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Abstract Constrained optimum tree (COT) and constrained optimum path (COP)
problems arise in many real-life applications and are ubiquitous in communication
networks. They have been traditionally approached by dedicated algorithms, which
are often hard to extend with side constraints and to apply widely. This paper
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bringing the compositionality, reuse, and extensibility at the core of constraint-based
local search and constraint programming systems. The modeling contribution is the
ability to express compositional models for various COT/COP applications at a high
level of abstraction, while cleanly separating the model and the search procedure.
The main technical contribution is a connected neighborhood based on rooted
spanning trees to find high-quality solutions to COP problems. This framework is
applied to some COT/COP problems, e.g., the quorumcast routing problem, the
edge-disjoint paths problem, and the routing and wavelength assignment with delay
side constraints problem. Computational results show the potential importance of
the approach.
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1 Introduction

Constrained optimum tree (COT) and constrained optimum path (COP) problems
appear in various real-life applications such as telecommunication and transportation
networks. These problems consist of finding one or more trees (or paths) on a given
graph satisfying some given constraints while minimizing or maximizing an objective
function. Some COT problems have been considered and solved in the literature,
e.g., Degree Constrained Minimum Spanning Tree (DCMST) [7, 45], Bounded
Diameter Minimum Spanning Tree (BDMST) [35], Capacitated Minimum Spanning
Tree problem (CMST) [3, 56], Minimum Diameter Spanning Tree (MDST) [50],
Edge-Weighted k-Cardinality Tree (KCT), [20, 25], Steiner Minimal Tree (SMT)
[28, 66], Optimum Communication Spanning Tree problems (OCST) [32], etc. We
also see many COP problems which have been studied and solved in the liter-
ature. For instance, in telecommunication networks, routing problems supporting
multiple services involve the computation of paths minimizing transmission costs
while satisfying bandwidth and delay constraints [15, 27, 30]. Similarly, the problem
of establishing routes for connection requests between network nodes is one of
the basic operations in communication networks and it is typically required that
no two routes interfere with each other due to quality-of-service and survivability
requirements. This problem can be modeled as an edge-disjoint paths problem
[18]. Most of these COT/COP problems are NP-hard. They are often approached
by dedicated algorithms including exact methods, such as the Lagrangian-based
heuristic [7], the ILP-based algorithm using directed cuts [25], the Lagrangian-based
branch and bound in [15], and the vertex labeling algorithm from [30]; there are also
meta-heuristic algorithms such as a hybrid evolutionary algorithm [19], ant colony
optimization [21], and local search [20]. These techniques exploit the structure of the
constraints and the objective functions but are often difficult to extend or reuse.

This paper1 proposes a constraint-based local search (CBLS) [62] framework for
COT/COP applications to support the compositionality, reuse, and extensibility at
the core of CBLS and CP systems. It follows the trend of defining domain-specific
CBLS frameworks, capturing modeling abstractions and neighborhoods for classes of
applications exhibiting significant structures. As is traditional for CBLS, the resulting
LS(Graph) framework allows the model to be compositional and easy to extend,
and provides a clean separation of concerns between the model and the search
procedure. Moreover, the framework captures structural moves that are fundamental
in obtaining high-quality solutions for COT/COP applications. The key technical
contribution underlying this COP framework is a novel connected neighborhood for
COP problems based on rooted spanning trees. More precisely, this COP framework
incrementally maintains, for each desired elementary path, a rooted spanning tree
that specifies the current path and provides an efficient data structure to obtain its
neighboring paths and their evaluations.

The availability of high-level abstractions (the “what”) and the underlying
connected neighborhood for elementary paths (the “how”) make the LS(Graph)
framework particularly appealing for modeling and solving complex COP
applications.

1This paper is an extended version of [54] and is based on the PhD thesis [53].
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The LS(Graph) framework, implemented in COMET, was evaluated experimen-
tally on two classes of applications: COT with the quorumcast routing (QR)
problem and COP with the edge-disjoint path (EDP) problems and the routing
and wavelength assignment problem with side constraints (RWA-D). In [37], we
present another application in the domain of traffic engineering in switched ethernet
networks. The experimental results show the potential of the approach.

1.1 Case studies

We first describe three problems that will be modeled and solved by the LS(Graph)
framework.

1.1.1 The quorumcast routing (QR) problem

The quorumcast routing (QR) problem arises in distributed applications [24, 29, 48,
63]. Given a weighted undirected graph G = (V, E), to each edge e ∈ E there is
associated a cost w(e). Given a source node r ∈ V, an integral value q, and a set S ⊆ V
of multicast nodes, the quorumcast routing problem consists in finding a minimum
cost tree T = (V ′, E′) of G spanning r and q nodes of S. T = (V ′, E′) is a graph
satisfying the following properties:

1. V ′ ⊆ V ∧ E′ ⊆ E.
2. T is connected.
3. ∃Q ⊆ S such that �Q = q ∧ Q ∪ {r} ⊆ V ′.
4. The cost of

T =
∑

e∈E′
w(e)

is minimal over all subgraphs of G with properties 1–3.

An exact algorithm [48] has also been proposed for solving the QR problem but
experiments were performed on small graphs (e.g., graph with 30 nodes). Three
heuristics have been proposed in [24] including Minimal Cost Path Heuristic (MPH),
Improved Minimum Path Heuristic (IMP), and Modified Average Distance Heuris-
tic (MAD). Experimental results in that paper show that, among these heuristics, the
IMP heuristic produces the best solutions. In [29], a multispace search heuristic has
been proposed for solving this problem which gives better results than the IMP and
the MAD heuristics on 12-node networks and 100-node networks.

In [63], the authors considered the QR problem with additional constraints
imposed on the total cumulative delay along the path from s to any destination node
of Q, and proposed a distributed heuristic algorithm for solving it. Experiments were
conducted on graphs of up to 200 nodes.

In Section 6.1, we propose a simple model in LS(Graph) for this problem using
a tabu search. This example illustrates the expressive power of LS(Graph) where a
simple but efficient model can be designed in a few lines. Experimental results show
that our LS(Graph) model gives better results than the standard IMP heuristic.
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1.1.2 The edge-disjoint paths (EDP) problem

We are given an undirected graph G = (V, E) and a set T = {〈si, ti〉 | i = 1, 2,
..., �T; si 
= ti ∈ V} representing a list of commodities. A subset T ′ ⊆ T, T ′ =
{〈si1 , ti1〉, ..., 〈sik , tik〉} is called edp-feasible if there exist mutually edge-disjoint paths
from si j to ti j on G, ∀ j = 1, 2, .., k. The EDP problem consists in finding a edp-feasible
subset of T with maximal cardinality. In other words,

max �T ′ (1)

s.t. T ′ ⊆ T (2)

T ′ is edp-feasible (3)

This problem appears in many applications such as real-time communication,
VLSI-design, routing, and admission control in modern networks [8, 23]. The existing
techniques for solving this problem include approximation algorithms [13, 22, 42, 43],
greedy approaches [42, 44], and an ant colony optimization (ACO) metaheuristic
[18]. It has been shown in [18] that ACO is the start-of-the-art algorithm for this
problem. In that paper, the ACO algorithm were compared with a simple greedy
algorithm in [42](the multi-start version).

In Section 6.2, we propose two heuristic algorithms applying LS(Graph). We
experimentally show competitive results compared with the ACO algorithm in [18].
This example illustrates how LS(Graph) can be used to implement more complex
heuristics.

1.1.3 The routing and wavelength assignment problem with a delay side constraint
(RWA-D)

Wavelength division multiplexing (WDM) optical networks [49] provide high band-
width communications. The routing and wavelength assignment (RWA) problem
is an essential problem on WDM optical networks. The RWA problem can be
described as follows. Given a set of requests for all-optical connections, the RWA
problem consists of finding routes from the source nodes to their respective desti-
nation nodes and assigning wavelengths to these routes. A condition that must be
satisfied is that two routes sharing common edges must be assigned different wave-
lengths. Normally, the number of available wavelengths is limited and the number
of requests is high. Two variants of this problem have been studied extensively in
the literature: the minRWA problem aims at minimizing the number of wavelength
used for satisfying all requests, and the maxRWA aims at maximizing the number of
requests with a given number of wavelengths. Both variants are NP-Hard [26].

In the literature, there have been different techniques proposed for solving these
problems, e.g.: exact methods based on the ILP formulation [23, 40, 46, 47, 52, 55, 61,
65]; heuristic algorithms [11, 12, 31, 67]; and metaheuristics, including tabu search [39,
51] and Genetic [4, 10, 38]. These techniques have been tried on realistic networks
of small size (networks up to 27 nodes and 70 edges) but involving a large number
of connection requests. RWA with additional constraints has also been considered,
e.g., in [5, 64].

In order to show the interest of the modeling framework, we consider the
minRWA problem with a side constraint (e.g., a delay constraint) specifying that the
cost of each route must be less than or equal to a given value. The point here is not to
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study a model competitive in comparison with state-of-the-art techniques for classical
RWA problems. Rather, we show the flexibility of this modeling framework, one
which enables a combination of VarGraph of LS(Graph) with var{int} of COMET.

The formal definition of the problem (called RWA-D) is the following. Given
an undirected weighted graph G = (V, E), each edge e of G has cost c(e) (e.g.,
the delay in traversing e). We suppose given a set of connection requests R =
{〈s1, t1〉, 〈s2, t2〉, ..., 〈sk, tk〉} and a value D. The RWA-D problem consists of finding
routes pi from si to ti and their wavelengths for all i = 1, 2, ..., k such that:

1. the wavelengths of pi and pj are different if they have common edges, ∀i 
= j ∈
{1, 2, ..., k} (wavelength constraint),

2.
∑

e∈pi
c(e) ≤ D,∀i = 1, 2, ..., k (delay constraint)

3. the number of different wavelengths is minimized (objective function).

In Section 6.3, a local search algorithm and its implementation in LS(Graph) will be
proposed for solving the RWA-D problem.

1.2 Contribution

The contributions of this paper are the following:

1. We design and implement a constraint-based local search (CBLS) [62] frame-
work, called LS(Graph), for COT/COP applications. It supports the compo-
sitionality, reuse, and extensibility at the core of CBLS and CP systems. The
proposed framework can be used as either a black box or a glass box. The
black box is exploited in the sense that users only need to state the model in
a declarative way, with variables, constraints, and an objective function to be
optimized. Built-in search components (e.g., tabu search) are then performed
automatically. The glass box allows users to extend the framework by designing
and implementing their own components (e.g., invariants, constraints, objective
functions, and search heuristics) and integrating them with the system.

2. The LS(Graph) combines graph variables (i.e., VarTree, VarPath for mod-
eling trees and paths in a high-level way) with standard var{int} of COMET,
which enables the modeling of various COT/COP applications on graphs for
which both the topology and scalar values must be determined.

3. A key technical contribution of the paper is a novel connected neighborhood
for COP problems based on rooted spanning trees. More precisely, the COP
framework incrementally maintains, for each desired elementary path, a rooted
spanning tree that specifies the current path and provides an efficient data
structure to obtain its neighboring paths and their evaluations.

4. We propose incremental algorithms for implementing some fundamental ab-
stractions of the framework. We show that the incrementality does not improve
the theoretical complexity but is efficient in practice.

5. We apply the constructed framework to a COT problems: the quorumcast
routing problem and two COP problems: the edge-disjoint paths problem and
the routing and wavelength assignment problem with delay side constraints on
optical networks. Experimental results show the potential significance of our
approach from both the programming and the computation stand points. For
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the first two problems, we show competitive results in comparison with existing
techniques and for the third problem, we show how to solve complex problems
flexibly and easily.

The LS(Graph) framework is open source. The COMET code of LS(Graph)
and applications as well as instances experimented in this paper are available at
http://becool.info.ucl.ac.be/lsgraph.

1.3 Outline

The rest of this paper is organized as follows. Section 2 gives the basic definitions and
notations. Section 3 specifies neighborhoods for COT applications and proposes our
novel neighborhoods for COP applications. Section 4 gives an overview of data struc-
tures and algorithms for implementing two fundamental and non-trivial abstractions
of the framework. The implementation of the framework in COMET programming
language will be introduced in Section 5. Sections 6 presents the application of
the framework to the resolution of the QR, EDP and RWA-D problems. Finally,
Section 7 concludes the paper and gives some future work.

2 Definitions and notations

Graphs Given an undirected graph g, we denote the set of nodes and the set of
edges of g by V(g), E(g) respectively. The degree of a node v (denoted degg(v)) is
the number of incident edges to this edge: degg(v) = �{u | (v, u) ∈ V(g)}.

A graph sg is called subgraph of a graph g if V(sg) ⊆ V(g) and E(sg) ⊆ E(g) and
we denote sg ⊆ g.

A path on g is a sequence of nodes 〈v1, v2, ..., vk〉 (k > 1) in which vi ∈ V(g)

and (vi, vi+1) ∈ E(g),∀i = 1, . . . , k − 1. The nodes v1 and vk are the origin and the
destination of the path. A path is called simple if there is no repeated edge and
elementary if there is no repeated node. A cycle is a path in which the origin and
the destination are the same. This paper only considers elementary paths and hence
we use “path” and “elementary path” interchangeably if there is no ambiguity. A
graph is connected if and only if there exists a path from u to v for all u, v ∈ V(g).

Given two paths px = 〈x1, x2, ..., xk〉 and py = 〈y1, y2, ..., yq〉, we denote px + py
the concatenation of these two paths: px + py = 〈x1, x2, ..., xk, y1, y2, ...yq〉 if xk 
= y1

and px + py = 〈x1, x2, ..., xk = y1, y2, ..., yq〉 if xk = y1.
Given paths p, p1, p2, and q,

– V(p) is the set of nodes of p
– p1 ∪ p2 (p1 ∩ p2) is the set V(p1) ∪ V(p2) (V(p1) ∩ V(p2)).
– x ∈ P is the predicate x ∈ V(p).
– s(p), t(p) are, respectively, the starting and terminating nodes of p.
– p(u, v) is the subpath of p starting from u and terminating at v (u, v ∈ p and u is

not located after v on p).
– spp(x), tpp(x) is the subpath of p from s(p) to x and from x to t(p).
– repl(p, q) = spp(s(q)) + q + tpp(t(q)) with s(q), t(q) ∈ p. Intuitively, repl(p, q) is

the path generated by replacing the subpath of p from s(q) to t(q) by q.

http://becool.info.ucl.ac.be/lsgraph
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Fig. 1 Illustrating Property 1
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Trees A tree is an undirected connected graph containing no cycles. A spanning tree
tr of an undirected connected graph g is a tree spanning all the nodes of g: V(tr) =
V(g) and E(tr) ⊆ E(g). A tree tr is called a rooted tree at r if the node r has been
designated the root. Each edge of tr is implicitly oriented towards the root. If the
edge (u, v) is oriented from u to v, we call v the father of u in tr, which is denoted by
fatr(u). Given a rooted tree tr and a node s ∈ V(tr),

– root(tr) denotes the root of tr,
– pathtr(v) denotes the path from v to root(tr) on tr. For each node u of pathtr(v),

we say that u dominates v in tr (alternatively, u is a dominator of v, v is a
descendant of u) which we denote by u Domtr v. If u does not dominates v on
tr, we write u Domtr v.

– pathtr(u, v) denotes the path from u to v in tr (u, v ∈ V(tr)).
– ncatr(u, v) denotes the nearest common ancestor of two nodes u and v. In other

words, ncatr(u, v) is the common dominator of u and v such that there is no other
common dominator of u and v that is a descendant of ncatr(u, v).

– Given a node v ∈ V(tr), we denote by Ttr(v) the subtree of tr rooted at v. If
v 
= root(tr), we denote by Ttr(v) the subtree of tr generated by removing Ttr(v)

and the edge (v, fatr(v)) from tr: V(Ttr(v)) = V(tr) \ V(Ttr(v)) and E(Ttr(v)) =
E(tr) \ (E(Ttr(v)) ∪ {(v, fatr(v))}).

Property 1 Suppose given a rooted tree tr.

1. Suppose given a node x ∈ V(tr). We have x Domtr y,∀y ∈ V(Ttr(x)). In other
words, a vertex x of a rooted tree tr dominates all vertices of the subtree of tr
rooted at x.
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2. Suppose given two nodes x, y ∈ V(tr) such that x = fatr(y) and two nodes z, v

such that z ∈ V(Ttr(y)), v ∈ V(Ttr(y)). We have ncatr(v, z) = ncatr(v, x). This
property is illustrated in Fig. 1: ncatr(v, z) = ncatr(v, x) = 12.

3 Neighborhoods

This section defines neighborhoods for COT and COP problems. The neighborhood
for COT applications is based on traditional modification actions on dynamic trees
(i.e., trees which can be modified): add, remove, and replace over edges. Our main
technical contribution for COP applications is to propose a neighborhood structure
based on spanning trees. We first present neighborhoods for COT applications.

3.1 COT neighborhood

A neighborhood of a tree is a set of trees generated by performing modification
actions on the given tree. Given an undirected graph g and a dynamic tree tr of g (tr
can be modified such that tr ⊆ g), we specify a set of basic modifications conserving
the tree property. We consider in this framework the following basic modifications.

1. add edge action An edge e = (u, v) ∈ E(g) \ E(tr) can be added to tr if tr is
empty, or if there is exactly one node u or v in the tree tr: u ∈ V(tr) XOR v ∈ V(tr).
This edge is called an insertable edge. The insertion of this edge implicitly adds
its endpoints to tr if they do not exist in tr. The set of insertable edges of tr is
denoted by Inst(tr) and this insertion action is denoted by addEdge(tr, e). We
also use addEdge(tr, e) to denote the resulting tree. The first basic neighborhood
is the following:

NT1(tr) = {addEdge(tr, e) | e ∈ Inst(tr)}
2. remove edge action An edge e = (u, v) ∈ E(tr) can be removed from tr if one

node u or v is a leaf of tr: degtr(u) = 1 ∨ degtr(v) = 1. This edge is called a
removable edge. The removal of this edge thus also removes its endpoints
if they are the leaves of tr. The set of removable edges of tr is denoted by
Remv(tr) and this removal action is denoted by removeEdge(tr, e). We also use
removeEdge(tr, e) to denote the resulting tree. The second basic neighborhood is
defined as follows:

NT2(tr) = {removeEdge(tr, e) | e ∈ Remv(tr)}
3. replace cycle edge action [2] An edge e′ of tr can be replaced by another edge

e = (u, v) ∈ E(g) \ E(tr) with u, v ∈ V(tr) conserving the tree property in the
following case: the insertion of e creates a fundamental cycle containing e′ and
the removal of e′ removes the cycle and restores the tree property. The edge e is
called a replacing edge, and e′ is called a replaceable edge of e. The set of nodes of
tr is unchanged by this replacement. We denote by Repl(tr) the set of replacing
edges of tr and Repl(tr, e) the set of replaceable edges of the replacing edge e. We
use replaceEdge(tr, e′, e) to denote both the replacement action and the resulting
tree. The third basic neighborhood is defined as follows:

NT3(tr) = {replaceEdge(tr, e′, e) | e ∈ Repl(tr) ∧ e′ ∈ Repl(tr, e)}
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In practice, we can combine the above basic moves to perform more complex
moves. For instance, we take addEdge(tr, e1) and removeEdge(tr, e2) at hand where
e1 ∈ Remov(tr) and e2 ∈ Inst(tr) and e1 and e2 do not have common endpoint that is
the leaf tr.2 The set of such pairs of 〈e1, e2〉 is denoted by RemvInst(tr). This kind of
neighborhood has been considered in the tabu search algorithm of [20]. The formal
definition of this neighborhood is

NT1+2(tr) = {addEdge(removeEdge(tr, e2), e1) | 〈e1, e2〉 ∈ RemvInst(tr)}
In the following section, we introduce a novel neighborhood for COP applications.

3.2 COP neighborhood

We consider in this paper only elementary paths, i.e., paths having no repeated
vertices. These are those which appear in most COP applications. Our constructed
framework also supports the modeling of paths where vertices or edges can be
repeated, but this will not be presented here (see more details in [53]).

For COP problems, a neighborhood of a path defines a set of paths that can be
reached from the current path. The most general neighborhood of a path p on a given
graph g is defined as the set of paths generated by replacing a subpath of the current
path by another path on the given graph conserving the path property: N (p) =
{repl(p, q) | q ∈ R(p)} in which R(p) is the set of paths q satisfying followings
conditions:

(1) q ∈ g
(2) s(q), t(q) ∈ p
(3) spp(s(q)) ∩ q = {s(q)}
(4) tpp(t(q)) ∩ q = {t(q)}

Conditions (3) and (4) ensure the path property of all elements of N (p) (no
repeated vertices are allowed in a path except starting and terminating vertices).3

Unfortunately, such a neighborhood is too large and does not allow being explored
in a generic way. To overcome this difficulty, in this section, we propose a restricted
neighborhood based on rooted spanning trees. This notion can be widely applied and
allows users to perform efficient neighborhood explorations.

Related work As far as we know, there exist only a few local search approaches
for COP applications on general graphs. Moreover, these local search algorithms
do not explicitly describe neighborhood structures. Rather, the authors talk about
the moves, which are very specific and sophisticated. Such moves do not enable the
compositionality, modularity, and reuse of the local search programs.

On complete graphs, some local search algorithms have been applied for solving
the traveling salesman problem [41] or the vehicle routing problem [9, 34]. In these
approaches, a path is explicitly represented by a sequence of vertices and the neigh-
borhood consists of paths generated by changing some vertices of this sequence (e.g.,
by removing, inserting, exchanging, or changing the position of some vertices). These

2This condition ensures the preservation of the tree property under the modification action.
3By some authors, walks with no repeated vertices are referred to as elementary paths.
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neighborhood structures cannot be applied to general graphs because a sequence of
vertices can not be guaranteed to always form a path on the given graph.

To obtain a reasonable efficiency, a local search algorithm must maintain incre-
mental data structures that allow a fast exploration of this neighborhood and a fast
evaluation of the impact of the moves (differentiation). The key novel contribution
of our COP framework is to use a rooted spanning tree to represent the current
solution and its neighborhood. It is based on the observation that, given a spanning
tree tr whose root is t, the path from a given node s to t in tr is unique. Moreover, the
spanning tree implicitly specifies a set of paths that can be reached from the induced
path and provides a data structure for evaluating their desirability. The rest of this
section describes the neighborhood in detail. Our COP framework considers both
directed and undirected graphs, but, to simplify the presentation, only undirected
graphs are treated.

3.2.1 Rooted spanning trees

Given an undirected graph g and a target node t ∈ V(g), our COP neighborhood
maintains a spanning tree of g rooted at t. Moreover, since we are interested in
elementary paths between a source s and a target t, the data structure also maintains
the source node s and is called a rooted spanning tree (RST) over (g, s, t). An RST
tr over (g, s, t) specifies a unique path from s to t in g: pathtr(s) = 〈v1, v2, ..., vk〉 in
which s = v1, t = vk and vi+1 = fatr(vi), ∀i = 1, . . . , k − 1. By maintaining RSTs for
COP problems, our framework avoids an explicit representation of the paths and
enables the definition of a connected neighborhood that can be explored efficiently.
Indeed, the tree structure directly captures the path structure from a node s to the
root; simple updates to the RST (e.g., an edge replacement) will induce a new path
from s to the root. In this framework, we also consider COP applications in which
the sources and the destinations of the paths are not fixed. Hence, the source s and
the destination (or root) of the RST (g, s, t) can also be changed (but this will not be
presented in this paper, interested readers can refer to the PhD thesis [53]).

Given an RST tr over (g, s, t), we denote by path(tr) the path pathtr(s) which is
the path induced by tr from s to the root t of tr. Given an undirected graph g and a
path p on g, we denote by RSTInduce(g,p) the set of RSTs of g, rooted at t(p), which
induce p.

We define in the following section the neighborhood structure based on edge
replacements. In COP applications, generally, a candidate solution is a set of paths.
Each path has its own neighborhood. A neighborhood of a candidate solution is the
set of candidate solutions generated by changing some paths of the current candidate
solution with their neighbors. Hence, we present only neighborhoods of one path.

3.2.2 The edge-replacement based neighborhood

We first show in this section how to update an RST tr over (g, s, t) based on edge
replacements to generate a new rooted spanning tree tr′ over (g, s, t) which induces a
new path from s to t in g: pathtr′(s) 
= pathtr(s).

Let tr be an RST over (g, s, t), we consider the third basic neighborhood of tr (see
Section 3.1):

NT3(tr) = {replaceEdge(tr, e′, e) | e ∈ Repl(tr) ∧ e′ ∈ Repl(tr, e)}



Constraints

which is the set of RST of (g, s, t). It is easy to observe that two RSTs tr1 and tr2

over (g, s, t) may induce the same path from s to t. For this reason, we now show
how to compute a subset ERNP1(tr) ⊆ NT3(tr) such that pathtr′(s) 
= pathtr(s),∀tr′ ∈
ERNP1(tr).

We first fix some notations to be used in the following presentation. Given an
RST tr over (g, s, t) and a replacing edge e = (u, v), the nearest common ancestors
of s and the two endpoints u, v of e are both located on the path from s to t. We
denote by lowncatr(e, s) and upncatr(e, s) the nearest common ancestors of s on the
one hand and one of the two endpoints of e on the other hand, with the condition
that upncatr(e, s) dominates lowncatr(e, s). We denote by lowtr(e, s), uptr(e, s) the
endpoints of e such that ncatr(s, lowtr(e, s)) = lowncatr(e, s) and ncatr(s, uptr(e, s)) =
upncatr(e, s). Figure 2 illustrates these concepts. The left part of the figure depicts
the graph g and the right side depicts an RST tr over (g, s, r). Edge (8,10) is a
replacing edge of tr; ncatr(s, 10) = 12 since 12 is the common ancestor of s and 10.
ncatr(s, 8) = 7 since 7 is the common ancestor of s and 8. lowncatr((8, 10), s) = 7 and
upncatr((8, 10), s) = 12 because 12 Domtr 7; lowtr((8, 10), s) = 8; uptr((8, 10), s) = 10.

We now specify the replacements that induce a new path from s to t.

Proposition 1 Let tr be an RST over (g, s, t), e = (u, v) be a replacing edge of tr, let
e′ be a replaceable edge of e, and let tr′ = rep(tr, e′, e). Let su = upncatr(e, s) and sv =
lowncatr(e, s). We have that pathtr′(s) 
= pathtr(s) if and only if

(1) su 
= sv and
(2) e′ ∈ pathtr(sv, su)

A replacing edge e of tr satisfying the condition (1) is called a preferred replacing
edge and a replaceable edge e′ of e in tr satisfying condition (2) is called a preferred
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Fig. 2 An example of rooted spanning tree
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replaceable edge of e. We denote by prefRepl(tr) the set of preferred replacing edges
of tr and by prefRepl(tr, e) the set of preferred replaceable edges of the preferred
replacing edge e on tr. We also denote by rep(tr, e′, e) the action and the resulting
RST of replacing a preferred replaceable edge e′ by a preferred replacing edge e on
the RST tr. The edge-replacement based neighborhood (called ER-neighborhood)
of an RST tr is defined by

ERNP1(tr) = {tr′ = rep(tr, e′, e) | e ∈ prefRepl(tr), e′ ∈ prefRepl(tr, e)}.
The action rep(tr, e′, e) is called an ER-move and is illustrated in Fig. 3. In the current
tree tr (see Fig. 3a), the edge (8,10) is a preferred replacing edge, ncatr(s, 8) = 7,
ncatr(s, 10) = 12, lowncatr((8, 10), s) = 7, upncatr((8, 10), s) = 12, lowtr((8, 10), s) = 8
and uptr((8, 10), s) = 10. The edges (7,11) and (11,12) are preferred replaceable
edges of (8,10) because these edges belong to pathtr(7, 12). The path induced by tr is
〈s, 3, 4, 6, 7, 11, 12, t〉. The path induced by tr′ is 〈s, 3, 4, 6, 7, 8, 10, 12, t〉 (see Fig. 3b).

ER-moves ensure that the neighborhood is connected, which is explained in detail
in Proposition 2.

Proposition 2 Let tr0 be an RST over (g, s, t) and P be a path from s to t. An RST
inducing P can be reached from tr0 in k ≤ l basic moves, where l is the length of P .

3.2.3 Neighborhood of independent ER-moves

It is possible to consider more complex moves by applying a set of indepen-
dent ER-moves. Two ER-moves are independent if the execution of the first
one does not affect the second one and vice versa. The sequence of ER-moves
〈rep(tr, e′

1, e1), . . . , rep(tr, e′
k, ek)〉, denoted by rep(tr, e′

1, e1, e′
2, e2, ..., e′

k, ek), is defined
as the application of the sequence of actions 〈rep(tr1, e′

1, e1), rep(tr2, e′
2, e2), . . .,

Fig. 3 Illustrating a basic
move
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rep(trk, e′
k, ek)〉, where tr1 = tr and tr j+1 = rep(tr j, e′

j, e j), ∀ j = 1, . . . , k − 1. It is fea-
sible if the ER-moves are feasible, i.e., e j ∈ prefRpl(tr j) and e′

j ∈ prefRpl(tr j, e j).

Proposition 3 Consider k ER-moves rep(tr, e′
1, e1), . . . , rep(tr, e′

k, ek). If all pos-
sible execution sequences of these basic moves are feasible and the edges
e′

1, e1, e′
2, e2, . . . , e′

k, ek are all dif ferent, then these k ER-moves are independent.

We denote by ERNPk(tr) the set of neighbors of tr obtained by applying k
independent ER-moves. The action of taking a neighbor in ERNPk(tr) is called an
ER-k-move.

It remains to find some criterion for whether two ER-moves are independent.
Given an RST tr over (g, s, t) and two preferred replacing edges e1, e2, we say that
e1 dominates e2 in tr, written e1 Domtr e2, if lowncatr(e1, s) dominates upncatr(e2, s).
Then, two preferred replacing edges e1 and e2 are independent w.r.t. tr if e1 dominates
e2 in tr or e2 dominates e1 in tr.

Proposition 4 Let tr be an RST over (g, s, t), e1 and e2 be two preferred re-
placing edges such that e2 Domtr e1, e′

1 ∈ pref Rpl(tr, e1), and e′
2 ∈ pref Rpl(tr, e2).

Then rep(tr, e′
1, e1) and rep(tr, e′

2, e2) are independent and the path induced by
rep(tr,e′

1,e1,e′
2,e2) is pathtr(s, v1) + pathtr(u1, v2) + pathtr(u2, t), where the addition sign

denotes path concatenation and v1 = lowtr(e1, s), u1 = uptr(e1, s), v2 = lowtr(e2, s),
and u2 = uptr(e2, s).

Figure 4 illustrates a complex move. In tr, the two preferred replacing edges
e1 = (1, 5) and e2 = (8, 10) are independent because lowncatr((8, 10), s) = 7, which
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dominates upncatr((1, 5), s) = 6 in tr. The new path induced by tr′ is 〈s, 3 ,1, 5, 6, 7, 8,
10, 12, t〉, which is actually the path pathtr(s, 1) + pathtr(5, 8) + pathtr(10, t).

4 Data structure and algorithms

In this section, we briefly describe the implementation of some fundamental and
non-trivial abstractions and then analyze their complexities.

4.1 VarTree and nearest common ancestors

VarTree(g) is an abstraction representing a dynamic tree over an undirected graph
g that can be modified by removing, inserting an edge, or replacing an edge by
another edge. It also allows querying information about the tree. For facilitating
manipulations on dynamic trees, the trees are implicitly stored as rooted trees.
Several well-known data structures have been proposed for representing dynamic
trees, for instance, ST-trees [57, 58], topology trees [33], ET-trees [36], top trees
[6, 59], and RC-trees [1] (and the references therein). These data structures maintain
a forest of dynamic rooted trees, supporting update actions (e.g., link and cut) and
some queries (e.g., minimum (maximum) cost edge, node on a path, nearest common
ancestors of two nodes, medians, centers of a tree) in O(log n) time per operation
where n is the number of vertices of the given graph. These data structures have been
experimentally studied in [60]. These data structures are dedicated to implementing
specific network algorithms, for instance the maximum flow problem.

In the LS(Graph) framework, it is required to maintain a dynamic rooted tree
supporting update actions (i.e., add, remove, replace edges) and different basic
queries such as nearest common ancestors of two nodes, the father of a node, the
set of nodes, edges, the set of adjacent edges of a given node. At each step of the
local search process, the system explores a neighborhood, queries the quality of all
neighbors, and chooses one neighbor to move. Usually, the neighborhood is large
and the neighborhood exploration should be as quick as possible. This exploration
requires frequent performances of the above queries over dynamic rooted trees.
Queries over dynamic trees should thus be as fast as possible. For this purpose, we
use a direct data structure for the tree by maintaining the father of each node, the
sets for storing nodes, and the edges and the adjacent edges of each node of the tree.
So the time complexity for each update action is O(n) and the above queries (except
for that for the nearest common ancestors) take O(1) instead of O(log n).

Concerning the nearest common ancestors problem, Bender et al. [16] presented
a simple optimal algorithm for trees which is a sequentialized version of the more
complicated PRAM algorithm of Berkman and Vishkin [17]. An intermediate data
structure is precomputed in O(n); each query nca(u, v) is then computed in O(1)

time. The data structure is based on Euler Tour and the data structure for the
range minimum query (RMQ) problem. We apply the data structure of [16] with
an incremental implementation. This means we partially update the data structure
whenever the tree is modified (i.e., by adding, removing, or replacing edges) instead
of recomputing it from scratch. This incremental implementation does not improve
the time complexity in the worst case (O(n) for each update action) but it is more
efficient in practice. We have tested this implementation on dynamic trees of size
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98, 198, 498, 998, of complete graphs of size 100, 200, 500, 1000. For each graph,
we generate randomly 20 sequences of 10,000 update actions (adding, removing,
replacing edges) conserving the size of the tree. The experimental results show that
this incremental implementation is about 1.6 times faster than recomputing from
scratch.

4.2 Maintaining weighted distances between vertices on dynamic trees

NodeDistances(vt) is a graph invariant which maintains the weighted distances
between all pairs of vertices of a VarTree vt. This invariant allows querying the
cost of the path between any pair of nodes in O(1), and thus allows querying the
differentiations in O(1) in some cases, for instance, querying the change in the cost
of a path under edge replacement actions. To implement this graph invariant, we
use a direct 2-dimensional data structure dis: dis(u, v) represents the cost of the path
from u to v on the current RST tr. The size of this data structure is O(n2) but at any
time of computation, it is maintained and used partially: only those dis(u, v) such that
v dominates u on the current tree tr are considered.

The cost of any two nodes x and y on tr can be queried by Algorithm 1 in O(1)

where line 1 can be queried in O(1).

We now show how to update the dis(x, y) data structure under a local move on
tr, viz., rep(tr, (u1, v1), (u2, v2)). Without loss of generality, suppose that v1 Domtr

v2 and u1 Domtr v1 (see an example in Fig. 5). We put S = {x ∈ V(tr) | v1 Domtr

x}. The following elements of the data structure should be updated: dis(x, y),∀x ∈
S, y ∈ pathtr(v2, ncatr(x, v2)) ∪ pathtr(u2). The update schema is given in Algorithm
2, in which c(u2, v2) is the weighted distance between u2 and v2 in the given graph
(see line 6).

The worst case time complexity is O(n2) but it performs more efficiently in prac-
tice. We now experimentally analyze the efficiency of incrementality in comparison
with recomputation from scratch. To do so, we analyze the ratio ri = si−1

Si
of data
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Fig. 5 Ilustrating the update of dis(u, v) under the replaceEdge(tr, (u1, v1), (u2, v2)) action

structures to be updated (i.e., dis(u, v)) where Si is the number of elements of dis to
be maintained at each step i of the computation:

Si =
∑

v∈V(tri)

ctri(v)

where tri is the tree at step i and ctri(v) is the number of nodes on the path from
v to the root of tri; si is the number of elements of dis to be changed at step i
by the incremental version. We look at dynamic trees of size 98, 198, 498, 998 on
complete graphs of size 100, 200, 500, 1,000. For each graph, we randomly generate
20 sequences of 10,000 moves. The experimental results show that the average value
of ri is about 1

10 . Figures 6 and 7 show the number of elements to be updated and the
number of total elements to be maintained in the last 20 iterations: each iteration is
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Fig. 6 20 last iterations for a complete graph of size 100

a replace edge action or a sequence of two actions (add and remove edge). It is clear
that in the remove edge action, we do not need to update the data structures, so the
number of elements to be updated in this action is zero.

Fig. 7 20 last iterations for a complete graph of size 1,000



Constraints

Fig. 8 Interface of graph invariants (partial description)

5 Implementation in COMET

The LS(Graph) framework is implemented in COMET [62]. That is an extension
(about 25,000 lines of COMET code) of the COMET system. The core of the framework
is the graph variables (e.g., VarTree, VarPath objects representing dynamic trees,
paths which can be changed) over which are defined the graph invariants, graph
constraints, and graph functions. The graph invariants maintain the properties of
dynamic trees and paths such as the set of insertable, removable, or replacing edges
of a VarTree, the sum of weights of all the edges of a path, and the diameter of
a tree. The graph constraints and graph functions are differentiable objects which
not only maintain the properties of dynamic trees, paths (for instance, the number
of violations of a constraint or the value of an objective function), but also allow
determining the impact of local moves on these properties, a feature known as
differentiation.

5.1 Interfaces

Figure 8 depicts part of the interface concerning the graph invariants. Line 2 returns a
Solver<LSGraph> object which manages all graph variables and graph invariants,
and maintains a precedence graph relating these graph variables and graph invariants
of the model. A local move (modification action) over a graph variable (VarTree,
VarPath) induces a propagation which updates all graph invariants, constraints,
and functions that are defined over these variables thanks to the precedence graph.
This means that one does not have to call procedures to update graph invariants,
constraints, or functions. Rather, the update is automatically performed whenever
users apply local moves. Line 3 returns the list of graph variables4 over which the
graph invariant is defined. Lines 5–8 are some propagation methods corresponding
to different local moves.

The differentiation interface is depicted in Fig. 9. The differentiation methods
evaluate the impact of various local moves, for instance, getAddEdgeDelta-
(VarTree vt, Edge e) in line 2 computes the change in the value of the function
when the edge e is added to the tree vt; the method in line 6 returns the change in
the value of the function when the replacing edge e is applied.5 The method in line

4VarGraph is an abstract class from which VarTree, VarPath are derived.
5When a local move replaceEdge(tr, e′, e) is applied with the neighborhood ERNP1 (see Section 3.2),
the resulting path depends only on the replacing edge e used, not on the replaceable edge e′.
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Fig. 9 Differentiation interface (partial description)

Fig. 10 Interface of graph constraints (partial description)

7 is generic and computes the impact of moves where the subpath of vp between
two endpoints of x and y is replaced by the path 〈x,v,y〉 (see the definition of the
most general COP neighborhood N at the beginning of Section 3.2). It enables the
exploration of neighborhoods other than the ERNP1.

Figure 10 depicts the interface of graph constraints in which the method in line 2
returns the violations of the constraint. Line 3 returns the violations of the constraint
attributed to VarGraph vg. If the graph variable does not appear directly in the
definition of the constraint, it does not contribute any violations. This information
may be useful when applying multistage heuristics.

All graph invariants, functions, and constraints in the system must implement
these interfaces. This enables the compositionality of model. Moreover, one can de-
sign and implement one’s own functions and constraints, respecting these interfaces,
and integrate them into the system.

5.2 Abstractions

The Solver<LS> of COMET does not support specific operations on user-defined
objects (i.e., edge replacement on dynamic trees). So in this framework, we designed
and implemented a Solver<LSGraph> which maintains a precedence graph repre-
senting the dependence of graph invariants, graph functions, and graph constraints
on the graph variables and performs the propagations for updating the graph
invariants, graph functions, and graph constraints under different modification ac-
tions over the graph variables. The implementation of Solver<LSGraph> extends
Solver<LS>, enabling combinations between the two solvers (e.g., we can combine
standard invariants of COMET with graph invariants of LS(Graph) by arithmetic
operators). Table 1 partially presents some abstractions6 available in the framework

6For a full description of the abstractions, see the PhD thesis [53].
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including some graph variables, invariants, functions, and constraints which are
used to model various COT/COP problems: create a solver Solver<LSGraph>,
declare variables VarTree, VarPath, and state functions and constraints. Different
search procedures can then be performed over the model. Fundamental func-
tions representing relations between the trees, paths, nodes, and edges have been
designed and implemented, e.g., NBVisitedVerticesTree(VarTree[] vts,
set{Vertex} S) represents the number of vertices of S which are visited by
the list of trees vts, and NBVisitsVertexTree(VarTree[] vts, Vertex v)
represents the number of times the list of trees vts visit it. Weight(VarTree vt,
int k) represents the weight of a tree vt, and PathCostOnEdges(VarPath
vp, int k) represents the cost of a path vp.7 These functions can be combined
by traditional arithmetic or relation operators to state more complex functions
or constraints. Various fundamental constraints on graphs can be stated by using
these functions and traditional relation operators. For achieving a more efficient
performance, some global constraints have been designed and implemented, for
instance, PathsEdgeDisjoint(VarPath[] vps) specifies that the list of paths
vps must be edge-disjoint, and PathsContainVertices(VarPath[] vps,
set{Vertex} S) specifies that the list of paths vps must visit the set of vertices
S.
FunctionCombinator<LSGraph> is a graph function that combines several

functions, constraints of the model by the “+” operator with a weight. This object
strengthens the modeling of the framework when there are a number of functions
proportional to the size of the problem to be stated.
ConstraintSystem<LSGraph> is a graph constraint which combines all con-

straints appearing in the considered problem by the post method. By using this
object, one can add or remove some constraints from the model without having to
change the search procedure.

The LS(Graph) framework is open in that it allows users to design and implement
their own invariants, constraints, and functions respecting predefined interfaces and
integrate them into the system.

5.3 Search procedures

In order to illustrate the modeling and the search component, we give an example in
Fig. 11 in which we solve the problem of finding a spanning tree of a given undirected
graph g such that the degree of each node does not exceed maxDe and the diameter
of the spanning tree does not exceed maxDia.

The model is given in lines 1–15, in which line 2 creates a Solver<LSGraph>
ls and lines 3–4 randomly initialize a spanning tree variable vt of a given undi-
rected graph g associated with ls. Line 5 initializes a graph invariant rpl (line 4)
representing the set of replacing edges of vt. Lines 7–13 state and post constraints
on the degree and diameter of the spanning tree vt to a graph constraint system
gcs which is declared in line 10. Whenever the model is closed (line 15), the
initPropagationmethods of all graph invariants are called to initialize the values
and internal data structures of these objects.

7k is the index of the considered weight on edges.
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Fig. 11 Model for bounded diameter and degree constrained spanning tree

The search is given in lines 17–26, which is a simple greedy search. At each
iteration, we explore the NT3 neighborhood and choose the best neighbor w.r.t. the
graph constraint system gcs: we choose a replacing edge ei and a replaceable edge
eo of ei such that the number of violations of gcs is most reduced when eo is
replaced by ei (see method getReplaceEdgeDelta(vt,eo,ei)). Line 23 is the
local move which induces automatically a propagation to update all graph invariants
and constraints defined over it (e.g., rpl, degreeC, diameterC) thanks to the
precedence graph maintained in ls.

We can see in this example that the model and the search are independent. On
the one hand, we can state and post other constraints to the graph constraint system
gcs without having to change the search. On the other hand, we can apply different
heuristic local searches in the search component without changing the model.

We now describe one of generic neighborhood explorations. Figure 12 explore
the basic COP neighborhood ERNP1. The quality of a solution is evaluated in
terms of the number of violations of the Constraint<LSGraph> c. Variables
it and fgb represent the current iteration of the local search and the smallest
value of the number of violations of the constraint c found so far. All VarPath
vps[j] are scanned (lines 7–8). Line 9 retrieves the Invariant<LSGraph> repl
representing the set of preferred replacing edges of vps[j]. All preferred replacing
edges e are scanned in line 10 and line 11 evaluates the quality of the move when
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Fig. 12 Exploring the ERNP1 neighborhood
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applying the replacing edge e in term of the variation of the number of violations
of c. Line 13 checks whether e is tabu or the aspiration criterion is reached (i.e.,
the move is tabu but it improves the best solution found so far). Lines 31–33 choose
a preferred replaceable sel_eo. Lines 36–41 submit a move (lines 36–41) and its
evaluation eval to a Neighborhood N and it will be called later.

Components for a generic tabu search, TabuSearch<LSGraph>, and a greedy
local search, GreedyLocalSearch<LSGraph>, have been implemented for
COT/COP applications. This tabu search component features aspiration criteria with
adaptive tabu length (the tabu length can be changed within tb Min and tb Max,
depending on the behavior of the search). A full description of the abstractions and
generic search components can be found in [53].

6 Applications

In this section, we present the application of the LS(Graph) framework to the
resolution of three COT/COP problems: the quorumcast routing (QR) problem, the
edge-disjoint paths (EDP) problem, and the routing and wavelength assignment with
side constraint (RWA-D) problem.

For the first and the third applications (QR and RWA-D), we apply tabu search.
Two parameters of tabu search are the length tbl of the tabu lists and maxStable: if
the best-restart solution8 does not improve in maxStable successive local moves, then
the search is restarted.

Experiments were performed on XEN virtual machines with 1 core of a CPU Intel
Core2 Quad Q6600 @2.40 GHz and 1 GB of RAM.

6.1 The quorumcast routing (QR) problem

6.1.1 Problem statement

Given a weighted undirected graph G = (V, E), each edge e ∈ E is associated with a
cost w(e). Given a source node r ∈ V, an integral value q, and a set S ⊆ V of multicast
nodes, the quorumcast routing problem is to find a minimum cost tree T = (V ′, E′)
of G spanning r and q nodes of S. T = (V ′, E′) is a graph satisfying

1. V ′ ⊆ V ∧ E′ ⊆ E,
2. T is connected,
3. ∃Q ⊆ S such that �Q = q ∧ Q ∪ {r} ⊆ V ′,
4. The cost of

T =
∑

e∈E′
w(e)

is minimum over all subgraphs of G with properties 1–3.

In this section, we present a local search model for solving the QR problem with
LS(Graph).

8The best-restart solution is the best solution found for each restart.
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6.1.2 The model

We propose a tabu search model in LS(Graph) exploring different neighborhoods
for solving this problem. The model is given in Fig. 13, in which line 1 creates a
Solver<LSGraph> and line 2 declares a VarTree tr associated with ls. Lines
4–7 state the constraints of the problem where NBVisitedVertices(tr,S) is
a Function<LSGraph> representing the number of vertices of S which are in
the tree tr. The constraint posted in line 5 says that the tree tr must contain at
least q vertices of S and the constraint posted in line 6 says that tr must contain
the vertex s. Line 9 creates a Model<LSGraph> mod with only one variable tr,
the constraint gcs, the objective function to be minimized is the total weight of
tr. Line 11 initializes a search component which extends TabuSearch<LSGraph>
(see Fig. 14). Lines 12–14 set parameters for the search and line 16 calls the search
procedure. We now describe the search component in Fig. 14. The variables _card
and _root represent the number of edges of the initial tree and its root computed
in the initSolution method. The overriding initSolution method (lines 17–
31) constructs the tree in a greedy random way. It clears the tree tr (line 22) and
selects randomly a first edge containing _root (lines 23–25). It then iteratively
selects an edge with minimal weight for adding to the constructed tree tr (lines
27–30). The exploreNeighborhood method of TabuSearch<LSGraph> is also
overriden (lines 34–39) with different neighborhoods: NT1 (line 35), NT2 (line 36),
NT1+2 (line 37), and NT3 (line 38).

Fig. 13 Tabu search model for the QR problem
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Fig. 14 The search component for the QR problem



Constraints

6.1.3 Experiments

We compare our tabu model in LS(Graph) with the IMP heuristic, which is the best
heuristic among the three heuristic algorithms in [24]. The original instances and the
implementation of the IMP algorithm are not available. We thus re-implemented the
IMP algorithm in COMET and generated new benchmarks.

Problem instances We take six graphs from the benchmark of the KCT problem
[20] which are 4-regular graphs of sizes from 50 to 1,000 nodes and six graphs from
the Steiner tree instances. For each graph of size n, we generate randomly n ∗ tau1

nodes for the set S, the value for q is set to n ∗ tau1 ∗ tau2 with tau1, tau2 ∈ {0.2, 0.5},
and the root is set to be node 1.

Results The IMP algorithm and our model in LS(Graph) are executed 20 times for
each problem instance. The time limit for our model is 30 min. From our preliminary
results, we set tbl to 5 and maxStable to 200. The experimental results are shown
in Tables 2 and 3. Columns 3–6 present the average, the minimal, the maximal, and
the standard deviation of the best objective value found in 20 executions. The same
information for our model is presented in columns 8–11. Column 7 is the average
execution time (in seconds) of the IMP algorithm over 20 executions, while column
12 presents the average time (in seconds) for finding the best solutions over 20
executions of our tabu search model. Table 2 shows that for KCT instances, our
LS(Graph) model finds better solutions than the IMP on average. Moreover, the
worst solutions found by our model are, in most cases, even better than the best
solution found by the IMP (among 20 executions). Table 3 shows that the results
found by our model are better than those found by the IMP algorithm on average
except for the last four instances (45–48). A comparison of the two algorithms in
terms of box-and-whiskers plots (see their template presentation in Fig. 15) can be
found in Figs. 16, 17, 18, and 19. Two consecutive bars present the results computed
by the IMP and the tabu search algorithms on a given instance. The figures show that
for each algorithm, the variance of the results among the 20 executions is small. It
also shows that, in most instances, the solutions found by our tabu search are better
than those found by the IMP algorithm.

6.2 The edge-disjoint paths problem

6.2.1 Problem statement

We are given an undirected graph G = (V, E) and a set T = {〈si, ti〉 | i =
1, 2, ..., �T; si 
= ti ∈ V} representing a list of commodities. A subset T ′ ⊆ T, T ′ =
{〈si1 , ti1〉, ..., 〈sik , tik〉} is called edp-feasible if there exist mutually edge-disjoint paths
from si j to ti j on G, ∀ j = 1, 2, .., k. The EDP problem consists in finding a maximal
cardinality edp-feasible subset of T. In other words,

max �T ′ (1)

s.t. T ′ ⊆ T (2)

T ′ is edp-feasible (3)
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Fig. 15 Box-and-Whiskers
plot: the X-axis represents the
algorithm and the instance (A
denotes the algorithm and ins
denotes the instance) and the
Y-axis represents the value of
the objective function

Fig. 16 Comparison between
IMP and LS(Graph) on KCT
instances

Fig. 17 Comparison between
IMP and LS(Graph) on KCT
instances
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Fig. 18 Comparison between
IMP and LS(Graph) on steiner
instances

Fig. 19 Comparison between
IMP and LS(Graph) on steiner
instances

In this section, we propose two algorithms based on neighborhood search for
solving the EDP problem by LS(Graph). They are complex heuristics which make
use of local search in LS(Graph) as sub-routines. We first describe the simple greedy
algorithm SGA [42] because one of our algorithms (detailed later) will apply this as
sub-procedure (see Algorithm 3).
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6.2.2 The simple greedy algorithm

This algorithm starts with an empty solution S (line 1). At each iteration j (line 3),
it selects a pair T j = 〈s j, t j〉 and tries to find the shortest path Pj from s j to t j in the
graph G1 = (V, E1), initializing the set of edges E1 to be E (line 2). If such a path
exists, it is inserted into S and the set E1 is updated for the next step by removing all
edges of the path Pj.

Obviously, the SGA algorithm depends strongly on the order of commodities
T j considered. The multi-start version of SGA (called MSGA) performs SGA
iteratively with different orders of T j to be scanned in T.

In the ACO algorithm of [18], the following criterion is introduced, which quan-
tifies the degree of non-disjointness of a solution. S = {P1, P2, ...Pk} (Pj is a path
from s j to t j):

C(S) =
∑

e∈E

⎛

⎝max{0,
∑

P j∈S

ρ j(S, e) − 1}
⎞

⎠ ,

where ρ j(S, e) = 1 if e ∈ Pj, and ρ j(S, e) = 0 otherwise. From a solution constructed
by ANTs, a solution to the EDP problem is extracted by iteratively removing the
path which has the most edges in common with other paths, until all remaining paths
are mutually edge-disjoint (see Algorithm 4).

In this section, we propose two algorithms based on local search for solving
this problem: the LS-SGA and the LS-R algorithms. These algorithms perform
a local search procedure applying the LS(Graph) framework combined with the
extraction method (Algorithm 4) and the simple greedy algorithm. These algorithms
make use of the PathsEdgeDisjoint(P1, P2, ..., Pk) constraint of the LS(Graph)
framework saying that the set of paths {P1, P2, ..., Pk} must be edge-disjoint. The
number of violations of the PathsEdgeDisjoint(P1, P2, ..., Pk) constraint is defined
to be C({P1, P2, ..., Pk}) and the local search algorithms used in our heuristics try to
minimize this number.

6.2.3 The LS-SGA algorithm

The LS-SGA algorithm has been proposed in our paper [54]. The main idea
of the LS-SGA algorithm (given in detail in Algorithm 5) is to perform a
local search algorithm aiming at minimizing the number of violations of the
PathsEdgeDisjoint(P1, P2, ..., Pk) constraint. The variable S (line 2) stores a set
of paths {P1, P2, ..., Pk} connecting all commodities. It is initialized randomly (lines
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3–5). At each step, we perform a local move. The LocalMove method (line 7)
returns true if it finds a move that decreases the number of violations of the
PathsEdgeDisjoint(P1, P2, ..., Pk) constraint. If no such move exists, we make some
random moves (line 22). From a candidate solution S found by the local search, a
solution S1 to the EDP problem will be extracted by applying the Extract algorithm
(line 9) combined with the SGA algorithm (line 15) on the remaining graph G′′ (the
graph G′′ is obtained by removing all edges E′ (line 12) of the paths extracted by
the Extract algorithm) and the remaining commodities T ′′ (lines 10 and 11). The best
solution is updated in line 17 and lines 18–20 update some paths of S by the new
found paths of S2.

6.2.4 The LS-R algorithm

The idea is to connect recursively as much as possible the commodities of T (see
Algorithm 6). The core is the recursive method LS-Recursive in Algorithm 7, which
receives a graph G and a list of commodities T as input and computes a set of
maximally edge-disjoint paths connecting the commodities of T. This paths set is
then accumulated in the solution Sol (Sol is a global variable) and all edges visited
by these paths are removed from G for the next recursive call. Line 1 computes a set
of edge-disjoint paths by a greedy local search method, GreedyLocalSearch. Lines
2–3 update the solution by adding the new found edge-disjoint paths of Si. Lines
3–4 compute the set of connected components CC of the graph generated from the
current graph by removing all edges E′ of paths of Si. For each graph Gi of these
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connected components and each set of commodities Ti that belong to Gi, we perform
recursively the LS-Recursive method (see lines 6–8).

The implementation of these algorithms in LS(Graph) is given in the PhD thesis
[53]. It is more complicated than that of the QR problem: it requires some processing
(e.g., removing edges and vertices from a graph, and computing the connected
components of a graph) other than just stating the model and performing the search.

6.2.5 Experiments

Problem instances We tried the two proposed algorithms on three types of bench-
mark. The first benchmark contains instances on four graphs provided by Blesa [18].
The second benchmark contains instances on some graphs of the Steiner benchmark
from the Or-Library [14]. The third benchmark consists of instances on random
planar graphs. Table 4 gives a description of these graphs.

An instance of the EDP problem consists of a graph and a set of commodities. The
instances in the original paper [18] are not available. As a result, we base our trial
on the instance generator described in [18] and generate new instances as follows.
For each graph of the first set, we generate randomly different sets of commodities
with different sizes, depending on the size of the graph: for each graph of size n, we
generate randomly two instances9 with 0.10*n, 0.25*n, and 0.40*n commodities. We
do the same for each Steiner and planar graph but we generate only one instance for

9This is different from what we did in [54], where we randomly generated 20 instances for each rate
of commodity. For each instance, the algorithm was executed only once.
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Table 4 Description of graphs
of the benchmarks

Name |V| |E| Degree avg.

bl-wr2-wht2.10-50.rand 500 1,020 4.08
bl-wr2-wht2.10-50.sdeg 500 1,020 4.08
mesh15×15 225 420 3.73
mesh25×25 625 1,200 3.84
steinb4.txt 50 100 4.00
steinb10.txt 75 150 4.00
steinb16.txt 100 200 4.00
steinc6.txt 500 1,000 4.00
steinc11.txt 500 2,500 10.00
steinc16.txt 500 12,500 50.00
planar-n50 50 135 5.4
planar-n100 100 285 5.7
planar-n200 200 583 5.83
planar-n500 500 1,477 5.91

each rate of commodity instead of two. Table 5 describes the instances generated,
including their numbers of vertices, edges, and the sizes of the commodity sets T.

For comparison, we have reimplemented the ACO algorithm described in [18] in
the COMET programming language. For each problem instance, the three algorithms
ACO, LS-SGA, and LS-R are executed 20 times each. Due to the high complexity of
the problem, we set the time limit to 30 min for each execution. In total, we have 54
problem instances and 1,080 executions.

Results The experimental results are shown in Tables 6, 7 and 8. These tables have
the same structure, which is described in what follows. The first column presents the
instance name. Columns 2–5 present the results of the ACO algorithm [18], including
the average, the minimal and the maximal of the best objective values found in 20
executions, and the average time for finding these best objective values. The same
information for LS-SGA and LS-R are presented in columns 6–9 and columns 11–
14. Column 10 compares the ACO and LS-SGA algorithms in the format a/b where
a is the number of times the ACO algorithm found better solutions than the LS-
SGA algorithm and b is the number of time the LS-SGA found better solutions
than the ACO algorithm in 20 executions. Column 15 presents the same information
as column 10 but for the comparison between the ACO and the LS-R algorithms.
A comparison of the two algorithms in terms of box-and-whiskers plots (see their
template presentation in Fig. 15) can be found in Figs. 20, 21, 22, 23, 24, and 25.
Three consecutive bars present the results computed by the ACO, LS-SGA, and the
LS-R algorithms on a given instance. The figures show that for each algorithm, the

Table 5 Description of instances

Index Name �V �E �T

1 bl-wr2-wht2.10-50.rand.bb_com10_ins1 500 1,020 50
2 bl-wr2-wht2.10-50.rand.bb_com25_ins1 500 1,020 125
3 bl-wr2-wht2.10-50.rand.bb_com40_ins1 500 1,020 200
4 bl-wr2-wht2.10-50.rand.bb_com10_ins2 500 1,020 50
5 bl-wr2-wht2.10-50.rand.bb_com25_ins2 500 1,020 125
6 bl-wr2-wht2.10-50.rand.bb_com40_ins2 500 1,020 200
7 bl-wr2-wht2.10-50.sdeg.bb_com10_ins1 500 1,020 50
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Table 5 (continued)

Index Name �V �E �T

8 bl-wr2-wht2.10-50.sdeg.bb_com25_ins1 500 1,020 125
9 bl-wr2-wht2.10-50.sdeg.bb_com40_ins1 500 1,020 200
10 bl-wr2-wht2.10-50.sdeg.bb_com10_ins2 500 1,020 50
11 bl-wr2-wht2.10-50.sdeg.bb_com25_ins2 500 1,020 125
12 bl-wr2-wht2.10-50.sdeg.bb_com40_ins2 500 1,020 200
13 mesh15×15.bb_com10_ins1 225 420 22
14 mesh15×15.bb_com25_ins1 225 420 56
15 mesh15×15.bb_com40_ins1 225 420 90
16 mesh15×15.bb_com10_ins2 225 420 22
17 mesh15×15.bb_com25_ins2 225 420 56
18 mesh15×15.bb_com40_ins2 225 420 90
19 mesh25×25.bb_com10_ins1 625 1,200 62
20 mesh25×25.bb_com25_ins1 625 1,200 156
21 mesh25×25.bb_com40_ins1 625 1,200 250
22 mesh25×25.bb_com10_ins2 625 1,200 62
23 mesh25×25.bb_com25_ins2 625 1,200 156
24 mesh25×25.bb_com40_ins2 625 1,200 250
25 steinb4.txt_com10_ins1 50 100 5
26 steinb4.txt_com25_ins1 50 100 12
27 steinb4.txt_com40_ins1 50 100 20
28 steinb10.txt_com10_ins1 75 150 7
29 steinb10.txt_com25_ins1 75 150 18
30 steinb10.txt_com40_ins1 75 150 30
31 steinb16.txt_com10_ins1 100 200 10
32 steinb16.txt_com25_ins1 100 200 25
33 steinb16.txt_com40_ins1 100 200 40
34 steinc6.txt_com10_ins1 500 1,000 50
35 steinc6.txt_com25_ins1 500 1,000 125
36 steinc6.txt_com40_ins1 500 1,000 200
37 steinc11.txt_com10_ins1 500 2,500 50
38 steinc11.txt_com25_ins1 500 2,500 125
39 steinc11.txt_com40_ins1 500 2,500 200
40 steinc16.txt_com10_ins1 500 12,500 50
41 steinc16.txt_com25_ins1 500 12,500 125
42 steinc16.txt_com40_ins1 500 12,500 200
43 planar-n50.ins1.txt_com10_ins1 50 135 5
44 planar-n50.ins1.txt_com25_ins1 50 135 12
45 planar-n50.ins1.txt_com40_ins1 50 135 20
46 planar-n100.ins1.txt_com10_ins1 100 285 10
47 planar-n100.ins1.txt_com25_ins1 100 285 25
48 planar-n100.ins1.txt_com40_ins1 100 285 40
49 planar-n200.ins1.txt_com10_ins1 200 583 20
50 planar-n200.ins1.txt_com25_ins1 200 583 50
51 planar-n200.ins1.txt_com40_ins1 200 583 80
52 planar-n500.ins1.txt_com10_ins1 500 1,477 50
53 planar-n500.ins1.txt_com25_ins1 500 1,477 125
54 planar-n500.ins1.txt_com40_ins1 500 1,477 200

variance of the results among the 20 executions is small. It also shows that, in most
instances, the solutions found by LS-SGA and LS-R are better than those found by
the ACO algorithm.
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Fig. 20 Comparison between the ACO, LS-SGA and LS-R algorithms (part I)

The experiments results show that on average, the LS-R algorithm is better than
two other algorithms. The LS-SGA algorithm is better than the ACO algorithm. The
LS-SGA finds better solutions than the ACO algorithm in 534 out of 1,080 executions
while the ACO algorithm finds better solutions in 96 out of 1,080 executions. LS-
R finds better solutions than ACO in 614 out of 1,080 executions while the ACO
algorithm finds better solutions than LS-R in 7 out of 1,080 executions.

Fig. 21 Comparison between the ACO, LS-SGA and LS-R algorithms (part II)
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Fig. 22 Comparison between the ACO, LS-SGA and LS-R algorithms (part III)

6.3 The routing and wavelength assignment problem with delay side constraint
(RWA-D)

The last application demonstrates that VarPath variables of LS(Graph) and
var{int} of COMET can easily be combined.

6.3.1 Problem statement

Given an undirected weighted graph G = (V, E), each edge e of G has cost
c(e) (e.g., the delay in traversing e). Suppose given a set of connection requests

Fig. 23 Comparison between the ACO, LS-SGA and LS-R algorithms (part IV)
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Fig. 24 Comparison between the ACO, LS-SGA and LS-R algorithms (part V)

R = {〈s1, t1〉, 〈s2, t2〉, ..., 〈sk, tk〉} and a value D. The RWA-D problem consists of
finding routes pi from si to ti and their wavelengths for all i = 1, 2, ..., k such that:

1. the wavelengths of pi and pj are different if they have common edges, ∀i 
= j ∈
{1, 2, ..., k} (wavelength constraint),

2.
∑

e∈pi
c(e) ≤ D,∀i = 1, 2, ..., k (delay constraint),

3. the number of different wavelengths is minimized (objective function).

6.3.2 The model

The idea of the proposed algorithm is simple. We iteratively perform a local search
algorithm for finding a feasible solution to the RWA-D problem with W wavelengths
(W = 1, 2, 3, ...) until the first feasible solution is discovered.

Fig. 25 Comparison between the ACO, LS-SGA and LS-R algorithms (part VI)
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The model is given in Fig. 26. Lines 4–10 initialize all VarPath vps[i] from
s[i] to t[i] with the shortest version. Line 11 initializes an array vw where
vw[i] stores the wavelength value for the path vps[i]. The search starts with one
wavelength (see line 14). At each step, we try to find a feasible solution to the RWA-
D problem by a localsearch procedure (line 16). The search terminates (line 17)
if a feasible solution to the RWA-D problem is discovered, otherwise, we increase W
by one (line 19).

The localsearch procedure described in Fig. 27 receives an array of VarPath,
a value W of the number of wavelengths, and local search parameters maxIt and
maxT as input. Line 2 creates a Solver<LSGraph> ls and lines 4–6 post all
VarPath to it. Line 8 initializes an array var{int} xw, where xw[i] represents
the wavelength assigned to the path vps[i] and is initialized with the value
vw[i]. The domain of xw[i] is 1..W. Line 10 initializes a ConstraintSystem
<LSGraph> CS. The first constraint of the RWA-D problem is stated and posted in
line 12. Lines 14 and 15 state and post all side constraints (the delay constraint) to
CS and line 17 closes the constraint system CS. Line 19 groups all variables vps, xw,
and the constraint CS, into a model mod. Line 20 creates a search component which
will be given in detail in Fig. 28. Lines 22 and 23 set parameters for the search and
line 25 performs the search. The value of xw is stored in vw for the next iteration (see
lines 27 and 28): all paths vps[i] and their wavelengths xw[i] are conserved for
the next localsearch. The localsearch returns true if a feasible solution to
the RWA-D problem is discovered (lines 30–32).

The search component is given in Fig. 28. It extends the TabuSearch<LSGraph>
and receives Lmax (line 3) as parameters for the solution initialization when restart-
ing the tabu search. The restartSolution is overriden (lines 13–24) in which
we initialize the value for the VarPath vps[i] with the shortest version if its

Fig. 26 Model for the RWA-D problem
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Fig. 27 The local search procedure for the RWA-D problem

cost is greater than Lmax. This aims at quickly satisfying the delay constraint. The
initSolution is also overriden, which does nothing in order not to change the
value of the variables computed in the previous step of the search. The search ex-
plores two neighborhoods (lines 7–10) (see [53] for details about these neighborhood
explorations).

6.3.3 Naive greedy algorithm

As far as we know, the RWA-D problem has not been considered before. In
order to assess the efficiency of our local search, we implement a simple greedy
heuristic algorithm for the RWA-D problem (see Algorithm 8). The main idea of
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Fig. 28 The search component

this greedy heuristic is to find the shortest path10 for each connection request and
assigns a wavelength to this connection request in a greedy way without violating
the wavelength constraint. Variable Sol in line 1 represents the set of paths under
construction. Variable W (line 2) contains the set of wavelengths used for the
paths which have already been constructed. Variable nb Wavelengths (line 3) is the
number of wavelengths used. For each connection request 〈si, ti〉 (line 4), we assign
the shortest path Pi to it (line 6). Variable Wi in line 5 represents the candidate
wavelengths for Pi. Lines 7–9 remove all impossible wavelengths for Pi from Wi. If
no wavelength already used is possible for Pi (line 10), then we have to find a new
wavelength wi for Pi (lines 11 and 12). If the candidate set Wi is not null, we select

10The shortest path best ensures satisfaction of the delay constraint.
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randomly a wavelength from Wi and assign it to Pi (line 15). Lines 16 and 17 update
the solution.

6.3.4 Experiments

We compare our local search model with the naive greedy algorithm described in Al-
gorithm 8 (multistart version with 1,000 different orders of 〈si, ti〉 to be considered).

The two algorithms have been tried on different instances (graphs from 16 nodes
and 33 edges to 100 nodes and 261 edges and with 10, 20, and 50 connection requests
for each graph). Due to the complexity of the problem, we set the number of
iterations for the tabu search (the value of maxIt in line 16 of Fig. 26) to 200. For
each problem instance, the model is executed 20 times. From our preliminary results,
we set the length of the tabu lists tbl to 5 and the value of maxStable to 20.

Table 9 shows the experimental results. Column 2 presents the objective values
found by the naive greedy algorithm. Columns 3–6 show the minimal, the maximal,
and the average of the best objective value found, and the average execution time
(in seconds) over 20 runs. The experimental results show that the local search gives
better solutions than the naive greedy algorithm. Especially when the number of
connection requests increases (i.e., with 50 connection requests), the results found by
the local search are two or three times better than those found by the naive greedy
algorithm. We can see that the number of wavelengths used increases when the
number of connection requests increases. Given a number of connection requests,
if the size of the graph increases, then the number of wavelengths used decreases due
to the fact that on larger graphs, each link is shared by fewer paths of the solution
found by the local search and if two paths are completely edge-disjoint, they can
be assigned the same wavelength. For instance, with 50 connection requests, on the
graph of 100 vertices, we needed to use only four wavelengths (line 18), while on the
graph of 16 vertices, we had to use eight wavelengths (line 6).
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Table 9 Experimental results for the RWA-D problem

Instances Greedy f _ min f _ max f t

arpanet_ca10.ins1 5 2 2 2 2.15
arpanet_ca20.ins1 9 6 7 6.05 11.36
arpanet_ca50.ins1 16 8 9 8.3 68.35
grid_ext_4×4_ca10.ins1 3 2 2 2 1.62
grid_ext_4×4_ca20.ins1 9 4 5 4.3 7.16
grid_ext_4×4_ca50.ins1 24 8 10 8.55 55.04
grid_ext_5×5_ca10.ins1 4 2 2 2 2.43
grid_ext_5×5_ca20.ins1 7 2 3 2.95 6.21
grid_ext_5×5_ca50.ins1 21 5 8 6.45 54.15
grid_ext_6×6_ca10.ins1 3 2 2 2 2.58
grid_ext_6×6_ca20.ins1 4 2 3 2.1 6.66
grid_ext_6×6_ca50.ins1 20 5 6 5.35 58.99
grid_ext_8×8_ca10.ins1 4 2 2 2 3.81
grid_ext_8×8_ca20.ins1 9 3 4 3.3 14.61
grid_ext_8×8_ca50.ins1 11 4 6 5.15 73.97
grid_ext_10×10_ca10.ins1 4 2 4 2.7 9.71
grid_ext_10×10_ca20.ins1 8 3 5 4 24.22
grid_ext_10×10_ca50.ins1 13 4 6 4.75 105.2

Once again, in the above model, we notice that it is easy to state and post various
built-in COMET constraints over var{int} to the graph constraint system CS, which
shows the flexibility and compositionality of the framework.

7 Conclusion

This paper considered constrained optimum trees and paths (COT/COP) problems
which arise in many real-life applications. It proposed a domain-specific constraint-
based local search (CBLS) framework (called LS(Graph)) for solving COT/COP
applications, enabling models to be high level, compositional, and extensible, and
allowing for a clear separation between model and search. The key technical contri-
bution to support the COP framework is a novel neighborhood based on a rooted
spanning tree that implicitly defines a path between the source and the target and
its neighbors, and provides an efficient data structure for differentiation. The paper
proved that the neighborhood obtained by swapping edges in this tree is connected
and presented a larger neighborhood involving multiple independent moves. The
LS(Graph) framework, implemented in COMET, was applied to the quorumcast
routing problem, the edge-disjoint paths problem, and the routing and wavelength
assignment problem with side constraints on optical networks. Computational results
showed the potential significance of the approach, both from a modeling and a
computational standpoint.

Our future work will focus on the construction of a generic constraint program-
ming (CP) framework and a hybrid system combining CP and CBLS for modeling
and solving COT/COP problems.

Acknowledgements We would like to thank the reviewers for their helpful comments and sug-
gestions. This research is partially supported by the Interuniversity Attraction Poles Programme
(Belgian State, Belgian Science Policy) and the FRFC project 2.4504.10 of the Belgian FNRS
(National Fund for Scientific Research).



Constraints

Appendix

This appendix presents the proofs of above propositions.

Proof of Proposition 1

Proof The proof is divided into two phases:

1. We show that if the conditions (1) and (2) are satisfied, then pathtr′(s) 
=
pathtr(s).
The condition (1) ensures that the selected edge e′ satisfying the condition
(2) always exist. It is easy to see that e′ belongs to pathtr(s) and this edge is
removed from that path after taking rep(tr, e′, e). That means e′ does not belong
to pathtr′(s). Hence, pathtr′(s) 
= pathtr(s).

2. We now show that if pathtr′(s) 
= pathtr(s), then the conditions (1) and (2) are
satisfied.
We prove this by refutation. Suppose that su = sv. We denote r = su = sv and
r1 = ncatr(u, v). Because r Domtr u and r Domtr v, we have r Domtr ncatr(u, v) =
r1 (3).
We now show that pathtr(u, v) does not contain any edges that belong to
pathtr(s).

– If pathtr(u, r1) contains an edge (x, y) (where y = fatr(x)) of pathtr(s), then
we have x Domtr u and x Domtr s. Hence, x Domtr ncatr(s, u) = r (4).
Otherwise, (x, y) ∈ pathtr(u, r1), so r1 Domtr y, and we have r Domtr y
(because r Domtr r1) that means r Domtr fatr(x) (5). We see that (4) conflicts
with (5). From that, we have the fact that pathtr(u, r1) does not contain any
edges of pathtr(s).

– In the same way we can show that pathtr(v, r1) does not contain any edges of
pathtr(s).

From that, we have pathtr(u, v) which is actually the concatenation of
pathtr(u, r1) and pathtr(v, r1) does not contain any edges of pathtr(s).
e′ is a replacable edge that belongs to pathtr(u, v). So after the replacement is
taken, no edge of pathtr(s) is removed. Hence, the path from s to the root of
the tree does not change, that means pathtr′(s) = pathtr(s) (this conflicts with the
hypothesis that pathtr′(s) 
= pathtr(s)). So we have su 
= sv.
We now suppose that e′ (the edge to be removed) does not belong to
pathtr(su, sv). We can see easily that the path from u to v on tr (pathtr(u, v))
is composed by the path from u to su, the path from su to sv and the path
from sv to v on tr. So after the replacement is taken, no edge of pathtr(s) is
removed. Hence, pathtr′(s) = pathtr(s) (this conflicts with the hypothesis). So we
have e′ ∈ pathtr(su, sv). ��

Proof of Proposition 2

Proof The proposition is proved by showing how to generate that instance trk. This
can be done by Algorithm 9. The idea is to travel the sequence of nodes of P on the
current tree tr. Whenever we get stuck (we cannot go from the current node x to the
next node y of P by an edge (x, y) on tr because (x, y) is not in tr), we change tr by
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replacing (x, y) by a replacable edge of (x, y) that is not traversed. The edge (x, y) in
line 7 is a replacing edge of tr because this edge is not in tr but it is an edge of g. Line
8 chooses a replacable edge eo of ei that is not in S. This choice is always successfully
done because the set of replacable edges of ei that are not in S is not null (at least
an edge (y, fatr(y)) belongs to this set). Line 9 performs the move that replaces the
edge eo by the edge ei on tr. So Algorithm 9 always terminates and returns a rooted
spanning tree tr inducing P . Variable S (line 1) stores the set of traversed edges.

��

Proof of Proposition 3

Proof All sequences of these basic moves are executable and the final results have
the same set of edges E(tr) \ {eo1, eo2, ..., eok} ∪ {ei1, ei2, ..., eik}. Thus the result trees
of all execution sequences are the same. ��

Proof of Proposition 4

Proof Let x = ncatr(u1, v2), sv1 = ncatr(s, v1), su1 = ncatr(s, u1), sv2 = ncatr(s, v2),
su2 = ncatr(s, u2). Because su1 Domtr sv1, sv2 Domtr su1, su2 Domtr sv2, e′

1 belongs
to pathtr(sv1, su1) and e′

2 belongs to pathtr(sv2, su2), we have e′
1 
= e′

2. Otherwise, e2

Dom(tr) e1 and these two edges are not in tr, whereas e′
1 and e′

2 are in tr. So e1, e′
1, e2, e′

2
are all different.We will show that the sequence: rep(tr, e′

1, e1), rep(tr, e′
2, e2) is feasible

as follows:
Suppose that v′

1, u′
1 are endpoints of e′

1 such that u′
1 = fatr(v

′
1) and let tr1 =

rep(tr, e′
1, e1). We have that:

(1) su1 Domtr u′
1

(2) su2 Domtr u′
1

(3) sv2 Domtr u′
1

It is straightfoward to find that Ttr(v
′
1) does not change after taking rep(tr, e′

1, e1).
We can also find that u1, v2, u2 must belong to Ttr(v

′
1) (if not, u1, v2, u2

must belong to Ttr(v
′
1), thus ncatr(s, u1), ncatr(s, v2), ncatr(s, u2) are dominated

by v′
1, hence this conflicts with (1)–(3)). Thus ncatr1(s, u2) = ncatr(s, u2) = su2
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and ncatr1(u1, v2) = ncatr(u1, v2) = x. Moreover, from the Property 1, we have
ncatr1(s, v2) = ncatr1(u1, v2) = x (4).

Due to the fact that sv2 Domtr1 su1 and su1 Domtr1 u1, we have sv2 Domtr1

u1 (5). From the fact that sv2 Domtr1 v2 and sv2 Domtr1 u1, we have sv2 Domtr1

ncatr1(u1, v2) = x (6). We have e′
2 belongs to pathtr(sv2, su2) (7). From (6) and (7)

we have that e′
2 belongs to pathtr1(x, su2) (8). From (4) and (8), we have e′

2 ∈
pathtr1(ncatr1(s, v2), ncatr1(s, u2). That means e′

2 is still a pref fered replacable edge of
e2 on tr1. So the sequence rep(tr, e′

1, e1), rep(tr, e′
2, e2) is feasible.

In similar way, we can prove that the sequence rep(tr, e′
2, e2), rep(tr, e′

1, e1) is also
feasible. Hence, two basic moves rep(tr, e′

1, e1), rep(tr, e′
2, e2) are independent. ��
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