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Depending on the relative positions of voids and on the loading conditions, shear

loading components can play an important role in the void coalescence process leading

to ductile fracture. Yet, most void coalescence criteria including the original criterion of

Thomason, and its various extensions/improvements, take only normal loads into

account and neglect the contribution from shear loads to coalescence. Shear can affect

both the stress/strain at the onset of coalescence and the direction of deformation

localization. In this paper, first, the predictive capabilities of different coalescence

criteria without shear effect are critically assessed and the expressions involved in the

original Thomason criterion are fine-tuned by comparing with 3D finite element

calculations performed on a unit cell containing a spheroidal void. Then, the improved

Thomason criterion is theoretically extended—by using limit load analysis—to incor-

porate the effect of shear. The predictions of this new coalescence criterion are in good

agreement with the results produced by 3D finite element calculations, for both

loadings involving or not a shear component.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Macroscopic cracks leading to ductile failure initiate and propagate through coalescence of neighboring microscopic
voids. During plastic deformation, voids grow and change shape as well as their relative position. Initially, i.e. in the course
of stable void growth, plastic deformation is more or less uniformly distributed in the material. At some point, deformation
localizes in the ligament connecting adjacent voids while the regions off the localization plane undergo elastic unloading.
This sudden transition from uniform to localized plasticity is referred to as the onset of void coalescence. Three distinct
modes of void coalescence have been repetitively observed: (i) internal necking, (ii) shear coalescence, and (iii) necklace
coalescence.

The mode of coalescence depends on the relative positions of the voids as well as on the loading conditions. In internal

necking, also referred to as coalescence in layers (e.g. Gologanu et al., 2001b), the localization plane is (almost)
perpendicular to the main loading direction. With further deformation after the onset of void coalescence, the intervoid
ligament shrinks in a way similar to a necking process in a macroscopic specimen under uniaxial tension. Internal necking
is the most commonly observed mode of coalescence, and was the earliest to be discovered, see e.g. Argon et al. (1975) and
references therein. The schematics in Fig. 1(a) and (b), respectively, show an idealized material containing regularly
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Fig. 1. (a) An idealized material containing regularly distributed spheroidal voids – each located at the center of a cubic unit cell – in the undeformed

configuration. (b) Plastic localization in the intervoid ligament at the onset of internal necking for the material shown in (a).

Fig. 2. Plastic localization in a microshear band during ‘‘void sheeting’’.
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distributed spheroidal voids – each located at the center of a cubic unit cell – in the undeformed configuration and the
plastic localization in the intervoid ligament at the onset of internal necking.

The second most observed mode of coalescence is shear coalescence, which often occurs through the so-called ‘‘void
sheeting’’ mechanism (e.g. Cox and Low, 1974; Bandstra and Koss, 2001). As illustrated in Fig. 2, in void sheeting plasticity
localizes in microscopic shear bands containing small secondary voids; large primary voids are linked through coalescence of
these secondary voids. In their series of papers (Tvergaard, 2008, 2009; Tvergaard and Nielsen, 2010; Nielsen and Tvergaard,
2011), Nielsen and Tvergaard recently brought out this mechanism for ductile materials subject to intense shearing. However,
shear coalescence can also intervene without any secondary voids. Richelsen and Tvergaard (1994) investigated the
competition between shear coalescence and internal necking as a function of stress triaxiality and material properties.

Necklace coalescence, or coalescence in columns, as illustrated in Fig. 3, is distinguished from internal necking by the fact
that, as opposed to internal necking, the localization band is (almost) parallel to the main loading axis (Benzerga, 2000;
Gologanu et al., 2001a). This mode of coalescence occurs between row of voids elongated in the main loading direction and
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Fig. 3. (a) An idealized material containing regularly distributed spheroidal voids – each located at the center of a cubic unit cell – in the undeformed

configuration. (b) Plastic localization in the intervoid ligament at the onset of necklace coalescence for the material shown in (a). Note that, necklace

coalescence is distinguished from internal necking by the fact that, as opposed to internal necking, the localized deformation band is parallel to the main

loading axis.

C. Teko ~glu et al. / J. Mech. Phys. Solids 60 (2012) 1363–1381 1365
has a smaller effect on macroscopic ductility; yet, it is believed to be a key mechanism in ductile delamination (Benzerga
et al., 2004).

The void growth rate during the ‘‘void coalescence phase’’ is much larger than the growth rate during the stable ‘‘void
growth phase’’. For many materials, especially under moderate or low stress triaxiality, the macroscopic strain increment
during the void coalescence phase up to fracture is rather small. Therefore, in many ductile damage models, the fracture
strain is safely assumed to correspond to the value at the onset of void coalescence (e.g. Simar et al., 2010; Teko ~glu and
Pardoen, 2010). At high stress triaxiality, however, the increase in the macroscopic strain during coalescence can reach
values comparable to or even higher than the strain accumulated in the pre-coalescence regime; this requires employing
two different yield functions for the pre-coalescence and coalescence phases (e.g. Benzerga, 2002; Pardoen, 2006; Pardoen
and Hutchinson, 2003; Scheyvaerts et al., 2010). The onset of coalescence has to be accurately determined either to be used
as the fracture criterion, or to distinguish pre-coalescence and coalescence phases.

Various criteria have been postulated to determine the onset of void coalescence. The most widely used phenomen-
ological criterion relates the initiation of void coalescence to a critical porosity, whose value is assumed to depend on the
material, but not on the loading condition (e.g. McClintock, 1968, 1971; Tvergaard, 1990; Marini et al., 1985). Although it is
well known that the porosity at the onset of coalescence for a material depends on the stress triaxiality T (e.g. Pardoen and
Hutchinson, 2000), this criterion is acceptable from a practical standpoint, especially for low-porosity alloys with a well-
defined microstructure, at least in a limited range of T. Another phenomenological criterion states that fracture initiates
rapidly after the maximum effective stress has been reached (e.g. Becker, 1987; Koplik and Needleman, 1988); this
criterion is limited to radial loading conditions and shown to be acceptable only at low stress triaxiality. An early
micromechanics based criterion postulated by Brown and Embury (1973) states that, for a perfectly plastic material,
internal necking sets in when it becomes possible for two neighboring voids to be connected by microshear bands
orientated at 451 from the principal axis of the intervoid ligament. The criterion of Brown and Embury is shown to provide
qualitatively acceptable results (e.g. Pardoen et al., 1998).

A more rigorous micromechanical treatment of the onset of internal necking is given by the pioneering works of
Thomason (see Thomason, 1990 and references therein). According to Thomason’s criterion, internal necking initiates
when a plastic limit load is attained. The original criterion of Thomason, for elastic-perfectly plastic solids, is further
improved and extended for strain hardening materials by several investigators (e.g. Benzerga, 2000, 2002; Fabr�egue and
Pardoen, 2008, 2009; Lecarme et al., 2011; Pardoen and Hutchinson, 2000; Pardoen et al., 2010; Yerra et al., 2010). A
detailed review of void coalescence, concerning both experimental and theoretical studies can be found in Benzerga and
Leblond (2010), Pardoen and Bréchet (2004), or Pineau and Pardoen (2007).

Neither the original criterion of Thomason, nor its extensions/improvements take into account the contribution of shear
components on the onset of void coalescence. However, depending on the relative positions of voids and loading
conditions, significant shear loads might arise in the intervoid ligament, and play an important role in internal necking,
affecting both the stress/strain value required for the onset of coalescence and the orientation of the localization process.
Limit load analysis for void coalescence under combined tension and shear has been previously performed by Leblond and
Mottet (2008). However, unlike Thomason, Leblond and Mottet (2008) did not define a detailed velocity field over the
representative volume element (RVE). Instead, they employed an RVE that corresponds to a ‘‘sandwich’’ made of three
superposed planar layers, sound/porous/sound (see also Perrin, 1992), and assumed that, during coalescence the sound
layers become rigid while the central porous layer obeys a Gurson type yield criterion. It is worth reminding the remark of
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Leblond and Mottet (2008): ‘‘Another, probably more theoretically satisfactory possibility, would be to describe it (the

behavior of the porous layer) through some suitable extension of Thomason’s treatment of coalescence (based on detailed
analysis of the microscopic velocity field around the void) to non-axisymmetric loadings. It is not clear, however, that such
an extension could be achieved, considering the complexity of Thomason’s analysis in the simpler case he considered’’. The
main goal of this paper is to achieve this extension.

The paper is organized as follows. Section 2 gives a detailed description of the finite element (FE) calculations performed on
3D RVE’s containing a spheroidal void at the center. In Section 3, the micromechanics based criterion for the onset of void
coalescence of Brown and Embury, that of Thomason, as well as the extension of the Thomason’s criterion by Benzerga, are first
briefly summarized and then their predictions are compared with the results of the 3D FE calculations. The coefficients
involved in the criteria of Thomason and of Benzerga are then fine-tuned through comparison with the FE calculations. In
Section 4, the original Thomason criterion is extended to non-axisymmetric loadings; the extended criterion is also validated by
comparing with the 3D FE calculations, involving a shear component. Section 5 briefly discusses the results, and finally, Section
6 underlines the main conclusions of this work.

2. 3D FE calculations with a voided unit cell

Since the seminal works of Needleman (1972) and Koplik and Needleman (1988), finite element calculations performed
on model materials containing periodically distributed voids constitute a widely used method to investigate microscopic
mechanisms involved in the growth and coalescence of voids. The benefit of such FE calculations is clear considering the
difficulties in making in situ experiments of void growth rate in real materials. Most of these computational studies
assume a hexagonal lattice type periodicity for the initial void distribution, where the resulting RVE is a hexagonal
cylindrical unit cell with a void located at the center. The advantage of this is that a hexagonal cylinder can be closely
approximated by a circular one, which allows 2D axisymmetric calculations and thus reduces computational costs
considerably (see e.g. Kuna and Sun (1996) and references therein). However, non-axisymmetric loadings – involving
shear components – that will be investigated in this study require use of a 3D model. Following Thomason (1985), we
assume here that the void centers correspond to the lattice points of a simple (primitive) cubic system in the undeformed
configuration. The simplest RVE for this void distribution is a cubic unit cell, as the unit cells shown in Figs. 11 and 12.

The initial edge lengths of the unit cell are 2L10 ¼ 2L20 ¼ 2L30, which are aligned along the coordinate axes xi (i¼ 1;2,3).
The void, which is located at the center of the unit cell, is assumed to be spheroidal, and

W0 ¼
R20

R10
¼

R20

R30
, w0 ¼

R10

L10
¼

R30

L30
, f 0 ¼

p
6

R10R20R30

L10L20L30
, ð1Þ

where W0 and w0 are defined to be the initial void aspect ratio and relative void spacing, respectively, and f0 is the initial
porosity (f0 can simply be deduced from geometric considerations).

The matrix material is elastic-perfectly plastic with a Young’s modulus over yield stress ratio E=s0 ¼ 444:5 and a Poisson ratio
n¼ 0:49. Theoretical limit load analysis of a structure corresponds to a problem of a rigid, perfectly plastic material, where the
velocity field in the material is incompressible. Therefore, without loss of generality, we employed an admittedly high value for
the Poisson ratio in order to ensure near elastic incompressibility.1 If a realistic Poisson ratio – around n¼ 0:3 for many metals – is
used, the velocity field obtained after the first elastoplastic iteration is not at all incompressible. Many iterations are then
necessary to gradually modify this field to make it satisfy the incompressibility condition. A high value of Poisson ratio, n¼ 0:49,
ensures that the first elastoplastic iteration produces an almost incompressible velocity field, a condition that has to be satisfied in
limit analysis. In this sense, taking n¼ 0:49 facilitates numerical convergence.

However, it is well known from the computational mechanics literature that if n is not taken to be ‘‘sufficiently far’’
from 0.5, the stiffness matrix becomes ill conditioned, and this generates numerical problems. The experience of the
authors shows that taking n¼ 0:49 is much more beneficial than detrimental; i.e. n¼ 0:49 is sufficiently far from 0.5, and it
does not cause numerical problems.

The FE calculations are performed using the commercial software ABAQUS. A Python script is written to automate the mesh
generation, and 8-node linear brick elements (C3D8) are used for the mesh. Ten different void aspect ratio values are analyzed
(W0 ¼ 0:2,0:5,0:625,0:75,0:875,1,1:5,2,2:5,3), with 10 different relative void spacing values for each case (w0 ¼ 0:05l, with
l¼ 5, . . . ,14).

For some W�w sets, the void does not fit into a cubic unit cell. In such cases, the unit cell is enlarged in the x2 direction,
i.e. L10=L30 ¼ 1 while L20=L1041. Note that during void coalescence the regions off the intervoid ligament (the regions
above and below the void; see Fig. 8) are rigid and have no influence on the stress state in the ligament. However, if the
void is very close to the top (and bottom) boundaries, coalescence occurs in the x2�x3 plane (necklace coalescence),
instead of x1�x3 plane (internal necking). Therefore, the L20=L10 ratio is chosen large enough to avoid necklace coalescence;
otherwise, the height of the unit cell has no influence on the results. Table 1 gives the L20=L10 ratios for the configurations
where this value had to be taken larger than 1.
1 A classical result of limit-analysis is that when the limit-load is reached, the local elastic strains cease to vary. Therefore, when the limit-load is

reached, the elastic strain rates (which are zero) disappear from the equations of the problem. Consequently, the elastic moduli also disappear; plasticity

implies incompressibility, and the limit-load is independent of the values of the elastic moduli.



Table 1
W�w sets for which L20=L10 41.

W w L20

L10

1.5 0:65rwr0:7 1.2

2.0 0:45rwr0:7 1.6

2.5 0:35rwr0:7 2

3.0 0:25rwr0:7 2.4
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Although, in general, second-order elements can successfully capture stress/strain concentrations as those that
naturally arise in a unit cell with a void, we decided to use C3D8 (8-node linear brick) elements in the FE calculations.
The reason is that, here we are dealing with almost incompressible material behavior, with n¼ 0:49; the fully integrated
quadrilateral and brick elements without the hybrid formulation, such as C3D20 (20-node quadratic brick), cannot handle
the incompressible behavior as they tend to become over-constrained with increasing incompressibility, see ABAQUS
(2008a). Using hybrid elements, such as C3D20H (20-node quadratic brick, hybrid with linear pressure), on the other hand,
is beneficial only if the material behavior is fully incompressible, or almost incompressible and hyperelastic (ABAQUS,
2008a): as hybrid elements have more internal variables than their non-hybrid counterparts, they are also computation-
ally more expensive, and for almost incompressible elastic–plastic materials and for compressible materials, the advantage
they offer is not sufficient. For all these reasons, C3D8 is the most suitable element for the FE calculations performed in this
study. For each W�w set, a separate mesh convergence study is performed to ensure that the results are effectively mesh
invariant.

The macroscopic stress state of the unit cell, S, consists of a predominant axial stress (S224S11, S224S33), plus an
additional shear component (S12). In order to achieve this, displacement boundary conditions are applied by imposing the
strains E11 ¼ E33 and E12 ¼ RshE22, where Rsh defines the relative amount of shear strain. Note that similar FE simulations
involving shear stress components have also been performed, for instance, by Leblond and Mottet (2008) and Scheyvaerts
et al. (2011); a detailed description of the boundary conditions can be found in Scheyvaerts et al. (2011).2 Owing to the
symmetries involved in the loading conditions and the RVE, only one-forth of the unit cell needs to be meshed; for Rsh ¼ 0,
i.e. for no shear contribution (S12 ¼ 0), it is even enough to mesh only one-eighth of the unit cell.

The stress is measured with respect to the initial (undeformed) configuration. The overall stress components Sij are

calculated by looping over all elements: Sij ¼
PN

e ¼ 1

Pn
k ¼ 1 sk

ij vk
� �e

/
PN

e ¼ 1

Pn
k ¼ 1 vk

� �e
, where N is the total number of

elements, n is the number of integration points in an element (n¼8 for C3D8), sij and v are, respectively, the local stress

and volume values at the corresponding integration point. The macroscopic strain is defined as Eii ¼Ui=ð2Li0Þ and
E12 ¼Ut=ð2L20Þ, where Ui and Ut are, respectively, the normal and shear displacements applied at the boundaries of the unit

cell, and Li0 are initial edge lengths of the unit cell (i¼ 1;2,3).
The purpose of limit load analysis, by definition, is to determine the overall yield criterion for a given, specific

configuration, which, in this study, corresponds to a specific set of void aspect ratio W and relative void spacing w.
Therefore, in the FE calculations, the shape/size changes of the voids arising from the displacements need to be avoided. In
order to bypass the void growth phase and reach the onset of void coalescence at the well-defined initial configuration
with a perfect spheroidal void shape, the calculations are performed by switching off the non-linear geometry option in
ABAQUS (NLGEOM¼No; for technical details see ABAQUS, 2008b). As the equilibrium equations are solved on the initial
geometry instead of the deformed one (NLGEOM¼No), W ¼W0 and w¼ w0.

In limit analysis, the defined velocity field contains a positive multiplicative constant. The equivalent of this property in
the FE calculations performed here is that the absolute values of the displacements applied at the boundaries of the unit
cell (Ui and Ut) have no consequence, as long as they are large enough so that the order of magnitude of the elastic strains
in the unit cell is much smaller than the order of magnitude of the plastic strains (see Appendix for a detailed explanation
of the relationship between the equations of limit-load analysis and of the time-discretized finite element method).
Applying smaller (respectively, larger) displacements at the boundaries leads to smaller (respectively, larger) local
displacements by the same factor, but the stress field does not change. Therefore, the strains mentioned in the text and
represented in the figures are, in essence, measured with arbitrary units. This point is further explored in Section 5.

3. Micromechanics based criteria for the onset of void coalescence under tension

In this section we will first briefly review three micromechanics based criteria for void coalescence through internal
necking: (i) Brown and Embury (1973), (ii) Thomason (1990), and (iii) the extension of Thomason’s criterion by Benzerga
2 Although the FE calculations in Scheyvaerts et al. (2011) are performed under ‘‘overall plane strain conditions’’, the boundary conditions given in

the appendix of Scheyvaerts et al. (2011) represent the most general 3D case, and are used in calculations described in this paper. Also, one may note that,

for Rsh ¼ 0, imposing E11 ¼ E33 leads to S11 ¼S33; for Rsha0, however, the shear stress S12 is also different than zero and therefore the x1 and x3 axes are

not equivalent: although E11 ¼ E33, S11aS33.
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(2000, 2002). All three criteria assume that the RVE is subjected to a predominant axial stress state (S224S11, S224S33,
no shear components), where the x2 direction is perpendicular to the main axis of the intervoid ligament. Starting with the
onset of internal necking, plasticity is confined in the intervoid ligament. The regions below and above the void remain
quasi-rigid and unload elastically; therefore, the RVE goes through pure extension in the x2 direction, while macroscopic
strains are zero in the lateral (x1 and x3) directions.

Both the criterion of Brown and Embury and that of Thomason are originally built for elastic-perfectly plastic materials.
Several studies investigated the validity of these criteria (and their extensions) in comparison with mainly 2D
axisymmetric FE unit cell calculations for strain hardening materials, or with experiments (see Section 1). However,
authors are unaware of such a comparison performed with 3D FE calculations for elastic-perfectly plastic materials, for
which these criteria are supposed to produce the best agreement. This comparison will be performed in this section, and it
will allow fine-tuning of the coefficients involved in the original Thomason’s criterion, before extending it for combined
tensile and shear loadings.

3.1. The criterion of Brown and Embury

Due mainly to its simplicity, the coalescence criterion of Brown and Embury is widely used in the literature, especially for
qualitative analysis. This criterion states that coalescence starts when two voids are close enough to be connected by
microshear bands aligned at 451 to the main axis of the intervoid ligament. For a spheroidal void in the deformed configuration,
this condition is met when

w¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2
þ1

p : ð2Þ

3.2. The criterion of Thomason

In his 3D analyzes, Thomason employed a cubic RVE, as the unit cells shown in Figs. 11 and 12, but with a square cuboid
void at the center to simplify the formulation of the velocity fields. The coalescence condition then has the form

S22

s0
¼ Cf

Al

As
, ð3Þ

where Al is the area of the plane containing the intervoid ligament (x2 ¼ 0 plane in Figs. 11 and 12), As is the area of the top
surface of the unit cell (x2 ¼ L2 plane in Figs. 11 and 12), Cf is the plastic constraint factor which accounts for the change in
the load carrying capacity of the surface Al due to the presence of the void, s0 is the yield stress of matrix material, and S22

is the normal stress acting on the surface As. Postulating kinematically admissible, incompressible velocity fields in the
segment of the RVE containing the intervoid ligament (note again that the regions off the segment are rigid), Thomason
calculated upper bound estimates for S22 for various different intervoid ligament geometries. The following empirical
expression was suggested for the plastic constraint factor Cf

Cf ¼ a
R2

L1�R1

� �2

þb
R1

L1

� ��1=2

, ð4Þ

stating that taking the constants a¼ 0:1 and b¼ 1:2 produces the best agreement with the calculated S22 values. Inserting
the definition for the void aspect ratio and relative mean void spacing defined from Eq. (1), Thomason’s criterion reduces to
the following form for the cubic primitive unit cell

S22

s0
¼ ð1�Zw2Þ a 1�w

Ww

� �2

þb
1ffiffiffiwp

" #
, ð5Þ

where Z depends on Al=As; for a cubic unit cell Z¼ p=4, for a circular cylindrical (axisymmetric) unit cell Z¼ 1.

3.3. Extension of Thomason’s criterion by Benzerga

Benzerga (2000, 2002) pointed out a drawback of Eq. (5): when W goes to zero, S22 goes to infinity, i.e. Eq. (5) predicts
no coalescence for very flat voids, irrespective of the value of the relative void spacing w. This contradicts experimental
observations showing that, when loaded normal to their plane, flat cavities and penny-shaped cracks are the most harmful.
In order to solve this problem, Benzerga (2000, 2002) suggested an empirical modification to Eq. (5) as

S22

s0
¼ ð1�Zw2Þ a w�1�1

W2
þ0:1w�1þ0:02w�2

 !2

þb
1ffiffiffiwp

2
4

3
5, ð6Þ

with a¼ 0:1 and b¼ 1:3. Note however that, in most practical problems, flat voids nucleated with a small aspect ratio W

tend to open quite fast and the aspect ratio at the onset of coalescence is often not so small as to require the corrected
model (see e.g. Lassance et al., 2006).
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3.4. Comparison with the FE calculations

For the calculations in this section, Rsh ¼ E12=E22 ¼ 0 and E224E11 ¼ E33, i.e. S224S11 ¼S33 with no shear stress
contribution (see Section 2 for the technical details on the FE calculations). Fig. 4(a) shows the evolution of normalized axial
stress acting on the unit cell, S22=s0, as a function of the stress triaxiality T, for W¼0.5 with w¼ 0:4 and 0.6. The stress
triaxiality is defined as T ¼Sh=Seq, where Sh and Seq are the hydrostatic and equivalent stresses, respectively. For each
calculation – i.e. each data point in Fig. 4(a) – a different 9E11=E229 ratio is imposed corresponding to a different stress triaxiality
T; T increases with decreasing 9E11=E229 ratio, see Fig. 4(b). Note again that absolute values of the displacements applied at the
boundaries of the unit cell (Ui and Ut), i.e. absolute values of the strains Eij, do not matter as long as they are large enough so
that the elastic strains in the unit cell are much smaller compared to the plastic strains. This point is further explored in Section
5. For both w¼ 0:4 and w¼ 0:6, S22 initially increases with increasing T and converges to a value, Sc

22, when the triaxiality is
large enough and 9E119¼ 9E339C0. Sc

22 corresponds to the axial stress value required to initiate coalescence for this specific
void configuration (i.e. W�w values); this is the procedure to determine the onset void coalescence for the FE calculations
performed in this paper. For the void configuration and distribution addressed here, coalescence always occurs in the x1�x3

plane, and S22 is the macroscopic stress normal to the ligament connecting the neighboring voids (see Section 5 for a detailed
discussion about the shape and size of the localized plastic deformation band.)

Fig. 5(a) shows the evolution of w values at the onset of void coalescence as a function of W predicted by the criterion of
Brown and Embury. The criterion of Brown and Embury is purely geometric; without explicitly taking into account the state of
stress, it states that for a certain void aspect ratio W, there is a minimum relative intervoid distance w above which coalescence
initiates, and for smaller w values coalescence would not occur irrespective of the value of the axial stress S22. For instance,
according to the criterion of Brown and Embury, for W¼0.5 only wZ0:894 leads to coalescence (see the triangular data point in
Fig. 5(a)). Fig. 5(b) plots the minimum stress triaxiality required to initiate coalescence, Tc

min, as given by the FE calculations
(square data points), for several w values with W¼0.5. Tc

min increases with decreasing w value; as opposed to the prediction of
the criterion of Brown and Embury, coalescence thus occurs for every w value analyzed. A line is also fitted to the FE data
(w¼�0:1493Tc

minþ0:9532) in order to extrapolate and predict Tc
min for w values that fall outside the range evaluated in this

paper. For W¼0.5 and w¼ 0:894, Tc
min ¼ 0:396 (see the triangular data point). This supports the findings of other works (e.g.

Pardoen et al., 1998) that the criterion of Brown and Embury provides acceptable results only at low stress triaxiality, but not at
moderate to high stress triaxiality. Note that a more quantitative assessment would require comparing the coalescence strains.

Fig. 5(c) and (d) compare the FE results with the original criterion of Thomason, and the extension of Thomason’s criterion
by Benzerga, respectively, in terms of the evolution of Sc

22=s0 as a function of w, for different W values. The data points
represent the results of the FE calculations, while the solid lines represent Eq. (5) (with a¼ 0:1 and b¼ 1:2) in (c), and Eq. (6)
(with a¼ 0:1 and b¼ 1:3) in (d). The results of the FE calculations clearly show that coalescence occurs for all W�w sets: for the
same W (respectively, w) value, a smaller w (respectively, W) value requires a larger Sc

22=s0 to initiate coalescence, hence a
higher stress triaxiality. As W gets larger, Sc

22=s0 for the same w values gets closer to each other: for W¼2.5 and W¼3, the FE
data points are almost coincident in the entire w regime. Similarly, as w gets larger, the FE data points for different W values
approach each other. Fig. 5(c) shows that, for Wr0:5, the original criterion of Thomason leads to poor predictions; it severely
overestimates (respectively, underestimates) the FE data for small (respectively, large) w values. The modification of Benzerga is
indeed capable of avoiding this overestimation in the small W�w regime, see Fig. 5(d). Yet, except for W¼0.2 and wr0:4,
Benzerga’s criterion underestimates the FE data in the entire w regime for Wr2, while its predictions diverge more and more
from the FE data with increasing w. For W42, both criteria provide relatively good predictions; the original Thomason’s
criterion does a slightly better job compared to the extension by Benzerga, which has a tendency to overestimate the FE data,
mainly for w40:35. Note again that a full assessment of the accuracy would require comparing the strains at coalescence.
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Before proceeding with extension of the coalescence criterion for general loading conditions, we first fine-tune the
parameters a and b in Eqs. (5) and (6) as a function of W in order to best fit the FE data for coalescence under tension. As
the criterion of Brown and Embury provides rather poor predictions – it does not contain any information on the stress
state – we will no longer pursue this criterion.

Fig. 6(a) and (b) show, respectively, the best fits of the original criterion of Thomason, Eq. (5), and the extension of
Thomason’s criterion by Benzerga, Eq. (6), to the results of the FE calculations. The fits are obtained by fine-tuning the
parameters a and b for the corresponding W value. Fig. 7(a) and (b) show the evolution of a and b as a function of W, for
Thomason’s and Benzerga’s criterion, respectively. For Thomason’s criterion, aThðWÞ (respectively, bTh

ðWÞ) can be obtained
by fitting a line (respectively, a fifth order polynomial) to the data points:

aThðWÞ ¼ 0:0819W�0:0373, bTh
ðWÞ ¼ 0:0036W5

�0:0030W4
�0:1694W3

þ0:8499W2
�1:6743Wþ2:5022: ð7Þ

Similarly, for Benzerga’s criterion, aBeðWÞ (respectively, bBe
ðWÞ) can be obtained by fitting a third order polynomial

(respectively, a fifth order polynomial) to the data points:

aBeðWÞ ¼ 0:0426W3
þ0:1153W2

þ0:0060W�0:0312,

bBe
ðWÞ ¼�0:0616W5

þ0:5814W4
�2:1409W3

þ3:9303W2
�3:8402Wþ3:0035: ð8Þ

In their new forms, both the criterion of Thomason
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and the criterion of Benzerga
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produce excellent agreement with the 3D FE unit cell calculations for void coalescence under tension. Note that the
parameters a and b appearing in the original Thomason’s criterion, Eq. (5), were also initially proposed by fitting numerical
results obtained using assumed velocity fields.

Both bðWÞ and aðWÞ can be expressed in terms of lesser degree polynomials at the cost of a reduction in accuracy; here,
a high level of accuracy is deliberately provided to avoid contributions from the error associated with the coalescence
criterion for pure tension to the generalized coalescence model developed in the next section.

4. A void coalescence criterion for general loadings

In the following, a void coalescence criterion is developed for general loading conditions. Unlike the criterion of
Thomason – or its extension by Benzerga – for which the RVE is subjected to a predominant axial stress state with no shear
component (i.e. S224S11, S224S33, S21 ¼S23 ¼S13 ¼ 0), here, a general stress state is considered with non-zero shear
components (S224S11, S224S33, S21ð ¼S12Þa0, S23ð ¼S32Þa0, see Fig. 8).

The new criterion developed in this study depends only on the stress components S22, S21 and S23. Indeed, when
elasticity is negligible, the plastic behavior of the material is described by the theory of limit-analysis. A classical result of
limit-analysis asserts that the property of normality, if assumed to be obeyed at the local scale, also holds at the global
scale. Now consider the case [S224S11, S224S33, S21a0, S23a0, S13a0] and assume that coalescence is taking place.
Since the strain rate components D11 ¼D33 ¼D13 ¼ 0 (because the layers above and below the localization band remain
rigid), and since the components Dij are proportional to @f=@Sij (where f is the macroscopic yield function),
@f=@S11 ¼ @f=@S33 ¼ @f=@S13 ¼ 0, that is f depends only on S22, S21, and S23. This is indeed why Sc

22 is independent
of stress triaxiality T, see Fig. 4(a).

As also stated by Leblond and Mottet (2008), considering the complexity of Thomason’s analysis already in the problem
with no shear, to perform the same analysis for a general stress state based on the detailed description of the microscopic
velocity field around the void, if possible, would be a daunting task. Instead, we employ an RVE in the form of a ‘‘sandwich’’
made of three superposed planar layers, sound/porous/sound (see Fig. 8), and assume that during coalescence the sound
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Fig. 8. The sandwich model.
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layers become rigid while the velocity field in the central porous layer is given by

vðrÞ ¼D22vThðrÞþvx1 ðrÞþvx3 ðrÞ, ð11Þ

for which the strain rate tensor dðrÞ ¼ 1=2ðDvðrÞþðDvÞT ðrÞÞ reads

dðrÞ ¼D22dTh
ðrÞþdx1 ðrÞþdx3 ðrÞ, ð12Þ

where r is the position vector, and the superscript (Th) indicates that the quantity to which it refers is exactly the same as
in the original Thomason’s (or Benzerga’s) void coalescence criterion, developed for pure tension. Also, the velocities vxi ðrÞ
(i¼ 1;3, no summation on i) are defined as

vxi ðrÞ ¼

2x2

c
D2iei �lrx2r l,

�2l

c
D2iei x2o�l,

2l

c
D2iei x24 l,

8>>>>>>><
>>>>>>>:

ð13Þ

where c¼ l=L2, and ei are the unit vectors codirectional with the xi axes. The components of the strain rate tensor
associated with the velocity fields vxi ðrÞ read

dxi

2i ¼

1

c
D2i �lrx2r l,

0 x2o�l and x24 l:

8<
: ð14Þ

An upper estimate of the plastic dissipation can be given as

Pþ ðdÞ ¼/s0deqSRVE ¼ c/s0deqSband ¼ c
h
ð1�f bÞ/s0deqSsþ f b/s0deqSp

i
, ð15Þ

where /xSO denotes the average of x over the domain O, deq is the equivalent strain rate, and fb is the porosity in the band.
Note that, for a central porous band in the form of a rectangular prism and a spheroidal void shape, as shown in Fig. 8, the
ratio of fb to the total porosity in the RVE, f, reads

f b

f
¼

1

c
¼

L2

l
lZR2,

1�
l2

3R2
2

 !
3

2

L2

R2
loR2,

8>>>><
>>>>:

ð16Þ

where R2 is the radius of the void in the x2 direction. Because the stress in the porous part of the band is zero, Pþ ðdÞ reduces to

Pþ ðdÞ ¼ cð1�f bÞs0/deqSs ¼ cð1�f bÞs0
1

2

�
deqðx1,x2,x3Þþdeqðx1,�x2,x3Þ

�	 

s

, ð17Þ

and since 1
2ðaþbÞr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ða

2þb2
Þ

2

q

Pþ ðdÞrPþ þ ðdÞ ¼ cð1�f bÞs0
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r* +
s

: ð18Þ

The square of the equivalent strain rate d2
eq can be written as

d2
eq ¼

2
3 dðrÞ : dðrÞ ¼D2

22ðd
Th
eq Þ

2
þ2

3

h
2D22dTh

ðrÞ : dx1 ðrÞþ2D22dTh
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þdx1 ðrÞ : dx1 ðrÞþdx3 ðrÞ : dx3 ðrÞþ2dx1 ðrÞ : dx3 ðrÞ
i
, ð19Þ

and noting that dxi ðrÞ : dxj ðrÞ ¼ 0 for (i,j¼ 1;3; iaj)
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As dTh
eq ,dTh

21, and dTh
23 are, respectively, even, odd, and odd functions of x2, Eq. (20) reduces to

1
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and Eq. (18) becomes

Pþ ðdÞrPþ þ ðdÞ ¼ cð1�f bÞs0
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If we assume thatffiffiffiffiffiffiffiffiffiffiffiffi
f 2
þa

2

q	 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/fS2

þa
2

q
, ð23Þ

where f is a positive function and a is a positive constant, the inequality (22) can be written as

Pþ ðdÞrPþ þ ðdÞ ¼ cð1�f bÞs0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and the components of the stress tensor Sij can be found as

S22 ¼
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Now, it is straightforward to show that
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c2ð1�f bÞ
2s2

0/dTh
eqS

2
s

þ
3ðS2

21þS
2
23Þ

ð1�f bÞ
2s2

0

¼
ðPþ þ ðdÞÞ2

ðPþ þ ðdÞÞ2
¼ 1: ð26Þ

Repeating this derivation for D21 ¼D23 ¼ 0, one can show that the maximum value of 9STh
229 provided by the limit-load analysis of

Thomason is STh
22 ¼ cð1�f bÞs0/dTh

eqSs; therefore, Eq. (26) can be written as

S22

STh
22

 !2
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3ðS2
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2
23Þ

ð1�f bÞ
2s2

0

¼ 1: ð27Þ

The equality in (23) is exact only if f is constant or if a is zero. Therefore, Eqs. (24) and (27) are approximations instead of rigorous
upper bounds.

4.1. Comparison with the FE calculations

To validate the new coalescence criterion, FE calculations are performed with E11¼E33 and Rsh ¼ E12=E2240, where a
macroscopic stress state S224S11, S224S33, S12ð ¼S21Þa0 is imposed on the unit cell (for the technical details on the FE
calculations, see Section 2). Two different relative void spacing values are evaluated (w¼ 0:4, 0:6) for each of the six different
void aspect ratios (W ¼ 0:5k, with k¼ 1, . . . ,6). For each W�w set, eighteen different Rsh values are used (Rsh ¼ 0:5k, with
k¼ 0, . . . ,10;20, 30;40, 80;120, 160;200). Fig. 9 plots the axial stress S22 versus shear stress S12 for W¼0.5 and w¼ 0:4. For
each Rsh value, four sets of data are plotted, each corresponding to a different E11=E22 ratio. Between the four sets of data, for the
same Rsh, both S22 and S12 values are the smallest for the set with the largest E11=E22 ratio (¼�2�2). With decreasing E11=E22,
both S22 and S12 increase and converge to certain values, Sc

22 and Sc
12, which represent, respectively, the normal and shear

stress values required to initiate coalescence for the corresponding Rsh. Except for the data set with the largest E11=E22, all
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Fig. 9. Axial stress, S22, versus shear stress, S12, for W ¼ 0:5, w¼ 0:4, obtained by the FE unit cell calculations. Eighteen different Rsh values are used
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corresponding data points are nearly on top of each other, which ensures that S22 and S12 obtained for the smallest E11=E22 ratio
(¼�2�6/100) represent the converged values.

For the stress state of the unit cell during void coalescence, Eq. (27) reads

Sc
22 ¼STh

22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

3ðSc
12Þ

2

ð1�f bÞ
2s2

0

vuut : ð28Þ

STh
22 can be calculated using either of Eqs. (9) and (10) given in Section 3.4. The very accurate representations for the

parameters a and b involved in Eqs. (9) and (10) ensures that validation of the new coalescence criterion with shear
correction is not affected by other sources of error. Now, Eq. (28) can be validated using the results of the FE calculations;
inserting STh

22 and Sc
12 (given by the FE results) in Eq. (28) should ideally provide the same value of Sc

22 as obtained with the
FE unit cell calculations. Note however that there is still one yet undetermined parameter in Eq. (28), fb, i.e. the porosity in
the band where the internal necking is observed, which is defined in Eq. (16). Comparison of Sc

22 obtained using Eq. (28)
with the results of the FE calculations showed that the best agreement between the two is attained for a band thickness of
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Fig. 10. (a, c, e, g, i, and k) The evolution of Sc
22 as a function of Sc

12 while comparing the values of Sc
22 obtained by using Eqs. (28) and (29) with the

results of the FE calculations, respectively, for six different void aspect ratios (W ¼ 0:5k, with k¼ 1, . . . ,6), and for two w values (w¼ 0:4,0:6) at each W.

(b, d, f, h, j, and l) The error – as defined in Eq. (30) – in the predictions of Eqs. (28) and (29). Note that for each W�w set, 18 different Rsh ¼ E12=E22 values

are tested (Rsh ¼ 0:5k, with k¼ 0, . . . ,10;20,30;40,80;120,160;200).
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2l¼ 0:6R2, corresponding to an fb value of

f b ¼ 1:455
L2

R2
f ¼ 1:455

L2

wWL1
f : ð29Þ

The size and shape of the plastic deformation localization band is further discussed in Section 5.
Fig. 10(a), (c), (e), (g), (i), and (k) compare the values of Sc

22 obtained using Eqs. (28) and (29) with the results of the FE
calculations, respectively, for six different void aspect ratios (W ¼ 0:5k, with k¼ 1, . . . ,6), and for two w values (w¼ 0:4,0:6)
at each W. A separate convergence test – as shown in Fig. 9 – is performed for each W�w set. Fig. 10(b), (d), (f), (h), (j), and
(l) show the error in the predictions of Eqs. (28) and (29), which is defined as

Error ð%Þ ¼
QP

QO

����
����� 100, ð30Þ

where Oð0;0Þ is the origin of the Sc
12�S

c
22 plane, and P Sc

12

� �
FE

, Sc
22

� �
FE

� �
and Q

�
Sc

12

� �
Eqs:ð28;29Þ

�
,
�
Sc

22

�
Eqs:ð28;29Þ

�
are two data

points at which a straight line originating from the point O intersects the Sc
12�S

c
22 curves obtained, respectively, through

the FE calculations, and using Eqs. (28) and (29): 9QP9 is the distance between the theoretical and the FE results, and 9QO9
between the theoretical result and the origin. For each W�w set, the error is evaluated on eighteen different lines, each
passing from a different point Q obtained for a different Rsh value.
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Similar tendencies are observed for all W�w sets analyzed. With increasing Rsh, Sc
22 decreases while Sc

12 increases. For
the same W, both Sc

22 and Sc
12 are lower for the larger w value (w¼ 0:6), and both stress values decrease with increasing W;

the decrease in Sc
22 with increasing W is more pronounced compared to that of Sc

12. For all W�w sets, a very good
agreement is observed between the FE results and the predictions of Eqs. (28) and (29): the error remains less than � 6%
in the entire range of Rsh values. For WZ1:5, the predictions of Eqs. (28) and (29) are closer to the FE results for w¼ 0:4
than for w¼ 0:6; for Wo1:5 there is no such tendency.

5. Discussion

In its original form, the model of Thomason does not produce accurate predictions for the axial stress value required to
initiate coalescence, Sc

22, even for loadings that do not involve a shear component, and especially when the shape of the
void is flat (Wo1). Predictions of Benzerga’s model better match the FE results, especially for small void aspect ratio (W)
and small relative void spacing (w) values, for which Thomason’s model severely overestimates the FE data (see Fig. 5(d)
and (c), respectively). To improve the predictive capability of both models, the parameters a and b incorporated are fine-
tuned through comparison with the FE data and written as a function of W: bðWÞ is a fifth order polynomial for both
models, while aðWÞ is linear for Thomason’s model and a third order polynomial for Benzerga’s model (see Eqs. (7) and (8)).
The improved Thomason’s and Benzerga’s criteria (Eqs. (9) and (10), respectively) are now equally accurate in the range of
the FE calculations performed in this paper. As it inherently accounts better for penny-shaped/flat voids, Benzerga’s
criterion might be the best choice for very small W values outside the range of parameter calibration.

The new void coalescence model developed for general loading conditions is in very close agreement with the FE
results, see Section 4. In order to build the new model, we employed an RVE similar to that of Leblond and Mottet (2008)
and Perrin (1992), i.e. a ‘‘sandwich’’ made of three superposed planar layers, sound/porous/sound. The present model,
however, is much closer in spirit to that of Thomason than to that of Leblond and Mottet (2008) since it is clearly based on
limit-analysis and on a completely specified trial velocity field. In Leblond and Mottet (2008), no explicit trial velocity field
was provided, and an extra assumption that ‘‘the limit-load of the RVE may be evaluated by schematizing the RVE as a
sandwich, with Gurson’s model approximately describing the behavior of the central porous layer’’ was introduced.

The new coalescence model does not incorporate any fitting parameters other than bðWÞ and aðWÞ; both are associated
with the original criterion of Thomason (and its extension by Benzerga) which is used to calculate STh

22 (Note again that, the
parameters a and b appearing in the original Thomason’s criterion, Eq. (5), were also initially proposed by fitting numerical
results obtained using assumed velocity fields). As also pointed out by Benzerga and Leblond (2010), knowledge of the
exact shape and size of the localized plastic deformation band is not needed for coalescence under pure tension. For
coalescence under general loading, however, the porosity in the localized plastic deformation band, fb, and therefore, the
size of the band directly enters the coalescence criterion. Fig. 11 shows the equivalent plastic strain distribution at the
onset of void coalescence for W¼0.5 and (a) w¼ 0:4, Rsh ¼ 0, (b) w¼ 0:6, Rsh ¼ 0, (c) w¼ 0:4, Rsh ¼ 5, (d) w¼ 0:6, Rsh ¼ 5, (e)
w¼ 0:4, Rsh ¼ 20, (f) w¼ 0:6, Rsh ¼ 20, where Rsh ¼ E12=E22 is the ratio of the shear strain to the axial strain. In all these cases,
plastic strain is confined in the intervoid ligament – concentrating mainly in the close neighborhood of the void – while
the remaining parts of the unit cell unload elasticity. However, the thickness of the localized deformation band (2l) as well
as the magnitude of the strain concentration (SC) depend on both the relative void spacing w and the strain ratio Rsh: l and
SC are lower for the larger w value, and for both w values, l decreases while SC increases with increasing Rsh. Fig. 11 clearly
shows that the localization band has an irregular shape, and fb is a state variable which should ideally depend on the void
shape/size and on the stress state of the unit cell. Here, however, for convenience, we assumed that the localization band is
a rectangular prism whose thickness depends solely on the void radius aligned in the direction of the predominant axial
stress (R2). In this case, the maximum fb for a spheroidal void is attained when the thickness of the band 2l goes to 0, with
f max

b ¼ 1:5ðL2=R2Þf (where L2 is the half length of the RVE and f is the overall porosity in the RVE, see Eq. (16). As shown in
Fig. 10, the best agreement between the new coalescence criterion and the FE results is obtained for a band thickness of
2l¼ 0:6R2, for which the porosity in the band reads f b ¼ 1:455ðL2=R2Þf . Note that the optimal value of fb is very close to
f max

b ; this is satisfactory. Indeed, in limit-analysis, the best value of the limit-load that can be provided, i.e. the minimum
value of the theoretical limit-load, correspond to f max

b ; this, however, is not rigorously true here because of the
approximations introduced in the analysis performed in Section 4.

The strain levels in Fig. 11 might seem rather large to allow performing the calculations while switching off the non-linear
geometry option (NLGEOM¼No; for technical details see ABAQUS (2008b)). As explained in Section 2 (and in Appendix), in
order to guarantee that the limit load is reached, i.e. the order of magnitude of the elastic strains in the unit cell is much smaller
than the order of magnitude of the plastic strains, we applied rather large displacements for all void configurations (W�w sets).
Fig. 12(a) and (b) show the equivalent plastic strain distribution at the onset of void coalescence for W ¼ 0:5, w¼ 0:4, Rsh ¼ 0, as
in Fig. 11(a), but, compared to Fig. 11(a), the absolute values of the displacements applied at the boundaries of the unit cell are
10 times smaller in (a), and 20 times smaller in (b). It is clear that the thickness and the shape of the localized deformation
band, as well as the relative magnitude of the strain concentration in the band are virtually the same in all three figures.
Fig. 12(c) shows the stress–strain diagram for the unit cell with W ¼ 0:5,w¼ 0:4,Rsh ¼ 0. We clearly see that the rather small
initial elastic deformation regime is followed by a large perfectly plastic regime. From left to right, the cross signs indicate the
axial stress value required to initiate coalescence, Sc

22, for the calculations performed in Figs. 12(a) and (b) and 11(a), respectively.
The value of Sc

22 is only 0.11% (resp. 0.5%) less for Fig. 12(a) (resp. Fig. 12(b)) compared to Fig. 11(a). Note also that each cross sign
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Fig. 11. Distribution of equivalent plastic strain at the onset of void coalescence for W¼0.5 and (a) w¼ 0:4, Rsh ¼ 0, (b) w¼ 0:6, Rsh ¼ 0, (c) w¼ 0:4, Rsh ¼ 5,

(d) w¼ 0:6, Rsh ¼ 5, (e) w¼ 0:4, Rsh ¼ 20, (f) w¼ 0:6, Rsh ¼ 20, where Rsh ¼ E12=E22 is the ratio of the shear strain to the axial strain.
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is located at the applied macroscopic strain value for the corresponding calculation, i.e. E22 ¼ 0:05, ¼ 0:005, ¼ 0:0025 for,
respectively, Figs. 11(a) and 12(a) and (b). To summarize, applying smaller (respectively, larger) displacements at the boundaries
leads to smaller (respectively, larger) local displacements by the same factor, but the stress field does not change. This justifies
again switching NLGEOM off for the calculations performed in this paper.

To emphasize again, here we focus on the coalescence of voids while suppressing the void growth phase to maintain the
prescribed void shape at coalescence. When, however, a coalescence model itself is incorporated into an FE code to
investigate ductile fracture of a sample or of a structure, geometry changes should be taken into account in the damage
model, with an update of the criterion at every time step (for details see e.g. Tvergaard, 2008, 2009, and recently Dahl et al.,
2012). One may note that the development of the original Thomason model followed exactly the same steps: first, the
model was developed with the aid of limit analysis, where the limit load was defined without accounting for geometry
changes; then the model was connected to a damage model accounting for such changes.

Accurate modeling of coalescence under general loading conditions is vital when dealing with problems such as
‘‘cup–cone’’ fracture of smooth axisymmetric specimens, investigated by several authors; e.g. Besson et al. (2001), Devaux
et al. (1992), and Tvergaard and Needleman (1984). In this problem, the final deviation of the crack plane from its original
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E22 ¼ 0:05, ¼ 0:005, ¼ 0:0025 for, respectively, Figs. 11(a), 12(a), and 12(b).

C. Teko ~glu et al. / J. Mech. Phys. Solids 60 (2012) 1363–1381 1379
orientation is at 451, implying that the local stress state at the crack tip includes a large shear component. Other examples
involve some forming or cutting operations including large shear deformations. In the course of ductile crack growth in
mixed mode (mode I and mode II) conditions, shear stress components are suspected to play an important role (see e.g.
Xue et al., 2010 and references therein); for a large KII=KI ratio, that is if high shear stresses are imposed, the crack
propagates along its original direction, which, most probably, coincides with a shear band that develops in this direction.
Following the same lines as, for example, in the work of Pardoen et al. (2010) dealing with inclined soft bands undergoing
large shear deformations, such interesting problems can be investigated through large scale FE models by implementing
the coalescence model developed here into FE codes.
6. Conclusions

The outcome of this study is twofold; the original void coalescence model of Thomason has been: (i) improved by fine-
tuning its coefficients and (ii) extended for general loading conditions. A very extensive set of FE calculations has been
performed on 3D voided unit cells and used as the benchmark against the theoretical predictions in both parts of the study.
The main conclusions of this study are:
�
 The new coalescence criterion developed for general loading conditions involving shear, Eq. (27), produces very
accurate predictions: the error remains less than � 6% for the entire range of FE calculations performed for various void
configurations and various loading conditions.

�
 The improved criterion of Thomason and of Benzerga for pure tension (Eqs. (9) and (10), respectively) are equally and

highly accurate over the large range of FE calculations performed in this paper. Compared to Thomason’s original
criterion, the extension of Benzerga has the advantage that it works much better for penny-shaped/flat voids even in its
original form and is thus a good choice for very small void aspect ratio values, falling outside the range examined in
this paper.
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�
 The criterion of Brown and Embury (Eq. (2)) is purely geometric and does not take the stress state into account. In
contradiction with the FE calculations, it states that for a certain void aspect ratio W there is a minimum relative
intervoid distance w below which coalescence cannot initiate, irrespective of the stress state. However, this criterion
can still provide qualitative predictions for coalescence under low stress triaxiality.

Appendix A. Plastic limit-load analysis with the finite element method

Plastic limit-load analysis of a structure O corresponds to a problem of small strain plasticity with no elasticity, which
can be expressed through the following equations:

div r¼ 0

d¼
1

2
frXvþ½rXv�Tg

f ðrÞr0

d¼ _Z @f

@r
ðrÞ

_Z
¼ 0 if f ðrÞo0

Z0 if f ðrÞ ¼ 0

(

8>>>>>>>>>>>><
>>>>>>>>>>>>:

in O,

þBoundaryconditions: ðA:1Þ

In these equations, X is the position vector in the initial configuration, v the velocity, d the strain rate, r the stress
tensor, f ðrÞ the von Mises yield function, and Z the plastic multiplier.

Assume that, to solve this problem, the finite element method is used with an implicit (backward Euler) algorithm for
the projection of the elastic stress predictor onto the yield locus, in a single large step with no geometry update. Let r0 ¼ 0,
r1, e0 ¼ 0, e1, u0 ¼ 0, u1 denote, respectively, the initial (subscript ‘‘0’’) and the final (subscript ‘‘1’’) stresses, strains, and
displacements for the structure O. Provided that the load increment is large enough to ensure that the order of magnitude
of the elastic strains in the structure is much smaller than the order of magnitude of the plastic strains, the equations of the
time-discretized problem read:

div r1 ¼ 0

e1 ¼
1

2
frXðu1Þþ½rXðu1Þ�

T g

f ðr1Þr0

e1�e0 ¼ e1CDZ@f

@r
ðr1Þ

DZ
¼ 0 if f ðr1Þo0

Z0 if f ðr1Þ ¼ 0

(

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

in O,

þBoundary conditions: ðA:2Þ

The equation systems in A.1 and A.2 are equivalent; r, v, and d in A.1 correspond, respectively, to r1, u1, and e1 in A.2.
The key point here is that, in the discretized flow rule, @f=@r is taken at the point r1 instead of r0 ¼ 0.

The equivalence of A.1 and A.2 leads to the conclusion that a problem of plastic limit-load analysis can be solved by the
standard elastoplastic finite element method, if the load is applied in a single step sufficiently large to ensure that the elastic
strains in the structure are much smaller than the plastic strains. Note again that the equation system A.2 is derived with
respect to the initial (undeformed) geometry; while performing the FE calculations with ABAQUS, this is taken into account
by employing the ‘‘NLGEOM¼No’’ option. From the results of the FE calculations, one may obtain the plastic limit-load
(from the stresses), the velocity field (which is proportional to the displacement field), as well as the strain rate field (which is
proportional to the strain field).
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