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1 Introduction

Stochastic volatility (SV) models have attracted considerable interest in recent years,

as they have been shown to offer a higher goodness-of-fit and flexibility than GARCH-

type models when applied to financial time series, see e.g. Jacquier, Polson and Rossi

(1994), Danielsson (1998), Kim, Shephard and Chib (1998), Carnero, Peña and Ruiz

(2004) for comparisons between the two model classes. With the same number, or less, of

parameters, the SV models gain additional flexibility through the use of stochastic latent

variables that drive volatilities. Until quite recently, SV models have suffered from the

difficult estimation problem, due to the fact that the evaluation of the likelihood function

amounts to solving an integral of dimension equal to the sample size. Several methods

have been proposed to circumvent this problem, see e.g. Broto and Ruiz (2004) for a

survey. The proposed methods still require in most cases some computational effort, but

thanks to increased computing power one can now estimate univariate SV models for

typical sample sizes in the realm of seconds or even fractions of seconds. This makes

them attractive to the applied econometrician and attenuates the comparative advantage

of GARCH models in terms of computational simplicity.

Starting with Harvey, Ruiz, and Shephard (1994), multivariate SV models have become

more popular in empirical finance to describe return volatilities and correlations, with

direct applications e.g. to portfolio selection. Yu and Meyer (2006) are, to our knowledge,

the first ones to propose a multivariate SV model with stochastic correlations, where the

Fisher transform of the correlation follows a Gaussian AR(1) process. Asai and McAleer

(2009) propose a model that is similar in structure to the DCC model of Engle (2002)

but where the correlations are driven by a stochastic VAR(1)-type process. Amisano and

Casarin (2007) suggest to introduce a Markov-switching process to explain correlation

dynamics in a multivariate SV framework. These model classes are very flexible, but

they might fail to correctly describe the dependence between the series in situations

where the dependence is nonlinear. If the multivariate return distribution conditional

on the latent variables was elliptical, then correlations would be sufficient to describe

dependence. However, one often observes non-elliptical distributions especially in equity

returns, where the lower tail-dependence is usually higher than upper tail-dependence.

A natural, and in fact the most general way to model non-linear dependencies is to

use copulas, see e.g. the monograph of Joe (1997). A broad variety of copula models

exists which allow to capture, for example, asymmetries in tail dependencies. One advan-

tage of using copulas is the decoupling of marginal distributions from the dependence. In
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many cases, the marginal distributions do not depend on the dependence parameter, such

that one can first estimate the parameters of the marginal distributions, e.g. assuming

univariate SV processes, and then in a second step the copula parameters. Furthermore,

in situations where the marginal distribution cannot be assumed to be conditionally nor-

mal, the copula approach allows for the construction of new multivariate distributions

by coupling the appropriate marginal distributions using a copula. A remarkable exten-

sion of copula theory has been made by Patton (2006), who introduced the notion of a

conditional copula and proposed a model for the evolution of time-varying dependence

parameters. As an alternative to Patton (2006), we propose a model where one or more

of the copula parameters follow a transformation of a stochastic process, e.g. a Gaussian

autoregressive process. As this is again a stochastic latent variable, it is in the same

spirit as standard multivariate SV models. As a special case, we obtain a multivariate SV

model with stochastic correlation by using a Gaussian copula. The use of other, in partic-

ular asymmetric copulas allows to better capture asymmetric tail dependencies. In this

sense our model can be viewed as a generalization of standard multivariate SV models.

However, as we will argue, estimation is straightforward due to the two step estimation.

In particular, for estimation we use the efficient importance sampling (EIS) algorithm of

Liesenfeld and Richard (2003) and Richard and Zhang (2007), and we extend it to the

present model framework. We discuss specification tests such as parameter constancy and

copula selection. In case of nonlinear transformations of the latent process, forecasting

becomes a nontrivial issue, but we show that in most cases simple solutions can be found.

In the application part of the paper we show that, for two different bivariate stock

index series, a stochastic copula model with SV marginals outperforms the model of

Patton (2006) and a DCC model with GARCH(1,1) marginals. The latter is a natural

competitor to our model and, due to its popularity, serves as a benchmark. This also

holds if we replace the SV marginals by GARCH(1,1) to compare directly the dependence

parts of the models, i.e. dynamic conditional correlation versus stochastic copula.

The remainder of the paper is organized as follows. The next section introduces the

model, discusses an estimation and inference method as well as the testing and forecasting

problems. Section 3 discusses the application to bivariate stock index series, both at a

daily and a weekly frequency and Section 4 concludes.
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2 Specification, estimation and diagnostics

2.1 The stochastic copula model

Let x and y be two continuous random variables with joint distribution function H(x, y)

and marginal distribution F and G, respectively. Then by Sklar’s theorem there exists a

unique copula C such that

H(x, y) = C(F (x), G(y)). (1)

Thus by the probability integral transform a copula is a multivariate1 distribution function

with uniform marginals and it fully captures the dependence between x and y irrespective

of the marginal distributions. Examples and properties of the copulas we consider in this

paper can be found in the Appendix. For a more detailed treatment, we refer to the book

of Joe (1997).

Consider the bivariate time series process (ut, vt) for t = 1, ..., T with distribution

function given by the following time-varying copula model

(ut, vt) ∼ C(u, v|θt), (2)

where θt ∈ Θ ⊂ RK is a random parameter vector of the copula function. In this paper

we only consider copulas with one parameter, so that K = 1. We assume that θt is driven

by an unobserved stochastic process λt such that θt = Ψ(λt), where Ψ : R → Θ is an

appropriate transformation to ensure that the copula parameter remains in its domain

and whose functional form depends on the choice of copula. The underlying dependence

parameter λt, which is unobserved, is assumed to follow a Gaussian autoregressive process

of order one,

λt = α + βλt−1 + νεt, (3)

where εt is an i.i.d. N(0, 1) innovation. In principle, higher order autoregressive models

could be considered, but estimation would become very difficult and in all applications

we found that AR(1) sufficiently describes persistence and the autocorrelation structure

of the dependence parameter. Furthermore, the first order autoregressive model allows

for a simple state space representation, which we describe below.

1We only consider bivariate copulas in this paper, but most methods can in principle be extended to
the multivariate case, see Section 2.8.
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We assume that the latent process is strictly stationary, i.e. |β| < 1. For identification

reasons we also assume that the scale parameter of the innovations, ν, is positive. Note

that we ignore specification of the marginals for the moment, so we assume that the ob-

served variables have a U(0, 1) distribution or, alternatively, we assume perfect knowledge

of the marginals. We will discuss possibilities of how to deal with the marginals below.

The above model has a nonlinear state space representation with observation equation

(ut, vt) | λt ∼ C(u, v | Ψ(λt)) and transition equation given by (3). A straightforward

extension is possible when the marginals are unknown and included in the model, which

is postponed to Section 2.3. Hence, the estimation procedure used in this paper can be

interpreted as a nonlinear filtering algorithm and is linked to the extensive literature on

nonlinear filtering (see e.g. Doucet et al., 2001). In particular, Durbin and Koopman

(2000, 2001) discuss how importance sampling can be used to estimate time-series models

in state space form. In the following we describe how a particular importance sampling

technique can be adapted to estimate our model.

2.2 Estimation

We are interested in estimating the parameter vector ω = (α, β, ν). Denote U = {ut}T
t=1,

V = {vt}T
t=1 and Λ = {λt}T

t=1 and let f(U, V, Λ; ω) be the joint density of the observable

variables (U, V ) and the latent process Λ. Then the likelihood function of the parameter

vector ω is

L(ω; U, V ) =

∫
f(U, V, Λ; ω)dΛ. (4)

If now Ut = {uτ}t
τ=1, and similarly for Vt and Λt, we can factorize the integrand of this

likelihood function into a sequence of conditional densities as follows.

L(ω; U, V ) =

∫ T∏

t=1

f(ut, vt, λt|Ut−1, Vt−1, Λt−1, ω)dΛ. (5)

Furthermore the joint density f(ut, vt, λt|Ut−1, Vt−1, Λt−1, ω) can be factorized into the cop-

ula density c(ut, vt|λt, Ut−1, Vt−1, ω) times the conditional density of λt given (Ut−1, Vt−1,

Λt−1), which is p(λt|Ut−1, Vt−1, Λt−1, ω). Since p does not depend on the past observable

variables (Ut−1, Vt−1) they can be omitted for the sake of notation. This gives the following

likelihood function for ω

L(ω; U, V ) =

∫ T∏

t=1

c(ut, vt|λt, Ut−1, Vt−1, ω)p(λt|Λt−1, ω)dΛ. (6)
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This integral is T -dimensional and cannot be evaluated by analytical or numerical methods

even for moderate sample sizes. However, it can be evaluated by simulation. In principle,

one could simulate a large number N of trajectories {λ̃(i)
t (ω)}T

t=1 from p, which we call

the natural sampler, and evaluate the likelihood function by

L̂N(ω; U, V ) =
1

N

N∑

i=1

[
T∏

t=1

c(ut, vt|λ̃(i)
t (ω), Ut−1, Vt−1, ω)

]
. (7)

However, as mentioned in Danielsson and Richard (1993) and Liesenfeld and Richard

(2003) this estimator, labeled the ”natural MC estimate”, is very inefficient for reasonably

large sample sizes. This results from the fact that the trajectories {λ̃(i)
t (ω)}T

t=1 are sampled

independently of the observed variables U and V and thus do not make any use of the

information available in the data.

A technique to handle such problems, which is proposed in Liesenfeld and Richard

(2003) and Richard and Zhang (2007), is called efficient importance sampling (EIS). The

main idea of EIS is to make use of the information on Λ contained in the observable

variables U and V to construct a new sampler that exploits this information. Denote a

sequence of this auxiliary sampler by {m(λt|Λt−1, at)}T
t=1 indexed by the auxiliary param-

eters at, which need to be estimated. The likelihood function can be rewritten as

L(ω; U, V ) =

∫ T∏

t=1

[
f(ut, vt, λt|Ut−1, Vt−1, Λt−1, ω)

m(λt|Λt−1, at)

] T∏

t=1

m(λt|Λt−1, at)dΛ, (8)

which can be evaluated by using N trajectories {λ̃(i)
t (at)}T

t=1 drawn from the importance

sampler m by

L̃N(ω; U, V ) =
1

N

N∑

i=1

( T∏

t=1

[
f(ut, vt, λ̃

(i)
t (at)|Ut−1, Vt−1, Λ̃

(i)
t−1(at−1), ω)

m(λ̃(i)
t (at)|Λ̃(i)

t−1(at−1), at)

])
. (9)

The challenge of EIS is to find a function m and a sequence of auxiliary parameters

{at}T
t=1 to provide a good match between the numerator and the denominator in (9) in

order to reduce the MC sampling variance of L̃N as much as possible. The auxiliary

parameters need to be estimated, which must be done for each period t due to the high

dimensionality of the problem. A good match between f and m is not possible period by

period since the integral of f with respect to λt depends on Λt−1, while that of m is equal

to one. Therefore we need a functional approximation k(Λt; at) for f that is analytically

integrable with respect to λt such that

m(λt|Λt−1, at) =
k(Λt; at)

χ(Λt−1; at)
, (10)
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where χ denotes the integral of k with respect to λt. Note that we must account for the

function χ when matching f and k, but since χ does not depend on λt it can be transferred

back into the subproblem for period t− 1. Then for each period t given a value for ω the

following minimization problem must be solved

ât = arg min
at

ΣN
i=1

(
log[f(ut, vt, λ̃

(i)
t (ω)|Ut−1, Vt−1, Λ̃

(i)
t−1(ω), ω) · χ(Λ̃(i)

t (ω); ât+1)] (11)

− ct − log k(Λ̃(i)
t (ω); at)

)2

,

for t = T, ..., 1 and χ(ΛT ; aT+1) ≡ 1. Since the trajectories of the underlying dependence

process are drawn from the natural sampler, one should iterate this procedure and use

draws {λ̃(i)
t (ât)}T

t=1 from the importance sampler in the next iteration until convergence

of ât to fixed values. This requires the use of Common Random Numbers (CRNs) at

each iteration. Furthermore, if k(Λ; at) is chosen within the exponential family the least

squares problem in (11) becomes linear. The likelihood function is then evaluated by

substituting the estimated sequence {ât}T
t=1 and N draws from the importance sampler

m into (9).

Liesenfeld and Richard (2003) suggest the following decomposition of k

k(Λt; at) = p(λ|λt−1, ω)ζ(λt, at), (12)

with ζ(λt, at) a Gaussian kernel. This decomposition further simplifies the least squares

problem and the functional form of the likelihood as the natural sampler p now cancels out.

The choice ζ(λt, at) = exp(a1,tλt + a2,tλ2
t ) makes the least squares problem in (11) linear

and thus greatly reduces the computational burden of the procedure. For non-Gaussian

latent processes, however, the importance sampler should be chosen in a different way,

which will most likely not result in a linear least squares problem. Given this choice the

mean and variance of the importance sampler m, which depend on at = (a1,t, a2,t), are

µt = σ2
t

(
α + βλt−1

ν2
+ a1,t

)
, σ2

t =
ν2

1− 2ν2a2,t
. (13)

The functional forms of p, k and χ are given by Liesenfeld and Richard (2003). For a

given choice of the copula, EIS can be implemented as follows.

1. Draw N trajectories {λ̃(i)
t (ω)}T

t=1 from the natural sampler p.
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2. For t = T, ..., 1 solve the back-recursive least-squares regression problem

log c(ut, vt|θt(ω)) + log χ(λ̃(i)
t (ω); ât+1) (14)

= ct + a1,tλ̃
(i)
t (ω) + a2,t[λ̃

(i)
t (ω)]2 + η(i)

t ,

with ct and η(i)
t the regression constant and error term, respectively.

3. Draw N trajectories {λ̃(i)
t (ât)}T

t=1 from the importance sampler m and solve the

least-squares problem in Step 2 again. Iterate Steps 2 and 3 this until convergence

of {ât}T
t=1.

4. Draw N trajectories {λ̃(i)
t (ât)}T

t=1 from the importance sampler m and evaluate the

likelihood function given in (9).

The maximum likelihood estimator of the parameter vector ω is then obtained by

maximizing the EIS likelihood function. In order to ensure its smoothness, the same

CRNs are used for every evaluation of the likelihood function. Note that more than five

iterations are not necessary in most cases. Concerning the number of trajectories N , a

choice between 100 and 200 seems to be sufficient to keep the Monte Carlo variation small.

2.3 Including the marginals: One Step vs. Two Step Estimation

So far we have ignored that the marginals must also be modeled and estimated. Generally

speaking this depends highly on the type of data one wants to model. Since in this paper

we are mainly focusing on financial data observed with a daily or weekly frequency, in

particular stock market returns, it is crucial to properly model the time-varying volatility

and leptokurtosis. A natural model for the i-th stock market returns rit for t = 1, ..., T is

the stochastic volatility (SV) model proposed by Clark (1973) and Taylor (1986). In its

simplest form it can be written as

rit = exp(hit/2)εit

hit = αi + βihit−1 + νiηit, (15)

where εit and ηit are mutually independent i.i.d. normal random variables with mean zero

and variance one that are also uncorrelated with the innovations driving the dependence

process. Estimation may be done using EIS as described in Liesenfeld and Richard (2003).
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An alternative to the SV model is the large class of GARCH models, introduced by

Engle (1982) and Bollerslev (1986). The standard GARCH(1,1) model is given by

rit =
√

hitεit

hit = αi + γiε
2
it−1 + βihit−1. (16)

As mentioned in the introduction, it is easily possible to relax the assumption of con-

ditional normality of the marginal distributions. For example εit may come from a t-

distribution with different degrees of freedom for each series and the dependence may

still be modeled using a Gaussian copula. This is not possible using generic multivari-

ate distributions such as the multivariate Student t. Note that the joint model allows a

nonlinear state space representation. Denote by Φ(·) the standard normal cdf. Then the

observation equation is given by

(rit, rjt) | λt, hit, hjt ∼ C(Φ(εit), Φ(εjt))

where in the SV model εit = exp(−hit/2)rit and the transition equations are given by

(3) and (15), while in the GARCH model, εit = rit/
√

hit and the transition equations

are given by (3) and (16). The state variables h1t and h2t of the marginal models do

not depend on the states of the process λt driving the dependence, which justifies the

sequential estimation of the marginals and the copula we describe below.

For either choice of the model for the marginals, denote the parameter vector for

component i by δi for i = 1, 2 and ω for the copula. Assume we observe the processes

X = {xt}T
t=1 and Y = {yt}T

t=1 with marginal distributions F (X; δ1) and G(Y ; δ2). Then,

as a consequence of Sklar’s theorem, the joint log-likelihood function can be decomposed

into the marginal likelihood and the copula likelihood,

L(δ1, δ2, ω; X, Y ) = LX(δ1; X) + LY (δ2; Y ) + LC(ω; F (X; δ1), G(Y ; δ2)). (17)

In principle, (17) can be estimated w.r.t. all parameters to give a fully efficient maxi-

mum likelihood estimate whose covariance matrix is given by the inverse of the Fisher

information matrix. However, joint estimation of all parameters is computationally very

expensive in our situation, in particular when SV models are chosen for the margins,

because in that case all three components of (17) would need to be evaluated jointly

by an algorithm such as EIS. In some cases it may not even be possible to reach con-

vergence at all. To solve this problem, one may maximize the marginal log-likelihood

functions in a first step, and then maximize the copula log-likelihood conditional on the

9



estimated marginals. This method has been labeled the inference function for margins

(IFM) estimator by Joe (1997, 2005). Under weak regularity conditions, this estimator is

consistent, although not fully efficient. Standard errors of the two step estimator ω̂ can

be obtained as follows. Let us denote the full parameter vector as ϑ = (δ′1, δ
′
2, ω

′)′ and let

ψ(X, Y ) = (∂LX/∂δ′1, ∂LY /∂δ′2, ∂LC/∂ω′)′ denote the inference functions. Furthermore,

let us denote D = E[∂ψ(X, Y )/∂ϑ′] and M = E[ψ(X, Y )ψ(X, Y )′]. Then, as shown by

Joe (2005),
√

T (ϑ̂− ϑ)→d N(0, V ), where

V = D−1M(D−1)′. (18)

We will use this result for inference in our applications.

Note that the possibility of two-step estimation is not exclusive to copula based models,

but has also been proposed for the DCC model by Engle (2002) and for the model by

Asai and McAleer (2009). However, these procedures are in fact equivalent to using the

copula decomposition of the log-likelihood function with the Gaussian copula.

2.4 Estimating the underlying process

Even though the parameters of the underlying process are of interest themselves, it is of

crucial importance to obtain an estimate of the sequence of the underlying latent state

variable λt and of the function Ψ(λt). To this end we need to compute the conditional

expectation of Ψ(λt) given the information on the past observable variables Ut−1 and Vt−1.

This is known as the filtered (or predicted) estimates of Ψ(λt), which we denote Ψ(λ̂t|t−1)

and is given by

E[Ψ(λt)|Ut−1, Vt−1] =

∫
Ψ(λt)p(λt|Λt−1, ω)f(Ut−1, Vt−1, Λt−1; ω)dΛt∫

f(Ut−1, Vt−1, Λt−1; ω)dΛt−1
. (19)

Using the estimated parameters ω̂ the denominator is simply the likelihood function using

the first t− 1 observations, which is L(ω; Ut−1, Vt−1). The numerator can be evaluated by

1

N

N∑

i=1

(
Ψ[λ̃(i)

t (ω̂)]
t−1∏

t=1

[
f(uτ , vτ , λ̃

(i)
t (âτ )|Uτ−1, Vτ−1, Λ̃

(i)
τ−1(âτ−1), ω̂)

m(λ̃(i)
τ (âτ )|Λ̃(i)

τ−1(âτ−1), âτ )

])
, (20)

with {λ̃(i)
τ (âτ )}t−1

τ=1 a trajectory from the EIS sampler for L(ω; Ut−1, Vt−1) and λ̃(i)
t (ω̂) a

draw from the natural sampler p(λt|Λ̃(i)
t−1, ω̂). As before CRN’s should be used to evaluate

the numerator and the denominator. The integral in (19) must be evaluated for each

t = 1, ..., T . In addition it needs to be mentioned that the number N of trajectories from
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the importance sampler must be a lot higher than for estimation purposes in order to

ensure numerical stability at each evaluation of the likelihood function. We recommend a

number of about 500, which means that evaluation of a filtered path for 2500 observations

requires about 2-3 hours of computation on an Intel dual core processor.

An alternative to the computationally expensive method of filtering is to make use of

the mechanics of EIS to obtain smoothed estimates of the latent process, i.e. to estimate

each Ψ(λt) using the complete information available at time T. As mentioned above,

EIS exploits all the information available in the data to produce efficient samples of the

underlying process {λt}T
t=1. Thus as a byproduct of EIS when evaluating the likelihood

function we obtain the smoothed estimate of {Ψ(λt)}T
t=1 by

Ψ(λ̂t|T ) =
1

N

N∑

i=1

Ψ(λ̃(i)
t (ât)) ∀t = 1, ..., T. (21)

Using both simulated and real data, we obtained smoothed estimates of {Ψ(λt)}T
t=1 that

were very close to the filtered and true (in case of simulated data) paths of the underlying

process. Furthermore, the smoothed estimates are much less noisy, due to the fact that

they are calculated as an average, but also since they make efficient use of the complete

information contained in the sample at each Ψ(λ̂t|T ). Furthermore, it is computationally

much cheaper and requires only a small N .

A third option is to calculate the smoothed estimate of Ψ(λt) using only the informa-

tion available at time t, i.e. Ut and Vt. This estimate, which may be called the ‘updated’

estimate shall be denoted by Ψ(λ̂t|t). In order to understand how filtered estimates are

obtained one should be aware that these are in fact the one-step forecasts of the updated

state variable accounting for the nonlinearity of the transformation Ψ.

Since the main objective of time-varying correlation models is to estimate the correla-

tion path over time, we conduct a small simulation study to see how competing methods

for estimating time-varying correlation compare in the sense of being closer to the true

correlation path. We draw a sample of size 1000 from a Gaussian copula model with a

variety of underlying correlation dynamics. Four competing models are fit, the estimates

for time-varying correlations are retrieved and mean square errors (MSE) are computed.

The models are a constant copula, the stochastic copula autoregressive (SCAR) model2

2The correlation estimate is the smoothed correlation path.
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and the DCC GARCH model of Engle (2002), where correlation is described by

ρi,j,t =
qi,j,t√

qi,i,tqj,j,t

qi,j,t = ρ̄i,j + α(εi,t−1εj,t−1 − ρ̄i,j) + β(qi,j,t−1 − ρ̄i,j), (22)

with ρ̄ the unconditional sample correlation and εi,t the standardized GARCH residual

for variable i at time t. Note that in our simulation study we do not consider volatility

dynamics, but only the model for correlation. The fourth model we consider is the con-

ditional copula specification from Patton (2006), which is similar to the DCC model, but

does not assume any marginal distribution. The conditional correlation in this model is

given by

ρt = Ψ

(
α + βρt−1 + ν

1

10

10∑

j=1

Φ−1(ut−j)Φ
−1(vt−j)

)
, (23)

where Ψ is chosen to be the inverse Fisher transform. The correlations follow several

processes, both deterministic and stochastic, which are:

1. Constant: ρt = 0.5

2. Jump: ρt = 0.2 + 0.5It>500

3. Sine: ρt = 0.5 + 0.4 cos(2πt/200)

4. Ramp: ρt = mod (t/200)

5. DCC: Correlation generated by (22) with ρ̄ = 0.7, α = 0.04 and β = 0.95

6. AR(1): λt = 0.03 + 0.97λt−1 + 0.1εt

7. Noise: λt = 0.3 + 0.1εt

8. Random Walk (RW): λt = λt−1 + 0.01εt

9. ARMA(2,2): λt = 0.01 + 0.65λt−1 + 0.3λt−2 + 0.1εt + 0.05εt−1 + 0.03εt−2

where εt is a N(0, 1) random variable. For the DCC model the parameters were those

estimated for the Dow Jones-NASDAQ data in the empirical application. For processes

6 to 9 we consider two transformations to keep correlation between -1 and 1 at all times:

The first one is the inverse Fisher transform, whereas the second one is ρt = λt/ supt |λt|.
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The number of trajectories N in the EIS sampler is chosen to be 200. We repeat the

simulation 1000 times for the constant copula and the DCC model and only 100 times

for the SCAR and Patton (2006) model due to computational complexity. We report the

average of the mean squared distance between the true and the estimated correlation path.

Results, which are reported in Table 1, show that the SCAR model clearly outperforms its

competitors both under deterministic and stochastic correlation dynamics and regardless

of the transformation. Not surprisingly, all models do worse when they are misspecified.

The DCC only performs better when it is also the data generating process, which is not

surprising as in that case the innovations driving the correlation are known. Still, the

SCAR model does well and outperforms the specification of Patton (2006). Note that

in Asai and McAleer (2009) a similar simulation study is performed using DGP’s very

close to 1-4. In terms of estimating ρt their dynamic correlation model is found to perform

worse than the DCC, even though the volatilities in their DPG follow an SV model, which

should strongly favor their SV based model over the (misspecified) DCC-GARCH.

2.5 Testing

We now consider two hypotheses that may be of interest in empirical modeling using

the stochastic copula model. The first is whether the dependence parameter is actually

time-varying. Formally, the null hypothesis can be written as

H0 : θt = θ̄, ∀ t = 1, ..., T, (24)

where θ̄ is the time-constant copula parameter. In terms of our model parameters in (3)

this null hypothesis can also be stated as

H0 : ν = 0. (25)

We test this hypothesis with a simple likelihood ratio test. Let LLres be the log-likelihood

of the model under H0 and LLur the log-likelihood of the unrestricted model. The test

statistic is

LRC = −2(LLres − LLur). (26)

Since β is unidentified under the null and furthermore ν is on the boundary of the param-

eter space the asymptotic distribution of LRC is non-standard. However, we can obtain

approximate critical values by simulation. These critical values, which are approximately

4.65, 6.44 and 9.99, at 10%, 5% and 1% level of significance, respectively, are close to

those of a χ2 distribution with 2 degrees of freedom.
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The second important hypothesis is that of the correct choice of the copula. The most

simple, but still very reliable way of choosing the best fitting copula is to compare the

values of the log-likelihood at the parameter estimates or the Akaike Information Criterion

(AIC) when the competing models have different numbers of parameters. Although this

works quite well, we have no guarantee that the model chosen in such a way fits the data

well. There are various approaches to the problem of goodness-of-fit (GoF) testing in

copulas, see e.g. Genest and Rivest (1993), Genest et al. (2006), Chen and Fan (2006),

Junker et al. (2006), Patton (2006), or for a comparison of some tests Genest et al.

(2009). Let Ci(ut, vt, θ̂t) be our candidate copula with estimated parameter θ̂t at time t

and let C0(ut, vt, θ0
t ) be the true copula where θ0

t denotes the true parameter at time t.

Our hypothesis is

H0 : Ci(ut, vt, θ̂t) = C0(ut, vt, θ
0
t ). (27)

As an estimator of θt we consider the smoothed paths θ̂t|T resulting from the importance

sampler. Concerning the choice of the goodness-of-fit test many of the tests proposed in

the papers cited above such as e.g. the bivariate χ2 test, are not suitable for time-varying

copula models. A class of tests that is easily adaptable for the time-varying case is based

on the fact that the conditional copula, i.e. the copula of u given v (or of v given u), is

uniformly distributed, which is an application of the Rosenblatt transformation. In our

case this means

zt = C0(ut|vt, θ
0
t ) =

∂C0(ut, vt, θ0
t )

∂vt
∼ U(0, 1). (28)

Testing the copula specification therefore means testing whether ẑt = C(ût|v̂t, θ̂t|T ) has

a U(0, 1) distribution. For static copulas a closely related test has been considered in

Breymann et al. (2003) and studied via Monte Carlo simulations in Dobric and Schmid

(2007). For testing the uniformity of ẑt, various tests are available and we will consider

the Kolmogorov-Smirnov (KS) test, the χ2 test, the Anderson-Darling (AD) test and

the Jarque-Bera (JB) test for normality, for which we need to apply the transformation

Φ−1(ẑt). Let the empirical distribution function of ẑt be

F̂(x) =
1

T

T∑

t=1

I{zt<x} (29)

and let the CDF under the null hypothesis be F (x). Then the KS test statistic is defined

as

TKS = sup
x

|F (x)− F̂(x)|, (30)
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for which critical values have been tabulated. In practice, the supremum is replaced by

the maximum over the observations. For the χ2 test, consider splitting the domain (0, 1)

in k bins and let ci be the number of observations in bin i. Then the statistic of interest

is

Tχ2 =
k∑

i=1

(E(ci)− ci)2

E(ci)
∼ χ2(k), (31)

where the expectations of ci are taken under the null model. Next, let S be sample

skewness and K be the sample kurtosis of Φ−1(ẑt). Then the JB test is

TJB =
T

6

(
S2 +

(K − 3)2

4

)
∼ χ2(2). (32)

Finally, the AD, which is a refinement of the KS test that is suitable to test deviations in

the tails of the distribution, is given by

TAD = sup
x

√
T |F̂(x)− F (x)|√
F (x)(1− F (x))

, (33)

for which again tabulated critical values are used.

2.6 Forecasting

A big advantage of specifying the underlying dependence process by an AR(1) structure

is that it allows for easy forecasting. In contrast to the DCC model we can compute r-step

ahead forecasts without making any approximations as outlined in Engle and Sheppard

(2001). The techniques for forecasting AR(1) processes are standard and can be found

in e.g. Hamilton (1994). With an estimate λ̂T , for which the smoothed estimate λ̂T |T is

suitable, the r-step ahead forecast of λ is given by

λ̂T+r = µ + βr(λ̂T − µ), (34)

where µ = α/(1− β). The mean squared r-period-ahead forecast error for λ is

σ2
T+r = ν2(1− β2r)/(1− β2). (35)

Unfortunately, only in the case of the Frank copula are we interested in forecasting λt

itself, but generally we want to forecast a nonlinear transformation thereof. In the case of
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the Clayton and Gumbel copulas we can use the following results. For λt|Ft−1 ∼ N(µt, σt)

the 1-step ahead forecast of θt = exp(λt) is

E(θt|Ft−1) = exp

(
µt +

σ2
t

2

)
. (36)

For µt, the conditional expectation of λt given Ft−1, we insert its linear forecast given in

(34). From this it follows by straightforward calculations that the r-step ahead forecast

of θ is

θ̂T+r = exp

(
λ̂T+r +

σ2
T+r

2

)
. (37)

The confidence bands for these forecasts can be used by using the corresponding quantiles

of the log-normal distribution with parameters λ̂T+r and σ2
T+r.

Forecasting the correlation coefficient of the normal copula is not as straightforward

due the nonlinearity of the inverse Fisher transform. We therefore use a second order

Taylor approximation of Ψ(λt) around µt,

Ψ(λt) ≈ Ψ(µt) + Ψ′(µt)(λt − µt) +
1

2
Ψ′′(µt)(λt − µt)

2. (38)

Taking the conditional expectation we have

E[Ψ(λt)|Ft−1] ≈ E

{
Ψ(µt) + Ψ′(µt)(λt − µt) +

1

2
Ψ′′(µt)(λt − µt)

2|Ft−1

}

= Ψ(µt) + Ψ′(µt)E((λt − µt)|Ft−1) +
Ψ′′(µt)

2
E((λt − µt)

2|Ft−1)

= Ψ(µt) +
Ψ′′(µt)

2
ν2. (39)

Then the r-step ahead forecast is

θ̂T+r = Ψ(λ̂T+r) +
−4(exp(2λ̂T+r)− 1) exp(2λ̂T+r)

(exp(2λ̂T+r) + 1)3
σ2

T+r. (40)

Of course, higher order approximations could be used, but we did not find any substantial

differences in our applications. Confidence bands are obtained by applying the inverse

Fisher transform to the corresponding quantiles of the normal distribution.

2.7 Tail properties of the Gaussian SCAR model

Manner and Segers (2009) study the dependence in the tails of mixtures of Gaussian

copulas. They show that when the random correlation parameter ρ can get close to one
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with positive probability the tails of the mixture copula are much heavier than those

of the static Gaussian copula. This situation applies to the Gaussian SCAR model. In

particular, it is shown that the mixture copula has the property of near-independent tails

as studied in Ledford and Tawn (1996), which means that for every ε > 0 it holds that

u1+ε * C(u, u) * u as u ↓ 0, where a(u) * b(u) means that a(u) = o(b(u)), that is

a(u)/b(u) → 0. This means that although P [V < u|U < u] → 0 as u → 0, the speed of

convergence is extremely slow and at any practically relevant quantile the tail probability

is substantially different from zero and hence at finite samples one gets the impression of

asymptotically dependent tails. Consequently, one can expect the model to fit financial

data well and in most situations the popular t-copula loses its advantage of being able to

capture tail dependence. Economically, this property also has a nice interpretation. Just

like GARCH or SV models imply fat tails in the univariate case, stochastic correlations

create fat tails in the unconditional multivariate distribution. This might be seen as an

extension of the “mixtures of distributions hypothesis” for stock prices introduced by

Clark (1973).

2.8 Possible extensions

So far we have only considered stochastic copula models for bivariate copulas with a single

dependence parameter. Here we discuss potential extension for bivariate models and some

ideas that look promising for extending the model to larger dimensions.

2.8.1 Extensions of the bivariate model

Consider the conditional copula mixture density with time-varying mixing parameter

cmix(u, v; θ1, θ2, κt) = κtc1(u, v; θ1) + (1− κt)c2(u, v; θ2), (41)

where the mixing parameter κt = Ψ(λt) with λt following (3) and Ψ(x) = 1/(1 + exp(x))

to keep the mixing parameter in (0,1) at all times. For example, c1 and c2 could be the

Gaussian and the rotated Gumbel copulas and hence a decrease in κt would cause an

increase in lower tail dependence. Such a model could describe tranquil periods, when

a Gaussian dependence structure is appropriate, and crisis periods with larger overall

dependence and in particular greater dependence for losses.

The symmetrized Joe-Clayton copula introduced by Patton (2006) is a flexible two-

parameter copula that is parameterized in terms of λL and λU , the coefficients of lower

and upper tail dependence. A time-varying version of this model, as considered in Patton
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(2006), allows for changing degrees of asymmetry, as well as a time-varying overall level

of dependence. Again Ψ(x) = 1/(1 + exp(x)) could be chosen. For estimation the two

component EIS procedure by Liesenfeld and Richard (2003) could be used. However,

the estimation is likely to be computationally very burdensome. Furthermore, in Patton

(2006) the time-varying version of this model hardly has a better fit than a dynamic

Gaussian copula, but three additional parameters need to be estimated.

An exogenous variable x may be integrated into the models by replacing (3) by

λt = α + βλt−1 + δxt + νεt. (42)

The variable x may be deterministic, such as a trend or a dummy representing a structural

break, but it may also be an economic variable that is expected to explain correlation. A

possibility would be to include trade volume, which could serve as a proxy for the impact

of volatility on correlation.

2.8.2 Multivariate modeling

Extending the SCAR model to more than two dimensions is far from trivial. Archimedean

copulas such as the Gumbel or Clayton copula have straightforward multivariate ana-

logues, with the drawback that a single dependence parameter describes the complete

dependence between all variables, which may be too restrictive for most applications.

Similarly, for Gaussian copulas one could restrict all correlations to be equal leading to a

model similar to the dynamic equicorrelation model by Engle and Kelly (2008).

Nevertheless, the recent advances in multivariate copula modeling using so called vine-

copulas introduced by Bedford and Cooke (2002) and applied to financial data by e.g.

Chollete et. al (2009) seem to offer a promising approach. We do not discuss the con-

struction of vine copulas (also called pair copula constructions) here, but we note that

the log-likelihood function decomposes nicely into a sum of the marginal log-likelihood

and bivariate (conditional) copula log-likelihoods. We refer to Aas et al. (2009) for a

nice exposition of the details on pair copula constructions and their estimation. Thus the

estimation of a rather complex model can be done in a number of relatively simple steps

and the time-varying dependence processes can be estimated individually, but conditional

on the estimated dependence process in earlier steps.

For Gaussian copulas an alternative to vine copulas could be to construct a time-

varying correlation matrix Rt by simply joining correlations obtained from bivariate Gaus-

sian SCAR models. The obvious disadvantage of this approach is that Rt may not be
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positive definite at all points in time, which is likely to be a serious problem for larger

dimensions. This may be overcome by using shrinkage methods such as those proposed

in Ledoit and Wolf (2004). However, optimal shrinkage rates and appropriate targets

need to be developed. Moreover, it is not clear whether such an estimate for Rt has good

properties given the inefficient estimation and the bias due to shrinkage.

3 Application

In this section we present an empirical application of our model and compare it with

competing models using two different data sets on stock indices, one measured at the

daily frequency and during mostly tranquil market conditions, the second one at the

weekly frequency and including a financial crisis at the end of the sample. The analysis

is split up into estimation and in-sample validation, and out-of-sample comparison.

3.1 Daily data: Dow Jones and NASDAQ

The first data set we consider to illustrate our model and compare it with competing

models are daily observations of the Dow Jones Industrial Average and the NASDAQ

composite ranging from March 26, 1990 until March 23, 2000. The same data set has

been considered in Engle (2002). Returns are calculated as the first difference of the

natural logarithm multiplied by 100.

3.1.1 Estimation and in-sample validation

In a first estimation step, a stochastic volatility (SV) model is fit to the demeaned returns.3

The SV model is estimated by EIS as described in Liesenfeld and Richard (2003). As a

comparison we also estimate a standard GARCH(1,1) model. Parameter estimates and

the values of the maximized log-likelihood function are given in Table 2, and the GARCH

and smoothed SV volatilities can be found in Figure 1. Not surprisingly, the SV model

provides a better fit than the standard GARCH model due to its higher flexibility, and the

GARCH model estimates a slightly higher degree of persistence. However, the estimated

volatility series look very similar.

3An AR(1) model for the conditional mean was also considered, but estimates for the volatility and
dependence models were almost identical.
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Table 2: Estimates of GARCH and SV models: Dow Jones and Nasdaq

GARCH DJ NQ SV DJ NQ

α 0.0060 0.0308 α -0.0112 -0.0054

(0.0044) (0.0173) (0.0051) (0.0042)

γ 0.0480 0.1150 β 0.9786 0.9733

(0.0184) (0.0435) (0.0076) (0.0078)

β 0.9450 0.8630 ν 0.1573 0.2072

(0.0214) (0.0529) (0.0254) (0.0266)

logl -3195.38 -3693.89 logl -3137.37 -3638.03

Using the estimated standard deviations, the data is transformed into U(0, 1) random

variables using the probability integral transform, and the stochastic copula model is

estimated.4 In order to assess the stability of our estimation procedure, we also estimate

the model in one-step to obtain fully efficient estimates using the estimates of the two-step

estimation as starting values. For the one-step estimator, standard errors are obtained

by the inverse of the numerically evaluated Hessian. Standard errors for the two step

estimates are obtained by evaluating (18) using numerical derivatives. Table 3 presents

the results of the estimation.

The first thing to observe is that for all models the dependence process is highly persis-

tent, which is in line with findings in earlier studies. In terms of the log-likelihood value,

the Gaussian copula is the best fitting model, followed by the survival Gumbel copula.

Comparing one-step and two-step estimates, one can see that they do not differ substan-

tially. The standard errors for the two-step estimates are slightly higher, as expected.

Only for the rotated Gumbel copula they are about equal, which could be attributed

to numerical imprecisions. In Figure 2, the smoothed estimate of the copula parameter

is shown. It also includes the correlation paths from the DCC and Patton models for

comparison. The path of the dependence parameters looks quite similar for all stochastic

copula models, although the scale is different. The DCC correlation is slightly noisier,

which is likely due to the fact that it is based on one-step ahead forecasts. Economically,

the decrease in dependence in 2000 was explained by Engle (2002) as the ”sector rotation

4We choose N , the number of simulated trajectories in the EIS sampler, equal to 500 in order to
eliminate the Monte Carlo variation. A much smaller number such as 200 gives almost exactly the same
estimates.
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Figure 1: Volatility estimates: Dow Jones and Nasdaq

between new economy stock and and ’brick and mortar’ stocks”. Note that the Patton

model fails to capture this drop in dependence.

The outcomes of the Goodness-of-fit (GoF) tests are reported in Table 4. Note that

the likelihood-ratio tests for constancy were also performed and led to a rejection of the

null of constant dependence with p-values being essentially zero for all models. We also

include the results for the Patton model for the Gaussian copula and the DCC model.

Note that the DCC was estimated on the transformed variables Φ−1(u) and Φ−1(v),

where Φ denotes the CDF of the standard normal distribution. This was done to prevent

differences in the copula fit due to different marginal distributions. The Gaussian SCAR

model estimated in one step is the only model that passes all four tests. The Gaussian

copula using the DCC and Patton models for time-varying correlation clearly have a

worse in-sample fit. Next, it is surprising that the Gaussian copula outperforms the

two asymmetric models for which losses have a higher degree of dependence than large

returns, even though asymmetric models are preferred when considering a static copula

model5. It seems that to some extent, this asymmetry is accounted for by the time-varying

dependence parameter. Furthermore, the asymmetric models, in particular the Clayton

copula, may simply underestimate the dependence for larger observations and this may

5Estimation results for static copulas are available upon request.
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Table 3: Estimates of the stochastic copula model: Dow Jones and Nasdaq.

copula/logl α β ν α β ν

Normal 0.0302 0.9679 0.0824 0.0261 0.9720 0.0754

902.169 (0.0099) (0.0103) (0.0147) (0.0089) (0.0093) (0.0135)

rot. Gumbel -0.0015 0.9795 0.1078 -0.0013 0.9786 0.1111

866.7934 (0.0023) (0.0084) (0.0236) (0.0024) (0.0085) (0.0235)

Frank 0.1527 0.9750 0.5457 0.1422 0.9768 0.5229

790.9929 (0.0613) (0.0098) (0.1228) (0.0537) (0.0086) (0.1103)

Clayton 0.0136 0.9611 0.1549 0.0154 0.9636 0.1445

752.0481 (0.0071) (0.0175) (0.0407) (0.0067) (0.0137) (0.0319)

Note: Estimation results for the stochastic copula models with a Gaussian SV models as
marginal distribution. Two-step estimation results in columns 2 to 4 and one-step estimation
results in columns 5 to 7.

outweigh the advantage of allowing for lower tail dependence. Also recall from Section

2.7 that the Gaussian SCAR model implies near independent tails and hence can capture

dependencies in the extremes at finite samples.

3.1.2 Out-of-sample comparison

As a start we use the techniques described in Section 2.6 to obtain out-of-sample forecasts

of the copula dependence process. We use the last observation of the smoothed dependence

process as our initial observation and forecast over a horizon ranging from 1 to 250 trading

days. As the dependence process is not observable, it needs to be estimated to check

the performance of the forecasts. This is done by re-estimating the model using the

250 out-of-sample observations and computing the smoothed path of the dependence

parameter. Figure 3 presents the forecasts together with 95% confidence bands and the

smoothed path. Note that the confidence band for the Normal, rotated Gumbel and

Clayton models are asymmetric, taking the distributional assumptions on the dependence

process into account. Although they are on different scales, their width is comparable
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Figure 2: Time path of the dependence parameters: Dow Jones and Nasdaq

when measured in terms of Kendall’s tau. After about 100 days, the forecast distribution

corresponds to the stationary distribution. Thus, the width of the forecast bands at

long horizons corresponds to the large variation of the dependence paths in Figure 2.

Also note that the 1-day ahead forecasts are surprisingly far off from the realization of

the path. This is due to the fact that the complete sample has been re-estimated using

additional data, which changed the estimates of the dependence process, in particular near

the end of the original sample. This could be avoided comparing r-step ahead forecasts

only with realizations of the process using T + r observations, where T is the size of the

original sample. The forecasts seem to be reasonably precise considering the difficult task

of forecasting unobserved dependence parameters and the realizations stay within the

confidence bands at all times.

So far our results suggest that stochastic copula model based on the Gaussian copula
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Table 4: Goodness-of-Fit tests: Dow Jones and Nasdaq.

Two step Normal rot. Gumbel Frank Clayton DCC Patton

logl 902.17 866.79 790.99 752.05 876.51 837.98

KS 0.2130 0.0046 0.0777 0.0001 0.1006 0.0392

χ2 0.0012 0.0000 0.0001 0.0000 0.0001 0.0000

JB 0.0348 0.0000 0.0000 0.0000 0.0223 0.0014

AD 0.0303 0.0000 0.0000 0.0000 0.0155 0.0009

One step

KS 0.2105 0.0043 0.0996 0.0001 0.1854 0.0404

χ2 0.0527 0.0000 0.0000 0.0000 0.0010 0.0000

JB 0.0913 0.0000 0.0000 0.0000 0.0049 0.0010

AD 0.0584 0.0000 0.0000 0.0000 0.0039 0.0003

Note: P-values for the null hypothesis of correct specification of the copula function
for the two-step (top panel) and one-step estimation (bottom panel) of the Dow Jones
and Nasdaq data. KS, χ2, JB and AD are defined in equations (30) to (33).

fits that data well in-sample and that the forecasts of the dependence path look reasonable

when compared with the dependence implied by the model using the out-of-sample data.

However, to show the usefulness of the forecasts of the copula parameter, it is preferable

to compare the forecasts to some measure that does not depend on a model. Given

that the Gaussian copula had the best in-sample fit we exclusively focus on evaluating

correlation and covariance forecasts in this section, which makes comparison to competing

models and the use of established criteria possible. As in Pelletier (2006) we measure the

closeness of an r-step forecast of the covariance matrix, which we denote Ĥt+r, to the true

covariance matrix by the following two criteria:

RMSEr =

(
1

K2

K∑

i=1

K∑

j=1

(Ĥi,j,t+r − ri,t+rrj,t+r)
2

)1/2

, (43)

MADr =
1

K2

K∑

i=1

K∑

j=1

|Ĥi,j,t+r − ri,t+rrj,t+r|, (44)

where K is the number of assets. The second criterion may be preferable because it is

more robust to outliers. A third criterion on which we base our out-of-sample comparison

could be linked to the economic value of the forecasts, namely the variance of the global
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Figure 3: Out-of-sample forecasts of the dependence parameter: Dow Jones and Nasdaq

Note: The dotted lines denote the out-of-sample forecasts θ̂T+r, the dashed lines are the 95% confidence

intervals and the solid lines are the smoothed estimates θ̂t|T .

minimum variance portfolio (MVP) constructed using the forecasted covariance matrix,

see Fleming et al. (2001). The portfolio weights are given by

wt+r =
Ĥ−1

t+rι

ι′Ĥ−1
t+rι

, (45)

where ι is a (K × 1) vector of ones.

We compare 1, 5, 10 and 20 step forecasts of the constant conditional correlation

(CCC) GARCH, DCC-GARCH, SCAR-SV and the SCAR model with GARCH margins

(SCAR-G). The SCAR model with GARCH margins was included to study the difference

in forecasts that can be attributed to the correlation model. The parameters of the models

are only estimated once using the in-sample period. We restrict the in-sample period to

the last 1000 observations from the original sample to avoid effects of potentially unstable

parameters, and since we need to run the computationally heavy importance sampler

every time we want to forecast to evaluate the current volatility and correlation. For the

out-of-sample period we consider the following 250 trading days.

Table 5 reports the results of the analysis. The MAD and RMSE suggest that the

SCAR-SV model has the best out-of-sample fit. Looking at σ2
MV P the simple CCC-
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Table 5: Out-of-sample fit: Dow Jones and Nasdaq

CCC DCC SCAR-SV SCAR-G

MAD r=1 4.69 4.63 4.35 4.62

r=5 4.76 4.72 4.32 4.70

r=10 4.74 4.70 4.27 4.69

r=20 4.27 4.25 3.85 4.23

RMSE r=1 10.29 10.32 10.25 10.31

r=5 10.50 10.53 10.50 10.52

r=10 10.60 10.63 10.59 10.62

r=20 9.67 9.69 9.69 9.68

σMV P r=1 1.45 1.43 1.43 1.44

r=5 1.37 1.46 1.45 1.43

r=10 1.36 1.49 1.50 1.47

r=20 1.25 1.31 1.31 1.29

Note: This table presents the mean absolute deviation (MAD)
and root mean square error (RMSE) between the forecasted
covariance and the cross product of the out-of-sample data.
The last panel shows the variance of the minimum variance
portfolio (MVP) with weights given in (45).

GARCH model gives the best results, except for r = 1, where the SCAR-SV slightly

outperforms the DCC. This surprising finding is in line with the out-of-sample analysis

of Pelletier (2006), who also found a good performance of a constant correlation model.

This finding may be attributed to this specific data set. It is remarkable that comparing

only the dynamic correlation models, the SCAR does better than the DCC in all cases,

except for σ2
MV P and r = 1.

3.2 Weekly data: CAC and DAX

For the second application, we consider stock index returns observed at a weekly frequency.

The series are the French CAC 40 and the German DAX 30 from January 1, 1990 until

August 24, 2009 and thus also cover the recent financial crisis. The last 100 observations

are put aside for the out-of-sample evaluation.
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Figure 4: Volatility estimates: CAC and DAX

3.2.1 Estimation and in-sample validation

As above, a SV model is chosen for the margins and the SCAR model with different choices

of copulas is considered for the dependence model. Only the two-step estimator is used

as the estimates are quite close to those using one-step estimation. Since for two of the

models the estimate for β achieves the upper bound of 0.9999, the numerical derivatives

could not be evaluated and hence standard errors of the estimates could not be obtained.

Volatility estimates are depicted in Figure 4. Note the high levels of volatility at the end

of the 1990’s and around the 9/11/2001 terrorist attacks. At the end of the in-sample

period volatility seems to increase again, but the effect of the credit crisis mainly falls

into the out-of-sample period. Estimates for the SCAR model and its competitors are

reported in Table 6 and Figure 5.

While in a static copula framework asymmetric models provide a better fit, the Gaus-

sian copula is again clearly the best fitting model in the time-varying case in terms of the

log-likelihood value. The GoF tests, on the other hand, suggest that the Frank copula is

the appropriate model. Similar to the example above, the SCAR model fits slightly better

than the DCC model and clearly outperforms the Gaussian conditional copula model of

Patton (2006). Note that the estimate of β for the Patton model, which is not restricted

to be smaller than one in absolute value, does not have the expected sign. However, dif-

ferent starting values lead to the same parameter estimates and this is in fact in line with

Patton (2006) who estimates a (large) negative persistence parameter for his time-varying

Joe-Clayton copula. For the SCAR model, the estimates for the persistence parameter

differ quite significantly across different copulas. The symmetric models, namely the
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Table 6: Estimation and GoF for CAC and DAX returns.

Normal Gumbel Frank rot. Gumbel DCC Patton

logl 575.20 531.15 532.03 543.44 565.11 498.80

α 0.0001 0.0284 0.0001 0.0219 0.0209 3.1171

β 0.9999 0.9219 0.9999 0.9617 0.9792 -1.9257

ν 0.0294 0.2749 0.2330 0.1764 - 1.0604

GoF

KS 0.2052 0.0321 0.5434 0.1546 0.0326 0.0226

χ2 0.3174 0.0692 0.5964 0.0345 0.1438 0.0000

JB 0.0044 0.0030 0.4691 0.0062 0.0010 0.0010

AD 0.0185 0.0000 0.6784 0.0006 0.0002 0.0000

Note: Two-step estimation results of the SCAR models and p-values for the null
hypothesis of correct specification of the copula function using the tests in (30) to
(33) for the weekly CAC and DAX returns.

Gaussian and Frank copulas, show very high persistence, attaining the upper bound in

the constrained optimization, so their dependence processes are likely to be integrated.

Differences can also be seen from the time paths of the dependence parameters in Figure

5. This shows that choosing different copulas does not necessarily just result in similar

shapes of the dependence process with differently scaled dependence parameters, but that

an asymmetric model may in fact imply different dynamics over time. It is also encour-

aging that both the SCAR and the DCC model are able to capture movements of the

dependence parameter that resemble trends or regime shifts without explicitly including

such features in the model. The strong rise in stock market dependence is likely to be

a consequence of the European integration process and the introduction of the Euro in

1999.

3.2.2 Out-of-sample comparison

The out-of-sample analysis is conducted in the same way as for the Dow Jones-NASDAQ

data using the last 100 weeks of the sample. The results are reported in Table 7. Given

that the credit crisis in 2008 is covered, it is not surprising that now the CCC model

does not beat the models that allow for correlation dynamics. The SCAR-SV model

outperforms its competitors in the majority of cases. Comparing the DCC and SCAR with
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Figure 5: Time path of the dependence parameters: CAC and DAX

GARCH margins, the latter does better in terms of MAD and σ2
MV P , indicating better

forecasting performance of the SCAR model, in particular when measured in economic

terms. It is remarkable that the model works well in a situation in which it is important

to make good forecasts and when larger changes in dependence are likely to occur.

4 Conclusions

We have proposed a stochastic copula model with a latent stochastic process driving the

copula parameter. The model is discussed in various respects concerning specification,

estimation, testing and forecasting. A simulation study compares the performance of the

stochastic copula autoregressive (SCAR) model with that of the DCC model of Engle

(2002) and of the Patton (2006) model for alternative scenarios. In cases where all con-

sidered models are misspecified, the SCAR model clearly outperforms its competitors. In
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Table 7: Out-of-sample fit: CAC and DAX

CCC DCC SCAR-SV SCAR-G

MAD r=1 17.27 17.55 16.98 17.51

r=5 17.68 18.00 17.49 17.94

r=10 18.26 18.50 18.20 18.46

r=20 18.13 18.21 17.80 18.19

RMSE r=1 33.28 33.18 33.21 33.19

r=5 35.14 35.07 34.89 35.06

r=10 36.13 36.00 35.97 36.01

r=20 34.24 34.07 33.75 34.09

σ2
MV P r=1 19.07 19.01 18.67 18.91

r=5 19.81 19.72 19.60 19.67

r=10 20.79 20.88 20.66 20.84

r=20 20.93 21.85 21.31 21.42

Note: This table presents the mean absolute deviation (MAD)
and root mean square error (RMSE) between the forecasted
covariance and the cross product of the out-of-sample data.
The last panel shows the variance of the minimum variance
portfolio (MVP) with weights given in (45).

an empirical application we considered two pairs of stock index series, one on a daily,

the other on a weekly frequency. In most cases, the SCAR model based on the Gaussian

copula fits the data well and again outperforms the DCC and Patton (2006) models. The

out-of-sample analysis shows good performance of the model compared with the DCC and

CCC-GARCH models. In particular for the data including the credit crisis, the model

performs very well compared to its competitors.

We have discussed a number of possible extensions of the model. In particular the

modeling of more than two assets appears to be an interesting, but challenging, venue

for future research. Furthermore, an interesting question is whether there are specific

applications where asymmetric dynamic copulas outperform Gaussian ones. In such cases,

the flexible and non-linear dependence structures of these copulas can be exploited.
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A Copulas

This appendix reviews some copula based dependence measures and shortly discusses the

copulas that are used in this paper. For a complete review of copulas and their properties

the interested reader is referred to Joe (1997).

A.1 Copula based dependence measures

Since the parameters of different copulas are usually hard to compare the degree of de-

pendence is often measured in term of Kendall’s τ . It is a rank correlation measure that

lies in [-1,1] and that does not depend on the scale of variables of interest (unlike the

Pearson correlation coefficient). Two pairs of observations (xi, yi) and (xj, yj) are called

concordant if (xi−xj)(yi−yj) > 0 and discordant otherwise. Kendall’s τ is defined as the

difference between the probability of concordance minus the probability of discordance.

Given a copula C the relation

τ = 4E (C(U, V ))− 1 (46)

holds. For most one-parameter copulas there exists a one-to-one relationship between its

parameter θ and Kendall’s τ .

Whereas Kendall’s τ measure the overall dependence a further popular dependence

measure is the coefficient of tail dependence that captures the dependence in the extremes

of the distribution. The coefficient of lower and upper tail dependence are given by

λL = lim
u↓0

P [U < u|V < u] = lim
u↓0

C(u, u)

u
(47)

λU = lim
u↑1

P [U > u|V > u] = lim
u↑1

1− 2u + C(u, u)

1− u
. (48)

The upper and lower tail dependence coefficients can often be expressed in terms of the

copula parameters.
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Figure 6: Contour plots

Note: Contour plots of the copulas we consider with standard normal margins and τ = 0.5.

A.2 Examples of Copulas

Below we give some possibilities for the choice of the (one parameter) copula density c

along with appropriate transformations Ψ we use for the SCAR specification. Contour

plots of these copula with standard normal margins and an overall dependence level

corresponding to τ = 0.5 can be found in Figure 6.

Frank Copula The density of the Frank copula is given by

cFrank(u, v; θ) =
exp((1 + u + v)θ)(exp(θ)− 1)θ

{exp(θ) + exp((u + v)θ)− exp(θ + uθ)− exp(θ + vθ)}2
. (49)

Kendall’s τ related to θ through τ = 1 − 4(1−D1)(θ)
θ , where D is the Debye function

Dk(x) = k
xk

∫ x

0
tk

et−1dt. It does not exhibit tail dependence. The fact that the parameter

of the Frank copula lies in (−∞,∞)\0 makes it particularly attractive in our case, since

we can chose Ψ(x) = x, which implies that the time-varying parameter θt itself follows a

Gaussian AR(1) process. The Frank copula belongs to the family of Archimedean copulas
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and it implies a rotationally symmetric dependence structure. It allows for both positive

and negative dependence.

Clayton Copula The density of the Clayton copula is

cClayton(u, v; θ) = u(−1−θ)v(−1−θ)(u−θ + v−θ − 1)(−2−1/θ)(1 + θ), (50)

with θ ∈ (0,∞). This suggests the transformation Ψ(x) = exp(x) and implies that

the dependence parameter has a log-normal distribution. The relations τ = θ
θ+2 and

λL = 2−1/θ hold, whereas λU = 0 for all θ. The Clayton copula is also Archimedean, but

it is not rotationally symmetric and it only allows for positive dependence.

Gumbel Copula The density of the Gumbel copula is

cGumbel(u, v; θ) =
{log(u) log(v)}(θ−1)

{
[(− log(u))θ + (− log(v))θ]1/θ + θ − 1

}

[(− log(u))θ + (− log(v))θ](2−1/θ)uv
× (51)

exp
{
[(− log(u))θ + (− log(v))θ]1/θ

}
,

with θ ∈ [1,∞). An obvious choice for the transformation is Ψ(x) = exp(x) + 1, which

again implies log-normality of the dependence parameter. For the Gumbel copula τ =

1− 1
θ , λU = 2−21/θ and λL = 0. It also belongs to the Archimedean class and only allows

for positive dependence.

Gaussian Copula Denoting x = Φ−1(u) and y = Φ−1(v), where Φ(·) is the cdf of a

standard normal r.v., the density of the Gaussian copula is given by

cGaussian(u, v; θ) =
1√

1− θ2
exp

(
2θxy − x2 − y2

2(1− θ2)
+

x2 + y2

2

)
, (52)

with θ ∈ (−1, 1). For the transformation, we will we use the inverse Fisher transform

Ψ(x) = (exp(2x) − 1)/(exp(2x) + 1). Note that this choice is natural as the Fisher

transform is the variance stabilizing transformation for the correlation coefficient (see van

der Vaart, 1998). The expression for Kendall’s tau is τ = 2
π arcsin(θ) and, like the Frank

copula, the Gaussian copula has no tail dependence.

Survival (rotated) Copulas Instead of considering the distribution of u and v one

can also consider the copula of 1− u and 1− v, which is known as the survival or rotated

copula. Its density is the original density rotated by 180 degrees and thus the idea only
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makes sense for asymmetric copulas, which in our selection of candidate models are the

Gumbel and the Clayton family. For a parametric copula Cθ the distribution function

of the survival copula is given by Cθ(1 − u, 1 − v) + u + v − 1, whereas its density is

cθ(1− u, 1− v).
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