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Abstract We solve the problem of finding the lowest stable-equilibrium pose of a
rigid body subjected to gravity and suspended in space by an arbitrary number of
cables. Besides representing a contribution to fundamental rigid-body mechanics,
this solution finds application in two areas of robotics research: underconstrained
cable-driven parallel robots and cooperative towing. The proposed approach consists
in globally minimizing the rigid-body potential energy. This is done by applying a
branch-and-bound algorithm over the group of rotations, which is partitioned into
boxes in the space of Euler-Rodrigues parameters. The lowerbound on the objective
is obtained through a semidefinite relaxation of the optimization problem, whereas
the upper bound is obtained by solving the same problem for a fixed orientation. The
resulting algorithm is applied to several examples drawn from the literature. The re-
ported Matlab implementation converges to the lowest stable equilibrium pose gener-
ally in a few seconds for cable-robot applications. Interestingly, the proposed method
is only mildly sensitive to the number of suspending cables,which is shown by solv-
ing an example with 1000 cables in two hours.

Keywords Cable-suspended rigid body· cable robot· parallel robot· branch-and-
bound algorithm· semidefinite programming.

J.F. Collard
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier,
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1 Introduction

The problem addressed in this paper is that of finding the lowest equilibrium pose
(orientation and reference-point position) of a rigid bodysubjected to gravity, and
attached to a fixed frame byn cables whoses lengths are known. Byheight of a pose,
we refer to the height of the centre of mass of the rigid body under consideration, for
the given pose. Although finding this pose may be regarded as afundamental problem
of rigid-body mechanics, to our knowledge, it was never solved. Not without reason:
when considering generic, spatial, rigid-body and fixed-frame geometries, the num-
ber of equilibrium poses quickly explodes as the number of cables increases. This
combinatorial behaviour makes an algebraic approach to theproblem very difficult
in general.

On the other hand, recent reports indicate that producing analgorithm that would
adequately solve for the equilibrium pose of a cable-suspended rigid body would
have an impact on at least two effervescent fields of robotics: cable-driven parallel
manipulators (Ghasemi et al 2010; Carricato and Merlet 2010) and cooperative tow-
ing (Michael et al 2009; Fink et al 2009).

1.1 Cable-Driven Parallel Manipulators

In the first field, the problem may be termedthe forward displacement analysis of
underconstrained cable-driven parallel manipulators. It is closely related to the fa-
mous problem of the forward kinematics of the Gough-Stewartplatform, in which
one seeks the moving-platform pose, given the lengths of thesix actuated legs. The
solution to this problem is relatively recent (Wampler 1996; Husty 1996), which gives
a clue of its complexity. One important distinction betweenthe two problems is that
the equality constraint associated with each leg of the Gough-Stewart platform be-
comes an inequality constraint corresponding to a cable of the cable-driven parallel
manipulator. In the former case, the intersection of the constraints generally yields a
zero-dimensional set of at most 40 solutions, whereas in thelatter, there generally is
a six-dimensional set of feasible poses containing severallocally-optimum solutions,
among which the global optimum is the lowest equilibrium pose.

Furthermore, we should point out that the forward displacement analyses of fully-
constrained and overconstrained cable-driven parallel manipulators fall outside the
scope of this work. Byfully-constrained, we refer to seven-cable parallel manipula-
tors (e.g., the Falcon Kawamura et al (1995)), whose cables are to remain constantly
in tension in order to counter balance any wrench that would be applied to the moving
platform. By overconstrained, we refer to cable-driven parallel manipulators com-
posed of eight or more cables (e.g., the locomotion interface Perreault and Gosselin
(2008)) that remain constantly in tension for the same purpose. Notice that the meth-
ods developed for Gough-Stewart platforms can readily be applied to the forward
displacement analysis of these types of cable-driven parallel manipulators. Indeed, as
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their cables are to remain taut at all times, their geometry is completely analogous to
that of a Gough-Stewart platform, thereby allowing the use of the solutions proposed
in Wampler (1996) and Husty (1996).

Turning our attention back towards underconstrained cable-driven parallel manip-
ulators, Carricato and Merlet (2011) recently proposed a method for the computation
of all stable equilibrium poses of a three-cable manipulator. In this article, they found
an upper bound of 156 to the number of stable equilibrium poses admitted by such
a mechanism. Their approach consists in first solving the Newton-Euler equilibrium
equations of the end effector, and then filtering out the solutions that do not corre-
spond to stable equilibrium poses. As these authors point out, in a stable equilibrium
pose, not all cables of the manipulator need to be taut. In fact, any nonempty subset of
cables can be under tension, which requires that the equilibrium equations be solved
for all possible combinations of cables. As a result, the actual number of equilibrium
poses may be high even for this limited number of cables, and,due to the combinato-
rial nature of the problem, it is expected to explode as the number of cables increases.
Hence, we conjecture that the mathematical tools that proved successful in the solu-
tion of this latter problem are not suited for the general problem addressed here.

Another recent report (Ghasemi et al 2010) on the forward displacement anal-
ysis of underconstrained cable-driven parallel manipulators suggests to use neural
networks to solve the associated system of polynomial equations. According to this
scheme, the neural network istrainedby solving the corresponding inverse displace-
ment analysis, which is much easier than the original problem, over a large set of
poses. The resulting neural network may provide a good approximation of the for-
ward displacement analysis in many cases. However, it offers no guarantee of con-
vergence to the lowest equilibrium pose, or even to any equilibrium pose in general.

1.2 Cooperative Towing

In the second field of cooperative towing, a payload is suspended in the air by several
aerial vehicles. The aerial vehicle displacements are measured, so that the positions
of the cable-attachment points are known, as well as the lengths of the cables. The
problem consists in finding the pose of the suspended payload. Michael et al (2009)
propose a solution to the case where there aren = 2 cables (i.e., the planar case).
This solution is obtained by finding the equilibrium points on the coupler curve of
the analogous planar four-bar linkage. In the same reference, Michael et al. adopt an
energetic approach to the case wheren = 3, using the fact that an equilibrium pose
corresponds to a minimum in the potential energy. This leadsto a nonconvex opti-
mization problem, whose optima are obtained by varying the initial guess of a local
optimization procedure. Such a method, however, does not guarantee that the pose
found corresponds to the one where the centre of mass is lowest.
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We conjecture that this is the motivation that led the same group of researchers to
publish another paper on the topic (Fink et al 2009), where they relax the previously
formulated optimization problem into a convex optimization problem. The optimum
objective value of the relaxed problem may be regarded as a lower bound on the
optimum value of the original problem. Furthermore, the authors provide geometric
conditions under which the lower bound is guaranteed to be tight, i.e., under which
the optima of the relaxed and original problem coincide.

In a parallel effort, Jiang and Kumar (2010) were able to compute all stable equi-
librium poses—including that of lowest centre-of-mass position—for a class of spe-
cial cases in three-dimensional space. A geometry is a member of this class only if
(i) the cable attachment points on the rigid body are located at the vertices of a regu-
lar polygon;(ii) the rigid-body centre of mass is at the centroid of the said polygon;
(iii ) the fixed cable attachment points (i.e., those on the supporting aerial vehicles)
form a regular polygon with the same planes of symmetry as therigid-body polygon;
and(iv) this fixed polygon is perpendicular to gravity (i.e., lies ina horizontal plane).
These constraints allow for a decomposition of the spatial problem into several planar
ones, which are solved by computing the stationary points onthe coupler curve of the
equivalent four-bar linkage.

A summary of the methods reviewed above is given in Table 1. From this com-
parison, one notices that no method applies to the completely general case, namely,
that no method can compute all equilibrium poses of rigid body suspended by an
arbitrary number of cables in an arbitrary geometry. In thispaper, we focus on com-
puting the lowest equilibrium pose, while making no particular assumption on the
number of cables and geometry. This lowest equilibrium poseprovides a tight lower
bound on the height of the rigid-body centre of gravity, a piece of information that
is useful for guaranteeing no collision while moving a cable-suspended object above
obstacles. Moreover, in some applications, it is possible to force the system into this
lowest equilibrium pose by controlling the initial conditions. For instance, consider
the case where the towing vehicles are required to fly in a specific formation, with
given cable lengths and attachment points on the payload. The lowest equilibrium
pose of the payloadrelative to the vehicle formation can be computed with the algo-
rithm proposed herein. Thence, it is possible to move the vehicles to their computed
relative positions prior to lifting the payload, while it remains still. In this situation,
the system is initially in the computed stable-equilibriumpose. Moreover, the sys-
tem is to remain in this configuration throughout the towing operation, because this
pose corresponds to a global minimum in the potential energy, thus guaranteeing that
no small perturbation can take the system to another state ofequilibrium. Hence,
although the existing methods reported in Table 1 have othervirtues, none of them
solves the general problem posed in this paper, i.e., they donot give a method for
computing the lowest equilibrium pose ofanycable-suspended rigid body.
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Table 1 Existing methods for the forward displacement analysis of cable-driven parallel manipulators

method num. of
cablesm

geometry equilib.
poses

comp.
time

Michael et al (2009) 2 any all ms
Carricato and Merlet (2011) 3 any all NA
Fink et al (2009) 3 constraints lowest ms
Jiang and Kumar (2010) any symmetric all ms
Ghasemi et al (2010) any any any NA
proposed method any any lowest s

1.3 The Proposed Approach

In this paper, we proceed very much like Fink et al (2009), in that we resort to a
relaxation of the energy-minimization problem. However, the relaxation we obtain
is different, and is used for a different purpose. As will be seen, the lower bound
provided by the relaxation is cast in a branch-and-bound algorithm, which allows the
computation of a global optimum to the energy-minimizationproblem. This global
optimum corresponds to the lowest equilibrium pose of the rigid body. Unlike alge-
braic approaches, the proposed method does not yield the complete set of equilibrium
poses, unless, of course, there is only one such pose. On the other hand, it can guar-
antee that no solution exists if need be. We also note that themethod proposed here
does not account for possible interference problems between two cables or between
the rigid body and a cable, which is also the case in other existing methods. Neverthe-
less, we will see that the method proposed here can be appliedto problems with large
numbers of cables, which sets it apart from the ones that wereproposed previously.

This method will be explained in the following order. In section 2, the general
energy-minimization problem is formulated. The proposed branch-and-bound algo-
rithm is detailed in sections 3.1, 3.2 and 3.3, where the required partitioning strategy,
lower bound and upper bound are defined, respectively. A summary of the algorithm
is also provided in section 3.4. Finally, benchmark examples are provided in sec-
tions 4.1, 4.2 and 4.3.

2 Problem Formulation

Let us begin by defining the problem as clearly as possible. Weare to compute the
lowest equilibrium pose of a rigid body suspended byn cables, as depicted in Fig. 1.
It is assumed that the mass of the cables is negligeable with respect to the massm
of the suspended body. The sagging effect of the cables is thus not considered here.
Moreover, the cables are assumed to be inextensible. In Fig.1, O is the fixed refer-
ence point. The position of the attachment pointA j of the j th cable on the fixed frame
is given with respect toO by vectora j . The other end of thej th cable attaches to the
rigid body atB j . The position ofB j with respect to the rigid-body centre of massG is
given by vectorQb j , whereb j represents the position ofB j in a reference orientation
of the rigid body, andQ is a rotation matrix representing its current orientation.In
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turn, the position of the centre of mass is given with respectto O by vectorp. Hence,
the pose of the rigid body is fully represented byp andQ, which are the variables
sought in this paper.

O
G

A1

A j

An

B1

B j

Bn

p

a j

b j

c j

g

· · ·

·· ·

Fig. 1 A rigid body suspended byn cables

The equilibrium pose of the rigid body is constrained by then cables that attach
it. In the proposed model, a cable that is not taut is assumed to exert no force on the
rigid body, whereas a taut cable is taken to be completely inextensible, i.e., perfectly
rigid under tension forces. In order to represent the cable constraints, let us define
vectorc j pointing fromB j to A j , whichsupportsthe j th cable, i.e.,

c j ≡ a j −Qb j −p. (1)

The length of thej th cable isc j , and is assumed to be known. As a result, we obtain
the conditions

‖c j‖2≤ c j , j = 1, . . . ,n, (2)

which must be satisfied at all times.

The lowest equilibrium pose of the rigid body may now be expressed as the pose
that minimizes its potential energyV, i.e.,

minimize V =−mgTp, (P)

subject to ‖c j‖2≤ c j , j = 1, . . . ,n,

over p ∈ R
3, Q ∈ SO(3),

where SO(3) is the special group of proper orthogonal matrices. This group rep-
resents a non-convex set inR3×3, and, as a result, the optimization problem (P) is
non-convex as well.

Therefore, this problem, which may appear relatively simple at first glance, turns
out to be a challenging one. By definition, each stable equilibrium pose corresponds
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to a local minimum in the potential energy, and, therefore, finding any such pose
can be done by applying any descent method to (P). However, descent methods of-
fer no guarantee regarding global optimality, and in this article, we simply regard a
local equilibrium as an upper bound on the lowest equilibrium pose. An important
advantage of the proposed energetic formulation over the classical Newton-Euler for-
mulation is that it lends itself to the application of the wealth of optimization methods
available in the literature.

3 The Proposed Branch-and-Bound Algorithm

To the knowledge of the authors, branch-and-bound algorithms (Land and Doig 1960)
are the only procedures that offer guarantees on global optimality while being appli-
cable to any non-convex optimization problem, at least in principle. In the case of
problem (P), an alternative would be to solve the associatedKarush-Kuhn-Tucker
conditions, which could be expressed as polynomial equations in the decision vari-
ables and Lagrange multipliers. We rule out this approach, however, as it does not
allow to circumvent the combinatorial nature of the problem, and leads to a solu-
tion that is similar to that of Carricato and Merlet (2011). We conjecture that this
solution would be applicable to systems with three cables atmost, and at the cost of
much complexity and potentially high computation times—to the knowledge of the
authors, no computation times have been reported so far for the solution of a generic
three-cable system.

We rather resort to a branch-and-bound method, whose complexity grows mildly
with the number of cables. This type of algorithm divides theoptimization domain
into non-overlapping subsets, over which one is to compute lower and upper bounds
on the objective of (P). These bounds should be devised so that shrinking a subset
to a point implies that the corresponding bounds converge tothe objective-function
value at this same point, one from below, the other from above(see Balakrishnan et al
(1991)). Taking advantage of this property, the optimization domain is recursively di-
vided until the minimum lower bound and its corresponding upper bound are within a
prescribed tolerance of each other. Notice that interval analysis may be regarded as a
special case of the branch-and-bound method where the bounds are computed using
interval arithmetics. Although this approach may be applicable to problem (P), we
rather resort to convex relaxations and semidefinite programming for the computa-
tion of the bounds. This choice stems from the conjecture that a specifically-tailored
relaxation can outperform interval arithmetics both in accuracy and convergence rate.
Moreover, the proposed relaxation methods have been applied with success in other
engineering applications such as signal processing and medical imaging (Luo et al
2010).
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3.1 Partitioning the Feasible Domain

In general, it is preferable to divide the domain along the fewest possible number
of dimensions. In this case, however, we are to represent SO(3) with the four Euler-
Rodrigues (ER) parametersq∈R4, that is with one more parameter than the required
minimum of three. This choice is based on the observation that the rotation matrix is
a quadratic form in the ER parameters, which can be expressedas (see Angeles 2007)

Q = (r2
0− rT r)13×3+2rr T +2r0cpm(r), (3)

whereq ≡ [r0 rT ]T , r0 ∈ R andr ∈ R
3, 13×3 is the three by three identity matrix,

and cpm(r) is the cross-product matrix1 of r . To this, we adjoin the unit-hypersphere
constraint, which is quadratic inq, namely,

qTq = 1. (4)

Besides the quadratic nature of the expressions inq, another often-cited advan-
tage of ER parameters is that, unlike three-parameter representations of SO(3), they
are free from singularities. However, they entail a double-covering of SO(3), i.e., a
rotation represented byq is also represented by−q. This property is an obstacle to
the application of the branch-and-bound algorithm, as it implies that global optima
come in redundant pairs, thereby dividing the convergence rate of the algorithm by
two. To resolve this problem, we drop the bottom half of the unit hypersphere, that
is, we add the constraintr0 ≥ 0. By doing so, we introduce a singularity atr0 = 0,
and lose the singularity-free property of these parameters. Nevertheless, for the pur-
pose of this work, the main advantage of ER parameters over other representations of
rigid-body rotations remains, namely, they appear quadratically in the constraints (3)
and (4).

Hence, we are to partition the four-dimensional space of Euler-Rodrigues param-
eters into boxes (a.k.a. orthotopes), which we represent as

[q,q]≡ {q ∈ R
4 : q≤ q≤ q}, (5)

where≤ denotes the componentwise inequality. As we choose the top half r0 ≥ 0 of
the unit hypersphere, then the smallest box containing all possible values ofq is

[q,q] =
[[

0
−13

]

,14

]

, (6)

where1n ≡ [1 · · · 1]T ∈ R
n. The box of eq. (6) is the initial box of the proposed

branch-and-bound algorithm.

1 The cross-product matrix ofr ∈ R
3 is defined as cpm(r)≡ ∂ (r ×x)/∂x for anyx ∈ R

3.
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3.2 Computing a Lower Bound

Computing the lower and upper bounds on the objective over a given box [q,q] is
generally the critical step of a branch-and-bound algorithm. In general, good lower
and upper bounds are those that are accurate and quickly evaluated. These two cri-
teria are often opposed to one another, so that the best bounds are often obtained
by a trade-off. As mentioned previously, accurate upper bounds may be provided by
any applicable descent method, whereas accurate lower bounds can be obtained by
solving convex relaxations of the original problem. Interval arithmetics is yet another
method for obtaining these bounds.

We start with the computation of a lower bound, which is done by performing
a semidefinite relaxation of problem (P). The application ofsemidefinite relaxations
(and semidefinite programming in general) to robotics problems seems to have been
mentioned only incidentally in previous literature. Therefore, we refer the interested
reader to a book on convex optimization in general (Boyd and Vandenberghe 2004),
and to an excellent recent review article on the applicationof semidefinite relaxations
to signal-processing problems (Luo et al 2010).

In order to perform this semidefinite relaxation, observe that only quadratic forms
of q occur in this problem. Let us define the matrixT of all the quadratic forms ofq,
i.e.,

T ≡ qqT =

[

r0

r

]

[

r0 rT
]

≡
[

s0 sT

s S

]

. (7)

From eq. (3), matrixQ can then be expressed as a linear function ofT. Problem (P)
applied over the box[q,q] is then rewritten in the equivalent form

minimize V =−mgTp, (8a)

subject to ‖c j‖2≤ c j , j = 1, . . . ,n, (8b)

c j = a j −Qb j −p, (8c)

Q = (s0− tr(S))13×3+2S+2cpm(s), (8d)

1= s0+ tr(S), (8e)

qqT = T =

[

s0 sT

s S

]

, (8f)

q≤ q≤ q, (8g)

over p ∈ R
3, q ∈ R

4.

This expression is useful in that it concentrates the nonconvex constraints into eq. (8f).
This latter constraint is equivalent to the two constraints

[

1 qT

q T

]

=





1 r0 rT

r0 s0 sT

r s S



� 0, (9a)
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where� 0 denotes nonnegative definiteness of its left-hand side matrix argument,
and

rank









1 r0 rT

r0 s0 sT

r s S







= 1. (9b)

Indeed, the two constraints (9a) and (9b) are necessary and sufficient conditions for
the existence of a real vectorq satisfying eq. (8f) (see Luo et al 2010). As a result,
constraint (8f) is equivalent to constraints (9a) and (9b).

The convex relaxation of problem (P) is obtained by droppingconstraint (9b).
This convex relaxation, however, is not in the form of any standard convex optimiza-
tion program. We reformulate it as a semidefinite program (SDP) by noticing that the
constraint (8b) is equivalent to

[

13×3 c j

cT
j c2

j

]

� 0. (10)

For more details, the reader is referred to Vandenberghe andBoyd (1996).

Upon substituting eqs. (9a) and (10) for eqs. (8b) and (8f), we obtain

minimize V =−mgTp, (SDR-1)

subject to 0�
[

13×3 c j

cT
j c2

j

]

, j = 1, . . . ,n,

c j = a j −Qb j −p,

Q = (s0− tr(S))13×3+2S+2cpm(s),

1= s0+ tr(S),

T =

[

s0 sT

s S

]

,

0�
[

1 qT

q T

]

,

q≤ q≤ q,

over p ∈ R
3, q ∈ R

4, T ∈ R
4×4.

Since all constraints are linear in the optimization variables, they are either lin-
ear equalities or linear matrix inequalities, and (SDR-1) is a semidefinite relaxation
of (P). Hence, the optimum value of (SDR-1) may be computed using readily-available
software, and represents a lower bound on the optimum value of (P).

Numerical experiments show that the lower bounds offered bythis relaxation of-
ten result in a low rate of convergence of the corresponding branch-and-bound algo-
rithm. Resolving this problem requires obtaining a lower bound that is more accurate,
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i.e., a tighter approximation of problem (8). This can be done by adding convex con-
straints, which is done in the Appendix. Upon appending these constraints to prob-
lem (SDR-1), a final lower bound on problem (P) over the box[q,q] is obtained as
the solution of the convex semidefinite programming problem

minimize V =−mgTp, (SDR-2)

subject to 0�
[

13×3 c j

cT
j c2

j

]

, j = 1, . . . ,n,

c j = a j −Qb j −p,

Q = (s0− tr(S))13×3+2S+2cpm(s),

1= s0+ tr(S),

T =

[

s0 sT

s S

]

,

0�
[

1 qT

q T

]

,

q≤ q≤ q,

T ≤ qqT +qqT −qqT ,

T ≥ qqT +qqT −qqT ,

T ≥ qqT +qqT −qqT ,

over p ∈ R
3, q ∈ R

4, T ∈ R
4×4.

Letting (p̌, q̌, Ť) be the solution to problem (SDR-2), and(p∗,q∗) be the solution to
problem (8), we obtain the inequality

V ≡−mgT p̌≤−mgTp∗. (11)

3.3 Computing an Upper Bound

Although an upper bound to the global optimum of problem (P) over the boxq∈ [q,q]
may be obtained through any descent method, we adopt a different approach. The
technique we use here is outlined by Luo et al (2010), and stems from the observation
that a solution(p̌, q̌, Ť) to problem (SDR-2) is the global optimum of problem (8) if

rank

([

1 q̌T

q̌ Ť

])

= 1. (12)

When this last condition is not met, choosing the rank-one matrix that isclosestto
[

1 q̌T

q̌ Ť

]

(13)

generally yields agoodestimate of the global optimum of the original problem.
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When closeness is measured by means of the two-norm of the difference of the
two matrices, the rank-one matrix closest to that of eq. (13)is

λ1u1uT
1 , (14)

whereλ1 andu1 are the largest eigenvalue of matrix (13) and its corresponding eigen-
vector, respectively (Luo et al 2010). Therefore, a good estimate ofq∗ is

√
λ1u1,1,

whereu1 ≡ [u1,0 uT
1,1]

T . Taking into account the fact thatq∗ lies on the unit sphere
and has a nonnegative first component, we normalize and flip the sign if necessary,
which gives the better estimateq̂= sgn(u1,1)u1,1/‖u1,1‖2, whereu1,1 is the first com-
ponent ofu1,1. Having computed an estimateq̂ that lies on the unit-hypersphere of
ER parameters, we can compute a valid proper-orthogonal rotation matrixQ̂ by sub-
stitution in eq. (3).

We cannot overlook the possibility that the estimateq̂ obtained falls outside of the
considered box[q,q]. In such a case, we simply disregard the upper bound by setting
its value to that of the upper bound of its parent box. Notice that the estimatêq of the
initial box defined in eq. (6) is bound to fall inside this box,as, from its definition,
q̂ lies on the top half of the unit hypersphere, which is completely contained in the
initial box. Hence, the algorithm always has a valid upper bound to start from. Expe-
rience shows that simply keeping the upper bound of the parent box whenq̂ /∈ [q,q]
this approach does not prevent the algorithm from converging to the global optimum,
since this situation does not occur as we approachq∗.

Finally, if q̂ ∈ [q,q], we have a valid estimate ofq in hand, which allows us to
return to the unrelaxed problem (8). By settingq = q̂, we are left withp as only op-
timization variable, turning the nonconvex problem into a convex one, or, more pre-
cisely, into a second-order cone program (SOCP). Such a problem is quickly solved
using readily available algorithms, leading to an estimatep̂ of p∗, the lowest posi-
tion of pointG. This estimate provides an upper boundV on the minimum potential
energy, i.e.,

−mgTp∗ ≤−mgT p̂≡V. (15)

3.4 Summary

Figure 2 summarizes the proposed algorithm for computing the global minimum of
problem (P), i.e., the lowest equilibrium pose of the cable-suspended rigid body. As
detailed in section 3.1, we partition the four-dimensionalspace of Euler-Rodrigues
parametersq using boxes. These boxes are stored in listL , which initially contains
only the box defined in eq. (6). Similarly, the lower and upperbounds on the potential
energy over the corresponding boxes are stored in the listsV andV , respectively.
The box containing the lowest lower bound mini V i is partitioned recursively, until
the gap between the lower and upper bounds becomes smaller orequal toε. Hence,ε
represents the accuracy required on the potential energy ofthe suspended rigid body.
Notice that the convergence of this algorithm in a finite number of steps is not demon-
strated in this article, and it appears to be a daunting task.For instance, such a result
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was obtained no earlier than in 1998 in the case of a rectangular branch-and-bound
algorithm applied to the separable concave program (Shectman and Sahinidis 1998),
a problem that has drawn a large share of attention since the 1960s. Nevertheless, one
may notice that problems (SDR-2) and (8) become equivalent wheneverq = q = q̂,
so that we then haveV = V. This shows that the lower and upper bounds become
equal when the boxes becomeinfinitely small, but does not provide any information
as to the rate of convergence.

Before illustrating the method, let us make a few remarks about the algorithm
flowchart of Fig. 2 and especially the ending statements symbolized by double frames.
At the end of the branch-and-bound process, the algorithm may either find the global
optimum or guarantee that no solution exists. The latter conclusion may be reached
in two cases. If the relaxed problem (SDR-2) admits no solution in the initial box
B1, neither will problem (P). This also happens if problem (SDR-2) is infeasible in
every box ofL , i.e., the lowest lower bound is infinity,2 as shown at the bottom
of the flowhart. On the other hand, if problem (P) is feasible,we can exploit con-
dition (12) to detect the global solution of (P) at the first iteration. Otherwise, the
algorithm stops when the lowest lower and upper bounds lie within the prescribed
toleranceε. Finally, to improve the efficency in case of global infeasibility, a pruning
test has been inserted at the end of the main loop. Its purposeis to remove boxes from
L for which the lower bound is greater than the lowest upper bound, thus reducing
the number of boxes to keep in memory. This also reduces the number of required
evaluations before concluding to the infeasibility of problem (P).

4 Numerical Examples

Three examples of increasing complexities are presented inthis Section. Firstly, two
basic examples taken from the literature are solved. Secondly, the minimum height
of the previous example is solved in a few iterations after modifying its dimensions
randomly. Thirdly, a large system of 1000 cables is solved toshow the robustness and
efficiency of the method. All these examples are implementedin Matlab usingCVX, a
package for the formulation and solution of convex programs(Grant and Boyd 2010,
2008).

4.1 Basic Examples

The proposed branch-and-bound method is first applied to twosimple academic ex-
amples: a planar one and a three-dimensional one. The numerical data of these two
examples are respectively taken from Carricato and Merlet (2010) and Jiang and Ku-
mar (2010).

2 By convention, the minimum objective value of an infeasible problem is set to infinity.
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B1←
[[

0
−13

]

,14

]

, L ←{B1}

V1, p̌1, q̌1, Ť1← solve (SDR-2) overB1

(SDR-2)
feasible

(P) is infeasible
no

rank= 1

yes

p̌1, q̌1 is the global
solution of (P)

yes

V1, p̂1← solve (8) withq = q̂1

no

k← 1

Vk−Vk > ε
p̂k, q̂k is the global

solution of (P)

no

for J = I , II

BI ,BII ← partitionBk

L ← (L \{Bk})∪{BI ,BII }

yes

VJ, p̌J, q̌J, ŤJ← solve (SDR-2) overBJ

(SDR-2)
feasible

VJ← ∞
no

rank= 1

yes

VJ←VJ

q̂J← q̌J

yes

VJ, p̂J← solve (8) withq = q̂J

no

V ← (V \{Vk})∪{V I ,V II }
V ←

(

V \
{

Vk
})

∪
{

V I ,V II
}

Pruning test

k← find k such thatVk = mini V i

Vk = ∞ (P) is infeasible
yes

no

Fig. 2 Algorithm flowchart
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4.1.1 Planar example (Carricato and Merlet 2010)

The rigid body is suspended by two cables of given lengths (c1 = c2 = 7) as illustrated
in Fig. 3. In this first example, the solution of the relaxed problem (SDR-2) computed
over the initial box gives a minimum height of−6.0714. The first eigenvector of
matrix (13) is then used to produce an estimateq̂1 of q∗. Using this estimate to set
q = q̂1 in problem (8), we obtain the same minimum height of−6.0714. Hence, the
pose computed at the first iteration is the global optimum sought, which corresponds
to the value given in (Carricato and Merlet 2010).

0 1 2 3 4 5 6 7 8 9 10

−6

−5

−4

−3

−2

−1

0

1

2

Fig. 3 A simple planar example from Carricato and Merlet (2010)

4.1.2 Three-dimensional example with equal cable lengths (Jiang and Kumar 2010)

Here, the object is suspended by six cables attached to six aerial robots. All cables
have the same length (c j = 12 m, j = 1, . . . ,6), the base and the platform are regular
hexagons respectively of radii 4 m and 1 m, as depicted in Fig.4. The center of mass
of the platform is at its centroid. As for the previous example, the solution is straight-
forward. The relaxed problem (SDR-2) gives a minimum heightof -11.6190 m. This
is actually the global minimum, since the rank of matrix (13)is equal to one.

4.1.3 Three-dimensional example with different cable lengths (Jiang and Kumar
2010)

A second case is proposed where the cable lengths are different: c j = 8+ j m, j =
1, . . . ,6. The solution illustrated in Fig. 5 is still immediate, forthe lower and upper
bounds computed on the first box are both equal to -9.7556 m. Inthis particular case,
it should be noted that only cables of lengths 9 m and 12 m are active. They are illus-
trated by thicker lines in Fig. 5, whereas the thinner lines do not represent the actual
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Fig. 4 A simple 3D example from Jiang and Kumar (2010)

lengths of the corresponding inactive sagging cables.
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Fig. 5 A 3D example with different cable lengths from Jiang and Kumar (2010)

4.2 Irregular Six-Cable Example

In many regular situations, the relaxation of the problem proves to be tight and the
global optimum is found after a single iteration. However, dealing with more irregu-
lar dimensions requires a few iterations for the proposed method to converge to the
global minimum. In order to produce such an example, the dimensions of the previ-
ous six-cable example were randomly modified. The modifications of lengthsc j are
within 10 % of their initial lengths (12 m), whereas the components of vectorsa j and
b j are modified within 10 % of the base and platform radii respectively ( j = 1, . . . ,6).
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Several optimizations were carried out; All of them converged in less than a hundred
iterations. One of these runs is illustrated in Fig. 7. In this graph, the values of the
lowest lower and upper bounds come within less than 100µm from one another in 41
iterations. Let us point out that the lowest upper bound doesnot decrease monoton-
ically. Indeed, when partitioning a box in the branch-and-bound algorithm, the two
replacing boxes may provide higher upper bounds since the estimateq̂ of q∗ is then
modified. The corresponding solution, which is representedin Fig. 6, has only three
active cables.
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Fig. 6 An irregular 3D example derived from Jiang and Kumar (2010)
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Fig. 7 Evolution of lowest lower and upper bounds in the proposed branch-and-bound algorithm to find
the lowest equilibrium pose of the rigid body of example 2
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4.3 Thousand-Cable Random Example

Not only the proposed branch-and-bound algorithm seems robust, but its computa-
tional complexity is polynomial with respect to the number of cables—the number
of cable being proportional to the numbers of optimization variables and constraints.
This interesting feature is now highlighted by seeking the minimum height of a rigid
body suspended by 1000 cables. It must be emphasized that this example is far from
the reality of cable-driven robots but could help in other fields of mechanics, e.g., in
multi-contact modelling. The dimensions of this system were randomly generated in
the interval[10,20] for the cable lengths and the interval[0,10] for the components
of vectorsa j andb j , j = 1, . . . ,1000. As shown in Fig. 9, the process converges in
219 iterations to within a tolerance of 100µm between the lowest lower and up-
per bounds. This takes 122 minutes with theCVX package in Matlab on a 2.50 GHz
Centrino 2 processor.CVX rewrites problems (SDR-2) and (8) into dual problems
comprising respectively 10095 and 4000 variables. This, again, illustrates the robust-
ness and efficiency of the proposed method, which relies on convex optimization and
the efficient algorithms that are available for such problems. The final solution is de-
picted in Fig. 8, where the three active cables are drawn in black and only a hundred
inactive cables are represented in gray.

Finally, the computational performance of the proposed method over the given
examples are summarized in Table 2. It can be observed that itgenerally takes less
than one second to find the lowest equilibrium pose of a regular example or a few
dozens of seconds if the dimensions are irregular. The computational time of a ran-
dom large-scale example remains reasonnable regarding thesize of the considered
system.
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Fig. 8 Solution of the 1000-cable example: the three active cables are represented by thick black lines and
100 of the 997 inactive cables are drawn in gray
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Fig. 9 Evolution of lowest lower and upper bounds in the proposed branch-and-bound algorithm to find
the lowest equilibrium pose of a rigid body suspended by 1000cables

Table 2 Computational Performance Obtained with theCVX Package in Matlab on a 2.50 GHz Centrino 2
Processor

Reference Number of cables Number of iterations CPU time

4.1.1 2 1 < 1 s

4.1.2 6 1 < 1 s

4.1.3 6 1 < 1 s

4.2 6 41 32 s

4.3 1000 219 122 min

5 Conclusions

In summary, the proposed algorithm allows for the computation of the lowest equilib-
rium pose ofanyrigid-body suspended byn cables in space. The adopted branch-and-
bound scheme reliably converges to the solution, and was even shown to sometimes
yield the global optimum at the first iteration. Another interesting feature of the de-
vised algorithm is the low sensitivity of its speed with respect to the number of cables
involved in the problem, which was illustrated in Section 4.3 with the 1000-cable ex-
ample.

We should also acknowledge some important drawbacks of the proposed method.
Firstly, this approach does not provide any information regarding local equilibrium
poses at which the rigid body may stabilize without reachingthe lowest one. This
stems from the branch-and-bound procedure, which abstracts local minima in its
search for the global minimum. Secondly, we do not account for possible interfer-
ence between two cables or between the rigid body and a cable.In view of the local-
equilibrium and interference problems, the computed lowest equilibrium pose may be
regarded as a lower bound on the height of the rigid body. Thirdly, a major challenge
that remains to be addressed is that the proposed algorithm is not yet fast enough
for real-time implementations. Indeed, the examples reported in Section 4 showed
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running times in the orders of tens of seconds, whereas real-time control would re-
quire running times of at most tens of milliseconds. A viabledirection may be the
one pointed by Fink et al (2009). These authors provided geometric conditions under
which the second-order cone relaxation of the optimizationproblem they propose is
tight. Similarly, it may be possible to find classes of cable arrangements for which
the semidefinite relaxation (SDR-2) is guaranteed to yield the global optimum.

Other future work will aim at extending the proposed method to find all the solu-
tions of the forward kinematics problem, i.e. all the local optima of our optimization
problem. This involves the modification of the branch-and-bound approach to explore
the whole parameter space. Hence, despite being currently limited to the computation
of the lowest equilibrium pose, we believe that the method proposed here provides
a framework for the generalization to the computation ofall equilibrium poses. This
framework may be more viable than one based on algebraic geometry and polyno-
mial continuation, as the complexity of such methods grows rapidly with the number
of cables. This would explain why the latter techniques havebeen applied to rigid
bodies suspended by three cables (Carricato and Merlet 2011) or less, for arbitrary
cable attachment points and lengths. Another perspective of this research deals with
accelerating the proposed method by refining its computer implementation and its
contents. On the implementation side, translating the algorithm in a lower-level pro-
gramming language such as C should result in an appreciable gain in speed. Bypass-
ing CVX, which acts as an interpreter for convex optimization solvers, should also
speed up the bounding steps. Regardless of the practical implementation, we believe
that there remains room for improvement of the algorithm if one were to find a more
efficient partitioning strategy for SO(3). For this purpose, other sets of parameters
different from those of Euler-Rodrigues may lead to some improvement.
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Appendix

The constraints required to tighten the relaxation (SDR-1)are obtained from the “reformulation-linearization
technique” (Sherali and Tuncbilek 1992). First consider the outer products

(q−q)(q−q)T =−qqT +qqT +qqT −qqT ≥ 04×4,

(q−q)(q−q)T = qqT −qqT −qqT +qqT ≥ 04×4,

(q−q)(q−q)T = qqT −qqT −qqT +qqT ≥ 04×4,

(16)

where, in this case,≥ denotes the componentwise inequality between the left- and right-hand-side matri-
ces. Upon substituting eq. (7) into eqs. (16), we obtain the additional (convex) linear inequalities appearing
in problem (SDR-2), namely,

−T +qqT +qqT −qqT ≥ 04×4,

T−qqT −qqT +qqT ≥ 04×4,

T−qqT −qqT +qqT ≥ 04×4.

(17)


