 During the IS search, if the number of multicast nodes of RP is greater
or equal to q, then BAP corresponds to a tree.

Proof The IS search, at each step, finds and attaches a path P(v) from a
node v ∈ VP \ RP to RP. All arcs of P(v) are attached to the rooted tree
RP to constitute R′

P which is another rooted tree with root r. For exam-
ple, in Fig. 6, RP = {r, 2, 3, 4, 14, 8, 9, 10}, v = 7, P(v) = 〈7, 6, 5, 3〉 and R′

P =
{r, 2, 3, 4, 14, 8, 9, 10, 7, 6, 5}. A bold arc (u, v) ∈ BAP having no common endpoints

Fig. 7 Partial solution: BAP
contains more than one rooted
tree (q = 6)

r

2 3

4

5

6

7

8

9 10

11

1213

14

16

Constraints

with R′
P may appear, thanks to propagation, only when (see, for example, the arc

(9,8) in Fig. 7):

1. the pruning is performed by the current bound of the objective function, and
2. the pruning is performed by the quorum constraint, and
3. u is a multicast node.

This pruning makes the domain of x(u) a singleton: D(x(u)) = {v} (v �= ⊥). The
number of multicast nodes without ⊥ in their domain is always less than or equal
to q. The second pruning is triggered only when the number of multicast nodes of
VP is equal to q and this pruning removes ⊥ from the domain of all multicast nodes
of VP: in Fig. 7, ⊥ is removed from D(10), D(13) and the nodes 10, 13 become bold
nodes. Hence, if BAP has more than one tree, then the number of of multicast nodes
of VP equals to q and some bold multicast nodes are outside RP. Thus we have that
if BAP has more than one tree, then the number of multicast nodes of RP is less
than q. ��

4 Experiments

In [11], the proposed complete algorithm (denoted by Low) was tested on random
instances of 30 nodes with different connectivities: 4, 8, 12. We re-implemented
this state-of-the-art exact algorithm in C++ for the comparison.2 We also re-
implemented the state-of-the-art IMP heuristic algorithm of [2] in Comet for com-
paring it with our incomplete IS method. To evaluate the proposed CP models,
we generated random instances based on the description given in [11] but with
larger graphs: graphs with n = 30, 40, 50, 60 nodes and different connectivities
c ∈ {4, 8, 12}. The values of q and the number of multicast nodes (|S|) are generated
with eight cases: 〈q, |S|〉 ∈ {〈2, 3〉, 〈3, 5〉, 〈4, 7〉, 〈5, 9〉}, 〈5, 20〉, 〈7, 20〉, 〈5, 25〉}, 〈7, 25〉}.
For each tuple 〈n, c, q, |S|〉, we randomly generated ten instances. In total, we have
960 instances which are divided into two classes: the first class contains instances with
〈q, |S|〉 ∈ {〈2, 3〉, 〈3, 5〉, 〈4, 7〉, 〈5, 9〉}3 where

(|S|
q

)
is small and the second class contains

instances with 〈q, |S|〉 ∈ {〈5, 20〉, 〈5, 25〉, 〈7, 20〉, 〈7, 25〉} where
(|S|

q

)
is large (ranging

from 15 103 to 480 103). Due to the stochastic components, for each instance, the First
Fail with primal bound (BFF), and the Shortest Path (SPH) heuristics are executed
ten times. In order to show the interest of the SPH algorithm, the worst execution
of the SPH and the best execution of the BFF among these will be reported for the
comparison. For each instance, the FF algorithm is executed once. The time limit for
each execution of all algorithms is 30 min. The experiments were performed on XEN
virtual machines with 1 core of a CPU Intel Core2 Quad Q6600 @2.40 GHz and 1 GB
of RAM.

2Comet is a programming environment based on a just-in-time compiler. A program written in
Comet always runs slower than in C++.
3The values of 〈q, |S|〉 in this class are exactly as same as in [11].

Constraints

Table 1 Percentage of
instances solved within a time
limit (first instance class)

A bold entry means the
number of the corresponding
technique is better (smaller or
larger) than that of the other
technique

Time limit (s) Low (%) FF (%) BFF (%) SPH (%)

1 4.79 18.54 24.58 22.08
2 6.04 30.63 37.50 37.92
5 7.92 43.33 49.79 51.67
10 10.42 51.25 57.50 63.33
20 12.50 58.54 65.21 70.21
50 17.08 71.46 73.96 79.17
100 20.63 77.29 80.42 86.46
200 25.00 83.13 87.50 91.25
500 31.04 89.38 93.33 95.21
1000 35.63 93.33 96.46 97.29
1200 36.67 93.33 97.08 97.71
1500 38.13 94.17 97.71 98.33
1800 39.38 94.58 98.13 98.75

4.1 Comparison of exact algorithms

We first compare the efficiency of Low, FF, BFF, and SPH in term of the number
of instances (among 480 instances of each class) solved within a given time limit.4

The results are given in Tables 1 and 2. Column 1 gives different values of the time
limit. Columns 2–5 respectively give the percentages of instances solved within the
corresponding time limit by Low, FF, BFF, and SPH algorithms. Figures 8 and 9
describe the evolution of this information. They show that our three algorithms FF,
BFF, SPH solve more instances than Low for any value of time limit and SPH is
better than FF and BFF algorithms. It shows that in 1,000 s, the SPH algorithm solves
more than 97 % of the instances in the first class and more than 91 % of the instances
in the second class. Within 1,800 s, the algorithm Low solves only 39.38 % of the
instances in the first class and 42.92 % of instances in the second class. Note that the
efficiency of Low relies strongly on the pruning of the CAP scheme for reducing the
search space. Among 480 random instances of the first class, there are 189 instances
in which the CAP scheme cannot reduce the search space. Moreover, the tables also
show that in all values of time limit except the value 1 s in the first class (see line 1 in
Table 1), the percentage of instances solved by the SPH algorithm is always higher
than that solved by the BFF algorithm.

Table 3 summarizes the average of execution times of the SPH algorithm for
each group of instances, characterized by the tuple 〈n, c, q, |S|〉 (each group has ten
instances). Columns 1 and 4 are instance groups. Columns 2 and 5 present the average
execution times (only instances where the SPH algorithm terminates within 1,800 s
are considered). Columns 3 and 6 gives the number of instances of each group which
are solved within 1,800 s. Figures 10 and 11 present the execution time information
under a column format. We can see that in many instances of the second class, the
SPH algorithm is very efficient (a few seconds). In these instances, as the value of(|S|

q

)
is large, it would be irrelevant to apply an exact MST algorithm to each possible

subset. We now characterize hard/easy instances. For the first class, generally, the

4The algorithm is complete within the given time limit.

Constraints

Table 2 Percentage of
instances solved within a time
limit (second instance class)

A bold entry means the
number of the corresponding
technique is better (smaller or
larger) than that of the other
technique

Time limit (s) Low (%) FF (%) BFF (%) SPH (%)

1 5.00 7.92 10.83 14.58
2 6.46 17.50 21.67 25.21
5 10.83 28.96 33.75 38.54
10 12.71 38.96 45.00 50.00
20 14.58 47.29 53.96 57.50
50 19.17 58.54 65.21 68.13
100 24.38 65.21 71.04 76.46
200 30.00 74.38 78.96 82.92
500 33.75 82.08 86.04 88.54
1000 39.17 87.08 90.00 91.67
1200 40.21 88.75 90.63 92.29
1500 41.46 90.00 91.88 93.54
1800 42.29 90.63 92.50 94.38

instances are harder when one of the values of n,c,〈q, |S|〉 increases5 and the other
values stay the same. The reasons are:

– When n increases, the number of variables of the CP model increases.
– When c increases, the sizes of domains of the variables in the CP model increase.
– When 〈q, |S|〉 increases, the number of multicast nodes that the search must visit

increases.

For the second class, we can see that for instances with the same values of n and c,
the most difficult instances are those having large q and small |S|, i.e., q = 7, |S| = 20.
The reason is when q is higher, the search must visit more multicast nodes. Moreover,
when |S| is higher, there are more choices for feasible solutions and the search
quickly finds a feasible solution with very good quality. This yields more pruning.

4.2 Comparison of incomplete algorithms

We now compare the proposed incomplete IS method with the state of the art
IMP heuristic. The IMP heuristic has been reimplemented in Comet, based on the
description in [2]. Due to the stochastic components, the IMP algorithms is executed
ten times, for 9600 total executions. The IS algorithm has not random factor, it is thus
executed once for each instance. Experimental results show that our IS heuristic finds
optimal solutions 95.42 % of the time in the first instance class and also 95.42 % of
the time in the second class while the IMP heuristic finds optimal solutions 59.67 %
of the time in the first instance class and 39.78 % of the time in the second instance
class. Of course, neither IS nor IMP are able to prove the optimality of the computed
solution. A complete method was used to assess the optimality of the results. For
evaluating the quality of non-optimal solutions found by the IS algorithm, Tables 4
and 5 presents the experimental results on 22 instances where the IS algorithm cannot
find optimal solutions. Columns 2–5 present the minimal, maximal, the average of
the value of the objective function, and the average of execution time found by the
IMP heuristic in ten runs. The objective values found by the IS algorithm and their

5In the first class, when q increases, |S| also increases and vice versa.

Constraints

Fig. 8 Complete algorithms: comparison between FF, BFF, SPH, and low heuristics in term of
number of instances solved in a given time limit (first instance class)

execution times are presented in columns 6–7. The last column shows the optimal
values of the objective function. We see that the IS algorithm finds better solutions
than the IMP algorithm in 15 out of 22 instances in the first instance class and 14
out of 22 instances in the second class while the IMP finds better solutions than the
IS algorithm in only one instance in both two instance classes. Note that for each
of the remaining 458 instances of each instance class, the IS algorithm finds optimal
solutions while the IMP does not. Table 4 also shows that the average execution time
of the IS algorithm is relatively low. Note also that the maximum execution time of
the IS algorithm is 8.45 s in the first instance class. In the second instance class, as the
size of S is much larger, the execution time of the IS algorithm is higher: the maximal
execution time of the IS algorithm is 231.6 s.

As expected, the incomplete IS approach is much more efficient than the complete
SPH approach as the search space is smaller. What is more surprising is the high
quality of the solutions provided by IS. It obtains optimal solutions in 458 out of

Fig. 9 Complete algorithms: comparison between FF, BFF, SPH, and low heuristics in term of
number of instances solved in a given time limit (second instance class)

Constraints

Table 3 Summary of the average of execution time of the SPH algorithm for ten instances of each
group

Instance group t (s) �solved Instance group t (s) �solved

n30-c4-q2-S3 0.65 10 n30-c4-q5-S20 0.85 10
n30-c8-q2-S3 0.95 10 n30-c8-q5-S20 1.03 10
n30-c12-q2-S3 0.72 10 n30-c12-q5-S20 1.70 10
n30-c4-q3-S5 1.02 10 n30-c4-q7-S20 6.78 10
n30-c8-q3-S5 0.83 10 n30-c8-q7-S20 11.76 10
n30-c12-q3-S5 0.97 10 n30-c12-q7-S20 25.56 10
n30-c4-q4-S7 3.38 10 n30-c4-q5-S25 0.53 10
n30-c8-q4-S7 4.21 10 n30-c8-q5-S25 0.63 10
n30-c12-q4-S7 2.53 10 n30-c12-q5-S25 0.90 10
n30-c4-q5-S9 7.74 10 n30-c4-q7-S25 1.53 10
n30-c8-q5-S9 15.75 10 n30-c8-q7-S25 2.59 10
n30-c12-q5-S9 9.73 10 n30-c12-q7-S25 7.04 10
n40-c4-q2-S3 1.90 10 n40-c4-q5-S20 5.57 10
n40-c8-q2-S3 0.55 10 n40-c8-q5-S20 2.56 10
n40-c12-q2-S3 0.65 10 n40-c12-q5-S20 4.30 10
n40-c4-q3-S5 2.69 10 n40-c4-q7-S20 93.73 10
n40-c8-q3-S5 1.99 10 n40-c8-q7-S20 113.39 10
n40-c12-q3-S5 3.54 10 n40-c12-q7-S20 135.77 10
n40-c4-q4-S7 13.28 10 n40-c4-q5-S25 3.60 10
n40-c8-q4-S7 21.57 10 n40-c8-q5-S25 1.33 10
n40-c12-q4-S7 39.96 10 n40-c12-q5-S25 2.34 10
n40-c4-q5-S9 57.00 10 n40-c4-q7-S25 41.02 10
n40-c8-q5-S9 58.22 10 n40-c8-q7-S25 22.74 10
n40-c12-q5-S9 91.95 10 n40-c12-q7-S25 43.10 10
n50-c4-q2-S3 2.20 10 n50-c4-q5-S20 8.82 10
n50-c8-q2-S3 0.99 10 n50-c8-q5-S20 30.87 10
n50-c12-q2-S3 1.07 10 n50-c12-q5-S20 59.84 10
n50-c4-q3-S5 2.70 10 n50-c4-q7-S20 229.17 10
n50-c8-q3-S5 6.97 10 n50-c8-q7-S20 553.63 8
n50-c12-q3-S5 4.52 10 n50-c12-q7-S20 569.39 8
n50-c4-q4-S7 41.86 10 n50-c4-q5-S25 5.77 10
n50-c8-q4-S7 63.68 10 n50-c8-q5-S25 9.87 10
n50-c12-q4-S7 34.05 10 n50-c12-q5-S25 15.99 10
n50-c4-q5-S9 212.44 10 n50-c4-q7-S25 90.48 10
n50-c8-q5-S9 253.73 9 n50-c8-q7-S25 251.55 10
n50-c12-q5-S9 174.77 10 n50-c12-q7-S25 214.59 9
n60-c4-q2-S3 1.89 10 n60-c4-q5-S20 29.45 10
n60-c8-q2-S3 2.13 10 n60-c8-q5-S20 117.25 10
n60-c12-q2-S3 5.90 10 n60-c12-q5-S20 113.45 10
n60-c4-q3-S5 10.80 10 n60-c4-q7-S20 284.36 7
n60-c8-q3-S5 17.74 10 n60-c8-q7-S20 1114.98 6
n60-c12-q3-S5 21.75 10 n60-c12-q7-S20 762.72 2
n60-c4-q4-S7 52.30 10 n60-c4-q5-S25 11.28 10
n60-c8-q4-S7 95.62 10 n60-c8-q5-S25 29.70 10
n60-c12-q4-S7 175.30 10 n60-c12-q5-S25 28.80 10
n60-c4-q5-S9 306.58 9 n60-c4-q7-S25 103.63 9
n60-c8-q5-S9 511.98 10 n60-c8-q7-S25 476.26 7
n60-c12-q5-S9 270.79 6 n60-c12-q7-S25 562.29 7

Constraints

Fig. 10 Average of execution time of the SPH algorithm for ten instances of each group in the first
class

480 instances of each class. Clearly, when no proof of optimality is required, the IS
method is a good candidate.

4.3 Memory requirements

Table 6 summarizes the memory consumed by the considered algorithms in the
second instance class. The last column gives the number of instances among 480
instances where the algorithm crashed because of lack of memory. Columns 2–5

Fig. 11 Average of execution time of the SPH algorithm for ten instances of each group in the second
class

Constraints

Table 4 Results on instances where IS cannot find optimal solutions (first instance class)

Instance IMP IS opt∗

m M μ t (s) m t (s)

g-n30-c8.ins10-q2-S3 128 146 138.8 0.13 128 0.58 122
g-n30-c12.ins3-q2-S3 108 108 108 0.16 108 0.54 107
g-n40-c12.ins1-q2-S3 117 117 117 0.20 117 0.6 110
g-n60-c12.ins8-q2-S3 195 195 195 0.32 165 0.88 164
g-n40-c12.ins1-q3-S5 155 156 155.6 0.20 155 0.6 149
g-n50-c8.ins2-q3-S5 150 150 150 0.22 148 0.66 137
g-n50-c12.ins8-q3-S5 132 132 132 0.22 132 0.75 129
g-n60-c8.ins10-q3-S5 142 142 142 0.28 133 0.88 132
g-n30-c4.ins8-q4-S7 241 278 255.8 0.13 238 0.52 208
g-n30-c8.ins10-q4-S7 174 174 174 0.15 147 0.5 142
g-n40-c4.ins1-q4-S7 321 321 321 0.17 310 0.7 293
g-n50-c4.ins7-q4-S7 258 258 258 0.29 258 0.72 253
g-n50-c12.ins7-q4-S7 189 189 189 0.25 145 0.84 137
g-n60-c4.ins9-q4-S7 281 281 281 0.31 258 1.05 253
g-n60-c8.ins10-q4-S7 164 164 164 0.30 162 1 153
g-n60-c12.ins8-q4-S7 207 207 207 0.36 186 1.32 183
g-n60-c12.ins9-q4-S7 164 164 164 0.34 158 1.05 157
g-n30-c12.ins5-q5-S9 82 83 82.8 0.20 83 0.52 82
g-n40-c12.ins7-q5-S9 143 143 143 0.18 123 0.59 119
g-n50-c8.ins7-q5-S9 230 230 230 0.26 220 2.76 218
g-n60-c12.ins5-q5-S9 171 172 171.7 0.34 155 1.73 152
g-n60-c12.ins7-q5-S9 158 158 158 0.28 154 4.39 153

A bold entry means the number of the corresponding technique is better (smaller or larger) than that
of the other technique

presents the minimal, the maximal, the average, and the standard deviation of
memory consumed (in MB) of the algorithms over 480 instances.6 The memory
consumed is measured in term of VmSize of the process executing the algorithms.
We can see that the IMP algorithm consumed less memory than the algorithms
using CP search (FF, BFF, SPH, IS) because the IMP does not use backtracking
search. The exact algorithm Low of [11] crashed in 207 instances and the variation
of memory requirement in non-crashed cases is high (from 2.9 MB to 2965 MB). On
some difficult instances, the Low algorithm can be very efficient, but requires too
much memory on other difficult instances.

4.4 Dealing with side constraints

This section illustrates on a concrete example the extensibility of the CP model.
We introduce a delay side constraints, what is particularly realistic for this problem.
Suppose that each edge is associated with a unit delay, and the solution must satisfy a
constraint saying that the total delay of the path from the source to each node of the

6Only instances without memory crashed are considered.

Constraints

Table 5 Results on instances where IS cannot find optimal solutions (second instance class)

Instance IMP IS opt∗

m M μ t (s) m t (s)

g-n40-c4.ins1-q5-S20 219 219 219 0.17 213 1.16 199
g-n40-c4.ins2-q5-S20 226 226 226 0.17 219 0.83 202
g-n40-c4.ins5-q5-S20 223 223 223 0.17 220 1.3 218
g-n40-c4.ins10-q5-S20 137 137 137 0.17 137 0.7 130
g-n40-c12.ins8-q5-S20 77 77 77 0.16 76 1 75
g-n60-c4.ins7-q5-S20 167 167 167 0.30 167 1.39 157
g-n60-c8.ins4-q5-S20 124 132 131.2 0.29 124 2.52 118
g-n40-c4.ins8-q7-S20 274 274 274 0.17 254 1.7 246
g-n50-c4.ins1-q7-S20 313 313 313 0.21 313 14.63 299
g-n50-c4.ins5-q7-S20 243 243 243 0.21 242 2.46 235
g-n50-c12.ins3-q7-S20 186 186 186 0.21 178 55.81 173
g-n30-c4.ins2-q5-S25 79 79 79 0.13 79 0.51 77
g-n30-c4.ins4-q5-S25 180 180 180 0.13 179 0.53 166
g-n30-c8.ins7-q5-S25 83 83 83 0.14 85 0.75 82
g-n30-c12.ins8-q5-S25 96 96 96 0.13 93 0.78 91
g-n60-c12.ins10-q5-S25 101 101 101 0.28 101 1.67 100
g-n30-c4.ins3-q7-S25 249 249 249 0.12 229 3.94 223
g-n40-c4.ins1-q7-S25 250 250 250 0.16 235 6.19 226
g-n40-c12.ins5-q7-S25 140 140 140 0.17 135 32.18 132
g-n50-c4.ins5-q7-S25 243 243 243 0.22 238 4.12 235
g-n60-c4.ins1-q7-S25 302 302 302 0.29 282 4.05 271
g-n60-c12.ins9-q7-S25 157 163 160 0.29 157 75.64 156

A bold entry means the number of the corresponding technique is better (smaller or larger) than that
of the other technique

tree must not exceed maxDelay. To do this, we simply insert the following snippet
to the model in Fig. 1 between lines 18 and 19:

1 forall(i in 1..n: i != r){
2 cp.post((x[i] != NULL) > (y[i] <= maxDelay));
3 }

Experimental results with maxDelay = 3 in the first instance class are presented
in Fig. 12. We can see that the SPH heuristic solves more instances than the FF
heuristic in a time limit less than 10 s. But when the time limit is greater than 10 s,
the FF heuristic solves more instances than the SPH heuristic. In 30 min, the FF
heuristic solves more than 74 % of the instances while the SPH heuristic solves less
than 59 % of the instances. The reason is that SPH does not take into account side

Table 6 Summary of memory requirement (in MB) of algorithms

Algorithm min max avg std. dev. Memory crashed

FF 51.6 56.6 55.3 1.26 0
BFF 53.2 58.3 56.9 1.30 0
SPH 52.3 56.7 55.4 0.88 0
Low 2.9 2965.3 499.0 824.78 207
IMP 30.7 31.1 30.9 0.086 0
IS 53.3 62.1 58.1 3.06 0

Constraints

Fig. 12 Delay side constraints: number of instances solved in a given time limit

constraints and is thus only dedicated to the problem without side constraints. At
each step, the SPH heuristic choose a node having the smallest distance to the partial
tree. Without side constraints, this choice always leads to a solution, hopefully of
high quality. With side constraints, this choice may violate delay constraints, hence
requiring backtracking before finding a first solution. However, the FF heuristic is
generic; it exploits all the constraints, including the side ones. It is thus more efficient
than SPH on large problems with side constraints.

5 Conclusion

In this paper, we proposed a Constraint Programming model and two different search
components for solving the quorumcast routing problem. These two search heuristics
are the main contibution of this paper and are based on Shortest Path, inspired by the
MPH algorithm [2]. The first search component, denoted SPH, provides a complete
approach, while the IS search component only considers part of the search tree and
is thus an incomplete method.

We showed that specific search heuristics exploiting the problem structure are
more efficient than the generic First Fail search heuristic over the proposed CP
model. The CP model with the generic First Fail heuristic is also shown to be better
than the exact state-of-the-art algorithm of [11]. The proposed IS approach (the CP
model+incomplete search) has been shown to outperform the state-of-the-art IMP
heuristic. In addition to the efficiency, the proposed CP model can be easily extended
to deal with other constraints on trees, for example, a constraint on the degrees of
the nodes or on the delay of paths from the source to other nodes. We showed the
feasibility of the CP model when delay side constraints are added with generic First
Fail heuristic search while it requires very sophisticated and specific techniques for
searching solutions when using the MIP approach. For not-too-hard instances, we
can apply the CP solver as a black box with default first-fail heuristic search which is

Constraints

good while we cannot do this with MIP approach as it requires to state an exponential
number of constraints in the modeling.

The CP models and the instances experimented in this paper are available on:
http://becool.info.ucl.ac.be/ for future comparisons.

As future work, we intend to extend the proposed CP approach for the resolution
of an extensively studied application on networks: Delay Bound Minimum Cost
Multicast (DBMC) for multicast routing with QoS constraints application [9]. We will
also study other side constraints on trees and develop other incomplete CP search for
other classes of problems to compete with local search approaches.

References

1. Althaus, E., Polzin, T., & Daneshmand, S. V. (2003). Improving linear programming approaches
for the Steiner tree problem. In Experimental and ef f icient algorithms. Lecture notes in computer
science, 2003. (Vol. 2647/2003, pp. 1–14).

2. Cheung, S. Y., & Kumar, A. (1994). Efficient quorumcast routing algorithms. In Proceedings of
INFOCOM’94 (pp. 840–847).

3. Chimani, M., Kandyba, M., & Ljubic, P. M. I. (2009). Obtaining optimal k-cardinality trees fast.
ACM Journal of Experimental Algorithmics, 14(2), 5.1–5.23.

4. Comet (2011). Comet user manual, dynadec. http://dynadec.com/. Accessed 15 Sept 2010.
5. Dilkina, B. N., & Gomes, C. P. (2010). Solving connected subgraph problems in wildlife conser-

vation. In 6. 7th International conference on integration of AI and OR techniques in constraint
programming for combinatorial optimization problems (CPAIOR 2010) (pp. 102–116).

6. Dooms, G., & Katriel, I. (2006). The minimum spanning tree constraint. In 12th international
conference on principles and practice of constraint programming (CP2006) (pp. 211–225).

7. Dooms, G., & Katriel, I. (2007). The “not-too-heavy spanning tree” constraint. In 4th inter-
national conference on integration of AI and OR techniques in constraint programming for
combinatorial optimization problems (CPAIOR 2007) (pp. 59–70).

8. Du, B., Gu, J., Tsang, D., & Wang, W. (1996). Quorumcast routing by multispace search. In
Proceedings of IEEE Globecom 1996 (pp. 1069–1073).

9. Li, S., Melhem, R., & Znati, T. (2004). An efficient algorithm for constructing delay bounded
minimum cost multicast trees. Journal of Parallel and Distributed Computing, 64, 1399–1413.

10. Ljubic, I., Weiskircher, R., Pferschy, U., Klau, G. W., Mutzel, P., & Fischetti, M. (2006). An
algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. Math-
ematical Programming, 105(2–3), 427–449.

11. Low, C. P. (1998). A fast search algorithm for the quorumcast routing problem. Information
Processing Letters, 66, 87–92.

12. Noronha, T. F., Ribeiro, C. C., & Santos, A. C. (2010). Solving diameter-constrained minimum
spanning tree problems by constraint programming. International Transactions in Operational
Research, 17, 653–665.

13. Régin, J.-C. (2008). Simpler and incremental consistency checking and arc consistency filtering
algorithms for the weighted spanning tree constraint. In 5th international conference on integra-
tion of AI and OR techniques in constraint programming for combinatorial optimization problems
(CPAIOR 2008) (pp. 233–247).

14. Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming. New York,
U.S.A.: Elsevier Science Inc.

15. She, Q., Kannasoot, N., Jue, J. P., & Kim, Y.-C. (2009). On finding minimum cost tree for multi-
resource manycast in mesh networks. Optical Switching and Networking, 6, 29–36.

16. Wang, B., & Hou, J. C. (2004). An efficient QoS routing algorithm for quorumcast communica-
tion. Computer Networks Journal, 44(1), 43–61.

http://becool.info.ucl.ac.be/
http://dynadec.com/

	Solving the quorumcast routing problem by constraint programming
	Abstract
	Introduction
	Problem formulation
	Related work
	Structure of the paper

	CP model
	Variables
	The CP model

	The search
	First-Fail search
	Shortest-Paths Heuristic search (SPH)
	Incomplete shortest-paths heuristic search (IS)

	Experiments
	Comparison of exact algorithms
	Comparison of incomplete algorithms
	Memory requirements
	Dealing with side constraints

	Conclusion
	References

