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Introduction

1.1 Coastal ocean

The coastal ocean extends from the outer edge of the continental shelf to the
shoreline, and up to the furthest salt water influence in estuaries and rivers.
It occupies only about 8% of Earth’s surface, and 0.2 % of the global ocean
volume, but it is the most biologically active part of the ocean. Shelf seas, coral
reefs, estuaries, rivers, wetlands and shores are habitats for countless species,
and are known for markedly high primary production and biodiversity. In
general, it is the coastal ocean that most influences, and is most influenced by,
human activity.

The dynamics of the coastal ocean differ markedly from those of the deep
ocean. The horizontal scales of motion are much smaller than in the large
ocean basins, and the coastlines impose a severe constraint on the flow. As
continental shelf seas are relatively shallow (typically some 100 m deep), sur-
face effects, such as wind stress or surface cooling or heating, affect a large
part, if not the entire, water column. At the same time, the horizontal ex-
tent of coastal seas is large enough to feel the influence of Earth’s rotation, in
contrast to smaller basins.

The circulation in coastal seas is mainly forced by the prevailing large scale
ocean currents, tides and winds. Vertical mixing, induced by frictional ef-
fects in the bottom and wind stress on the surface, plays an important role in
the dynamics. Solar radiation and heat exchange with the atmosphere have
a strong impact on the water temperature, and coastal waters can warm up
considerably especially during summer months. The salinity distribution is
governed by the exchange with the oceans and other basins, as well as riverine
(or glacial) freshwater input and, to a lesser extent, evaporation and precip-
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2 Introduction

itation. Due to freshwater influence, less saline (i.e. lighter) water is often
trapped in the surface layer, hence increasing stratification. Strong pycnocline
inhibits mixing and thus plays an important role in the dynamics and primary
production. As the pycnocline is also affected by the atmospheric heat fluxes,
and destroyed by turbulence, the stratification conditions in coastal waters
vary greatly in space and time.

Most of the human population is located in the vicinity of coastal areas. It
is estimated that 60% of the world population lives within 60 km of the coasts,
and this percentage is predicted to increase in the future due to growing ur-
banisation (Rao et al., 2008). The majority of the world’s arable lands and
urban areas are located in coastal plains and lower river valleys. Power plants
and industrial complexes are often situated near coasts because of the prox-
imity of cities, transportation and available cooling water (Walsh, 1988). The
coastal ocean is heavily exploited by our societies for food, natural resources
and transportation.

High population density and intensive industrial and agricultural activities
have a strong impact on the water quality and marine ecosystems. The coastal
ocean is particularly vulnerable to the effects of climate change and changes in
land use and freshwater consumption. In many parts of the world, the coastal
ecosystems are stressed and degraded, largely due to anthropogenic pressure
(Rao et al., 2008). Heavy metals, petrochemicals, synthetic chemicals (such as
organochlorides) and radionuclides find their way to the riverine and marine
environment through both coastal and atmospheric sources. Such pollutants
are toxic to many species, affecting the survival or fertility of marine organ-
isms. Furthermore, the pollutants may be assimilated in the organisms and
can accumulate in the food web, causing more severe consequences on higher
trophic levels. Elevated levels of nutrients, due to agriculture, deforestation or
insufficient waste water treatment, boost the (phytoplankton) primary produc-
tion in coastal waters, that can reach high levels compared to the pristine state
(Jørgensen and Richardson, 1996). Moreover, changes in land use tend to in-
tensify erosion and thus increase water turbidity and sedimentation in coastal
areas (Wolanski, 2007). Physical transport of pollutants, nutrients and sus-
pended particulate matter, and their interaction with the marine ecosystem
have become increasingly complex problems in the coastal ocean.

The state of the coastal ocean also has (direct or indirect) effects on the
economy, human health, protection against natural hazards and recreation.
For sustainable management of the marine environment, it is therefore neces-
sary to gain a better understanding of the most significant physical, chemical
and biological processes that take place at various spatial and temporal scales
in the coastal ocean.



1.2. Necessity of numerical ocean modelling 3

1.2 Necessity of numerical ocean modelling

Numerical modelling has become an indispensable tool in ocean sciences. The
hydrodynamic equations are too complex to be analytically tractable. More-
over, considering the vastness of marine systems and the wide spectrum of
relevant time and length scales, observations are too scarce to provide a com-
plete picture of the current state of the oceans.

Numerical marine models solve the primitive equations with appropriate
approximations and parametrisations of unresolved physics. Consequently
they represent (up to a certain degree) our current understanding of the essen-
tial ocean dynamics. Numerical models can therefore be used in conjunction
with measurements to fill in the gaps in observational data to build plausible
realisations of the ocean state.

Numerical modelling also serves to advance basic research as it can improve
our understanding of the physical processes of the oceans. By designing specific
simulations, which would be impossible to achieve or observe in reality, it is
possible to isolate certain processes and analyse their driving mechanisms and
effects in detail.

Perhaps most importantly, marine models allow to predict the future state
of the ocean, providing valuable information for decision making and risk man-
agement. Predictions range from daily forecasts and natural hazard warnings
to climate projections (or hindcasts) covering hundreds or even thousands of
years.

In terms of environmental management, one central goal is to assess the
anthropogenic impacts on the marine environment on various temporal and
spatial scales. In such work, numerical marine modelling plays a key role.
Knowledge of currents and diffusion parameters in the coastal ocean is es-
sential for predicting the fate of contaminants and the response of marine
ecosystems. In general, processes driving the flow on the whole coastal sea
must be understood, before the impact of contaminants on biota and water
quality can be predicted. As predicting the evolution of complex systems, such
as food webs, always involves uncertainty, various statistical approaches, such
as data assimilation and scenario analysis, are being developed in combination
with computational fluid dynamics.

In this thesis, the focus is on modelling the hydrodynamics of the coastal
ocean. However, reactive transport modules can be introduced in the discussed
hydrodynamic models, thus permitting biogeochemical modelling of desired
complexity.
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1.3 Challenges in multi-scale coastal

modelling

Whilst the first ocean models were designed to simulate the global ocean cir-
culation (e.g. Bryan, 1969), there has always been interest in developing re-
gional and coastal models. Open source marine models aimed specifically
at regional applications include ROMS (Shchepetkin and McWilliams, 2005),
GETM (Burchard and Bolding, 2002), Delft3D (Del, 2012), FVCOM (Chen
et al., 2006) and SELFE (Zhang and Baptista, 2008). General circulation
models (e.g. MITgcm, Marshall et al. 2004) and large scale ocean models
(e.g. POM, Mellor 2004) are also often applied to regional settings. Despite
the many efforts in past decades, several challenges still remain in modelling
coastal flows.

1.3.1 Characteristics of coastal flows

Ocean currents and tidal signals tend to be amplified in shallow regions and
funnel-like embayments due to the contraction of the flow. As a consequence,
estuaries and coastal areas exhibit stronger currents and more rapid dynamics
than those found in the deep sea. The water density typically varies consider-
ably due to riverine freshwater input and, to a lesser extent, atmospheric heat
fluxes. The strong density gradients are, on the one hand, modified by ad-
vection processes, but, on the other hand, affect the velocity field through the
internal pressure gradient. Vertical mixing, generated by winds and bottom
friction, yet inhibited by stratification, also plays an important role. Combined
with rotational effects, coastal flows exhibit complex and highly non-linear be-
haviour.

The region of freshwater influence (ROFI Simpson et al., 1993) is a regime
where riverine buoyancy input is comparable with, or greater than, seasonal
heat induced buoyancy. ROFIs are characterised by a competition between
buoyancy and stirring induced by winds or currents. Under the influence of
the Coriolis force, river plumes tend to turn to the right (in the Northern
hemisphere), forming coastal currents that can retain their characteristics for
hundreds of kilometres. Consequently they are extremely important in trans-
porting sediments, nutrients, and contaminants in coastal seas.

Highly dynamic coastal flows pose challenges to numerical modelling. Strong
advective velocities and steep density gradients can lead to stability issues,
which may be difficult to amend. Excessive numerical dissipation, either in-
herent to some model types or introduced to ensure stability, can diffuse the
density fronts, changing the flow dynamics. As the density is governed by
temperature and salinity, the quality of these fields have a direct impact on
accuracy and numerical stability, stressing the importance of robust tracer
advection schemes.
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In coastal waters, the free surface movement cannot be assumed to be
negligible compared to the total water depth, an assumption that is often made
in order to simplify the numerical methods. In sufficiently shallow water, the
free surface movement becomes a dominant factor. Ultimately, tidal areas often
feature sand banks, salt marshes or mudflats that are exposed at low water and
submerged at high water. Although currents in such intertidal regions remain
relatively small (due to bottom friction), the varying extent of the wetted area
has an impact on the flow that cannot be neglected. Large intertidal areas
tend to slow down the tidal signal propagation in estuaries (Friedrichs, 2010)
and also serve as a reservoir for tracers.

Representing shoreline movement in Eulerian shallow water models turns
out to be a complicated task. Essentially the problem arises from the fact
that numerical shallow water models break down at zero depth and there is
no automatic mechanism that prevents negative depths from arising. A con-
siderable number of wetting-drying methods is present in the literature, with
various approaches aiming to overcome the problem. Typically, the proposed
methods are specific for a single model and compatible only with a certain (im-
plicit or explicit) time integration scheme. Their properties also vary; some
impose additional time step restrictions, some have poor conservation proper-
ties or exhibit spurious behaviour and some rely on additional dissipation or
damping to remain stable. Moreover, most of the existing methods have been
developed for FD or FV methods, while there are not as many candidates for
FE models. Consequently it seems that wetting-drying methods are still case
specific and it is difficult to propose a general purpose method.

1.3.2 Multi-scale models and unstructured meshes

Traditionally, there have been separate model classes for rivers, estuaries and
shelf seas. However, as these domains are tightly linked, separate models
are often insufficient to capture all the interactions across the different length
scales. As the spatial resolution of numerical models is constantly increasing
due to advances in computer technology, the consequences of ignoring such
multi-scale interaction are becoming more and more apparent.

Most marine models solve the primitive equations on a structured grid
using the finite difference (FD) method. The advantages of such an approach
are evident. Using finite differences on a regular and orthogonal grid yields
relatively simple and efficient numerical methods. The disadvantage is the
relative inflexibility of the grid. Even on a modern deformed orthogonal grid,
the spatial resolution cannot be increased arbitrarily. Although nested grids
can be used to increase resolution locally, nesting can introduce significant
errors at the model interfaces. Moreover, it is questionable whether nested
grids could be used in complex domains such as multiple estuary systems or
reefs (e.g. Lambrechts et al., 2008b). Furthermore, structured grids have the
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disadvantage of representing coastlines as a staircase-like boundary which can
have a significant impact on the flow (Adcroft and Marshall, 1998).
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Figure 1.1: Top: An unstructured mesh of the Scheldt estuary and the adjacent
North-western European Continental Shelf Sea.

Due to the disadvantages of structured grids, unstructured mesh models
have gained more and more attention in recent years (e.g. Deleersnijder and
Lermusiaux, 2008). The inherent flexibility of unstructured meshes is indeed
crucial for multi-scale coastal modelling. The spatial resolution can be in-
creased arbitrarily where needed (restricted only by the computational cost),
and coastlines are represented more realistically as a piecewise linear bound-
ary. Consequently it becomes feasible to capture river networks, estuaries,
archipelagos, straits, reefs, and shelf seas with sufficient resolution in a single
model (Figure 1.1). In such applications the element size can vary over several
orders of magnitude.

Resolution can also be adapted based on other criteria, such as topograph-
ical features or numerical error estimates. Typical examples include mesh
refinement in areas of steep bathymetry gradients (to overcome pressure gra-
dient errors), near river mouths (to resolve small scale flow features), or in
areas of high posteriori error. Moreover, with adaptive mesh techniques, it is
possible to minimise numerical errors or to track complex phenomena evolving
in time (e.g. cyclones or fronts). Mesh adaptivity, however, is not dealt with
in this work.

Another advantage of unstructured meshes is the ease of mesh generation.
With recent advances in meshing algorithms, creating unstructured meshes for
marine applications is no longer a major obstacle. Versatile mesh generation
software such as GMSH (Geuzaine and Remacle, 2009) now exist which have
specific tools for marine modelling (Lambrechts et al., 2008a). Consequently,
dealing with multi-scale domains is, in general, easier with unstructured meshes
than with nested or curvilinear grids.
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Some structured grid models have been extended to unstructured meshes
by assuming that the mesh is orthogonal1 (e.g. TRIM, Casulli and Cheng 1992,
and UnTRIM, Casulli and Walters 2000, model classes). The drawback is that,
in practical applications, the orthogonality criterion is very difficult to meet,
introducing an additional disretisation error. In this work we will concentrate
on general unstructured mesh models, that do not require orthogonality and
are valid also on highly anisotropic meshes.

Unstructured mesh models are usually based on the finite volume (FV) or
the finite element (FE) method. In the FV method, the conservation law is
imposed on the elements, and communication between elements is achieved
through numerical fluxes. Consequently FV methods are locally conservative
by construction. Moreover, monotonicity can be ensured with slope (or flux)
limiters. Both of these properties are essential for advection dominated prob-
lems (Cockburn and Shu, 2001). FE methods, on the other hand, provide high
order accuracy through more elaborate polynomial basis functions.

In the continuous Galerkin (CG) FE formulation, the fields are continuous
between elements. With the discontinuous Galerkin (DG) method, the conti-
nuity requirement is relaxed and numerical inter-element fluxes are introduced
similarly to the FV method. As such, the DG method can be seen as a hybrid
of the FV and continuous FE approaches.

DG methods are promising because they are locally conservative, while al-
low for high order accuracy. As in the FV method, monotonicity is achievable
with slope limiters, although they tend to be more complicated for high or-
der discretisation. Moreover, as the elements are discontinuous in DG, it is
straightforward to construct hybrid meshes where the element type (e.g. trian-
gle or quadrangle) or the accuracy (degree of the basis functions) varies. This
property makes DG ideal for hp-adaptivity.

A major drawback of unstructured grid models is their computational cost.
The unstructured nature of the mesh is also reflected in numerical algorithms
and memory structure that are bound to be more complicated than with reg-
ular grid FD (or FV) models. Furthermore, FE methods require numerical
integration over the elements which introduces an additional computational
overhead. As such, on similar configurations, unstructured grid models tend
to be slower than their structured grid counterparts. Consequently, improv-
ing computational efficiency is a major objective of current unstructured mesh
model development. One possible route is to improve the time integration
methods to allow larger time steps, for instance by moving towards implicit
schemes or by using a Lagrangian-Eulerian advection method.

1Here orthogonality means that element centres can be chosen in such a way that each
interface is perpendicular to the line connecting the neighbouring centres.
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1.4 The SLIM project

This thesis deals with the development of discontinuous Galerkin shallow water
models, with focus on multi-scale shelf sea-estuary-river network modelling.
The work is carried out in the framework of the Second-generation Louvain-
la-Neuve Ice-ocean Model (SLIM2), developed at the Université catholique de
Louvain, Belgium. SLIM consists of 1D section averaged (de Brye et al., 2010),
2D depth averaged (Gourgue et al., 2009; de Brye et al., 2010; Comblen et al.,
2010b; Kärnä et al., 2010, 2011) and 3D shallow water models (White et al.,
2008a,b; Blaise et al., 2010; Comblen et al., 2010a; Kärnä et al., 2012; Kärnä
et al.).

As a part of the inter-university TIMOTHY3 project, the 2D depth av-
eraged model was applied to simulating the Scheldt estuary, located between
the Netherlands and Belgium. Due to heavy industrial activity and a high
population density in the basin, the water quality in the Scheldt river and es-
tuary is poor, with elevated concentrations of heavy metals, pathogenic micro-
organisms and other contaminants (Baeyens et al., 1997; de Brauwere et al.,
2011b). Consequently there is a clear need to better understand the sources
and the fate of the contaminants in the Scheldt continuum, as well as the
governing biochemical dynamics.

The modelling domain extends from the shelf break to the North Sea, and
further into the Scheldt estuary and the river network (Figure 1.1). Upstream
of Antwerp, the 2D model is replaced by a 1D section averaged river model.
Extending the domain far up- and downstream of the estuary is advantageous
as the boundary conditions can be reliably assigned using global tidal model
data at the shelf break and discharge data at the end of the tidal rivers.

In Kärnä et al. (2010), tracer advection and diffusion properties of the
model were validated against analytical solutions in simplified geometries. The
hydrodynamics of the Scheldt was validated with water surface and salinity
measurements in de Brye et al. (2010). The water renewal time scales were
estimated in de Brauwere et al. (2011a) and de Brye et al. (2012), making use
of the Constituent-oriented Age and Residence time Theory (CART4). The
fate of fecal bacteria (E. coli) in the Scheldt was dealt with in de Brauwere
et al. (2009); de Brauwere et al. (2011b).

1.5 Scope of this thesis

This thesis addresses two key issues of DG-FE marine modelling: wetting-
drying in depth-averaged 2D models and 3D modelling of buoyancy driven

2http://www.climate.be/SLIM
3Tracing and Integrated Modeling of Natural and Anthropogenic Effects

on Hydrosystems : The Scheldt River basin and adjacent coastal North Sea
http://www.climate.be/TIMOTHY

4http://www.climate.be/CART
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flows. In Chapter 2 a novel implicit wetting-drying method is presented with
a focus on the Scheldt application. A 3D baroclinic model is presented in
Chapter 3 and Chapter 4.

1.5.1 Implicit wetting-drying method

Figure 1.2: Exposed sandbanks in the Scheldt estuary at low tide. Left: A satellite
image of the estuary near Hansweert (source: Google Earth) Right: The
same area as modelled by SLIM.

As the Scheldt estuary features relatively large intertidal sand banks and
salt marshes, wetting-drying has to be taken into account in the numerical
model (Figure 1.2). A novel wetting-drying method developed for the depth
averaged 2D model is presented in Chapter 2.

The central idea of the proposed method is quite different from those com-
monly in use: positive water depth is guaranteed by redefining water depth in
such a way that it cannot reach zero. This is achieved by artificially lowering
the bed as the water level falls. It follows that only a small modification in the
governing equations is required. As the method can be formulated on the level
of the equations, it is not specific for a single model type but is applicable to
a wide range of models. The method is mass conservative and consistent with
tracers (i.e. a constant tracer field is preserved), both of which are important
properties for long term environmental modelling.

Usually wetting-drying methods introduce a threshold depth that is used to
identify dry elements or nodes. Consequently, the numerical scheme abruptly
changes at the threshold, which leads to unstable oscillations if the (explicit or
implicit) time step is too large. This drawback also applies for the first flux-
limiting wetting-drying method developed for SLIM (Gourgue et al., 2009).
In the proposed wetting-drying method, the transition between wet and dry
areas is smooth by construction. The smoothness is controlled by a parameter,
which is relatively easy to estimate.

Due to the gradual change between wet and dry areas, it is possible to
compute the Jacobian of the numerical system, which permits fully implicit
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Dry
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Dry

Wet

Transition
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Figure 1.3: Illustration of different wetting-drying approaches. Left: Elements are
inactivated when they reach dry state. Centre: Nodal fluxes are inacti-
vated at dry state. Right: Gradual wet-dry transition.

time integration. Consequently the time step is no longer restricted by the
CFL (Courant–Friedrichs–Lewy) condition, which leads to significantly smaller
computational cost. In the Scheldt application the largest permissible explicit
time step is roughly 1 s, whilst in the implicit model a time step of 10 min to
20 min is commonly used. As a result the total CPU cost of the implicit model
is two orders of magnitude smaller, allowing the various long term simulations
discussed in the references above to be carried out.

Figure 1.4: Simulation of the Rhine river plume in an idealised geometry.

1.5.2 Development of a 3D baroclinic model

The latter part of the thesis is devoted to the development of a hydrostatic,
baroclinic discontinuous Galerkin model. The model uses prismatic elements
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that have become customary in unstructured grid marine models (White et al.,
2008a; Wang et al., 2008; Blaise et al., 2010). In terms of the vertical discreti-
sation, a terrain following mesh is used, although the computational kernel
also supports equipotential grids and their generalisations. An example mesh
is shown in Figure 1.4. To accommodate free surface fluctuation, the mesh
moves in the vertical direction. An Arbitrary Lagrangian Eulerian (ALE,
Donea et al., 2004) formulation is adopted for solving the equations in the
moving frame of reference.

Because the 3D baroclinic primitive equations are much more complex than
the 2D shallow water equations, fully implicit time integration schemes are out
of reach for the moment. For computational efficiency, a mode splitting ap-
proach is chosen, where the dynamics are split to a fast 2D (external) mode and
a slower 3D (internal) mode. The fast propagating surface gravity waves are
solved with inexpensive 2D equations, thus circumventing the the most restric-
tive CFL condition. Furthermore, vertical diffusion is treated semi-implicitly
to overcome certain stability issues due to high vertical resolution. The next
most restrictive conditions, related to advection and internal wave propaga-
tion, have to be satisfied.

Mode splitting techniques can be divided in two main classes depending
on whether the free surface is treated explicitly or implicitly. In split-explicit
approach (Gadd, 1978; Blumberg and Mellor, 1999; Killworth et al., 1991), the
2D mode is marched in time with an explicit scheme using a high temporal
resolution. This method is used in ROMS (Shchepetkin and McWilliams,
2005), GETM (Burchard and Bolding, 2002), POM (Mellor, 2004), MOM
(Griffies et al., 2001) and FVCOM (Chen et al., 2006), among others. Split-
implicit models (e.g. Dukowicz and Smith, 1994), on the other hand, solve the
free surface equation (or the complete 2D shallow water equations) implicitly
with the same time step as the 3D mode. MITgcm (Marshall et al., 2004;
Campin et al., 2004) and FEOM (Wang, 2007) belong to this category, as well
as TRIM (Casulli and Cheng, 1992), UnTRIM (Casulli and Walters, 2000) and
SELFE (Zhang and Baptista, 2008).

The 3D model development presented here is a continuation to the work
of White et al. (2008a,b) and Blaise et al. (2010); Comblen et al. (2010a).
The first 3D SLIM implementation was the barotropic model by White et al.
(2008b). A continuous Galerkin discretisation, with linear non-conforming
elements, were used in the horizontal direction, while a linear DG discretisation
was applied in the vertical direction. Most 3D terms were advanced with a first
order explicit scheme, except for vertical diffusion that was semi-implicit. The
external gravity waves were treated with the split-implicit method, and the free
surface movement was taken into account with a conservative ALE formulation
in the 3D mode. In terms of vertical mixing, a simple parametrisation was used,
although in Blaise et al. (2007) Mellor-Yamada level 2.5 turbulence closure was
introduced.
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White et al. (2008a) deals with tracer conservation issues, and especially
the discrete compatibility of the elevation, continuity and tracer equations.
In addition to global tracer conservation, in the absence of sources or sinks,
a uniform tracer field should remain constant throughout the simulation. In
Griffies et al. (2001), this property is called local conservation, while Shchep-
etkin and McWilliams (2005) call it constancy preserving property. Owing to
the conservative ALE formulation and the time integration scheme, the model
of White et al. (2008a) is indeed both globally conservative and constancy
preserving.

A DG discretisation of the baroclinic equations is presented in Blaise et al.
(2010), while the associated implicit-explicit (IMEX) Runge-Kutta time inte-
gration method is detailed in Comblen et al. (2010a). Also in this scheme, the
2D mode is treated implicitly. Regarding the 3D mode, the external pressure
gradient, Coriolis forcing, vertical advection and diffusion are treated implic-
itly. Furthermore, additional Lagrange multipliers are introduced to ensure the
consistency of the 2D and the 3D modes. The major drawback of this model
is the computational cost, due to the chosen time integration method. Also,
due to a non-conservative ALE formulation, the model is not strictly mass
conservative, yet constancy preserving. The model is validated with mildly
baroclinic internal gravity wave test case, using both linear and quadratic el-
ements. However, it is not applicable to strongly baroclinic flows, because
the tracer advection scheme is not stabilised. Consequently, in the presence
of strong salinity/temperature gradients, spurious extrema may arise in the
corresponding tracer fields, eventually rendering the model unstable.

The 3D model presented here relies on a full DG spatial discretisation,
similar to that of Blaise et al. (2010). In contrast to the previous models,
however, the split-explicit paradigm is adopted here, following Shchepetkin
and McWilliams (2005). Moreover, of the 3D terms, only vertical diffusion
is treated implicitly. A major advantage of explicit time integration is that
the model is easy to parallelise and scales well in parallel applications. The
latter is vital for realistic 3D simulations where the use of computing clusters
is unavoidable.

For parallel computing, the domain is partitioned in the horizontal direction
so that the prismatic columns are always kept in the same partition. Therefore
the implicit vertical diffusion, which does not include any lateral exchange, can
be solved locally column by column.

As mentioned earlier, the quality of the temperature and salinity fields is
crucial in baroclinic applications. Here, monotonic tracer advection is achieved
by means of a slope limiter, as usual in FV and DG schemes (Cockburn, 2003;
Kuzmin, 2010; Aizinger, 2011). The limiter filters out spurious tracer maxima
and ensure stability in the presence of strong density gradients. The solver is
designed in such a way that both tracer conservation and consistency can be
achieved, although the latter is eventually satisfied only approximately.
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Figure 1.5: Idealised estuary simulation at the beginning of the rising tide. Top:
Salinity and horizontal velocity. Bottom: Turbulent kinetic energy. The
two-way flow typical to estuarine circulation is clearly visible. Turbulent
mixing is inhibited in strongly stratified areas.

To account for vertical mixing, the 3D model uses the General Ocean Tur-
bulence Model (GOTM5), which is a FD 1D water column model. The coupling
is presented in Chapter 3. Owing to the vertically aligned 3D mesh, an on-
line coupling is possible once a robust mapping between the 3D DG-FE fields
and 1D vertical FD grid is created. The coupled model is validated with stan-
dard turbulence closure benchmarks, as well as an idealised estuary simulation
(Warner et al., 2005), where the main features of estuarine circulation are well
reproduced (Figure 1.5).

In Chapter 4 the full baroclinic model is presented. The DG discretisa-
tion and the split-explicit time integration methods are described. The model
is validated first with simplified flows to test the mode-splitting, conservation
properties and performance under gravitational adjustment. Finally a simula-
tion of the Rhine river plume is carried out in a simplified geometry (Figure
1.4).

5http://www.gotm.net/



14 Introduction

Supporting publications
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T. Kärnä, V. Legat, and E. Deleersnijder. Baroclinic discontinuous Galerkin
finite element model for coastal flows. Ocean modelling, submitted.

A. de Brauwere, F. De Ridder, O. Gourgue, J. Lambrechts, R. Comblen,
R. Pintelon, J. Passerat, P. Servais, M. Elskens, W. Baeyens, T. Kärnä,
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Implicit wetting-drying method

This Chapter reproduces an updated version of the following paper, first
submitted on 23 February 2010:

T. Kärnä, B. de Brye, O. Gourgue, J. Lambrechts, R. Comblen, V. Legat,
and E. Deleersnijder. A fully implicit wetting-drying method for DG-
FEM shallow water models, with an application to the Scheldt Estu-
ary. Computer Methods in Applied Mechanics and Engineering, 200
(5-8):509–524, 2011. ISSN 0045-7825.
doi: 10.1016/j.cma.2010.07.001.

Abstract

Resolving the shoreline undulation due to tidal excursion is a crucial
part of modelling water flow in estuaries and coastal areas. Neverthe-
less, maintaining positive water column depth and numerical stability
has proved out to be a very difficult task that requires special attention.
In this paper we propose a novel wetting-drying method in which the po-
sition of the sea bed is allowed to fluctuate in drying areas. The method
is implemented in a Discontinuous Galerkin Finite Element Model (DG-
FEM). Unlike most methods in the literature our method is compatible
with fully implicit time-marching schemes, thus reducing the overall
computational cost significantly. Moreover, global and local mass con-
servation is guaranteed which is crucial for long term environmental
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applications. In addition consistency with tracer equation is also en-
sured. The performance of the proposed method is demonstrated with
a set of test cases as well as a real-world application to the Scheldt Estu-
ary. Due to the implicit time integration, the computational cost in the
Scheldt application is reduced by two orders of magnitude. Although a
DG-FEM implementation is presented here, the wetting-drying method
is applicable to a wide variety of shallow water models.

2.1 Introduction

Most coastal areas of continental shelf seas are significantly influenced by tides.
When approaching the coast, the tidal signal tends to amplify, especially in
funnel-shaped embayments where the tidal range may reach considerable mag-
nitudes. Combined with the fact that many estuaries and embayments also
feature gradually sloping bathymetry, the total area submerged under water
may vary significantly during the tidal cycle.

Any hydrodynamical model that is being applied to such a tidally influ-
enced domain needs to correctly take into account the sequential exposure and
submerging of the seabed.

Ever since the 1970s hydrodynamical models have been equipped with
wetting-drying (WD) algorithms. However, the multitude of WD methods
found in the literature reveals that numerical modelling of shoreline undula-
tion is far from being trivial. In what follows, we will mostly concentrate on
methodology applicable to unstructured grid models, i.e. finite element (FE)
and finite volume (FV) formulations.

Perhaps the most natural approach would be to track the WD interface in
time and move the boundary nodes, or deform the entire mesh, accordingly.
These moving mesh methods probably yield the most appropriate description
of the wetting-drying process, but are faced with some difficulties: First of all,
one needs to come up with a parametrisation for moving the domain bound-
ary as a function of the flow in boundary elements (Marchandise and Remacle,
2006; Sobey, 2009). Secondly, sophisticated algorithms are needed for main-
taining good mesh quality in long simulations. However, re-meshing becomes
increasingly difficult if changes in the topography, such as emerging ponds or
islands, need to be taken into account. Nevertheless, the greatest drawback
is that deforming the mesh is computationally expensive. For the latter rea-
son, deforming mesh wetting-drying has seldom been applied to real-world
problems (Yuan et al., 2008; Zheng et al., 2003; Zijlema and Stelling, 2008).

Most of the available WD methods have been developed for fixed meshes.
The fixed mesh approaches can be further sub-divided into two main cate-
gories. In the first category, either nodes or entire elements are deactivated
when becoming dry. The dry state is detected with special criteria usually
based on total water depth. The first attempts were element reduction meth-
ods, where entire elements are tagged as “dry” or “wet” and dry elements are
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excluded from the computational domain. This implies that the WD interface
can only be located at element edges which has an impact on the boundary
layer behaviour (Bates and Hervouet, 1999). Moreover, the sudden inclu-
sion/exclusion of elements may break mass and momentum conservation and
also trigger numerical instability (van’t Hof and Vollebregt, 2005).

In order to describe a coastline that does not coincide with the element
edges, most authors introduce transition (or partially wet) elements that re-
quire special treatment. By far the most popular method is to leave a thin
layer of water in the dry areas to ensure positive water depth and maintain a
continuum across the WD interface (Bates and Hervouet, 1999; Bunya et al.,
2009; Gourgue et al., 2009; Nikolos and Delis, 2009). The transition elements
are then defined as elements for which some nodes, but not all are dry, i.e.
have water level under a prescribed threshold value.

The main difficulty in thin layer methods lies in the way that the transi-
tion elements are being treated. The transition elements typically have “hang-
ing nodes” that remain on a higher level than the free surface. In such case
the transition elements have spurious water surface slope and thus experience
an artificial pressure gradient that tends to drive the water down (Heniche
et al., 2000). Without any treatment, the hanging nodes will eventually dry
out. Commonly the transition elements are being explicitly detected and the
pressure gradient term is being ignored. Sometimes the elements are further
divided into “dam-break” and “flooding” types, where the pressure gradient
term needs to be cancelled only in the latter case (Bates and Hervouet, 1999;
Bunya et al., 2009). Typically several more or less complicated rules are needed
for detecting the transitory (or dry) elements and the local physics is changed
accordingly. However, such discontinuous switches (such as cancelling the pres-
sure gradient or outward fluxes under a threshold water depth) render these
methods highly non-linear and may introduce oscillations and numerical in-
stability. Indeed it is not uncommon to increase bottom friction or dissipation
to circumvent such problems. Nevertheless, thin layer methods can produce
accurate results even in very difficult applications.

The thin layer methods rely on explicit detection of dry elements, so the
WD front can propagate only by one element per time step. Moreover, the
time steps are usually constrained by the Courant–Friedrichs–Lewy (CFL) cri-
terion, which is needed to ensure positive water depth or numerical stability
(Casulli, 2009). Consequently the computational cost grows significantly, espe-
cially in large scale simulations that incorporate both deep and shallow areas
(Stelling and Duinmeijer, 2003). Due to the time step constraints, explicit
time integration is commonly used, although semi-implicit schemes also exist.
Fully implicit time marching is generally not applicable as it requires that the
Jacobian of the system can be computed (exactly or approximately), which is
not possible for the discontinuous switches.

Another class of fixed grid WD methods is the artificial porosity approach.
In these methods, the bed is assumed to be porous and non-zero water fluxes



18 Implicit wetting-drying method

are allowed for negative depths. These methods include an additional porous
layer (Ip et al., 1998; Heniche et al., 2000; Nielsen and Apelt, 2003; van’t Hof
and Vollebregt, 2005; Yuan et al., 2008), narrow connecting channels (Kennedy
et al., 2000; Jiang and Wai, 2005) and also bear close resemblance to sub-grid
scale bathymetry (Defina, 2000; Bates and Hervouet, 1999) methods. The
main advantage is that the artificial pressure gradient problem can be naturally
circumvented. With porous media, free surface will fall under the bed in dry-
ing phase and eventually the spurious surface slope will disappear. Naturally
the drawback is that “virtual water” is generated as depth attains negative
value, although mass conservative formulations are reported to exist (Jiang
and Wai, 2005; Defina, 2000). The key advantage of porosity methods is that
the transition between wet and dry areas is smooth and the modifications can
be expressed in the primitive equations. Due to the latter reason many meth-
ods of this type are compatible with semi-implicit or implicit (Ip et al., 1998;
Heniche et al., 2000; van’t Hof and Vollebregt, 2005) time integration, reducing
computational cost significantly.

Some WD methods are exploiting the fact that the WD process is essen-
tially dominated by the pressure gradient and bottom friction, which can be
used to simplify the equations; see for example (Ip et al., 1998; Burchard
et al., 2004). Requiring a balance between the two will ultimately lead to the
so called diffusive wave approximation of the shallow water equation (Alonso
et al., 2008; Santillana and Dawson, 2010) that can be used to model the WD
interface. Such an approach, however, is not applicable to coastal waters in
general.

In this paper we present an alternative “negative-depth” implicit WD for-
mulation for FE shallow water models. However, in contrast to the porous
media methods, our method is based on the idea that the bed is allowed to
move in time as water elevation drops, which leads to a very similar formu-
lation but without the need to introduce the concept of porosity. This yields
simpler implementation and most importantly the proposed method has only
one unknown parameter whose value can be estimated fairly reliably.

Although the notion of moving the bathymetry may seem unusual, similar
modifications have been applied locally in certain WD methods. An example of
an FD model where bathymetry is temporally modified for the computation of
elevation gradient is presented in Burchard et al. (2004). Similar modifications
in FV models can be found in Castro et al. (2005); Nikolos and Delis (2009).
In all these references the motivation to modify the bathymetry is to avoid
spurious pressure forces at the WD interface, precisely as in our case. The
major difference is that here the modification is formulated already in the
primitive equations.

As our goal is to perform long term environmental simulations, WD treat-
ment should not jeopardise mass conservation nor introduce spurious tracer
transport. Therefore special care is taken to guarantee strict mass conservation
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property. In addition, a consistent tracer equation and its FE implementation
is presented.

The proposed WD methods is implemented in the FE Second-generation
Louvain-la-Neuve Ice-ocean Model (SLIM)1 (Gourgue et al., 2009; de Brye
et al., 2010) and its validity is demonstrated with a set of standard numerical
tests. However, in many cases, the test cases have proved out to be too easy
to solve compared to simulations with real-world bathymetry, and thus more
challenging test cases are also introduced.

The paper is organised as follows. The shallow water equations with the
moving bathymetry are introduced in Section 2.2 and a fully implicit FE im-
plementation is presented in Section 2.3. A consistent tracer equation is then
presented in Section 2.4 followed by numerical tests in Section 2.5 and a real-
world application in Section 2.6.

2.2 Shallow water equations allowing moving

bathymetry

Given Cartesian horizontal coordinates xh = [x, y]T , the depth averaged shal-
low water equations (SWEs) in non-conservative form are:

∂η

∂t
+ ∇ · (H ū) = 0 , (2.1)

∂ū

∂t
+ (ū ·∇) ū+ Fcez× ū+ g∇η =

τs − τb
ρH

. (2.2)

where the water column depth is H(xh, t) = η(xh, t) + h(xh), η being the free
surface elevation versus a reference level, h the original static bathymetry, ū =
[ū, v̄]T the horizontal (depth averaged) velocity, g the gravity acceleration, Fc
the Coriolis factor, ρ the density of water, and τb and τs the bottom and surface
stress vectors, respectively. Here, the horizontal diffusion term in equation
(2.2) has been omitted because it plays little role in WD processes. Proper
DG-FEM treatment of the horizontal diffusion term can be found in Rivière
(2008), for example. In this work the Chézy-Manning formulation for bottom
friction is used (n denotes the Manning coefficient of dimensions sm−1/3):

τb
ρ

= gn2‖ū‖ū
H1/3

(2.3)

To ensure positive water depth, we introduce a smooth (at least once contin-
uously differentiable) function f and redefine the bathymetry as h̃ = h+f(H).
The function f is chosen so that the redefined total depth remains positive,
i.e. H̃ = η + h̃ > 0 is always satisfied (see Figures 2.1 and 2.2). Thus h̃ is a
function of the elevation and static bathymetry:

h̃ = h̃(η, h) = h+ f(η + h). (2.4)
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Figure 2.1: Redefinition of the total water column depth.
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Figure 2.2: Functions for defining moving bathymetry.

Now the SWEs are modified in such a way that the bed fluctuation is
properly taken into account, i.e. the redefined total depth H̃ is being conserved:

∂η

∂t
+
∂h̃

∂t
+ ∇ ·

(
H̃ū
)

= 0 , (2.5)

∂ū

∂t
+ (ū ·∇) ū+ Fcez× ū+ g∇η =

τs − τb
ρH̃

, (2.6)

where the second term in the continuity equation (2.5) is due to the fact that
h̃ is not static. Note that the momentum equation is modified simply by
replacing H by H̃, which appears only in the bottom and surface stress, as
well as possible forcing terms.

1http://www.climate.be/SLIM

http://www.climate.be/SLIM
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The continuity equation can be further developed by noting that ∂η
∂t

+ ∂h̃
∂t

=

(1 + f ′(H))∂η
∂t

:= A(H)∂η
∂t

which leads to

A(H)
∂η

∂t
+ ∇ ·

(
H̃ū
)

= 0. (2.7)

The above formulation is closely related to scaling of continuity equation that
is presented in porous media methods (Heniche et al., 2000; Ip et al., 1998;
Jiang and Wai, 2005) and also in sub-grid scale methods (Bates and Hervouet,
1999). Indeed, it is easy to see that 0 < A < 1 so that A is a smooth
indicator that ranges from dry (A ≈ 0) to wet (A ≈ 1) conditions. In the
context of porous media and sub-grid scale wetting-drying, A is interpreted as
the “active” (or “wet”) fraction, i.e. proportion of total element area that is
penetrable by water. In contrast to methods where elements are either wet or
dry, it is precisely the smoothness of A that prevents spurious oscillations and
allows implicit time marching.

Despite the illustrative power of the scaled formulation (2.7), equation (2.5)
will be implemented in the numerical system thus avoiding the computation
of f ′(H).

When comparing to other WD methods it is useful to plot the total water
column depth on the original static bathymetry. In this case the elevation is
given by

η̃ = H̃ − h = η + f. (2.8)

2.3 Numerical FE implementation

In the previous Section the proposed WD method was presented on the level
of the primitive equations. In this section it is shown how the method can be
implemented in DG-FEM shallow water models.

2.3.1 Weak formulation

In order to derive a weak formulation for the latter equations, we define a suit-
able triangulation T of the domain Ω and piecewise discontinuous polynomial
function spaces Vp and Wp, such that every function a : R2 → R, a ∈ Vp,
b : R2 → R2, b ∈ Wp is polynomial of order p (at most) inside the triangles
K ∈ T and discontinuous at the interfaces e = K∩K ′. Since the functions are
discontinuous at the interfaces we can define a set of polynomial basis func-
tions ϕi and ψi that are non-zero only in a single element. Therefore we have
representations for a =

∑
i aiϕi and b =

∑
i b

T
i ψi.

We now require that the numerical solution to (2.5) belongs to these spaces,
i.e. η̂ ∈ Vp and ˆ̄u ∈ Wp. Multiplying (2.5) and (2.6) by test functions ϕ ∈ Vp
and ψ ∈ Wp, respectively, integrating by parts and denoting the element-wise
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surface and contour integrals as

∫

K∈T
· dxh =

〈
·
〉
K
, (2.9)

∫

e=K∩K′
· dS =

〈〈
·
〉〉
e
, (2.10)

respectively, the weak formulation of the system (2.5)-(2.6) becomes

〈∂η
∂t
ϕ
〉
K

+
〈∂h̃
∂t
ϕ
〉
K

+
∑

e=K∩K′

〈〈
(H̃ū)∗ · nϕ

〉〉
e
−
〈
H̃ū ·∇ϕ

〉
K

= 0, (2.11)

〈∂ū
∂t
·ψ
〉
K

+
∑

e=K∩K′

〈〈
ū∗ · n ū∗ ·ψ

〉〉
e
−
〈
∇ · (ūψ) · ū

〉
K

+
∑

e=K∩K′

〈〈
gη∗ψ · n

〉〉
e
−
〈
gη∇ ·ψ

〉
K

+
〈
Fcez× ū ·ψ

〉
K

=
〈(τs − τb

ρH̃

)
·ψ
〉
K
.

(2.12)

The major difference between the above weak formulation and standard FE
SWE formulation is the novel mass correction term due to the moving bathymetry,
i.e. the second term in equation (2.11).

Due to the discontinuity, the values of η and ū are defined twice at ele-
ment interfaces. Thus the corresponding values in the contour integrals are
ambiguous and are marked with an asterisk. These values are solved with an
approximate Riemann solver that is derived in the next section.

2.3.2 Approximate Riemann solver

In this work we are using an approximate Riemann solver that is based on the
Roe averages (Roe, 1997), which is commonly used in SWE models, e.g. in
Gourgue et al. (2009); Nikolos and Delis (2009); Zhao et al. (1996); Comblen
et al. (2010b). Another DG-FEM WD method by Bunya et al. (2009) utilises
Lax-Friedrichs flux. In Ern et al. (2008) Harten-Lax-van Leer-Contact (HLLC)
flux, which ensures non-negative water depth, is used. Such flux, however,
contains many conditional statements and is thus difficult to implement in an
implicit model.

Consider two neighbouring elements, left Kl and right Kr, e = Kl∩Kr 6= ∅,
such that the x axis is oriented to the normal direction from Kl to Kr and the
element interface is along the y axis. The corresponding velocities are denoted
ū and v̄, respectively.

The Riemann problem is derived with the conservative form of the shallow
water equations. As usual in FE and FV methods, only the transport in the
normal direction is taken into account. This leads to a 1D Riemann problem
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(perpendicular to the interface), and consequently the partial derivatives with
respect to y can be omitted. Considering first the non-modified SWEs, one
obtains the following set of equations:

∂H

∂t
+
∂(Hū)

∂x
= 0 (2.13)

∂(Hū)

∂t
+
∂(Hū2)

∂x
+
∂(1

2
gH2)

∂x
= gH

∂h

∂x
(2.14)

∂(Hv̄)

∂t
+
∂(Hūv̄)

∂x
= 0. (2.15)

In what follows, we do not take into account the bathymetry gradient ∂h
∂x

,
because incorporating its influence in approximate Riemann solvers is still a
quite difficult task.2 There are indeed numerous publications on the topic,
mainly with respect to FV methods (see e.g. George, 2008; Nikolos and Delis,
2009, and references therein). However, such a difficulty is not analysed here
for the sake of simplicity.

With this assumption the right hand side of equation (2.14) disappears and
one ends up with a homogeneous set of equations. By defining a state vector
q = [H,Hū,Hv̄]T the system can be written as (using the shorthand notation
qt := ∂q

∂t
)

qt + Fx = qt + V (q)qx = 0, (2.16)

where

V (q) =




0 1 0
−ū2 + gH 2ū 0
−ūv̄ v̄ ū


 . (2.17)

Approximate Riemann solvers are based on the idea of linearising (2.16),
i.e. replacing V (q) with a local constant. Given the state vectors on both sides
of the boundary, ql and qr, the linearisation Vlin can be found by requiring
that it satisfies the Rankine-Hugoniot equation: Vlin(ql − qr) = Fl − Fr. This
leads to the Roe averages (Roe, 1997)3:

HRoe = (Hl +Hr)/2, (2.18)

ūRoe =

√
Hlūl +

√
Hrūr√

Hl +
√
Hr

, (2.19)

v̄Roe =

√
Hlv̄l +

√
Hrv̄r√

Hl +
√
Hr

. (2.20)

2 It is worth stressing that the bathymetry gradient is taken into account in the DG
formulation (2.11), and its effect is neglected only in the stabilizing Riemann solver. As
such the simplification does not have a major impact on the flow.

3The problem is in fact under-determined, so (2.18) is chosen rather than deduced. Using
an additional equation will lead to a fully determined system with the same result, see e.g.
Zhao et al. (1996)
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The Vlin is obtained by substituting (2.18)-(2.20) to (2.17). The linear system
can now be solved by diagonalising Vlin = RDR−1, whereR contains the right
eigenvectors. The eigenvalues of V are {λi}3

i=1 = {ū, ū+cRoe, ū−cRoe}, cRoe =√
gHRoe, corresponding to speeds at which waves propagate across the bound-

ary. Introducing new state vectors, Q = R−1q, leads to a system of indepen-
dent equations Qt +DQx = 0. These are solved simply by taking the upwind
value of Ql and Qr:

Q∗i =

{
Qi,l, λi > 0
Qi,r, λi < 0

, i = 1, . . . , 3. (2.21)

Defining a jump operator [[a]] = (al − ar)/2 and a mean operator {a} =
(al + ar)/2 the solutions can be formulated as

Q∗i = si[[Qi]] + {Qi}, i = 1, . . . , 3, (2.22)

si = sign(λi).

Finally, one can compute the solution q∗ = RQ∗:

H∗ = {H}+
s2 + s3

2
[[H]] +

s2 − s3

2cRoe

([[Hū]]− ūRoe[[H]]) (2.23)

(Hū)∗ = {Hū}+
s2 + s3

2
[[Hū]] +

s2 − s3

2
cRoe[[H]]

+
(s2 − s3)ūRoe

2cRoe

([[Hū]]− ūRoe[[H]])
(2.24)

(Hv̄)∗ = {Hv̄}+ s1[[Hv̄]] +
s2 + s3 − 2s1

2
v̄Roe[[H]]

+
(s2 − s3)v̄Roe

2cRoe

([[Hū]]− ūRoe[[H]])
(2.25)

η∗ = H∗ − h (2.26)

ū∗ = (Hū)∗/H∗ (2.27)

v̄∗ = (Hv̄)∗/H∗ (2.28)

Generally, the horizontal coordinate axes do not coincide with the element
interface and an appropriate rotation is applied to the coordinate system so
that the above formulation remains valid.

In the Riemann solver presented above it is necessary to compute the square
root of the total depth. When extending the solver to the moving bathymetry
WD method, we therefore use the modified depth H̃ for which positivity is
guaranteed. In other words, H is replaced by H̃ in equations (2.23)-(2.25).
After computing H̃∗, (H̃ū)∗ and (H̃v̄)∗, the final solution is obtained as:

η∗ = H̃∗ − {h̃} (2.29)

ū∗ = (H̃ū)∗/H̃∗ (2.30)

v̄∗ = (H̃v̄)∗/H̃∗ (2.31)
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As stated earlier, the bathymetry source term is ignored in this formu-
lation. Including the bathymetry gradient is not obvious as it leads to an
inhomogeneous system that cannot be represented as fluxes (George, 2008).
In the case of moving bathymetry this problem is even more complicated as the
bathymetry h̃ is discontinuous and also depends non-linearly on the elevation
through (2.4).

The presented procedure (2.29)-(2.31) is equivalent to ignoring the possible
jumps in the bathymetry and assuming that the two water columns H̃l and H̃r

stand on a common, continuous bed. In practice the procedure appeared to
be sufficient as long as the discontinuity in h̃ remains small compared to the
total depth.

2.3.3 Implicit time marching

Equations (2.11-2.12) are expressed in continuous time and discrete space. It
must be noted that these equations are specific compared to common finite el-
ement formulations. Indeed, the mass correction term, i.e. the time derivative
of the bathymetry h̃, is non-linear. In general there are two ways of solving
non-linear PDEs: Either explicit time integration with high temporal reso-
lution or implicit time integration featuring a non-linear solver. In order to
solve the equations accurately with reasonable computational cost, an implicit
time-stepping scheme is adopted here.

Diagonally Implicit Runge-Kutta (DIRK) methods provide high order ac-
curacy and high flexibility, as the time step can be easily varied. Runge-Kutta
methods involve multiple stages, and with DIRK schemes a non-linear system
of equations is to be solved at each stage.

For brevity, the system (continuous in time and discrete in space) is written
as follows:

〈
ϕ
∂
(
η + h̃(η, h)

)

∂t

〉
K

= Sη(η, ū, ϕ), (2.32)

〈
ψ · ∂ū

∂t

〉
K

= Sū(η, ū,ψ), (2.33)

where Sη(η, ū) and Sū(η, ū) are the discrete spatial operators for η and ū,
respectively.

Given the solution (ηn−1, ūn−1) at time tn−1, the solution at time tn is
obtained with a fully implicit Runge-Kutta time marching defined below. The
superscript index n refers to time steps while superscript i is used to denote
the Runge-Kutta stages.
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• For each stage i = 1 . . . s, solve the non-linear system of equations:

〈
ϕηi
〉
K

= −
〈
ϕh̃(ηi)

〉
K

+
〈
ϕ
(
ηn−1 + h̃(ηn−1)

)〉
K

+ ∆t
i∑

j=1

ai,jSη(η
j, ūj),

(2.34)

〈
ψ · ūi

〉
K

=
〈
ψ · ūn−1

〉
K

+ ∆t
i∑

j=1

ai,jSū(ηj, ūj) (2.35)

• The final stage reads:

〈
ϕηn

〉
K

= −
〈
ϕh̃(ηn)

〉
K

+
〈
ϕ
(
ηn−1 + h̃(ηn−1)

)〉
K

+ ∆t
s∑

j=1

bjSη(η
j, ūj),

〈
ψ · ūn

〉
K

=
〈
ψ · ūn−1

〉
K

+ ∆t
s∑

j=1

bjSū(ηj, ūj)

In comparison to usual implicit DG-FEM implementation the major dif-
ference here is the treatment of the non-linear mass correction term shown in
equation (2.32). As a consequence a new term

〈
ϕh̃(ηi)

〉
K

appears in equation
(2.34) that depends non-linearly on the state variable ηi.

The weights ai,j, bj and ci are the Runge-Kutta coefficients. The time
corresponding to each stage i is ti = tn + ci∆t which is used when computing
the external forcings. Here we only use schemes for which as,j = bj, cs = 1 and
thus the s-th RK stage gives the final solution directly, i.e. ηn = ηs, ūn = ūs.
In this paper we are using second and fourth order accurate schemes, namely
DIRK22 (Ascher et al., 1997, section 2.6) and ESDIRK64 (Jothiprasad et al.,
2003, Appendix A) that are presented in A.1.

2.3.4 Newton solver

The equations (2.34)-(2.35) are fully implicit and non-linear. They are solved
with a conventional Newton iteration. The non-linear system is linearised, the
required Jacobian matrix of the system being approximated numerically. The
Jacobian of equations (2.34)-(2.35) is given by

J(ηi, ūi) =

[
−
〈
ϕh̃(ηi)

〉
K

+ ∆t ai,iSη(η
i, ūi)

∆t ai,iSū(ηi, ūi)

]
[

∂
∂ηi

∂
∂ui

∂
∂vi

]
.

To compute the Jacobian reliably the presented numerical system has to
be continuously differentiable with respect to the state variables η, u, v. In
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this work the partial derivatives are approximated by means of finite differ-
encing where the perturbation to the state variables was of order 10−6. Such a
numerical differentiation is valid for continuously differentiable functions. At
discontinuities, however, numerical approximation is not reliable and it often
causes oscillations that prevent the Newton solver from converging.

The advantage of the proposed WD method is that all the modifications
are indeed smooth without any discontinuities or switches. In what has been
presented, the only non-differentiable operator is the sign function found in
the Riemann solver in equation (2.22). The sign function is replaced with a
smooth approximation:

sign(u) ≈ tanh β
u

U
, β ≈ 60, U ≈ 1m/s. (2.36)

For discontinuous Galerkin discretisation, the Jacobian matrix is composed
of blocks, where each block corresponds to an element. This block structure
enables an efficient Incomplete LU (ILU) factorisation. Using an ILU fac-
torisation with no fill-in as preconditioner for GMRES (Generalized Minimal
Residual Method, Saad and Schultz, 1986) iteration appears to be sufficient
to ensure convergence. In our implementation, such an efficiency can only be
achieved with DG elements.

In practice the Newton solver appeared to be robust and it was observed
to converge rapidly. Stopping criterion was the relative error versus initial
state, i.e. εrel, i = εi

/
ε0, where εi is the residual of iteration i. Typically

only 3 to 6 iterations were required to reach εrel = 10−7. In the inner loop,
the GMRES solver required roughly 50 iterations on average to converge to
tolerance εrel = 10−3 (compared to the beginning of the GMRES iteration).

2.3.5 Mass conservation

Equation (2.5) represents mass conservation of the entire water column. The
corresponding weak formulation (2.11) will result in a mass conservative scheme
if the term

〈
ϕ ∂h̃/∂t

〉
K

is computed accurately. The presented Runge-Kutta
time marching will conserve mass because at each subiteration ∂η/∂t and
∂h̃/∂t are treated similarly. Thus only requirement is that the term

〈
ϕ h̃(ηi)

〉
K

is computed accurately in equation (2.34).
The latter imposes two restrictions: First, due to the non-linearity of h̃

an iterative solver, such as the Newton method proposed here, must be used.
Explicit methods can only provide approximate mass conservation. Secondly,
the numerical quadrature of

〈
ϕ h̃(ηi)

〉
K

must be accurate.
In this work conventional Hammer quadrature rules are used, that are ac-

curate up to polynomials of order 2p + 1, where p is the degree of the FE
discretisation (the extra p is required for the test function). However, no poly-
nomial can meet the desired properties of h̃ outlined in Section 2.2 and indeed
f(H) must be of infinite order. Therefore simply evaluating h̃ at integration
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points implies that the quadrature is not exact and mass conservation breaks
down.

Up to this point the polynomial order of the elevation field has been free but
now we restrict ourselves to p = 1. Linear elements have the unique property
that the extrema are found at the vertices and thus it suffices to ensure that
water depth remains positive at the nodes. The moving bathymetry is therefore
defined by computing the nodal values using (2.4) with linear interpolation in
between:

ˆ̃hn =
3∑

i=1

h̃(ηni , hi)ϕi(xh), (2.37)

where ϕi are now linear discontinuous basis functions. Equation (2.37) results
in a mass conservative scheme. For velocity field higher order elements can
still be used. In this work first order elements are used for all fields.

2.3.6 Choosing the function f(H)

The function f should meet the following properties:

• H̃ = H + f(H) > 0 for all H

• f ≈ 0 for H >> 1 m

• f must be continuously differentiable

The first property was already mentioned in Section 2.2. The second property
states that the modification is restricted to shallow areas only. And the third
property is needed for ensuring convergence of the Newton iteration. In this
work the following function, that fulfils the desired properties, is used:

f(H) =
1

2
(
√
H2 + α2 −H), (2.38)

⇒ H̃ = H + f(H) =
1

2
(
√
H2 + α2 +H).

Clearly, f is monotonously decreasing, continuously differentiable and satisfy
f(H) > max{−H, 0} ∀H ∈ R. The free parameter controls the smoothness
of the transition: f(H) → max{−H, 0}, as α → 0 (see Figure 2.2a). The
dimension of both f and α is meters.

In practice the α parameter affects the width of the transition zone between
wet (A(H) ≈ 1, h̃ ≈ h) and dry (A(H) ≈ 0) areas. Noting that for H = 0,
H̃ = α/2, it is easy to see that α also directly controls the water depth in dry
areas. As such α is similar to the threshold depth parameter used in thin-layer
WD methods, as both are expressed in meters and determine the remaining
water layer depth.
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For robust operation, the WD interface should be smooth implying that
the transition zone should encompass more that one element. Estimating the
variation in bathymetry within one element by

ε := Lx|∇h|, (2.39)

where Lx is the horizontal length scale, one can conclude that α ≈ ε, which
can be used as a rule of thumb for gradually sloping domains.

In terms of numerical stability, other more restrictive constraints may exist.
The system should be smooth enough to ensure convergence of the Newton
solver. It is also plausible that rapidly varying flows and dealing with shock
waves require larger values for α. These restrictions are, however, more difficult
to estimate a priori.

2.4 Tracer consistency

The tracer equation is implemented in conservative form and thus taking into
account the moving bathymetry is straightforward. Denoting the tracer con-
centration by C, the depth-averaged tracer equation in conservative form is
given by

∂HC

∂t
+ ∇ · (HCū) = S + ∇ · (κH∇C) (2.40)

where κ is the tracer horizontal diffusivity and S contains the sources and
sinks.

We now show that it is possible to formulate the tracer equation in such
a way that it is consistent with the continuity equation (2.5). Consistency
in this context means that setting C = 1 in the tracer equation should lead
to exactly the same numerical procedure that is used to solve the continuity
equation (e.g. White et al., 2008a).

It is clear that replacing H by H̃ in equation (2.40) leads to an equation
that is consistent with (2.5). The weak form of the modified tracer equation
becomes

〈∂H̃C
∂t

ϕ
〉
K

+
∑

e=K∩K′

〈〈
(H̃Cū)∗ · nϕ

〉〉
e
−
〈
H̃Cū ·∇ϕ

〉
K

=

∑

e=K∩K′

〈〈
κH̃∗∇C∗ · nϕ

〉〉
e
−
〈
κH̃∇C ·∇ϕ

〉
K
.

(2.41)

Clearly, setting C = 1 in above leads to (2.11). Again the unknown values
(H̃C)∗ in the element interfaces are computed with an approximate Riemann
solver. A solution for (H̃C)∗ can be derived by adding the tracer equation
(with zero diffusivity) to the system (2.16). Because in this context the tan-
gential velocity v̄ is essentially treated as a passive tracer, one obtains a similar
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solution:

(HC)∗ = {HC}+ s1[[HC]] +
s2 + s3 − 2s1

2
CRoe[[H]]

+
(s2 − s3)CRoe

2cRoe

([[Hū]]− ūRoe[[H]])
(2.42)

In the above equation CRoe denotes the tracer concentration value used in the
linearised equations. Similarly to v̄Roe, solving the Rankine-Hugoniot relation
results in the Roe average:

CRoe =

√
HlCl +

√
HrCr√

Hl +
√
Hr

, (2.43)

Clearly, for an arbitrary constant tracer concentration C = C0, one gets
CRoe = C0 and (HC)∗ = C0H

∗, which confirms consistency.
If a first order time discretisation is used the first term of equation (2.41)

becomes

〈∂H̃C
∂t

〉
K

=
〈(h̃n+1 + ηn+1)Cn+1 − (h̃n + ηn)Cn

∆t

〉
K
, (2.44)

which is linear in Cn+1 and no iterative solver is needed. Equation (2.41) can
therefore be solved in a conventional manner when H̃n+1 is known. However,
for consistency the same fully implicit Runge-Kutta time integration presented
in Section 2.3.3 is used for solving the tracer equation.

2.5 Numerical tests

The presented DG-FEM WD method was tested with several test cases com-
monly used in the literature and also a couple of novel ones. All the tests
were solved with DIRK22 time integration with 600 second time step unless
otherwise noted.

2.5.1 Balzano test cases

The first test cases considered are those by Balzano (1998). They feature a
rectangular 13800 m long basin, with mildly sloping bathymetry ranging from
zero to 5 meters. As forcing, water level perturbation is prescribed at the
deep end. The Manning bottom friction coefficient is set to 0.02 s/m1/3 while
Coriolis force, viscosity and free surface stress are being ignored. The test cases
are originally one dimensional but here they are solved in a 2D basin whose
width is 7200 meters. For exact description of the bathymetry the reader
should refer to Balzano (1998) or Gourgue et al. (2009).

The first test case considers a wave run up on a uniformly sloping bed. A
sinusoidal water level perturbation with an amplitude of 2 m and period of 12
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Figure 2.3: Balzano 1 test case. Elevation field at 20 minutes intervals for (a) the
drying phase and (b) flooding phase. The thick line corresponds to the
static bed. For comparison results obtained with an explicit WD method
are show with a dotted line.
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Figure 2.4: Balzano 2 test case. Elevation field at 20 minutes intervals for (a) the
drying phase and (b) flooding phase. The thick line corresponds to the
static bed. For comparison results obtained with an explicit WD method
are show with a dotted line.

hours is imposed. Here we are using a uniform mesh of 1200 m horizontal res-
olution, similar to the original one dimensional tests by Balzano. The vertical
length scale ε = 0.43 m and a slightly smaller value is used for the α smooth-
ness parameter α = 0.3 m. Figure 2.3 shows the modified elevation field η̃ at
20 minutes intervals for the drying and flooding phase. It is noteworthy that
the η̃ elevation curves correspond to the total water column depth and thus
these plots are directly comparable to other results in literature (e.g. Balzano,
1998; Nielsen and Apelt, 2003). In this test case, the bed does not become
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completely dry during the drying phase (Figure 2.3 a), due to the gradually
sloping bed and the tidal period.

For comparison the results obtained with a fully explicit flux-limiting WD
method (see Gourgue et al., 2009) are also shown in Figure 2.3. Clearly the
two methods are indeed in good agreement. Moreover, the retention volume
(water trapped in the dry areas) is not very large, in fact smaller than with
some methods presented in Balzano (1998) (Figure 2 in their manuscipt) and
no oscillations or wiggles are present. The shocks at the flooding front appear
to be milder than with the explicit method, which is due to the smooth WD
transition. There are also some differences near the open boundary, essentially
due to the implicit treatment of the boundary conditions.

The second test is similar, except that the bed now features a flat shelf.
The corresponding elevation field is plotted in Figure 2.4. The results are
again in good agreement with the fully explicit WD method and similar to
those presented in literature.

The third test case is different because the bed now features a small “pond”
that retains water in the dry phase. In this simulation the water level at the
open boundary is dropped sinusoidally to the minimal level, holding it there for
an indefinitely long time in order to test whether water is leaking through the
dry area. The elevation field after 100 hours, which essentially corresponds to
the static solution, is shown in Figure 2.5. Because water fluxes do not vanish
as long as the pressure gradient term operates, the pond eventually dries up.
The flux depends on the parameter α (the smaller the value of α, the smaller
the flux) and the bottom friction parametrisation, but neither can prevent the
pond from drying as time goes to infinity. Figure 2.5b presents the η field that
is used in the numerical implementation. Indeed it is seen that the static case
corresponds to situation where the elevation field is horizontal and thus the
pressure gradient term is zero. This test reveals that water is leaking through
dry areas which can be seen as a drawback of the presented method. However,
it must be stressed that such drawback is common also to all porous media
methods (Nielsen and Apelt, 2003).

2.5.2 Steeper slopes

During the model development is was noted that the standard test cases pro-
posed in the literature e.g. in Balzano (1998) and Leclerc et al. (1990) tend
to be too easy compared to real-world simulations with complex topography.
This is especially true with a steep bathymetry (Brufau et al., 2002). In this
section we therefore present similar tests as the first test by Balzano but with
increasing difficulty by steepening the bed slope. The proposed method was
tested with several different mesh resolutions and the goal was to determine
the smallest α values for which the method remains stable. To ensure similar
conditions the tests were designed such that in each case at least one element
would be completely dry at low water. The results are presented in Table 2.1.
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Figure 2.5: Balzano 3 test case. The static solution after 100 h of simulation time.
a) Total water column depth superimposed on the original bathymetry.
b) Elevation field as seen by the pressure gradient term. The thick line
corresponds to the static bed.

Lx [m]
|∇h| [m/m] 25 50 100 250 500

0.10 0.3 0.3 0.3 0.3 0.5
0.05 0.3 0.3 0.3 0.3 0.5
0.01 0.2 0.2 0.3 0.3 0.3
0.001 0.2∗ 0.2∗ 0.3∗ 0.5∗ 0.5∗

Table 2.1: Smallest stable α parameter values (in meters) for various bed slopes and
mesh resolutions. ∗) A mild shock wave appears at flooding phase, which
requires larger α for coarse mesh.

It is seen in Table 1 that the smallest possible α value remains relatively
constant in all the cases despite the fact that the nature of the WD process
varies dramatically. Indeed, the vertical length scale ε varies from 50 m (upper
right corner) to 0.025 m (lower left corner in Table 2.1). In the case of very
steep slopes the surface remains nearly horizontal and no wave propagation
effects are visible at the WD front. For more gradual bathymetry wave effects
become apparent and mild shocks appear at the flooding phase. To deal with
such shocks a larger retention depth (water column depth in the dry area)
may be needed to maintain stability. Larger retention depth implies faster
wave propagation at the WD front which naturally smooths the shocks.

2.5.3 Thacker test case

Thacker (1981) presented an analytical solution for water oscillation in a
paraboloid bowl. The solution has been derived for the non-linear shallow
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water equations, and has been used as a test case by many authors (Lynett
et al., 2002; Balzano, 1998; Bates and Horritt, 2005; Ern et al., 2008; Casulli,
2009). The test case consists of a regular basin, a paraboloid of revolution,
in which the free surface oscillates without any external forcing. The basin is
large, 430.620 km in diameter, but very shallow as the depth is not more than
50 m at the centre. Initially the free surface is also a paraboloid of revolution.
The dimensions of the bowl are chosen such that the free surface oscillation
has a 12 hour period. For exact description of the test case see e.g. Gourgue
et al. (2009); Balzano (1998).

This is a challenging test case as no bottom friction (or other dissipation)
is present. Moreover the horizontal length scales are larger than in a typical
application. Due to the large diameter of the basin, a common grid resolution
ranges from 4 km to 10 km. Consequently, although the bed slope is very
gradual, the vertical WD length scale is large: ε = 2.4 m for a 10 km mesh.
A slightly smaller value α = 2.2 m was used for the smoothness parameter.
Using a smaller α resulted in oscillations at the boundary, that in the absence
of any dissipation eventually deteriorated the solution in the whole domain.
In order to ensure that the boundary conditions do not affect the solution,
the computational domain was extended to diameter 495.2 km so that the
boundary remains dry at all times.

A cross section of the elevation at three time instances is shown in Figure
2.6a. In the centre of the domain, the numerical model is very close to the
analytical solution while the difference increases towards the WD front. The
smooth transition between the wet and dry regimes is clearly visible. As stated
earlier the smoothness of the solution is controlled by the parameter α and thus
smaller α yields more accurate solution. However, the smallest feasible α value
appeared to depend on the horizontal resolution, and α was observed to be
proportional to ε. Thus more accurate solutions can be obtained by decreasing
α but the mesh has to be refined accordingly.

Figure 2.6b shows the water elevation at the centre of the domain versus
time. It is seen that the proposed method is stable without noticeable addi-
tional dissipation. Moreover, as the signal does not attenuate significantly in
time, the numerical dissipation also remains moderate. This test also justi-
fies the higher order Runge-Kutta time integration presented in Section 2.3.3:
Clearly first order implicit Euler method is too dissipative to be used in prac-
tical applications. Here the same time step was used for the implicit Euler
method, but similar excessive dissipation was observed also for shorter time
steps.

2.5.4 Mass conservation

Because the Thacker test case features a closed basin it is well suited for testing
the mass conservation property presented in Section 2.3.5. Denoting the total
mass at time t by M(t) the relative error E = (M(0)−M(t))/M(0) was of order
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Figure 2.6: Thacker test case. a) Solid thin line: elevation after 6, 9, and 12 hours.
Dotted line: analytical solution. Thick line: bathymetry. b) Water level
at the centre of domain versus time. Solid line: Numerical solution.
Dotted line: analytical solution. Dash-dotted line: numerical solution
with implicit Euler time integration.

10−11 throughout the 25 hour simulation period, demonstrating that mass is
conserved with sufficient accuracy.

2.5.5 Rate of convergence

The Thacker test case was also used to test how fast the proposed method
converges toward the analytical solution when the mesh is refined. The test
case was run with several meshes with increasing resolution Lx = {10, 15,
20, 30, 40} km. As the smoothness parameter α affects the solution, it was
tuned to match the length scale: the corresponding variable values were set to
α = 0.9ε i.e. α = {2.16, 3.24, 4.32, 6.48, 8.64} m. These values are close to the
smallest stable values in each case because decreasing α significantly caused
oscillations. Examples of the different meshes are illustrated in Figure 2.7.

The L2 error of the elevation field η̃ was used as an error measure:

EL2 =
√〈

(η̃ − ηa)2
〉
Ω
/
〈
1
〉
Ω
, (2.45)
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(a) Lx=40km (b) Lx=30km

(c) Lx=20km (d) Lx=10km

Figure 2.7: Meshes for the Thacker convergence test case.

where ηa denotes the analytical solution that takes into account the dry bed,
i.e. ηa = max{ηexact,−h}. It is noteworthy that the error measure encompasses
the entire domain, both wet and dry areas.

The observed L2 error is shown on Figure 2.8, showing roughly 1.5 rate of
convergence. It has to be stressed, however, that the convergence test is not
entirely fair as we are comparing two different solutions. Indeed the analytical
solution presented in Thacker (1981) was developed for the original SWEs while
in here the modified equations (2.5)-(2.6) are being solved. Moreover, the error
is the largest at the WD transition, where the numerical solution is smoother
than the analytical (see Figure 2.6a). Therefore the error is mainly dominated
by the parameter α instead of the spatial discretisation. Nevertheless, based
on this test it can be stated that refining the mesh allows smaller α values
leading to smaller discrepancies, and thus the solution does converge towards
the solution of the original SWEs.

2.5.6 Test on tracer consistency and conservation

Tracer consistency was tested with the Thacker test case by adding a passive
tracer in the simulation. The tracer concentration was initially set to unity
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Figure 2.8: Convergence of the L2 error versus spatial resolution. The observed rate
of convergence is mainly due to the α parameter values.

throughout the domain. As demonstrated in Section 2.4, the concentration
should remain equal to unity at all times. In fact, the solution for such a
tracer is trivial, and therefore the numerical method should converge instantly
without any iterations. Such behaviour was indeed observed. During the
simulation the error in tracer concentration was of order 10−8 which is the
same magnitude as the residual tolerance used in the Newton iteration.

Tracer mass conservation was also tested. Figure 2.9 illustrates the relative
error in total tracer mass versus time. The relative error is defined by EC =
(MC(0) −MC(t))/MC(0), where MC(t) denotes the total tracer mass at time
t. The tracer mass is conserved up to precision 10−15 which is the same order
of magnitude as the numerical precision of the model. Similar precision was
obtained for a non-uniform tracer field as well.
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Figure 2.9: Error in total tracer mass versus time. The error is the same magnitude
as the numerical precision.
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Figure 2.10: Computational domain of the Scheldt application. The mesh contains
29130 elements. The upstream river network is modelled with 1D ver-
sion of the SLIM (not shown here).

2.6 Application to the Scheldt Estuary

The Scheldt Estuary is situated between Belgium and the Netherlands (Figure
2.10). The entire Scheldt River catchment area in northern France, Belgium
and the Netherlands hosts approximately 7 million people and also features
heavy industrial activity. Due to substantial and partly untreated discharges,
the water quality in the river is generally poor with elevated levels of heavy
metals, fecal bacteria and nutrients (Baeyens et al., 1997).
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The Scheldt is a macrotidal estuary driven by the semi-diurnal tides on the
North Sea. Indeed, the residual water flux due to river discharge is roughly
two orders of magnitude smaller than that of the tidal flow. The width reduces
from 6 km near the mouth to 500 m near Antwerp, roughly 80 km upstream.
The tidal signal is amplified as it travels up the estuary, the tidal range near
the mouth in Vlissingen being 3.8 meters and 5.2 meters further upstream in
Antwerp. The estuary is generally very shallow (mean depth is roughly 10 m)
but features deep flood and ebb channels (see Figure 2.11) that can reach the
depth of 60 meters (Swinkels et al., 2009). The main estuary also features
large tidal flats (mainly Saeftinge and Ballatsplaat) and sand banks between
the two main channels, both of which are submerged during high water.

It is clear that taking wetting-drying phenomenon into account in such a
domain is essential. The model domain is discretised with a triangular mesh
that not only encompasses the Scheldt Estuary but also most of the North-
western European Continental Shelf Sea (NWECSS) extending all the way
to the shelf break (see Figure 2.10). Although the computational domain is
extended drastically, the increase in computational cost remains moderate as
roughly half of the elements are located inside the area of interest, i.e. the
Scheldt. The mesh was generated with the GMSH software (Geuzaine and
Remacle, 2009; Lambrechts et al., 2008a).

The advantage of such domain extension is that the tide can be prescribed
at the shelf break using data from global tidal models. Moreover, the meteoro-
logical events in the North Sea can easily be incorporated in the model. In this
work ETOPO1 bathymetry data4 (Amante and Eakins, 2009) is used for the
NWECSS while the Scheldt bathymetry is obtained from KustZuid model5.
The tidal signal at the open boundary is defined using TPXO7.1 model6 (Eg-
bert et al., 1994). The meteorological forcings (wind stress and atmospheric
pressure) are from global NCEP reanalysis data7 (Kalnay et al., 1996). At the
upstream boundary the 2D model is coupled with a 1D river network model
that covers all the connected tidal rivers and tributaries. The tidal rivers are
forced with observed river discharge at the upstream boundaries. In addition
the freshwater discharges of Thames, Seine, Rhine and Meuse rivers are pre-
scribed using daily average discharge data. More detailed information on the
model setup can be found in Gourgue et al. (2009) and de Brye et al. (2010).

The hydrodynamics were solved using the DIRK22 time marching with 20
minutes time-step. The WD the smoothness parameter was set to α = 0.5 m.

Although model validation is not the main purpose of this paper, the bot-
tom friction coefficient was tuned to obtain a good match of the tidal signal
propagation by comparing water elevation to measurements in several stations
in Scheldt and North Sea. The Manning coefficient ranges from 0.0235 s−1m1/3

4http://www.ngdc.noaa.gov/mgg/global/
5Courtesy of M. Zijlema of the National Institute for Coastal and Marine Management (RIKZ)
6http://www.oce.orst.edu/research/po/research/tide/index.html
7http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.surfaceflux.html

http://www.ngdc.noaa.gov/mgg/global/
http://www.oce.orst.edu/research/po/research/tide/index.html
http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.surfaceflux.html
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in the shelf sea to 0.026 s−1m1/3 near Antwerp, increasing linearly along the
estuary. Examples of two time series versus observations are presented in Fig-
ure 2.14. The model is clearly in good agreement with the data and there is
no evidence that the moving bathymetry WD process would deteriorate the
solution by affecting wave propagation, for example. A more detailed valida-
tion of the Scheldt model is presented in de Brye et al. (2010), where the same
implicit WD method is used.

Snapshots of free surface elevation at high and low water can be seen in Fig-
ure 2.11 where the drying sand banks are clearly visible. Moreover, in Figure
2.12 it can be seen that the modification of the bathymetry is indeed restricted
to the dry areas which also support the notion that the physical processes in
the wet domain remain essentially unmodified. The depth averaged velocity
field is shown in Figure 2.13. The flow circulates smoothly around the sand
banks and no spurious noise is visible. Asymmetric flow patterns between ebb
and flood channels is clearly observed (Swinkels et al., 2009).

An explicit flux-limiting WD method (in conjunction with SLIM) is applied
to a similar Scheldt application in Gourgue et al. (2009). Qualitatively the
flux-limiting method yields similar results to what has been reported here,
and in de Brye et al. (2010). The major difference is in the computational
cost. As most of the WD methods rely on explicit time integration, the longest
permissible time step is heavily restricted by the CFL condition. In the Scheldt
Estuary the time step is less than one second due to the deep channels and
relatively small elements.

With the proposed fully implicit time marching, however, there is no in-
trinsic restriction on the time step, it is only required to resolve the tide and
the forcing signals. In this simulation therefore a much longer time step of 20
minutes is used.

In Table 2.2 the overall CPU time is compared to the explicit flux-limiting
WD method (Gourgue et al., 2009). The comparison was carried out for
Balzano test 1 and the Scheldt application running the simulations for a short
period of time (T ). These tests were run on an Intel Xeon processor using
four nodes. It is seen that already in the Balzano benchmark implicit code
runs much faster, while in the Scheldt application the explicit time stepping is
becoming far too expensive, running more than 200 times slower. It must be
noted, however, that such a comparison is not entirely fair as neither the code
nor the model setup is optimised for explicit computation. For example, one
should eliminate too small elements in the mesh, which has not been carried
out. Nevertheless, in order to be able to capture the tidal dynamics in the
estuary, sufficiently fine mesh is required (de Brye et al., 2010) and such a
setup is very demanding for explicit methods.
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Simulation
Number of
elements

Method ∆t T CPUtime Gain

Balzano 1 561 expl. ≈ 5 s 12 h 116.9 s
561 impl. 600 s 12 h 20.46 s 5.7

Scheldt 29130 expl. < 0.2 s 1 h 34592 s
29130 impl. 1200 s 1 h 129.64 s 267

Table 2.2: Comparison of CPU times for flux-limiting and moving bathymetry
wetting-drying. The presented method runs significantly faster due to
the implicit time stepping.

(a)

(b)

Figure 2.11: Wetting-drying in the Scheldt Estuary during spring tide. a) Depth
at high water b) Depth at low water. Exposed sand banks are clearly
visible. Maximum depth is roughly 60 m.
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(a)

(b)

Figure 2.12: Bathymetry displacement |h̃ − h| during a) high water b) low water.
Note that the color scale is different in the two cases. The modification
remains very small in the deep areas.

2.7 Conclusions

In this paper a novel fully implicit WD method has been proposed. Although
the method relies on artificially moving the bathymetry in dry areas, both
the numerical test and the real-world application in the Scheldt Estuary con-
firms that the WD processes are modelled with good accuracy. No spurious
behaviour was noticed in the dry areas and wave propagation properties seem
intact.

Although the moving bathymetry WD method resembles porous media
approach, there are several differences. Since our model relies on artificial dis-
placement of bathymetry, there is no need to introduce the concept of porosity
nor properties of the porous layer. Generally this leads to a simpler numerical
formulation and fewer number of unknown parameters than in porous media
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(a)

(b)

Figure 2.13: Velocity fields at a) flood and b) ebb tide.

WD methods (Kennedy et al., 2000; Jiang and Wai, 2005; Nielsen and Apelt,
2003). Indeed, the moving bed was defined by means of a single-parameter
function, which has proved out to be sufficient in all the various test cases.
Moreover, in the presented formulation, mass is conserved up to machine pre-
cision (with respect to the modified total depth). The artificial retention vol-
ume due to the modified bathymetry remains small, and does not accumulate
in time. In practice, the method has proved out to be very robust in various
applications.

Since the main field of application of the SLIM is long-term transport sim-
ulations, we have paid special attention to ensure strict mass conservation and
tracer consistency properties, which (especially for the latter) is not common
in WD literature. The numerical tests confirm that the scheme is mass con-
servative, tracer mass is conserved up to numerical precision and no spurious
transport due to the WD method appears.

The drawback of the moving bed approach is that water can leak through
dry regions, as indicated by the third Balzano test case. The leakage is con-
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Figure 2.14: Simulated water elevation (solid line) versus measurements (dashed
line) in two stations.

trolled by the parameter α, which generally depends on the mesh resolution
and the bathymetry gradient. Consequently, the method is not well-suited for
applications where the flow near lakes or other isolated reservoirs needs to be
resolved with high accuracy. It should be stressed, however, that the same
weakness is common to all “negative depth” WD methods.

The main advantage of the presented method lies in the computational effi-
ciency due to the implicit time integration. Indeed, it is not obvious to develop
a fully implicit WD method that is strictly mass conservative and consistent
with tracer equation, especially in FE framework. To be able to really ex-
ploit the advantages of implicit time integration, higher order DIRK schemes
are suggested here. When using long time steps of order ten minutes, simple
implicit Euler time marching scheme proved out to be far too dissipative.

In the Scheldt application the total CPU time was reduced by a factor
of 200 in comparison to explicit time stepping, that is often required in WD
simulations. As the unstructured grid FE models tend to be slower than
established FD models, this speed-up is essential in practical applications.
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It should be stressed that although this paper deals with FE implemen-
tation, other formulations are not excluded, because the moving bed method
can be described already at the level of the primitive equations.

In this work, we have concentrated on first order DG discretisation, al-
though DG formulation is known to be computationally more efficient in higher
order. However, designing WD treatment for high order models is still diffi-
cult, and in fact the author is not aware of any method applicable to order
p > 1. Nevertheless, as the method presented here does not depend on the dis-
cretisation, it could potentially be extended to high order elements as well. In
practice, the difficulty arises from the fact that for higher order basis functions
the extrema are not necessarily located at the nodes.
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This Chapter reproduces an updated version of the following paper, first
submitted on 31 July 2011:

T. Kärnä, V. Legat, E. Deleersnijder, and H. Burchard. Coupling of a
discontinuous Galerkin finite element marine model with a finite differ-
ence turbulence closure model. Ocean Modelling, 47:55–64, 2012. ISSN
1463-5003.
doi: 10.1016/j.ocemod.2012.01.001.

Abstract

This paper describes an online coupling between a 3D discontinu-
ous Galerkin finite element marine model and a 1D vertical turbulence
closure model based on finite differences. The coupling exploits the
topology of the 3D mesh, that is formed by stacking layers of prisms in
the vertical direction. A robust mapping between the finite difference
grid and the finite element function space is designed, taking into ac-
count the discontinuities in the latter. The coupling is tested with two
horizontally homogeneous flows and an idealised 3D estuary simulation.
The results are in good agreement with those obtained with a finite
difference model using the same turbulence closure, indicating that the
coupling does not deteriorate the performance of the turbulence model.
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3.1 Introduction

Three-dimensional marine models usually rely on Fourier-Fick parametrisa-
tions to represent vertical fluxes due to unresolved fluctuations. The relevant
eddy coefficients are obtained by means of turbulence closure schemes. While
in some applications simple formulations, such as algebraic expressions of eddy
viscosity/diffusivity, can be sufficient, in general more sophisticated models are
needed to account for the time-space evolution of the turbulent fluxes.

Most popular high-level turbulence models consist of two partial differential
equations, one for the turbulent kinetic energy (TKE) and another one for
an accompanying variable that determines the relevant length scale. Such
turbulence closures include the widely used model by Mellor and Yamada
(1982) (level 2.5), k–ε (Rodi, 1987), k–ω (Wilcox, 1988; Umlauf et al., 2003)
and a recent generic length scale (GLS) model by Umlauf and Burchard (2003).
Choosing a turbulence model is not trivial as it may have a high impact on
mixing and circulation (Ruddick et al., 1995; Luyten et al., 1996; Burchard
et al., 1998; Burchard, 2002a; Wijesekera et al., 2003; Warner et al., 2005).

GOTM1 (General Ocean Turbulence Model, Burchard et al. (1999)) is a
library that implements a generic turbulence closure model, in which all the
above models can be easily obtained by changing parameters. GOTM is based
on a finite difference (FD) formulation on a 1D vertical grid. It has been
extensively tested and validated in numerous studies. Offering the flexibility
to easily switch from one closure to another, GOTM is an advantageous tool
for marine modelling.

GOTM has been coupled to many structured grid FD or finite volume (FV)
models, including GETM (General Estuarine Transport Model, Burchard and
Bolding (2002)) and MOM (Modular Ocean Model, Griffies (2010)). Enstad
et al. (2008) studied CO2 transport in a lake using GOTM with MITgcm
(Massachusetts Institute of Technology general circulation model). Rygg et al.
(2009) used GOTM with both MITgcm and BOM (Bergen Ocean Model)
in a similar study. Also POLCOMS (Proudman Oceanographic Laboratory
Coastal Ocean Modelling System) has been coupled to GOTM to simulate
tidal mixing and stratification in the Northwest European Continental shelf
(Holt and Umlauf, 2008). Among unstructured grid models GOTM has been
coupled to FVCOM (Finite Volume Coastal Ocean Model, Chen et al. (2006);
Tian and Chen (2006)).

Creating an interface between a 1D FD turbulence model and a FD/FV
circulation model is fairly straightforward given the similarities in the grid and
the mathematical representation of the fields. The purpose of this paper is to
investigate the possibility of coupling GOTM to a discontinuous Galerkin (DG)
finite element (FE) marine model. Such a coupling is feasible as long as the
unstructured FE grid is vertically aligned, such as in the case of the commonly
used prismatic mesh. Equipotential z-grids, terrain following σ-grids and their

1www.gotm.net
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generalisations are equally applicable. However, due to the DG formulation,
exchanging data becomes more complicated because fields are represented as
a piecewise discontinuous polynomial on the domain, in contrast to a set of
discrete values in FD.

FE marine models have been equipped with various turbulence closure
models. FEOM (Finite Element Ocean Model,Wang (2007)) uses a Richard-
son number dependent Pacanowski and Philander (1981) parametrisation. A
more sophisticated Mellor-Yamada level 2.5 closure has been implemented in
a 1D water column model (Hanert et al. (2006, 2007); Blaise and Deleersnijder
(2008)) and in a full 3D model in Blaise et al. (2007). The SELFE (Semi-
implicit Eulerian-Lagrangian Finite Element) model implements the GLS tur-
bulence closure (Zhang and Baptista, 2008). However, all these FE models
are based on continuous Galerkin (CG) formulation, i.e. the basis functions
are continuous between elements. White et al. (2008b) present a FE model
that features discontinuous fields in the vertical direction, but rely on a simple
parabolic parametrisation of eddy viscosity. Therefore, to our knowledge, so-
phisticated turbulence models in discontinuous Galerkin framework have not
been dealt with so far.

As established models are nowadays mainly based on structured meshes
and FD formulation, while unstructured mesh models are still emerging and
mostly applied to regional studies, it is clear that there is a need to develop
interfaces between the two model classes. This paper is a contribution to such
a coupling. The aim is to take the best of both worlds, i.e. combining novel
FE ocean model developments with an established FD turbulence library.

The article is organised as follows. The governing equations are presented
in Section 3.2. Section 3.3 presents the numerical models: the 3D model and its
DG-FE function space are briefly presented in Section 3.3.1, while the spatial
discretisation and the interface of GOTM are outlined in Section 3.3.2. The
coupling strategy is presented in Section 3.4. Numerical tests and concluding
remarks are presented in Sections 3.5 and 3.6, respectively.

3.2 Governing equations

The 3D baroclinic equations are presented in Chapter 4, Section 4.2. To close
this set of equations, the vertical eddy viscosity, ν, and diffusivity, µ, are solved
by means of a turbulence closure model.

3.2.1 Turbulence closure models

Eddy viscosity and eddy diffusivity are calculated as proportional to a turbu-
lence velocity scale k1/2 (where k is the turbulent kinetic energy, TKE, per
unit mass) and an integral turbulent length scale l:

ν = cνk
1/2l, µ = cµk

1/2l. (3.1)
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The dimensionless proportionality factors, cν and cµ, are stability functions,
depending on non-dimensional shear and buoyancy frequency squared,

αM =
M2l2

k
, αN =

N2l2

k
, (3.2)

respectively. Here M2 stands for the vertical shear frequency squared and N2

is the vertical buoyancy (Brunt-Väisälä) frequency squared, defined as

M2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

, (3.3)

N2 = − g

ρ0

∂ρ

∂z
. (3.4)

Second moment turbulence closure models are derived from the Reynolds
Averaged Navier-Stokes (RANS) equations, leading to transport equations for
the Reynold stresses and turbulent tracer fluxes (Burchard, 2002a). These
equations are then closed by assuming a local equilibrium and finding suitable
second moment parametrisations for the unknown third moments. Classical
second-moment closures are those by Mellor and Yamada (1982) and Canuto
et al. (2001).

In the present framework, k and l are calculated by means of two budget
equations. The k-equation is derived form the Navier-Stokes equations under
the assumption of vertical shear layers (i.e. horizontal homogeneity of the
flow) and the turbulent TKE transport being down-gradient. The resulting
transport equation reads as

∂k

∂t
+ ∇h · (uk) +

∂(wk)

∂z
=

∂

∂z

(
ν

σk

∂k

∂z

)
+ P +B − ε, (3.5)

with the constant turbulent Schmidt number, σk, the shear and buoyancy
production terms

P = νM2, B = −µN2, (3.6)

respectively, and the viscous dissipation rate per unit mass, ε. The latter can
be calculated from k and l by means of

ε =
(
c0
µ

)3 k3/2

l
, (3.7)

with the empirical dimensionless parameter c0
µ.

The internal turbulent length scale l is calculated by means of the generic
two-equation turbulence closure model developed by Umlauf and Burchard
(2003). It introduces another transport equation for the generic quantity

Ψ =
(
c0
µ

)p
kmln, (3.8)

with real numbers p, m and n.
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Clearly, for p = 3, m = 3/2 and n = −1, Ψ = ε is obtained. Along with the
k-equation, this set of parameters results in the well-known k–ε model (Rodi,
1987). Other well known quantities for which budget equations have been

derived are the turbulence frequency ω =
(
c0
µ

)−1
k1/2l−1 (Wilcox, 1988; Umlauf

et al., 2003) and kl (Mellor and Yamada, 1982). The transport equation for Ψ
as derived by Umlauf and Burchard (2003) reads

∂Ψ

∂t
+ ∇h · (uΨ) +

∂(wΨ)

∂z
=

∂

∂z

(
ν

σΨ

∂Ψ

∂z

)
+

Ψ

k
(cΨ1P + cΨ3B − cΨ2ε) ,

(3.9)

with the empirical parameters cΨ1, cΨ2, and cΨ3, and the turbulent Schmidt
number σΨ. The transport equation (3.9) has been derived by combining (3.5)
with the highly empirical ε-equation (Rodi, 1987). However, the empirical pa-
rameters have a clear physical meaning, as discussed by Umlauf and Burchard
(2003). The role of cΨ3 for properly adjusting the balance between increased
mixing due to shear and decreased mixing due to stable stratification has been
highlighted by Burchard and Baumert (1995); Umlauf and Burchard (2005)
by analysing conditions for steady state solutions of (3.5) and (3.9) for homo-
geneous shear layers (i.e. zero gradients of k and Ψ):

P +B = ε, cΨ1P + cΨ3B = cΨ2ε, (3.10)

which implies

Rst
i =

cΨ1 − cΨ2

cΨ3 − cΨ2

· cµ (Rst
i )

cν (Rst
i )

(3.11)

and

Γst =
cΨ1 − cΨ2

cΨ3 − cΨ1

, (3.12)

with the steady state gradient Richardson number, Rst
i = N2/M2 and the

steady state mixing efficiency, Γst = −B/ε, where M and N are shear and
buoyancy frequency fulfilling (3.10). It should be noted that the stability
functions cν and cµ are functions of Rst

i only for turbulence equilibrium P+B =
ε. By means of (3.11), cΨ3 can be calculated as function of Rst

i which is
expected to be Rst

i = 0.25 (Shih et al., 2000). Burchard and Hetland (2010)
showed that when calculating cΨ3 using the stability functions developed by
Cheng et al. (2002), a steady-state mixing efficiency of Γst = 0.22 is obtained
by means of (3.12), a value close to the estimate by Osborn (1980).

The most stable boundary conditions for k and l have proved to be Neu-
mann conditions, which are generally derived from the law of the wall and
depend on the surface friction velocity us∗ and the bottom friction velocity
ub∗, unless surface wave breaking effects are considered (Umlauf and Burchard,
2005).
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c0
µ cΨ1 cΨ2 c−Ψ3 c+

Ψ3 σk σΨ

0.5265 1.44 1.92 -0.6209 1.00 1.00 1.30

Table 3.1: Parameters of the k–ε turbulence closure model. The parameter c−Ψ3

(obtained with Rsti = 0.25) is used in the case of stable stratification,
while c+

Ψ3 is used for unstable stratification. For details refer to Burchard
and Bolding (2001) and references therein.

In this work a k–ε turbulence closure is used with the parameters given in
Table 3.1. The stability functions are those of Canuto et al. (2001) (Model A),
which can be written as (Burchard and Bolding, 2001):

cν =
0.1070 + 0.01741αN − 0.00012αM

Cca
, (3.13)

cµ =
0.1120 + 0.004519αN − 0.00088αM

Cca
, (3.14)

Cca = 1 + 0.2555αN + 0.02872αM + 0.008677α2
N

+ 0.005222αNαM − 0.0000337α2
M .

3.3 Numerical models

3.3.1 3D finite element ocean model

In this work we use the Second-generation Louvain-la-Neuve Ice-ocean Model
(SLIM2). SLIM is based on the discontinuous Galerkin finite element method,
and consists of 1D, 2D and 3D shallow water models.

SLIM 2D has been applied to various studies. Modelling the flow in the
entire Great Barrier Reef, Australia, is presented in Lambrechts et al. (2008a)
with validation against measurement data. Coupled 2D-1D model has been
applied to modelling the Scheldt river, estuary and adjacent coastal zone,
where the tidal water elevation is simulated with good accuracy across the
multi-scale domain (de Brye et al. (2010)).

White et al. (2008b) present an early barotropic version of SLIM 3D model
with semi-discontinuous function space. Full DG discretisation of the 3D baro-
clinic equations is presented in Blaise et al. (2010) and an implicit-explicit
Runge-Kutta time integration method in Comblen et al. (2010a). The 3D sim-
ulations presented here are conducted using the 3D model described in Chapter
4.

Spatial discretisation of SLIM

For solving boundary value problems with the finite element method, the do-
main is divided into a finite number of elements. By means of the elements, a

2www.climate.be/slim
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discrete function space, spanned by a set of basis functions, is defined. A FE
solution belongs to this function space and approximates the exact solution of
the boundary value problem in the sense of the L2 norm. Consequently, a FE
solution is a function defined in the entire domain, instead of a set of discrete
values as in FD. Usually Lagrangian basis functions are used, which implies
that the nodal values are interpolated inside the elements.

In SLIM the 3D mesh is made up of prismatic elements (see leftmost panel
in Figure 3.1). Each element is a triangular prism of order o, that is formed as
a product of a o-th order triangle in horizontal and o-th order linear element
in vertical. As such, the solution is a piecewise polynomial of degree o in both
horizontal and vertical directions. Due to the discontinuous Galerkin (DG)
formulation, the solution is discontinuous at the element interfaces. The same
spatial discretisation is used for all fields.

Assuming that there are nE elements in the mesh, an element is identified
by an integer e = 1, . . . , nE. Each element e contains nNe nodes, and conse-
quently a node is identified by a pair of integers, (e, ξ), ξ = 1, . . . , nNe . The set
of all nodes (e, ξ) is denoted by D. The nodal values of a field u are denoted
by u(e,ξ). Denoting the ξ-th basis function of the element e as ψ(e,ξ), a field is
expressed as uh =

∑
(e,ξ)∈D u(e,ξ)ψ(e,ξ)(x, y, z), which is a discontinuous piece-

wise polynomial of degree o. In this work we are concentrating on first order
elements, i.e. o = 1.

3.3.2 GOTM turbulence closure model

GOTM solves the equations (3.5) and (3.9), except for the advection terms
that must be implemented in the 3D circulation model. GOTM uses a 1D
vertical staggered grid extending from the bed to the fluctuating free surface,
divided into q cells (see the rightmost panel in Figure 3.1). Internally, the mean
flow variables are defined in the cell centres (crosses in Figure 3.1), while the
turbulent variables are defined at cell interfaces. Thus the mean flow variables
are denoted by um+1/2, m = 0, . . . , q − 1 while the turbulent quantities read
νm, m = 0, . . . , q.

GOTM interface

The variables required at runtime by GOTM are listed in Table 3.2. The
user must provide the input variables at each time step. The output variables
evolve in time and are updated by GOTM. If a single GOTM instance is
used for computing several 1D segments, the output variables of the previous
iteration must be provided. Consequently, one must store the arrays νj,m, µj,m,
kj,m, εj,m for each vertical segment j.
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User provided input m

H total depth
us∗ surface friction velocity
ub∗ bottom friction velocity
zs0 surface roughness length
zb0 bottom roughness length

dm+1/2 cell height 0, . . . , q − 1
Nm buoyancy frequency 1, . . . , q − 1
Mm vert. shear frequency 1, . . . , q − 1

Output m

νm turbulent vert. viscosity 0, . . . , q
µm turbulent vert. diffusivity 0, . . . , q
km turbulence kinetic energy 0, . . . , q
εm TKE dissipation rate 0, . . . , q

Table 3.2: Input and output variables in the GOTM interface with q cells.

3.4 Coupling strategy

3.4.1 Mapping nodes between 3D and 1D

In order to couple a 3D model with the 1D turbulence model, one needs to
define vertical segments in the discontinuous 3D mesh, and build a mapping
between the corresponding nodes.

In the simplest form, a 1D vertical array is built for each (discontinuous)
node in the triangular surface mesh. Then there exists a bijective mapping
ΠDG that maps each 3D node to a position i in a vertical array j. Using the
nodal values of a field u in the 3D mesh, u(e,ξ), the values at the 1D array are
denoted uj,i = ΠDGu(e,ξ), i = 0, . . . , nDG

j − 1.
The 1D array defined above is discontinuous in the vertical. To account

for the fact that the 1D FD grid has only continuous (unique) values at the
cell interfaces, another mapping ΠCG is needed. Unlike above, ΠCG ignores the
discontinuities in vertical, and hence it is no longer a bijection. ΠCG is used to
fetch GOTM generated data back to the 3D fields, denoted by ν(e,ξ) = ΠCGνj,m.
Consequently the field ν(e,ξ) is continuous in the vertical direction.

The mappings ΠDG and ΠCG are illustrated in Figure 3.1. For first order
elements it holds nCG

j = nDG
j /2 + 1.

Alternatively, the 1D vertical arrays can be located at the centroids of the
surface triangles. In this case there exists only a single 1D array for each col-
umn of prisms. In order to fetch data from the 3D mesh to such an array, the
FE basis functions are evaluated at the DG points corresponding to the trian-
gle centroid, which can be seen as a generalisation of the map ΠDG. To map
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SLIM 3D GOTM
Figure 3.1: Schematic illustration of the coupling. The operator ΠDG maps 3D nodes

(e, ξ) to DG nodes in the corresponding 1D vertical mesh. ΠCG maps
3D nodes to cell interfaces (j,m) in GOTM. For illustration purposes,
the discontinuities of the SLIM 3D mesh has been exaggerated; in reality
there is no gap between the elements.

turbulent quantities back to the 3D mesh, the 1D values are copied to the en-
tire column of prisms, i.e. the values are constant in the horizontal, and linear
continuous in the vertical direction. The 3D field is further smoothed in hori-
zontal direction by taking a nodal average weighted by the volume associated
to each node. This approach provides horizontal filtering on the input data,
which improves the stability of the turbulence closure model in the presence
of strong horizontal gradients.

3.4.2 Computing M and N

The key input parameters for GOTM are the vertical shear frequency M and
buoyancy frequency N , defined in (3.3) and (3.4).

The buoyancy frequency requires the computation of the vertical gradient
of the potential density, which is obtained by differentiating the equation of
state at a constant pressure

∂ρ

∂z
= A(T, S, p)

∂T

∂z
+B(T, S, p)

∂S

∂z
, (3.15)

A =
∂ρ(T, S, p)

∂T

∣∣
S,p
, (3.16)

B =
∂ρ(T, S, p)

∂S

∣∣
T,p
. (3.17)

Consequently, for computing M and N , the vertical gradients of T , S, u
and v need to be evaluated at the element interfaces. Here we present two
different strategies for obtaining the gradients.
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In FE discretisation the most intuitive way to evaluate gradients is by using
the gradients of the basis functions. The vertical gradient of a field T is given
as ∂T

/
∂z =

∑
(e,ξ)∈D T(e,ξ)∂ψ(e,ξ)

/
∂z, which is a discontinuous polynomial of

degree o− 1. The nodal values of such a field are given by

(∂T
∂z

)
(e,ξ)

= T(e,ξ)

∂ψ(e,ξ)

∂z

∣∣
x(e,ξ)

, ∀(e, ξ) ∈ D

Using the mapping ΠDG, an array
(
∂T
/
∂z
)
j,i
, i = 1, . . . , nDG

j is created

for each vertical line j, assigning the appropriate values

(∂T
∂z

)
j,i

= ΠDG

(∂T
∂z

)
(e,ξ)

. (3.18)

The above values are discontinuous at the element interfaces. An estimate of
the gradient can be obtained by taking an arithmetic mean

( ∂̂T
∂z

)
j,m

=
1

2

[(∂T
∂z

)
j,2m

+
(∂T
∂z

)
j,2m−1

]
, (3.19)

m = 1, . . . , nCG
j − 2.

The drawback of (3.19) is that it only uses the gradient in each element,
thus ignoring the jump at the interface. The gradient fields also tend to be
more noisy than the corresponding scalar fields.

Another possibility is to use finite differencing across the element interface.
First, the field nodal values are fetched in the 1D arrays

Tj,i = ΠDGT(e,ξ). (3.20)

Denoting the z coordinates of each node by zj,i, element heights and the
total depth are obtained as

dj,m+1/2 = zj,2m+1 − zj,2m, l = 0, . . . , nCG
j − 2, (3.21)

Hj = zj,nDG
j −1 − zj,0. (3.22)

Next, T is evaluated at element centres using the 1D DG-FE basis functions
ψi(ζ), i = 1, . . . , nN1D, defined on a reference element ζ ∈ [−1, 1]. For first order
elements nN1D = 2 and we can write (see Figure 3.1):

T̃j,m+1/2 = Tj,2mψ1(0) + Tj,2m+1ψ2(0),

m = 0, . . . , nCG
j − 2

(3.23)

For Lagrangian basis functions, we have ψ1(0) = ψ2(0) = 1/2, implying that
the above is equivalent to an arithmetic mean of the nodal values.
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Now the vertical gradient of T can be estimated by finite differencing

d̃j,m =
1

2

(
dj,m+1/2 + dj,m−1/2

)
,

( ∂̂T
∂z

)
j,m

=
T̃j,m+1/2 − T̃j,m−1/2

d̃j,m
, (3.24)

m = 1, . . . , nCG
j − 2

The formulation (3.24) is more accurate because the field values are more
reliable at the element centres. Clearly, (3.24) depends on a stencil of 4 nodal
values and thus ignores neither the jump nor the gradient at the interface. To
obtain better estimates, more sophisticated interpolation methods could be
used, but those are not dealt with in this article.

Once the gradients are obtained, the buoyancy frequency squared is com-
puted as

(N2)j,m = − g

ρ0

[
Aj,m

( ∂̂T
∂z

)
j,m

+Bj,m

( ∂̂S
∂z

)
j,m

]
, (3.25)

where Aj,m and Bj,m are computed with the mean temperature and salinity at
the interface.

The vertical shear frequency is computed in a similar fashion. Denoting
the shear frequency in x direction by Mx, the following temporal averages are
defined with respect to the velocity field of the previous iteration:

(M̄x)j,m = δ
( ∂̂u
∂z

)
j,m

+ (1− δ)
( ∂̂u
∂z

)old

j,m
,

(M̄ ′
x)j,m =

1

2

( ∂̂u
∂z

)
j,m

+
1

2

( ∂̂u
∂z

)old

j,m
.

The implicity parameter δ ∈ [0, 1] depends on the temporal scheme of vertical
diffusion. Here, the Crank-Nicholson scheme is used for vertical diffusion, so
that δ = 1/2.

Now, the square of vertical shear frequency in x direction is:

(M2
x)j,m = (M̄x)j,m(M̄ ′

x)j,m, (3.26)

m = 1, . . . , nCG
j − 2

The shear frequency in y direction, My, is computed analogously, with the
respective velocity field v. Finally the shear frequency is given by

M =
√
M2

x +M2
y . (3.27)

The temporal averaging in (3.26), proposed by Burchard (2002b), guarantees
that the (Reynolds averaged) kinetic energy is transformed to turbulent kinetic
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energy in a conservative manner, which improves the numerical stability of the
TKE computation.

The above formulation for computing N and M is derived for first order
Lagrangian DG basis functions, but it similar formulae can be derived for other
(e.g. higher order or continuous) function spaces as well.

3.4.3 Advection of k and Ψ

The equations (3.5) and (3.9) contain advection terms for k and Ψ, respectively.
These terms are not included in the 1D vertical turbulence closure model that
deals only with turbulent processes. Therefore k and Ψ are advected in the
3D model as a passive tracer using the same Adams-Bashforth scheme as for
T and S.

For stability it is crucial to ensure strict positivity of these variables which
may be challenging due to strong gradients. To avoid spurious extrema in these
fields, a slope limiter is used as for other tracers (see Chapter z4). Slightly
negative values (of the order of machine precision) may still appear, which are
clipped to a small positive value.

3.5 Numerical tests

In order to validate the presented coupling, a number of numerical tests were
conducted. All the tests were run on SLIM 3D coupled to GOTM.

In typical estuarine conditions the k–ε, k–ω and (improved) Mellor-Yamada
level 2.5 turbulence closures have proven to produce similar results (e.g. Warner
et al., 2005). In these tests a k–ε turbulence closure is used with the parameters
given in Table 3.1.

3.5.1 Bottom boundary layer

The 3D model’s ability to reproduce bottom boundary layer was assessed with
pressure gradient driven free flow. The fluid is initially at rest, forced only
by a constant free surface slope. In the absence of rotation, the flow velocity
near the bottom boundary follows the usual logarithmic profile, which can be
expressed as (e.g. Hanert et al. (2007))

u(z) =
ub∗
κ

log

(
zb0 + z + h

zb0

)
, (3.28)

where ub∗ is the bottom friction velocity and κ is the von Karman constant.
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In accordance with (3.28), the conventional quadratic friction law is im-
posed at the bottom:

ν
∂u

∂z
= cd|ub|ub, (3.29)

cd =


 κ

log(
zb+h+zb0

zb0
))




2

, (3.30)

where cd is the drag coefficient, zb is the vertical coordinate at the middle of
the bottom most element and ub = u(zb). Using (3.28) and (3.30), the bottom
friction velocity is obtained as ub∗ =

√
cdub.
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Figure 3.2: Steady-state velocity profile for the bottom boundary layer test.
Solid line, SLIM+GOTM; Dashed line, GOTM; Dash-dotted line,
SLIM+GOTM with FE gradients.

Pressure gradient driven free flow was simulated in a 10 km by 10 km square
domain in horizontal, 15 m deep, with 30 cm vertical resolution. Throughout
the simulation the free surface slope was fixed to −10−5 in x direction. Bottom
roughness length was zb0 = 1.5 mm. The simulation was run for 24 h until it
reached a steady state, i.e. a balance between pressure gradient force and
friction. The shear frequency was computed either with finite differencing
according to (3.24) or by means of the FE basis functions (3.19). For reference,
the same simulation was performed with 1D GOTM alone using its FD mean
flow module 3.

The steady state vertical velocity profile is presented in Figure 3.2. SLIM+GOTM
produce very similar profile to GOTM when the FD gradients are used. With
the FE gradients, on the other hand, the flow velocity is overestimated in the
upper part of the water column.

3 Since the flow is horizontally homogeneous, a 1D vertical model and a 3D model
produce comparable results. As a 3D FE model (in contrast to common FD models) cannot
be reduced to a 1D vertical model, we are using full SLIM 3D here.
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Figure 3.3: Profiles of turbulent kinetic energy (top), TKE dissipation rate (middle)
and eddy viscosity (bottom). Solid line, SLIM+GOTM; Dashed line,
GOTM; Dash-dotted line, SLIM+GOTM with FE gradients.
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Figure 3.4: Vertical shear frequency at the lower part of the water column computed
with the FD gradients (solid line) and the FE gradients (dash-dotted
line) for the same velocity profile. Here the velocity profile obtained
with SLIM+GOTM and FD gradients (solid line in Figure 3.2) is used.

Vertical profiles of turbulent kinetic energy, dissipation rate and turbu-
lent viscosity are presented in Figure 3.3. The TKE profile obtained with
SLIM+GOTM corresponds very closely to that of GOTM, except at the bot-
tom boundary where TKE is higher. It is seen that the deviation is much
larger in the case of FE gradients.

Based on these results, the numerical method for computing vertical gradi-
ents has a significant impact on the simulated turbulence. Figure 3.4 compares
the vertical shear frequency M computed with both FD and FE gradients for
the same velocity profile. It is seen that FE gradients produce higher M near
the bottom, but the difference is confined only to the two bottom most ele-
ments. In the central part of the water column, where the velocity profile is
smoother, the two methods are in good agreement.

Because P = νM2 appears as a source term for both the k and ε equations,
overestimation of M explains the high values of TKE and ε near the bottom
seen in Figure 3.3. In the central part of the water column, TKE is almost
unaffected, but ε is still slightly overestimated by roughly 1% (not shown),
which results in smaller eddy viscosity (bottom panel in Figure 3.3), and higher
flow velocity (Figure 3.2).

Due to the fact that FD gradients also overestimate the bottom TKE
slightly, it is plausible that M is somewhat overestimated in this case as well,
but resulting difference in the mixing is much smaller.

3.5.2 Wind-driven entrainment

The next test examines mixed layer deepening due to surface stress, based on
the laboratory experiment originally conducted by Kato and Phillips (1969).
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Initially the fluid is motionless and linearly stratified. A constant surface
stress is applied at the surface. As a consequence, a mixed layer is formed at
the surface, growing deeper in time. Price (1979) suggested a formula for the
evolution of the mixed layer depth:

dML = 1.05us∗

√
t

N0

. (3.31)

Here the surface friction velocity is taken as a constant us∗ = 0.01 m s−1 while
the initial Brunt-Väisälä frequency is N0 = 0.01 s−1 following Deleersnijder
and Luyten (1994) and Burchard et al. (1998), among others. In practice N0

is prescribed by imposing a suitable vertical density gradient.
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Figure 3.5: Mixed layer depth versus time for the Kato-Phillips test with 1 m (top)
and 20 cm (bottom) vertical resolution. Solid line, SLIM+GOTM;
Dashed line, GOTM. Dotted line, the solution by Price (3.31); Dash-
dotted line, SLIM+GOTM with FE gradients.
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Figure 3.6: Turbulent viscosity with 20cm vertical resolution. Solid line,
SLIM+GOTM; Dashed line, GOTM. Results obtained with the FE gra-
dients are omitted.

The mixed layer entrainment was simulated in a 50 m deep water column
for 30 h. Two vertical resolutions were investigated, namely 1 m and 20 cm.
Again, the vertical gradients were computed either with the FD (3.24) or the
FE formulation (3.19).

Previously it has been concluded that the model’s capability to predict the
mixed layer deepening depends more on the choice of the stability functions
rather that the two-equation model itself (Deleersnijder and Luyten (1994),
Burchard and Deleersnijder (2001), Umlauf et al. (2003), Deleersnijder et al.
(2008)). As stated above, we are using the stability functions by Canuto et al.
(2001), that have proved out to perform well in this test case.

Evolution of the mixed layer depth, defined as deepest point where k >
10−5 m2 s−2, is shown in Figure 3.5 for the two resolutions. The results obtained
by SLIM+GOTM (using the FD gradients) are very close to those by GOTM,
and both agree well with the formula by Price (3.31). For a coarser resolution,
the mixed layer depth oscillates as mixing penetrates new cells. This is in line
with other results, such as in Burchard and Deleersnijder (2001). Turbulent
viscosity profile after 30 h of simulation is shown in Figure 3.6. The profiles
are also very similar, SLIM+GOTM appears to produce marginally larger
maximum viscosity.

Using the FE gradients, on the other hand, cause spurious behaviour: the
mixed layer depth, defined as the deepest point with significant TKE, oscillates
with time. This is due to the fact that the N and M fields are noisy, which
occasionally triggers the turbulence model to produce high eddy viscosity at
certain nodes, thus mixing the water column in a non-homogeneous manner.
Due to these defects, only the more robust FD formulation (3.24) is considered
in the next 3D test case.
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3.5.3 Idealised estuarine circulation

The idealised estuarine scenario proposed by Warner et al. (2005) is used here
to verify the behaviour of the turbulence model in a full three-dimensional
setting.

Parameter Symbol Value

Domain dimensions Dx, Dy 100 km, 2 km
Mesh lenght scale Lxy 1 km
Vertical layers nσ 20
Bathymetry (river) hR 5 m
Bathymetry (sea) hS 10 m
Salinity (river) SR 0 PSU
Salinity (sea) SS 30 PSU
Temperature T0 10 ◦C
Tidal period τ 12 h
Residual velocity Ū0 -0.08 m s−1

Tidal velocity Ūτ 0.4 sin(2πt
τ

) m s−1

Depth av. velocity ūR
Ū0hR
ηR + hR

m s−1

Depth av. velocity ūS
Ū0hS + ŪτhR
ηS + hS

m s−1

Bottom roughness zb0 0.005 m

Table 3.3: Parameters of the estuary simulation. The subscripts R and S stand for
river and sea boundary, respectively. Ū0 and Ūτ are the depth averaged
residual and tidal velocity, respectively, assuming static water depth (hR
and hS). At the boundaries, ūR and ūS are prescribed to account for
the free surface movement and guarantee constant water volume over
a tidal period. Symmetry boundary conditions are used for the three-
dimensional velocity. ηR and ηS are taken as the simulated values on the
respective boundary.

The domain is a rectangular basin 100 km long, whose depth varies linearly
from 10 m in the “ocean” end (x=0 km) to 5 m in the “river” end (x=100
km). In the cross-channel direction the domain is taken to be 2 km in width
with impermeable lateral boundaries. The domain is discretised with 1 km
horizontal resolution and 20 sigma layers in the vertical, resulting in 0.25 m
to 0.50 m vertical resolution. The mesh is illustrated in Figure 3.7 and all the
model parameters are presented in Table 3.3. A constant seaward freshwater
discharge is applied at the river boundary, while a sinusoidal tidal flow with 12
h period is prescribed at the ocean boundary. The Coriolis force is neglected.
Initially the salinity varies linearly from 30 PSU to 0 PSU between 30 km and
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Figure 3.7: Estuary simulation: 3D Mesh. Horizontal edge length is roughly 1 km.
The mesh consist of 396 surface triangles and 7920 prisms.

80 km along the channel (Figure 3.8). At the ocean boundary the salinity is
prescribed to 30 PSU during inflow.

During the simulation, an estuarine circulation quickly develops, driving
the saline water under the fresh water. The forming salt wedge oscillates with
the tide. The flow stabilises and becomes nearly periodic after roughly 5 days
of simulation, when only a small seaward salt flux persists. Warner et al.
(2005) designed this test case to compare different turbulence closure mod-
els. Indeed, the salinity distribution is largely controlled by vertical mixing,
therefore providing a useful benchmark for the SLIM+GOTM coupling.

In this simulation, the 1D turbulence closure models are placed at the cen-
troids of the triangles, as mentioned in Section 3.4.1. This provides horizontal
smoothing of the input fields which improves the stability of the simulation4.
Similar horizontal filtering is also used in FD models (e.g. Burchard and Bold-
ing, 2002). Furthermore, similarly to Warner et al. (2005), the turbulent length
scale l is limited from above following Galperin et al. (1988), which also reduces
noise in the turbulent quantities.

Figure 3.8 shows the salt distribution at the end of flood phase, after 16
days of simulation. The salt intrusion is similar to the results by Warner et al.
(2005) (Figure 3.9), where the 0 PSU contour line is located around 60 km.
With the presented model, the same contour line is somewhat further at 72
km. The surface mixed layer is confined in the first couple of metres of the
water column, as in Warner et al. (2005).

Figure 3.10 presents vertical profiles taken at x=30 km after 14.40 days of
simulation (corresponding to a typical flood tide). Qualitatively these profiles
are similar to those presented in Warner et al. (2005) (Figure 3.11). The
salinity profile predicted by SLIM+GOTM is identical, roughly 20 PSU in
magnitude. The turbulent length scale is roughly 30% smaller. Turbulent

4 Note that applying such a filter would have no effect in the two previous test cases
where the flow was homogeneous in the horizontal direction.
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Figure 3.8: Estuary simulation: Top: Initial salinity distribution. Bottom: Salinity
after 16 days of simulation, obtained with a k–ε model.

Figure 3.9: Estuary simulation: Salinity distribution from Warner et al. (2005) (Fig-
ure 7 in their manuscript), obtained with different turbulence closure
models.
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eddy viscosity is also underestimated, the maximum value is 0.011 m2s−1 versus
nearly 0.02 m2s−1.

Taking into account that the turbulent quantities are very sensitive to
the characteristics of the flow and details of the turbulence closure, one can
conclude that the coupled SLIM+GOTM model produces the expected flow
features with good accuracy. In addition to differences in the turbulence clo-
sure models, also other aspects, such as the boundary conditions or numerical
mixing (Burchard and Rennau, 2008; Rennau and Burchard, 2009) may have
a significant impact on the distribution of salinity and turbulent quantities.
As Warner et al. (2005) used a structured grid FD model, model-dependent
features are likely to play a role. However, assessing such differences is out of
the scope of the current article.
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3.6 Conclusions

Implementing turbulence closure models in a discontinuous Galerkin frame-
work is not often addressed in the literature. We have presented an online
coupling between a 3D DG-FE marine model and a FD 1D vertical turbu-
lence model, which exploits the vertically orientated topology of the 3D mesh.
We demonstrate that such a coupling is not trivial due to the different mesh
topology and the discontinuous functional representation of fields.

Ensuring stability of the turbulence closure model is an essential part of
the presented methodology. Stability is achieved by suitable data processing,
i.e. computing the vertical gradients more reliably at the element interfaces
by taking into account all the nodal values in the elements above and below.
Further, in horizontal direction the 1D vertical turbulence models are placed
at the centre of each column of prisms, which provides horizontal filtering of
the input data.

The coupling has been validated with several test cases. Bottom boundary
layer is produced accurately, TKE and viscosity profiles are close to those
produced by GOTM. The mixed layer deepening in the Kato-Phillips test
case is also correctly predicted. Finally the 3D implementation is validated in
an idealised estuary simulation where the results are well in line with those
presented in Warner et al. (2005).
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Figure 3.10: Estuary simulation: Vertical profiles after 14.4 days of simulation at
x = 30 km. a) salinity, b) turbulent kinetic energy, c) TKE dissipation
rate, d) turbulent length scale, e) eddy diffusivity.

Figure 3.11: Estuary simulation: Vertical profiles from Warner et al. (2005) (Fig-
ure 9 in their manuscript), obtained with different turbulence closure
models.
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marine model

This Chapter reproduces an updated version of the following paper, first
submitted in March 26 2012:

T. Kärnä, V. Legat, and E. Deleersnijder. Baroclinic discontinuous
Galerkin finite element model for coastal flows. Ocean modelling, sub-
mitted.

Abstract

Numerical modelling of coastal flows is a challenging topic due to
complex topography of the coastal zone, rapid flow dynamics and large
density variations. Such phenomena are best simulated with unstruc-
tured grid models due to their highly flexible spatial discretisation. This
article presents a three-dimensional discontinuous Galerkin finite ele-
ment marine model. The spatial discretisation and explicit mode split-
ting time integration scheme are described. Free surface movement is
accounted for by means of an arbitrary Lagrangian Eulerian (ALE)
moving mesh method. Mass and volume are conserved. The conserva-
tion properties and baroclinic adjustment under gravity are tested with
numerical benchmarks. Finally, the model is applied to the Rhine river
plume in an idealised setting.
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4.1 Introduction

Although there has been interest in regional and coastal marine modelling
for decades, simulating coastal flows and complete river-estuary-plume-shelf
systems still poses several challenges. In coastal domains it is crucial to capture
the complicated topographical and bathymetric features, which favours highly
flexible unstructured mesh models. Coastal areas often feature relatively rapid
currents as the flow (e.g. tides) tends to amplify in shallow seas and funnel-
like embayments. Due to riverine freshwater input, coastal flows are often
significantly impacted by buoyancy and feature strong density gradients in
estuaries and river plumes. Strong density gradients and rapid dynamics often
lead to numerical stability issues that do not appear in deep ocean applications.
Excessive numerical diffusion, inherent to some types of models, may smear
out fronts and thus prevent models from capturing essential features of the
flow (Hetland, 2005; Baptista et al., 2005; Burchard and Rennau, 2008). As
the water density is governed by temperature and salinity, the quality of these
fields has an impact on both accuracy and stability, stressing the importance
of monotonous tracer advection schemes. In long term simulations strict tracer
mass and water volume conservation is also important, yet not always satisfied.

The most commonly used marine models rely on structured grids (MITgcm,
Marshall et al. 2004; ROMS, Shchepetkin and McWilliams 2005; POM, Mellor
2004; MOM, Griffies 2010; GETM, Burchard and Bolding 2002; TRIM, Casulli
and Cheng 1992). Consequently the disadvantage of these models is the lack of
flexibility in the computational grid and poor representation of the coastline.
Embedded grids (Debreu and Blayo, 2008; Warner et al., 2010), curvilinear
coordinates (Blumberg and Mellor, 1999) and composite grids (Warner et al.,
2010) can be used to improve the quality of the spatial discretisation, but it
is unclear whether such approaches can be used in highly complex domains
(e.g. tidal river networks, de Brye et al. 2010, or the Great Barrier Reef,
Lambrechts et al. 2008b). Some structured grid models have been extended
to unstructured grids by imposing orthogonality between the cells, e.g. TRIM
and UnTRIM (Casulli and Walters, 2000) model classes. However, satisfying
the orthogonality criterion in practical applications is very difficult, hindering
the accuracy of such models (Zhang and Baptista, 2008).

Unstructured mesh models are usually based on finite volume (FV) (FV-
COM, Chen et al. 2006; UnTRIM) or finite element (FE) (FESOM, Wang
2007; ICOM; SELFE, Zhang and Baptista 2008) method. Although some of
these models are already widely used, unstructured mesh models generally are
not as mature as structured grid ones. For example, finding an optimal spatial
discretisation in terms of numerical stability, control of spurious modes, low
numerical dissipation and computational efficiency still remains a challenge.

In this article we present a discontinuous Galerkin finite element (DG-
FE) marine model and its application to baroclinic coastal flows. In general
DG-FE can be seen as a hybrid formulation between FV and continuous FE
formulations. In contrast to continuous FE , the DG method is well suited for
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solving advection dominated problems, but requires stabilisation for diffusion
terms (Arnold et al., 2002). As the equations are solved element-by-element,
DG methods are locally conservative by construction. Generally DG methods
are also less diffusive than finite difference (FD) or FV models, especially with
high order discretisations. Furthermore, completely discontinuous elements of-
fer some attractive numerical properties, such as straightforward parallelisation
of explicit schemes and extension to hp-adaptivity (Cockburn, 2003). Mono-
tonic advection schemes can be achieved by means of slope limiters (Cockburn,
2003; Kuzmin, 2010; Aizinger, 2011).

Existing marine models use various time integration methods. The widely
used mode splitting technique (e.g. Griffies (2004)) relies on solving the fast
propagating surface gravity waves in a depth averaged 2D framework, coupled
to the slower 3D dynamics. In split-explicit schemes the 2D mode is treated ex-
plicitly with a high temporal resolution (Killworth et al., 1991). Split-implicit
schemes (e.g. Dukowicz and Smith, 1994), on the other hand, solve the 2D
mode implicitly and the same time step is used for both the 2D and the 3D
mode. Mode splitting always introduces some discrepancy. Alternatively there
exists semi-implicit models without mode splitting (TRIM, UnTRIM, SELFE).
Some of these models, however, do not conserve volume or lack proper repre-
sentation of the non-linear free surface dynamics. In this work, we rely on the
split-explicit approach (Shchepetkin and McWilliams, 2005), which has shown
to be robust in practice, and can be parallelised efficiently.

To correctly account for the free surface movement, the 3D mesh has to
move in the vertical direction to match the instantaneous surface position.
Here, an arbitrary Lagrangian Eulerian (ALE) formulation is used to repre-
sent the mesh movement. This formulation results in a generic framework,
where volume and tracer mass conservation is guaranteed for any type of ver-
tical mesh. In this work, a terrain following σ-coordinate-like mesh is used.
Another important property is the consistency between discrete tracer and
continuity equations, which ensures that an uniform tracer field is preserved
(White et al., 2008a). This consistency criterion is sometimes referred to as
constancy preserving property (Shchepetkin and McWilliams, 2005).

The article is organised as follows. Mathematical notation and the primitive
equations are presented in Section 4.2. In the next section the ALE formulation
and moving mesh algorithm are described. Section 4.4 presents the DG-FE
discretisation. A matrix form of the discrete equations is given in Section 4.5.
The time integration scheme is presented in Section 4.6. Finally Section 4.7
presents numerical results on conservation properties, gravitational adjustment
flow and an application to a river plume simulation.
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4.2 Governing equations

4.2.1 Domain

The three-dimensional computational domain is denoted by Ω. The position
vector in Cartesian coordinates is x = [x, y, z], and the associated velocity
components are u, v and w. The horizontal velocity vector is denoted by
u = [u, v, 0]. The domain is delimited by the bottom boundary Γb defined
by the bathymetry z = −h, the closed lateral boundary Γc, open horizontal
boundary Γo and the time dependent free surface Γs corresponding to the free
surface height z = η. Due to the free surface movement, Ω is time dependent
(Figure 4.1).

For the mathematical formulation it is convenient to define a time-independent
reference domain Ω0 that corresponds to η = 0. Coordinates associated with
the reference domain are denoted by ξ = [x, y, z0]. The reference sea surface of
Ω0 is denoted by Γs,0 and the coordinates restricted on Γs,0 are xh = [x, y, 0].

Figure 4.1: Possible configuration of the computational domain Ω at some time t.
The reference surface Γs,0, marked with a dashed line, corresponds to
η = 0.

Traditionally the bathymetric features and free surface movement has been
taken into account by introducing specific vertical coordinate systems, such
as terrain following σ-coordinates (e.g. POM, Blumberg and Mellor, 1999)
or isopycnal coordinates (e.g. Bleck and Smith, 1990). In equipotential z-
coordinate models, the grid displacement is usually restricted to the top most
cells. As each vertical coordinate system has its advantages and disadvan-
tages, generalised coordinate transformations have been introduced (e.g Kasa-
hara, 1974). Currently hybrid vertical coordinates are widely used (Song and
Haidvogel, 1994; Pietrzak et al., 2002), including dynamically adaptive vertical
grids (e.g. Hofmeister et al., 2010).

Here, a generic Arbitrary Lagrangian Eulerian (ALE, Donea et al., 2004)
formulation is adopted to facilitate the movement of the grid. In contrast to
the aforementioned vertical coordinate systems, the equations are solved in the
Cartesian (x, y, z) coordinates, and the grid deformation is taken into account



4.2. Governing equations 75

by introducing a mesh velocity in the equations. Below the primitive equations
are presented without the mesh velocity (i.e. for static domain), while the ALE
formulation is described later in Section 4.3.

4.2.2 Momentum equation

In this work the 3D hydrostatic Boussinesq equations are considered. The
horizontal momentum equation reads

∂u

∂t
+ ∇h · (uu) +

∂ (wu)

∂z
+ fez ∧ u+

1

ρ0

∇hp

= ∇h · (νh∇hu) +
∂

∂z

(
ν
∂u

∂z

)
,

(4.1)

where ∇h is the horizontal gradient operator, f the Coriolis factor, ez is ver-
tical unit vector, p is the pressure and νh and ν are the horizontal and vertical
diffusivity, respectively.

Under the hydrostatic assumption the vertical momentum equation reduces
to

∂p

∂z
= −gρ, (4.2)

where g is the gravitational acceleration.
The water density ρ is computed by means of an equation of state (Jackett

et al., 2006) as a function of the temperature, salinity and pressure. It is
expressed as a sum of a constant reference density ρ0 and a deviation ρ′ � ρ0:

ρ = ρ0 + ρ′, (4.3)

Integrating (4.2) from η to z results in

p = gρ0(η − z) + g

∫ η

z

ρ′dζ + pa,

where pa is the atmospheric pressure acting on the sea surface. Defining the
baroclinic head as

r =
1

ρ0

∫ η

z

ρ′dζ, (4.4)

the pressure gradient term appearing in (4.1) can be written as

1

ρ0

∇hp = g∇hη + g∇hr +
1

ρ0

∇hpa. (4.5)

In this article the effect of the atmospheric pressure is omitted as it is irrelevant
for the presented applications.



76 Baroclinic three-dimensional marine model

4.2.3 Continuity and free surface equations

The continuity equation is given by

∇h · u+
∂w

∂z
= 0, (4.6)

from which the vertical velocity w is computed.
Integrating the continuity equation over the water column and taking into

account the impermeability boundary conditions (defined later) on Γb and Γs,
one obtains the free surface equation,

∂η

∂t
+ ∇h ·

∫ η

−h
udz = 0. (4.7)

4.2.4 Tracer equations

The evolution of temperature T and salinity S are simulated with an advection-
diffusion equation. Denoting the horizontal and vertical diffusivity by µh and
µ, respectively, the equations read

∂T

∂t
+ ∇h · (uT ) +

∂ (wT )

∂z
= ∇h · (µh∇hT ) +

∂

∂z

(
µ
∂T

∂z

)
, (4.8)

∂S

∂t
+ ∇h · (uS) +

∂ (wS)

∂z
= ∇h · (µh∇hS) +

∂

∂z

(
µ
∂S

∂z

)
. (4.9)

4.2.5 Turbulence model

To close the aforementioned set of equations, the vertical eddy viscosity ν and
diffusivity µ must be determined in terms of the flow state. In this work, the
k−ε turbulence closure model (Rodi, 1987) is used with the stability functions
of Canuto et al. (2001) (Model A). The evolution of turbulent quantities is
solved with GOTM1 (General Ocean Turbulence Model, Burchard et al., 1999)
turbulence model library that has been coupled to the present finite element
model (Kärnä et al., 2012).

4.2.6 Boundary conditions

On the surface and bottom boundaries the conventional impermeability bound-
ary conditions are prescribed

w + u ·∇hh = 0, x ∈ Γb (4.10)

w − ∂η

∂t
− u ·∇hη = 0, x ∈ Γs. (4.11)

1www.gotm.net
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Further, a slip condition is enforced to take into account the bottom and
surface stresses,

ν
∂u

∂z
=
τb
ρ0

, x ∈ Γb (4.12)

ν
∂u

∂z
=
τs
ρ0

, x ∈ Γs. (4.13)

The bottom stress is given by

τb
ρ0

= Cd‖ubf‖ubf, (4.14)

Cd =

[
κ

ln((zbf + h)/δ0)

]2

,

ubf = u(x, y, zbf),

where κ is the von Karman constant, δ0 is the bottom roughness length and
zbf denotes the vertical coordinate where the bottom velocity ubf is defined.

On the closed lateral boundaries Γc, assumed to be strictly vertical, imper-
meability is imposed

u · nh = 0, (4.15)

where nh = [nx, ny, 0] is the horizontal unit normal vector.

4.2.7 Depth averaged equations

For computational efficiency, the fast propagating surface gravity waves are
simulated with two-dimensional depth averaged equations. Introducing the
depth averaged horizontal velocity ū and the decomposition u = ū+ ũ, equa-
tion (4.7) can equivalently be written as

∂η

∂t
+ ∇h · (Hū) = 0, (4.16)

where H = η + h is the total depth.
Depth averaging (4.1), the momentum equation becomes (see e.g. (White

et al., 2008b))

∂ū

∂t
+ ū ·∇hū+ fez ∧ ū

+g∇hη + g
1

H

∫ η

−h
∇hrdz = ĀH + D̄H +

τb + τs
ρ0H

,
(4.17)

with

D̄H =
1

H

∫ η

−h
∇h · (νh∇hu)dz

ĀH = − 1

H

∂

∂x

∫ η

−h
ũũdz − 1

H

∂

∂y

∫ η

−h
ṽũdz.
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Above ĀH represents the advection of ũ, while D̄H stands for the horizontal
viscosity of momentum. For the sake of simplicity the latter is parametrised
by the conventional two-dimensional diffusion operator

D̄H =
1

H
∇h · (Hνh∇hū). (4.18)

This parametrisation is justified given the small contribution and large relative
uncertainty of the viscosity term. Moreover, this form is purely dissipative,
which is not necessarily the case for the exact operator in (4.17).

4.3 ALE formulation

The 3D mesh adapts to the instantaneous position of the free surface. Con-
sequently, the top boundary Γs will coincide to the z = η surface while the
bottom Γb remains static. Following Farhat et al. (2001) and White et al.
(2008a), we define a mapping from the static domain Ω0 to the time depen-
dent domain Ω:

x = x(ξ, t) = [x, y, z(x, y, z0, t)].

The mapping is assumed to be invertible with the Jacobian J = ∂x
/
∂ξ and

J = det(J) = ∂z
/
∂z0 > 0.

The primitive equations are expressed in such a way that they can be solved
in the moving domain Ω, given the instantaneous domain (or mesh) velocity

wm =
∂z

∂t

∣∣∣
ξ
.

The conservative ALE formulation of the tracer equation (4.8) reads (For-
maggia and Nobile, 2004)

1

J

∂(JT )

∂t

∣∣∣
ξ

+ ∇h · (uT ) +
∂ ((w − wm)T )

∂z
= DH , (4.19)

where DH denotes the right hand side of (4.8).
Consequently, the conservative ALE formulation implies a change in the

time derivative and modification in the vertical advective velocity. As the time
derivative is taken with respect to the static coordinates ξ, this formulation is
useful in the FE method. Taking an arbitrary test function ϕ, and noting that
Jdξ = dx, the weak formulation of the time derivative can be expressed as

∫

Ω

1

J

∂(JT )

∂t

∣∣∣
ξ
ϕdx =

d

dt

(∫

Ω

Tϕdx

) ∣∣∣
ξ
.

This approach is applied to all the 3D prognostic variables (T, S, u and v).
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Alternatively, using a non-conservative ALE form, the tracer equation
reads

∂T

∂t

∣∣∣
ξ

+ T
∂wm
∂z

+ ∇h · (uT ) +
∂ ((w − wm)T )

∂z
= DH , (4.20)

where the additional second term accounts for the volumetric change. A nu-
merical scheme based on this formulation does not conserve mass, but can be
used in cases where ∂T

/
∂t is computed in a static geometry.

4.3.1 Moving mesh algorithm

In this work a σ-coordinate-like moving mesh algorithm is adopted, which
distributes the vertical perturbation linearly over the water column. The pre-
sented methodology can be easily generalised for other grid types as well.
Using the vertical coordinates z0 ∈ [−h, 0] of the static domain Ω0, the time
dependent vertical coordinates are then obtained as

z = z0 + η
z0 + h

h
(4.21)

implying z ∈ [−h, η] and J = (η + h)/h. The vertical mesh velocity wm can
be deduced from the impermeability boundary conditions. At the surface,
wm = ∂η

/
∂t which can be computed as

wm
∣∣
Γs

= w −∇hη · u. (4.22)

At the bottom wm = 0 because Γb is static. In the interior wm then becomes:

wm = wm
∣∣
Γs

z0 + h

h
, ξ ∈ Ω0. (4.23)

Expressing wm in the time dependent coordinates yields

wm = wm
∣∣
Γs

z + h

η + h
, x ∈ Ω. (4.24)

The non conservative ALE formulation also requires ∂wm/∂z which is given
by

∂wm
∂z

= wm
∣∣
Γs

1

η + h
, x ∈ Ω. (4.25)

4.4 Finite element discretisation

4.4.1 Function spaces

The sea surface Γs,0 is divided into a set of triangles T . A piecewise discon-
tinuous polynomial function space W is defined on T so that each function
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in W is a linear polynomial inside the triangles Q ∈ T , and discontinuous on
the interfaces e = Q ∩ Q′. The space W is defined by means of Lagrangian
basis functions ϕi : R2 → R, i = 1, . . . , NT , where NT is the total number of
nodes in the triangulation T . The basis functions ϕi are non-zero in exactly
one element and attain unity only in a single node xh,i = [xi, yi, 0], being zero
in all the others, ϕi(xh,j) = 0, ∀i 6= j.

The triangular surface mesh is extruded in vertical direction towards the
bottom Γb resulting in columns of triangular prisms. Each column is further
divided equally into Nσ prisms, thus forming a terrain following grid similar
to conventional σ-coordinates2.

The set of NP prisms is denoted by P . A piecewise polynomial function
space V is defined on P by a set of Lagrangian basis functions ψi : R3 → R.
Each ψi is a linear polynomial both in the horizontal (x, y) and vertical (z)
direction, and non-zero only in a single prism K. Also here the Lagrangian
property holds on the nodes xi, i = 1, . . . , NP : ψi(xi) = 1, ψi(xj) = 0, ∀ i 6= j.

In the present DG discretisation all the scalar fields (including u and v)
belong to the same function space V (in the 3D mesh) or W (in the 2D mesh).
Therefore all the fields share the same basis functions and same nodes. In
this article first order basis functions are used, where the nodes correspond to
the vertices of the prisms (in 3D) or triangles (in 2D). Consequently there are
6 degrees of freedom associated to each prism (3 for each triangle), which is
substantially more than in a continuous Galerkin discretisation.

4.4.2 Interfaces

In the set of prisms, all interfaces associated to an element K ∈ P are defined
as

I(K) := {K ∩K ′|K ′ ∈ P}. (4.26)

For each interface I ∈ I(K), the unit normal vector is n = [nx, ny, nz] chosen
to point from K to K ′. The lateral and horizontal interfaces, respectively, are
denoted by

Ilat(K) := {K ∩K ′|K ′ ∈ P ,n · ez = 0}, (4.27)

Ih(K) := {K ∩K ′|K ′ ∈ P ,n · ez 6= 0}. (4.28)

In the case of a prismatic mesh, Ilat(K) correspond to the vertical quadri-
lateral faces, and Ih(K) to the top/bottom triangles of a prism K (Figure 4.2).
It is noteworthy that Ilat(K) are always vertical, but due to the movement,
Ih(K) are not strictly horizontal (i.e. nx and ny are not necessarily zero).

On the triangulation T the interfaces are defined similarly,

J (Q) := {Q ∩Q′|Q′ ∈ T }. (4.29)

2Note that the equations are still solved in Cartesian coordinates, in contrast to σ-
coordinate models.
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Figure 4.2: Interfaces for triangular surface mesh (left) and prismatic 3D mesh
(right).

On an interface, all variables have two different values associated to the
elements K and K ′. In DG method it is essential to compute the interface
fluxes carefully in order to ensure numerical stability of the scheme. Possible
methods include (approximate) Riemann solvers for advective fluxes (Toro,
2009) and interior penalty methods for diffusive fluxes (Arnold et al., 2002).
Denoting the variables on the “left” (corresponding to K) by subscript L
and on the “right” (corresponding to K ′) by subscript R, arithmetic mean,
difference and maximum operators are then defined as

{•} =
•L + •R

2
,

[[•]] =
•L − •R

2
,

d•e = max(•L, •R),

respectively. This notation is used for both 2D and 3D elements.
In the derivation of the weak form, the following shorthand notation is used

for spatial integrals (dA and dS denote the infinitesimal area and line elements
on I and J , respectively):

〈
•
〉
K

=

∫

K

•dx, K ∈ P
〈〈
•
〉〉
I

=

∫

I
•dA, I ∈ I(K)

〈〈
•
〉〉
Q

=

∫

Q

•dxh, Q ∈ T
〈〈〈
•
〉〉〉
J

=

∫

J
•dS, J ∈ J (Q)

In practice, the integrals are evaluated with numerical quadrature rules. In
2D, a Hammer quadrature (Solin et al., 2003) of order 2o + 1 is used on the
triangles. In 3D, a combination of 2o + 1 order Hammer quadrature (in the
horizontal) and Gauss-Legendre quadrature (in the vertical direction) is used.
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4.4.3 Depth averaged equations

The weak (or variational) formulation for the depth averaged equations is
obtained by multiplying (4.16) by a test function ϕ ∈ W and (4.17) by ϕ ∈
W ×W and integrating over Γs,0. As the basis functions are non-zero only
within a single element, the weak formulation can be written separately for
each element Q ∈ T .

〈〈∂η
∂t
ϕ
〉〉
Q

+
〈〈
∇h · ((η + h)ū)ϕ

〉〉
Q︸ ︷︷ ︸

Eu

= 0, (4.30)

〈〈∂ū
∂t
·ϕ
〉〉
Q

+
〈〈
ū ·∇hū ·ϕ

〉〉
Q︸ ︷︷ ︸

Ūu

+
〈〈
fez ∧ ū ·ϕ

〉〉
Q

+
〈〈
g∇hη ·ϕ

〉〉
Q︸ ︷︷ ︸

Ūη

+
〈〈
g

1

H

∫ η

−h
∇hr ·ϕ

〉〉
Q

=
〈〈
ĀH ·ϕ

〉〉
Q

+
〈〈 1

H
∇h · (Hνh∇hū) ·ϕ

〉〉
Q︸ ︷︷ ︸

Ūhν

+
〈〈 τb
ρ0H

·ϕ
〉〉
Q

+
〈〈 τs
ρ0H

·ϕ
〉〉
Q
.

(4.31)

Note that these equations are purely local in Q, as there is no dependency
on the neighbouring elements Q′. Inter-element fluxes arise when the under-
braced terms are replaced by the following terms, obtained by integrating by
parts:

Divergence of Hū:

Eu = −
〈〈

(η + h)ū ·∇hϕ
〉〉
Q

+
∑

J (Q)

〈〈〈
(η∗ + h)(ū∗ · nh)ϕ

〉〉〉
J

(4.32)

Horizontal advection of momentum:

Ūu = −
〈〈
∇h · (ūϕ) · ū

〉〉
Q

+
∑

J (Q)

〈〈〈
(ū∗ · nh)ū∗ ·ϕ

〉〉〉
J

(4.33)

External pressure gradient:

Ūη = −
〈〈
gη∇h ·ϕ

〉〉
Q

+
∑

J (Q)

〈〈〈
gη∗ϕ · nh

〉〉〉
J

(4.34)
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Diffusion of momentum3:

Ūhν = −
〈〈
νh(∇hū) : (∇hϕ)T

〉〉
Q

+
〈〈
νh

1

H
(∇hH) · (∇hū) ·ϕ

〉〉
Q

+
∑

J (Q)

〈〈〈
(νh∇hū)∗ · nh ·ϕ

〉〉〉
J

(4.35)

In the interface terms of (4.32)-(4.35), the variables marked with an asterisk
are unknown, and must be deduced from the state variables on both sides of
the interface. The variables η∗ and ū∗ are related to the propagation of surface
gravity waves and are solved with an approximate Riemann solver described
below. The flux (νh∇hū)∗, on the other hand, is related to the horizontal
diffusion operator, described in Section 4.4.3.

Riemann solver for surface gravity waves

A Riemann problem consist of solving a hyperbolic conservation law subject to
a discontinuous initial condition. Therefore Riemann solvers (Toro, 2009) are
a natural choice for computing the interface fluxes in FV and DG-FE methods.

If advection of momentum is negligible and η � h, surface gravity waves
can be modelled with the linear shallow water equations:

∂η

∂t
+ ∇h(hū) = 0,

∂ū

∂t
+ g∇hη = 0

Denoting the wave celerity by c =
√
gh, the well-known Riemann solution

to these equations is (LeVeque, 2002; Comblen et al., 2010b)

η∗ = {η}+
h

c
[[ū]], (4.36)

ū∗ = {ū}+
c

h
[[η]]. (4.37)

Combined with the DG method, the jump operators on the right hand side
introduce sufficient dissipation to guarantee numerical stability.

If the advection is not negligible, a more complex non-linear Riemann solver
corresponding to the full shallow water equations should be used. In this work,
non-linear solver presented in Comblen et al. (2010b) is used for the 2D mode,
while the above linear solution is used in the 3D mode.

Interior penalty stabilisation

In DG-FE diffusion operators require additional stabilisation. In this work the
Incomplete Interior Penalty Method (IIPM, Rivière, 2008) is adopted. In IIPM

3The colon denotes the Frobenius inner product: A : B =
∑

i,j AijBij
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the interface flux is replaced by a mean flux {νh∇hū} and an additional penalty
term σνh[[ū]] is introduced, with the penalty factor defined as (Shahbazi, 2005)

σd =
(o+ 1)(o+ d)

d

N0

2Lmin
, (4.38)

where d stands for the dimension of the problem and N0 is the number of neigh-
bours of an element (N0 = 3 for triangles). Lmin approximates the effective
element length scale normal to the interface. In 2D, Lmin = min(|Q|, |Q′|)/|I|,
where |Q| is the element area and |I|, I = Q ∩Q′ the interface length .

Thus the whole diffusion operator of the 2D momentum equation (4.35)
becomes

Ūhν = −
〈〈
νh(∇hū) : (∇hϕ)T

〉〉
Q

+
〈〈
νh

1

H
(∇hH) · (∇hū) ·ϕ

〉〉
Q

+
∑

J (Q)

〈〈〈
{νh∇hū} · nh ·ϕ

〉〉〉
J

+
∑

J (Q)

〈〈〈
σ2dνhe[[ū]]

〉〉〉
J
.

(4.39)

4.4.4 Momentum equation

The weak formulation of the horizontal momentum equation is obtained by
multiplying (4.1) by a test function ψ ∈ V × V, integrating over the time
dependent domain Ω. Here the equations are developed for the conservative
ALE formulation (4.19) for brevity, as the non-conservative formulation (4.20)
leads to very similar equations. Element-wise weak formulation then reads:

d

dt

〈
u ·ψ

〉
K

+
〈
∇h · (uu) ·ψ

〉
K︸ ︷︷ ︸

Uu

+
〈∂ ((w − wm)u)

∂z
·ψ
〉
K︸ ︷︷ ︸

Uw

+
〈
fez ∧ u ·ψ

〉
K

+

〈
g∇hη ·ψ

〉
K︸ ︷︷ ︸

Uη

+
〈
g∇hr ·ψ

〉
K

=
〈
∇h · (νh∇hu) ·ψ

〉
K︸ ︷︷ ︸

Uhν

+
〈 ∂
∂z

(
ν
∂u

∂z

)
·ψ
〉
K︸ ︷︷ ︸

Uvν

.

(4.40)

For a complete DG weak formulation, underbraced terms are replaced by
the following terms. Horizontal advection

Uu = −
〈
∇hψ : uu

〉
K

+
∑

Ilat(K)

〈〈
ψ · u∗u∗ · nh

〉〉
Ilat

+
∑

Ih(K)

〈〈
ψ · uuw(ud · nh)

〉〉
Ih
,

(4.41)

vertical advection

Uw = −
〈

(w − wm)u · ∂ψ
∂z

〉
K

+
∑

Ih(K)

〈〈
(wd − wm)uuw ·ψnz

〉〉
Ih
, (4.42)
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and external pressure gradient

Uη = −
〈
gη∇h ·ψ

〉
K

+
∑

Ilat(K)

〈〈
gη∗ψ · nh

〉〉
Ilat

+
∑

Ih(K)

〈〈
gηψ · nh

〉〉
Ih
. (4.43)

In the Ih integrals ud, wd stand for values in the lower element, while uuw

refers to the conventional upwind value. Note that η and wm are unique on
Ih.

The horizontal diffusion operator becomes

Uhν = −
〈
νh(∇hψ) : (∇hu)T

〉
K

+
∑

I

〈〈
ψ · {νh∇hu} · nh

〉〉
I
, (4.44)

and the vertical diffusion operator

Uvν = −
〈
ν
∂ψ

∂z
· ∂u
∂z

〉
K

+
∑

Ih(K)

〈〈
ψ ·
{
ν
∂u

∂z

}
nz

〉〉
Ih
. (4.45)

Riemann solver for the 3D mode

Similarly to the 2D mode, in (4.41) and (4.43) the Riemann values η∗ and u∗

are needed. In this work η∗ is computed with the linear Riemann solver (4.36),
while u∗ is computed as

u∗ = {u}+
c

h
[[η]]. (4.46)

The above formulation is consistent with the linear Riemann solver, because
the depth average of (4.46) reduces to (4.37). Here we are using the linear
solver as it is not possible to derive a similar formula for u∗ with the full non-
linear 2D Riemann solver. As the surface gravity waves are essentially solved
in the 2D mode and imposed in the 3D mode, this is not a major drawback.

Interior Penalty stabilisation for the 3D mode

Also in 3D the diffusion operators are stabilized with IIPM. An additional
penalty term is added to the right hand side (Ern et al., 2009),

∑

I(K)

〈〈
σ3(n ·Dν · n)ψ · [[u]]

〉〉
I

=

∑

I(K)

〈〈
σ3νh(n

2
x + n2

y)ψ · [[u]]
〉〉
I

+
∑

Ih(K)

〈〈
σ3νn

2
zψ · [[u]]

〉〉
Ih
,

(4.47)

where Dν = diag(νh, νh, ν) is the diffusivity tensor and the penalty factor σ3

is computed with (4.38). Here Lmin = min(|K|, |K ′|)/|I|, with the element
volume |K| and interface area |I|. Note that (4.47) is defined on I = Ih∪Ilat.
Due to the fact that the Ih interfaces are not strictly horizontal the whole
diffusivity tensor has to be taken into account.
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The final diffusion operators read

Uhν = −
〈
νh(∇hψ) : (∇hu)T

〉
K

+
∑

I(K)

〈〈
ψ · {νh∇hu} · nh

〉〉
I

+
∑

I(K)

〈〈
σ3νh(n

2
x + n2

y)ψ · [[u]]
〉〉
I
,

(4.48)

Uvν = −
〈
ν
∂ψ

∂z
· ∂u
∂z

〉
K

+
∑

Ih(K)

〈〈
ψ ·
{
ν
∂u

∂z

}
nz

〉〉
Ih

+
∑

Ih(K)

〈〈
σ3νn

2
zψ · [[u]]

〉〉
Ih
.

(4.49)

4.4.5 Tracer Equations

The weak formulations of the temperature and salinity equations are obtained
by multiplying (4.8) and (4.9) by a test function ψ ∈ V, integrating over Ω and
adopting the ALE form. As (4.8) and (4.9) are equivalent only the T equation
is developed for brevity. Element-wise weak formulation reads:

d

dt

〈
Tψ
〉
K

+
〈
∇h · (uT )ψ

〉
K︸ ︷︷ ︸

Cu

+
〈∂ ((w − wm)T )

∂z
ψ
〉
K︸ ︷︷ ︸

Cw

=

〈
∇h · (µh∇hT )ψ

〉
K︸ ︷︷ ︸

Chµ

+
〈 ∂
∂z

(
µ
∂T

∂z

)
ψ
〉
K︸ ︷︷ ︸

Cvµ

.
(4.50)

After integration by parts, the advection terms become

Cu = −
〈
Tu ·∇hψ

〉
K

+
∑

Ilat(K)

〈〈
T (u∗ · nh)ψ

〉〉
Ilat

+
∑

Ih(K)

〈〈
T uwud · nhψ

〉〉
Ih
,

(4.51)

Cw = −
〈

(w − wm)T
∂ψ

∂z

〉
K

+
∑

Ih(K)

〈〈
(wd − wm)T uwψnz

〉〉
Ih
, (4.52)

where ud, wd are the velocity in the lower element and T uw stands for upwind
value. For consistency the same Riemann value u∗ (4.46) must be used as in
the momentum equation. The diffusion terms are treated similarly as before

Chµ = −
〈
µh(∇hψ) · (∇hT )

〉
K

+
∑

I(K)

〈〈
{µh∇hT} · nhψ

〉〉
I
, (4.53)

Cvµ = −
〈
µ
∂T

∂z

∂ψ

∂z

〉
K

+
∑

Ih(K)

〈〈{
µ
∂T

∂z

}
nzψ

〉〉
Ih
. (4.54)
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Defining the diffusivity tensor Dµ = diag(µh, µh, µ), the additional interior
penalty term is

∑

I(K)

〈〈
σ3(n ·Dµ · n)ψ[[T ]]

〉〉
I

=
∑

I(K)

〈〈
σ3µh(n

2
x + n2

y)ψ[[T ]]
〉〉
I

+
∑

Ih(K)

〈〈
σ3µn

2
zψ[[T ]]

〉〉
Ih
.

(4.55)

Including the interior penalty terms, the final horizontal and vertical dif-
fusion operators, respectively, are

Chµ = −
〈
µh(∇hψ) · (∇hT )

〉
K

+
∑

I(K)

〈〈
{µh∇hT} · nhψ

〉〉
I

+
∑

I(K)

〈〈
σ3µh(n

2
x + n2

y)ψ[[T ]]
〉〉
I
,

(4.56)

Cvµ = −
〈
µ
∂T

∂z

∂ψ

∂z

〉
K

+
∑

Ih(K)

〈〈{
µ
∂T

∂z

}
nzψ

〉〉
Ih

+
∑

Ih(K)

〈〈
σ3µn

2
zψ[[T ]]

〉〉
Ih

(4.57)

4.4.6 Computing the vertical velocity

Vertical flow velocity is computed diagnostically from the continuity equa-
tion (4.6). At the bottom boundary, w is determined by the impermeability
boundary condition:

w = −u ·∇hh, x ∈ Γb. (4.58)

In the interior, w is obtained by integrating ∂w
/
∂z = −∇h ·u over the vertical.

In practice this is solved with the following weak formulation over an element
K:

〈∂w
∂z

ψ
〉
K

= −
〈
∇h · uψ

〉
K
⇔ (4.59)

〈〈
wdψnz

〉〉
Itop
−
〈
w
∂ψ

∂z

〉
K

= −
〈〈
wdψnz

〉〉
Ibot
−
∑

Ilat(K)

〈〈
ψu∗ · nh

〉〉
Ilat

−
∑

Ih(K)

〈〈
ψud · nh

〉〉
Ih

+
〈
u ·∇hψ

〉
K

(4.60)

The top and bottom faces of the element K are denoted by Itop and Ibot,
respectively. As w is unknown on the top interface, the left hand side of (4.60)
is assembled in a modified mass matrix4, while the other terms are assembled
on the right hand side.

4It is noteworthy that the associated matrix does not depend on vertical scaling of the
mesh and thus it is not necessary to recompute it as the mesh is updated.
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The vertical velocity is first solved for the bottom most elements, using
the bottom boundary condition. Consequently w is known at the top of these
elements which is used as a “bottom boundary condition” for the next layer
of elements. Repeating the procedure until all elements are integrated results
in a fully discontinuous w field in the whole domain.

In the right hand side of (4.60), a value of u∗ is required in the lateral inter-
faces. To ensure discrete consistency with the horizontal momentum equation
and the tracer equation it is essential that u∗ of (4.46) is used also here.

4.4.7 Computing the baroclinic head

The definition of the baroclinic head (4.4) contains a vertical integral. It is
solved in a manner similar to w, except that here the solution is known at the
surface:

r = 0, x ∈ Γs. (4.61)

Therefore, the integration is performed from the surface to the bottom, i.e.
r = −(1/ρ0)

∫ z
η
ρ′dz. The corresponding weak form is

〈〈
ruψnz

〉〉
Ibot
−
〈
r
∂ψ

∂z

〉
K

= −
〈〈
ruψnz

〉〉
Itop
− 1

ρ0

〈
ρ′ψ
〉
K
, (4.62)

where ru denotes the value above the interface.
Assembling the two first terms to the modified mass matrix, r can be solved

with a similar recursive procedure starting from the top most elements.

4.4.8 Computing the internal pressure gradient

The horizontal gradient of r appears in the momentum equation (4.1). As in
the case of the external pressure gradient, g∇hη, obtaining a robust estimate
of g∇hr is essential for numerical stability. In the DG method this must be
done carefully as the discontinuities of r should also be taken into account in
the gradient. For the external pressure gradient g∇hη, numerical stability is
achieved by integrating the term by parts and using an approximate Riemann
solver for the 2D surface gravity waves as explained in Section 4.4.3.

For the baroclinic head r, however, it is not straightforward to derive an
approximate Riemann solver, because r is not a local variable (i.e. it depends
on ρ′ in the interval [z, η]). Here ∇hr is solved with the following weak form:

〈
∇hr ·ψ

〉
K

=
∑

I(K)

〈〈
r∗ψ · nh

〉〉
I
−
〈
r∇h ·ψ

〉
K

(4.63)

In above, r∗ is still required at the interface. As no Riemann solution is
available, an arithmetic mean r∗ = (rL+rR)/2 is used. Although the arithmetic
mean ignores potentially significant physical processes (e.g. advection and
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gravitational adjustment) across the interface, (4.63) still produces a better
estimate of ∇hr than using the local gradient (i.e. field r and gradients of the
basis functions).

For the 2D momentum equation, a depth average of the internal pressure
gradient must be computed. Once ∇hr is known, it is obtained from the
definition

∇hr =
1

H

∫ η

−h
∇hrdz, (4.64)

where the vertical integral is computed by summing the nodal values, weighted
by the element heights.

4.5 Matrix form

4.5.1 2D equations

A discrete system of the 2D free surface equation is obtained from (4.30) by
replacing η, h and ū by the respective DG-FE approximations η̂ =

∑
i ηiϕi,

ĥ =
∑

i hiϕi and ˆ̄u =
∑

k ūkϕk.
Using the basis functions ϕj as the test function and summing over all the

elements, the weak formulation can then be written as

〈〈∂∑i ηiϕi
∂t

ϕj

〉〉
Γs,0

=
∑

Q

〈〈∑

i

(ηi + hi)ϕi
∑

k

ūkϕk ·∇hϕj

〉〉
Q

−
∑

Q

〈〈〈(
η∗ +

∑

i

hiϕi
)
ū∗ · nh)ϕj

〉〉〉
J (Q)

, ∀j.
(4.65)

As Γs,0 and ϕi do not depend on time, the latter can be expressed in a
matrix form

dE

dt
= (M2D)−1Bη =: B̃η, (4.66)

where [M2D]ij =
〈〈
ϕiϕj

〉〉
Ω

is the 2D mass matrix, [E]i = ηi and Bη denotes
the right hand side (RHS) of (4.65).

The mass matrix is block diagonal, each block MQ
2D ∈ RN2D×N2D corre-

sponding to an element Q with N2D nodes. Consequently M−1
2D can be easily

obtained by inverting the blocks MQ
2D. As the 2D mesh does not depend on

time, the inverses can be precomputed.
In the case of the depth averaged momentum equation (4.31) a matrix form

is derived in a similar manner. Taking ϕ = [ϕj, 0] and ϕ = [0, ϕj] as the test
function leads into equations for ūi and v̄i, respectively. Denoting the nodal
values by [Ūu]i = ūi and [Ūv]i = v̄i, and the corresponding RHS by Bū and
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Bv̄, one obtains

M̃2D =

[
M2D 0

0 M2D

]
, Ū =

[
Ūu

Ūv

]
, Būv̄ =

[
Bū

Bv̄

]
,

dŪ

dt
=
(
M̃2D

)−1

Būv̄ =: B̃ūv̄. (4.67)

4.5.2 3D equations

In the case of the 3D equations, a discrete system is obtained from the weak
formulation by introducing the DG-FE approximation η̂ =

∑
i ηiψi for all the

scalar fields (η, w, wm, ∂wm
/
∂z, T ,S,νh, ν) and û =

∑
i uiψi for the vector

fields u and ∇hr.
Summing over all the prisms, the weak form of the tracer equation (4.50)

becomes

∑

i

d

dt

〈
Tiψiψj

〉
Ω

=
∑

K

BK,j
u (T̂ , û, . . .) +

∑

K

CK,j
u (T̂ , . . .), ∀j, (4.68)

where CK,j
T contains the terms related to vertical diffusion (4.49), while all the

other terms are grouped in BK,j
T .

Denoting the nodal values by [T ]i = Ti, equation (4.68) can be written in
matrix form

d

dt

(
M3DT

)
= B̃T + C̃T , (4.69)

where B̃T and C̃T denote the contribution of BK,j
T and CK,j

T , respectively,
and [M3D]ij =

〈
ψiψj

〉
Ω

the 3D mass matrix. The mass matrix is again block

diagonal with blocks MK
3D ∈ RN3D×N3D , N3D being the number of nodes in a

prism K. Due to the moving mesh, however, M3D and its inverse must be
recomputed after each mesh update.

The momentum equation (4.40) is treated in a similar fashion. With the
nodal values [Uu]i = ui and [Uv]i = vi, the discrete system can be expressed
as

M̃3D =

[
M3D 0

0 M3D

]
, U =

[
Uu

Uv

]
, B̃uv =

[
B̃u

B̃v

]
, C̃uv =

[
C̃u

C̃v

]
,

d

dt

(
M̃3DU

)
= B̃uv + C̃uv, (4.70)

where C̃u and C̃v correspond to the vertical diffusion terms (4.49), while all

the remaining terms are encapsulated in B̃u and B̃v.
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4.6 Time integration

This section outlines the time integration method for the coupled 2D-3D shal-
low water equations. First, the typical time step constraints are outlined.
Then the overall time integration method is presented, followed by a scheme
for the 3D and 2D equations.

4.6.1 Maximum admissible time step

The long surface gravity waves travel at speed c =
√
gH. If the length scale

of an element in the triangulation T is Lh, the longest admissible time step
according to the CFL (Courant–Friedrichs–Lewy) condition is

∆tc ∝
Lh

c+ U
, (4.71)

where U ≥ 0 is the maximal advective speed. In many marine applications
c � U , i.e. the surface gravity waves are more restrictive than horizontal
advection, or internal wave propagation alone.

Due to the aspect ratio of the horizontal and vertical length scales of the
ocean, the stability constraint due to vertical advection is comparable to that
of horizontal advection. Vertical diffusion, on the other hand, may impose a
stricter condition on a fine vertical mesh

∆tν ∝
L2
z

ν
. (4.72)

Consequently, for computational efficiency, the split-explicit method is adopted
for treating the external (2D) and internal (3D) modes. The surface grav-
ity waves are solved with relatively inexpensive 2D depth averaged equations
with a high temporal resolution satisfying (4.71). The restriction imposed by
(4.72), on the other hand, is circumvented by treating the vertical diffusion
semi-implicitly.

4.6.2 Overview of the time integration method

Starting from an initial condition at time t0, the temporal discretisation is
defined on interval [t0, tend], with constant time increments ∆t. The variables
at tn = t0 + n∆t are denoted by a superscript n. The domain at tn is denoted
by Ωn.

The overall time marching scheme is illustrated in Figure 4.3. The 3D
equations advanced in time with a third order Leap-Frog-Adams-Moulton
(LF-AM3) predictor-corrector scheme following Shchepetkin and McWilliams
(2009). The 2D equations are solved in a separate sub-routine described in
Section 4.6.4. Considering only the tracer T , the complete time marching
procedure can be summarized as follows
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Figure 4.3: Schematic of the time integration method. During each macro time step,
the 2D mode is advanced M∗ iterations with a time step δt = ∆t/M .
The 2D variables are averaged with a filter defined by the weights am
(see Section 4.6.4).

• Prediction stage ( in Ωn )

T n−1/2 = (
1

2
− 2γ)P n

n−1T
n−1 + (

1

2
+ 2γ)T n

T n+1/2,∗ = T n−1/2 + ∆t(1− 2γ)(Mn
3D)−1Bn

T (4.73)

• Advancing the 2D equations

• Correction stage ( in Ωn+1 )

T n+1,† = P n+1
n T n + ∆t(Mn+1

3D )−1B
n+1/2
T (4.74)

T n+1 = T n+1,† + ∆tΘ(Mn+1
3D )−1Cn+1

T + ∆t(1−Θ)(Mn
3D)−1Cn

T .
(4.75)

Above, γ and Θ are parameters related to the temporal scheme and the
operator P a

b = (M a
3D)−1M b

3D.
The 2D mode provides η and ū for the 3D mode. The free surface elevation

η is used both to update the geometry Ωn and to compute the external pressure
gradient. The depth averaged velocity ū is used to adjust the 3D horizontal
velocity as explained in Section 4.6.5. The 3D mode, on the other hand, affects
the 2D mode through bottom friction, internal pressure gradient and advection
of ũ as seen in equation (4.17).

Conservation and consistency

The prediction stage is solved in a single domain Ωn using the non-conservative
ALE formulation. The correction stage, on the other hand, includes both Ωn

and Ωn+1 and thus the conservative ALE formulation is used in this stage.
This choice leads to a mass conservative and consistency preserving scheme.
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Using the conservative ALE formulation in the prediction stage would break
tracer consistency, because the volumetric change is not properly taken into
account. The non-conservative formulation in this stage, on the other hand,
preserves tracer consistency at the expense of losing mass conservation. Mass
conservation, however, is required only for the correction stage, for the whole
scheme to be mass conservative (Shchepetkin and McWilliams, 2005). There-
fore only the correction stage is required to be both mass conservative and
tracer consistent.

4.6.3 Advancing the 3D equations

The prediction stage consists of updating T from tn−1/2 to tn+1/2, with RHS
BT evaluated at tn. The initial condition T n−1/2 is obtained by temporal in-
terpolation, controlled by the parameter γ. Setting γ = 0 results in a centred
average and the LF-TR (Leap-Frog–Trapezoidal Rule) scheme. The third or-
der accurate LF-AM3 scheme is obtained with γ = 1/12 (Shchepetkin and
McWilliams, 2005), which eliminates the numerical modes of LF schemes.

After the 2D equations have been advanced from tn to tn+1, new geometry
Ωn+1 becomes available. The corrector stage then updates T to time tn+1,
where the RHS is computed with the predicted state (Un+1/2,∗,T n+1/2,∗, etc.).

For both prediction and correction stages, the 3D velocity is updated first,
followed by a similar update of the tracers.

The correction stage is finalized by a semi-implicit evaluation of the vertical
diffusion of momentum and the tracers. Setting Θ = 0.5 corresponds to the
classical second order Crank-Nicolson method. In this work a slightly higher
value Θ = 0.6 is chosen to damp possible spurious oscillations. In (4.75)
Cn
T is originally evaluated in the previous time step with geometry Ωn, and

consequently it is multiplied by the old inverse mass matrix. Note that the right
hand sides Cuv and CT consist only of terms (4.49) and (4.57), respectively.
As there are no terms involving the lateral interfaces, Ilat, these equations are
independent for each column of prisms and can be solved separately.

4.6.4 Advancing the 2D equations

The depth averaged equations are advanced in time with a standard third order
Adams-Bashforth (AB3) scheme. The time step of the 2D mode is denoted by
δt and the micro time steps are indicated with an index m ∈ [0,M∗] with the
corresponding time tm = tn +mδt. For consistency, the 3D time step must be
a multiple of the 2D time step ∆t = Mδt, where M is the time step ratio. In
practice the 2D model will be advanced further than the next 3D time step
tn+1, so that M∗ > M (Figure 4.3).
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Using the notation of Section 4.5.1, the AB3 iteration is then given by

Em+1 = Em + δt

[(
3

2
+ β

)
B̃m
η −

(
1

2
+ 2β

)
B̃m−1
η + βB̃m−2

η

]
, (4.76)

Ūm+1 = Ūm + δt

[(
3

2
+ β

)
B̃m
ūv̄ −

(
1

2
+ 2β

)
B̃m−1
ūv̄ + βB̃m−2

ūv̄

]
. (4.77)

For AB3 scheme β = 5/12, while setting β = 0 results in second order accurate
AB2 scheme. Given the state (E0, Ū 0) at macro time step n, the iteration is
initialized with a forward Euler and an AB2 step.

Computing temporal averages

The 3D mode requires η and ū at macro time steps tn and tn+1/2. However, as
the 2D mode is solved with a higher temporal resolution than the 3D equations,
η and ū contain high frequency components that cannot be resolved in the 3D
iteration. Consequently, in order to avoid signal aliasing, the 2D variables are
low-pass filtered in time to represent their evolution in time scales close to ∆t
(or above).

Given the fields η, ū at the micro time steps m, the temporal average
centred at time n + 1 is defined by a set of weights {am}M∗m=1. The following
averages are defined

ηn+1
⊗ =

M∗∑

m=1

amη
m, (4.78)

ūn+1
⊗ =

M∗∑

m=1

amū
m, (4.79)

(Hū)n+1
⊗ =

M∗∑

m=1

amH
mūm. (4.80)

The domain geometry is updated with ηn+1
⊗ . The temporal averages ηn+1

⊗ and
ūn+1
⊗ are used as initial conditions for the next 2D iteration. Finally (Hū)n+1

⊗
and (Hū)

n+1/2
⊗ (defined below) are used to adjust the 3D velocity field.

The weights must fulfil the following normalization and centroid conditions
(Shchepetkin and McWilliams, 2005)

M∗∑

m=1

am = 1,
M∗∑

m=1

m

M
am = 1. (4.81)

The latter condition means that the centroid of the filter corresponds to tn+1,
implying that the temporal averaging must extend beyond the next macro
time step, i.e. M∗ > M .
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The temporal average of Hū centred at n + 1/2 is defined by another set
of weights {bm}M∗m=1

(Hū)
n+1/2
⊗ =

M∗∑

m=1

bmH
m−1/2ūm−1/2, (4.82)

subject to similar conditions

M∗∑

m=1

bm = 1,
M∗∑

m=1

m

M
bm =

1

2
. (4.83)

This temporal average should be in agreement with a single macro time step
update of the elevation

ηn+1
⊗ = ηn⊗ + ∆t∇h · (Hū)

n+1/2
⊗ . (4.84)

Shchepetkin and McWilliams (2005) show that the above condition holds if
the weights bm are chosen as

bm′ =
1

M

M∗∑

m=m′

am, (4.85)

so that bm are unique and depend only on am. The exact form of the filter
coefficients am bm is presented in B.1.

It is worth noticing that, split-explicit models have the advantage that
the filters can be specially designed for desired properties (low dissipation and
dispersion in active range, sufficient damping of high frequencies). Shchepetkin
and McWilliams (2005) show that even a highly dissipative constant filter
ai = 1/M∗, M∗ = 2M is in fact less dissipative than a backward Euler implicit
free surface model, that is still used in some models.

4.6.5 Adjusting the 3D velocity

Because the horizontal momentum equation is defined both in 3D and in 2D,
the corresponding velocity fields u and ū do not automatically agree. There-
fore the 3D velocity field u is corrected such that its depth average matches ū,
which is in agreement with the η field. The adjusted velocity can be written
as

unadj = un +
1

Hn

(
(Hū)n⊗ −

∫ η

−h
undz

)
. (4.86)

The 3D velocity is adjusted after each update in the prediction, correction
and semi-implicit stages. At the end of each macro time step, the final un+1 is
adjusted with (Hū)n+1

⊗ . During the prediction stage, at tn+1/2, the 2D mode

is not yet solved and consequently (Hū)
n+1/2
⊗ is not yet available. In this

case older (Hū)n⊗ is used instead, before executing the prediction stage of the
tracers. After the 2D mode is solved, un+1/2,∗ is adjusted again with the correct
(Hū)

n+1/2
⊗ .
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4.6.6 Slope limiter

Monotonicity preserving advection schemes used with marine models include
Total Variation Diminishing (TVD) schemes in finite volumes (Pietrzak, 1998)
or flux-corrected schemes in continuous finite elements (Kuzmin et al., 2005).
The monotonicity property ensures that local maxima (minima) do not in-
crease (decrease) in time.

Many slope limiter families exist in the literature for DG-FEM, for example
the minmod limiter by Cockburn and Shu (1998). However, the implementa-
tion of many such filters depends on the element type and dimension. Therefore
in this work a mass conservative, geometry-independent slope limiter is used.
In its simple form, with only one degree of freedom per element, the limiter is
similar to the one of Kuzmin (2010) and Aizinger (2011). An optimal version,
that modifies the nodal values as little as possible, similarly to the minmod
limiter, is also tested. These two versions are briefly outlined in B.2.

4.6.7 Updating mesh geometry

The water elevation η, as computed by the depth averaged equations, belongs
to the space W and is thus discontinuous. The mesh, however, must remain
conforming, so that the lateral faces on Ilat are the same on both sides. A
conforming 3D mesh can be achieved by updating the mesh with a continuous
elevation field ηc (Aizinger and Dawson, 2007), obtained from the discontinu-
ous η. In this work a mass conserving weighted average filter is used. Another
possibility is to project η on continuous basis functions with L2 projection,
which also conserves mass. However, the L2 projection tends to create over-
shoots, while the average operation is purely diffusive.

Consequently, the time dependent domain Ω corresponds to ηc, and in all
the equations related to surface boundary conditions and the mesh movement
– namely (4.11) and (4.21) – η is replaced by ηc. Furthermore all the ver-
tical integrals are defined on interval z ∈ [−h, ηc]. This leads into a small
discrepancy in the numerical implementation, due to the error η − ηc.

4.7 Numerical tests

The performance of the presented 3D model were tested in a sequence of nu-
merical benchmarks. Conservation and consistency properties were assessed in
a barotropic test case, followed by a baroclinic gravitational adjustment bench-
mark. Finally, the model was applied to simulating the Rhine river plume in
Section 4.7.3.
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4.7.1 Surface gravity waves and conservation
properties

Volume and mass conservation properties were tested with propagating sur-
face gravity waves in a rectangular channel 10 km long, 1 km wide and 50
m deep. All lateral boundaries were set impermeable. Initially a free sur-
face perturbation was prescribed along the channel: η0 = a0 exp (−(x/σ0)2),
with a0 = 0.1 m and σ0 = 2000 m. Salinity evolution was computed with
(4.8) imposing a constant initial value S0 = 4 PSU. Temperature was taken
as a constant 10◦C throughout the simulation. Bottom friction and vertical
diffusion were omitted in this test.

The domain was discretised with 100 m horizontal resolution and 20 vertical
layers. The propagation of the gravity waves were simulated for 8000 s with
0.2 s 2D time step and M = 30. The observed relative error in volume and
total tracer mass was of order 10−14. The deviation in tracer concentration
was higher, 10−6. This error is due to the fact that the 3D fields and the free
surface elevation are not exactly compatible, thus breaking tracer consistency.
The dominant source of error is proportional to ηc−η, related to the smoothing
of the free surface.

The simulation was repeated for a non-constant tracer field. Initially S =
4 PSU was prescribed at the bottom and S = 3 PSU at the surface boundaries
with linear transition in between. Also in this case, the relative error in total
tracer mass was of order 10−14, thus verifying mass conservation. During the
simulation, the tracer extrema were decreasing monotonically, suggesting that
numerical dissipation alone was sufficient to filter out the spurious extrema in
the tracer field.

A mesh refinement analysis was further carried out for the same setup.
Horizontal resolutions ranged from 1000 m to 100 m and number of vertical
layers were increased from 2 to 20. The finest resolution was used as a ref-
erence solution. Figure 4.4 presents the L2 error in horizontal velocity versus
horizontal mesh resolution, verifying the theoretical second order convergence.

4.7.2 Gravitational adjustment of a density front

The model’s ability to simulate buoyancy driven flows was assessed in a stan-
dard non-rotating gravitational adjustment test (e.g. Wang (1984); Haidvogel
and Beckmann (1999); Jankowski (1999)). Initially a rectangular domain, 64
km long and 20 m deep, is filled with two fluids of slightly different densi-
ties. In the left half of the domain ρ′1 = 2.15 kgm−3, while on the right
ρ′2 = −2.15 kgm−3 is prescribed. At time t = 0 the barrier separating the flu-
ids is removed, and a density driven exchange flow develops, driving the dense
fluid under the lighter fluid. Assuming that ∆ρ = ρ′1 − ρ′2 � ρ0 and that all
potential energy is transformed into movement, it can be shown that the top
and bottom fronts advance with speed c = (1/2)

√
g′H, where g′ = g∆ρ/ρ0 is

the reduced gravity (Jankowski, 1999).
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Figure 4.4: Convergence analysis of u in the surface gravity wave test.

The exchange flow was simulated with horizontal resolution Lh = 833 m
and Nσ = 12 sigma layers. Vertical diffusion, bottom friction and Coriolis
force were neglected. The simulation was carried out using both the simple
and the optimal slope limiter.
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Figure 4.5: Gravitational adjustment without background diffusion. a) Initial den-
sity. Density after 31500 s of simulation in the case of the b) simple and
c) optimal slope limiter.

Figure 4.5 shows the initial density distribution and the situation after 31
500 s of simulation for both limiters. It is seen that the solution oscillates in
both cases, suggesting that the internal pressure gradient term, that couples
the tracer and momentum equations, is not fully stabilised. However, it is
worth noticing that the slope limiter also plays a role: oscillations are much
larger for the simple limiter. This is due to the fact that it tends to alter the
solution excessively, which leads to noise in the tracer field. Therefore for the
subsequent tests, only the optimal limiter is considered.
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The mean exchange flow velocity is estimated as the front displacement
divided by the elapsed time. For results shown in Figure 4.5, one obtains
roughly 0.44 ms−1 which is comparable, and – as expected due to numerical
dissipation – slightly smaller than the theoretical value c = 0.46 ms−1.
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Figure 4.6: Gravitational adjustment with a constant background diffusion νh =
κh = 5 m2s−1. Density at 31 500 s for a) coarse mesh (Lh = 833 m,
Nσ = 12) b) fine mesh (Lh = 312 m, Nσ = 32). c) Convergence plot.
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Figure 4.7: Gravitational adjustment with the Smagorinsky diffusion. Density at
31 500 s for a) coarse mesh (Lh = 833 m, Nσ = 12) b) fine mesh
(Lh = 312 m, Nσ = 32). c) Convergence plot.

Also here a convergence analysis of the density distribution was performed.
The mesh resolution varied between Lh = 1250 m (Nσ = 8) and Lh = 312 m
(Nσ = 32). Because no analytical solution is available, the finest solution was
used as a reference. However, owing to the oscillations, the simulation became
unstable for finer meshes and as a remedy a small horizontal diffusion was
added.

The results obtained with a constant background diffusivity are presented
in Figure 4.6. Alternatively, a Smagorinsky diffusivity,

νh = κh =
C2
sL

2
h

π2

√(∂u
∂x
− ∂v

∂y

)2

+
(∂u
∂y

+
∂v

∂x

)2

,
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was applied5, with Cs = 1.0. This case is illustrated in Figure 4.7. It is
seen that the oscillations are damped and the solution on the finest mesh is
very smooth. Using the Smagorinsky scheme appears to be more diffusive
– especially the fronts are smoother – but yields better rate of convergence,
2.26. In the case of a constant diffusion, small wiggles remain in the finest
solution near the fronts, and the rate of convergence is only 1.66. It should
be noted however, that the wiggles in the reference solution may hamper the
convergence analysis in this case.

It can be concluded that under gravitational adjustment the model pro-
duces realistic results. However, some diffusion may be necessary to damp
oscillations, especially with high resolution meshes. The oscillations are most
likely related to insufficient stabilisation of the internal pressure gradient feed-
back. The rate of convergence is super-linear but not necessarily second order.

4.7.3 River plume

Areas where freshwater induced buoyancy plays an important role are often
referred to as regions of freshwater influence (ROFI, Simpson, 1997). Typi-
cally ROFIs feature strong density gradients, that on the one hand drive the
water motion, but on the other hand are affected by advection and mixing
processes. Thus the flow exhibits a highly non-linear behaviour, arising from
the interaction of the tides, the Coriolis force, buoyancy and vertical mixing.
In all the complexity ROFIs provide a good benchmark for baroclinic marine
models.
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Figure 4.8: Horizontal mesh for the Rhine ROFI simulation. a) The whole domain
(3167 triangular elements) b) Enlargement near the area of interest. The
resulting 3D mesh, with 20 sigma layers, consists of 63 340 prisms and
380 040 degrees of freedom.

5Note that although the Smagorinsky scheme was developed for viscosity, it is sometimes
applied to tracers as well (e.g. Mellor, 2004).
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Numerical 3D modelling of the Rhine ROFI has been discussed in Ruddick
et al. (1994, 1995); de Boer et al. (2006); de Boer et al. (2008); Fischer et al.
(2009), among others. Here a simulation is carried out in an idealised geom-
etry following de Boer et al. (2006). In this configuration the Dutch coastal
zone is modelled as a 20 m deep rectangle extending 100 km in the alongshore
(“north”) and 35 km in the across-shore (“west”) directions. The river is rep-
resented by a 45 km long and 500 m wide perpendicular channel whose depth
reduces linearly to 5 m at the inlet. Such a simplistic geometry is acceptable
as the Rhine ROFI is relatively unaffected by coastal and bathymetric features
(de Ruijter et al., 1997).

To avoid issues caused by waves reflecting on the open boundaries, the do-
main is extended some 700 km north and west from the river inlet, gradually
decreasing the mesh resolution (Figure 4.8). Near the river mouth the hori-
zontal resolution is similar to the setup of de Boer et al. (2006). The element
edge length is set to 500 m in the river, increasing to roughly 1200 m in the
rest of the domain of interest (roughly 50 by 30 km in the alongshore and
cross-shore directions). In vertical direction 20 sigma layers are used. The
mesh is generated with GMSH mesh generation tool (Geuzaine and Remacle,
2009).

Initially the salinity is set to a constant 32 PSU value and a constant
freshwater discharge 1500 m3s−1 is prescribed at the Rhine inlet. Following
Fischer et al. (2009) the water elevation is forced at the three open boundaries
with an M2 Kelvin wave (amplitude 1.0 m, period τ = 44714 s). The Coriolis
factor, taken as a constant, corresponding to latitude 52.2◦ north. Wind forcing
is neglected.

The freshwater inflow causes a well formed salt wedge in the river. Once
released from the river, the plume turns to the right and forms a typical fresh-
water source for the northward coastal current. After roughly 20 tidal cycles
the main plume shows nearly periodic behaviour. The results discussed in this
section are of the 31st tidal cycle, similarly to de Boer et al. (2006); Fischer
et al. (2009).

Tidally averaged salinity is presented in Figure 4.9. The main plume ex-
tends to some 30 km offshore and 100 km northward alongshore from the
river mouth. In the “upstream” direction, the river plume extends roughly
20 km southward. In the surface layer, roughly 5 m deep, the water column
is strongly stratified with fresh water trapped near the surface. Further be-
low bottom friction induced mixing dominates and the water column becomes
nearly homogeneous in vertical direction, salinity decreasing toward the coast.

de Ruijter et al. (1997) showed that the Rhine river plume exhibits a pulsed
freshwater discharge due to two reasons. First, the along-river tidal current
is stronger than the mean discharge velocity at the mouth, pinching off the
river discharge periodically. Second, the river mouth is narrow compared to
the inertial trajectory radius of the discharged water, so that a freshwater lens
is separated from the river mouth before a new pulse is generated. The tidal
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Figure 4.9: Tidally averaged salinity distribution. a) Depth average. Vertical tran-
sect at b) river mouth y=0, c) 15 km downstream, d) 30 km downstream.
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Figure 4.10: Evolution of surface salinity (0.5 m below surface) over a tidal cy-
cle. Arrows illustrate the horizontal flow velocity. Maximal velocity
is roughly 1.3 ms−1. Temporal evolution of velocity is examined in
stations A and B, and stratification in stations C, D and E.

evolution of the surface salinity and currents is presented in Figure 4.10. The
freshwater lens, released south west from the river mouth during rising tide
(t/τ = 3/6 to t/τ = 5/6), is clearly visible. It is transported northward during
the ebb, merging with the main plume at low tide.

In the ROFI the flow velocity shows asymmetric pattern. On the surface,
the tidal velocity rotates clockwise (anti-cyclonically) while in bottom layer
(below 5m depth) the rotation is anti-clockwise (cyclonic). Further down-
stream, where the influence of the stratification is small, the flow reduces to
nearly unidirectional (i.e. cross-shore component is zero) as in the case of
pure Kelvin waves. Figures 4.11 and 4.12 present time series of the horizontal
velocity at two locations, marked A and B in Figure 4.10. In station A the
asymmetric velocity pattern is visible as the cross-shore velocity has oppo-
site sign in the surface and bottom layers. This behaviour is related to the
movement of the freshwater lens in the cross-shore direction. Intensified river
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Figure 4.11: Time series of velocities at Station A (10 km offshore and 20 km north
of the river mouth). a) Cross-shore velocity. b) Alongshore velocity.
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Figure 4.12: Time series of velocities at at Station B (10 km offshore and 0 km north
of the river mouth). a) Cross-shore velocity. b) Alongshore velocity.

outflow associated with the freshwater pulse, compensated by a similar saline
intrusion in the bottom layer, can be seen in station B (Figure 4.12).

It is well known that in the ROFI the stratification conditions vary sig-
nificantly in time and space (Simpson et al., 1993; de Boer et al., 2008).
Figure 4.13 presents the minimal and maximal gradient Richardson number
Ri = N2/R2 (where N and R are the Buoyancy and (vertical) shear frequency
respectively) in the surface layer over the tidal cycle. Comparing the two
plots, it is evident that in several locations the surface layer alternates between
stratified and mixed conditions. The temporal evolution of the stratification
is examined in more detail in the locations C,D and E in Figure 4.13.

Figure 4.14 presents the temporal evolution of stratification is station C.
This station is located at the southern boundary of the main “bulge” of the
plume. It is influenced by the freshwater outflow during the rising tide (see the
two last panels in Figure 4.10). Otherwise the water column is well mixed, and
unstably stratified (N2 < 0) after high water. The unstable stratification is a
good example of Strain Induced Periodic Stratification (SIPS, Simpson et al.,
1990). The tidal currents, being stronger near the surface, tilt the horizontal
salinity gradient. As ∂S

/
∂y is negative at this location, flood currents push
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saline water over lighter water giving rise to N2 < 0. In de Boer et al. (2008)
the different processes affecting stratification in the Rhine ROFI are analysed
using the potential energy anomaly equation in a numerical 3D model. Their
results also confirm that in this part of the plume, the stratification is domi-
nated by alongshore straining and advection.
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Figure 4.15: Temporal evolution of the stratification is station D (10 km offshore
and 40 km north of the river mouth). a) Gradient Richardson number.
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The situation at station D is presented in Figure 4.15. Because this location
lies already 40 km North of the river mouth, the water column is quite homoge-
neous throughout the tidal cycle. However, here the SIPS pattern is opposite:
as ∂S

/
∂y is positive it is the ebb that induces the unstable stratification.

The stratification pattern is more complicated at station E (Figure 4.16)
due to the passing fronts related to the fresh water lens. The surface layer
remains strongly stratified, but the shear is also significant due to stronger
surface velocities (Figure 4.10). The competition of N2 and R2 result in a
patch of Ri < 0.25 during the falling tide at depth 5 m below surface.
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4.8 Conclusions

Discontinuous Galerkin methods are well-suited for solving advection domi-
nated problems and have advantageous numerical properties, but so far they
have not been extensively applied to ocean modelling. This article presents a
DG baroclinic marine model that fulfils the essential requirements for simulat-
ing coastal density driven flows. Water volume and tracer mass are conserved
up to machine precision. Spurious extrema in tracer fields are filtered by means
of a slope limiter.

A split-explicit predictor-corrector time integration method similar to that
of Shchepetkin and McWilliams (2005) is used. In the DG framework, explicit
models bring some important advantages, such slope limiters and straightfor-
ward parallelisation. As computational cost is a major challenge for emerging
unstructured grid models, the latter is an important feature for large scale
and/or high resolution applications.

Vertical mesh movement is taken into account by means of ALE (Arbi-
trary Lagrangian Eulerian) formulation. A conservative ALE formulation is
used for the correction stage, while a non-conservative formulation is used in
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the prediction stage. This choice leads to a strictly mass conservative scheme.
However, as it is cumbersome to ensure discrete compatibility of the 2D free
surface equation and the 3D equations, the tracer consistency criterion is sat-
isfied only approximately. Alternatively, one could use the non-conservative
formulation in both stages, yielding exact tracer consistency at the expense of
losing global mass conservation. In this work we have chosen to retain mass
conservation as it is presumably a more important property in environmental
applications.

The model is tested with a gravitational adjustment benchmark, where the
general features of the flow are well represented. Nevertheless some oscillations
are visible, due to the lack of rigorous stabilisation of the internal pressure gra-
dient. More work is needed to tackle this issue, as it seems that deriving a
stabilisation term for internal wave processes is not straightforward. However,
using an optimal slope limiter, that modifies the nodal values as little as pos-
sible, produces significantly better results. Moreover, a small diffusivity can
be further introduced to reduce the oscillations.

Finally, the model is applied to the Rhine river plume in an idealised ge-
ometry following the setup of de Boer et al. (2006). The river plume results
are well in agreement with other results in the literature, e.g. obtained with
Delft-3D (de Boer et al., 2006; de Boer et al., 2008) and GETM (Fischer et al.,
2009). The plume exhibits pulsating behaviour, releasing a clearly defined lens
of riverine water each rising tide. In several locations, the stratification con-
ditions change over the tidal cycle, altering between fully mixed and strongly
stratified states.
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Conclusions

In order to better understand the physical and biochemical processes that take
place in coastal waters, and to predict their evolution under anthropogenic
pressure, it is necessary to develop regional marine models. In coastal appli-
cations it is essential to capture the complex topographical features and the
time and length scales relevant to river-estuary-shelf sea systems. Due to their
inherent flexibility, novel unstructured grid methods are promising for dealing
with such multi-scale problems.

The aim of this thesis was to investigate the feasibility of using the dis-
continuous Galerkin finite element method in marine modelling, with a focus
on estuarine and coastal flows. Due to the characteristics of coastal flows,
finding suitable numerical methods is not a straightforward task. In this work
two problems have been addressed: the periodic drying and submerging of
intertidal areas (i.e. wetting-drying) and the baroclinic modelling of buoyancy
driven flows, typical to estuaries and river plumes.

5.1 Wetting-drying

In Chapter 2, a novel implicit wetting-drying method for the depth-averaged
shallow water equations is presented. Unlike for most wetting-drying ap-
proaches, the proposed method can be formulated directly in the continuous
equations. Furthermore, the transition between wet and dry states is smooth,
instead of a sharp frontier. This property, although arguably somewhat ar-
tificial, is advantageous in terms of numerical implementation. The method
involves solving a mildly non-linear free surface equation that ensures strict
mass conservation. Consistency with the tracer equation is also guaranteed.
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Owing to the smooth wet-dry transition, it is possible to compute the Jaco-
bian of the numerical system. Consequently implicit time integration schemes
can be used, which reduces the computational cost significantly. Furthermore,
the Jacobian is also required in inverse modelling applications, such as sensi-
tivity analysis and data assimilation, where using conventional wetting-drying
methods can be difficult.

The proposed method is well-suited for modelling slow (e.g. tidal) wetting-
drying phenomena. However, based on our experience, it does not perform
equally well in the case of fast flooding events, such as dam breaks or tsunami
propagation. Also, as the Balzano 3 test case illustrates (Section 2.5.1), the
method is not appropriate for modelling domains with isolated water reser-
voirs or lakes. In these cases, more rigorous methods should be used. Possible
candidates include the methods by Kesserwani and Liang (2012); Bunya et al.
(2009); Gourgue et al. (2009), which all however require explicit time integra-
tion.

5.1.1 Perspectives

The proposed wetting-drying method can be implemented in a 3D model as
well. In mode-splitting schemes, the 2D mode provides free surface elevation
η and depth-integrated velocity ū to the 3D mode. The elevation is used for
updating the 3D geometry and for computing the external pressure gradient.
To avoid numerical problems, the pressure gradient should be computed using
η in a similar way as in the wetting-drying method. However, the geometry
should correspond to η̃ (defined in (2.8)) instead. To be strictly volume con-
servative, the 2D mode should be implicit. However, for certain applications
explicit schemes could also be used as the volume discrepancy usually remains
small.

Instead of extending the proposed implicit wetting-drying method to 3D,
another possibility is to use a semi-implicit free surface formulation similar
to the UnTRIM model (Casulli, 2009) and its derivatives. This approach is
robust, computationally efficient and unconditionally stable. However, it re-
quires the implementation of a specific non-linear free surface equation that is
derived from the discrete equations. Furthermore, the method of Casulli (2009)
uses orthogonal unstructured grids, although similar methods have been im-
plemented on general unstructured meshes as well (Zhang and Baptista, 2008).
The feasibility of such scheme should be investigated in the DG framework.

In terms of the split-explicit 3D model presented in the latter part of the
thesis, perhaps the most natural choice would be to introduce an flux-limiting
wetting-drying method in the 2D mode. In this case, as with the UnTRIM-
like implicit free surface, the wetting-drying phenomenon could be simulated
realistically in all cases, including rapid flooding (e.g. tsunami) events and
near isolated water reservoirs. However, some stability issues may arise in
the presence of complex or steep bathymetry (Brufau et al., 2002). A major
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advantage, in comparison to implicit approaches, is nearly ideal scalability in
parallel applications, which is important in large 3D simulations.

5.2 3D baroclinic model

A 3D baroclinic model is presented in Chapters 3 and 4. This work is a
continuation to the 3D model developed by White et al. (2008a,b) and later
by Comblen et al. (2010a) and Blaise et al. (2010) in the framework of the
SLIM project. In this work we have extended the 3D DG-FE model to handle
strongly baroclinic flows.

Owing to the DG-FE method and conservative ALE formulation, the model
is strictly conservative by construction. Volume and tracer mass conservation
is also verified with numerical tests in Section 4.7. Monotonic tracer advection
is essential for strongly baroclinic flows, as spurious extrema quickly lead to
instabilities. In this work a slope limiter is used to filter the tracer fields.

We have proposed a model based on first order polynomial approximation
and split-explicit time integration. The advantage of the chosen approach is
that the code is easily parallelisable and slope limiters are readily available.
For first order elements, there exist various limiters which can be applied as a
post-processing correction at each explicit time step. Here a mass conservative
vertex-based limiter is used. While limiters are being developed for high-order
discretisation and implicit schemes as well (e.g. Kuzmin, 2006), they tend to
be more complicated, especially if extended to 3D fields.

The model is coupled to the General Ocean Turbulence Model (GOTM)
library to account for vertical mixing. As GOTM is a 1D vertical finite dif-
ference model, coupling between the two model classes must be designed with
care in order to avoid creating numerical instabilities in the turbulence closure.

The coupled model is tested with several benchmarks including an idealised
estuary simulation following Warner et al. (2005). The model remains stable
and is able to produce a realistic estuarine circulation. The flow characteristics
compare well with the results of Warner et al. (2005), although some differences
are visible.

The most complicated benchmark discussed in this thesis is the Rhine river
plume simulation presented in Chapter 4. The plume behaviour is realistically
simulated, and the results are well in line with those presented in the literature.

The estuary and river plume simulations reveal a central difficulty in mod-
elling estuarine and coastal flows. As the flow dynamics is highly non-linear
due to the interaction of buoyancy, tides, rotational effects and turbulence,
numerical models inevitably become sensitive to (lateral) boundary conditions
and to the details of the numerical methods. Therefore, although the main
characteristics of buoyancy driven flows can be simulated, model-dependent
differences are likely to exists. In practical applications these differences may
be difficult to assess as it would require high resolution observational data,
which is not often available.
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5.2.1 Perspectives

Concerning the numerics, more work is needed to find a rigorous stabilisation
for the internal pressure gradient, as deriving a conventional Riemann solver
for this term is cumbersome. Proper treatment of this term is crucial as it
impacts the numerical stability of the model. As it was seen in the case of the
gravitational adjustment benchmark (in Section 4.7.2), currently additional
diffusivity may be required to suppress oscillations.

Also, the time integration method should be improved to satisfy the tracer
consistency criterion. This criterion is often problematic in split-explicit mod-
els (Griffies et al., 2001). DG formulation poses additional constraints, as the
free surface elevation field is discontinuous, but the adaptive mesh, in general,
should remain conforming, i.e. continuous between elements. Currently a con-
stant tracer field is preserved up to a precision of 10−6, implying that some
noise may appear in the tracer fields. This level of discrepancy is acceptable
in most applications but it is still far from machine precision.

In the future, the feasibility of extending the model to high order should
be investigated. Using high-order basis functions in DG offers lower numerical
dissipation and a gain in computational efficiency, both of which are attractive
features in marine modelling. The main challenge in developing such a model
would probably be ensuring monotonicity and numerical stability, as well as
dealing with curved boundaries and elements. In principle, extending the
presented turbulence closure coupling to high order is feasible, provided that
suitable projections between the FE polynomial fields and the FD grid can be
constructed.

Furthermore, to increase the computational efficiency, one should also con-
sider circumventing the most restrictive CFL conditions to allow longer time
steps. One possibility is to move towards implicit time integration. Based on
our experience in shallow coastal applications, solving the 2D mode is relatively
inexpensive (of the order 1% of the overall CPU cost). Therefore switching to
use an implicit free surface would not bring much gain. In order to significantly
reduce the CPU cost, it is likely that the CFL condition related to the 3D ad-
vection would need to be relaxed, as the advective velocity tends to be high in
coastal areas. For the time being, however, it is unclear whether treating 3D
advection implicitly is feasible, as it entails solving a full 3D system in parallel
(with both lateral and vertical dependencies). Another possibility would be
to use a Lagrangian-Eulerian advection scheme, similarly to the approaches
of the UnTRIM (Casulli, 1990; Casulli and Walters, 2000) and SELFE mod-
els (Zhang and Baptista, 2008). Such advection schemes, however, should be
treated with care, as they have an impact on conservation properties.

As an alternative, multi-rate time integration methods could also be inves-
tigated in order to increase the computational efficiency. In multi-rate schemes
(e.g. Constantinescu and Sandu, 2007; Schlegel et al., 2009), only the most re-
strictive elements are marched with a small time step, while the other elements
can be iterated with larger time increments. Such schemes are attractive in
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unstructured mesh models, as they can exploit the fact that the maximum
admissible time step typically varies significantly over the domain (Seny et al.,
2012). However, to be applicable in baroclinic 3D models, many improvements
are still needed: In addition to ensuring compatibility with the mode splitting
scheme and efficient parallelisation, conservation and consistency properties
are not easy to meet in multi-rate schemes.

In this work the equations are solved in Cartesian coordinates. In the case
of large scale applications, the curvature of Earth has to be taken into ac-
count. Possible choices include the traditional latitude-longitude coordinate
transform, a stereographic transform or using local element-wise coordinate
systems (Comblen et al., 2009; Bernard et al., 2009). Owing to the singu-
larity at the poles, using latitude-longitude coordinates is probably not the
best choice. Using local coordinates introduces some computational overhead,
which presumably exceeds the cost of the stereographic transformation. Nev-
ertheless, either of these approaches can be implemented in the existing model
relatively effortlessly.
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A.1 Diagonally Implicit Runge-Kutta

schemes

Runge-Kutta schemes are defined by the coefficients ai,j, bj and ci which are
usually gathered in Butcher’s tableau:

c1 a1,1 0 . . . 0
c2 a2,1 a2,2 . . . 0
c3 a3,1 a3,2 . . . 0
...

...
...

. . .
...

cs as,1 as,2 . . . as,s
b1 b2 . . . bs

.

Following (Ascher et al., 1997, section 2.6) and (Jothiprasad et al., 2003, Ap-
pendix A), respectively, the implicit Runge-Kutta schemes are defined as fol-
lows.

DIRK22
γ γ 0
1 1− γ γ

1− γ γ

γ = (2−
√

2)/2
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B.1 Temporal filter coefficients

In this work we are using a filter defined by the following generating function
(Shchepetkin and McWilliams, 2005)

A(τ) = A0

[( τ
τ0

)p(
1−

( τ
τ0

)q)
− r
( τ
τ0

)]
, τ =

m

M
, (B.1)

with parameters p, q ∈ N and r ∈ R. Let τ ∗ be the largest real root of
A(τ). Then the length of the filter is obtained as M∗ = τ ∗M and weights
are am = A(m/M),m ∈ [1,M∗]. The constant A0 is found by imposing the
constraint

M∗∑

m=1

am = 1. (B.2)

The constant τ0 is obtained from the second constraint

M∗∑

m=1

m

M
am = 1, (B.3)

which leads to a non-linear problem. It is solved with a secant method using
the initial guess

τ0 =
(p+ 2)(p+ q + 2)

(p+ 1)(p+ q + 1)
. (B.4)
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Optimizing τ0 also ensures that bm sums to unity and its centroid is close to
half.

Notice that the root τ ∗ depends on the filter type (i.e. parameters p, q and
r), but not on mode split ratio M . In contrast A0 and τ0 do depend on M , and
must be computed in the model initialization. In this work the filter p = 2,
q = 2, r = 0.2846158 is used (Shchepetkin and McWilliams, 2009).

B.2 3D vertex-based slope limiter

In this work a mass conservative vertex-based slope limiter is used. It is
applicable to deformed prismatic elements where the top and bottom faces are
not necessarily horizontal.

Given a certain node xi in the 3D mesh, a “neighbourhood” of xi is defined
as a set of elements sharing the node: P(xi) = {K ∈ P|xi ∈ K}. Consider
a scalar field T whose nodal values in element K are {TKj }N3D

j=1 . A mapping
χ(j,K) maps a node j in element K to i in the global mesh indexing, so that
TKj corresponds to node xχ(j,K).

The idea of a vertex based slope limiter is to ensure that no nodal value
TKj at xχ(j,K) can exceed the minimum/maximum mean value of the elements
sharing the node xχ(j,K). These bounds are denoted by TMin

χ(j,K) and TMax
χ(j,K),

respectively. Defining the total mass in the element K by ‖TK‖ :=
∑

j V
K
j T

K
j ,

where V K
j =

〈
ψj
〉
K

is the volume associated with node j, the limiter consists

of finding limited values T̃Kj so that

TMin
χ(j,K) ≤T̃Kj ≤ TMax

χ(j,K),

‖T̃K‖ = ‖TK‖.

The major advantage of such vertex based limiter is that it is geometry
independent, applicable to any dimension and all types of elements (Kuzmin,
2010; Aizinger, 2011).

B.2.1 Simple one-parameter limiter

A simple choice for the finding T̃Kj is to consider the convex combination
between the original values (λ = 1) and the mean value (λ = 0),

T̃Kj = λTKj + (1− λ)
‖TK‖∑
j V

K
j

.

Clearly the mass conservation criterion is met for all λ ∈ [0, 1]. Knowing the
bounds, the maximum acceptable λj is determined for each node j, and the
solution is taken as λ = minj(λj) (Kuzmin, 2010).

The advantage of this approach is that the single parameter λ can be easily
found. The drawback is that the solution is not optimal; if only a certain node
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needs to be limited, the solution may change significantly in other nodes as
well. This disadvantage becomes more severe as the dimension of the problem
is high, as with 3D elements.

B.2.2 Optimal limiter

An better limited solution can be found by requiring that the modification on
each node remains minimal. Using a conventional quadratic penalisation, one
obtains the following quadratic programming problem

minimize
∑

j

|TKj − T̃Kj |2,

‖T̃K‖ = ‖TK‖,
TMin
χ(j,K) ≤T̃Kj ≤ TMax

χ(j,K).

This problem has N3D − 1 degrees of freedom. Consequently it is more com-
plicated to solve but provides better results in 3D applications.
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