Constraints
DOI 10.1007/s10601-012-9124-0

LS(Graph): a constraint-based local search
for constraint optimization on trees and paths

Quang Dung Pham - Yves Deville -
Pascal Van Hentenryck

© Springer Science+Business Media, LLC 2012

Abstract Constrained optimum tree (COT) and constrained optimum path (COP)
problems arise in many real-life applications and are ubiquitous in communication
networks. They have been traditionally approached by dedicated algorithms, which
are often hard to extend with side constraints and to apply widely. This paper
proposes a constraint-based local search framework for COT/COP applications,
bringing the compositionality, reuse, and extensibility at the core of constraint-based
local search and constraint programming systems. The modeling contribution is the
ability to express compositional models for various COT/COP applications at a high
level of abstraction, while cleanly separating the model and the search procedure.
The main technical contribution is a connected neighborhood based on rooted
spanning trees to find high-quality solutions to COP problems. This framework is
applied to some COT/COP problems, e.g., the quorumcast routing problem, the
edge-disjoint paths problem, and the routing and wavelength assignment with delay
side constraints problem. Computational results show the potential importance of
the approach.

Keywords Combinatorial optimization - Constraint-based local search - Graphs -
Constrained optimum trees - Constrained optimum paths - Quorumcast routing -
Edge-disjoint paths - Routing and wavelength assignment with delay constraints

Q. D. Pham (X))

School of Information and Communication Technology,
Hanoi University of Science and Technology, Hanoi, Vietnam
e-mail: dungpq@soict.hut.edu.vn

Y. Deville
Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
e-mail: yves.deville@uclouvain.be

P. Van Hentenryck

Optimization Research Group, NICTA, Victoria Research Laboratory,
Electrical and Electronic Engineering, The University of Melbourne,
Melbourne, VIC 3010, Australia

e-mail: pvh@nicta.com.au

Published online: 12 July 2012 @ Springer

Constraints

1 Introduction

Constrained optimum tree (COT) and constrained optimum path (COP) problems
appear in various real-life applications such as telecommunication and transportation
networks. These problems consist of finding one or more trees (or paths) on a given
graph satisfying some given constraints while minimizing or maximizing an objective
function. Some COT problems have been considered and solved in the literature,
e.g., Degree Constrained Minimum Spanning Tree (DCMST) [7, 45], Bounded
Diameter Minimum Spanning Tree (BDMST) [35], Capacitated Minimum Spanning
Tree problem (CMST) [3, 56], Minimum Diameter Spanning Tree (MDST) [50],
Edge-Weighted k-Cardinality Tree (KCT), [20, 25], Steiner Minimal Tree (SMT)
[28, 66], Optimum Communication Spanning Tree problems (OCST) [32], etc. We
also see many COP problems which have been studied and solved in the liter-
ature. For instance, in telecommunication networks, routing problems supporting
multiple services involve the computation of paths minimizing transmission costs
while satisfying bandwidth and delay constraints [15, 27, 30]. Similarly, the problem
of establishing routes for connection requests between network nodes is one of
the basic operations in communication networks and it is typically required that
no two routes interfere with each other due to quality-of-service and survivability
requirements. This problem can be modeled as an edge-disjoint paths problem
[18]. Most of these COT/COP problems are NP-hard. They are often approached
by dedicated algorithms including exact methods, such as the Lagrangian-based
heuristic [7], the ILP-based algorithm using directed cuts [25], the Lagrangian-based
branch and bound in [15], and the vertex labeling algorithm from [30]; there are also
meta-heuristic algorithms such as a hybrid evolutionary algorithm [19], ant colony
optimization [21], and local search [20]. These techniques exploit the structure of the
constraints and the objective functions but are often difficult to extend or reuse.

This paper! proposes a constraint-based local search (CBLS) [62] framework for
COT/COP applications to support the compositionality, reuse, and extensibility at
the core of CBLS and CP systems. It follows the trend of defining domain-specific
CBLS frameworks, capturing modeling abstractions and neighborhoods for classes of
applications exhibiting significant structures. As is traditional for CBLS, the resulting
LS(Graph) framework allows the model to be compositional and easy to extend,
and provides a clean separation of concerns between the model and the search
procedure. Moreover, the framework captures structural moves that are fundamental
in obtaining high-quality solutions for COT/COP applications. The key technical
contribution underlying this COP framework is a novel connected neighborhood for
COP problems based on rooted spanning trees. More precisely, this COP framework
incrementally maintains, for each desired elementary path, a rooted spanning tree
that specifies the current path and provides an efficient data structure to obtain its
neighboring paths and their evaluations.

The availability of high-level abstractions (the “what”) and the underlying
connected neighborhood for elementary paths (the “how”) make the LS(Graph)
framework particularly appealing for modeling and solving complex COP
applications.

IThis paper is an extended version of [54] and is based on the PhD thesis [53].

@ Springer

Constraints

The LS(Graph) framework, implemented in COMET, was evaluated experimen-
tally on two classes of applications: COT with the quorumcast routing (QR)
problem and COP with the edge-disjoint path (EDP) problems and the routing
and wavelength assignment problem with side constraints (RWA-D). In [37], we
present another application in the domain of traffic engineering in switched ethernet
networks. The experimental results show the potential of the approach.

1.1 Case studies

We first describe three problems that will be modeled and solved by the LS(Graph)
framework.

1.1.1 The quorumcast routing (QR) problem

The quorumcast routing (QR) problem arises in distributed applications [24, 29, 48,
63]. Given a weighted undirected graph G = (V, E), to each edge e € E there is
associated a cost w(e). Given a source node r € V, anintegral value g, andaset S C V
of multicast nodes, the quorumcast routing problem consists in finding a minimum
cost tree T = (V', E') of G spanning r and g nodes of S. T = (V’, E’) is a graph
satisfying the following properties:

VCVAE CE.

T is connected.

30 C Ssuchthat§Q=gA QU{r} C V"
The cost of

L=

T= Zw(e)

ecE’
is minimal over all subgraphs of G with properties 1-3.

An exact algorithm [48] has also been proposed for solving the QR problem but
experiments were performed on small graphs (e.g., graph with 30 nodes). Three
heuristics have been proposed in [24] including Minimal Cost Path Heuristic (MPH),
Improved Minimum Path Heuristic (IMP), and Modified Average Distance Heuris-
tic (MAD). Experimental results in that paper show that, among these heuristics, the
IMP heuristic produces the best solutions. In [29], a multispace search heuristic has
been proposed for solving this problem which gives better results than the IMP and
the MAD heuristics on 12-node networks and 100-node networks.

In [63], the authors considered the QR problem with additional constraints
imposed on the total cumulative delay along the path from s to any destination node
of O, and proposed a distributed heuristic algorithm for solving it. Experiments were
conducted on graphs of up to 200 nodes.

In Section 6.1, we propose a simple model in LS(Graph) for this problem using
a tabu search. This example illustrates the expressive power of LS(Graph) where a
simple but efficient model can be designed in a few lines. Experimental results show
that our LS(Graph) model gives better results than the standard IMP heuristic.

@ Springer

Constraints

1.1.2 The edge-disjoint paths (EDP) problem

We are given an undirected graph G = (V, E) and a set T = {{s;,t;) |i=1,2,
... 8T;s; #t; € V} representing a list of commodities. A subset 7" C T, T' =
{(si,» ti,)s - (Siy, i)} 1s called edp-feasible if there exist mutually edge-disjoint paths
from sitof;on G Vji=1,2, .., k. The EDP problem consists in finding a edp-feasible
subset of 7" with maximal cardinality. In other words,

max g7’ (1)
S.L. T'cT ()
T’ is edp-feasible 3)

This problem appears in many applications such as real-time communication,
VLSI-design, routing, and admission control in modern networks [8, 23]. The existing
techniques for solving this problem include approximation algorithms [13,22, 42, 43],
greedy approaches [42, 44], and an ant colony optimization (ACO) metaheuristic
[18]. It has been shown in [18] that ACO is the start-of-the-art algorithm for this
problem. In that paper, the ACO algorithm were compared with a simple greedy
algorithm in [42](the multi-start version).

In Section 6.2, we propose two heuristic algorithms applying LS(Graph). We
experimentally show competitive results compared with the ACO algorithm in [18].
This example illustrates how LS(Graph) can be used to implement more complex
heuristics.

1.1.3 The routing and wavelength assignment problem with a delay side constraint
(RWA-D)

Wavelength division multiplexing (WDM) optical networks [49] provide high band-
width communications. The routing and wavelength assignment (RWA) problem
is an essential problem on WDM optical networks. The RWA problem can be
described as follows. Given a set of requests for all-optical connections, the RWA
problem consists of finding routes from the source nodes to their respective desti-
nation nodes and assigning wavelengths to these routes. A condition that must be
satisfied is that two routes sharing common edges must be assigned different wave-
lengths. Normally, the number of available wavelengths is limited and the number
of requests is high. Two variants of this problem have been studied extensively in
the literature: the minRWA problem aims at minimizing the number of wavelength
used for satisfying all requests, and the maxRWA aims at maximizing the number of
requests with a given number of wavelengths. Both variants are NP-Hard [26].

In the literature, there have been different techniques proposed for solving these
problems, e.g.: exact methods based on the ILP formulation [23, 40, 46, 47, 52, 55, 61,
65]; heuristic algorithms [11, 12, 31, 67]; and metaheuristics, including tabu search [39,
51] and Genetic [4, 10, 38]. These techniques have been tried on realistic networks
of small size (networks up to 27 nodes and 70 edges) but involving a large number
of connection requests. RWA with additional constraints has also been considered,
e.g.,in [5, 64].

In order to show the interest of the modeling framework, we consider the
minRWA problem with a side constraint (e.g., a delay constraint) specifying that the
cost of each route must be less than or equal to a given value. The point here is not to

@ Springer

Constraints

study a model competitive in comparison with state-of-the-art techniques for classical
RWA problems. Rather, we show the flexibility of this modeling framework, one
which enables a combination of VarGraph of LS(Graph) with var{int} of COMET.

The formal definition of the problem (called RWA-D) is the following. Given
an undirected weighted graph G = (V, E), each edge e of G has cost c(e) (e.g.,
the delay in traversing ¢). We suppose given a set of connection requests R =
{(s1, 1), (52, 12), ---» {Sk» tx)} and a value D. The RWA-D problem consists of finding
routes p; from s; to #; and their wavelengths for all i = 1, 2, ..., k such that:

1. the wavelengths of p; and p; are different if they have common edges, Vi # j
{1,2, ..., k} (wavelength constraint),

2. Zeep, c(e) < D,Vi=1,2, ..., k (delay constraint)

3. the number of different wavelengths is minimized (objective function).

In Section 6.3, a local search algorithm and its implementation in LS(Graph) will be
proposed for solving the RWA-D problem.

1.2 Contribution
The contributions of this paper are the following:

1. We design and implement a constraint-based local search (CBLS) [62] frame-
work, called LS(Graph), for COT/COP applications. It supports the compo-
sitionality, reuse, and extensibility at the core of CBLS and CP systems. The
proposed framework can be used as either a black box or a glass box. The
black box is exploited in the sense that users only need to state the model in
a declarative way, with variables, constraints, and an objective function to be
optimized. Built-in search components (e.g., tabu search) are then performed
automatically. The glass box allows users to extend the framework by designing
and implementing their own components (e.g., invariants, constraints, objective
functions, and search heuristics) and integrating them with the system.

2. The LS(Graph) combines graph variables (i.e., VarTree, VarPath for mod-
eling trees and paths in a high-level way) with standard var{int} of COMET,
which enables the modeling of various COT/COP applications on graphs for
which both the topology and scalar values must be determined.

3. A key technical contribution of the paper is a novel connected neighborhood
for COP problems based on rooted spanning trees. More precisely, the COP
framework incrementally maintains, for each desired elementary path, a rooted
spanning tree that specifies the current path and provides an efficient data
structure to obtain its neighboring paths and their evaluations.

4. We propose incremental algorithms for implementing some fundamental ab-
stractions of the framework. We show that the incrementality does not improve
the theoretical complexity but is efficient in practice.

5. We apply the constructed framework to a COT problems: the quorumcast
routing problem and two COP problems: the edge-disjoint paths problem and
the routing and wavelength assignment problem with delay side constraints on
optical networks. Experimental results show the potential significance of our
approach from both the programming and the computation stand points. For

@ Springer

Constraints

the first two problems, we show competitive results in comparison with existing
techniques and for the third problem, we show how to solve complex problems
flexibly and easily.

The LS (Graph) framework is open source. The COMET code of LS(Graph)
and applications as well as instances experimented in this paper are available at
http://becool.info.ucl.ac.be/lsgraph.

1.3 Outline

The rest of this paper is organized as follows. Section 2 gives the basic definitions and
notations. Section 3 specifies neighborhoods for COT applications and proposes our
novel neighborhoods for COP applications. Section 4 gives an overview of data struc-
tures and algorithms for implementing two fundamental and non-trivial abstractions
of the framework. The implementation of the framework in COMET programming
language will be introduced in Section 5. Sections 6 presents the application of
the framework to the resolution of the QR, EDP and RWA-D problems. Finally,
Section 7 concludes the paper and gives some future work.

2 Definitions and notations

Graphs Given an undirected graph g, we denote the set of nodes and the set of
edges of g by V(g), E(g) respectively. The degree of a node v (denoted deg,(v)) is
the number of incident edges to this edge: deg,(v) = #{u | (v,u) € V(g)}

A graph sg is called subgraph of a graph g if V(sg) € V(g) and E(sg) € E(g) and
we denote sg C g.

A path on g is a sequence of nodes (v, va, ..., vk) (k> 1) in which v; € V(g)
and (v;, viy1) € E(g),Vi=1,...,k— 1. The nodes v; and v are the origin and the
destination of the path. A path is called simple if there is no repeated edge and
elementary if there is no repeated node. A cycle is a path in which the origin and
the destination are the same. This paper only considers elementary paths and hence
we use “path” and “elementary path” interchangeably if there is no ambiguity. A
graph is connected if and only if there exists a path from u to v for all u, v € V(g).

Given two paths px = (xq, X2, ..., xx) and py = (y1, y2, ..., y4), we denote px + py
the concatenation of these two paths: px + py = (x1, X2, ..., Xk, Y1, Y2, ...Vq) if X # ¥
and px 4 py = (X1, X2, ..., Xk = Y1, Y2, -, Yg) i X = y1.

Given paths p, pi, p», and g,

— V(p) is the set of nodes of p

- piUpy(piNpy)istheset V(p) U V(py) (V(p) NV(p).

— x € Pisthe predicate x € V(p).

— s(p), t(p) are, respectively, the starting and terminating nodes of p.

— p(u, v) is the subpath of p starting from « and terminating at v (u, v € p and u is
not located after v on p).

- spp(x), tp,(x) is the subpath of p from s(p) to x and from x to ¢(p).

- repl(p,q) =sp,(s(q)) +q +tp,(t(q)) with s(q), t(q) € p. Intuitively, repl(p, q) is
the path generated by replacing the subpath of p from s(g) to t(q) by q.

@ Springer

http://becool.info.ucl.ac.be/lsgraph

Constraints

Fig.1 Illustrating Property 1

Trees A treeis an undirected connected graph containing no cycles. A spanning tree
tr of an undirected connected graph g is a tree spanning all the nodes of g: V(tr) =
V(g) and E(tr) C E(g). A tree tr is called a rooted tree at r if the node r has been
designated the root. Each edge of #r is implicitly oriented towards the root. If the
edge (u, v) is oriented from u to v, we call v the father of u in tr, which is denoted by
fa,.(u). Given a rooted tree tr and a node s € V(tr),

root(tr) denotes the root of tr,

path,(v) denotes the path from v to root(tr) on tr. For each node u of path, (v),
we say that u dominates v in tr (alternatively, u is a dominator of v, v is a
descendant of u) which we denote by u Dom,, v. If u does not dominates v on
tr, we write u Domy,, v.

path, (u, v) denotes the path from u to v in tr (u, v € V(tr)).

nca, (u, v) denotes the nearest common ancestor of two nodes u and v. In other
words, nca, (u, v) is the common dominator of u and v such that there is no other
common dominator of u and v that is a descendant of nca, (i, v).

Given a node v € V(tr), we denote by T, (v) the subtree of #r rooted at v. If
v # root(tr), we denote by T,-(v) the subtree of tr generated by removing 7}, (v)
and the edge (v, fa, (v)) from tr: V(T (v)) = V(tr) \ V(T,(v)) and E(T,(v)) =
E@r) \ (E(Ty(v)) U{(v, fa,(w)}).

Property 1 Suppose given a rooted tree 1r.

1.

Suppose given a node x € V(¢tr). We have x Dom,, y,Vy € V(T,(x)). In other
words, a vertex x of a rooted tree tr dominates all vertices of the subtree of tr
rooted at x.

@ Springer

Constraints

2. Suppose given two nodes x, y € V(i) such that x = fa, (y) and two nodes z, v
such that z € V(T,(y)), v € V(T,(y)). We have nca, (v, z) = nca, (v, x). This
property is illustrated in Fig. 1: nca, (v, z7) = nca, (v, x) = 12.

3 Neighborhoods

This section defines neighborhoods for COT and COP problems. The neighborhood
for COT applications is based on traditional modification actions on dynamic trees
(i.e., trees which can be modified): add, remove, and replace over edges. Our main
technical contribution for COP applications is to propose a neighborhood structure
based on spanning trees. We first present neighborhoods for COT applications.

3.1 COT neighborhood

A neighborhood of a tree is a set of trees generated by performing modification
actions on the given tree. Given an undirected graph g and a dynamic tree tr of g (tr
can be modified such that tr C g), we specify a set of basic modifications conserving
the tree property. We consider in this framework the following basic modifications.

1. add edge action An edge e = (1,v) € E(g) \ E(tr) can be added to tr if tr is
empty, or if there is exactly one node u or v in the tree tr:u € V(tr) XOR v € V (tr).
This edge is called an insertable edge. The insertion of this edge implicitly adds
its endpoints to tr if they do not exist in tr. The set of insertable edges of tr is
denoted by Inst(tr) and this insertion action is denoted by addEdge(tr,e). We
also use addEdge(tr, e) to denote the resulting tree. The first basic neighborhood
is the following:

NT(tr) = {addEdge(tr, e) | e € Inst(tr)}

2. remove edge action An edge e = (1, v) € E(tr) can be removed from ¢r if one
node u or v is a leaf of tr: deg,(u) =1V deg,(v) = 1. This edge is called a
removable edge. The removal of this edge thus also removes its endpoints
if they are the leaves of tr. The set of removable edges of tr is denoted by
Remv(tr) and this removal action is denoted by removeEdge(tr, e). We also use
removeEdge(tr, e) to denote the resulting tree. The second basic neighborhood is
defined as follows:

NT,(tr) = {removeEdge(tr, e) | e € Remv(tr)}

3. replace cycle edge action [2] An edge ¢’ of tr can be replaced by another edge
e= (u,v) € E(g)\ E(tr) with u,v € V(tr) conserving the tree property in the
following case: the insertion of e creates a fundamental cycle containing ¢’ and
the removal of e’ removes the cycle and restores the tree property. The edge e is
called a replacing edge, and ¢’ is called a replaceable edge of e. The set of nodes of
tr is unchanged by this replacement. We denote by Repl(tr) the set of replacing
edges of tr and Repl(tr, e) the set of replaceable edges of the replacing edge e. We
use replaceEdge(tr, €', e) to denote both the replacement action and the resulting
tree. The third basic neighborhood is defined as follows:

NT;s(tr) = {replaceEdge(tr, ¢, e) | e € Repl(tr) A €' € Repl(tr, e)}

@ Springer

Constraints

In practice, we can combine the above basic moves to perform more complex
moves. For instance, we take addEdge(tr, e;) and removeEdge(tr, e;) at hand where
e; € Remov(tr) and e, € Inst(tr) and e; and e, do not have common endpoint that is
the leaf #.> The set of such pairs of (e}, e,) is denoted by RemvlInst(tr). This kind of
neighborhood has been considered in the tabu search algorithm of [20]. The formal
definition of this neighborhood is

NTi2(tr) = {addEdge(removeEdge(tr, e3), e1) | (e1, e2) € Remvinst(tr)}

In the following section, we introduce a novel neighborhood for COP applications.

3.2 COP neighborhood

We consider in this paper only elementary paths, i.e., paths having no repeated
vertices. These are those which appear in most COP applications. Our constructed
framework also supports the modeling of paths where vertices or edges can be
repeated, but this will not be presented here (see more details in [53]).

For COP problems, a neighborhood of a path defines a set of paths that can be
reached from the current path. The most general neighborhood of a path p on a given
graph g is defined as the set of paths generated by replacing a subpath of the current
path by another path on the given graph conserving the path property: N(p) =
{repl(p,q) | g € R(p)} in which R(p) is the set of paths g satisfying followings
conditions:

(1) qgeg

2) s@.tq@)ep

(3) spps(@) Ng = {s(q)}
4) tppt(q) Ng={tq)}

Conditions (3) and (4) ensure the path property of all elements of AV(p) (no
repeated vertices are allowed in a path except starting and terminating vertices).?

Unfortunately, such a neighborhood is too large and does not allow being explored
in a generic way. To overcome this difficulty, in this section, we propose a restricted
neighborhood based on rooted spanning trees. This notion can be widely applied and
allows users to perform efficient neighborhood explorations.

Related work As far as we know, there exist only a few local search approaches
for COP applications on general graphs. Moreover, these local search algorithms
do not explicitly describe neighborhood structures. Rather, the authors talk about
the moves, which are very specific and sophisticated. Such moves do not enable the
compositionality, modularity, and reuse of the local search programs.

On complete graphs, some local search algorithms have been applied for solving
the traveling salesman problem [41] or the vehicle routing problem [9, 34]. In these
approaches, a path is explicitly represented by a sequence of vertices and the neigh-
borhood consists of paths generated by changing some vertices of this sequence (e.g.,
by removing, inserting, exchanging, or changing the position of some vertices). These

2This condition ensures the preservation of the tree property under the modification action.

3By some authors, walks with no repeated vertices are referred to as elementary paths.

@ Springer

Constraints

neighborhood structures cannot be applied to general graphs because a sequence of
vertices can not be guaranteed to always form a path on the given graph.

To obtain a reasonable efficiency, a local search algorithm must maintain incre-
mental data structures that allow a fast exploration of this neighborhood and a fast
evaluation of the impact of the moves (differentiation). The key novel contribution
of our COP framework is to use a rooted spanning tree to represent the current
solution and its neighborhood. It is based on the observation that, given a spanning
tree tr whose root is ¢, the path from a given node s to ¢ in #r is unique. Moreover, the
spanning tree implicitly specifies a set of paths that can be reached from the induced
path and provides a data structure for evaluating their desirability. The rest of this
section describes the neighborhood in detail. Our COP framework considers both
directed and undirected graphs, but, to simplify the presentation, only undirected
graphs are treated.

3.2.1 Rooted spanning trees

Given an undirected graph g and a target node ¢ € V(g), our COP neighborhood
maintains a spanning tree of g rooted at t. Moreover, since we are interested in
elementary paths between a source s and a target ¢, the data structure also maintains
the source node s and is called a rooted spanning tree (RST) over (g, s,). An RST
tr over (g, s, t) specifies a unique path from s to ¢ in g: path,(s) = (v, va, ..., V) In
which s = vy, t = v¢ and vip1 = fa,(v;), Vi=1, ..., k — 1. By maintaining RSTs for
COP problems, our framework avoids an explicit representation of the paths and
enables the definition of a connected neighborhood that can be explored efficiently.
Indeed, the tree structure directly captures the path structure from a node s to the
root; simple updates to the RST (e.g., an edge replacement) will induce a new path
from s to the root. In this framework, we also consider COP applications in which
the sources and the destinations of the paths are not fixed. Hence, the source s and
the destination (or root) of the RST (g, s, f) can also be changed (but this will not be
presented in this paper, interested readers can refer to the PhD thesis [53]).

Given an RST tr over (g, s, f), we denote by path(tr) the path path,(s) which is
the path induced by #r from s to the root ¢ of tr. Given an undirected graph g and a
path p on g, we denote by RSTInduce(g,p) the set of RSTs of g, rooted at #(p), which
induce p.

We define in the following section the neighborhood structure based on edge
replacements. In COP applications, generally, a candidate solution is a set of paths.
Each path has its own neighborhood. A neighborhood of a candidate solution is the
set of candidate solutions generated by changing some paths of the current candidate
solution with their neighbors. Hence, we present only neighborhoods of one path.

3.2.2 The edge-replacement based neighborhood

We first show in this section how to update an RST #r over (g, s, f) based on edge
replacements to generate a new rooted spanning tree 7’ over (g, s, t) which induces a
new path from s to ¢ in g: path,. (s) # path,(s).

Let tr be an RST over (g, s, £), we consider the third basic neighborhood of #r (see
Section 3.1):

NT;5(tr) = {replaceEdge(ir, ¢, ¢) | e € Repl(tr) A € € Repl(tr,)}

@ Springer

Constraints

which is the set of RST of (g, s, 7). It is easy to observe that two RSTs tr; and tr;
over (g, s, t) may induce the same path from s to . For this reason, we now show
how to compute a subset ERNP;(tr) € NT;(tr) such that path,. (s) # path,(s),Vtr' €
ERNP(tr).

We first fix some notations to be used in the following presentation. Given an
RST #r over (g, s, t) and a replacing edge e = (u, v), the nearest common ancestors
of s and the two endpoints u, v of e are both located on the path from s to z. We
denote by lowncay (e, s) and upnca, (e, s) the nearest common ancestors of s on the
one hand and one of the two endpoints of e on the other hand, with the condition
that upncay (e, s) dominates lowncay (e, s). We denote by low,, (e, s), up,(e,s) the
endpoints of e such that nca, (s, low, (e, 5)) = lownca, (e, s) and nca, (s, up, (e, s)) =
upnca, (e, s). Figure 2 illustrates these concepts. The left part of the figure depicts
the graph g and the right side depicts an RST #r over (g,s,r). Edge (8,10) is a
replacing edge of tr; nca, (s, 10) = 12 since 12 is the common ancestor of s and 10.
nca, (s, 8) = 7 since 7 is the common ancestor of s and 8. lownca, ((8, 10), s) = 7 and
upnca,((8, 10), s) = 12 because 12 Dom,, 7;low,((8, 10), s) = 8;up,((8, 10), s) = 10.

We now specify the replacements that induce a new path from s to ¢.

Proposition 1 Let tr be an RST over (g, s, t), e = (u, v) be a replacing edge of tr, let
¢’ be a replaceable edge of e, and let tr' = rep(tr, €, e). Let su = upncay (e, s) and sv =
lowncay (e, s). We have that path, (s) # path,(s) if and only if

(1) su # svand
(2) € € pathg(sv, su)

A replacing edge e of tr satisfying the condition (1) is called a preferred replacing
edge and a replaceable edge ¢ of e in r satisfying condition (2) is called a preferred

- == upir((8,10),5)

—————————— low((8, 10), 5)

a. The undirected graph g b. A spanning tree #r rooted at ¢ of g

Fig. 2 An example of rooted spanning tree

@ Springer

Constraints

replaceable edge of e. We denote by prefRepl(tr) the set of preferred replacing edges
of tr and by prefRepl(tr, e) the set of preferred replaceable edges of the preferred
replacing edge e on tr. We also denote by rep(tr, €, e) the action and the resulting
RST of replacing a preferred replaceable edge ¢’ by a preferred replacing edge e on
the RST #r. The edge-replacement based neighborhood (called ER-neighborhood)
of an RST tr is defined by

ERNP/(tr) = {tr' = rep(tr, e, e) | e € prefRepl(tr), ¢ € prefRepl(tr, e)}.

The action rep(tr, €, e) is called an ER-move and is illustrated in Fig. 3. In the current
tree tr (see Fig. 3a), the edge (8,10) is a preferred replacing edge, ncay (s, 8) =7,
ncay (s, 10) = 12, lownca, ((8, 10), s) = 7, upnca, ((8, 10), s) = 12, low,((8, 10),s) = 8
and up,((8,10),s) = 10. The edges (7,11) and (11,12) are preferred replaceable
edges of (8,10) because these edges belong to path, (7, 12). The path induced by tr is
(s,3,4,6,7,11,12,1). The path induced by #+' is (s, 3,4, 6,7, 8, 10, 12, 1) (see Fig. 3b).

ER-moves ensure that the neighborhood is connected, which is explained in detail
in Proposition 2.

Proposition 2 Let tr° be an RST over (g, s, t) and P be a path from s to t. An RST
inducing P can be reached from tr° in k < [basic moves, where [is the length of P.

3.2.3 Neighborhood of independent ER-moves

It is possible to consider more complex moves by applying a set of indepen-
dent ER-moves. Two ER-moves are independent if the execution of the first
one does not affect the second one and vice versa. The sequence of ER-moves
(rep(tr, €}, er), ..., rep(tr, e, ex)), denoted by rep(tr, €], ey, €, e, ..., e, ex), is defined
as the application of the sequence of actions (rep(tri, e, e)), rep(tra, €5, e2), ...,

Fig. 3 Illustrating a basic
move

a. current tree tr b. tr' = rep(ir, (7, 11), (8, 10))

@ Springer

Constraints

rep(try, e, ex)), where tr; = tr and trj = rep(tr;, e//, ep),Vj=1,...,k—1.1Itis fea-
sible if the ER-moves are feasible, i.e., e; € prefRpl(tr;) and e’j € prefRpl(trj, e)).

Proposition 3 Consider k ER-moves rep(tr, e, ey), ..., rep(tr, e, ex). If all pos-
sible execution sequences of these basic moves are feasible and the edges
e e, ey, e, ..., e, egareall different, then these k ER-moves are independent.

We denote by ERNP(tr) the set of neighbors of tr obtained by applying k
independent ER-moves. The action of taking a neighbor in ERNP(tr) is called an
ER-k-move.

It remains to find some criterion for whether two ER-moves are independent.
Given an RST #r over (g, s, t) and two preferred replacing edges e, e;, we say that
e; dominates e, in tr, written ey Domy, e, if lownca, (e, s) dominates upnca (e, s).
Then, two preferred replacing edges e; and e; are independent w.r.t. tr if ¢, dominates
e, in tr or e, dominates e in tr.

Proposition 4 Let tr be an RST over (g,s,t), e; and e, be two preferred re-
placing edges such that e; Domy, e), €| € pref Rpl(tr, e;), and €, € pref Rpl(tr, e,).
Then rep(tr, e}, e)) and rep(tr, e), e;) are independent and the path induced by
rep(tr,e,ei,e5,ey) is path, (s, vi) + path, (u,, v2) + path, (u,, t), where the addition sign
denotes path concatenation and v, = low,(ey, s), u; = upy(e1,s), v, = low,(ey, s),
and u, = up,(ez,).

Figure 4 illustrates a complex move. In fr, the two preferred replacing edges
e; = (1,5) and e, = (8, 10) are independent because lownca, ((8, 10), s) = 7, which

a. The Current Tree #r (dashed edges are not included) b.tr’ = rep(tr, (7,11), (8, 10), (3, 4), (1, 5))

Fig. 4 Illustrating a Complex Move

@ Springer

Constraints

dominates upnca,((1,5), s) = 6 in tr. The new path induced by #' is (s,3,1,5,6,7, 8,
10, 12, t), which is actually the path path, (s, 1) + path, (5, 8) + path, (10,).

4 Data structure and algorithms

In this section, we briefly describe the implementation of some fundamental and
non-trivial abstractions and then analyze their complexities.

4.1 VarTree and nearest common ancestors

VarTree(g) is an abstraction representing a dynamic tree over an undirected graph
g that can be modified by removing, inserting an edge, or replacing an edge by
another edge. It also allows querying information about the tree. For facilitating
manipulations on dynamic trees, the trees are implicitly stored as rooted trees.
Several well-known data structures have been proposed for representing dynamic
trees, for instance, ST-trees [57, 58], topology trees [33], ET-trees [36], top trees
[6,59], and RC-trees [1] (and the references therein). These data structures maintain
a forest of dynamic rooted trees, supporting update actions (e.g., link and cut) and
some queries (e.g., minimum (maximum) cost edge, node on a path, nearest common
ancestors of two nodes, medians, centers of a tree) in O(logn) time per operation
where n is the number of vertices of the given graph. These data structures have been
experimentally studied in [60]. These data structures are dedicated to implementing
specific network algorithms, for instance the maximum flow problem.

In the LS(Graph) framework, it is required to maintain a dynamic rooted tree
supporting update actions (i.e., add, remove, replace edges) and different basic
queries such as nearest common ancestors of two nodes, the father of a node, the
set of nodes, edges, the set of adjacent edges of a given node. At each step of the
local search process, the system explores a neighborhood, queries the quality of all
neighbors, and chooses one neighbor to move. Usually, the neighborhood is large
and the neighborhood exploration should be as quick as possible. This exploration
requires frequent performances of the above queries over dynamic rooted trees.
Queries over dynamic trees should thus be as fast as possible. For this purpose, we
use a direct data structure for the tree by maintaining the father of each node, the
sets for storing nodes, and the edges and the adjacent edges of each node of the tree.
So the time complexity for each update action is O(n) and the above queries (except
for that for the nearest common ancestors) take O(1) instead of O(log n).

Concerning the nearest common ancestors problem, Bender et al. [16] presented
a simple optimal algorithm for trees which is a sequentialized version of the more
complicated PRAM algorithm of Berkman and Vishkin [17]. An intermediate data
structure is precomputed in O(n); each query nca(u, v) is then computed in O(1)
time. The data structure is based on Euler Tour and the data structure for the
range minimum query (RMQ) problem. We apply the data structure of [16] with
an incremental implementation. This means we partially update the data structure
whenever the tree is modified (i.e., by adding, removing, or replacing edges) instead
of recomputing it from scratch. This incremental implementation does not improve
the time complexity in the worst case (O(n) for each update action) but it is more
efficient in practice. We have tested this implementation on dynamic trees of size

@ Springer

Constraints

98, 198, 498, 998, of complete graphs of size 100, 200, 500, 1000. For each graph,
we generate randomly 20 sequences of 10,000 update actions (adding, removing,
replacing edges) conserving the size of the tree. The experimental results show that
this incremental implementation is about 1.6 times faster than recomputing from
scratch.

4.2 Maintaining weighted distances between vertices on dynamic trees

NodeDistances(vt) is a graph invariant which maintains the weighted distances
between all pairs of vertices of a VarTree vt. This invariant allows querying the
cost of the path between any pair of nodes in O(1), and thus allows querying the
differentiations in O(1) in some cases, for instance, querying the change in the cost
of a path under edge replacement actions. To implement this graph invariant, we
use a direct 2-dimensional data structure dis: dis(u, v) represents the cost of the path
from u to v on the current RST fr. The size of this data structure is O(n?) but at any
time of computation, it is maintained and used partially: only those dis(u, v) such that
v dominates u on the current tree ¢r are considered.

The cost of any two nodes x and y on #r can be queried by Algorithm 1 in O(1)
where line 1 can be queried in O(1).

Algorithm 1: distance(x, y)
Input:
Output:

1 7+ ncatr(z,y);

2 return dis(z,r) + dis(r, y);

We now show how to update the dis(x, y) data structure under a local move on
tr, viz., rep(tr, (uy, v1), (U2, v2)). Without loss of generality, suppose that v; Dom,
vy and u; Dom, v, (see an example in Fig. 5). We put S = {x € V(tr) | vi Domy,
x}. The following elements of the data structure should be updated: dis(x, y), Vx €
S, y € pathy (v, nca, (x, v2)) U path, (uy). The update schema is given in Algorithm
2, in which c(u,, v,) is the weighted distance between u, and v, in the given graph
(see line 6).

Algorithm 2: updateDistances

Input:
Output:
1 foreach z € S do
ra + ncar(v2, T);
foreach y € pathi, (v, rz) do
| dis(z,y) « dis(x,ra) + dis(y, rz);

foreach y € pathir(u2) do
|_ dis(z,y) + dis(z,rx) + dis(ve,rx) + c(uz,v2) + dis(uz,y);

AN A WN

The worst case time complexity is O(n?) but it performs more efficiently in prac-
tice. We now experimentally analyze the efficiency of incrementality in comparison
with recomputation from scratch. To do so, we analyze the ratio r; = 55;] of data

@ Springer

Constraints

__

current tree tr

Fig. 5 Ilustrating the update of dis(u, v) under the replace Edge(tr, (ul, vl), (u2, v2)) action

structures to be updated (i.e., dis(u, v)) where S; is the number of elements of dis to
be maintained at each step i of the computation:

Si=)

veV(trt)

where #' is the tree at step i and c,:(v) is the number of nodes on the path from
v to the root of #'; s; is the number of elements of dis to be changed at step i
by the incremental version. We look at dynamic trees of size 98, 198, 498, 998 on
complete graphs of size 100, 200, 500, 1,000. For each graph, we randomly generate
20 sequences of 10,000 moves. The experimental results show that the average value
of r; is about]‘—0 Figures 6 and 7 show the number of elements to be updated and the
number of total elements to be maintained in the last 20 iterations: each iteration is

@ Springer

Constraints

900

I

12 13 14 15 16 17 18 19 20

B incrementality) recomputation

Fig. 6 20 last iterations for a complete graph of size 100

a replace edge action or a sequence of two actions (add and remove edge). It is clear
that in the remove edge action, we do not need to update the data structures, so the

number of elements to be updated in this action is zero.
13 14 15 17 18 19
@ Springer

4000

I

1 12

(=}

g
g

8

W ircrementalty [recomputation

Fig. 7 20 last iterations for a complete graph of size 1,000

Constraints

1 interface Invariant<LSGraph> extends Invariant<LS>{

2 Solver<LSGraph> getLSGraphSolver ();

3 VarGraph[] getVarGraphs () ;

5 bool propagateAddEdge (VarTree vt, Edge ei);

6 bool propagateRemoveEdge (VarTree vt, Edge eo);

7 bool propagateReplaceEdge (VarTree vt, Edge eo, Edge ei);
8 bool propagateReplaceEdge (VarPath vp, Edge eo, Edge ei);
9 1}

Fig. 8 Interface of graph invariants (partial description)

5 Implementation in COMET

The LS(Graph) framework is implemented in COMET [62]. That is an extension
(about 25,000 lines of COMET code) of the COMET system. The core of the framework
is the graph variables (e.g., VarTree, VarPath objects representing dynamic trees,
paths which can be changed) over which are defined the graph invariants, graph
constraints, and graph functions. The graph invariants maintain the properties of
dynamic trees and paths such as the set of insertable, removable, or replacing edges
of a VarTree, the sum of weights of all the edges of a path, and the diameter of
a tree. The graph constraints and graph functions are differentiable objects which
not only maintain the properties of dynamic trees, paths (for instance, the number
of violations of a constraint or the value of an objective function), but also allow
determining the impact of local moves on these properties, a feature known as
differentiation.

5.1 Interfaces

Figure 8 depicts part of the interface concerning the graph invariants. Line 2 returns a
Solver<LSGraphs> object which manages all graph variables and graph invariants,
and maintains a precedence graph relating these graph variables and graph invariants
of the model. A local move (modification action) over a graph variable (VarTree,
VarPath) induces a propagation which updates all graph invariants, constraints,
and functions that are defined over these variables thanks to the precedence graph.
This means that one does not have to call procedures to update graph invariants,
constraints, or functions. Rather, the update is automatically performed whenever
users apply local moves. Line 3 returns the list of graph variables* over which the
graph invariant is defined. Lines 5-8 are some propagation methods corresponding
to different local moves.

The differentiation interface is depicted in Fig. 9. The differentiation methods
evaluate the impact of various local moves, for instance, getAddEdgeDelta-
(VarTree vt, Edge e) inline2 computes the change in the value of the function
when the edge e is added to the tree vt; the method in line 6 returns the change in
the value of the function when the replacing edge e is applied.’ The method in line

4VarGraph is an abstract class from which VarTree, VarPath are derived.

5When a local move replace Edge(tr, ¢, e) is applied with the neighborhood ERNP; (see Section 3.2),
the resulting path depends only on the replacing edge e used, not on the replaceable edge ¢'.

@ Springer

Constraints

1 interface Differentiation<LSGraph>{

2 float getAddEdgeDelta (VarTree t, Edge e);

3 float getRemoveEdgeDelta (VarTree t, Edge e);

4 float getReplaceEdgeDelta (VarTree t, Edge eo, Edge ei);

6 float getDeltaWhenUseReplacingEdge (VarPath vg, Edge e);

7 float getDeltaWhenUseReplacingPath (VarPath vp, Vertex v, Vertex
x, Vertex vy);

8 1}

Fig. 9 Differentiation interface (partial description)

1 interface Constraint<LSGraph> extends Invariant<LSGraph>,
Differentiation<LSGraph>{

2 var {float} violations();
3 float violations (VarGraph vg);
4 }

Fig. 10 Interface of graph constraints (partial description)

7 is generic and computes the impact of moves where the subpath of vp between
two endpoints of x and y is replaced by the path (x, v, y) (see the definition of the
most general COP neighborhood N at the beginning of Section 3.2). It enables the
exploration of neighborhoods other than the ERNP;.

Figure 10 depicts the interface of graph constraints in which the method in line 2
returns the violations of the constraint. Line 3 returns the violations of the constraint
attributed to VarGraph vg. If the graph variable does not appear directly in the
definition of the constraint, it does not contribute any violations. This information
may be useful when applying multistage heuristics.

All graph invariants, functions, and constraints in the system must implement
these interfaces. This enables the compositionality of model. Moreover, one can de-
sign and implement one’s own functions and constraints, respecting these interfaces,
and integrate them into the system.

5.2 Abstractions

The Solver<LS> of COMET does not support specific operations on user-defined
objects (i.e., edge replacement on dynamic trees). So in this framework, we designed
and implemented a Solver<LSGraph> which maintains a precedence graph repre-
senting the dependence of graph invariants, graph functions, and graph constraints
on the graph variables and performs the propagations for updating the graph
invariants, graph functions, and graph constraints under different modification ac-
tions over the graph variables. The implementation of Solver<LSGraph> extends
Solver<LSs>, enabling combinations between the two solvers (e.g., we can combine
standard invariants of COMET with graph invariants of LS(Graph) by arithmetic
operators). Table 1 partially presents some abstractions® available in the framework

“For a full description of the abstractions, see the PhD thesis [53].

@ Springer

Constraints

wduoduwoo yoress Eoo] Apeaid sususd (pow <ydexnsT>TIPOW) <yder9gI>ydoIeasT1eo0T4Apasain yoress
1uau0dwiod yameas nqer Judusd (pow <yder9sI> TaPon) <ydeansi>ysdreasnge]
oML A1) JO IIA[OS <yde19s1>IAATOS 19A]0S
swiensuoo ydeid sauiquico yamm 130qo ajqenuaiajymp (ST <ydeansT>1dAT10S) <ydeing>waisAgjureilsuo)
suonouny ydeid 1340 sioresado uonepas == ‘=> ‘=<
S JO 593pa B usia 1snws sda syzed jo 151 @ (S ﬁwmumwuun ‘sda []y3iedaep) sabpiutejuolsyied
S JO $a21U2A [[e IS 1A 1snw sda syred Jo 1s1] A (s {x@318a}32s ‘sda []y3ediep)Sa8DT3IdAUTRIUODSYIRd
sda siyed Jo 1S} [J2A0 JUTRNSUO JutofSTP-2pou (sda []Jy3egdiep) 3utol sTgXxa3I3ASYIRd
sda syred Jo 11 1 1340 WURIISUOD JUIO{SIP-23pd (sda [Jyaedaep) utolsrgabpasyied
S JO SIFPA [[e ISIA Isnw sAA SIa1 JO IST] A (s {abp3}ias ‘sin []a3111eA) S3HPFTUTEIUOISIIIL
S JO SIITUDA [[B USIA iIsSTw SdA 5921 JO I1S1] A} (s {x3333A}395 ‘s3A []3311IRA) 53D TITIAUTRIUOISIIIL
sdA $2an JO 151} A} A0 WIRNSUOD JUIOfSIP-2pou (S3A []98111€A) JUTOL STAXDIIDASIBIL SRIsuoy
sdA $301 JO 1S} A1 JIA0 JUTRNSUOD Julofsip-23po (s3A []@a111ep) JUTOLSTQabpIsea Il
gX PU PAOXD JOUUBD A JO XIUIA YIBD JO du3p (gxew 3eOTJ ‘3IA 33111ep)ISOWIYaaibag
gxX®eul padIxa 10uued 1YSiam uo X xapul 11'm yred 1sa3uoj s (gxew 3e0TJ ‘Y IUT ‘3IA 93ILIPA) ISOWIVIIIBWET]
suonouny ydesd sauiquiod yamgm 133{qo djqenuI P (sT <ydeIosT>13ATOS)I0JRUTQUOIUOT 3dun ydean
suonauny ydes3 1340 sioiesado snounpire s - Yy
sda syied Jo 151 oy £Q PAUISIA SIS 3FP3 A} SAWN JO JIGUNU (3 abpg ‘sda []yiegiep)yiedabpIsiTSTAGN
sda syied JO 1SI] A} AQ PAISIA ST A XILIA) SAUNY JO JIQLUINU (A x9318A ‘sda []y3ediep) yIedXalIdASITSTIAEN
sda syed jo 1s1] 2 £q pAAsIA S Jo sa3pa Jo Jaqumu (s {ebpa}iss ‘sda []yiediep) yaedsobpIapaiTs TALGN
sda syied Jo 15t} A AQ PAISIA S JO SIONIIA JO JIGUINU (s {x3313p}39s ‘sdna [Jy3regiep) yIedsadTITIAPIITSTAGN
SIA $304) JO I1SI] U1 AQ pAIIsSIA S1.2 33pa Y1 SAuuN JO Jaquinu (2 abpa ‘sia []|93111eA)39119BPISITSTAEN
£ 3A 5331 JO I15I] A} AQ PAUSIA ST A XIUIA A SAUI JO 39qwmu (A X93I3A ‘S3IA []93ILIPA)SIILXIJISIASITSTAGN
S 34 S2a1 JO 151]) AQ PAIA S JO Sa3Pa Jo Joquinu (s {°bp3a}ias ‘sian []ad111ep)291159DPIPRITSTAGN svonoun,
§3A S220 JO ISI| AN AQ PAAUSIA S JO SIOIUIA JO JdqUINU (s {x2313A}395 ‘S3A []93111eA)3311S3DTITIAPIITSTAGN noundg
da qied 31 Jo S3PO [[B JO Y PIXIPUI SIYIIOM €101 (1 _3ur_‘da y3ediep)abpgugisodyied
34 uo yied 1523uo] Jo) pexapul ySiom (% UT ‘A @3di1riep) yiedisabuoq
34 J0 533p3 B JO X pOXIpul YoM [B101 (¥ 3uT ‘3A aaxrIep) ybtam
2A JO SIpou om) Jo stted j[e uaomiaq
$93po uo siyB1om JO A UI SIOIPUL AN VI'M SINRISIP pAYSiam (MPUT []3UuT ‘3A 8311Jep) 585UBRISTIIPON
da jo sa8pa Sutovjdas pasiafasd Jo 18 (da yjegiep)yaegurejutewsabpgburoerday
34 Jo sa3pa Suiopjdas Jo 13 (1A 931]1eA) sabpgbutoerday
A JO SITPO 2jgpAoWIaI JO 138 (3a @9111ep) sSebp3arqraoway SmLeAU]
24 Jo sa3pd 3yqouasui Jo 138 (3A @2111ep) sabpiatqejrasul
b ydes3d pa12osip 3y uo 3 01 s wog qed Snusudp stuassdas (3 X3313A ‘s x3313A ‘P ydeigpaidarrg ‘sT <ydei9sI>I3AT0S) Yiediea
6 ydei3 paasipun a1 uo 3 01 s wog Yied snurudp siuasaidas (3 x8318A ‘s %x93319A ‘D ydeigpajzdoaarpun ‘st <ydeingi>13ATOS) Yyiediea
b ydes3 a jo aon Suuueds snueudp sjusaudas (6 yderopalidarTpun ‘sT <ydeirgsT>IaAT0s) daxlbutuuedsien SIQEIEA
b ydesd a1 Jo songns onusuAp sjuasasdas (b ydeigpaiosxtpun ‘ST <ydeinsgi>IBATOS) S9I1LIeA
uondudsaq sureN adAL

(uondruosop [ented) yIromoweIy oY) JO SUIRIISUOD pUE sUONOUNJ ‘sjueLieaul ydeid owog | d[qel,

pringer

an

Constraints

including some graph variables, invariants, functions, and constraints which are
used to model various COT/COP problems: create a solver Solver<LSGraphs,
declare variables VarTree, VarPath, and state functions and constraints. Different
search procedures can then be performed over the model. Fundamental func-
tions representing relations between the trees, paths, nodes, and edges have been
designed and implemented, e.g., NBVisitedVerticesTree (VarTree[] vts,
set{Vertex} S) represents the number of vertices of S which are visited by
the list of trees vt s, and NBVisitsVertexTree (VarTree[] vts, Vertex v)
represents the number of times the list of trees vts visit it. Weight (VarTree vt,
int k) represents the weight of a tree vt, and PathCostOnEdges (VarPath
vp, int k) represents the cost of a path vp.” These functions can be combined
by traditional arithmetic or relation operators to state more complex functions
or constraints. Various fundamental constraints on graphs can be stated by using
these functions and traditional relation operators. For achieving a more efficient
performance, some global constraints have been designed and implemented, for
instance, PathsEdgeDisjoint (VarPath[] wvps) specifies that the list of paths
vps must be edge-disjoint, and PathsContainVertices (VarPath[] vps,
set{Vertex} S) specifies that the list of paths vps must visit the set of vertices
S.

FunctionCombinator<LSGraphs> is a graph function that combines several
functions, constraints of the model by the “+” operator with a weight. This object
strengthens the modeling of the framework when there are a number of functions
proportional to the size of the problem to be stated.

ConstraintSystem<LSGraph> is a graph constraint which combines all con-
straints appearing in the considered problem by the post method. By using this
object, one can add or remove some constraints from the model without having to
change the search procedure.

The LS(Graph) framework is open in that it allows users to design and implement
their own invariants, constraints, and functions respecting predefined interfaces and
integrate them into the system.

5.3 Search procedures

In order to illustrate the modeling and the search component, we give an example in
Fig. 11 in which we solve the problem of finding a spanning tree of a given undirected
graph g such that the degree of each node does not exceed maxDe and the diameter
of the spanning tree does not exceed maxDia.

The model is given in lines 1-15, in which line 2 creates a Solver<LSGraph>
1s and lines 3—4 randomly initialize a spanning tree variable vt of a given undi-
rected graph g associated with 1s. Line 5 initializes a graph invariant rpl (line 4)
representing the set of replacing edges of vt. Lines 7-13 state and post constraints
on the degree and diameter of the spanning tree vt to a graph constraint system
gcs which is declared in line 10. Whenever the model is closed (line 15), the
initPropagation methods of all graph invariants are called to initialize the values
and internal data structures of these objects.

7k is the index of the considered weight on edges.

@ Springer

Constraints

1 // The Modeling

2 Solver<LSGraph> 1ls();

3 int k = g.numberOfVertices()-1;

4 VarTree vt(ls,qg,k); // tree variable

5 ReplacingEdgesVarTree rpl(ls,vt); // invariant representing the
set of replacing edges of vt

7 DegreeAtMost degreeC (vt,maxDe); // constraint on degrees of
vertices of vt

8 DiameterAtMost diameterC (vt,0,maxDia);// constraint on the
diameter of vt

10 ConstraintSystem<LSGraph> gcs(ls); // constraint system

11 gcs.post (diameterC); // posting the constraint on degrees

12 gcs.post (degreeC); // posting the constraint on diameter

13 gcs.close () ;

15 ls.close();

17 // The Search

18 int it = 1;

19 while (it < 1000 && gcs.violations () > 0){

20 selectMin (ei in rpl.getSet (),

21 eo in getReplacableEdges (vt,ei))

22 (gcs.getReplaceEdgeDelta (vt,eo,ei)) {

23 vt.replaceEdge (eo,ei); // perform the move

24 }

25 it++;

26 }

Fig. 11 Model for bounded diameter and degree constrained spanning tree

The search is given in lines 17-26, which is a simple greedy search. At each
iteration, we explore the NT5 neighborhood and choose the best neighbor w.r.t. the
graph constraint system gcs: we choose a replacing edge ei and a replaceable edge
eo of ei such that the number of violations of gcs is most reduced when eo is
replaced by ei (see method getReplaceEdgeDelta (vt, eo, ei)). Line 23 is the
local move which induces automatically a propagation to update all graph invariants
and constraints defined over it (e.g., rpl, degreeC, diameterC) thanks to the
precedence graph maintained in 1s.

We can see in this example that the model and the search are independent. On
the one hand, we can state and post other constraints to the graph constraint system
gcs without having to change the search. On the other hand, we can apply different
heuristic local searches in the search component without changing the model.

We now describe one of generic neighborhood explorations. Figure 12 explore
the basic COP neighborhood ERNP;. The quality of a solution is evaluated in
terms of the number of violations of the Constraint<LSGraph> c. Variables
it and f£gb represent the current iteration of the local search and the smallest
value of the number of violations of the constraint ¢ found so far. All VarPath
vps [j] are scanned (lines 7-8). Line 9 retrieves the Invariant<LSGraph> repl
representing the set of preferred replacing edges of vps []]. All preferred replacing
edges e are scanned in line 10 and line 11 evaluates the quality of the move when

@ Springer

Constraints

1

21
22
23
24

25

27
28
29

31
32
33

35
36
37

38

40
41
42
43

void exploreTabuMinReplacelMovelVarPath (Neighborhood N, VarPath[]

}

vps, dict{VarPath->ReplacingEdgesMaintainPath}
mapReVarPath, Constraint<LSGraph> c, GTabukdge[] tblIn,
GTabuEdge[] tboOut, int it, float fgb, bool firstImprovement) {

Edge sel_ei = null; // the selected replacing edge for the move
int ind = -1; // the index of the selected VarTree for the move
float eval = System.getMAXINT(); // the minimum evaluation

forall (§ in vps.rng()) {

VarPath vp = vps[]jl; // considered VarPath

ReplacingEdgesMaintainPath repl = mapReVarPath{vp}; //
invariant representing the set of preferred replacing
edges of vp

forall (e in repl.getSet()){ // scan all preferred replacing
edges

float d = c.getDeltaWhenUseReplacingEdge (vp,e); //
evaluation of using the preferred replacing edge e

if(!'tbIn[j].isTabu(e,it) || d + c.violations() < fgb){ //
check the tabu condition or the aspiration criterion
if(d < eval){ // update the information of the chosen
move
eval = d;
ind = j;
sel_ei = e;
}
if (firstImprovement && eval < 0)
break; // stop the neighborhood exploration if a
first improving neighbor is found

}
if (firstImprovement && eval < 0)
break; // stop the neighborhood exploration if a first
improving neighbor is found

if (ind > -1) {
VarPath vp = vps[ind];
Edge sel_eo = null;

select (eo in getPreferredReplacableEdges (vp, sel_ei)) {
sel_eo = eo;

if (sel_eo != null)
neighbor (eval,N) {// submit the chosen move
tbIn[ind] .makeTabu(sel_eo,it); // make the selected
preferred replacable edge tabu
tbOut [ind] .makeTabu (sel_ei,it); // make the selected
preferred replacing edge tabu

vp.replaceEdge (sel_eo,sel_ei); // perform the move

Fig. 12 Exploring the ERNP; neighborhood

@ Springer

Constraints

applying the replacing edge e in term of the variation of the number of violations
of c. Line 13 checks whether e is tabu or the aspiration criterion is reached (i.e.,
the move is tabu but it improves the best solution found so far). Lines 31-33 choose
a preferred replaceable sel eo. Lines 36-41 submit a move (lines 36-41) and its
evaluation eval to a Neighborhood N and it will be called later.

Components for a generic tabu search, TabuSearch<LSGraph>, and a greedy
local search, GreedylocalSearch<LSGraph>, have been implemented for
COT/COP applications. This tabu search component features aspiration criteria with
adaptive tabu length (the tabu length can be changed within tb Min and tb Max,
depending on the behavior of the search). A full description of the abstractions and
generic search components can be found in [53].

6 Applications

In this section, we present the application of the LS(Graph) framework to the
resolution of three COT/COP problems: the quorumecast routing (QR) problem, the
edge-disjoint paths (EDP) problem, and the routing and wavelength assignment with
side constraint (RWA-D) problem.

For the first and the third applications (QR and RWA-D), we apply tabu search.
Two parameters of tabu search are the length b/ of the tabu lists and maxStable: if
the best-restart solution® does not improve in maxStable successive local moves, then
the search is restarted.

Experiments were performed on XEN virtual machines with 1 core of a CPU Intel
Core2 Quad Q6600 @2.40 GHz and 1 GB of RAM.

6.1 The quorumcast routing (QR) problem

6.1.1 Problem statement

Given a weighted undirected graph G = (V, E), each edge e € E is associated with a
cost w(e). Given a source node r € V, an integral value g, and aset S C V of multicast
nodes, the quorumcast routing problem is to find a minimum cost tree T = (V’, E’)
of G spanning r and g nodes of S. T = (V’, E') is a graph satisfying

1. VCVAFECE,

2. T is connected,

3. 30 C SsuchthattQ =g A QU {r} SV,
4

The cost of
T = Z w(e)
ecFE’

is minimum over all subgraphs of G with properties 1-3.

In this section, we present a local search model for solving the QR problem with
LS(Graph).

8The best-restart solution is the best solution found for each restart.

@ Springer

Constraints

6.1.2 The model

We propose a tabu search model in LS(Graph) exploring different neighborhoods
for solving this problem. The model is given in Fig. 13, in which line 1 creates a
Solver<LSGraph> and line 2 declares a VarTree tr associated with 1s. Lines
4-7 state the constraints of the problem where NBVisitedVertices (tr,S) is
a Function<LSGraphs> representing the number of vertices of S which are in
the tree tr. The constraint posted in line 5 says that the tree tr must contain at
least g vertices of S and the constraint posted in line 6 says that tr must contain
the vertex s. Line 9 creates a Model<LSGraph> mod with only one variable tr,
the constraint gcs, the objective function to be minimized is the total weight of
tr. Line 11 initializes a search component which extends TabuSearch<LSGraph>
(see Fig. 14). Lines 12-14 set parameters for the search and line 16 calls the search
procedure. We now describe the search component in Fig. 14. The variables card
and _root represent the number of edges of the initial tree and its root computed
in the initSolution method. The overriding initSolution method (lines 17—
31) constructs the tree in a greedy random way. It clears the tree tr (line 22) and
selects randomly a first edge containing root (lines 23-25). It then iteratively
selects an edge with minimal weight for adding to the constructed tree tr (lines
27-30). The exploreNeighborhood method of TabuSearch<LSGraph> is also
overriden (lines 34-39) with different neighborhoods: N7 (line 35), NT, (line 36),
NT, 4, (line 37), and NT5; (line 38).

1 Solver<LSGraph> 1ls(); // create a solver
2 VarTree tr(ls,qg); // initialize a tree variable, g is the given
graph

4 ConstraintSystem<LSGraph> gcs(ls); // constraint system

5 gcs.post (g <= NBVisitedVerticesTree (tr,S)); // posting the
constraint specifying that tr must contain at least g vertices
of S

6 gcs.post (NBVisitedVerticesTree(tr,s) == 1); // the tree tr must
contain the vertex s

7 gcs.close();

9 Model<LSGraph>
mod (tr,gcs,Weight<Tree> (tr, 1), NonSpanningTree, MINIMIZATION) ;
// encapsulate variables, constraints, and objective function
into a model obiject

11 QRSearch se(mod); // create a search object which extends the
built-in generic search

12 se.setMaxIter (1000);

13 se.setCard(q);

14 se.setRoot(s);

16 se.search(); // perform the search

Fig. 13 Tabu search model for the QR problem

@ Springer

Constraints

22
23

24
25

27

28

29

30

31

34

35

36

37

38

39
40

include "LS(Graph)";

class QRSearch extends TabuSearch<LSGraph>{

}

Vertex root;
int _card;
QORSearch (Model<LSGraph> mod) : TabuSearch<LSGraph> (mod) {
}
void setCard(int ca) {
_card = ca;
}
void setRoot (Vertex r) {
root = r;
}
void restartSolution(){ // restart the search by using the
initial solution generation procedure
initSolution();
}
void initSolution(){// generate the initial solution
Solver<LSGraph> ls = getLSGraphSolver(); // get the solver
VarTree tr = getFirstVarTree(); // retrieve the tree variable
tr
InsertableEdgesVarTree inst = getInsertableEdges (tr); //
retrieve the invariant representing the set of insertable
edge of tr

tr.clear(); // clear the tree
select (e in inst.getSet () :e.contains (root)){ // choose randomly
a first edge to be added to tr
tr.addEdge (e) ;

forall (i in 1.._card-1) // repeat adding an edge until the tree
tr has _card edges
selectMin (e in inst.getSet ()) (e.weight ()){ // select an
insertable edge having smallest weight
tr.addkEdge(e); // add the selected edge to the tree

void exploreNeighborhood (Neighborhood N){ // explore all four
neighborhoods of VarTree

exploreTabuMinAddlVarTree (N, true); // explore the
neighborhood NT_1

exploreTabuMinRemovelVarTree (N, true); // explore the
neighborhood NT_2

exploreTabuMinAddRemovelVarTree (N, true); // explore the
neighborhood NT_{1+2}

exploreTabuMinReplacelVarTree (N, true); // explore the
neighborhood NT_3

Fig. 14 The search component for the QR problem

@ Springer

Constraints

6.1.3 Experiments

We compare our tabu model in LS(Graph) with the IMP heuristic, which is the best
heuristic among the three heuristic algorithms in [24]. The original instances and the
implementation of the IMP algorithm are not available. We thus re-implemented the
IMP algorithm in COMET and generated new benchmarks.

Problem instances We take six graphs from the benchmark of the KCT problem
[20] which are 4-regular graphs of sizes from 50 to 1,000 nodes and six graphs from
the Steiner tree instances. For each graph of size n, we generate randomly 7 * tau,
nodes for the set S, the value for g is set to n * tau; * tau, with tau,, tau, € {0.2, 0.5},
and the root is set to be node 1.

Results The IMP algorithm and our model in LS(Graph) are executed 20 times for
each problem instance. The time limit for our model is 30 min. From our preliminary
results, we set tbl to 5 and maxStable to 200. The experimental results are shown
in Tables 2 and 3. Columns 3-6 present the average, the minimal, the maximal, and
the standard deviation of the best objective value found in 20 executions. The same
information for our model is presented in columns 8-11. Column 7 is the average
execution time (in seconds) of the IMP algorithm over 20 executions, while column
12 presents the average time (in seconds) for finding the best solutions over 20
executions of our tabu search model. Table 2 shows that for KCT instances, our
LS(Graph) model finds better solutions than the IMP on average. Moreover, the
worst solutions found by our model are, in most cases, even better than the best
solution found by the IMP (among 20 executions). Table 3 shows that the results
found by our model are better than those found by the IMP algorithm on average
except for the last four instances (45-48). A comparison of the two algorithms in
terms of box-and-whiskers plots (see their template presentation in Fig. 15) can be
found in Figs. 16, 17, 18, and 19. Two consecutive bars present the results computed
by the IMP and the tabu search algorithms on a given instance. The figures show that
for each algorithm, the variance of the results among the 20 executions is small. It
also shows that, in most instances, the solutions found by our tabu search are better
than those found by the IMP algorithm.

6.2 The edge-disjoint paths problem

6.2.1 Problem statement

We are given an undirected graph G = (V, E) and a set T ={(s;,t;) |i=
1,2,...48T;s; # t; € V} representing a list of commodities. A subset 7" C T, T' =
{(si,, ti,)s - (Siy, L)} 1s called edp-feasible if there exist mutually edge-disjoint paths
from si; to t;, on G,Vj=1,2,.., k. The EDP problem consists in finding a maximal
cardinality edp-feasible subset of 7. In other words,
max g7’ (1)
s.t. TcT (2)
T’ is edp-feasible 3)

@ Springer

Constraints

12°0€€T 90°LIT TLE'L 1680 €6'860°L LIS 8C9¢ 19€°L 6CCT'L S8'E6T L 0$0S700013 ¥C
S8'L69 y0°LC €€6°T 6Tr'C TLSY'T 90°108 6CY LT €€LT €VLT 0T 0S700013 €C
60°698 6’67 665y 90v'y SSe6r'y ¥9°S6L 96°'L TLLY [SYN% TOLY 0$ 0200013 (44
SL'PSS LY'LT 1291 S0S‘T S9'89S°T 1918 8T°6 9¢€8°1 0181 1'2e8T 02" 0Z 00013 ¥4
°SSr8 STLY 968°C 66LC S1'6T8°C 61°Cs 0 0¥0°€ ov0°'e 0r0°€ 0S~0S™00t3 0C
80'%8S (N4 810°T S00°T S9°010°T 9’18 SLL 991°T orT'T SSPSTT 07705003 ol
£€°689 So°L 929°1 009°T S6°019°T ev'IS o€l 6EL°T woL'T SO¥TLT 0S~0Z 003 81
9r'0rc 881 09$ 1SS 9'9¢¢ 81°CS 0 665 665 665 0T 02 00t3 LT
£r918 (43 vyl St SPTIPT SeL 0 6611 6611 6611 0$70S00¢38 91
608 0 891 89% 891 9T'L 0 €8y €81 €87 0T 0S~00¢3 Sl
6y ere 260 168 678 9618 LO'L 0 9¢6 926 976 0$ 0270028 4!
9'ce 0 (404 (44 (404 €L 0 8¢ 8¢y 8¢ 0702 00¢3 €l
¥8°9¢ 0 7S8 $S8 7S8 €51 0 86 816 86 0$0S™ 0013 48
8C0 0 €L €LT €L 161 0 ¥6¢ ¥6C ¥6¢ 0T 0S~0018 11
1€¢ 0 1449 yes 1449 Sv'l 0 9¢s 9¢s 9¢s 0$70Z 0018 ot
€20 0 8L1 8L 8L 1 0 8L1 8L1 8L 0T 02 0013 6
18181 96°¢ 896 09§ 919¢ SO'T 0 0€9 0€9 0€9 0S70S75L3 8
80°0 0 SLT SLT SLT SO 1T 0 L0T LOT L0T 07 0S7SL3 L
[Nt 0 8C¢ 8¢C¢ 8C¢ 90T 0 86¢ 8¢ 8¢ 0507 sL3 9
200 0 €6 €6 €6 901 0 €6 €6 €6 0T 07 SL3 S
o 0 69¢ 69¢ 69¢ 9L0 0 98¢ 98¢ 98¢ 0S~0S 058 14
600 0 691 691 691 80 0 691 091 691 0T 057053 €
80°0 0 8¢ 8YC 8¢ 8L°0 0 16¢ 16¢ 15¢ 0$702 083 C
90°0 0 111 111 111 8L0 0 111 111 111 070 0S8 1
1 3Ae AOD PIS Xeu uru 3Ae 17 3Ae AP PIS Xeu uru 3ae
(ydein)s1 JNT sooue)Suy xopuy

soouR)ISUI)Y UO S)[NSoI [ejudwodxy g d[qeL

pringer

NS

Constraints

9%°'L9S°T 60t 8¥1 €el STort 86701 0 scl Scl scl 0S™0S 91oULIs 8y
1Y 950 49 0S £0S Y€66 0 0s 0s 0s 0T 0S 91oULIS Ly
10°L9C vLO 9¢ (39 S6'vS o0t 991 6S (43 Syve 0S~0T 91ouLIs 9
L00T 990 144 (44 9'¢C 00t €1l ¥4 Ic sTee 0T 0T 91ouLIs Sy
6L°000°T 1€7C 80¢ 661 S'c0c 07201 6C €1¢ 10T STLOT 0S0S T1ouIs 144
SSy w90 69 L9 SL'LY 68101 8¥'C 6L 0L SO'SL 0T 05 T1ouIs £y
P€'€08 850 601 LOT ¥'LOT 901 Sl 611 €l 911 0S 0T T1ouLIs (44
ST 18Y 90 6¢ 8¢ L'8¢ 80701 66'T Ly oy So'ey 0C 0C T1oumdIs 1y
L8998 8T’ L8E vLE SCI8¢ 65°€01 Lre LOY S6¢ GC'66¢ 0505 9ourals oy
LTTLE 60T 811 (81 6'SIT 866 919 Lyl ol S6'0¢T 0T 05 9ourars 6¢
YEY19 eL'l gee 81¢ 6'1¢CC LL'TOL 19°¢ ove 6C¢ Slyvee 0S 0T 9ouraIs 8¢
90v1S 60 L 69 L'69 85001 SLY 86 18 SET6 0T 0T 9ourars LE
9Cl 0 8 8 a8 8Y'1 60C [S8 STLY 0S0S 91quIals 9¢
€60 0 1€ 1€ 1€ Lyl 6Ll LE [43 e8ce 0T 0S 91quIIs Se
o6 0 19 19 19 SS €eC 9L 69 SeeL 0S 0C 91quIs 1%
100 0 o1 o1 01 o'l 0 ot ot ot 0T 0Z 91quias €€
9L'C 0 S9 S9 S9 66°0 0 S9 S9 S9 0S 0S 01qUIIs (43
910 0 (44 [44 (44 €01 STl 6¢ 9 8L 0T 0S 01qUuIIs 1€
€0 0 6C 6C 6C 860 0 6¢ 6¢ 6¢ 0S 0T 01quis 0¢
cro 0 6l 61 61 1 0 61 61 61 0 0T 01quIdIs 6¢
LT0 0 1r 1y 1y yL'0 LLO €S 1S sTes 0S0S pqurars 8¢
80°0 0 0¢ 0c 0c ¥L0 870 ¥4 0¢ geoe 0T 0S pqurals Le
cro 0 43 43 43 SLO 0 [43 [43 [43 0S 0T yqurals 9¢
0 0 17 17 11 L0 0 11 11 11 0T 0T pquiars 14

) 3A® AP PIS Xew uru Sae) 3A® AP PIS Xeuw uru Sae
(ydein)s1 JINT sooue)suy xopuy

SOOUR)SUT IOUIS)S UO SINSAI [RIUowWLIddX € dqel,

pringer

fHs

Constraints

Fig. 15 Box-and-Whiskers
plot: the X-axis represents the
algorithm and the instance (A
denotes the algorithm and ins
denotes the instance) and the
Y-axis represents the value of
the objective function

Fig. 16 Comparison between
IMP and LS(Graph) on KCT
instances

Fig. 17 Comparison between
IMP and LS(Graph) on KCT
instances

@ Springer

Max | ="

Upper quartile |— — =

Lower quartile |~

1000
800
600
400

200

8000
7000
6000
5000
4000
3000
2000
1000

Median|— — =

Min; o=

A (ins)

—T T

—
—
—
—
[

NN\ﬂImININIInIﬂNINmImININIIn'W) |NI u‘}; IN! :Iﬂl
RRRRBEARRARRRBABRRAIBARS
1 1|
2928388 neRee e g'gs
OO OO OO OO e - - - =
uuuuuuuuuuuuuuuu 28822228
2222222225500 200
e3e3e83eze838383828zz222z2¢82¢23
BERERERERERERER 2388 ¢83
k.

DDDDDDDDDDHDDD HH H

RRBERSBBRSIBERSBIIRNFBRKE 3

I
RRRRREEBRRRRRRBERRSRRISES
Qo000 oO o DDODDQDDGDG
SEc8s8rgsS8888s888588¢88¢8
oo OO R O e e o o

Constraints

Fig. 18 Comparison between 100
IMP and LS(Graph) on steiner

instances 80
60
40
20
0
glg'gih%l 8|glgl 8Igl g|8|8|glg|8| 8Iglg' 8Islglglslsl
SEqEResyRsSsessgssanags
TXgxzsgicoococoovsousuey
BcEcecfchbopbpopbpapbpoad
2253000000008 888 8
WWWWWWWW [T T T T I T T T I T I T I T R T T]
g3g283 %Sé?é?é?é?é?é?é?é?
“BEECEESEIEIESEZEZEIEiEZ

Fig. 19 Comparison between 500
IMP and LS(Graph) on steiner
instances 400

300
200
100

S —— —

S ——
- |

(]
—
—
 — |
—
u]

u]

=
/3
-]
=
—
—w

o

—a

—

I —
—T—
| —
—

QDDDDQQOQOOOQODDQQQQQQ%O
N|N| I‘nll‘“| N|N|m|m|N| N|m|m|N|N|m|m|N|N|mlm|N|Nl I‘nl
[o e o o o o s Y o I Y e Y [= e =]
NINININI Iﬂl mltﬂlmlt\ll NININI Slslglalwlwlwlﬂlslslslsl
ggegege et el e el ele
EECCCECELCCECULLUL UL UL] [T}
ESESEEESEceegegegepppdat
T R I - T TR T
Bt i T O T S T I T O I T I I R R R R R)
BB BN R W RS S STRER R TR o SN . S S it Nt Sl S At gt
EBC3EEc3ezrzezpRceEcacze;
"3"3"5"5-E-s--E--E-Es-EE-EE-EE

In this section, we propose two algorithms based on neighborhood search for
solving the EDP problem by LS(Graph). They are complex heuristics which make
use of local search in LS(Graph) as sub-routines. We first describe the simple greedy
algorithm SGA [42] because one of our algorithms (detailed later) will apply this as
sub-procedure (see Algorithm 3).

Algorithm 3: SGA(G,T)

Input: Problem instance (G = (V, E), T') consist of a graph G and a commodity list 7"
Output: Set of edge-disjoint paths on G connecting endpoints in 7'
S+ ©;
E1 +— F N
foreach T); = (s;,t;) € T do
if s; and t; can be connected by a path in G1 = (V, E1) then
\; Pj < shortest path from s; to ¢; in G1 = (V, E1);

NS R W=

S%SU{P]'};
E1<—E1\{e|e€Pj};

=)

return S;

@ Springer

Constraints

6.2.2 The simple greedy algorithm

This algorithm starts with an empty solution S (line 1). At each iteration j (line 3),
it selects a pair T; = (s}, ;) and tries to find the shortest path P; from s; to ¢; in the
graph G| = (V, E)), initializing the set of edges E; to be E (line 2). If such a path
exists, it is inserted into S and the set E, is updated for the next step by removing all
edges of the path P;.

Obviously, the SGA algorithm depends strongly on the order of commodities
T; considered. The multi-start version of SGA (called MSGA) performs SGA
iteratively with different orders of 7' to be scanned in 7.

In the ACO algorithm of [18], the following criterion is introduced, which quan-
tifies the degree of non-disjointness of a solution. § = { Py, P,,... Pt} (P; is a path
from s; to t;):

C(S) =) |max{0, Y p/(S,e) —1}],

ecE PjeS

where p/(S,e) = life e P;, and p/(S, e) = 0 otherwise. From a solution constructed
by ANTs, a solution to the EDP problem is extracted by iteratively removing the
path which has the most edges in common with other paths, until all remaining paths
are mutually edge-disjoint (see Algorithm 4).

Algorithm 4: Extract(S)

Input: set S of paths
Output: subset of edges-disjoint paths of S
1 Sg« S;
2 while C(Sp) > 0do
3 foreach p € Sy do
|_ ¢(p) <+ number of edges of the path p in common with other paths of Sp;

4

5 p* argMax e 5, ¢(p);
6 So < So \ {p*};
7

return So;

In this section, we propose two algorithms based on local search for solving
this problem: the LS-SGA and the LS-R algorithms. These algorithms perform
a local search procedure applying the LS(Graph) framework combined with the
extraction method (Algorithm 4) and the simple greedy algorithm. These algorithms
make use of the PathsEdgeDisjoint(Py, P, ..., Pr) constraint of the LS(Graph)
framework saying that the set of paths {P;, P>, ..., Py} must be edge-disjoint. The
number of violations of the Paths Edge Disjoint(P;, Pa, ..., Py) constraint is defined
to be C{{ Py, P, ..., Px}) and the local search algorithms used in our heuristics try to
minimize this number.

6.2.3 The LS-SGA algorithm

The LS-SGA algorithm has been proposed in our paper [54]. The main idea
of the LS-SGA algorithm (given in detail in Algorithm 5) is to perform a
local search algorithm aiming at minimizing the number of violations of the
Paths Edge Disjoint(Py, Py, ..., Py) constraint. The variable S (line 2) stores a set
of paths { Py, P,, ..., Py} connecting all commodities. It is initialized randomly (lines

@ Springer

Constraints

3-5). At each step, we perform a local move. The LocalMove method (line 7)
returns true if it finds a move that decreases the number of violations of the
Paths Edge Disjoint(Py, P,, ..., Py) constraint. If no such move exists, we make some
random moves (line 22). From a candidate solution S found by the local search, a
solution S, to the EDP problem will be extracted by applying the Extract algorithm
(line 9) combined with the SGA algorithm (line 15) on the remaining graph G” (the
graph G” is obtained by removing all edges E’ (line 12) of the paths extracted by
the Extract algorithm) and the remaining commodities 7" (lines 10 and 11). The best
solution is updated in line 17 and lines 18-20 update some paths of S by the new
found paths of S,.

Algorithm 5: LS-SGA(G,T)

Input: Problem instance (G = (V, E), T') consist of a graph G and a commodity list T’
Output: Set of edge-disjoint paths on G connecting endpoints in T’

1 Sbest — ©;

2 S+

3 foreach (s;,t;) € T do

4 p; < random path from s; to t; on G;
5 S+ Su{p}
6 while termination criterion is not reached do
7 hasM ove <+ LocalMove(S);
8 if hasM ove then
9 S1 < Extract(S);
10 T’ <+ set of commodities that are connected by paths in S1;
1 T« T\T;
12 E’ <+ set of edges of paths of S1;
13 E" + E\ E;
14 G" « (V,E"),
15 So <+ SGA(G",T");
16 if §51 + 452 > #Spest then
17 Shest ¢ 51U S2;
18 foreach p; € S3 do
19 pis apath of S\ S such that starting point of p = starting point of p; and
terminating point of p = terminating point of p;;
20 D < Di}
21 else
22 |_ RandomMoves(.5);

23 return Spegq;

6.2.4 The LS-R algorithm

The idea is to connect recursively as much as possible the commodities of T (see
Algorithm 6). The core is the recursive method LS-Recursive in Algorithm 7, which
receives a graph G and a list of commodities 7 as input and computes a set of
maximally edge-disjoint paths connecting the commodities of 7. This paths set is
then accumulated in the solution Sol/ (Sol is a global variable) and all edges visited
by these paths are removed from G for the next recursive call. Line 1 computes a set
of edge-disjoint paths by a greedy local search method, GreedyLocalSearch. Lines
2-3 update the solution by adding the new found edge-disjoint paths of §;. Lines
3—4 compute the set of connected components CC of the graph generated from the
current graph by removing all edges E’ of paths of S;. For each graph G; of these

@ Springer

Constraints

connected components and each set of commodities 7; that belong to G;, we perform
recursively the LS-Recursive method (see lines 6-8).

Algorithm 6: LS-R(G, T)

Input: Problem instance (G = (V, E), T') consist of a graph G and a commodity list T’
Output: Set of edge-disjoint paths on G connecting endpoints in 7'

1 Spest < @5

2 while termination criterion is not reached do
3 Sol + ©;

4 LS-Recursive(G, T');

5 if 1Sol > §Spes: then

6 L Shest < Sol;

The implementation of these algorithms in LS(Graph) is given in the PhD thesis
[53]. It is more complicated than that of the QR problem: it requires some processing
(e.g., removing edges and vertices from a graph, and computing the connected
components of a graph) other than just stating the model and performing the search.

Algorithm 7: LS-Recursive(G,T)

Input: Problem instance (G = (V, E), T') consist of a graph G and a commodity list T'; Sol is a
global variable that stores a set of edges-disjoint paths under construction
Output: Update Sol
S; < GreedyLocalSearch(G, T);
foreach p € S; do
|_ Sol + Sol U {p};

E’ <+ set of edges of paths of S;;

C'C < set of connected components of the graph (V, E'\ E’);

foreach G; € CC do

\; T; < set of commodities that are not connected by any path of \S; such that their endpoints

NS R RN -

belong to G;;
LS-Recursive(G;, T});

)

6.2.5 Experiments

Problem instances We tried the two proposed algorithms on three types of bench-
mark. The first benchmark contains instances on four graphs provided by Blesa [18].
The second benchmark contains instances on some graphs of the Steiner benchmark
from the Or-Library [14]. The third benchmark consists of instances on random
planar graphs. Table 4 gives a description of these graphs.

An instance of the EDP problem consists of a graph and a set of commodities. The
instances in the original paper [18] are not available. As a result, we base our trial
on the instance generator described in [18] and generate new instances as follows.
For each graph of the first set, we generate randomly different sets of commodities
with different sizes, depending on the size of the graph: for each graph of size n, we
generate randomly two instances’ with 0.10%#, 0.25%n, and 0.40*n commodities. We
do the same for each Steiner and planar graph but we generate only one instance for

This is different from what we did in [54], where we randomly generated 20 instances for each rate
of commodity. For each instance, the algorithm was executed only once.

@ Springer

Constraints

Table 4 Description of graphs

Name 4 |E| Degree avg.
of the benchmarks

bl-wr2-wht2.10-50.rand 500 1,020 4.08
bl-wr2-wht2.10-50.sdeg 500 1,020 4.08
mesh15x15 225 420 3.73
mesh25x25 625 1,200 3.84
steinb4.txt 50 100 4.00
steinb10.txt 75 150 4.00
steinb16.txt 100 200 4.00
steinc6.txt 500 1,000 4.00
steincl1.txt 500 2,500 10.00
steincl6.txt 500 12,500 50.00
planar-n50 50 135 5.4
planar-n100 100 285 5.7
planar-n200 200 583 5.83
planar-n500 500 1,477 5.91

each rate of commodity instead of two. Table 5 describes the instances generated,
including their numbers of vertices, edges, and the sizes of the commodity sets 7.

For comparison, we have reimplemented the ACO algorithm described in [18] in
the COMET programming language. For each problem instance, the three algorithms
ACO, LS-SGA, and LS-R are executed 20 times each. Due to the high complexity of
the problem, we set the time limit to 30 min for each execution. In total, we have 54
problem instances and 1,080 executions.

Results The experimental results are shown in Tables 6, 7 and 8. These tables have
the same structure, which is described in what follows. The first column presents the
instance name. Columns 2-5 present the results of the ACO algorithm [18], including
the average, the minimal and the maximal of the best objective values found in 20
executions, and the average time for finding these best objective values. The same
information for LS-SGA and LS-R are presented in columns 6-9 and columns 11—
14. Column 10 compares the ACO and LS-SGA algorithms in the format a/b where
a is the number of times the ACO algorithm found better solutions than the LS-
SGA algorithm and b is the number of time the LS-SGA found better solutions
than the ACO algorithm in 20 executions. Column 15 presents the same information
as column 10 but for the comparison between the ACO and the LS-R algorithms.
A comparison of the two algorithms in terms of box-and-whiskers plots (see their
template presentation in Fig. 15) can be found in Figs. 20, 21, 22, 23, 24, and 25.
Three consecutive bars present the results computed by the ACO, LS-SGA, and the
LS-R algorithms on a given instance. The figures show that for each algorithm, the

Table 5 Description of instances

Index Name 1% tE gT

1 bl-wr2-wht2.10-50.rand.bb_com10_ins1 500 1,020 50
2 bl-wr2-wht2.10-50.rand.bb_com?25_ins1 500 1,020 125
3 bl-wr2-wht2.10-50.rand.bb_com40_ins1 500 1,020 200
4 bl-wr2-wht2.10-50.rand.bb_com10_ins2 500 1,020 50
5 bl-wr2-wht2.10-50.rand.bb_com25_ins2 500 1,020 125
6 bl-wr2-wht2.10-50.rand.bb_com40_ins2 500 1,020 200
7 bl-wr2-wht2.10-50.sdeg.bb_com10_ins1 500 1,020 50

@ Springer

Constraints

Table 5 (continued)

Index Name % tE 8T

8 bl-wr2-wht2.10-50.sdeg.bb_com25_ins1 500 1,020 125
9 bl-wr2-wht2.10-50.sdeg.bb_com40_ins1 500 1,020 200
10 bl-wr2-wht2.10-50.sdeg.bb_com10_ins2 500 1,020 50
11 bl-wr2-wht2.10-50.sdeg.bb_com25_ins2 500 1,020 125
12 bl-wr2-wht2.10-50.sdeg.bb_com40_ins2 500 1,020 200
13 mesh15x15.bb_com10_ins1 225 420 22
14 mesh15x15.bb_com25_ins1 225 420 56
15 mesh15x15.bb_com40_ins1 225 420 90
16 mesh15x15.bb_com10_ins2 225 420 22
17 mesh15x15.bb_com25_ins2 225 420 56
18 mesh15x15.bb_com40_ins2 225 420 90
19 mesh25x25.bb_com10_ins1 625 1,200 62
20 mesh25x25.bb_com25_ins1 625 1,200 156
21 mesh25x25.bb_com40_ins1 625 1,200 250
22 mesh25x25.bb_com10_ins2 625 1,200 62
23 mesh25x25.bb_com25_ins2 625 1,200 156
24 mesh25x25.bb_com40_ins2 625 1,200 250
25 steinb4.txt_com10_ins1 50 100 5
26 steinb4.txt_com?25_ins1 50 100 12
27 steinb4.txt_com40_ins1 50 100 20
28 steinb10.txt_com10_ins1 75 150 7
29 steinb10.txt_com25_ins1 75 150 18
30 steinb10.txt_com40_ins1 75 150 30
31 steinb16.txt_com10_ins1 100 200 10
32 steinb16.txt_com25_ins1 100 200 25
33 steinb16.txt_com40_ins1 100 200 40
34 steinc6.txt_com10_ins1 500 1,000 50
35 steinc6.txt_com25_ins1 500 1,000 125
36 steinc6.txt_com40_ins1 500 1,000 200
37 steincl1.txt_com10_ins1 500 2,500 50
38 steincl1.txt_com25_insl 500 2,500 125
39 steincl1.txt_com40_insl 500 2,500 200
40 steinc16.txt_com10_ins1 500 12,500 50
41 steincl6.txt_com25_insl 500 12,500 125
42 steincl6.txt_com40_ins1 500 12,500 200
43 planar-n50.ins1.txt_com10_ins1 50 135 5
44 planar-n50.ins1.txt_com?25_insl 50 135 12
45 planar-n50.ins1.txt_com40_ins1 50 135 20
46 planar-n100.ins1.txt_com10_ins1 100 285 10
47 planar-n100.ins1.txt_com25_ins1 100 285 25
48 planar-n100.ins1.txt_com40_ins1 100 285 40
49 planar-n200.ins1.txt_com10_ins1 200 583 20
50 planar-n200.ins1.txt_com25_ins1 200 583 50
51 planar-n200.ins1.txt_com40_ins1 200 583 80
52 planar-n500.ins1.txt_com10_ins1 500 1,477 50
53 planar-n500.ins1.txt_com25_ins1 500 1,477 125
54 planar-n500.ins1.txt_com40_ins1 500 1,477 200

variance of the results among the 20 executions is small. It also shows that, in most
instances, the solutions found by LS-SGA and LS-R are better than those found by
the ACO algorithm.

@ Springer

Constraints

02/0 YTOr0'T L 99 $8'89 02/0 ET60rT 89) S0°$9 T8°6£6 19 S SLLS T
02/0 11201 65 (S LS 02/0 6S°€L9 S Ly SR P8'S10'T 8y 142 sy €T
02/0 80°S¥6 or 9¢ 6LE 02/0 TIsL8 LE 13 Lse 9EF6 33 8T 1'0€ (44
02/0 190287 o L9 €69 02/0 L8'0S6 69 09 €59 PTLOL 19 €S L'LS %4
02/0 STITT 6S S S9N 02/0 LS'ESO'T 9§ 6 $6'1S 8Y01'T 6 o st 0z
02/0 LF9%6 134 6€ Iy 02/0 998 Iy 9¢ ST6¢ 96966 9¢ 62 $8'Te 61
02/0 €9°0T6 6¢ 9¢ 9LE €y 9T'6%9 LE 33 9ve $$°0SL 9¢ 33 13 8T
02/0 96268 e (43 so€e 02/0 86087 €€ 0¢ LIg 0107 I€ 8T T6e L
81/0 L89S 0z 61 S 61/0 S9'STS 0C 61 144! 68°6LY 61 LT SLT 91
02/0 L6096 or LE 8'8¢ 01/9 STE9L 6¢ €e 8¢ L 8¢ (43 €'ge ST
02/0 €6'L88 33 T€ (43 61/0 I$7see 1€ 6C 86T 86°0LY 6C 9z L'Le 2t
61/0 €5°09¢ (44 1z SSa¥s 02/0 11459 (44 1 SLTT 9r' LSy 1 61 S9°61 €1
6/0 66°€8S LE Lg Lg 48t LS'9€6 LE se Lse €er LE se $'9¢ 4t
1ans 1791$ e €€ X33 LI6 70088 e I€ 6T 60°S9¢ e (43 S6'TE A
91/0 658t 0z 0z 0z 11/ s 0C 61 $9°61 61°T0F 0c 61 43 o1
LI0 LS'LSS 13 13 13 a8 9Ly 13 153 T'ee 6691 e 33 so'¢e 6
v/0 89°€Ty 9¢ 9¢ 9¢ €/8 79€S 9¢ e srse 80°L9 9¢ g¢ 8'se 8
02/0 66°0€r LT LT LT 9/0 €0°62S LT 91 ST9T vT68 91 ST S6'ST L
12! LTE6T LE 9¢ $6'9¢ 01 81Tk Lg 13 S09¢ PTS8T LE 9¢ $6'9¢ 9
/0 9T€0€E se e S6'vE v/8 20°P¥S g¢ (43 1413 €€'L6 83 e SLvE S
ST/0 60°TST 9z 9z 9z €1/0 e yey 9z st 6'ST 156 9z 4 sTst 14
“t 6T0€T 8¢ LE 6LE 79 96°72E 8¢ 9¢ 9LE 95°61C 8¢ LE S8'LE €
€/0 1L°€9T (43 (43 (43 €/01 66795 (43 0¢ vIE (4] (43 153 S (4
61/0 L1761 91 91 91 €1/C 9L0TF 91 ! 91 9 1€l 91 1 8l I
a ! W w I 12 ! W w / ! W w /

q-ST VOS-S1 00V su[

jos sydeid jsi1ry oy Jo sj[nsol [pjuowiodxy 9 Jjqe],

pringer

fHs

Constraints

00 TEe8T 00 00C 002 00 6999 00c 00C 002 wsy 00T 00T 00Z w
00 €8¢l ser ser ser 00 9£V6l ser set set €rLt szl ser ser Iy
0/0 10°9% 08 08 08 00 TIss 08 08 08 689 08 08 08 ov
02/0 I8'€LY 00z 00C 00z 070 bSS6E 00T 00T 00z vover 861 061 STHOL 6¢
L0 8€T9T ser ser ser L0 6¥8Cl ser set set 8'1es szl fea! geet 8¢
00 9LE 08 08 08 00 6Tk 08 08 08 65°€C 08 08 08 LE
0c/0 LETUET sct - 6ll vz YR ¥IL6 8T 90T s0ert Ives LI 901 8'601 9¢
0c/0 8S0LET 801 20l S6701 o ssEL 001 L8 T oL8TL 6 s8 668 s¢
a0 sLove 08 08 08 o st 08 08 08 sLes oS Ly rep ve
0c/0 6199 L€ s¢ s6's€ 610 vELL 9E 23 823 ST859 e (43 sree 23
€0 988 sc sc s €0 €5°€6 sc sc sc 6679€ st ve seve (43
00 T or ot ot 00 91 or ot ot $T0 ot or ot 163
0c/0 TTSos 8¢ Le gLe 0c/0 ¥8T9 LT 9¢ sT9C voTe 9¢ € seve o€
€00 s 81 81 81 € el 81 81 81 8796 81 L1 L1 62
00 orT L L L 00 s€T L L L 200 L L L 8¢
0re 8T 0c 61 661 00 stS 0c 0c 0c s 0c 0c 0z Le
0/0 [a al al 00 @l al a al 0 a al al 9
00 601 s s s 00 Tl s s s 100 S s s sc
@ ! W w £ 12 ! W w £ ! n w £

ST VOS-ST o0V sul

108 sydeid 1ourd)s oY) Jo s)nsal [ejudwiadxyg £ d[qel

pringer

NS

Constraints

02/0 PSSl 201 L6 ST00T 02/0 LTI9ET 66 16 S6°€6 €rgeet 98 8L 828 S
02/0 €0PP0°'T 08 LL T8L 02/0 PLSPET LL 0L 8L SEPS6 $9 LS $6°09 €5
02/0 ¥T60€ 0S 0S 0S 02/0 P8 v8y 0s 6 S6'6F I7°00T°T Ly o S6'v s
02/0 #L'106 8S tS L'ss 61/0 L6'EE0'T 9s I$ Se'es $9°06L I$ Ly Se6h TS
02/0 81°€S8 8t St S6'sy 02/0 18'886 Ly 5 S8y L0°688 5 6¢ 8Ty 0S
0/0 €S 0z 0z 0z 0/0 90 0c 0c 0z 9r°el 0c 0z 0c 6t
81/0 88'869 Lg 83 9¢ 91/0 95°€T8 Lg 13 €ge TL089 9¢ 33 3 8t
0/0 €€'s ST st st 0/0 0L st ST sT oz ST ST st Ly
0/0 LO'T 0t 01 01 0/0 Pl 0t 0t 0t zro 01 01 0t 9
01z 8T'TE 0c 61 661 0/0 rse 0c 0c 0c 8€9¢ 0C 0z 0c St
0/0 L6°0 4! 4! 4 0/0 96°0 4! 4! 4! 910 4 4 4 44
0/0 80 S S S 0/0 980 S S S €00 S S S (34
a ! W w S 12 ! W w / ! W w J

A-ST VOS-ST 0dV su[

jos sydeid reueld oyj jo sj[nsal [eyuowradxy Q Jqel,

pringer

aQs

Constraints

40
35 mam | A K=

H]
H

20
15
10

Fig. 20 Comparison between the ACO, LS-SGA and LS-R algorithms (part I)

The experiments results show that on average, the LS-R algorithm is better than
two other algorithms. The LS-SGA algorithm is better than the ACO algorithm. The
LS-SGA finds better solutions than the ACO algorithm in 534 out of 1,080 executions
while the ACO algorithm finds better solutions in 96 out of 1,080 executions. LS-
R finds better solutions than ACO in 614 out of 1,080 executions while the ACO
algorithm finds better solutions than LS-R in 7 out of 1,080 executions.

45
40 &
35 _RAN %% EI§
AR 5 il
30 : I
25
20
15
10
0 o U L L U L D U L L
e e T e s e e s Pl e PR E eSS
S8R 30080880088 030088082.
L. 2 w = © o » AR X

Fig. 21 Comparison between the ACO, LS-SGA and LS-R algorithms (part II)

@ Springer

Constraints

80
70 m

60 If T

50

HE-
=1
=1 B
HH
HH

il &

40
30
20
10

Fig. 22 Comparison between the ACO, LS-SGA and LS-R algorithms (part I1I)

6.3 The routing and wavelength assignment problem with delay side constraint
(RWA-D)

The last application demonstrates that VarPath variables of LS(Graph) and
var{int} of COMET can easily be combined.

6.3.1 Problem statement

Given an undirected weighted graph G = (V, E), each edge e of G has cost
c(e) (e.g., the delay in traversing e). Suppose given a set of connection requests

140
| -
120 ;i
& T
100 ;
i
80
60
40
ODDDDDH 000 ARENARRNERE
Do @D O OO N NNMmMMmMT e T OnDDO©O
o R N o M W e T 8 e O W M e T T B A
2 ERNR e i oaNiR e iR 0
L L] L] w] L] L] L) o

Fig. 23 Comparison between the ACO, LS-SGA and LS-R algorithms (part IV)

@ Springer

Constraints

250

200 M0 N

150

100 -

Fig. 24 Comparison between the ACO, LS-SGA and LS-R algorithms (part V)

R = {(s1, 1), (52, 1), ..., {Sk, tx)} and a value D. The RWA-D problem consists of
finding routes p; from s; to #; and their wavelengths for alli = 1, 2, ..., k such that:

1. the wavelengths of p; and p; are different if they have common edges, Vi # j €

{1,2, ..., k} (wavelength constraint),
2. Y eepcle) <D, Vi=1,2, .. k(delay constraint),
3. the number of different wavelengths is minimized (objective function).

6.3.2 The model

The idea of the proposed algorithm is simple. We iteratively perform a local search
algorithm for finding a feasible solution to the RWA-D problem with W wavelengths
(W =1,2,3,...) until the first feasible solution is discovered.

120
100 =
-
80 EE
-

60 =

40

” HHHHHH

. nom 1]
$ge85599993%8885::233888888¢8
89,858,882, 82.82,82,88.8%.85%4

pil o e @l al ri p 2 W

Fig. 25 Comparison between the ACO, LS-SGA and LS-R algorithms (part VI)

@ Springer

Constraints

The model is given in Fig. 26. Lines 4-10 initialize all VvarPath vps[i] from
s[i] to t[i] with the shortest version. Line 11 initializes an array vw where
vw [1] stores the wavelength value for the path vps [1]. The search starts with one
wavelength (see line 14). At each step, we try to find a feasible solution to the RWA-
D problem by a 1ocalsearch procedure (line 16). The search terminates (line 17)
if a feasible solution to the RWA-D problem is discovered, otherwise, we increase W
by one (line 19).

The localsearch procedure described in Fig. 27 receives an array of VarPath,
a value W of the number of wavelengths, and local search parameters maxIt and
maxT as input. Line 2 creates a Solver<LSGraph> ls and lines 4-6 post all
VarPath to it. Line 8 initializes an array var{int} xw, where xw[i] represents
the wavelength assigned to the path vps[i] and is initialized with the value
vw [1]. The domain of xw[i] is 1. .W. Line 10 initializes a ConstraintSystem
<LSGraph> CS. The first constraint of the RWA-D problem is stated and posted in
line 12. Lines 14 and 15 state and post all side constraints (the delay constraint) to
Cs and line 17 closes the constraint system CS. Line 19 groups all variables vps, xw,
and the constraint CS, into a model mod. Line 20 creates a search component which
will be given in detail in Fig. 28. Lines 22 and 23 set parameters for the search and
line 25 performs the search. The value of xw is stored in vw for the next iteration (see
lines 27 and 28): all paths vps [1] and their wavelengths xw [1] are conserved for
the next localsearch. The localsearch returns true if a feasible solution to
the RWA-D problem is discovered (lines 30-32).

The search component is given in Fig. 28. It extends the TabuSearch<LSGraph>
and receives Lmax (line 3) as parameters for the solution initialization when restart-
ing the tabu search. The restartSolution is overriden (lines 13-24) in which
we initialize the value for the VarPath vps[i] with the shortest version if its

1 void minRWA (int maxIt, float maxT) {
range Size = 1l..ca;

N

4 vps = new VarPath[Size];

5 // init VarPaths with the shortest version

6 LSGraphPath p(g);

7 forall (i in Size) {

8 p.dijkstra(g,s[i],t[i]);

9 vps[i] = new VarPath(g,p);

10 }

11 vw = new int[Size] = 1; // the wavelengths of all paths are
all initialized by 1

13 bool finished = false;

14 int w=1;

15 while (! finished) {// iteratively search with 1, 2,
wavelengths until a feasible solution is found

16 if (localsearch (vps, W, maxIt,maxT)) {

17 finished = true;

18 }else {

19 W++;

20 }
21 }
22 }

Fig. 26 Model for the RWA-D problem

@ Springer

Constraints

1 bool localsearch (VarPath[] vps, int W, int maxIt, float maxT){ //
try to find a feasible solution with W wavelengths

2 Solver<LSGraph> 1s(); // create a new solver

4 forall (i in vps.rng()) {

5 ls.post (vps([i]);

6 }

8 xw = new var{int} [i in vps.rng ()] (ls,1..W) := vw[i]; // initial

wavelengths of paths (decision variables) using the
values computed at the previous iteration. At this point,
the domains of wavelengths are extended from 1..W-1 (at
the previous iteration) to 1..W

10 ConstraintSystem<LSGraph> CS(ls); // constraint system
12 CS.post (AllDistinctLightPaths (vps,xw)); // posting the

constraint specifying that two paths vps[i] and vps[]j]
sharing a link must have different wavelengths xw[i] and

xw([3].
14 forall (i in vps.rng())
15 CS.post (PathCostOnEdges (vps[i]) <= Lmax); // posting the

delay constraint

17 CS.close();

19 Model<LSGraph> mod (vps,xw,CS); // encapsulate variables,
constraints into a model object

20 RWASearch se (mod,Lmax); // create the search object which

extends the generic built-in tabu search component

22 se.setMaxIter (maxIt);

23 se.setMaxTime (maxT) ;

25 se.search(); // perform the local search

27 forall (1 in xw.rng())

28 vw([i] = xw[i]; // store the wavelengths of paths computed
for the next search iteration with higher number of
wavelengths

30 if (CS.violations () == 0){

31 return true;

32 }

33 return false;

34 }

Fig. 27 The local search procedure for the RWA-D problem

cost is greater than Lmax. This aims at quickly satisfying the delay constraint. The
initSolution is also overriden, which does nothing in order not to change the
value of the variables computed in the previous step of the search. The search ex-
plores two neighborhoods (lines 7-10) (see [53] for details about these neighborhood
explorations).

6.3.3 Naive greedy algorithm

As far as we know, the RWA-D problem has not been considered before. In
order to assess the efficiency of our local search, we implement a simple greedy
heuristic algorithm for the RWA-D problem (see Algorithm 8). The main idea of

@ Springer

Constraints

1 class RWASearch extends TabuSearch<LSGraph>{

2 float _Imax;

3 RWASearch (Model<LSGraph> mod, float Lmax) :
TabuSearch<LSGraph> (mod) {

4 _Imax = Lmax;

5 }

7 void exploreNeighborhood (Neighborhood N) {

8 exploreTabuMinMultiStageAssign (N, true); // explore the

neighborhood based on changing the wavelengths
9 exploreTabuMinMultiStageReplacelMovelVarPath (N, true); //

explore the neighborhood based on changing the paths

13 void restartSolution () {

14 // init paths with shortest versions for paths whose current
cost greater than Lmax

15 forall (k in _vps.rng()) {

16 VarPath vp = _vpsl[k];

17 float d = sum(e in vp.getEdges()) (e.weight ());

18 if(d > _Imax){ // update the path vp if its delay is greater

than Lmax
19 LSGraphPath pa(vp.getLUB()); // initialize a path object
20 pa.dijkstra(vp.getSource (), vp.getDestination()); //

compute the shortest path from the source of vp to
the destination of vp

21 vp.assign(pa); // assign the shortest path to vp

22 }

23 }

24 }

25 void initSolution(){// do nothing, use the values a computed at

the previous iteration
26 }
27}

Fig. 28 The search component

this greedy heuristic is to find the shortest path!® for each connection request and
assigns a wavelength to this connection request in a greedy way without violating
the wavelength constraint. Variable Sol in line 1 represents the set of paths under
construction. Variable W (line 2) contains the set of wavelengths used for the
paths which have already been constructed. Variable nb Wavelengths (line 3) is the
number of wavelengths used. For each connection request (s;, #;) (line 4), we assign
the shortest path P; to it (line 6). Variable W; in line 5 represents the candidate
wavelengths for P;. Lines 7-9 remove all impossible wavelengths for P; from W;. If
no wavelength already used is possible for P; (line 10), then we have to find a new
wavelength w; for P; (lines 11 and 12). If the candidate set W; is not null, we select

10The shortest path best ensures satisfaction of the delay constraint.

@ Springer

Constraints

randomly a wavelength from W; and assign it to P; (line 15). Lines 16 and 17 update
the solution.

Algorithm 8: RWADGreedy

Input: G = (V, E), T = {(s;, t;)} representing connection requests
Output: Number of wavelengths used for satisfying all requests

Sol + @;

W« ©;

nbW avelengths < 0;

foreach (s;,t;) € T do

Wi ~— W;

P; <+ shortest path from s; to ¢; in G;

foreach P; € Sol do

L if P; and P;j have common edges then

N=JCCRIEN IS N N7 I S

|_ Remove from W; the wavelength assigned for P;;

10 if W; = © then

11 nbW avelengths <— nbW avelengths + 1;
12 w; <— nbWavelengths;

13 W+ WU{w;};

14 else

15 L w; <— select random an element of W;;

16 Assign the wavelength w; to the path P;;

17 Sol < Sol U{P;};

18 | return nbWavelengths;

6.3.4 Experiments

We compare our local search model with the naive greedy algorithm described in Al-
gorithm 8 (multistart version with 1,000 different orders of (s;, ;) to be considered).

The two algorithms have been tried on different instances (graphs from 16 nodes
and 33 edges to 100 nodes and 261 edges and with 10, 20, and 50 connection requests
for each graph). Due to the complexity of the problem, we set the number of
iterations for the tabu search (the value of maxIt in line 16 of Fig. 26) to 200. For
each problem instance, the model is executed 20 times. From our preliminary results,
we set the length of the tabu lists b/ to 5 and the value of maxStable to 20.

Table 9 shows the experimental results. Column 2 presents the objective values
found by the naive greedy algorithm. Columns 3-6 show the minimal, the maximal,
and the average of the best objective value found, and the average execution time
(in seconds) over 20 runs. The experimental results show that the local search gives
better solutions than the naive greedy algorithm. Especially when the number of
connection requests increases (i.e., with 50 connection requests), the results found by
the local search are two or three times better than those found by the naive greedy
algorithm. We can see that the number of wavelengths used increases when the
number of connection requests increases. Given a number of connection requests,
if the size of the graph increases, then the number of wavelengths used decreases due
to the fact that on larger graphs, each link is shared by fewer paths of the solution
found by the local search and if two paths are completely edge-disjoint, they can
be assigned the same wavelength. For instance, with 50 connection requests, on the
graph of 100 vertices, we needed to use only four wavelengths (line 18), while on the
graph of 16 vertices, we had to use eight wavelengths (line 6).

@ Springer

Constraints

Table 9 Experimental results for the RWA-D problem

Instances Greedy f_min f_max ? t
arpanet_cal0.ins1 5 2 2 2 2.15
arpanet_ca20.ins1 9 6 7 6.05 11.36
arpanet_ca50.ins1 16 8 9 83 68.35
grid_ext_4x4_cal0.ins1 3 2 2 2 1.62
grid_ext_4x4_ca20.ins1 9 4 5 4.3 7.16
grid_ext_4x4_ca50.ins1 24 8 10 8.55 55.04
grid_ext_5x5_cal0.ins1 4 2 2 2 2.43
grid_ext_5x5_ca20.ins1 7 2 3 2.95 6.21
grid_ext_5x5_ca50.ins1 21 5 8 6.45 54.15
grid_ext_6x6_cal0.ins1 2 2 2 2.58
grid_ext_6x6_ca20.ins1 4 2 3 2.1 6.66
grid_ext_6x6_ca50.ins1 20 5 6 5.35 58.99
grid_ext_8x8_call.insl 4 2 2 2 3.81
grid_ext_8x8_ca20.ins1 9 3 4 3.3 14.61
grid_ext_8x8_ca50.ins1 11 4 6 5.15 73.97
grid_ext_10x10_cal0.ins1 4 2 4 2.7 9.71
grid_ext_10x10_ca20.ins1 8 3 5 4 24.22
grid_ext_10x10_ca50.ins1 13 4 6 4.75 105.2

Once again, in the above model, we notice that it is easy to state and post various
built-in COMET constraints over var{int} to the graph constraint system CS, which
shows the flexibility and compositionality of the framework.

7 Conclusion

This paper considered constrained optimum trees and paths (COT/COP) problems
which arise in many real-life applications. It proposed a domain-specific constraint-
based local search (CBLS) framework (called LS(Graph)) for solving COT/COP
applications, enabling models to be high level, compositional, and extensible, and
allowing for a clear separation between model and search. The key technical contri-
bution to support the COP framework is a novel neighborhood based on a rooted
spanning tree that implicitly defines a path between the source and the target and
its neighbors, and provides an efficient data structure for differentiation. The paper
proved that the neighborhood obtained by swapping edges in this tree is connected
and presented a larger neighborhood involving multiple independent moves. The
LS(Graph) framework, implemented in COMET, was applied to the quorumcast
routing problem, the edge-disjoint paths problem, and the routing and wavelength
assignment problem with side constraints on optical networks. Computational results
showed the potential significance of the approach, both from a modeling and a
computational standpoint.

Our future work will focus on the construction of a generic constraint program-
ming (CP) framework and a hybrid system combining CP and CBLS for modeling
and solving COT/COP problems.

Acknowledgements We would like to thank the reviewers for their helpful comments and sug-
gestions. This research is partially supported by the Interuniversity Attraction Poles Programme
(Belgian State, Belgian Science Policy) and the FRFC project 2.4504.10 of the Belgian FNRS
(National Fund for Scientific Research).

@ Springer

Constraints

Appendix

This appendix presents the proofs of above propositions.

Proof of Proposition 1

Proof The proof is divided into two phases:

1.

We show that if the conditions (1) and (2) are satisfied, then path,. (s) #
pathy(s).

The condition (1) ensures that the selected edge ¢ satisfying the condition
(2) always exist. It is easy to see that ¢’ belongs to path,(s) and this edge is
removed from that path after taking rep(tr, €/, €). That means e’ does not belong
to path, (s). Hence, path;. (s) # path,(s).

We now show that if path,. (s) # path,(s), then the conditions (1) and (2) are
satisfied.

We prove this by refutation. Suppose that su = sv. We denote r = su = sv and
r1 = nca,(u, v). Because r Dom,, u and r Dom,, v, we have r Dom,, nca,(u, v) =
r1 (3)

We now show that path, (u, v) does not contain any edges that belong to
pathy(s).

- If path,(u,r) contains an edge (x, y) (where y = fa,.(x)) of path,(s), then
we have x Dom, u and x Dom, s. Hence, x Domy, nca;r(s,u) =r (4).
Otherwise, (x, y) € path,(u,ry), so ry Dom, y, and we have r Dom, y
(because r Domy, r) that means r Domy, fa,(x) (5). We see that (4) conflicts
with (5). From that, we have the fact that path, (u, r;) does not contain any
edges of pathy(s).

— In the same way we can show that path,, (v, r;) does not contain any edges of
pathy,(s).

From that, we have path,(u,v) which is actually the concatenation of
path,(u, ry) and path, (v, r;) does not contain any edges of path, (s).

¢’ is a replacable edge that belongs to path, (u, v). So after the replacement is
taken, no edge of path,(s) is removed. Hence, the path from s to the root of
the tree does not change, that means path,, (s) = path,,(s) (this conflicts with the
hypothesis that path,,(s) # path,(s)). So we have su # sv.

We now suppose that ¢ (the edge to be removed) does not belong to
pathy, (su, sv). We can see easily that the path from u to v on tr (path, (u, v))
is composed by the path from u to su, the path from su to sv and the path
from sv to v on tr. So after the replacement is taken, no edge of path,(s) is
removed. Hence, path, (s) = path,(s) (this conflicts with the hypothesis). So we
have ¢’ € path, (su, sv). O

Proof of Proposition 2

Proof The proposition is proved by showing how to generate that instance . This
can be done by Algorithm 9. The idea is to travel the sequence of nodes of P on the
current tree fr. Whenever we get stuck (we cannot go from the current node x to the
next node y of P by an edge (x, y) on tr because (x, y) is not in #r), we change ¢r by

@ Springer

Constraints

replacing (x, y) by a replacable edge of (x, y) that is not traversed. The edge (x, y) in
line 7 is a replacing edge of tr because this edge is not in #r but it is an edge of g. Line
8 chooses a replacable edge eo of ei that is not in S. This choice is always successfully
done because the set of replacable edges of ei that are not in S is not null (at least
an edge (y, fa,(y)) belongs to this set). Line 9 performs the move that replaces the
edge eo by the edge ei on tr. So Algorithm 9 always terminates and returns a rooted
spanning tree tr inducing P. Variable S (line 1) stores the set of traversed edges.

Algorithm 9: Moves

Input: An instance tr® of RST on (g,s,t) and a path P on g, s = firstNode(P), t = lastNode(P)
Output: A tree inducing P computed by taking k < [basic moves ([is the length of P)
S+ ©;
tr < tr0;
x < firstNode(P);
while z # lastNode(P) do
y < nextNode(z, P);
if (z,y) ¢ E(tr) then
ei < (z,v);
eo < replacable edge of ei that is not in S
tr < replaceEdge(tr, eo, ei);

S+ Su{(z,y)};
| Ty

N=I-C RN R) N

—
-

-
[

return tr;

Proof of Proposition 3

Proof All sequences of these basic moves are executable and the final results have
the same set of edges E(tr) \ {eoy, eoa, ..., eor} U {eiy, eia, ..., eix}. Thus the result trees
of all execution sequences are the same. O

Proof of Proposition 4

Proof Let x = nca,(u;, v2), svi = ncay (s, vy), Suy = nca, (s, uy), Sva = nca, (s, va),
suy = necay (s, up). Because su; Domy, svi, sv, Domy, suy, su, Domy, sv,, €] belongs
to path,(sv, su;) and e, belongs to path, (sv,, suy), we have e # e,. Otherwise, e,
Domy,y e and these two edges are not in tr, whereas ¢} and ¢, are intr. So ey, e/, e, €,
are all different. We will show that the sequence: rep(tr, e}, e), rep(tr, €,, e,) is feasible
as follows:

Suppose that v|,u] are endpoints of e| such that u| = fa,(v]) and let tr; =
rep(tr, e}, e;). We have that:

(1) suy Domy u
(2) su, Domy u
(3) svy Domy u)

It is straightfoward to find that TT,(vi) does not change ifter taking rep(tr, e, e1).
We can also find that u;,v,,u, must belong to T, (v)) (if not, uy, vy, up
must belong to T, (v)), thus nca,(s, ui), nca,(s,vy), nca,(s,uy) are dominated
by v{, hence this conflicts with (1)-(3)). Thus nca, (s, up) = nca,(s, uz) = su,

@ Springer

Constraints

and ncay, (uy, v2) = nea, (U, v2) = x. Moreover, from the Property 1, we have
neagy, (s, v2) = ncay, (uy, v2) = x (4).

Due to the fact that sv, Dom,, su; and su; Domy, u,, we have sv, Domy,
u; (5). From the fact that sv, Domy, v, and sv, Domy,, u;, we have sv, Domy,,
neay, (11, v2) = x (6). We have ¢, belongs to pathy, (sva, sus) (7). From (6) and (7)
we have that e, belongs to pathy, (x,suy) (8). From (4) and (8), we have ¢ €
pathg, (ncag (s, v2), ncag (s, uy). That means €, is still a preffered replacable edge of
e, on try. So the sequence rep(tr, e}, e;), rep(tr, €5, e;) is feasible.

In similar way, we can prove that the sequence rep(tr, €}, e»), rep(tr, €/, e;) is also
feasible. Hence, two basic moves rep(tr, €/, e)), rep(tr, €,, e;) are independent. O

References

1. Acar, U., Blelloch, G., Harper, R., Vittes, J., & Woo, S. (2004). An experimental analysis of
change propagation in dynamic trees. In Proc 15th SODA (pp. 524-533).

2. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and
applications. Englewood Cliffs: Prentice Hall.

3. Ahuja, R. K., Orlinb, J. B., & Sharma, D. (2003). A composite very large-scale neighborhood
structure for the capacitated minimum spanning tree problem. Operations Research Letters, 31,
185-194.

4. Ali, M., Ramamurthy, B., & Deogun, J. (1999). Genetic algorithm for routing in wdm optical
networks with power considerations. Part I: The unicast case. In Proceedings of the 8th IEEE
ICCCN"99 (pp. 335-340). Boston-Natick, MA, USA.

5. Ali, M., Ramamurthy, B., & Deogun, J. (2000). Routing and wavelength assignment with power
considerations in optical networks. Computer Networks, 32, 539-555.

6. Alstrup, S., Holm, J., Lichtenberg, K. D., & Thorup, M. (2005). Maintaining information in
fully dynamic trees with top trees. ACM Transactions on Algorithms, 1(2), 243-264. doi:10.1145/
1103963.1103966.

7. Andrade, R., Lucena, A., & Maculan, N. (2006). Using lagrangian dual information to generate
degree constrained spanning trees. Discrete Applied Mathematics, 154(5), 703-717.

8. Awerbuch, B., Gawlick, R., Leighton, T., & Rabani, Y. (1994). On-line admission control and
circuit routing for high performance computing and communication. In 35th I[EEE symposium
on foundations of computer science (FOCS1994) (pp. 412-423).

9. Badeau, P., Gendreau, M., Guertin, F., Potvin, J. Y., & Taillard, E. (1997). A parallel tabu search
heuristic for the vehicle routing problem with time windows. Transportation Research - C, 5,
109-122.

10. Banerjee, D., Mehta, V., & Pandey, S. (2004). A genetic algorithm approach for solving the
routing and wavelength assignment problem in wdm networks. In 3rd IEEFE/IEE international
conference on networking, ICN’2004 (pp. 70-78). Paris.

11. Banerjee, D., & Mukherjee, B. (2000). Wavelength-routed optical networks: Linear formulation,
resource budgeting tradeoffs, and a reconfiguration study. /[EEE/ACM Transactions on Network-
ing, 8, 598-607.

12. Banerjee, S., Y00, J., & Chen, C. (1997). Design of wavelength routed optical networks for packet
switched traffic. IEEE Journal of Lightware Technology, 15(9), 1636-1646.

13. Baveja, A., & Srinivasan, A. (2000). Approximation algorithms for disjoint paths and related
routing and packing problems. Mathematics of Operations Research, 25(2), 255-280.

14. Beasley, J. E. (2012). Or-library. http://people.brunel.ac.uk/~mastjjb/jeb/info.html. Accessed 15
Nov 2009.

15. Beasley, J. E., & Christofides, N. (1989). An algorithm for the resource constrained shortest path
problem. Network, 19, 379-394.

16. Bender, M. A., Farach-Colton, M., Pemmasani, G., Skiena, S., & Sumazin, P. (2005). Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57, 75-94.

17. Berkman, O., & Vishkin, U. (1993). Recursive star-tree parallel data structure. SIAM Journal
On Computing, 22(2), 221-242.

@ Springer

http://doi.acm.org/10.1145/1103963.1103966
http://doi.acm.org/10.1145/1103963.1103966
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Constraints

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Blesa, M., & Blum, C. (2007). Finding edge-disjoint paths in networks: An ant colony optimiza-
tion algorithm. Journal of Mathematical Modelling and Algorithms, 6(3), 361-391.

Blum, C. (2006). A new hybrid evolutionary algorithm for the huge k-cardinality tree problem. In
Proceedings of the 8th annual conference on genetic and evolutionary computation (pp. 515-522).
Blum, C., & Blesa, M. (2005). New metaheuristic approaches for the edge-weighted k-cardinality
tree problem. Computers and Operations Research, 32(6), 1355-1377.

Bui, T., & Sundarraj, G. (2004). Ant system for the k-cardinality tree problem. In K. Deb, et
al. (Ed.), Proceedings of the genetic and evolutionary computation conference (GECCO 2004)
(Vol. 3102, pp. 36-47).

Chekuri, C., & Khanna, S. (2003). Edge disjoint paths revisited. In Proceedings of the 14th ACM-
SIAM symposium on discrete algorithms (SODA2003) (pp. 628-637).

Chen, C., & Banerjee, S. (1996). A new model for optimal routing and wavelength assignment in
wavelength division multiplexed optical networks. In INFOCOM 1996 (pp. 164-171).

Cheung, S. Y., & Kumar, A. (1994). Efficient quorumcast routing algorithms. In Proceedings of
INFOCOM’94 (pp. 840-847).

Chimani, M., Kandyba, M., Ljubic, 1., & Mutzel, P. (2009). Obtaining optimal k-cardinality trees
fast. ACM Journal of Experimental Algorithmics, 14(2), 5.1-5.23.

Chlamtac, 1., Ganz, A., & Karmi, G. (1992). Lightpath communications: An approach to high
bandwidth optical WANS. IEEE Transactions on Communications, 40(7), 1171-1182.

Climaco, J. C. N., Craveirinha, J. M. F., & Pascoal, M. M. B. (2003). A bicriterion approach for
routing problems in multimedia networks. Networks, 41, 206-220.

de Aragdo, M., Uchoa, E., & Werneck, R. (2001). Dual heuristics on the exact solution of
large Steiner problems. In Proceedings of the Brazilian symposium on graphs, algorithms and
combinatorics GRACO’01. Fortaleza.

Du, B., Gu, J., Tsang, D., & Wang, W. (1996). Quorumcast routing by multispace search. In
Proceedings of IEEE Globecom1996 (pp. 1069-1073).

Dumitrescu, I., & Boland, N. (2003). Improved preprocessing, labeling and scaling algorithms for
the weight-constrained shortest path problem. Networks, 42, 135-153.

Dutta, R., & Rouskas, G. N. (2000). A survey of virtual topology design algorithms for wave-
length routed optical networks. Optical Networks, 1(1), 73-89.

Fischer, T. (2007). Improved local search for large optimum communication spanning tree prob-
lems. In MIC’2007—7th metaheuristics international conference.

Frederickson, G. N. (1997). A data structure for dynamically maintaining rooted trees. Journal
of Algorithms, 24(1), 37-65.

Funke, B., Griinert, T., & Irnich, S. (2005). Local search for vehicle routing and scheduling
problems: Review and conceptual integration. Journal of Heuristics, 11(4), 267-306.

Gruber, M., van Hemert, J., & Raidl, G. (2006). Neighborhood searches for the bounded diame-
ter minimum spanning tree problem embedded in a VNS, EA, and ACO. In Proceedings of the
genetic and evolutionary computation conference (pp. 1187-1194).

Henzinger, M. R., & King, V. (1999). Randomized fully dynamic graph algorithms with polylog-
arithmic time per operation. Journal of the ACM, 46(4), 502-516.

Ho, V., Francois, P., Deville, Y., Pham, D., & Bonaventure, O. (2010). Using local search for
traffic engineering in switched ethernet networks. In Proceedings of 22nd international teletraf fic
congress (ITC-22). Amsterdam, Netherlands.

Hyytia, E. (2004). Resource allocation and performance analysis problems in optical networks.
Ph.d. thesis, Dpt. of Electrical and Communications Engineering, Helsinki University of Tech-
nology, Helsinki, Sweden.

Jaumard, B., Meyer, C., & Yu, X. (2006). How much wavelength conversion allows a reduction
in the blocking rate? Journal of Optical Networking, 5(12), 881-900.

Jaumard, B., Meyer, C., & Thiongane, B. (2007). Comparison of ILP formulations for the rwa
problem. Optical Switching and Networking, 4, 157-172.

Kanellakis, P. C., & Papadimitriou, C. H. (1980). Local search for the asymmetric traveling
salesman problem. Operations Research, 28(5), 1086-1099.

Kleinberg, J. (1996). Approximation algorithms for disjoint-paths problems. PhD thesis.
Cambridge: MIT Press.

Kolliopoulos, S. G., & Stein, C. (2004). Approximating disjoint-path problems using packing
integer programs. Mathematical Programming, 99(1), 63-87.

Kolman, P., & Scheideler, C. (2001). Simple on-line algorithms for the maximum disjoint paths
problem. In 13th ACM symposium on parallel algorithms and architectures (SPAA’01) (pp. 38—
47).

@ Springer

Constraints

45.
46.

47.

48.

49.
50.

51.
52.
53.

54.

55.

56.

57.
58.
59.
60.
61.

62.
. Wang, B., & Hou, J. C. (2004). An efficient qos routing algorithm for quorumcast communica-

64.

65.

66.

67.

Krishnamoorthy, M., Ernst, A. T., & Sharaiha, Y. M. (2001). Comparison of algorithms for the
degree constrained minimum spanning tree. Journal of Heuristics, 7(6), 587-611.
Krishnaswamy, R. M., & Sivarajan, K. N. (2001). Algorithms for routing and wavelength assign-
ment based on solutions of LP-relaxations. IEEE Communications Letters, 5(10), 435-437.

Lee, K., Kang, K., Lee, T., & Park, S. (2002). An optimization approach to routing and wave-
length assignment in wdm all-optical mesh networks without wavelength conversion. ETRI
Journal, 24(2), 131-141.

Low, C. P. (1998). A fast search algorithm for the quorumcast routing problem. Information
Processing Letters, 66, 87-92.

Mukherjee, B. (2006). Optical WDM networks. Springer.

Nardelli, E., & Proietti, G. (2001). Finding all the best swaps of a minimum diameter spanning
tree under transient edge failures. Journal of Graph Algorithms and Applications, 5(5), 39-57.
Noronha, T., & Ribeiro, C. (2006). Routing and wavelength assignment by partition coloring.
European Journal of Operational Research, 171(3), 797-810.

Ozdaglar, A., & Bersekas, D. (2003). Routing and wavelength assignment in optical networks.
IEEE/ACM Transactions on Networking, 11(2),259-272.

Pham, Q. D. (2011) LS(Graph): A constrained-based local search framework for constrained
optimum tree and path problems on graphs. PhD thesis, Université catholique de Louvain.
Pham, Q. D., Deville, Y., & Hentenryck, P. V. (2010). Constraint-based local search for con-
strained optimum paths problems. In Proceedings of the seventh international conference on
integration of artificial intelligence and operations research techniques in constraint programming,
CPAIOR’2010 (pp. 267-281).

Ramaswami, R., & Sivarajan, K. (1995). Routing and wavelength assignment in all-optical net-
works. IEEE/ACM Trans Network, 3(5), 489-500.

Reimann, M., & Laumanns, M. (2004) A hybrid aco algorithm for the capacitated minimum
spanning tree problem. In Proceedings of first international workshop on hybrid metaheuristics
(pp. 1-10).

Sleator, D. D., & Tarjan, R. E. (1983). A data structure for dynamic trees. Journal of Computer
and System Sciences, 26(3), 362-391.

Sleator, D. D., & Tarjan, R. E. (1985). Self-adjusting binary search trees. Journal of the Associa-
tion for Computing Machinery, 32(3), 652-686.

Tarjan, R. E., & Werneck, R. F. (2005). Self-adjusting top trees. In Proceedings of the 16th annual
ACM-SIAM symposium on discrete algorithms (SODA) (pp. 813-822).

Tarjan, R. E., & Werneck, R. F. (2009). Dynamic trees in practice. Journal of Experimental
Algorithmics (JEA), 14,4.5:1-4.5:21.

Tornatore, M., Maier. G., & Pattavina, A. (2002). Wdm network optimization by ilp based on
source formulation. In Proceedings of IEEE INFOCOM (pp. 1813-1821).

Van Hentenryck, P., & Michel, L. (2005). Constraint-based local search. London: MIT Press.

tion. Computer Networks Journal, 44(1), 43-61.

Ye, Y., Chai, T., Cheng, T., & Lu, C. (2003). Algorithms for the design of wdm translucent optical
networks. Optics Express, 11(22), 2917-2926.

Yetginer, E., Liu, Z., & Rouskas, G. N. (2010). RWA in WDM rings: An efficient formulation
based on maximal independent set decomposition. In The 17th IEEE workshop on local and
metropolitan area networks (IEEE LANMAN 2010).

Zachariasen, M. (1999). Local search for the steiner tree problem in the Euclidean plane.
European Journal of Operational Research, 119, 282-300. doi:10.1016/S0377-2217(99)00131-9.
Zang, H., Jue, J. P., & Mukherjee, B. (2000). A review of routing and wavelength assignment
approaches for wavelength-routed optical wdm networks. Optical Networks Magazine, 1(1),
47-60.

@ Springer

http://dx.doi.org/10.1016/S0377-2217(99)00131-9

	LS(Graph): a constraint-based local search for constraint optimization on trees and paths
	Abstract
	Introduction
	Case studies
	The quorumcast routing (QR) problem
	The edge-disjoint paths (EDP) problem
	The routing and wavelength assignment problem with a delay side constraint (RWA-D)

	Contribution
	Outline

	Definitions and notations
	Neighborhoods
	COT neighborhood
	COP neighborhood
	Rooted spanning trees
	The edge-replacement based neighborhood
	Neighborhood of independent ER-moves

	Data structure and algorithms
	VarTree and nearest common ancestors
	Maintaining weighted distances between vertices on dynamic trees

	Implementation in COMET
	Interfaces
	Abstractions
	Search procedures

	Applications
	The quorumcast routing (QR) problem
	Problem statement
	The model
	Experiments

	The edge-disjoint paths problem
	Problem statement
	The simple greedy algorithm
	The LS-SGA algorithm
	The LS-R algorithm
	Experiments

	The routing and wavelength assignment problem with delay side constraint (RWA-D)
	Problem statement
	The model
	Naive greedy algorithm
	Experiments

	Conclusion
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	References

