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Université catholique de Louvain

B-1348 Louvain-la-Neuve - Belgium
{dooms,yde,pdupont}@info.ucl.ac.be

Abstract

The analysis of biochemical networks is mainly done using relational or procedural lan-
guages. Combining or designing new analyses requires lot of programming effort that cannot
be reused for other analyses. To overcome these limitations, we introduce CP(BioNet) a new
constraint programming domain for the analysis of biochemical networks. Analyses are for-
mulated using constraints over graph domain variables. The constraints are then solved by
a constraint solver designed for biochemical networks. This provides a flexible and powerful
approach as simple analyses can then easily be combined to form complex ones. We focus here
on constrained path finding, finding a path from node A to node B in a graph with additional
constraints, such as requiring this path to include a predefined set of mandatory intermediate
nodes. Constraints for path finding are introduced and their implementation (propagators) is
described. A prototype is presented and constrained path finding experiments are performed
and analyzed to illustrate the benefits of this new approach.

Keywords: Biochemical networks, Network analysis, Constraint programming, Graph analy-
sis.

1 Introduction

Biochemical networks are generally subdivided into three types: metabolic, regulatory and signal
transduction networks. Metabolic networks describe proteins, genes, reactions, etc and focus on the
way matter flows in cells. In regulatory networks, the focus is on the way different controls (catalysis
of a reaction, regulation of the expression of a gene, inhibition of a catalyst, etc) affect each other,
for instance negative feedback loops. Signal transduction networks focus on the flow of information
in the cell and its environment, e.g. the way information flows through the cell membrane to affect
gene expression.

Biochemical networks are frequently represented in specialized databases [9] dedicated to one
particular network type. For instance, KEGG(LIGAND) (genes, enzymes, reactions) [17] focuses
on metabolic data and the BIND database [3] focuses on protein interactions. By contrast, the
EcoCyc [21] and aMAZE [1, 23] projects use models integrating metabolic, regulatory and signal
transduction information. Biochemical networks can then be viewed as (complex and typed) graphs
in these integrated models, as detailed in Section 2.2.

Analyzing biochemical networks is an important issue to improve the understanding of the
working of a cell. The analysis of such networks typically consists in answering (parameterized)
queries such as:

– find the process(es) transforming A into B in less than X steps,
– find the genes whose expression is affected by entity A,
– find the compounds deriving from a given entity A in less than X steps,
– find the pathways including the list L of entity, ligand, reaction, etc.

Several projects (aMaze [1], KEGG [25], BioCyc [21], Um-BBD [11], Emp [12], PathDB [31],
CSNDB [32]) provide a set of predefined queries as those listed above. Such queries cover several
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analyses thanks to the choice of their parameters (denoted in capitals in our examples). Avail-
able queries are however usually limited to simple ones which can be answered by the database
management system or by simple ad-hoc routines.

More advanced queries are interesting from a biological viewpoint but they may require a sig-
nificant design and programming effort while covering less generic analyses. Combining and/or
extending analyses, as well as designing new analyses require lot of programming effort that cannot
be reused for other analyses.

Objective We propose here a constraint programming approach for the analysis of biochemical
networks. An analysis will be expressed as a combination of constraints. The constraints are
then solved by a constraint solver designed for biochemical networks. This provides a flexible and
powerful approach as simple analyses can then easily be combined to form complex ones. In this
paper, we focus on path finding, a classical and large family of analyses. constrained path finding
consists in finding a path (without repeated nodes) from node A to node B in a graph with additional
constraints, such as requiring this path to include a given set of mandatory intermediate nodes. As
described in Section 3, this problem is NP-hard in the number of mandatory intermediate nodes.
This research is part of the interdisciplinary BioMaze research project, conducted in collaboration
with bio-informaticians.

Results The first contribution of the present work is the introduction of CP(BioNet), a new com-
putation domain in constraint programming dedicated to the analysis of biochemical networks. We
also propose a set of constraints that can be used for constrained path finding. A first implementa-
tion, based on the Oz-Mozart constraint programming [26], is also described. Experimental results
showing the feasibility of this approach are discussed.

Outline Section 2 presents some background information and related work on constraint pro-
gramming and biochemical networks modeling. Section 3 describes our approach for CP(BioNet):
the definition of a new type of domain variables and new constraints on these variables. This frame-
work enables an easy formulation of new and complex analyses. Graph domain variables and their
implementation are described in Section 4. The current constraints on graph domain variables are
detailed in Section 5. Section 6 describes our experiments and a discussion of the results. Section 7
concludes this paper and presents ongoing and future work.

2 Background

We give below some basic introduction to constraint programming and the biochemical network
modeling used in the present work. Related works are also discussed.

2.1 Constraint programming

Constraint programming (CP) is an emergent software technology for declarative and effective solv-
ing of large, particularly combinatorial, problems in areas such as planning, scheduling, sequencing,
resource allocation, design and configuration [37, 38, 24, 4]. Solving such problems is, in general,
NP-hard. Designing efficient algorithms for a specific problem can be difficult. Constraint pro-
gramming, or more generally, the specification of a problem as a Constraint Satisfaction Problem
(CSP), can be a flexible and efficient approach.

A CSP is composed of a set of variables; each variable having a finite domain of possible
values, and a set of constraints on the variables. The objective is to find an assignment of the
variables that satisfies all the constraints. One may also be interested in finding one, all, or the best
assignment(s) according to some evaluation function. The objective of constraint programming is
to provide methods, techniques and tools to solve CSP. The hope is to reduce the development time
while preserving the efficiency of specialized algorithms.

To solve a CSP, the space of possible assignments is searched for a valid assignment: an assign-
ment which satisfies all the constraints. Pruning and information propagation are used to speed-up
the search process. Some parts of this space can be pruned by detecting some partial assignments
which will never lead to a solution. Information propagation consists in adjusting the domains of
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a variable considering the domain of other variables and a constraint linking the first variable to
the others. The search is often depth-first and may lead to a non-valid assignment; in that case the
search engine either performs backtracking or restores the previously saved state of the search in
order to try other branches of the search space.

In the following example: X and Y are integer domain variables, their initial domain is set
to respectively [1, 6] and [0, 4]. This means a valuation for these variables must assign an integer
value between 1 and 6 to X and between 0 and 4 to Y . Suppose a constraint on X and Y states
that X + Y = 3. The CSP solver must find a valuation of X and Y satisfying the constraint.
A propagator, a routine reducing the domains of X and Y , is associated to the constraint. The
CSP solver runs this propagator and deduces X ∈ [1, 3] and Y ∈ [0, 2]. Now, the CSP solver tries
two branches: one where X = 1 and one where X 6= 1. In the first branch, a second round of
propagation deduces Y = 2, this is a solution to the CSP. In the second branch, the domains are
X ∈ [2, 3], Y ∈ [0, 2], then after propagation, Y ∈ [1, 2]. This is not a solution and the CSP solver
will have to try further branches.

2.2 Biochemical network modeling

An object-oriented representation of biochemical networks is developed in the aMAZE database
project [1, 35, 34, 9]. This model contains three main classes of objects from which all other classes
inherit: bio-entities, transformations and controls as depicted in Figure 1.

Bio-entities are molecules found in a biochemical network: proteins, compounds, genes, mRNA,
enzymes, ligands, mineral molecules like water or oxygen, etc. Transformations are mechanisms
involving only bio-entities: reactions transforming a set of molecules into another set of molecules,
translation of mRNA into a protein, expression of a gene into mRNA, etc. Controls are mechanisms
where bio-entities affect transformations and controls themselves: catalysis of a reaction by an
enzyme, ligand being an antagonist of a catalysis, protein that regulates the expression of a gene,
etc.

Figure 1: A small biochemical network in the object-oriented model containing bio-entities, trans-
forms and controls.

While the object-oriented model is very useful as a database model, a graph model is more
appropriate for constrained path finding. Biochemical networks can also be viewed as graphs. The
nodes of such graphs are of any of the three basic classes and arcs represent logical relations between
nodes. Attributes are associated to the nodes. The information extracted from the database and
stored in the node attributes varies according to the type of analysis. This representation model is
rich compared to reaction or compound graphs where nodes are respectively restricted to reactions or
compounds. It allows specialized and complex analyses of biochemical networks. For understanding
purposes, we will only consider non-oriented simple graphs in the remaining of this work. The
reasonings and algorithms exposed here can easily be extended to oriented simple graphs.

2.3 Related work

An overview of data models for the analysis of biochemical networks can be found in [9]. Most of
the existing approaches for the analysis of biochemical networks are based on graph algorithms;
the implemented algorithms are either classical graph algorithms or ad-hoc extensions of such
algorithms. A simple graph representation has been used in [13, 40] for the analysis of topological
properties (connectivity, length, statistical properties, ...). Simple graphs are also used in [28] for
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the detection of functionally related enzyme clusters. In [20] metabolic networks of 43 organisms
are modeled as bipartite graphs, permitting a systematic comparative analysis showing that these
metabolic pathways have the same topological scaling properties. Bipartite graphs have also been
used in [33, 36] for the analysis of metabolic networks stored in KEGG. The authors analyze global
structural properties, and different graph analysis operations, such as path finding are proposed,
using classical graph algorithms.

In bioinformatics, constraint programming has been used for some particular problems; see [2]
for a survey of bioinformatics and constraints. In the context of biochemical networks, satisfaction
techniques have already been introduced for solving specific problems of graph analysis such as
graph pattern matching [30, 22] and system modeling [6].

The definition of a specific computation domain for biochemical networks, as well as the intro-
duction of graph domain variables is novel in constraint programming. However, these extensions
benefits from existing constraint programming techniques such as graph algorithms in global con-
straints [5], finite set variables [10, 15], and constrained route planning [29].

3 CP(BioNet)

The analysis of biochemical networks is usually performed using query languages of relational
databases (SQL) or procedural programming. SQL is used for simple queries and ad-hoc algo-
rithms are designed and programmed when the query is too complex for SQL (too many joins).
The former approach is essentially declarative as the programmer states criteria on the values of
the rows of some given tables. In the latter approach, the programmer writes the sequence of op-
erations to compute the solution to each query. While enabling to answer more complex biological
queries, the procedural approach has a major drawback. Even a slight query change may require
significant modifications of the program. Sometimes a completely new algorithm must be designed
and programmed from scratch.

The use of constraint programming, a declarative paradigm, partially solves this problem. Most
of the time, a slight difference in the query will only imply the addition or suppression of a few
constraints in the model. In the worst case, a new constraint and its propagator will have to be
designed. Designing a new constraint can be difficult but the addition of such a new constraint to
the existing set of supported constraints in CP(BioNet) will probably pay off by enabling a large
number of new queries to be answered.

Many queries, such as those listed in Section 1, can be formulated as finding a certain non-
oriented subgraph of the complete non-oriented graph representing the whole database. The con-
strained path finding is such a query since a path is a particular type of subgraph. The aim
of CP(BioNet) is to allow complex analyses of biochemical networks represented as graphs. In
CP(BioNet), an analysis is defined as a set of constraints on graph domain variables (gd-variables).
A domain of this new type of domain variables consists in a set of graphs. Several biochemical
network analyses can be specified using constraints on gd-variables. Queries like ”Find the process
transforming A into B in less than X steps”, ”Find all the paths expressed by a set of genes” or
”Show how gene G is affected by entity E” are typical examples. They are translated into, respec-
tively, ”Find a path from A to B of length less than X, going only through entities and transforms”,
”Find the biggest subgraph containing no other gene than those given and respecting common bio-
chemistry semantics rules (e.g. discard a reaction if its catalyst or one of its substrate is missing)”,
or ”Find all the paths from any regulation node attached to the expression of gene G and node A”.

The constrained path finding problem illustrates the benefit brought by the declarative nature
of constraint programming. A particular instance of this problem is to find a path from node ns

(e.g. associated to bio-entity A) to node ne (e.g. associated to bio-entity B) with an additional
constraint: all the nodes in a given set of nodes {ni1, ni2, . . .} must belong to the path. This
problem can be formulated with two simple constraints (described in Section 5) in CP(BioNet).
A procedural approach would be significantly more complex. This approach also allows to exploit
the information associated to the nodes (type and attributes) to further constrain the path. For
instance, one could require a path containing a reaction catalyzed by an enzyme of a given family,
or a path containing at most three kinases.

An algorithm to find a path from node ns to node ne is a simple breadth-first search, which
returns the shortest path between these nodes. With the addition of an intermediate mandatory
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node ni, the problem becomes to find two disjoint paths from ns to ni and from ni to ne. A
trivial algorithm would simply list all possible paths from ns to ne and find one going through
ni. However the number of possible paths is exponential in the number of nodes in the graph.
With more than one intermediate node, the order of the intermediate nodes in the path must be
considered. The number of permutations of the intermediate nodes is multiplying the number of
disjoint paths to consider. This problem is actually NP-Hard in the number of intermediate nodes
since the Hamiltonian path problem (finding a path visiting each node of a graph exactly once) is
a special case of the intermediate nodes problem. Constraint programming has been used many
times to tackle instances of NP-hard problems (TSP [7], TSPTW [14], Scheduling [27], etc).

The current implementation of CP(BioNet) serves as a proof of concept. It includes the design
of a data-structure for the gd-variables and the design and implementation of propagators for the
associated constraints.

4 Graph domain variables

Most constraint programming platforms support three types of domain variables: boolean, integer
and finite set variables. When declaring these variables, the user defines their initial domain. The
initial domain of a boolean variable is {true, false}. The initial domain of an integer variable is an
interval (e.g. X ∈ [0, 10] or Y ∈ [−100, 200]). During the search, values from the initial domain can
be removed. For integer variables, the domain becomes a finite set of integers. The initial domain
of finite set variables is all subsets of a set of integers (e.g. {1, 2, 3}). It can be represented with
the maximum element (with respect to set inclusion) of these subsets (the set {1, 2, 3} in this case).
Finite set variables are usually represented by a vector of boolean values, each variable stating if a
value is in the set (true), is not in the set (false), or may be in the set ({true,false}). Such a vector
thus represents a finite number of subsets of the specified initial set.

The domain of a graph domain variable (gd-variable) is a set of graphs. A gd-variable has an
associated reference graph representing the maximum (with respect to graph inclusion) of the pos-
sible values of the gd-variable. In the present work, it is assumed that every graph domain variable
has the same initial domain, hence the same reference graph. Analyses about the comparison of
different biochemical networks are covered by this work.

A gd-variable G can be implemented using boolean domain variables. A boolean variable per
node in the reference graph states whether this node is present in the domain of the gd-variable.
This vector of boolean variables is denoted nodes(G). The presence of arcs in the domain of gd-
variables is currently encoded with an adjacency matrix of boolean variables (see Figure 2). If N

denotes the number of nodes in the reference graph, every gd-variable is represented with N 2 + N

boolean variables (actually half this number as the matrix is symmetric). This matrix is denoted
adjMat(G). Every graph domain variable has an associated constraint on its boolean domain
variables to ensure that if an arc is present then both of its endpoint nodes must be present as well.
Such a constraint can be implemented by a set of boolean constraints of the form

adjMat(G)ij ⇒ nodes(G)i ∧ nodes(G)j

Figure 2: Implementation of a graph domain variable. The current domain of a variable, in the middle of

the search process, is represented in this graph and coded in tables of boolean domain variables. A node or

an arc is filled (nodes 1 and 2 and the arc joining them) when it is present in all graphs in the domain of

the gd-variable. A light gray node or arc (node 0 and arc (0,4)) is never included in a graph of the domain.

A dashed arc or unfilled node (all other nodes and arcs), may be present or absent in the graphs of the

domain. All the graphs of the current domain of this gd-variable are displayed on the right.
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5 Constraints on graph domain variables

Constraints NodeInGraph(n, G) and ArcInGraph(a, G) are the simplest unary constraints on a
graph domain variable G. They respectively state that the node n and the arc a of the reference
graph belongs to G (see Figure 3). These constraints have a special status in our framework as they
are ’reified’. This means they can also be used in a negated form to specify that a node or an arc
does not belong to the graph domain variable. These constraints can be used with any propositional
logic operator to specify more complex constraints.

Figure 3: Effect of the NodeInGraph and ArcInGraph constraints: some boolean domain variables of the

graph domain variable become true (1). Effect of both constraints is circled with dashed lines. The arrow

illustrates the effect of the propagation of the built-in graph consistency constraint (if an arc is present,

both endpoints must be present).

Path(P, ns, ne, maxlength) is the main constraint for the constrained path finding problem. A
graph domain variable P satisfying this constraint is a path (walk with no repeated node) from node
ns to node ne of length (number of arcs) being at most maxlength (see Figure 4). The maxlength

variable can be an integer or an integer domain variable with an implicit domain [1, N − 1].

Figure 4: The Path constraint. The graph domain variable must be a path from 0 to 4 and include
at most 3 arcs (at most 2 additional nodes). Nodes 0 and 4 are outlined in the reference graph.

Some other constraints have been designed, implemented and used in constrained path finding
problems. They are shortly described below.

– The unary constraint EveryArc(G) on the graph domain variable G states that if two nodes
are in G and an arc joining these nodes belongs to the reference graph of G, then this arc
must also belong to G.

– The binary constraint SubGraph(P, G) on the graph domain variables P and G states that
P must be a subgraph of G (nodes and arcs of P must be in G too). P and G have the same
reference graph.

– A constraint ExistsPath(G, ns, ne, maxlength) on the graph domain variable G, derived from
the Path constraint but weaker, states that there must exist a path from ns to ne in G. This
is logically equivalent to the introduction of a new graph domain variable P and using the
SubGraph(P, G) and Path(P, ns, ne, maxlength) constraints. However, such an expression
would be far too inefficient.

– The unary constraint Connected(G) states that a graph domain variable G must be a con-
nected graph. This is semantically equivalent to stating that the ExistsPath constraint must
be satisfied for any pair of nodes in G.

A constrained path finding problem is modeled by a set of constraints: a Path constraint and
other constraints on this path to further constrain the problem. The Path propagator proceeds
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independently from the number or nature of the other constraints. They cooperate by further
reducing the domain of the gd-variable. A simple unconstrained path finding problem is modeled
using only one Path constraint. A constrained path finding problem such as those used in the
experiment section of this work (Section 6) is modeled using a Path constraint to constrain the
extracted graph to be a path, and one NodeInGraph constraint for each mandatory intermediate
node. It is also possible to form complex queries by combining Path constraints using constraints
relating nodes and arcs of different paths. An example of this kind of complex queries is the
extraction of the TIM/PER metabolic pathway using 3 gd-variables P1, P2 and G:

Path(P1, tim, T IM − PER), ∀r ∈ RegulNodes : ¬NodeInGraph(P1, r)

Path(P2, per, T IM − PER), ∀r ∈ RegulNodes : ¬NodeInGraph(P2, r)

SubGraph(P1, G), SubGraph(P2, G), AllSubsProdsControls(G)

The AllSubsProdsControls(G) constraints states that every reaction node must be included alog
with all its incident entity and control nodes (and the entity and control nodes incident to those
control nodes). Finding the smallest G satisfying these constraints should give the TIM/PER
metabolic pathway.

5.1 The Path propagator implementation

This section describes the implementation of the propagator for the Path(G, ns, ne, maxlength)
constraint. The propagation algorithm is first described and its computational complexity is ana-
lyzed next.

5.1.1 Algorithm

The propagator of the constraint Path(P, ns, ne, maxlength) is implemented in three parts. The
first part uses integer domain propagators provided by the Oz-Mozart platform [26]. The second
part is implemented using standard graph algorithms. The third part uses more advanced graph
algorithms to further reduce the domain of the gd-variable.

1. P is constrained to contain only nodes of degree one or two. The start node ns and end
nodes ne have a degree of one, the other nodes have a degree of two. By stating this simple
constraint, P is forced to contain a path from ns to ne and possibly some cycles on nodes
not in the path (in Figure 4, a graph P consisting in a path from 0 to 4 and the cycle 5,6,7
is satisfying this first constraint). This first part of the propagator is implemented using the
sum constraint on the rows of the adjacency matrix of the graph domain variable forcing the
rows to contain exactly x (1 or 2) boolean variables with the value true (true is 1 while false
is 0 in the sum):

∀n ∈ {ns, ne} :
∑

j

adjMat(P )n,j = 1

∀n ∈ nodes(P ) \ {ns, ne} :
∑

j

adjMat(P )n,j = 2

The cycles in other connected components are avoided by the second part of the propagator. It
is also possible to constrain the number of nodes in the path using the maxlength information.
A path of maximal length maxlength can contain at most maxlength + 1 nodes:

∑

i

nodes(P )i ≤ maxlength + 1

2. P is constrained to be a single connected component. This implies that P will only be the
path from ns to ne as the cycles are in other connected components. A graph data structure
ConnGraph is built. It is the supremum (with respect to graph inclusion) of all the graphs
in the current domain of P . A node or an arc of the reference graph is not in ConnGraph if
and only if its boolean variable in P is set to false. If this boolean variable is true or unknown
(i.e. {true,false}) then the node/arc is in ConnGraph.
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Each time the boolean variable associated with an arc in the adjacency matrix is set to false,
all the already included nodes of P (among those are ns and ne) are checked to see if they
are still in the same connected component. Two cases can arise:

• the constraint fails if they are not in the same connected component;

• otherwise, all nodes and arcs in other components can be eliminated from the domain of
P .

A standard breadth-first depth-limited (maxlength) search in ConnGraph performs the con-
nected component checking. During this search, all nodes in the same component as ns are
collected within a maxlength radius (if maxlength is an integer domain variable, the highest
value of its domain is taken). As a by-product, the graph can be checked to see if it contains
cycles. If there are no cycles, the connected component of ConnGraph starting from ns is a
tree. In that case, the graph P can be forced to be the only available path from ns to ne in
ConnGraph. This is implemented with a depth-first search from ns to ne in ConnGraph.

3. Parts 1 and 2 guarantee to find a solution whenever there is one. An additional routine
improves the propagation by detecting as soon as possible that some arcs must or must not
belong to the graph P .

A bridge in a connected component of a graph is an arc the removal of which breaks the
connected component into two unconnected components. A connected component is said
to be 2-edge connected if it does not contain any bridge. A 2-edge connected component
algorithm is used to find all bridges in ConnGraph [18, 16, 8]. It uses BridgeTree, an
additional data structure representing a tree. The nodes of this tree correspond to the 2-
edge components of ConnGraph and its arcs are the bridges of ConnGraph. Two nodes
of BridgeTree are labeled n1 and n2, corresponding respectively to the 2-edge connected
component of ConnGraph containing ns and ne (see Figure 5).

Figure 5: BridgeTree on the right representing the 2-edge connected components and the bridges
of the graph on the left. The bridge (2,4) and the 2-edge connected component 4,5,6 cannot be
part of the path from 0 to 9 while both other bridges must be in that path.

In this BridgeTree, all arcs on the path from n1 to n2 must be in P and all other arcs
(and the 2-edge connected components on the other end) cannot be present in P . This
information is propagated by adding or removing these arcs and nodes from the domain of
P . A similar reasoning can be made about cut-nodes (nodes the removal of which breaks
the connected component) and a single algorithm handles bridges and cut-nodes without
complexity overhead.

5.1.2 Complexity analysis

Every time an edge is removed from the domain of P ,

• two propagators for the sum constraints are called (one for each node at the end of the arc);

• a breadth-first depth-limited search is performed on the updated ConnGraph;

• a depth-first search may be performed on ConnGraph to find the only possible path (if
ConnGraph is a tree);
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• a depth-first search is performed to find the bridges and cut-nodes of ConnGraph, then a
depth-first search is performed in BridgeTree.

Let N be the number of nodes and E the number of arcs in the reference graph of P . Obviously,
E is O(N2). When an arc is known to be in (or not in) the domain of P , at most N sum propagators
are executed. The amortized complexity of all the executions of one sum propagator is O(N) as it
is a special case of the cardinality constraint [39]. When there is only one possibility to satisfy the
sum constraint (e.g. for ns and ne: when one variable is true and the others unknown, the other
can be set to false and when one is unknown and the others are false, the unknown can be set to
true), the sum propagator reduces the domains of all unknown variables at once. When it does
not reduce the domains, it performs in O(1). Since there are N sum propagators, the total time
complexity is O(N2) for a valuation.

All the graph-searches in the different graphs are done in time complexity O(E) per arc removal.
There are at most E arc removals, hence a total time complexity of O(E2) for a valuation. This
leads to a worst case time complexity of O(max(N 2, E2)) per valuation.

6 Experiments

Practical experiments were performed to assess the tractability of the proposed approach on real
biological data. Problems of various sizes were designed to study the complexity of several variants
of the constrained path finding problem.

6.1 Implementation of the CP(BioNet) prototype

CP(BioNet) is implemented over the Oz-Mozart constraint programming system [26]. The Oz lan-
guage is a multi-paradigm language (functionnal, logical, concurrent, object-oriented, distributed)
featuring constraint programming. The Oz-Mozart system is the open-source implementation of
the Oz language. In this system, the propagators of the built-in constraints are implemented in
C++ and executed like Oz threads. The search in the valuation space is done by cloning first-class
computation spaces (along with their threads and their logic and state variables) and by posting
an additional constraint over a chosen variable in both cloned states. ”Distributors” are used to
specify the choice of variables and values when branching during the search process. Distributors
and search engines are coded in Oz, allowing for easy extentions and new definitions.

The prototype is implemented in the Oz language and consists in 500 lines of code. A class
defines the gd-variables and another class defines the ConnGraph data-structure. The constraints
over gd-variables are methods of the gd-variable class. The methods are preferably implemented
using a functionnal style. But some parts of the Path propagator require to modify a state, hence
the use of cells and dictionnaries. The adjacency matrix of each gd-variable is coded using a tuple
of tuples of boolean finite domain variables.

6.2 Data

Graphs of increasing size (50, 100, 200, and 500 nodes) have been extracted from a metabolic
network consisting of 4492 chemical entities and 5281 reactions. This data comes from the KEGG
project and concerns two organisms: Escherichia Coli and Saccharomyces Cerevisiae. Extraction
of smaller graphs from this network was performed while preserving approximately the degree
distribution in the original graph. More precisely, an extracted graph must be a single connected
component. The average degree of its nodes is around 4 and the maximum degree is 18 percent of
its number of nodes.

6.3 Tests and results

Five tests were performed on the extracted graphs. They are path finding problems expressed in
CP(BioNet) using the Path constraint. The maxlength parameter was set to the number of nodes
in the graph (no constraint on the length of the extracted path).

1. Path finding between two random nodes in the graph (always a solution since the graph is
connected).
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2. Path finding between two random nodes in the graph, with the additional constraint of con-
taining two randomly preselected intermediate nodes.

3. Path finding between two random unconnected nodes in a double graph (two separate con-
nected components were created by cloning the extracted graph; no solution).

4. Path finding between two random nodes in the graph, with the additional constraint of con-
taining from one up to five randomly preselected intermediate node(s).

5. Selection of a random path p of k nodes in the graph. Path finding between the first and last
nodes of p, with the additional constraint of containing from one up to k − 2 intermediate
nodes randomly preselected from p (always a solution).

The running time of every query was measured. For the first three tests, 1,000 queries were
performed on each extracted graph. The fourth and fifth queries were performed on extracted graphs
with 200 nodes. The fourth query was performed 1,000 times for every number of intermediate
nodes. The fifth query was performed 1,000 times for every number of intermediate nodes and for
values of k being 7, 10 and 15.

Figure 6 shows the average and standard deviation of the running time for these tests. Results
from tests 2 and 4 are split in two groups: a curve for those where a solution was found and another
for those for which no solution was found.

6.4 Analysis

Tests 1 and 3 concern single path finding in a graph. This problem is not relevant alone for analyzing
biochemical networks and dedicated algorithms are obviously more efficient. These tests were done
to analyze the path propagator on its own. For Test 3, the reported size in the plots is the size of
one component of the graph (the graph having twice that size). The plots for these tests show a
sub-exponential curve and very low standard deviations. These tests illustrate the tractability of
this propagator over increasing sizes of graphs.

Tests 2, 4, and 5 concern the constrained path finding problem. Two parameters were taken into
account for this analysis: the size of the graph and the number of mandatory intermediate nodes.
Test 2 shows the evolution of the running time of a query with 2 intermediate nodes versus the
size of the graph. The plot shows two curves: one, for successful queries (the CSP solver found a
path) and another, below, for failed queries (the CSP found no solution to this query). The results
show that the curves are similar to the ones of the path propagator alone. The major difference is
a larger standard deviation.

Tests 4 and 5 show the evolution of the running time on the graph of size 200 versus the number
of mandatory intermediate nodes. Test 5 was performed to be able to show results of successful
runs for high values of the number of intermediate nodes. When these nodes are chosen randomly
in the graph (Test 4), the odds of having a successful run are very low. The plots show that the
average running time of these tests is nearly constant while the standard deviation has a slight
tendency to grow.

A small fraction of the runs (from 0.08% up to 1%, depending on the tests) of the constrained
path finding tests had running times several orders of magnitude worse than average. This somehow
illustrates the NP-Hardness of these problems. Plots with and without these results are compared
in Figure 7.
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Figure 6: Running time of the five tests. Logarithmic Y axis.
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Figure 7: Comparison of the results of Test 5 path length of 10 when results are filtered (on the left) or not

(on the right). The only difference lies in 2 runs (among the 8000 presented) for five intermediate nodes:

one lasted 765 s and the other 18 s. The standard deviation is more affected by these rare results than the

mean.

Our results show that the path constraint is tractable when used alone, although specialized
algorithms are more efficient. When used along with other constraints (specifying a NP-Hard
problem), the results show that the average running time is approximately the same (apart from
rare diverging results) as the running time of the path constraint alone, independently of the
number of additional constraints. Additional constraints on the type and attributes of the nodes of
the biochemical network can thus be designed and used in our constrained path finding framework.
This framework can then exploit the richness of the model of biochemical networks.

7 Conclusion

This paper showed how constraint programming (CP) can be applied to the analysis of biochem-
ical networks. The focus is on the feasibility of the approach. To perform these analyses, a new
computation domain of CP: CP(BioNet) was proposed. It introduces graph-domain variables (vari-
ables whose domain is a set of graphs) and constraints on these variables. An implementation of
CP(BioNet) is described along with experiments and analyses on constrained path finding. Con-
strained path finding is NP-Hard and constraint programming is adequate to this kind of problems.
These experiments illustrate the tractability of this approach. The declarative nature of constraint
programming facilitates the construction of new analyses using existing constraints. We argue
that constraint programming can be used to perform a lot of different and complex analyses on
biochemical networks in a single framework with an integrated data model.

Ongoing work concerns more space efficient representations of graph domain variables, improve-
ments of the current constraints implementations and the design of new constraints. The CSP
search is also under investigation with new ways of choosing variables for branching.

Gd-variables could benefit from a better data-structure design. Adjacency lists could be used
instead of adjacency matrices. Another possibility is using data structures similar to those used
for finite set variables. The path constraint could be generalized with domain variables instead of
values for the start and end node parameters. In this way, we could ask for a path from a node to
an unspecified node, possibly constrained by other constraints. We could also ask for a path from
any gene to any polypeptide going through a given set of reactions.

The propagator of the path constraint could be enhanced with more advanced graph algorithms
or incremental algorithms. The dynamic graph community already produced very efficient algo-
rithms for the connected, 2-edge connected and biconnected components and for detecting bridges
and cut-nodes in graph where nodes/arcs can be added or removed. In these algorithms the infor-
mation is not recomputed every time an arc is deleted but only updated which is more efficient [19].

New constraints will also be implemented. These include a NoCycle(G) constraint stating that
a gd-variable G must not contain a cycle, and a Tree(G) constraint stating that G must be a tree. A
ternary constraint Diff(A,B,D) on gd-variables A, B and D stating that D is the difference between
A and B is also under investigation.

A set of constraints specific to biochemical network analysis would include a ”flow of matter”
constraint stating that all substrates and products of a reaction must be in the graph if the reaction
is in the graph. Similarly a catalysis cannot be in the graph without the catalyst and the catalyzed
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reaction. Another constraint states that a reaction must be in the graph if its catalysis and catalyst
are in the graph. These constraints could also be adapted to a directed graph representation of the
biochemical networks which would be meaningful for analyses where reactions are considered to be
directed from substrates to products.
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