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The choice for parametric techniques in the dis-
cussion article is motivated by the claim that for
multivariate extreme-value distributions, “owing to
the curse of dimensionality, nonparametric estima-
tion has essentially been confined to the bivari-
ate case” (Section 2.3). Thanks to recent develop-
ments, this is no longer true if data take the form
of multivariate maxima, as is the case in the arti-
cle. A wide range of nonparametric, rank-based
estimators and tests are nowadays available for
extreme-value copulas. Since max-stable processes
have extreme-value copulas, these methods are ap-
plicable for inference on max-stable processes too.
The aim of this note is to make the link between
extreme-value copulas and max-stable processes ex-
plicit and to review the existing nonparametric in-
ference methods.

1 Extreme-value copulas

Let the random variables Y1, . . . , YD represent the
maxima in a given year of a spatial process (e.g.
rainfall) that is observed at a finite number of sites,
x1, . . . , xD, in a region X in space Rp (typically,
p = 2). Let F1, . . . , FD be the marginal cumula-
tive distribution functions, assumed to be contin-
uous. In the article, these are assumed to be uni-
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variate generalized extreme-value distributions, an
assumption that will not be needed here.

The random variables Ud = Fd(Yd) are uni-
formly distributed on the interval (0, 1) and the
joint cumulative distribution function C of the vec-
tor U1, . . . , UD is the copula of the random vector
Y1, . . . , YD:

C(u1, . . . , uD) = Pr(U1 ≤ u1, . . . , UD ≤ uD), (1)

for 0 ≤ ud ≤ 1. The requirement that the random
vector Y1, . . . , YD is max-stable entails

Cm(u
1/m
1 , . . . , u

1/m
D ) = C(u1, . . . , uD) (2)

for all m > 0. In [18], it was shown that (2) holds
if, and only if,

C(u1, . . . , uD) = exp{−r A(v1, . . . , vD)}. (3)

where r = −
∑D
d=1 log ud and vd = −r−1 log ud.

The domain of the Pickands dependence function A
is the unit simplex, SD = {v ∈ [0, 1]D :

∑
d vd = 1}.

A necessary and sufficient condition for a function
A on SD to be a Pickands dependence function is
that

A(v1, . . . , vD)

=

∫
SD

max(v1s1, . . . , vDsD) dM(s1, . . . , sD), (4)

for a Borel measure M on SD verifying the con-
straints

∫
SD sd dM(s1, . . . , sD) = 1 for all d ∈

{1, . . . , D}. In particular, A is convex and
max(v1, . . . , vD) ≤ A(v1, . . . , vD) ≤ v1 + · · · + vD.
In dimension D = 2, these two properties com-
pletely characterize Pickands dependence functions
(but not if D ≥ 3).
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2 Max-stable models

The representation in (3)–(4) is valid for general
max-stable copulas and therefore also holds for the
finite-dimensional distributions of the max-stable
processes considered in Section 6 in the article. The
purpose of this section is to make this relation ex-
plicit.

Consider the simple max-stable process

Z(x) = max
j≥1

[Sj max{0,Wj(x)}], x ∈ Rp, (5)

where {Sj}∞j=1 are the points of a Poisson process

on R+ with rate s−2ds and where W1,W2, . . . are
iid replicates of a stationary stochastic process W
on Rp, independent of the previous Poisson pro-
cess, and such that E[W+(x)] = 1, where we write
W+(x) = max{0,W (x)}. Particular cases of this
model include the so-called Smith model [24], the
Schlather model [22] and the Brown–Resnick model
[12].

The stationary, marginal distribution of Z(x) in
(5) is unit-Fréchet and the joint distribution func-
tion of the vector Z(x1), . . . , Z(xd) is given by

Pr[Z(x1) ≤ z1, . . . , Z(xD) ≤ zD]

= exp[−µ({(s, w) : maxd(w
+(xd)/zd) > 1/s})],

for zd > 0, where µ is the intensity measure of
the Poisson point process {(Sj ,Wj)}∞j=1. A simple
calculation shows that

Pr[Z(x1) ≤ z1, . . . , Z(xD) ≤ zD]

= exp
(
−E[maxd{W+(xd)/zd}]

)
.

As a consequence, the copula of Z(x1), . . . , Z(xD)
is given by the extreme-value copula with Pickands
dependence function

A(v1, . . . , vD) = E[maxd{vdW+(xd)}] (6)

for (v1, . . . , vD) ∈ SD. As illustrated by the compu-
tations in [5], the integral arising in (6) can rarely
be calculated analytically, unless D = 2.

To recover the spectral measure M in (4) from
the distribution of the stochastic process W , let
R =

∑
dW

+(xd). On the event R > 0, consider the
random vector (W+(x1), . . . ,W+(xD))/R. Then

dM(s1, . . . , sD) =

Pr(R > 0) E[R | ∀d : W+(xd)/R = sd;R > 0]

Pr[∀d : W+(xd)/R ∈ dsd | R > 0].

3 Estimation

Nonparametric estimators of the Pickands depen-
dence function are surprisingly easy to construct
and calculate. The starting point is the simple fact
that for u ∈ [0, 1] and for (v1, . . . , vD) ∈ SD, the
extreme-value copula C with Pickands dependence
function A satisfies

C(uv1 , . . . , uvD ) = uA(v1,...,vD), (7)

as can be verified from (3). Using (7), the function
A can be recovered from the copula C in various
ways, for instance, through integrals of the form∫ 1

0

f
(
C(uv1 , . . . , uvD )

)
g(u) du

=

∫ 1

0

f(uα) g(u) du, α = A(v1, . . . , vD) (8)

for well-chosen functions f and g. Plugging estima-
tors for C and solving for α then yields estimators
for A.

A natural estimator for C is the empirical cop-
ula. Let (Yi1, . . . , YiD), for i ∈ {1, . . . , n}, be an in-
dependent random sample from a distribution with
continuous margins and copula C. The empirical
copula is defined as

Cn(u1, . . . , uD)

=
1

n

n∑
i=1

I{Fn1(Yi1) ≤ u1, . . . , FnD(YiD) ≤ uD},

(9)

where Fnd is the (marginal) empirical distribution
function of Y1d, . . . , Ynd. Being based on multivari-
ate ranks, the empirical copula is invariant under
monotone transformations of the data. The em-
pirical copula goes back to the seminal paper by
Rüschendorf [21] and has been studied and applied
intensively, such as recently in [23, 25, 26].

Inserting the empirical copula into (8) and solv-
ing for A(v1, . . . , vD) produces simple and (almost)
explicit estimators. Particular instances are the
Pickands estimator [6, 9, 11, 19] and the Capéraà–
Fougères–Genest estimator [4, 9, 11]. The bivari-
ate versions of these estimators are special cases of
the weighted estimator in [17]. Minimum-distance
estimators are another instance of this technique
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[3]. Standard errors can be obtained via resampling
[2, 20] or via empirical likelihood [17].

A drawback of the nonparametric estimators of A
is that they typically do not produce valid Pickands
dependence functions—remember the representa-
tion in (4) that such functions must satisfy. A way
to overcome this issue is by projecting a possibly in-
valid pilot estimator An onto the family of Pickands
dependence functions, yielding

Aproj
n = arg min

A∈AD

∫
SD

(An −A)2, (10)

where AD denotes the family of all Pickands depen-
dence functions in dimension D and where the inte-
gral is with respect to some measure on SD. In gen-
eral, the infinite-dimensional least-squares problem
in (10) does not admit an explicit solution. Ap-
proximate solutions can be obtained by perform-
ing the minimization over the (finite-dimensional)
class of Pickands dependence functions with dis-
crete spectral measures supported on a given, finite
grid [7, 11].

Finally, note that a nonparametric estimator
An can be transformed into a parametric one
via minimum-distance or projection techniques: in
(10), replace AD by the parametric model of in-
terest. If the model happens to be specified via
the point process representation (5), then this tech-
nique requires the calculation of the Pickands de-
pendence function A via (6).

4 Testing

Nonparametric methods are particularly suitable
for hypothesis testing. Of special interest are
the hypothesis of max-stability in general and the
goodness of fit of a parametric model in particu-
lar. In most cases, critical values are computed via
resampling methods.

Even if the data at hand are vectors of
component-wise maxima, it is a good idea to test
whether it is safe to assume that the underlying
distribution is max-stable, in particular, when the
end-goal is to perform prediction and/or extrap-
olation. For bivariate extreme-value copulas, the
first two moments of the random variable W =
C(U1, U2) = F (Y1, Y2) happen to satisfy a partic-
ular linear relation. The sample moments of the

random variables Wn1, . . . ,Wnn defined by

Wni =
1

n

n∑
t=1

I(Yt1 ≤ Yi1, Yt2 ≤ Yi2)

can therefore be converted to a test statistic for the
null hypothesis of max-stability [1, 10].

Another approach for testing max-stability is by
comparing the empirical copula Cn in (9) with the
extreme-value copula that has a given estimator An
as its Pickands dependence function. For the bi-
variate case, Cramér–von Mises tests based on the
Pickands and Capéraà–Fougères–Genest estimators
are described in [3, 15].

Finally, the adequacy of the hypothesis of max-
stability can be tested by directly exploiting the
copula max-stability relation (2) through a compar-

ison of Cn(u1, . . . , uD) with Cmn (u
1/m
1 , . . . , u

1/m
D )

for various values of m > 0. Cramér-von Mises
type test statistics turn out to be particularly ef-
fective [13].

The goodness of fit of a parametric model can
be tested by comparing the fitted parametric es-
timator for A with a nonparametric one [8]. For
max-stable models arising through the point pro-
cess representation in (5), the function A has to
be computed through the relation (6). Shape con-
straints such as exchangeability can be tested sim-
ilarly [16].

5 Conclusion

Nonparametric methods yield an attractive alter-
native inference method for max-stable depen-
dence. Estimators and test statistics of the
Pickands dependence function are (almost) explicit,
even in the general, multivariate case. Moreover,
as the procedures are based upon the ranks of the
data only, the step of modeling the margins can be
skipped (which is not to be confused with the false
statement that the uncertainty on the margins has
been eliminated altogether). Many of the methods
described in this contribution are implemented in
the R package copula [14].
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