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Abstract We solve the problem of finding the lowest stable-equilibripose of a
rigid body subjected to gravity and suspended in space byrlgitraxy number of
cables. Besides representing a contribution to fundarhegid-body mechanics,
this solution finds application in two areas of robotics e#sh: underconstrained
cable-driven parallel robots and cooperative towing. Tioppsed approach consists
in globally minimizing the rigid-body potential energy. i€his done by applying a
branch-and-bound algorithm over the group of rotationsiclvis partitioned into
boxes in the space of Euler-Rodrigues parameters. The losard on the objective
is obtained through a semidefinite relaxation of the optat@n problem, whereas
the upper bound is obtained by solving the same problem foed firientation. The
resulting algorithm is applied to several examples drawmfthe literature. The re-
ported Matlab implementation converges to the lowest etaquilibrium pose gener-
ally in a few seconds for cable-robot applications. Inténggy, the proposed method
is only mildly sensitive to the number of suspending cabddsch is shown by solv-
ing an example with 1000 cables in two hours.
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1 Introduction

The problem addressed in this paper is that of finding the $owquilibrium pose
(orientation and reference-point position) of a rigid baiibjected to gravity, and
attached to a fixed frame hycables whoses lengths are known. ligight of a posge
we refer to the height of the centre of mass of the rigid bodyenrwonsideration, for
the given pose. Although finding this pose may be regardediuasiamental problem
of rigid-body mechanics, to our knowledge, it was never agl\Not without reason:
when considering generic, spatial, rigid-body and fixex¥fe geometries, the num-
ber of equilibrium poses quickly explodes as the number bfesaincreases. This
combinatorial behaviour makes an algebraic approach tprbielem very difficult
in general.

On the other hand, recent reports indicate that producirajgorithm that would
adequately solve for the equilibrium pose of a cable-sudpemigid body would
have an impact on at least two effervescent fields of rolot@sle-driven parallel
manipulators (Ghasemi et al 2010; Carricato and Merlet 28h@ cooperative tow-
ing (Michael et al 2009; Fink et al 2009).

1.1 Cable-Driven Parallel Manipulators

In the first field, the problem may be term#tk forward displacement analysis of
underconstrained cable-driven parallel manipulatoltsis closely related to the fa-
mous problem of the forward kinematics of the Gough-Stewtatform, in which
one seeks the moving-platform pose, given the lengths ofithactuated legs. The
solution to this problem is relatively recent (Wampler 199@sty 1996), which gives
a clue of its complexity. One important distinction betwédlea two problems is that
the equality constraint associated with each leg of the Gegtgwart platform be-
comes an inequality constraint corresponding to a cablaetable-driven parallel
manipulator. In the former case, the intersection of thestraints generally yields a
zero-dimensional set of at most 40 solutions, whereas itatter, there generally is
a six-dimensional set of feasible poses containing sel@gally-optimum solutions,
among which the global optimum is the lowest equilibriumeaos

Furthermore, we should point out that the forward displaaaranalyses of fully-
constrained and overconstrained cable-driven parallelipoators fall outside the
scope of this work. Byully-constraineg we refer to seven-cable parallel manipula-
tors (e.g., the Falcon Kawamura et al (1995)), whose caléewaemain constantly
in tension in order to counter balance any wrench that woeladplied to the moving
platform. By overconstrainedwe refer to cable-driven parallel manipulators com-
posed of eight or more cables (e.g., the locomotion interf2erreault and Gosselin
(2008)) that remain constantly in tension for the same mephotice that the meth-
ods developed for Gough-Stewart platforms can readily h@iegpto the forward
displacement analysis of these types of cable-drivenlearmaanipulators. Indeed, as
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their cables are to remain taut at all times, their geomstopimpletely analogous to
that of a Gough-Stewart platform, thereby allowing the ughe solutions proposed
in Wampler (1996) and Husty (1996).

Turning our attention back towards underconstrained edii\en parallel manip-
ulators, Carricato and Merlet (2011) recently proposed ghatefor the computation
of all stable equilibrium poses of a three-cable manipuldtahis article, they found
an upper bound of 156 to the number of stable equilibrium pasknitted by such
a mechanism. Their approach consists in first solving thetbleiuler equilibrium
equations of the end effector, and then filtering out thetgois that do not corre-
spond to stable equilibrium poses. As these authors potntroa stable equilibrium
pose, not all cables of the manipulator need to be taut. Indag nonempty subset of
cables can be under tension, which requires that the equitibequations be solved
for all possible combinations of cables. As a result, thea@atumber of equilibrium
poses may be high even for this limited number of cables, dunelto the combinato-
rial nature of the problem, it is expected to explode as thmelrar of cables increases.
Hence, we conjecture that the mathematical tools that preuecessful in the solu-
tion of this latter problem are not suited for the generabjgm addressed here.

Another recent report (Ghasemi et al 2010) on the forwarglaiement anal-
ysis of underconstrained cable-driven parallel maniputasuggests to use neural
networks to solve the associated system of polynomial ampstAccording to this
scheme, the neural networktiained by solving the corresponding inverse displace-
ment analysis, which is much easier than the original prablever a large set of
poses. The resulting neural network may provide a good appsedion of the for-
ward displacement analysis in many cases. However, itofferguarantee of con-
vergence to the lowest equilibrium pose, or even to any éxjiuiin pose in general.

1.2 Cooperative Towing

In the second field of cooperative towing, a payload is susgein the air by several
aerial vehicles. The aerial vehicle displacements are unedsso that the positions
of the cable-attachment points are known, as well as thelsraf the cables. The
problem consists in finding the pose of the suspended payliatiael et al (2009)
propose a solution to the case where thererate2 cables (i.e., the planar case).
This solution is obtained by finding the equilibrium points e coupler curve of
the analogous planar four-bar linkage. In the same referevichael et al. adopt an
energetic approach to the case whete 3, using the fact that an equilibrium pose
corresponds to a minimum in the potential energy. This leadsnonconvex opti-
mization problem, whose optima are obtained by varying tiiteal guess of a local
optimization procedure. Such a method, however, does rentagtee that the pose
found corresponds to the one where the centre of mass istlowes
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We conjecture that this is the motivation that led the sarapf researchers to
publish another paper on the topic (Fink et al 2009), whesg tklax the previously
formulated optimization problem into a convex optimizatjgroblem. The optimum
objective value of the relaxed problem may be regarded asvarlbound on the
optimum value of the original problem. Furthermore, thehatg provide geometric
conditions under which the lower bound is guaranteed todig,ti.e., under which
the optima of the relaxed and original problem coincide.

In a parallel effort, Jiang and Kumar (2010) were able to corapll stable equi-
librium poses—including that of lowest centre-of-mass posi—for a class of spe-
cial cases in three-dimensional space. A geometry is a meailtkis class only if
(i) the cable attachment points on the rigid body are locatdukatertices of a regu-
lar polygon;(ii) the rigid-body centre of mass is at the centroid of the salggum;
(iii ) the fixed cable attachment points (i.e., those on the supgaakrial vehicles)
form a regular polygon with the same planes of symmetry asdie:body polygon;
and(iv) this fixed polygon is perpendicular to gravity (i.e., liesihorizontal plane).
These constraints allow for a decomposition of the spat@lem into several planar
ones, which are solved by computing the stationary pointhewoupler curve of the
equivalent four-bar linkage.

A summary of the methods reviewed above is given in Table dmRhis com-
parison, one notices that no method applies to the complgteieral case, namely,
that no method can compute all equilibrium poses of rigidybsdspended by an
arbitrary number of cables in an arbitrary geometry. In g@per, we focus on com-
puting the lowest equilibrium pose, while making no patftcwassumption on the
number of cables and geometry. This lowest equilibrium gasgides a tight lower
bound on the height of the rigid-body centre of gravity, acpief information that
is useful for guaranteeing no collision while moving a caslspended object above
obstacles. Moreover, in some applications, it is possibferce the system into this
lowest equilibrium pose by controlling the initial conditis. For instance, consider
the case where the towing vehicles are required to fly in aifpéarmation, with
given cable lengths and attachment points on the payloagl.IGiest equilibrium
pose of the payloattlativeto the vehicle formation can be computed with the algo-
rithm proposed herein. Thence, it is possible to move thécleshto their computed
relative positions prior to lifting the payload, while itmains still. In this situation,
the system is initially in the computed stable-equilibripmse. Moreover, the sys-
tem is to remain in this configuration throughout the towipg@tion, because this
pose corresponds to a global minimum in the potential enéngg guaranteeing that
no small perturbation can take the system to another stasgafibrium. Hence,
although the existing methods reported in Table 1 have afineres, none of them
solves the general problem posed in this paper, i.e., thayotigive a method for
computing the lowest equilibrium pose afiy cable-suspended rigid body.
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Table 1 Existing methods for the forward displacement analysis ofezdhiven parallel manipulators

method num. of geometry equilib. comp.
cablesm poses time
Michael et al (2009) 2 any all ms
Carricato and Merlet (2011) 3 any all NA
Fink et al (2009) 3 constraints lowest ms
Jiang and Kumar (2010) any symmetric all ms
Ghasemi et al (2010) any any any NA
proposed method any any lowest S

1.3 The Proposed Approach

In this paper, we proceed very much like Fink et al (2009),hiat twe resort to a
relaxation of the energy-minimization problem. Howevége telaxation we obtain
is different, and is used for a different purpose. As will leers, the lower bound
provided by the relaxation is cast in a branch-and-bounadrétlgn, which allows the
computation of a global optimum to the energy-minimizatgoblem. This global
optimum corresponds to the lowest equilibrium pose of thliody. Unlike alge-
braic approaches, the proposed method does not yield thegletmnset of equilibrium
poses, unless, of course, there is only one such pose. Othtiiehand, it can guar-
antee that no solution exists if need be. We also note thant#thod proposed here
does not account for possible interference problems betivee cables or between
the rigid body and a cable, which is also the case in othetiegimethods. Neverthe-
less, we will see that the method proposed here can be applgdblems with large
numbers of cables, which sets it apart from the ones that prefgposed previously.

This method will be explained in the following order. In sent2, the general
energy-minimization problem is formulated. The proposethbh-and-bound algo-
rithm is detailed in sections 3.1, 3.2 and 3.3, where theiredyartitioning strategy,
lower bound and upper bound are defined, respectively. A samnof the algorithm
is also provided in section 3.4. Finally, benchmark exam@alee provided in sec-
tions 4.1, 4.2 and 4.3.

2 Problem Formulation

Let us begin by defining the problem as clearly as possibleal®do compute the
lowest equilibrium pose of a rigid body suspendechimables, as depicted in Fig. 1.
It is assumed that the mass of the cables is negligeable esihect to the mass
of the suspended body. The sagging effect of the cables ssrtbuconsidered here.
Moreover, the cables are assumed to be inextensible. InLF@.is the fixed refer-
ence point. The position of the attachment péinbf the ji" cable on the fixed frame
is given with respect t® by vectora;. The other end of th¢™ cable attaches to the
rigid body atB;. The position oB; with respect to the rigid-body centre of m&3ss
given by vectoQb;, whereb; represents the position Bf in a reference orientation
of the rigid body, and) is a rotation matrix representing its current orientation.
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turn, the position of the centre of mass is given with respe€t by vectorp. Hence,
the pose of the rigid body is fully represented fpyand Q, which are the variables
sought in this paper.

Fig. 1 Arigid body suspended by cables

The equilibrium pose of the rigid body is constrained by nheables that attach
it. In the proposed model, a cable that is not taut is assumegdrt no force on the
rigid body, whereas a taut cable is taken to be completektémsible, i.e., perfectly
rigid under tension forces. In order to represent the cabiestraints, let us define
vectorc; pointing fromB; to Aj, which supportsthe ™ cable, i.e.,

Canj—ij—p. (1)

The length of thg™" cable iscj, and is assumed to be known. As a result, we obtain
the conditions

||Cj||2SCjaj:la"'7n7 (2)
which must be satisfied at all times.

The lowest equilibrium pose of the rigid body may now be egpeel as the pose
that minimizes its potential enerdy; i.e.,

minimize V=-mg'p, (P)
subject to Icillz<cj, j=1,...,n,
over peR3 Qe SO3),

where S@3) is the special group of proper orthogonal matrices. Thisigrep-
resents a non-convex setR?*3, and, as a result, the optimization problem (P) is
non-convex as well.

Therefore, this problem, which may appear relatively sergdlfirst glance, turns
out to be a challenging one. By definition, each stable dayilin pose corresponds
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to a local minimum in the potential energy, and, therefomglifig any such pose
can be done by applying any descent method to (P). Howevetede methods of-
fer no guarantee regarding global optimality, and in thigckr, we simply regard a
local equilibrium as an upper bound on the lowest equilifarijpose. An important
advantage of the proposed energetic formulation over twsidal Newton-Euler for-
mulation is that it lends itself to the application of the \ka@f optimization methods
available in the literature.

3 The Proposed Branch-and-Bound Algorithm

To the knowledge of the authors, branch-and-bound algosttiand and Doig 1960)
are the only procedures that offer guarantees on globahafity while being appli-

cable to any non-convex optimization problem, at least ingiple. In the case of
problem (P), an alternative would be to solve the associerdish-Kuhn-Tucker
conditions, which could be expressed as polynomial equsitio the decision vari-
ables and Lagrange multipliers. We rule out this approaoleher, as it does not
allow to circumvent the combinatorial nature of the problemd leads to a solu-
tion that is similar to that of Carricato and Merlet (2011)e \8bnjecture that this
solution would be applicable to systems with three cablesast, and at the cost of
much complexity and potentially high computation times—ke knowledge of the
authors, no computation times have been reported so fanémdlution of a generic
three-cable system.

We rather resort to a branch-and-bound method, whose caitypigows mildly
with the number of cables. This type of algorithm divides éptimization domain
into non-overlapping subsets, over which one is to compwtet and upper bounds
on the objective of (P). These bounds should be devised $ahiniaking a subset
to a point implies that the corresponding bounds convergkembjective-function
value at this same point, one from below, the other from alfese Balakrishnan et al
(1991)). Taking advantage of this property, the optim@atiomain is recursively di-
vided until the minimum lower bound and its correspondingernbound are within a
prescribed tolerance of each other. Notice that intervalyasis may be regarded as a
special case of the branch-and-bound method where the b@ractomputed using
interval arithmetics. Although this approach may be agptilie to problem (P), we
rather resort to convex relaxations and semidefinite progrimg for the computa-
tion of the bounds. This choice stems from the conjecturedtspecifically-tailored
relaxation can outperform interval arithmetics both inlaacy and convergence rate.
Moreover, the proposed relaxation methods have been dppith success in other
engineering applications such as signal processing andcaiéchaging (Luo et al
2010).
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3.1 Partitioning the Feasible Domain

In general, it is preferable to divide the domain along theef& possible number
of dimensions. In this case, however, we are to represe(8)S@th the four Euler-
Rodrigues (ER) parametegsz R?, that is with one more parameter than the required
minimum of three. This choice is based on the observatiortiieerotation matrix is

a quadratic form in the ER parameters, which can be express@ge Angeles 2007)

Q= (rd—r"r)1a3+2rr T 4 2rocpm(r), (3)

whereq=1[ro r']T, ro € R andr € R3, 13,3 is the three by three identity matrix,
and cpntr) is the cross-product matfif r. To this, we adjoin the unit-hypersphere
constraint, which is quadratic oy namely,

q'g=1. )

Besides the quadratic nature of the expressiortgg Bnother often-cited advan-
tage of ER parameters is that, unlike three-parameterseptations of SCB), they
are free from singularities. However, they entail a doulgeering of S@3), i.e., a
rotation represented hy s also represented byq. This property is an obstacle to
the application of the branch-and-bound algorithm, as filies that global optima
come in redundant pairs, thereby dividing the convergeatz of the algorithm by
two. To resolve this problem, we drop the bottom half of thé& bgpersphere, that
is, we add the constraimy > 0. By doing so, we introduce a singularity rgat= 0,
and lose the singularity-free property of these parameiagertheless, for the pur-
pose of this work, the main advantage of ER parameters oker otpresentations of
rigid-body rotations remains, namely, they appear quasist in the constraints (3)
and (4).

Hence, we are to partition the four-dimensional space oéiERbdrigues param-
eters into boxes (a.k.a. orthotopes), which we represent as

qal={geR*:q<q<q}, (5)

where< denotes the componentwise inequality. As we choose theaibpgr> 0 of
the unit hypersphere, then the smallest box containingoalsible values of is

a= || 5,] 4. ©®

wherel,=[1 --- 1T € R". The box of eq. (6) is the initial box of the proposed
branch-and-bound algorithm.

1 The cross-product matrix efc R3 is defined as cpin) = d(r x x)/dx for anyx € R3.
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3.2 Computing a Lower Bound

Computing the lower and upper bounds on the objective ovevendox[q,q] is

generally the critical step of a branch-and-bound algoritin general, good lower
and upper bounds are those that are accurate and quicklya¢ed! These two cri-
teria are often opposed to one another, so that the best saradoften obtained
by a trade-off. As mentioned previously, accurate uppentdeunay be provided by
any applicable descent method, whereas accurate lowedbaam be obtained by
solving convex relaxations of the original problem. In@rarithmetics is yet another

method for obtaining these bounds.

We start with the computation of a lower bound, which is dogebrforming
a semidefinite relaxation of problem (P). The applicatioserhidefinite relaxations
(and semidefinite programming in general) to robotics motd seems to have been
mentioned only incidentally in previous literature. THere, we refer the interested
reader to a book on convex optimization in general (Boyd amodénberghe 2004),
and to an excellent recent review article on the applicatfsemidefinite relaxations
to signal-processing problems (Luo et al 2010).

In order to perform this semidefinite relaxation, obsena timly quadratic forms
of g occur in this problem. Let us define the matffiyof all the quadratic forms df,
ie.,

T=qq" = [rro] [ror™] = {Sso s;} . @

From eg. (3), matriXQ can then be expressed as a linear functiof.dProblem (P)
applied over the boiqg,q] is then rewritten in the equivalent form

minimize V=-mg'p, (8a)
subject to Icill2<cj, j=1,...,n, (8b)
cj=a;—Qbj—p, (8c)
Q = (so—1tr(S))13x3+2S+ 2cpn(s), (8d)
1=s+1r(S), (8e)
Ny
aa =T |2 (8
g<9<q, (89)
over peR® qeRY

This expression is useful in that it concentrates the noreooonstraints into eq. (8f).
This latter constraint is equivalent to the two constraints

Lror?
T 0
Fi]z rosos | =0, (9a)
q rs s
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where = 0 denotes nonnegative definiteness of its left-hand sideixrergument,
and

Lror?
rank| {rosos'| | =1. (9b)
rs S

Indeed, the two constraints (9a) and (9b) are necessaryudiitlent conditions for
the existence of a real vectqgrsatisfying eq. (8f) (see Luo et al 2010). As a result,
constraint (8f) is equivalent to constraints (9a) and (9b).

The convex relaxation of problem (P) is obtained by droppingstraint (9b).
This convex relaxation, however, is not in the form of anyd&rd convex optimiza-
tion program. We reformulate it as a semidefinite programR Bty noticing that the
constraint (8b) is equivalent to

cl @

{13“ CJ} = 0. (10)
] ]

For more detalils, the reader is referred to Vandenbergh®apd (1996).

Upon substituting egs. (9a) and (10) for egs. (8b) and (8f)pitain

minimize V=-mg'p, (SDR-1)
. 13><3 Cj _
subject to Oj{CJ_T CIZ],J_l,...,n,
Cj :aj 7ij 7p7
Q = (s0—tr(S))13x3+ 2S5+ 2cpn(s),
1=s5+1r(S),
_ [
=35
1q"
0= [q T] |
q<0g<q;,
over peR3 qgeRY T eR¥™4

Since all constraints are linear in the optimization vadegabthey are either lin-
ear equalities or linear matrix inequalities, and (SDRsl4 isemidefinite relaxation
of (P). Hence, the optimum value of (SDR-1) may be computetusadily-available
software, and represents a lower bound on the optimum véli{i) o

Numerical experiments show that the lower bounds offerethisyrelaxation of-
ten result in a low rate of convergence of the correspondiagdh-and-bound algo-
rithm. Resolving this problem requires obtaining a lowentmbthat is more accurate,
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i.e., a tighter approximation of problem (8). This can beealby adding convex con-
straints, which is done in the Appendix. Upon appendingelemstraints to prob-
lem (SDR-1), a final lower bound on problem (P) over the fpxj] is obtained as
the solution of the convex semidefinite programming problem

minimize V=-mg'p, (SDR-2)
. 1343 C .
subject to = { 5’53 cé] =1,....n,
Cj=a;—Qbj—
Q=(% ftr(S))13X3+ZS+ 2cpn(s),
1=s+tr(S),
e
=[5
o=[35]
q<qg<q;,
T<L qq +aq" qu )

T>qq" +aq" —qq",
T>qq +99" —qq',
over peR3 geRY T eR¥,

Letting (b,(q,f) be the solution to problem (SDR-2), afyl,q.) be the solution to
problem (8), we obtain the inequality

—mg'p < —mg'p.. (11)

3.3 Computing an Upper Bound

Although an upper bound to the global optimum of problem @y ohe boxg € [q, 7]

may be obtained through any descent method, we adopt aetiffepproach. The
technique we use here is outlined by Luo et al (2010), andssteom the observation
that a solutior(p,§, T) to problem (SDR-2) is the global optimum of problem (8) if

gy
rank( E T | > =1 (12)
When this last condition is hot met, choosing the rank-oneirtitat isclosesto

el qT_
_q -i'- | (13)

generally yields goodestimate of the global optimum of the original problem.
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When closeness is measured by means of the two-norm of tlegatiffe of the
two matrices, the rank-one matrix closest to that of eq. [4.3)

Apupug, (14)

whereA; andus are the largest eigenvalue of matrix (13) and its corresipgreigen-
vector, respectively (Luo et al 2010). Therefore, a goodvese ofq. is /AU 1,
whereus = [u1o uI_l]T. Taking into account the fact thgt lies on the unit sphere
and has a nonnegative first component, we normalize and #igitgn if necessary,
which gives the better estimafie= sgnu 1)u1,1/||u1,1||2, whereuy 1 is the first com-
ponent ofuy 1. Having computed an estimadgthat lies on the unit-hypersphere of
ER parameters, we can compute a valid proper—orthogorailcmtmatrix@ by sub-
stitution in eq. (3).

We cannot overlook the possibility that the estim@tebtained falls outside of the
considered boXg,q]. In such a case, we simply disregard the upper bound by gettin
its value to that of the upper bound of its parent box. Notize the estimat§ of the
initial box defined in eq. (6) is bound to fall inside this bas, from its definition,

q lies on the top half of the unit hypersphere, which is conghjetontained in the
initial box. Hence, the algorithm always has a valid upperrbto start from. Expe-
rience shows that simply keeping the upper bound of the pa@oawhenq ¢ [q,7]
this approach does not prevent the algorithm from convgrigirthe global optimum,
since this situation does not occur as we apprapch

Finally, if § € [q,q], we have a valid estimate of in hand, which allows us to
return to the unrelaxed problem (8). By settipg- ¢, we are left withp as only op-
timization variable, turning the nonconvex problem intcoawex one, or, more pre-
cisely, into a second-order cone program (SOCP). Such dgmois quickly solved
using readily available algorithms, leading to an estimat# p.., the lowest posi-
tion of pointG. This estimate provides an upper bodhdn the minimum potential
energy, i.e.,

-mg'p. <-mg'p=V. (15)

3.4 Summary

Figure 2 summarizes the proposed algorithm for computieggtbbal minimum of
problem (P), i.e., the lowest equilibrium pose of the cahlepended rigid body. As
detailed in section 3.1, we partition the four-dimensiospédice of Euler-Rodrigues
parameters| using boxes. These boxes are stored in#twhich initially contains
only the box defined in eq. (6). Similarly, the lower and uppeunds on the potential
energy over the corresponding boxes are stored in theistmd 7, respectively.
The box containing the lowest lower bound R is partitioned recursively, until
the gap between the lower and upper bounds becomes smadignalrtos. Hence g
represents the accuracy required on the potential enettipe gluspended rigid body.
Notice that the convergence of this algorithm in a finite nendf steps is not demon-
strated in this article, and it appears to be a daunting femkinstance, such a result
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was obtained no earlier than in 1998 in the case of a rectangudnch-and-bound
algorithm applied to the separable concave program (Stecand Sahinidis 1998),

a problem that has drawn a large share of attention since9@s1Nevertheless, one
may notice that problems (SDR-2) and (8) become equivalbeneverq = q = 4,

so that we then hawé = V. This shows that the lower and upper bounds become
equal when the boxes becornmdinitely small but does not provide any information
as to the rate of convergence.

Before illustrating the method, let us make a few remarksutaitiee algorithm
flowchart of Fig. 2 and especially the ending statements sjizddl by double frames.
At the end of the branch-and-bound process, the algorithgneither find the global
optimum or guarantee that no solution exists. The lattecksion may be reached
in two cases. If the relaxed problem (SDR-2) admits no smtuth the initial box
A1, neither will problem (P). This also happens if problem (SB)Rs infeasible in
every box of.Z, i.e., the lowest lower bound is infinifyas shown at the bottom
of the flowhart. On the other hand, if problem (P) is feasikle,can exploit con-
dition (12) to detect the global solution of (P) at the firgrition. Otherwise, the
algorithm stops when the lowest lower and upper bounds libinvihe prescribed
tolerancee. Finally, to improve the efficency in case of global infedl#i a pruning
test has been inserted at the end of the main loop. Its purptseemove boxes from
% for which the lower bound is greater than the lowest uppendpthus reducing
the number of boxes to keep in memory. This also reduces thmbeuof required
evaluations before concluding to the infeasibility of desh (P).

4 Numerical Examples

Three examples of increasing complexities are presentédsiisection. Firstly, two
basic examples taken from the literature are solved. Ségahé minimum height
of the previous example is solved in a few iterations aftedifiying its dimensions
randomly. Thirdly, a large system of 1000 cables is solveshtaw the robustness and
efficiency of the method. All these examples are implemeimédatlab usingCvx, a
package for the formulation and solution of convex progré@raint and Boyd 2010,
2008).

4.1 Basic Examples

The proposed branch-and-bound method is first applied testmple academic ex-
amples: a planar one and a three-dimensional one. The rzahddta of these two
examples are respectively taken from Carricato and Me2[&1@) and Jiang and Ku-
mar (2010).

2 By convention, the minimum objective value of an infeasiblejtem is set to infinity.
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Fig. 2 Algorithm flowchart
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4.1.1 Planar example (Carricato and Merlet 2010)

The rigid body is suspended by two cables of given lengths-(c; = 7) as illustrated
in Fig. 3. In this first example, the solution of the relaxedidem (SDR-2) computed
over the initial box gives a minimum height ef6.0714. The first eigenvector of
matrix (13) is then used to produce an estim@tef g.. Using this estimate to set
g = §1 in problem (8), we obtain the same minimum height-@&.0714. Hence, the
pose computed at the first iteration is the global optimungbgwvhich corresponds
to the value given in (Carricato and Merlet 2010).

Fig. 3 A simple planar example from Carricato and Merlet (2010)

4.1.2 Three-dimensional example with equal cable lengliang and Kumar 2010)

Here, the object is suspended by six cables attached to sat e@bots. All cables
have the same lengtlj(=12 m j = 1,...,6), the base and the platform are regular
hexagons respectively of radii 4 m and 1 m, as depicted in&=ighe center of mass
of the platform is at its centroid. As for the previous exaephe solution is straight-
forward. The relaxed problem (SDR-2) gives a minimum heafhti1.6190 m. This

is actually the global minimum, since the rank of matrix (&3¢qual to one.

4.1.3 Three-dimensional example with different cabletlen@Jiang and Kumar
2010)

A second case is proposed where the cable lengths are diffeje=8+j m,j =
1,...,6. The solution illustrated in Fig. 5 is still immediate, fitve lower and upper
bounds computed on the first box are both equal to -9.7556 thidmparticular case,
it should be noted that only cables of lengths 9 m and 12 m dieea@hey are illus-
trated by thicker lines in Fig. 5, whereas the thinner linesdt represent the actual
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-1.54

-6.5

-9

-115

Fig. 4 A simple 3D example from Jiang and Kumar (2010)

lengths of the corresponding inactive sagging cables.

-1.54
-4

-6.54

-11.5

Fig. 5 A 3D example with different cable lengths from Jiang and Kun2arQ)

4.2 Irregular Six-Cable Example

In many regular situations, the relaxation of the problewvps to be tight and the
global optimum is found after a single iteration. Howevezalihg with more irregu-
lar dimensions requires a few iterations for the proposethatkto converge to the
global minimum. In order to produce such an example, the dgioas of the previ-
ous six-cable example were randomly modified. The modifioatof lengths; are
within 10 % of their initial lengths (12 m), whereas the comgnts of vectors; and
b; are modified within 10 % of the base and platform radii respelst(j = 1,...,6).



Computing the Lowest Equilibrium Pose of a Cable-Suspendgid Body 17

Several optimizations were carried out; All of them coneetin less than a hundred
iterations. One of these runs is illustrated in Fig. 7. Irs thiaph, the values of the
lowest lower and upper bounds come within less thani®drom one another in 41
iterations. Let us point out that the lowest upper bound chatslecrease monoton-
ically. Indeed, when partitioning a box in the branch-amdid algorithm, the two
replacing boxes may provide higher upper bounds since timas{ of g, is then
modified. The corresponding solution, which is represeiridelg. 6, has only three
active cables.

-1.54
-4
—6.54"

-9

-11.5

Fig. 6 Anirregular 3D example derived from Jiang and Kumar (2010)

-10.56

— lowest lower bound
-10.565} -~ - - -lowest upper bound|

-10.571

-10.575¢

-10.581

Platform height (m)

-10.5851

-10.59-

1059, 5 10 15 20 25 30 3 40
Iteration

Fig. 7 Evolution of lowest lower and upper bounds in the proposeahdin-and-bound algorithm to find

the lowest equilibrium pose of the rigid body of example 2
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4.3 Thousand-Cable Random Example

Not only the proposed branch-and-bound algorithm seemsstpbut its computa-
tional complexity is polynomial with respect to the numbéicables—the number
of cable being proportional to the numbers of optimizatiariables and constraints.
This interesting feature is now highlighted by seeking tlieimum height of a rigid
body suspended by 1000 cables. It must be emphasized thatxdrinple is far from
the reality of cable-driven robots but could help in otheldseof mechanics, e.g., in
multi-contact modelling. The dimensions of this systemewandomly generated in
the interval[10, 2Q] for the cable lengths and the interj@l 10] for the components
of vectorsa; andbj, j = 1,...,1000. As shown in Fig. 9, the process converges in
219 iterations to within a tolerance of 1Qm between the lowest lower and up-
per bounds. This takes 122 minutes with V& package in Matlab on a 2.50 GHz
Centrino 2 processoLvx rewrites problems (SDR-2) and (8) into dual problems
comprising respectively 10095 and 4000 variables. Thigimglustrates the robust-
ness and efficiency of the proposed method, which relies bwexooptimization and
the efficient algorithms that are available for such proldefhe final solution is de-
picted in Fig. 8, where the three active cables are drawnaokband only a hundred
inactive cables are represented in gray.

Finally, the computational performance of the proposedchoetover the given
examples are summarized in Table 2. It can be observed thahérally takes less
than one second to find the lowest equilibrium pose of a regasdample or a few
dozens of seconds if the dimensions are irregular. The ctatiponal time of a ran-
dom large-scale example remains reasonnable regardirgjzbef the considered
system.

10

10 0

Fig. 8 Solution of the 1000-cable example: the three active calbtesearesented by thick black lines and
100 of the 997 inactive cables are drawn in gray
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— lowest lower bound
" - - -lowest upper bound

Platform height (m)

50 100 150 200
Iteration

Fig. 9 Evolution of lowest lower and upper bounds in the proposeahd-and-bound algorithm to find
the lowest equilibrium pose of a rigid body suspended by I200es

Table 2 Computational Performance Obtained with dv& Package in Matlab on a 2.50 GHz Centrino 2
Processor

Reference| Number of cables| Number of iterations| CPU time

41.1 2 1 <l1ls
4.1.2 6 1 <1s
4.1.3 6 1 <1s
4.2 6 41 32s
4.3 1000 219 122 min

5 Conclusions

In summary, the proposed algorithm allows for the compaitedif the lowest equilib-
rium pose ofnyrigid-body suspended hycables in space. The adopted branch-and-
bound scheme reliably converges to the solution, and was gvawn to sometimes
yield the global optimum at the first iteration. Another iggting feature of the de-
vised algorithm is the low sensitivity of its speed with respto the number of cables
involved in the problem, which was illustrated in Sectio with the 1000-cable ex-
ample.

We should also acknowledge some important drawbacks ofrtpoped method.
Firstly, this approach does not provide any informatiorardgg local equilibrium
poses at which the rigid body may stabilize without reachhmeylowest one. This
stems from the branch-and-bound procedure, which absttacal minima in its
search for the global minimum. Secondly, we do not accounpéssible interfer-
ence between two cables or between the rigid body and a dabliew of the local-
equilibrium and interference problems, the computed loweasilibrium pose may be
regarded as a lower bound on the height of the rigid bodydijhia major challenge
that remains to be addressed is that the proposed algorithmatiyet fast enough
for real-time implementations. Indeed, the examples tepoin Section 4 showed
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running times in the orders of tens of seconds, whereadirealeontrol would re-

quire running times of at most tens of milliseconds. A viathieection may be the
one pointed by Fink et al (2009). These authors provided g#oerconditions under
which the second-order cone relaxation of the optimizapiablem they propose is
tight. Similarly, it may be possible to find classes of cabi@agements for which
the semidefinite relaxation (SDR-2) is guaranteed to yieédgiobal optimum.

Other future work will aim at extending the proposed metlwfirtd all the solu-
tions of the forward kinematics problem, i.e. all the locptima of our optimization
problem. This involves the modification of the branch-awdttd approach to explore
the whole parameter space. Hence, despite being curranitgd to the computation
of the lowest equilibrium pose, we believe that the methazppsed here provides
a framework for the generalization to the computatiomlbquilibrium poses. This
framework may be more viable than one based on algebraic efepand polyno-
mial continuation, as the complexity of such methods grapsdly with the number
of cables. This would explain why the latter techniques hasen applied to rigid
bodies suspended by three cables (Carricato and Merlef) 201éss, for arbitrary
cable attachment points and lengths. Another perspectithesoresearch deals with
accelerating the proposed method by refining its computetementation and its
contents. On the implementation side, translating therdhgo in a lower-level pro-
gramming language such as C should result in an appreciabiérgspeed. Bypass-
ing CVX, which acts as an interpreter for convex optimization sslyehould also
speed up the bounding steps. Regardless of the practickrimeptation, we believe
that there remains room for improvement of the algorithmmié avere to find a more
efficient partitioning strategy for SO(3). For this purppether sets of parameters
different from those of Euler-Rodrigues may lead to somergw@ment.
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Appendix

The constraints required to tighten the relaxation (SDRFé&pbtained from the “reformulation-linearization
technique” (Sherali and Tuncbilek 1992). First considerdhter products

a )" =-da" +4q" +qq" —qq" > Oaxa,

(@-a)(@-a9)"=aq" —aq" —qq" +aq" > Os.s, (16)
@-a)@-a9"=aq" —qq" —dq" +9q" > O4.s;,

(@-9)@—q

where, in this caser denotes the componentwise inequality between the left- ightthand-side matri-
ces. Upon substituting eq. (7) into egs. (16), we obtain ttit®@nal (convex) linear inequalities appearing
in problem (SDR-2), namely,
~T+qq" +9a" —qq" > Osxa.
T-0qq" —99" +dq" > Oaxa, a7
T-qd' —qq" +0q" > Oaa.



