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In this paper we propose a new approximate factor model for large cross-section
and time dimensions. Factor loadings are assumed to be smooth functions of time,
which allows considering the model as locally stationary while permitting empiri-
cally observed time-varying second moments. Factor loadings are estimated by the
eigenvectors of a nonparametrically estimated covariance matrix. As is well known
in the stationary case, this principal components estimator is consistent in approxi-
mate factor models if the eigenvalues of the noise covariance matrix are bounded. To
show that this carries over to our locally stationary factor model is the main objective
of our paper. Under simultaneous asymptotics (cross-section and time dimension go
to infinity simultaneously), we give conditions for consistency of our estimators. A
simulation study illustrates the performance of these estimators.

1. INTRODUCTION

Linear factor models have attracted considerable interest over recent years, espe-
cially in the econometrics literature. The intuitively appealing idea of explaining
a panel of economic variables by a few common factors is one of the reasons for
their popularity. One of the main models in finance, the arbitrage pricing theory
(APT) of Ross (1976), is based on a factor model. From a statistical viewpoint,
the need to reduce the cross-section dimension to a much smaller factor space
dimension is obvious considering the large data sets available in economics and

The authors would like to thank Jushan Bai, Michael Eichler, John Geweke, Domenico Giannone, Marc Hallin,
Stefano Herzel, Oliver Linton, Marco Lippi, Alexei Onatski, Franz Palm, Juan M. Rodrı́guez-Poo, Catalin Stărică,
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1280 GIOVANNI MOTTA ET AL.

finance. The traditional approach of fixing either the time dimension T or the
cross-section dimension N and letting the other dimension go to infinity is likely
to be inappropriate in situations where both dimensions are large. Large N ,T
asymptotics were first rigorously treated in Phillips and Moon (1999), which pro-
vides a general treatment of joint asymptotics for nonstationary panel data. The
large factor model literature (including Stock and Watson, 2002a, 2002b; Forni,
Hallin, Lippi, and Reichlin, 2000, 2005; Forni and Lippi, 2001; Bai, 2003; and
Bai and Ng, 2002) use the concept of double asymptotics, where both N and T
go to infinity simultaneously without restrictions. This seems to be a promising
concept, which we adopt in this paper.

One of the characteristics of the traditional factor model is that the process is
stationary in the time dimension. This appears restrictive, given the fact that over
long time periods it is unlikely that factor loadings remain constant. In cases of,
for example, transitions between recessions and booms, the impact of political
crises, or changes in the monetary policy of the central bank, there is a need for a
nonstationary approach. For example, in the capital asset pricing model (CAPM)
of Sharpe (1964) and Lintner (1965), a special case of the APT with just one
factor, the market portfolio, typical empirical results show that factor loadings,
or betas, are time-varying, which in the CAPM is caused by time-varying second
moments.

There is indeed an extensive literature in financial econometrics, both theo-
retical and empirical, on time-varying variances and correlations. In particular,
there are two different specifications in the econometric literature: the prevalent
stationary, conditional paradigm based on autoregressive conditional heteroske-
dastic (ARCH-type) processes and the nonstationary, unconditional alternative
approach.

The conditional paradigm is mainly based on the multivariate generalized
ARCH (GARCH) framework (see, e.g., Engle, Ng, and Rothschild, 1990; Diebold
and Nerlove, 1989; Alexander, 2001). These approaches typically specify univari-
ate GARCH models for the factors and keep the factor loadings constant over
time. Rather than imposing GARCH-type models for the factors, other models
have been proposed to introduce dynamics into the classical factor model. For
example, Forni et al. (2005) suggest a dynamic model with autoregressive fac-
tors. A potential drawback of observationally driven dynamic models such as
stationary autoregressive moving average (ARMA) or GARCH is that dynamics
explained by lagged observations are the same over time. Recently, approaches
have been made to relax the constant impact and specify time-varying parame-
ters in GARCH-type models (see, e.g., Härdle, Herwartz, and Spokoiny, 2004).
Dahlhaus and Subba Rao (2006) generalized the class of ARCH(∞) models to
the nonstationary class of ARCH(∞) models with time-varying coefficients.

A promising alternative is to directly model unconditional variances and
covariances via nonparametric estimation as in Rodrı́guez-Poo and Linton (2001).
It imposes very little structure on the unconditional covariance matrix, while en-
suring positive definiteness and being very easy to estimate. Moreover, it does not
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LOCALLY STATIONARY FACTOR MODELS 1281

impose any restrictions on the number of factors that can be estimated from the
time-varying covariance matrices. A combination of parametric GARCH mod-
els for the variances and nonparametric estimation of correlations has been pro-
posed by Hafner, van Dijk, and Franses (2006). As shown by Mikosch and Stărică
(2004), the empirically often observed long-range dependence in volatility can be
explained by a time-varying unconditional variance rather than autocorrelation.

The main task when developing a general nonstationary theory is the problem
of asymptotics: A classical asymptotic theory based on the assumption that more
and more observations of the future become available does not make sense. Con-
sider the multivariate nonstationary process

Xt = S(t)εt ,

where Xt is the N ×1 vector of observations at time t , S is a square matrix of di-
mension N of deterministic functions of t , and εt is the N ×1 vector of errors at

time t : εt
iid∼ (0,IN ). Future observations of a general nonstationary process do not

necessarily contain any information on the structure of the process at present. To
overcome this problem, Dahlhaus (1996, 1997, 2000) has suggested an approach
based on the concept of rescaled time, i.e., t

T ∈ (0,1). Analogously to nonpara-
metric regression, the idea is to set down the asymptotic theory in a way that we
“observe” the function S(t) on a finer grid (but on the same interval),

Xt,T = S( t
T

)
εt , (1)

where S is now defined on the rescaled interval (0,1) and Xt,T becomes a trian-
gular array (the structure of X does not only depend on t , but also on T ). Letting
T tend to infinity does not mean extending the data to the future anymore. In the
rescaled time framework, letting T tend to infinity means that we have in the sam-
ple X1,T , . . . ,XT,T more and more ‘observations’ for each value of S. The model
in (1) has been applied by Herzel, Stărică, and Tütüncü (2006) to financial returns.
As this model stands, it does not allow for dimension reduction (S is square), and
there is no specification of common and idiosyncratic components.

In this paper we propose a factor model with time-varying factor loadings ���,

Xt,T = ���
( t

T

)
Ft +Et ,

with factors F and idiosyncratic components E. The basic idea is to consider the
loadings as smooth functions of rescaled time, rendering the process nonstation-
ary while the factors remain stationary. However, the assumption that loadings
are smooth permits considering the process as locally stationary and enables us
to estimate the model using nonparametric methods. The technique employed to
model the nonstationarity is the rescaling of time to the unit interval, as explained
by the example in (1). While the nonparametric estimation of locally stationary
time series models is now well established, it is new in the context of locally
stationary factor models.
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1282 GIOVANNI MOTTA ET AL.

The technique employed to estimate the operators of our model is based on
the well-known principal components regression (PCR). To adapt this technique
to nonstationary factor models, we use time-varying (i.e., a localized version of)
PCR.

We discuss identification and estimation of the model and derive a theory for
the estimated loadings and factors under simultaneous asymptotics. We show that
our estimation procedure achieves convergence rates typical for nonparametric
estimation. In a Monte Carlo study, we show that for moderately large N and T ,
the estimators perform very well.

The paper is organized as follows. In Section 2 we recall the traditional factor
model with constant factor loadings and then we introduce the locally station-
ary factor model and proposes an estimator of the factors and factor loadings.
In Section 3 we show the asymptotic properties of our estimates. Section 4 pro-
vides a simulation study that confirms the theoretical results of Section 3, and
Section 5 concludes. Appendix 5 provides an auxiliary lemma that guarantees the
identifiability in estimating the time-varying factor loadings. The proofs of our
propositions and theorems are given in Appendix B.

Throughout the paper we use bold unslanted letters for matrices, bold slanted
letters for vectors, and unbold (normal) letters for scalars. We denote by tr(·) the
trace operator, by rk(A) the rank of a matrix A, by In the identity matrix of
dimension n, by ⊗ the Kronecker product, by ⊥⊥ the stochastic independence,
and by ‖·‖ the Frobenius (euclidean) norm, i.e., ‖A‖ = √

tr(A′A).

2. LOCALLY STATIONARY FACTOR MODELS

To better understand the properties of our locally stationary factor model, we re-
mind the reader of the definition of a stationary factor model. Consider the follow-
ing r -factor model for the N -dimensional stochastic process

{
Xt,N , t ∈ N, N ∈ N}:

Xt,N = Ct,N +Et,N = ���N Ft +Et,N , (2)

where Ct,N :=���N Ft is the N ×1 vector of common components with covariance
matrix ���C

N , ���N is an N × r matrix of loadings, the r × 1 vector of factors Ft is
zero mean with covariance matrix ���F, and the N ×1 vector of idiosyncratic errors
Et,N is zero mean with covariance matrix ���E

N . We consider the case where the
dimension N is large, say 100 or larger, but the number of factors r is small,
say two or three. The idea of the factor model is to explain a substantial part of
the variation of Xt,N by some factors common to all components of Xt,N , and
some idiosyncratic error term Et,N that is not correlated with the factors and that
captures variable-specific variations. In the classical factor model, ���E

N is assumed
to be diagonal, but as we will see it is useful to relax this assumption when dealing
with large dimensions. The model implies first that the mean of Xt,N is zero, but
this is without loss of generality. Furthermore, the covariance matrix of Xt,N is
given by

���N := Var
[
Xt,N
]= ���C

N +���E
N = ���N���F���′

N +���E
N ,
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LOCALLY STATIONARY FACTOR MODELS 1283

which does not depend on t . The part of the variance explained by the factors is
���N���F���′

N ; the remainder ���E
N is the part due to idiosyncratic noise.

We now generalize the definition of a factor model to allow for time-varying
factor loadings. We assume that, for all N fixed, there exists a function ���N (u)
defined on the unit interval u ∈ (0,1) such that

Xt,N T = Ct,N T +Et,N = ���N
( t

T

)
Ft +Et,N , t = 1, . . . ,T . (3)

The process {Xt,N T } is in fact a sequence (triangular array) of doubly indexed pro-
cesses because the loadings are defined in rescaled time t

T ∈ (0,1) as in Dahlhaus
(1997). In (3) the loadings ���N (u) := {λi j (u)

}
, i = 1, . . . , N , j = 1, . . . ,r , are

assumed to be smooth functions of rescaled time u ∈ (0,1). Hence, recalling that
���E

N =Var
[
Et,N
]
, we can define for all u ∈ (0,1) a matrix-valued smooth function

���N (u) given by

���N (u) = ���C
N (u)+���E

N , (4)

where

���C
N (u) := ���N (u)���F���′

N (u), (5)

such that the covariance matrix of Xt,N T can be defined as

���N
( t

T

)
:= Var

[
Xt,N T

]= ���C
N

( t
T

)+���E
N , t = 1, . . . ,T, (6)

where ���C
N

( t
T

)
:= ���N

( t
T

)
���F���′

N

( t
T

)
is the time-varying covariance matrix of

the common components Ct,N T , t = 1, . . . ,T .
The class of locally stationary factor models, which includes the stationary

factor model (2) as a special case, is defined as follows.

DEFINITION 1 (Locally stationary approximate factor model). The sequence{
Xt,N T

}
in (3) is a locally stationary approximate factor model (LSAFM) if

(i) there exists for all N ≥ 1 a function

���N (u) ∈ C1
{

[0,1],RN×r
}

, rk{���N (u)} = r ∀u ∈ (0,1),

such that for all T

���N
( t

T

)= ���N
( t

T

)
���F���′

N

( t
T

)+���E
N ;

(ii) ���E
N :=Var

[
Et,N
]

is a sequence of positive definite matrices with uniformly
bounded eigenvalues; that is,

sup
N

vE
1N < ∞, N = 1,2, . . . ,

where vE
1N denotes the largest eigenvalue of the matrix ���E

N .
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1284 GIOVANNI MOTTA ET AL.

We aim to estimate the covariances ���N (u), the loadings ���N (u), the factors Ft ,
and the common components Ct,N T . For this we need double asymptotics: both
T → ∞ and N → ∞.

First, as in the stationary case, we need that T → ∞ to estimate ���N (u) consis-
tently. In the locally stationary framework, the targets are defined in rescaled time,
u ∈ (0,1). There exists a link between the estimation of smooth functions defined
in real time, such as ���N (u) and ���N (u), and stochastic processes defined in dis-
crete time, such as Ft and Ct,N T . For a given sample size T and given u ∈ (0,1)
in rescaled time, there exists a sequence tT such that tT /T → u as T → ∞. For
example, tT = [uT ], where [x] is the largest integer smaller than or equal to x .
Consequently, due to the continuity of ���N (u) in u, the covariance matrix ���N

( t
T

)
in (6) converges to the matrix ���N (u) in (4) as T → ∞.

Second, we need N → ∞ because the PCR estimator is biased if N is fixed
and T → ∞, unless ���E

N = σ 2IN for some σ 2 > 0. The model allowing for
weak cross-correlation of the errors Et,N in the cross-section dimension, i.e., for
a nondiagonal covariance matrix ���E

N , is usually called the approximate factor
model (AFM); see, e.g., Chamberlain and Rothschild (1983), Stock and Watson
(2002a, 2002b) and Bai (2003). For approximate factor models, Bai (2003) has
proved that under N → ∞ and T → ∞ the principal components estimator is
consistent and asymptotically normal. The PCR estimator is consistent under the
assumption that ���E

N is a sequence of matrices with uniformly bounded eigen-
values. More precisely, exactly r of the eigenvalues of the sequence of covari-
ance matrices ���N increase without bound, and all the other eigenvalues of ���N

are bounded. In this work we assume that the factors are orthogonal (���F is di-
agonal), serially independent, and independent from the errors (Cov[Ft ,Et ] =
0 for all t), but we allow for loadings that change over time. We assume that
the errors are correlated in the cross-section dimension but not in the time
dimension.

Remark 1. The common components Ct,N T :=���N
( t

T

)
Ft in model (3) are lo-

cally stationary in the sense of Definition 2.1 of Dahlhaus (1997). The rescaled
time principle is a tool for local estimation: We get more and more observations
for the local structure of the loadings ���N

( t
T

)
at each time point. Our estima-

tion target has to be defined properly, which is not the case if we do not rescale in
time. A process with time-varying parameters, like those in Fancourt and Principe
(1998), Mikosch and Stărică (2004), and Stărică and Granger (2005), is not nec-
essarily locally stationary in the sense of Definition 2.1 of Dahlhaus (1997, 2000).

2.1. Assumptions of the LSAFM

We list here the assumptions of model (3). In terms of model identification, we
need the double asymptotics: T → ∞ (for the local stationarity) and N → ∞
(for the approximate factor modeling). In Assumptions A, B, and C we introduce
three constants: M1 and M2 are needed to bound the fourth moments of the factors
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LOCALLY STATIONARY FACTOR MODELS 1285

and the idiosyncratic errors, respectively, whereas M3 is needed to bound the
eigenvalues of ���E

N .

Assumption A (Factors).

1. Ft
iid∼ (0,���F), where the r × r matrix ���F is diagonal and positive definite;

2. E‖Ft‖4 ≤ M1 < ∞.

Assumption B (Factor loadings).

1. λi j (u) ∈ C1[0,1] ∀ i = 1, . . . , N , j = 1, . . . ,r ;

2. sup
u∈(0,1)

‖λi (u)‖ ≤ λ̄0 < ∞ for all i , and sup
u∈(0,1)

∥∥∥���′
N (u)���N (u)

N
−���� (u)

∥∥∥→
0 as N → ∞, where λi (u) is the i th row of ���N (u) and ���� (u) is an r × r
positive definite matrix for all u;

3. sup
u∈(0,1)

∥∥λ(1)
i (u)

∥∥ ≤ λ̄1 < ∞ for all i , and sup
u∈(0,1)

∥∥∥���(1)′
N (u)���

(1)
N (u)

N
−

����(1)
(u)
∥∥∥→ 0 as N → ∞, where ���

(1)
N (u) is the first derivative of ���N (u),

λ
(1)
i (u) is the i th row of ���

(1)
N (u), and ����(1)

(u) is an r × r positive definite
matrix for all u.

Assumption C (Idiosyncratic errors).

1. Et,N
iid∼ (0,���E

N

)
, where Et,N = {E1t , . . . , Eit , . . . , ENt };

2. E|Eit |4 ≤ M2 for all i = 1, . . . , N , all t = 1, . . . ,T , all N ∈N and all T ∈N;

3. E(Eit Ejt ) = σ E
i j , max

1≤i≤N

N

∑
j=1

|σ E
i j | ≤ M3, for all j = 1, . . . , N and all N ∈ N;

4. Eit⊥⊥Fjt−k for any i, j, t, and k.

Assumption A1 says that the factors are zero mean, serially independent, and
identically distributed. That is, E(Ft ) = 0, and for any k �= 0 Fit⊥⊥Fjt−k , for any
i , j and t . The fact that ���F is diagonal means that Cov

(
Fit , Fjt

) = 0 for i �= j ,
i, j = 1, . . . ,r . Assumption A2 says that the factors have finite fourth moments.

In Assumption B1 the model quantities λi j (u) are supposed to be in C1[0,1].
This condition is given for ease of presentation of the proofs. On the one hand,
we note that we could also suppose the time-varying factor loadings to be more
regular, i.e., to be in Ck[0,1] with k > 1, if we were interested in deriving opti-
mal rates of convergence of nonparametric estimators of these model quantities.
However, in this work we content ourselves to prove consistency of our estima-
tors. On the other hand, we also suspect that even a weaker condition on the
regularity of the factor loading, such as Hölder-continuity, would be sufficient
to derive our results. The first condition in Assumption B2 ensures that each
factor has a nontrivial contribution to the variance of X t,N T , and the second
condition implies that supu ‖���N (u)‖ = O

(√
N
)
. Assumption B3 implies that
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1286 GIOVANNI MOTTA ET AL.

supu

∥∥���(1)
N (u)

∥∥= O
(√

N
)
. This condition parallels the previous Assumption B2,

now expressed for the first derivatives of the loading. Although it is mainly tech-
nical and essentially convenient for our proofs, it ensures that in matrix norm the
contribution to the not-too-abrupt change of the time-varying loadings is homo-
geneously distributed over all factor directions.

Chamberlain and Rothschild (1983) defined an AFM as having bounded eigen-
values for the N × N covariance matrix ���E

N = E(Et,N E′
t,N

)
. If Et,N is stationary

with E
(

Eit Ejt
) = σ E

i j for all t , then the largest eigenvalue of ���E
N is bounded by

max1≤i≤N ∑N
j=1 |σ E

i j |; see, e.g., Lütkepohl (1996). Thus by Assumption C3 model
(3) will be an AFM in the sense of Chamberlain and Rothschild. In this paper we
assume independence between the factors and the error terms as in Forni et al.
(2000) (Assumption C4). Although this appears to be restrictive, it is actually a
necessary condition for identification (see Forni and Lippi, 2001, Thm. 4).

2.2. Time-Varying PCR

The estimation of the loadings and the factors in model (3) can be seen as the
solution of a weighted least squares criterion. We introduce the problem in the
stationary case of model (2), where ���N and Ft can be estimated by minimizing
the nonlinear least squares objective function

L N T = (N T )−1
T

∑
t=1

(
Xt,N −���N Ft

)′ (Xt,N −���N Ft
)
, (7)

subject to

���′
N���N /N = Ir , (8)

whereFT = {F 1, . . . ,F T }′ is the T ×r matrix containing the factors. Maximizing
(7) is equivalent to maximizing

N−2 tr
{
���′

NSN T���N
}

subject to (8), where SN T is the sample covariance matrix estimator:

SN T := 1

T

T

∑
t=1

Xt,N X ′
t,N . (9)

The well-known solution is to set the estimator �̂��N of ���N to be
√

N times the
matrix whose columns are the r orthogonal unit-length eigenvectors ���N corre-
sponding to the largest r -ordered eigenvalues of SN T , that is,

N−1SN T���N = ���N V̂N T , ���
′
N���N = Ir ,

�̂��N = √
N ���N , �̂��

′
N�̂��N /N = Ir , (10)
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where the matrix

V̂N T = T −1
T

∑
t=1

F̂t,N F̂
′
t,N (11)

is the diagonal matrix containing the largest r eigenvalues of SN T in decreasing

order. The resulting estimator of the factors is F̂t,N = �̂��
′
N Xt,N /N , which is the

vector consisting of the first r principal components of Xt,N .
We now show that a weighted version (weighted over time) of the loss in (7)

applied to the nonstationary model in (3) leads to the nonparametric version of the
solutions given in (10) and (9). Let K (·) be a positive kernel over time of finite
second moment and symmetric around zero,∫

K (u)du = 1,

∫
K 2 (u)du < ∞, K (u) = K (−u),

and let Kh(·) := 1
h K
( ·

h

)
be the rescaled version of K for a given bandwidth

h > 0. Define for a fixed point u ∈ (0,1) the time-varying weighted least squares
objective function

L N T (u; h) = (N T )−1
T

∑
s=1

(
Xs,N T −���N

( s
T

)
Fs
)′

× (Xs,N T −���N
( s

T

)
Fs
)

Kh
( s

T −u
)
, (12)

subject to

���′
N

( s
T

)
���N
( s

T

)
N

= Ir , ∀s = 1, . . . ,T, ∀T ∈ N. (13)

Without loss of generality, for reasons of ease of presentation we use the same
bandwidth h for all i, j = 1, . . . , N . The first-order conditions for maximizing
(12) with respect to Fs are

���′
N

( s
T

)
���N
( s

T

)
F̂s,N T = ���′

N

( s
T

)
Xs,N T ,

and thus, with the constraint (13), the estimator of the factor satisfies ∀s =
1, . . . ,T ,

F̂s,N T = {���′
N

( s
T

)
���N
( s

T

)}−1
���′

N

( s
T

)
Xs,N T = N−1���′

N

( s
T

)
Xs,N T . (14)

Substituting (14) into the objective function (12) yields the concentrated objective
function

L̃ N T (u; h) = 1

N T

T

∑
s=1

tr

{
Xs,N T X ′

s,N T − 1

N
���′

N

( s
T

)
Xs,N T X ′

s,N T���N
( s

T

)}
× Kh

( s
T −u

)
. (15)
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Minimizing the concentrated objective function (15) with respect to ���( s
T ) is

equivalent to maximizing

(N T )−1
T

∑
s=1

tr

{
1

N
���′

N

( s
T

)
Xs,N T X′

s,N T���N
( s

T

)}
Kh
( s

T −u
)

(16)

subject to (13). If we assume that the sequence hT → 0 as T → ∞, for large values
of T the weight Kh

( s
T −u

)
only takes into account the loadings ���N

( s
T

)
corre-

sponding to the values s
T that are very close to u. Asymptotically, the loadings

that minimize the concentrated objective function in (16) depend only on u. This
result is formalized in Proposition 1.

PROPOSITION 1. Under Assumptions A–C, for all u ∈ (0,1),

(N T )−1
T

∑
s=1

tr

{
1

N
���′

N

( s
T

)
Xs,N T X′

s,N T���N
( s

T

)− 1

N
���′

N (u)Xs,N T X′
s,N T���N (u)

}
×KhT

( s
T −u

)= Op (hT ) .

Proof. See Appendix B. n

By Proposition 1, maximizing (16) is asymptotically equivalent to maximizing

N−2 tr
{
���′

N (u)�̂��̂���̂���N (u)���N (u)
}

subject to (13), where

�̂��̂���̂���N (u; hT ) := T −1
T

∑
s=1

Xs,N T X ′
s,N T KhT

( s
T −u

)
, (17)

which is the nonparametric estimator of the covariance matrix proposed by
Rodrı́guez-Poo and Linton (2001). The solution is to set �̂��N (u) to be

√
N times

the matrix whose columns are the r orthogonal unit-length eigenvectors ���N (u)

corresponding to the largest r eigenvalues of �̂��̂���̂���N (u). As in the stationary case, by
analogous arguments we obtain

N−1�̂��̂���̂���N (u; h)�̂��N (u; h) = �̂��N (u; h)V̂N (u; h),

�̂��
′
N (u)�̂��N (u)

N
= Ir , ∀u ∈ (0,1), (18)

where V̂N (u) is the diagonal matrix containing the largest r -ordered eigenvalues
of N−1�̂��̂���̂���N (u; h). Note that (17) and (18) generalize (9) and (10), respectively.

It is useful to write the LSAFM in a more compact matrix notation. Notice
that N−1�̂��̂���̂���N (u; h) = (N T )−1X′

N TWT (u; h)XN T , where the T × T matrix of
weightsWT (u; h) is defined as

WT (u; h) = diag
{

Kh

(
1
T −u

)
, Kh

(
2
T −u

)
, . . . , Kh

(
T −1

T −u
)

, Kh (1−u)
}
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for all u ∈ (0,1), and the T × N matrixXN T collects the data:XN T = [X1,N T , . . . ,

Xt,N T , . . . ,XT,N T
]′. This means that, for all u ∈ (0,1),

1

N T
X′

N TWT (u; h)XN T �̂��N (u) = �̂��N (u)V̂N (u),

�̂��
′
N (u)�̂��N (u)/N = Ir ; (19)

that is,

V̂N (u; h) = N−1�̂��
′
N (u; h)

1

N T
X′

N TWT (u; h)XN T �̂��N (u; h),

�̂��
′
N (u; h)�̂��N (u; h)/N = Ir . (20)

If we define Ft,N T =XN T �̂��N
( t

T

)
/N , the result in (20) can be written as

V̂N
( t

T

)= F′
t,N TWT

( t
T ; h
)
Ft,N T /T, t = 1, . . . ,T .

The matrix V̂N
( t

T

)
is a localized version of the matrix V̂N T defined in (11). In

the stationary case the estimated factors contain the same information for all t ,
while in the locally stationary framework the weights depend on time: They are
contained in the matrixWT

( t
T ; h
)
. Notice that the t th column of the r ×T matrix

F
′
t,N T is F̂t,N T as defined in (14). Indeed, the estimated factors F̂t,N T in (14) can

be written as

F̂t,N T = �̂��
′
N

( t
T

)
Xt,N T /N t = 1, . . . ,T, (21)

since �̂��
′
N

( s
T

)
�̂��N
( s

T

)
/N = Ir for all s = 1, . . . ,T .

Remark 2. The condition
∥∥���′���

N −����
∥∥→ 0 is a condition on the behavior of

the loadings, while the condition �̂��
′
�̂��

N = Ir is an ingredient for the minimization of
the loss functions defined in (7) and (12) of our paper. This condition is exactly the

same as in Bai (2003), where the ingredient above becomes
F̂′

T F̂T

T
= Ir because

the matrix to diagonalize isXN TX
′
N T instead of ourX′

N TWT (u; h)XN T .

3. ASYMPTOTIC ESTIMATION THEORY

The following asymptotic results hold for N ,T → ∞ and for a fixed value of u ∈
(0,1). The proofs are given in Appendix B. Our results hold under the following
assumption.

Assumption D (Rate of the bandwidth). Assume hT → 0 such that T hT →
∞ and T h3

T → 0 as T tends to infinity.

In Assumption D we control the rates of convergence of the bandwidth hT . We
first have the usual requirement in nonparametric curve estimation that the band-
width goes to zero but at a slower rate than T −1. Second, to control a “multivariate

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466611000053
Downloaded from https://www.cambridge.org/core. Universite catholique de Louvain, on 30 Mar 2018 at 14:00:22, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466611000053
https://www.cambridge.org/core


1290 GIOVANNI MOTTA ET AL.

bias” in smoothing a matrix of factor loadings that can grow with order N , we re-
quire T h3 → 0 (see the proof of Theorem 1), in order not to need to correct for
the bias due to nonstationarity.

The first result is about consistency of our nonparametric estimator of the time-
varying covariance matrix ���N (u).

THEOREM 1. Under Assumptions A–D,

N−1
∥∥∥�̂��̂���̂���N (u; hT )−���N (u)

∥∥∥= Op

[
(T hT )−1/2

]
,

where �̂��̂���̂���N (u; hT ) is defined in (17) and ���N (u) is defined in (4).

Proof. See Appendix B. n

The estimator �̂��̂���̂���N (u; hT ) converges to ���N (u) at the rate 1√
T hT

. This means

that each element of the matrix
[
�̂��̂���̂���N (u; hT )−���N (u)

]
is Op

(
1√

T hT

)
. The fact

that the euclidean norm of this N × N matrix grows at the rate N explains the re-
sult. The result in Theorem 1 generalizes the consistency of the sample covariance
matrix in (9). Similarly to the stationary case, the estimation of the covariance ma-
trix is crucial for factor analysis. It is the first step when estimating factor models,
and it is from this estimator that all the other estimators are derived. The consis-
tency of the estimators of the factors and the loadings depends on the consistency
of the eigenvalues (see Proposition 2 and Corollary 1) and the eigenvectors (see
Theorem 2) of the estimator �̂��̂���̂���N (u) of ���N (u). In what follows we denote by �N

the loadings scale error, that is, the rate of convergence of the rescaled loadings
to the matrix ����(u). To satisfy Assumption B2, we only need that �N → 0 as
N → ∞.

PROPOSITION 2. Under Assumptions A–D,

min
(√

T hT , N ,�−1
N

)∥∥∥V̂N (u; hT )−V(u)
∥∥∥= Op(1),

where V̂N (u; hT ) is defined in (20), V(u) is the diagonal matrix containing the
eigenvalues of ����(u)���F , and

�N := sup
u∈(0,1)

∥∥∥∥���′
N (u)���N (u)

N
−����(u)

∥∥∥∥ . (22)

Proof. We can decompose the overall error
∥∥V̂N (u; hT ) −V(u)

∥∥ as the
following:

(i) estimation error:
∥∥V̂N (u; hT ) −VN (u)

∥∥, where VN (u) is the diagonal
matrix with the largest r eigenvalues of the matrix 1

N ���N (u), ���N (u) being
defined in (4);
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(ii) approximation error:
∥∥VN (u)−V(u)

∥∥.
In Appendix B we show that the estimation error is Op

( 1√
T hT

)
, whereas the ap-

proximation error is O
(

N−1)+ O(�N
)
. Then we have∥∥V̂N (u; hT )−V(u)

∥∥≤ ∥∥V̂N (u; hT )−VN (u)
∥∥+∥∥VN (u)−V(u)

∥∥
= Op

( 1√
T hT

)+ O
( 1

N

)+ O
(
�N
)
. �

Remark 3 (Estimation error). The estimation error depends on the difference
between the largest r eigenvalues of 1

N �̂��̂���̂���N (u; hT ) and the largest r eigenvalues
of 1

N ���N (u). It tends to zero by Theorem 1; that is,√
T hT
∥∥ 1

N

[
�̂��̂���̂���N (u; hT )−���N (u)

]∥∥= Op(1)

=⇒ min
(√

T hT , N ,�−1
N

)∥∥V̂N (u; hT )−VN (u)
∥∥= Op(1). (23)

In the stationary case, Kollo and Neudecker (1993) derive a similar result with
a parametric rate of convergence. Given the p × p covariance matrix ��� and its
eigenvalues v1, . . . ,vp, we have that
√

T
∥∥ST −���

∥∥= Op(1) =⇒ √
T
∥∥V̂−V∥∥= Op(1), (24)

where V = diag
{

v1, . . . ,vp
}

, ST is the sample covariance matrix and V̂ =
diag
{

v̂1, . . . , v̂p
}

contains the eigenvalues of ST (the dimension p is finite). The
result in (24) has been generalized by Rodrı́guez-Poo and Linton (2001, Props. 3.2
and 3.3) to the nonstationary case with a nonparametric rate of convergence; that
is,√

T hT
∥∥�̂��̂���̂���(u; hT )−���(u)

∥∥= Op(1) =⇒√
T hT
∥∥V̂(u; hT )−V(u)

∥∥= Op(1), (25)

where ���(u) is the covariance matrix of a nonstationary process, �̂��̂���̂���(u; hT ) is its
estimator, and the matrices V(u) and V̂(u; hT ) contain the eigenvalues of ���(u)

and �̂��̂���̂���(u; hT ), respectively (no need to rescale �̂��̂���̂���(u; hT ) and ���(u), their dimen-
sion p being finite). The result in (23), together with the approximation error,
extends the result in (25) to the framework of factor models.

Remark 4 (Approximation error). In contrast to the stochastic estimation er-
ror, the approximation error is purely deterministic (it only depends on N and
neither on T nor on hT ) and comes from the approximate factor structure of our
model, namely the assumption of uniformly bounded eigenvalues (as in
Chamberlain and Rothschild, 1983). The approximation error can be decomposed
further as∥∥VN (u)−V(u)

∥∥≤ ∥∥VN (u)−VC
N (u)
∥∥+∥∥VC

N (u)−V(u)
∥∥,
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where VC
N (u) is the diagonal matrix containing the largest (nonzero) r eigenval-

ues of N−1���C
N (u), ���C

N (u) being defined in (5). The term
∥∥VN (u) −VC

N (u)
∥∥

is called idiosyncratic variance error because it is proportional N−1vE
1N , where

we recall that vE
1N is the largest eigenvalue of N−1���E

N (see Appendix B). Then∥∥VN (u)−VC
N (u)
∥∥= O

(
N−1
)

by Definition 1(ii).
The second term,

∥∥VC
N (u)−V(u)

∥∥, is the common variance error. It depends
on the difference between the (nonzero) eigenvalues of N−1���C

N (u), the rescaled
variance of the common components, and the eigenvalues of ����(u)���F , the prod-
uct between the asymptotic scale of the loadings and the asymptotic variance of
factors. In Appendix B we show that the common variance error is O(�N ) and
therefore it tends to zero as N tends to infinity by Assumption B2 and (22).

Remark 5. The sequence of parameters �N has been introduced to study the
convergence of V̂N (u; hT ) to a well-defined function V(u) which does not de-
pend on N . This new parameter does not affect the meaning of Assumption B2;
it only enters to formalize the results in Theorems 2 and 3, and Corollary 2. In
particular, it makes it possible to combine all the rates of convergence in a uni-
fied rate, given by the minimum of

√
T hT ,

√
N , and �N . Without introducing the

parameter �N , we can only estimate the matrixVC
N (u) (which depends on N ), as

the following corollary shows. We also refer to Figure 5 in Section 4.

COROLLARY 1. Under Assumptions A–D,

min
(√

T hT , N
)∥∥∥V̂N (u; hT )−VC

N (u)
∥∥∥= Op(1).

Proof. It follows from Proposition 2 that∥∥V̂N (u; hT )−VC
N (u)
∥∥≤ ∥∥V̂N (u; hT )−VN (u)

∥∥+∥∥VN (u)−VC
N (u)
∥∥

= Op
( 1√

T hT

)+ ( 1
N

)
. �

Assumption E (Multiplicity of eigenvalues). Suppose that for the largest r
eigenvalues {v1N , . . . ,vr N } of ���N (u),

lim
τ→0

inf

∣∣vi N (u + τ)−vj N (u + τ)
∣∣

|τ | > 0 ,

for all u ∈ (0,1), all i �= j, i, j = 1, ...,r , and all N ∈ N. This is equivalent to
requiring the same condition on the eigenvalues of the r × r matrix ����(u)���F .

Assumption E is an assumption on the identifiability in estimating the time-
varying factor loadings λi j (u) as well as the common components Cit,T :=λ′

i

( t
T

)
Ft . Note that we do not require distinctness of the eigenvalues of ����(u)���F (as is
done, e.g., in Bai, 2003, Assum. D). We rather control the degree of contact of the
model eigenvalues as functions of rescaled time u. Note that Assumption E does
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not permit identical eigenvalues to accumulate over time. However, eigenvalues
can intersect each other, but in order to have continuous corresponding eigenvec-
tors it is not allowed that in the points of intersection the derivatives are equal.
By Theorems 2.4 and 2.7 of Chern and Dieci (2000, pp. 774–778), under this
assumption the matrix of orthogonal eigenvectors of ���N (u) can be taken to be a
continuous function in u. For details we refer to Lemma 1 in Appendix A, which
we apply in the case where k = 1 and e = 1.

We are now in a position to develop consistent estimation theory for the eigen-
values and the eigenvectors of the estimator�̂��̂���̂���(u; h) with well-defined target func-
tions that are continuous in rescaled time. The appropriateness of this condition
for our purposes of consistent estimation theory results from the following obser-
vation. Assumption E is in fact a sufficient condition to guarantee that not only
our (estimated) eigenvalues but also our estimated eigenvectors (i.e., the load-
ings) converge to continuous functions in time u ∈ (0,1). It is given in terms of
the eigenvalues of ���N (u), which by Assumption B.1 are in C1[0,1] (as the eigen-
values depend continuously on the regularity of the elements of the covariance
matrix ���N (u), which in turn is determined by the regularity of the model load-
ings λi j (u)). In a point of intersection u0 of eigenvalues γi (u0), we define the
ordering of corresponding eigenvectors to be the same as the one for eigenvectors
corresponding to eigenvalues γi (u

−
0 ), where u−

0 means points leading up to the
point u0 from below.

We end this remark by adding that, as already in the stationary case, the load-
ings can only be estimated up to a transformation, and it is only the product
���C

N (u) = ���N (u)���F���′
N (u) that is identifiable; compare also the formulation of

our Theorem 2.
The following two theorems are our main results, which are about weak con-

sistency of estimated loadings and factors.

THEOREM 2. Under Assumptions A–E,

(i) min
(√

N ,
√

T hT ,�−1
N

){ 1√
N

∥∥∥�̂��N (u; hT )−���N (u)R(u)
∥∥∥ }

= Op(1) (26)

(ii) min
(√

N ,
√

T hT ,�−1
N

)∥∥∥λ̂i (u; hT )−R′(u)λi (u)
∥∥∥= Op(1), (27)

where �̂��N (u; hT ) is defined in (18), λ̂
′
i (u; hT ) is the i th row of �̂��N (u; hT ),

R(u) := (���F)1/2
ϒϒϒ(u)V−1/2(u), and ϒϒϒ(u) is the r × r matrix containing the

orthonormal eigenvectors of the r × r matrix
(
���F)1/2

����(u)
(
���F)1/2

.

Proof. See Appendix B. n

The result in (26) shows that the appropriately scaled norm of the distance be-
tween the estimated loading matrix and a linear transformation of the true loading
matrix converges to zero in probability, where the rate is given by the minimum

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466611000053
Downloaded from https://www.cambridge.org/core. Universite catholique de Louvain, on 30 Mar 2018 at 14:00:22, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466611000053
https://www.cambridge.org/core


1294 GIOVANNI MOTTA ET AL.

of
√

T h,
√

N , and �−1
N . The norm in (27) does not need to be rescaled because its

argument is a vector of length r . The transformation matrixR(u) is invertible, so
that we have consistency up to a linear invertible transformation. Note that (27),
the formulation in terms of vectors, is the locally stationary analogue to Theorem
1 of Bai (2003). In this sense, we are locally (i.e., in a neighborhood of each time
t of effective sample size of order T h) in a similar situation as Bai (2003), with ei-
ther the cross-sectional dimension dominating the sample size or vice versa. Note
that N or T are allowed to grow to infinity without any restriction. We now state
the analogous result for the estimates of the factors, which are consistent up to the
inverse transformationR−1(u). For this we need the following assumption.

Assumption F (Linear combination of the errors weighted by the
loadings). The loadings and the errors are such that∥∥∥∥∥���′

N

(
t
T

)
Et,N√

N

∥∥∥∥∥= Op (1) for all t and for all T as N → ∞.

Assumption F is needed to prove the consistency of the estimated factors (The-
orem 3). This is a weaker version of the following assumption (see Bai, 2003,
Assum. F3, p. 144):

���′
N Et,N√

N

d−→N (0,


t ) for each t as N → ∞

for a given covariance matrix 


t .

THEOREM 3. Under Assumptions A–F,

min
(√

T hT ,
√

N ,�−1
N

)∥∥∥F̂t,N T −R−1( t
T

)
Ft

∥∥∥= Op(1),

where F̂t,N T is defined in (21), Ft obeys Assumption A of the (LSAFM) in Defi-
nition 1, and R−1

( t
T

)
is the inverse of the transformation matrix R

( t
T

)
defined

in Theorem 2.

Proof. See Appendix B. n

Note that the rate of convergence
(√

T hT ,
√

N ,�−1
N

)
is the same as that of the

loadings. Finally, similar to Bai (2003), we can give a consistency result for the
estimation of the common components in the next proposition.

COROLLARY 2. Under Assumptions A–F,

min
(√

T hT ,
√

N ,�−1
N

)∣∣∣Ĉi t,T −Cit,T

∣∣∣= Op(1), i = 1, . . . , N , t = 1, . . . ,T,

where Cit,T := λ′
i

( t
T

)
Ft is the common component of the i th series at time t and

Ĉit,T := λ̂′
i

( t
T

)
F̂t,N T is its estimator.
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Proof. This corollary follows directly from Slutsky’s theorem applied to Theo-
rems 2(ii) and 3. n

Corollary 2 states that Ĉi t,T consistently estimates the common component
Cit,T . Note that, unlike the estimation of ���N

( t
T

)
or Ft , Cit,T and Ĉi t,T are well

identified. Cit,T is identified because the indeterminacy of ���N
( t

T

)
and Ft by the

r × r transformation matrix R
( t

T

)
cancels out. Ĉi t,T is identified because, by

equation (21), the sign of F̂t,N T depends on the sign of �̂��N
( t

T

)
. Due to Assump-

tion E this unicity continues to hold for the limit of the estimators as functions
of rescaled time tending to a continuous limit because the limit of the estimated
eigenvectors are continuous functions of time. We also refer to the discussion on
the interpretation of Assumption E above (below Remark 4).

4. SIMULATION STUDY

In this section we illustrate the performance of the estimators �̂��̂���̂���N (u), �̂��N (u),
and V̂N (u) defined in (17) and (18). The estimator �̂��̂���̂���N (u; hT ) in (17) depends
on the bandwidth sequence hT . In our simulations the bandwidth ĥ is selected
data-dependent with the local plug-in algorithm. This method was introduced
in the global case (h(u) ≡ h) by Gasser, Kneip, and Köhler (1991) and gen-
eralized to the local case by Brockmann, Gasser, and Herrmann (1993). The
technical computation of the local bandwidth selection procedure is described
in Herrmann (1997). The basic idea of plug-in estimation is to obtain a large-
sample approximation to the mean integrated squared error (MISE) of the estima-
tor of the entries σ̂i, j (u; h) of �̂��̂���̂���N (u; h), then to minimize the resulting analytical
expression with respect to h to obtain the asymptotic optimal bandwidth ĥ, and
last to replace the unknown terms in ĥ by estimators. For ease of presentation,
in this section we skip the dependence of the estimates on the parameter h.

4.1. Two Examples

In Theorem 2 the matrix �̂��N (u) is only able to identify the matrix ���N (u) up to
transformation (i.e., ���N (u)R(u)), and up to sign (note, however, that the squared
difference between estimator and transformed loadings is uniquely defined in this
Theorem 2). Indeed, the matrices �̂��N (u) and −�̂��N (u) are both solutions of (18).
This explains why in the simulation we still need to take the absolute values of
these vectors (see Section 4.1.1 and Figure 2). To show the performance of the
estimator �̂��N (u) we consider a first set of simulations with ����(u) = Ir for all
u ∈ (0,1) (see Section 4.1.1 and Figures 1–2). In this case the transformation
matrixR(u) is — up to sign — the identity matrix Ir (i.e.,R(u) = ±Ir ), and thus
the matrix �̂��N (u) is able to identify the matrix ���N (u) up to sign.

By Proposition 2 the matrix V̂N (u) is only able to identify the eigenvalues
of the product ����(u)���F . To show the performance of the estimator V̂N (u) we
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FIGURE 1. First Example, Section 4.1.1. Time-varying entries of the covariance matrix. Solid line: ���N
( t

T

)
. Bold line: �̂��̂���̂���N

( t
T

)
. Dashed lines:

pointwise 95% confidence intervals.
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FIGURE 2. First Example, Section 4.1.1. Time-varying entries of the matrices
∣∣���N
( t

T

)∣∣ (solid line) and
∣∣∣�̂��N
( t

T

)∣∣∣ (bold line).
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FIGURE 3. First Example, Section 4.1.1. Left: first common component C1t,T (black) and estimated common component Ĉ1t,T (grey). Right:

Ĉ1t,T −C1t,T .
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FIGURE 4. Second Example, Section 4.1.2. Time-varying entries of the covariance matrix. Solid line: ���N
( t

T

)
. Bold line: �̂��̂���̂���N

( t
T

)
. Dashed lines:

pointwise 95% confidence intervals.
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FIGURE 5. Second Example, Section 4.1.2. Time-varying entries of the diagonal matrices

VC
N

( t
T

)
(solid line) and V̂N

( t
T

)
(bold line) corresponding to Figure 4. Dashed lines:

pointwise 95% confidence intervals.

consider a second set of simulations with ���F = Ir (see Section 4.1.2 and Figures
4–5). In this case the matrix V̂N (u) is an estimate of the eigenvalues of ����(u).

We recall that N and T are allowed to grow to infinity without any restric-
tion, and N could even be larger than T . However, in the following examples we
use N = √

T to avoid a computational burden, as the numerical implementation
becomes time demanding for large values of N .

4.1.1. First Example. We generate the data according to model (3) with N =
30, T = 900, and r = 2, and consider the particular case

����(u) = Ir ∀u ∈ (0,1). (28)

To satisfy (28) we define

���N
( t

T

)= √
N exp

(
π t

TYN
)
AN , t = 1, . . . ,T, (29)

where YN is an antisymmetric matrix of dimension N , AN is an N × r matrix
such thatA′

NAN = Ir , and exp
(
π t

TYN
)

is the N × N matrix whose (i, j)th ele-
ment is exp

(
π t

T yi j
)
. Then we have N−1���′

N

( t
T

)
���N
( t

T

)= Ir for all t = 1 . . . ,T .
An antisymmetric matrix is a square matrix that satisfiesY = −Y′. In compo-

nent notation, yi j = −yji . Letting k = i = j , the requirement becomes ykk = −ykk ,
so an antisymmetric matrix must have zeros on its diagonal. In our simulations
yi j = 1 for i < j , yi j = 0 for i = j and yi j = −1 for i > j (i, j = 1 . . . , N ). In order
to have nontrivial loadings, we multiply the matrix exp

(
π t

TYN
)

by the matrix
AN . To obtain the matrix AN , we simulate n = 50 independent and identically
distributed (i.i.d.) realizations Z1, . . . ,ZN of an N -dimensional normal random
vector ZN ∼N (0,IN ) and take the r eigenvectorsA1, . . . ,Ar corresponding to
the largest eigenvalues of the sample covariance matrix SZ of the Z i ’s: SZ :=
n−1 ∑n

i=1Z iZ i
′ andAN := [A1, . . . ,Ar ]. By constructionA′

NAN = Ir .
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FIGURE 6. Second Example, Section 4.1.2. Integrated Loss defined in (31).

To represent ���N
( t

T

)
and �̂��̂���̂���N

( t
T

)
, N = 30, we only show some typical ele-

ments σi j (·) and σ̂i j (·), in particular for i = 10,20,30, and j = 4,7,10,14,17,20,
24,27,30 (see Figure 1).

We simulate M = 100 times the same model, that is, model (3) with the same
deterministic loadings defined in (29) but different (realizations of) factors and er-

rors. In particular, Ft
iid∼N (0,���F ) with���F = diag{3.5,1}, and Et,N

iid∼N (0,���E
N

)
with ���E

N = IN . For each m = 1, . . . , M and for all t , we compute the estimate

�̂��̂���̂���N
( t

T ; m
) = {σ̂i j

( t
T ; m
)}N

i, j=1 defined in (17). Then for all t we consider the
average (bold line)

�̂��̂���̂���N
( t

T

)
:= M−1

M

∑
m=1

�̂��̂���̂���N
( t

T ; m
)=
{

σ̂ i j
( t

T

)}N

i, j=1

and construct 95% confidence intervals
[
σ̂ i j
( t

T

)± z0.975 ŝ σ
i j

( t
T

)]
based on asym-

ptotic normality (dashed lines), where zα = 
−1 (α), 
(·) is the standard normal
cumulative distribution function, and

ŝ σ
i j

( t
T

)
:=
√√√√ 1

M −1

M

∑
m=1

[
σ̂i j
( t

T ; m
)− σ̂ i j

( t
T

)]

is the estimator of the standard deviation, say sσ
i j

( t
T

)
, of the estimator σ̂i j

( t
T

)
. The

asymptotic normality of the estimator �̂��̂���̂���N
( t

T

)
in (17) can be derived analogously
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to Rodrı́guez-Poo and Linton (2001, Prop. 3.2). For each m = 1, . . . , M and for
all t = 1, . . . ,T we define �̂��N

( t
T ; m
)

as
√

N times the orthonormal eigenvectors

of the estimate N−1�̂��̂���̂���N
( t

T ; m
)

(see Figure 2). If ����(u) = Ir for all u ∈ (0,1),

then R(u) is ± the identity matrix Ir for all u ∈ (0,1); i.e., �̂��N
( t

T

)
converges

to ±���N (u). To remove the up-to-sign indeterminacy we consider, for all t , the

average of the absolute values
∣∣�̂��N
( t

T

)∣∣ := M−1 ∑M
m=1

∣∣�̂��N
( t

T ; m
)∣∣.

Finally, in Figure 3 we report an example of estimation of the common com-
ponents. We just consider the first common component C1t,T and (a realization
of) its estimator Ĉ1t,T , t = 1, . . . ,T , where Cit,T and Ĉi t,T are defined in Corol-
lary 2. As the two series are very close to each other, we also report the difference
Ĉ1t,T −C1t,T on the original scale of the two (between –8 and 6).

4.1.2. Second Example. We generate the data according to model (3) with
loadings

���N
( t

T

)= √
N sin

(
2π t

T

)
exp(π t

TYN )AN +πAN , (30)

where YN and AN are the same as in (29), and restrict to the particular case
���F = Ir .

The covariance matrix and its estimate are represented in Figure 4 (analo-
gously to the first example). The eigenvalues of the normalized covariance ma-
trix N−1���N

( t
T

)
are plotted in Figure 5. For each m = 1, . . . , M and for all t =

1, . . . ,T we compute the eigenvalues V̂N
( t

T ; m
)

of the estimate N−1�̂��̂���̂���N
( t

T ; m
)
.

Then for all t we consider the average (bold line)

V̂N
( t

T

)
:= M−1

M

∑
m=1
V̂N
( t

T ; m
)=
{

ν̂i j
( t

T

)}r

i, j=1

and construct 95% confidence intervals
[
ν̂i j
( t

T

)± z0.975 ŝν
i j

( t
T

)]
based on asymp-

totic normality (dashed lines), where z0.975 = 1.96, and

ŝν
i j

( t
T

)
:=
√√√√ 1

M −1

M

∑
m=1

[
ν̂i j
( t

T ; m
)− ν̂i j

( t
T

)]2
is the estimator of the standard deviation, say sν

i j

( t
T

)
, of the estimator ν̂i j

( t
T

)
.

The asymptotic normality of V̂N
( t

T

)
comes from the asymptotic normality of

�̂��̂���̂���N
( t

T ; h
)

because, by (20), the entries of V̂N
( t

T

)
are continuous functions of the

entries of �̂��̂���̂���N
( t

T ; h
)
. Figure 5 shows the performance of the estimator V̂N (u),

which approximates VC
N (u) by Corollary 1, where we recall that VC

N (u) is the
diagonal matrix containing the eigenvalues of the matrix N−1���′

N

( t
T

)
���N
( t

T

)
,

���N
( t

T

)
being defined in (30). The solid lines in Figure 5 are the time-varying
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entries of VC
N (u), which approximate the matrix V(u) by Assumption B2 and

(22). We recall that V(u) is the diagonal matrix containing the eigenvalues of
����(u)���F , which is equal to ����(u) in this example.

Figure 2 shows the local performance of the estimator �̂��N
( t

T

)
. To have an

idea of the global performance of this estimator we consider different values of
T = 100,225,400,625,900,1225 and N (T ) = √

T , and for each combination of
N and T we compute, in the spirit of Theorem 2, the loss function

L(N ,T ; M) := 1

MT

M

∑
m=1

T

∑
t=1

1√
N

∥∥∥�̂��N
( t

T

)−���N
( t

T

)
RN
( t

T

)∥∥∥ . (31)

By Theorem 2 this loss is decreasing with regard to T and N (T ), as also shown
in Figure 6. This loss function is the sample counterpart of the integrated loss

L(N ,T ; M) := 1

M

M

∑
m=1

∫ 1

0

1√
N

∥∥∥�̂��N (u)−���N (u)RN (u)
∥∥∥du.

We used the model defined in the second example (i.e., with ���F = Ir ) because in
this case the matrixR(u) is in general different than Ir (we recall thatR(u) = ±Ir
if ����(u) = Ir ).

5. CONCLUSIONS

In this paper we have proposed a new locally stationary factor model that allows
for smoothly time-varying factor loadings. We showed consistency of the princi-
pal components estimator under double asymptotics, up to an invertible transfor-
mation and sign. Rates are parallel to the stationary setup with the sample size T
replaced by the “effective” sample size T h. No restrictions for T and N growing
to infinity simultaneously are necessary. In a simulation study, our estimator was
shown to work very well for two alternative scenarios: one where the transforma-
tion matrix is identity, another where it is not.

As mentioned in the Introduction, in practice one does not know the number of
factors, and a test such as that of Bai and Ng (2002) is required. We are confident
that analogous tests can be developed for our model framework, but that is beyond
the scope of the paper. Furthermore, it would be interesting to compare our model
more explicitly with the dynamic factor model of Forni et al. (2000), especially
in empirical applications. If in reality factor loadings are smoothly changing, then
quite likely this would show in positive autocorrelations of factors in the dynamic
factor model. To distinguish both types of dynamic properties, we can extend
our model to allow for autocorrelations of the factors, which is left for future
research.

There are many potential applications of our model in macroeconomics and
finance. For example, the dynamic factor model of Forni et al. (2000) has been
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applied to forecasting, monetary policy analysis business cycle analysis, and con-
struction of economic indicators; see Breitung and Eickmeier (2006) for a recent
review. In finance, applications to asset pricing and portfolio selection are obvi-
ous, and this is also left for future research.
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APPENDIX A: Smooth Spectral Decomposition

LEMMA 1 (Takagi’s factorization). Let A ∈ Ck (
R,Cn×n) be a complex symmetric

matrix valued function of constant rank: rk[A(x)] ≡ r for all x for fixed r : 1 ≤ r ≤ n.
Then there exists unitaryU ∈ Ck (

R,Cn×n) such that

A(x) =U(x)

[
S+ 0
0 0

]
U′(x) ∀x,

and S+ ∈ C (R,Rr×r ) is symmetric positive definite. Moreover, suppose that the continu-
ous eigenvalues {γ1, . . . ,γr } of S+ satisfy

lim
τ→0

inf

∣∣γi (x + τ)−γj (x + τ)
∣∣

|τ e| ∈ (0,+∞]

for some nonnegative integers e ≤ k and for all x and i �= j . Then there exists orthogonal



 ∈ Ck−e (

R,Rr×r ) such that 


′S+


 = diag(γ1, . . . ,γr ). The eigenvalues can be taken

to be Ck functions.

Proof. See Chern and Dieci (2000, Thms 2.4 and 2.7, pp. 774–778). n

APPENDIX B: Proofs

The asymptotic theory in Section 3 is given for a fixed value of u ∈ (0,1) in rescaled
time. For ease of presentation, we give the proofs for the corresponding value of t = [uT ]
in real time, where [x] is the largest integer smaller than or equal to x . We recall that for
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a given sample size T and a given value of u ∈ (0,1), the value of t = [uT ] is unique. For
the proofs we use the following abbreviations. For s = 1, . . . ,T :

Xs := Xs,N T , X :=XN T , F :=FT , Es := Es,N , ���E := ���E
N ,

���s := ���N
( s

T

)
, ���

(1)
s := ���

(1)
N

( s
T

)
, �̂��s := �̂��N

( s
T

)
, ���s := ���N

( s
T

)
,

�̃��s := Xs,N T X′
s,N T , �̂��̂���̂���s := �̂��̂���̂���N

( s
T ; h
)
, Ws :=WT

( s
T ; h
)
, Rs :=R( s

T

)
,

V̂s := V̂N ( s
T ; h), F̂s := F̂s,N T , ����

s := ����
( s

T

)
, Vs,N :=VN

( s
T

)
,

VC
s,N :=VC

N

( s
T

)
, Vs :=V( s

T

)
.

In what follows a matrix is Op(rT ) if each element of that matrix goes to zero in prob-
ability at the rate rT . In the sequel the remainder terms are bounded uniformly in t and T
since∥∥∥ ���t√

N

∥∥∥= O(1) uniformly in t and T by Assumption B2,∥∥∥∥���
(1)
t√
N

∥∥∥∥= O(1) uniformly in t and T by Assumption B3,∥∥∥∥ �̂��t√
N

∥∥∥∥= Op(1) uniformly in t and T by the constraint in (13).

Proof of Proposition 1. The assertion of this proposition can be written as

(N T )−1
T

∑
s=1

tr
{

���′
s√
N

�̃s
���s√

N
− ���′

t√
N

�̃s
���t√

N

}
Kh

(
t−s
T

)
= Op (hT ) .

The idea of the proof is to use the inequality tr
{

1
N ���s���

′
s�̃��s

}
≤ tr
{

1
N ���s���

′
s

}
tr
{
�̃��s

}
,

which holds since 1
N ���s���

′
s and �̃��s are positive semidefinite matrices. The idea is further

to use that tr
{

1
N ���s���

′
s

}
= O(1) and that E

(
tr
{
�̃��s

})= O(N ) , uniformly in s.

More specifically, due to the existence and uniform boundedness of the first derivative
of ���t we have the Taylor expansion

���
( s

T

)= ���
( t

T

)+���(1)
(

s∗
T

)
t−s
T for

∣∣ t−s
T

∣∣≤ h ,

with a mean value s
T ≤ s∗

T ≤ t
T without loss of generality (w.l.o.g.).

We plug in this Taylor expansion for each of the ���s into tr
{

���′
s√
N

�̃��s
���s√

N
− ���′

t√
N

�̃��s
���t√

N

}
,

which gives, for arguments t and s with | t−s
T | ≤ h, that

tr
{

���′
s√
N

�̃��s
���s√

N
− ���′

t√
N

�̃��s
���t√

N

}
= tr

{
���′

t√
N

�̃��s
���

(1)
s∗√
N

h + ���
(1)′
s∗√
N

�̃��s
���t√

N
h + ���

(1)′
s∗√
N

�̃��s
���

(1)
s∗√
N

h2

}
.

Here we give only the treatment of the first term; the second is similar due to symmetry,
and the third converges even faster. We need to show that

sup
t,s∗,s

E

∣∣∣∣tr{ ���′
t√
N

�̃��s
���

(1)
s∗√
N

}∣∣∣∣ = O(N ) , (B.1)
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as this will imply, by the Markov inequality the desired stochastic convergence of order
Op (hT ) of the whole difference under consideration, which is again only for the first
term,

(N T )−1
T

∑
s=1

tr

{
���′

t√
N

�̃��s
���

(1)
s∗√
N

}
Kh
( t−s

T

) t−s
T .

Note that the sum over kernel weights T −1 ∑T
s=1 Kh

( t−s
T

)
is of order O(1).

In order to show (B.1) we use that tr

{
���′

t√
N

�̃��s
���

(1)
s∗√
N

}
= tr
{

1
N ���

(1)
s∗ ���′

t�̃��s

}
and that, as

indicated above,

tr
{

1
N ���

(1)
s∗ ���′

t�̃��s

}
≤ tr
{

1
N ���

(1)
s∗ ���′

t

}
tr�̃��s .

Further, we use the Cauchy-Schwarz inequality to bound∣∣∣tr{ 1
N ���

(1)
s∗ ���′

t

} ∣∣∣ ≤
∥∥∥∥���

(1)
s∗√
N

∥∥∥∥∥∥∥ ���t√
N

∥∥∥ = O(1) ,

where we recall the definition of the norm ‖A‖ =
√

tr
{
A′A

}
. But both norms on the

right-hand side are bounded from above by condition B3, which implies that

sup
u∈(0,1)

‖���(1)
N (u)‖ = O

(√
N
)

,

and by the property of ���′
t���t
N = Ir .

To show (B.1) it remains to show that E| tr
{
�̃��s

}
| =E( tr

{
�̃��s

})= O(N ) (as the eigen-

values, and hence the trace, of �̃��s are nonnegative by construction).
For this we recall that

E�̃��t = ���t = ���t���
F���′

t +���E ,

and that with Assumption C3, tr���E = O(N ). Further, by the orthonormality of ���t√
N

and

the invariance of the trace with respect to orthogonal rotations, we easily conclude that

tr
{
���t���

F���′
t

}
= N tr

{
���t√

N
���F ���′

t√
N

}
= N tr

{
���F
}

= O(N ) ,

as the trace of ���F is bounded from above. n

Proof of Theorem 1. The rescaled covariance matrix is defined as

N−1���t = N−1���C
t + N−1���E = N−1���t���

F���′
t + N−1���E ,

and the rescaled estimator N−1�̂��̂���̂���t of N−1���t can be written as

N−1�̂��̂���̂���t = (N T )−1X′WtX= (N T )−1
T

∑
s=1

XsX′
s Kh
( t−s

T

)
.
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Since Xs = ���sFs +Es , we have the following decomposition:

N−1�̂��̂���̂���t = (N T )−1X′WtX= SC
t,N T +SC E

t,N T +
(
SC E

t,N T

)′ +SE
t,N T , (B.2)

where

SC
t,N T = (N T )−1

T

∑
s=1

���sFsF ′
s���

′
s Kh
( t−s

T

)
,

SC E
t,N T = (N T )−1

T

∑
s=1

���sFsE′
s Kh
( t−s

T

)
,

SE
t,N T = (N T )−1

T

∑
s=1

EsE′
s Kh
( t−s

T

)
.

By the decomposition in (B.2) we have∥∥∥N−1�̂��̂���̂���t − N−1���t

∥∥∥
:=
∥∥∥∥SC

t,N T +SC E
t,N T +

(
SC E

t,N T

)′ +SE
t,N T − N−1

(
���t���

F���′
t +���E

)∥∥∥∥
≤
∥∥∥SC

t,N T − N−1���t���
F���′

t

∥∥∥+ 2
∥∥∥SC E

t,N T

∥∥∥+
∥∥∥SE

t,N T − N−1���E
∥∥∥ .

We now show that each of the terms above is Op

(
1√

T hT

)
. We apply the same Taylor

expansion as in the proof of Proposition 1; i.e.,

λi j
( s

T

)= λi j
( t

T

)+λ
(1)
i j

(
s∗
T

)
t−s
T for

∣∣ t−s
T

∣∣≤ h ,

with a mean value s
T ≤ s∗

T ≤ t
T (w.l.o.g.), which we write in matrix notation and slightly

differently as

���s = ���t +hT zs(���
(1)
t +o(1)) = ���t +hT zs���

(1)
t +o(hT ) ,

where zs := t−s
T hT

. Note again that due to the use of the kernel weights in the matrixWt ,

which are essentially zero for arguments s with t−s
T > h, we can w.l.o.g. argue that |zs | ≤ 1.

The first term in (B.2) is thus a sum of 4 terms: SC
t,N T = ∑4

k=1 kS
C
t,N T , where

1S
C
t,N T =(N T )−1

T

∑
s=1

���t FsF ′
s���

′
t Kh
( t−s

T

)
,

2S
C
t,N T =(N T )−1

T

∑
s=1

���t FsF ′
s(���

(1)′
t +o(1))hT zs Kh

( t−s
T

)
,

3S
C
t,N T =(N T )−1

T

∑
s=1

(���
(1)
t +o(1)) FsF ′

s���
′
t hT zs Kh

( t−s
T

)
,

4S
C
t,N T =(N T )−1

T

∑
s=1

(���
(1)
t +o(1))FsF ′

s(���
(1)′
t +o(1))h2

T z2
s Kh
( t−s

T

)
.
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We recall that T h3
T → 0, so that Op

( 1√
T hT

)+ O
(
hT
) = Op

( 1√
T hT

)
. In order to show

that
∥∥SC

t,N T − N−1���t���
F���′

t
∥∥ = Op

( 1√
T hT

)+ O
(
hT
)
, we will only treat the first two

terms of the above given sum, as the two other terms behave similarly or converge even
faster. First we show that

∥∥1S
C
t,N T − N−1���t���

F���′
t
∥∥ tends to zero with the appropriate

rate. Indeed,∥∥∥∥∥ 1

N T

T

∑
s=1

���t FsF ′
s���

′
t Kh
( t−s

T

)− N−1���t���
F���′

t

∥∥∥∥∥
≤
∥∥∥∥ 1

N
(���t ⊗���t )

∥∥∥∥
∥∥∥∥∥ 1

T

T

∑
s=1

vec
(
FsF ′

s
)

Kh
( t−s

T

)−vec
(
���F
)∥∥∥∥∥

and
∥∥∥ 1

N (���t ⊗���t )
∥∥∥ = 1

N

√
tr
{
���t���

′
t ⊗���t���

′
t
} = tr

{
1
N ���′

t���t

}
→ tr{����(u)} = O(1) by

Assumption B2. Then it suffices to show that

√
T hT

∥∥∥∥∥ 1

T

T

∑
s=1

vec
(
FsF′

s
)

Kh
( t−s

T

)−vec
(
���F
)∥∥∥∥∥ = Op(1). (B.3)

To do that we show that the expectation and the variance of
√

T hT times the argument of
the norm in (B.3) tend to zero. We recall that this is sufficient as the considered norm is the
euclidean norm in IRr with r fixed. For the expectation we have

E

[
1

T

T

∑
s=1

vec
(
FsF ′

s
)

Kh
( t−s

T

)−vec
(
���F
)]

=
[

1

T

T

∑
s=1

Kh
( t−s

T

)
Ir2 − Ir2

]
vec
(
���F
)

=
{(

1+ O
(

T −1h−1
T

))
Ir2 − Ir2

}
vec
(
���F
)

= O
(

T −1h−1
T

)
vec
(
���F
)

= O
(

T −1h−1
T

)
.

The argument of the norm in (B.3) can be written as

1

T

T

∑
s=1
Gs Kh

( t−s
T

)+ O
(

T −1h−1
T

)
,

whereGt := vec
(

Ft F′
t −���F

)
iid∼ (0,P) for a given matrix P. Then

Var

[
1

T

T

∑
s=1
Gs Kh

( t−s
T

)+ O
(

T −1h−1
T

)]
= 1

T 2E

[
T

∑
s=1
GsG

′
s K 2

h
( t−s

T

)]

= 1

T 2E
[
GtG

′
t
] T

∑
s=1

K 2
h
( t−s

T

)

=P 1

T 2

T

∑
s=1

K 2
h
( t−s

T

)= O
(

T −1h−1
T

)
.

The last assertion is due to a classical argument in nonparametric curve estimation with
kernels of finite second moment.
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Second, in order to prove that
∥∥2S

C
t,N T

∥∥ = op
( 1√

T hT

)
, we show quite analogously to

the above and recalling the condition T h3
T = o(1) that

√
T hT

∥∥∥∥∥(N T )−1
T

∑
s=1

���t FsF′
s(���

(1)′
t +o(1)) hT zs Kh

( t−s
T

)∥∥∥∥∥
= √T hT Op(hT ) = op(1).

To do so we essentially have to use that

1

N

∥∥∥���′
t���

(1)
t

∥∥∥= 1

N

√
tr
(
���′

t���t���
(1)′
t ���

(1)
t

)
=
√

N−1 tr
(
���′

t���t
) √

N−1 tr
(
���

(1)′
t ���

(1)
t

)
= O(1)

by Assumption B3. Treatment of the terms 3S
C
t,N T and 4S

C
t,N T would be similar.

By similar arguments, it can be shown that
∥∥SC E

t,N T

∥∥ and
∥∥SE

t,N T − N−1���E
∥∥ are both

Op
( 1√

T hT

)
. Let SC E

t,N T be given by the sum 1S
C E
t,N T + 2S

C E
t,N T , again obtained by using

a Taylor expansion of ���s ; that is,

1S
C E
t,N T = 1

N T

T

∑
s=1

���t FsE′
s Kh
( t−s

T

)
,

2S
C E
t,N T = 1

N T

T

∑
s=1

hT zs

(
���

(1)
t +o(1)

)
FsE′

s Kh
( t−s

T

)
.

For the first term we have
∥∥1S

C E
t,N T

∥∥ ≤ ∥∥ 1√
N

���t
∥∥∥∥ 1

T
√

N
∑T

s=1 FsE′
s Kh
( t−s

T

)∥∥, where∥∥ 1√
N

���t
∥∥ = O(1) by Assumption B2, and then

∥∥1S
C E
t,N T

∥∥ ∝ ∥∥ 1
T

√
N

∑T
s=1 vec

[
FsE′

s
]

Kh
( t−s

T

)∥∥. Since Cov[Ft ,Et ] = 0 for all t ,

E

{
1

T
√

N

T

∑
s=1

vec
[
FsE′

s
]

Kh
( t−s

T

)}= 0 ∀t.

In order to treat the variance now we defineH t := vec
[
Ft E′

t
] iid∼ (0,Q) for another given

matrixQ, which does indeed exist due to Assumptions A2 and C2:

Var

[
1

T
√

N

T

∑
s=1
Hs Kh

( t−s
T

)]= 1

N T 2E

[
T

∑
s=1
HsH

′
s K 2

h
( t−s

T

)]

= 1

N T 2E
[
H tH

′
t
] T

∑
s=1

K 2
h
( t−s

T

)
= N−1Q

1

T 2

T

∑
s=1

K 2
h
( t−s

T

)= O
(

N−1T −1h−1
T

)
.
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This means that each term of the Nr × 1 vectors 1
T

√
N

∑T
s=1 vec

[
FsE′

s
]

Kh
( t−s

T

)
is

Op

(
1√

N T hT

)
, and thus∥∥∥∥∥ 1

T
√

N

T

∑
s=1

vec
[
FsE′

s
]

Kh
( t−s

T

)∥∥∥∥∥= Op

(
1√

T hT

)
because the norm of a vector of dimension ∝ N increases at a rate ∝ √

N .
For the term

∥∥2S
C E
t,N T

∥∥ we show quite analogously to the term
∥∥2S

C
t,N T

∥∥ that

√
T hT

∥∥∥∥∥(N T )−1
T

∑
s=1

(���
(1)
t +o(1))FsE′

s hT zs Kh
( t−s

T

)∥∥∥∥∥ = √T hT Op(hT ) = op(1).

To do so we essentially have to use that

1

N

∥∥∥E′
s���

(1)
t

∥∥∥≤
∥∥∥∥∥���

(1)
t√
N

∥∥∥∥∥
∥∥∥∥ Es√

N

∥∥∥∥=
∥∥∥∥∥���

(1)
t√
N

∥∥∥∥∥
√

tr

{
E′

sEs

N

}
=
∥∥∥∥∥���

(1)
t√
N

∥∥∥∥∥
√

E′
sEs

N
= Op(1),

because
∥∥���(1)

t /
√

N
∥∥= O(1) by Assumption B3, and E′

s Es
N = Op(1) using a law of large

numbers.
For the last term we now show that SE

t,N T = N−1���E + Op
( 1

N
√

T hT

)
. The expectation

of the term
[
SE

t,N T − N−1���E
]

is[
1

N T

T

∑
s=1

E
(
EsE′

s
)

Kh
( t−s

T

)]− N−1���E = N−1���E

[
T −1

T

∑
s=1

Kh
( t−s

T

)]− N−1���E

= N−1���E
[
1+ O

(
T −1h−1

T

)]
− N−1���E

= O
( 1

N T hT

)
.

To compute the variance, define, as above, J t := vec
[
Et E′

t −���E
]

iid∼ (0,R) for another

given matrixR, which does exist due to Assumption C2, and obtain

Var

[
1

T N

T

∑
s=1
J s Kh

( t−s
T

)+ O
(

1
N T hT

)]

= 1

N 2T 2E

[
T

∑
s=1
J sJ

′
s K 2

h
( t−s

T

)]= E
[
J tJ

′
t
]

N 2T 2

T

∑
s=1

K 2
h
( t−s

T

)
= N−2R

1

T 2

T

∑
s=1

K 2
h
( t−s

T

)= O
(

N−2T −1h−1
T

)
.

Each term of the N 2 ×1 vectors 1
T N ∑T

s=1 vec
[
EsE′

s −���E
]

Kh
( t−s

T

)
is Op

(
1

N
√

T hT

)
,

and thus∥∥∥∥∥ 1

N T

T

∑
s=1

vec
[
EsE′

s −���E
]

Kh
( t−s

T

)∥∥∥∥∥= Op

(
1√

T hT

)
,

because the norm of a vector of dimension ∝ N 2 increases at a rate ∝ N . n
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Proof of Proposition 2. We have to show that

(i) estimation error:
∥∥V̂t −Vt,N

∥∥= Op
( 1√

T hT

)
;

(ii) approximation error:
∥∥Vt,N − Vt

∥∥ ≤ ∥∥Vt,N − VC
t,N

∥∥ + ∥∥VC
t,N − Vt

∥∥
= O
(

N−1)+ O
(
�N
)
.

The matrices V̂t and Vt,N are continuous functions of �̂��̂���̂���t and ���t , respectively. Then

the estimation error is Op
( 1√

T hT

)
by Theorem 1.

Consider part (ii), and let vj t , vC
jt , and vE

j denote the j th eigenvalue of ���t , ���C
t , and

���E , respectively ( j = 1, . . . , N ). By Weyl’s theorem applied to the decomposition of ���t
in (4) we have

vj t −vC
jt ≤ vC

1 , j = 1, . . . , N . (B.4)

Then we have, collecting the largest r eigenvalues on the left-hand side of (B.4)∥∥Vt,N −VC
t,N

∥∥≤ 1
N

∥∥vC
1 Ir
∥∥= 1

N vC
1

√
r ,

where we recall thatVt,N andVC
t,N are the r ×r diagonal matrices containing the largest

eigenvalues of 1
N ���t and 1

N ���C
t , respectively. Hence by Definition 1(ii), the idiosyncratic

variance error
∥∥Vt,N −VC

t,N

∥∥ is O
(

1
N

)
.

We now show that the common variance error
∥∥VC

t,N −Vt
∥∥ is of the same order as

the loadings scale error �N defined in (22). Let S�F
t = ���′

t���t
N ���F and define ���t,N :=

S�F
t −����

t ���F . The matrix VC
t,N contains the eigenvalues of S�F

t (by the definition

of VC
t,N and by (12) in Sect. 5.2 of Lütkepohl, 1996, p. 65); then, applying Weyl’s the-

orem in the same way as above, we have∥∥VC
t,N −Vt

∥∥≤ ∥∥v�
1t Ir
∥∥= √

r
∣∣v�

1t

∣∣,
where v�

1t is the largest eigenvalue of ���t,N . If we define P 1t as the orthonormal eigenvec-

tor corresponding to v�
1t , we have v�

1t = P ′
1t���t,NP 1t , and thus∣∣v�

1t

∣∣ ≤ ∥∥P ′
1tP 1t

∥∥∥∥���t,N
∥∥= ∥∥���t,N

∥∥= ∥∥S�F
t −����

t ���F∥∥
= ∥∥(���′

t���t
N −����)���F∥∥≤ ∥∥���′

t���t
N −����

t
∥∥∥∥���F∥∥.

Hence∥∥VC
t,N −Vt

∥∥≤ √
r
∣∣v�

1t

∣∣≤ √
r
∥∥���′

t���t
N −����

t
∥∥∥∥���F∥∥= O(1)�N O(1) = O

(
�N
)

by (22). Finally, for the overall error we have∥∥V̂t −Vt
∥∥≤ ∥∥V̂t −Vt,N

∥∥+∥∥Vt,N −VC
t,N

∥∥+∥∥VC
t,N −Vt

∥∥
= Op

(
[T hT ]−1/2)+ O

(
N−1)+ O

(
�N
)
. n
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Auxiliary Results. Proposition 2 gives the asymptotic behavior of the largest r eigen-
values of �̂��̂���̂���t . The asymptotic behavior of the corresponding r eigenvectors is given in
Theorem 2. In order to prove Theorems 2 and 3, we need to study the behavior of the ma-

trix ���′
t�̂��t
N . This is provided by Proposition 3 below, which is an auxiliary result used in the

proofs of our main results, Theorems 2 and 3. For the proof of Proposition 3 we use the
following lemma, which is analogous to Bai (2003, Lem. A.3(ii)).

LEMMA 2. Let

Q̂t,N T =
(
F′F

T

)1/2 ���′
t�̂��t

N
;

then we have

min
(√

T hT ,
√

N ,�−1
N

)∥∥∥Q̂′
t,N T Q̂t,N T −Vt

∥∥∥= Op(1).

Proof. By (19) we have V̂t = N−1�̂��
′
t
X′WtX

N T �̂��t , and by Theorem 1

X′WtX

N T
= N−1���t

(
F′F

T

)
���′

t + N−1���E +Zt,N T ,

where the N × N matrix Zt,N T is Op

[
1

N
√

T hT

]
. Then

V̂t = �̂��
′
t���t

N

(
F′F

T

)
���′

t�̂��t

N
+ �̂��

′
t√
N

���E

N

�̂��t√
N

+ �̂��
′
tZt,N T �̂��t

N

= Q̂′
t,N T Q̂t,N T + �̂��

′
t√
N

���E

N

�̂��t√
N

+ �̂��
′
tZt,N T �̂��t

N
,

and thus∥∥∥V̂t − Q̂′
t,N T Q̂t,N T

∥∥∥ ≤
∥∥∥�̂��′

t�̂��t

N

∥∥∥∥∥∥���E

N

∥∥∥+
∥∥∥�̂��′

t�̂��t

N

∥∥∥∥∥∥Zt,N T

∥∥∥
=
∥∥∥�̂��′

t�̂��t

N

∥∥∥(∥∥∥���E

N

∥∥∥+
∥∥∥Zt,N T

∥∥∥)
= Op(1)

[
O
( 1√

N

)
+ O
( 1√

T hT

)]
= Op

( 1√
N

)
+ Op

( 1√
T hT

)
,

since∥∥∥���E

N

∥∥∥= N−1

√√√√ N

∑
i=1

N

∑
j=1

(
σ E

i j

)2 ≤ N−1

√√√√N max
1≤i≤N

N

∑
j=1

(
σ E

i j

)2

≤ 1√
N

max
1≤i≤N

N

∑
j=1

∣∣σ E
i j

∣∣= O
( 1√

N

)
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1314 GIOVANNI MOTTA ET AL.

by Assumption C3. If we use that∥∥∥Q̂′
t,N T Q̂t,N T −Vt

∥∥∥≤
∥∥∥Q̂′

t,N T Q̂t,N T − V̂t

∥∥∥+
∥∥∥V̂t −Vt

∥∥∥,
then with Proposition 2 we have the result. n

PROPOSITION 3. Under Assumptions A–E,

min
(√

T h,
√

N ,�−1
N

)∥∥∥���′
t�̂��t

N
−
(
���F
)− 1

2
ϒtV

1
2
t

∥∥∥= Op(1),

where ϒt is the r × r matrix containing the orthonormal eigenvectors of the r × r matrix(
���F
)1/2

����
t

(
���F
)1/2

.

Proof. Consider equation (19),

(N T )−1X′WtX�̂��t = �̂��tV̂t ,

and multiply it on the left by
(F′F

T

)1/2 ���′
t

N to obtain

(N T )−1
(
F′F

T

)1/2 ���′
t

N
X′WtX�̂��t =

(
F′F

T

)1/2 ���′
t

N
�̂��tV̂t .

By (B.2) we get(
F′F

T

)1/2 ���′
t

N

[
SC

t,N T +SC E
t,N T +

(
SC E

t,N T

)′ +SE
t,N T

]
�̂��t =

(
F′F

T

)1/2 ���′
t

N
�̂��tV̂t ,

which can be written as

ŜC
t,N T + ŜC E

t,N T + ŜE
t,N T = Q̂t,N T V̂t

where

ŜC
t,N T =

(
F′F

T

)1/2 ���′
t√
N
SC

t,N T
�̂��t√

N
,

ŜC E
t,N T =

(
F′F

T

)1/2 ���′
t√
N

[
SC E

t,N T +
(
SC E

t,N T

)′] �̂��t√
N

,

ŜE
t,N T =

(
F′F

T

)1/2 ���′
t√
N
SE

t,N T
�̂��t√

N
.

By Theorem 1, SC
t,N T = N−1���t

(
F′F

T

)
���′

t +UN T , where UN T = Op

(
1

N
√

T hT

)
+

O
(

hT
N

)
= Op

(
1

N
√

T hT

)
(we recall that T h3

T → 0 by Assumption D). Then UN T is

an N × N matrix, each element being Op

(
1

N
√

T hT

)
. Since∥∥F′F

T

∥∥= Op(1) by Assumption A1 and a law of large numbers,∥∥ ���t√
N

∥∥= O(1) by Assumption B2,∥∥ �̂��t√
N

∥∥= Op(1) by the constraint in (18),
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if we plug the definition of SC
t,N T from Theorem 1 into the expression of ŜC

t,N T above, we
have

ŜC
t,N T =

(
F′F

T

)1/2 ���′
t���t

N

(
F′F

T

)
���′

t�̂��t

N
+ Op

(
1

N
√

T hT

)
=Pt,N T Q̂t,N T + Op

(
1

N
√

T hT

)
,

where Pt,N T = (F′F
T

)1/2 ���′
t���t
N

(F′F
T

)1/2. The term
∥∥ŜC E

t,N T

∥∥ is Op
( 1√

T h

)
because∥∥SC E

t,N T

∥∥ is Op
( 1√

T h

)
, and the term

∥∥ŜE
t,N T

∥∥ is Op
( 1√

T h
+ 1√

N

)
because

∥∥SE
t,N T

∥∥ is

Op
( 1√

T h
+ 1√

N

)
(see proof of Theorem 1). Then we have

Pt,N T Q̂t,N T + D̂t,N T = Q̂t,N T V̂t , (B.5)

where D̂t,N T = ŜC E
t,N T + ŜE

t,N T , and thus
∥∥D̂t,N T

∥∥= Op
( 1√

T h
+ 1√

N

)
. From (B.5) we

have[
Pt,N T + D̂t,N T Q̂

−1
t,N T

]
Q̂t,N T = Q̂t,N T V̂t .

Note that by Lemma 2, for large values of T and N , the matrix Q̂′
t,N T Q̂t,N T has full rank.

This implies that, for large T and N , the matrix Q̂t,N T is of full rank, too. For the same

reason, the matrix V̂∗
t := diag

{
Q̂′

t,N T Q̂t,N T
}

is also invertible for large T N . Then we

can denote ϒϒϒ t,N T = Q̂t,N T V̂
∗−1/2
t so that each column of ϒϒϒ t,N T has unit length, and

we have[
Pt,N T + D̂t,N T Q̂

−1
t,N T

]
ϒϒϒ t,N T = ϒϒϒ t,N T V̂t ,

where each column of ϒϒϒ t,N T is an eigenvector of the matrix
[
Pt,N T + D̂t,N T Q̂

−1
t,N T

]
.

Note that
[
Pt,N T + D̂t,N T Q̂

−1
t,N T

]
converges to Pt =

(
���F
)1/2

����
t

(
���F
)1/2

by As-

sumptions A1 and B2 and
∥∥D̂t,N T

∥∥ = op(1), implying that for large values of T and N

the diagonal matrix V̂t contains the eigenvalues ofPt,N T . Because the ordering of eigen-
vectors in the points of intersections is identified by our convention (see Sect. 3.1), the
matrix ϒϒϒ t,N T converges to the matrix ϒϒϒ t , similar to the proof of Proposition 1 of Bai
(2003, pp. 161–162). By Assumptions A1 and B2 and Slutsky’s theorem,

min
(√

T ,�−1
N

)∥∥Pt,N T −Pt
∥∥= Op(1) and min

(√
T ,�−1

N

)∥∥ϒϒϒ t,N T −ϒϒϒ t
∥∥= Op(1).

From the definitions of Q̂t,N T and ϒϒϒ t,N T it follows that

���′
t�̂��t

N
=
(
F′F

T

)−1/2

Q̂t,N T =
(
F′F

T

)−1/2

ϒϒϒ t,N T V̂
∗1/2
t .

The term
∥∥(F′F

T

)−(���F)∥∥ is Op
(
T −1/2) by Assumption A1 and a law of large numbers.

By Proposition 2 and Lemma 2,

min
(√

T hT ,
√

N ,�−1
N

)∥∥V̂∗
t −Vt

∥∥
= min

(√
T hT ,

√
N ,�−1

N

)∥∥diag
{
Q̂′

t,N T Q̂t,N T
}−Vt

∥∥= Op(1),

and the proof of Proposition 3 is complete. n
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Note that due to Assumption E and our identifiability assumption in intersection points
of eigenvalues of ����(u)���F , the limiting function is uniquely defined in each u ∈ (0,1)
and a continuous function of u.

Proof of Theorem 2. For this proof we will use the following decompositions.

(i) 1√
N

∥∥∥�̂��t −���tRt

∥∥∥ ≤ 1√
N

∥∥∥�̂��t −���tR̂t,N T

∥∥∥+ 1√
N

∥∥∥���tR̂t,N T −���tRt

∥∥∥ ,
(ii)
∥∥∥λ̂i t −R′

tλi t

∥∥∥ ≤
∥∥∥̂λi t − R̂′

t,N Tλi t

∥∥∥+
∥∥∥R̂′

t,N Tλi t −R′
tλi t

∥∥∥ ,
where the estimator R̂t,N T of the transformation matrixRt is defined as

R̂t,N T = (F′F
T

)(���′
t�̂��t
N

)
V̂−1

t , (B.6)

and we will show that

(ia) 1√
N

∥∥∥�̂��t −���tR̂t,N T

∥∥∥= Op
( 1√

N
+ 1√

T h

)
,

(ib) 1√
N

∥∥∥���tR̂t,N T −���tRt

∥∥∥= Op
( 1√

N
+ 1√

T h
+�−1

N

)
,

(iia)
∥∥∥̂λi t − R̂′

t,N Tλi t

∥∥∥= Op
( 1√

N
+ 1√

T h

)
,

(iib)
∥∥∥R̂′

t,N Tλi t −R′
tλi t

∥∥∥= Op
( 1√

N
+ 1√

T h
+�−1

N

)
.

By (19) and (B.2) we have

�̂��t = (N T )−1X′WtX�̂��tV̂
−1
t =

[
SC

t,N T +SC E
t,N T +

(
SC E

t,N T

)′ +SE
t,N T

]
�̂��tV̂

−1
t ;

then we can write

�̂��t −���tR̂t,N T =
[
SC

t,N T − N−1���t

(
F′F

T

)
���′

t +SC E
t,N T +

(
SC E

t,N T

)′ +SE
t,N T

]
�̂��tV̂

−1
t ,

which implies that

(ia)
1√
N

∥∥∥�̂��t −���tR̂t,N T

∥∥∥≤
(∥∥∥∥SC

t,N T − N−1���t

(
F′F

T

)
���′

t

∥∥∥∥
+2
∥∥∥SC E

t,N T

∥∥∥+
∥∥∥SE

t,N T

∥∥∥)∥∥∥∥∥ �̂��t√
N

∥∥∥∥∥∥∥∥V̂−1
t

∥∥∥ ,
(iia)

∥∥∥λ̂i t − R̂′
t,N Tλi t

∥∥∥≤
∥∥∥V̂−1

t

∥∥∥∥∥∥�̂��t

∥∥∥
×
(∥∥∥∥SC

it,N T − N−1���t

(
F′F

T

)
λi t

∥∥∥∥
+
∥∥∥SC E

it,N T

∥∥∥+
∥∥∥SEC

it,N T

∥∥∥+
∥∥∥SE

it,N T

∥∥∥),
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where λ̂i t , λi t , SC
it,N T , SC E

it,N T , SE
it,N T are the i th columns of �̂��

′
t , ���′

t , SC
t,N T , SC E

t,N T ,

and SE
t,N T , respectively:

SC
it,N T =(N T )−1

T

∑
s=1

���sFsF′
sλis Kh

( t−s
T

)
,

SC E
it,N T =(N T )−1

T

∑
s=1

���sFs Eis Kh
( t−s

T

)
,

SEC
it,N T =(N T )−1

T

∑
s=1

EsF′
sλis Kh

( t−s
T

)
,

SE
it,N T =(N T )−1

T

∑
s=1

Es Eis Kh
( t−s

T

)
.

Consider part (ia). By Theorem 1,
∥∥SC

t,N T − N−1���t
(F′F

T

)
���′

t
∥∥ and

∥∥SC E
t,N T

∥∥ are both

Op
( 1√

T hT

)+ O
(
hT
) = Op

( 1√
T hT

)
(we recall that T h3

T → 0 by Assumption D). For

the last term we have SE
t,N T = N−1���E + Op

(
1

N
√

T hT

)
; then

∥∥∥SE
t,N T

∥∥∥≤
∥∥∥N−1���E

∥∥∥+
Op
( 1√

T hT

)= O
( 1√

N

)+ Op
( 1√

T hT

)
. The terms

∥∥V̂−1
t
∥∥ and

∥∥ �̂��t√
N

∥∥ are both Op(1), and

then 1√
N

∥∥�̂��t −���tR̂t,N T
∥∥= Op

( 1√
N

+ 1√
T h

)
.

Consider part (ib). To prove that 1√
N

∥∥∥���tR̂t,N T −���tRt

∥∥∥ = Op
( 1√

N
+ 1√

T h
+ �N

)
we use that

1√
N

∥∥���tR̂t,N T −���tRt
∥∥≤ 1√

N

∥∥���t
∥∥∥∥R̂t,N T −Rt

∥∥,
that 1√

N

∥∥���t
∥∥= O(1) by Assumption B2, that

√
T
∥∥(F′F

T

)−���F
∥∥= Op(1) by Assump-

tion A1 and a law of large numbers, and that

min
(√

T h,
√

N ,�−1
N

) ∥∥���′
t�̂��t
N − (���F)−1/2

ϒt
(
Vt
)1/2∥∥= Op(1) by Proposition 3,

min
(√

T h, N ,�−1
N

) ∥∥V̂t −Vt
∥∥ = Op(1) by Proposition 2.

Thus, by Slutsky’s theorem applied to (B.6), the proof of Theorem 2(i) is complete.
Consider part (iia). The term

∥∥SC
it,N T − N−1���t

(F′F
T

)
λi t
∥∥ is Op

( 1√
N T hT

)
. To see

this, consider the N ×1 vector SC
it,N T as the sum of four terms SC

it,N T = ∑∑∑4
k=1 kS

C
it,N T ,

in the same way as in the proof of Theorem 1 for the N × N matrix SC
t,N T . In order to show

that
∥∥SC

it,N T − N−1���t
(F′F

T

)
λi t
∥∥= Op

( 1√
N T hT

)
, we will only treat the first two terms

1S
C
it,N T and 2S

C
it,N T of the above given sum, as the two other terms behave similarly or

converge even faster.
For the first term we have∥∥∥1S

C
it,N T − N−1���t

(
F′F

T

)
λi t

∥∥∥
=
∥∥∥∥∥ 1

N T

T

∑
s=1

���tF sF
′
sλi t Kh

( t−s
T

)− N−1���t

(
F′F

T

)
λi t

∥∥∥∥∥
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≤
∥∥∥���tλi t

N

∥∥∥∥∥∥∥∥ 1
T

T

∑
s=1

vec
(
F sF

′
s
)

Kh
( t−s

T

)−vec
(
���F
)∥∥∥∥∥

≤ 1√
N

∥∥∥ ���t√
N

∥∥∥‖λi t‖ Op

(
1√

T hT

)
= Op

(
1√

N T hT

)
,

by Assumption B2. For the second term 2S
C
it,N T , again as in the proof of Theorem 1, we

show quite analogously to the above (recalling the condition T h3
T = o(1)) that its norm is∥∥∥2S

C
it,N T

∥∥∥= op

(
1√

N T hT

)
:

√
N T hT

∥∥∥∥∥(N T )−1
T

∑
s=1

���tF sF
′
s

(
λ

(1)
i t +o(1)

)
hT zsωt (s; hT )

∥∥∥∥∥
= √N T hT Op

(
hT√

N

)
= op(1).

To do so we essentially have to use that, by Assumption B2,∥∥∥∥∥���tλ
(1)
i t

N

∥∥∥∥∥≤ 1√
N

∥∥∥∥ ���t√
N

∥∥∥∥∥∥∥λ(1)
i t

∥∥∥= 1√
N

O (1)
∥∥∥λ(1)

i t

∥∥∥ .
Moreover, by Assumption B3,

∥∥∥λ(1)
i t

∥∥∥= O(1) for all t and all i , and thus we have

∥∥∥∥���tλ
(1)
i t

N

∥∥∥∥
= O
(

1√
N

)
. Treatment of the terms 3S

C
it,N T and 4S

C
it,N T would be similar.

The terms
∥∥SC E

it,N T

∥∥ and
∥∥SEC

it,N T

∥∥ are both Op
( 1√

N T hT

)
because

∥∥���s Eis
∥∥ and∥∥Esλ

′
is

∥∥ are Op
(√

N
)

and
∥∥Fs
∥∥ = Op(1) for all s and all i . For the last term we have∥∥SE

it,N T

∥∥= Op
( 1

N

)
. Indeed SE

it,N T = N−1σE
i + Op

( 1
N

√
T hT

)
, and∥∥∥SE

it,N T

∥∥∥≤ N−1
∥∥∥σE

i

∥∥∥+ Op

(
1√

N T hT

)
= O
(

1
N

)
+ Op

(
1√

N T hT

)
,

because∥∥∥σE
i

∥∥∥=
√√√√ N

∑
j=1

(
σ E

i j

)2 ≤
N

∑
j=1

|σ E
i j | = O(1) by Assumption C3.

Then∥∥∥λ̂i t − R̂′
t,N Tλi t

∥∥∥=Op(1)Op

(√
N
)(

Op

(
1√

N T hT

)
+ Op

(
1√

N T hT

)
+ Op

(
1
N

))
=Op

(
1√

T hT

)
+ Op

(
1√
N

)
.

Consider part (iib). By the same arguments as for part (ib),
∥∥∥R̂′

t,N Tλi t −R′
tλi t

∥∥∥ =
Op
( 1√

N
+ 1√

T h
+�N

)
. n

Proof of Theorem 3. For this proof we will use the decomposition∥∥F̂t −R−1
t Ft

∥∥≤ ∥∥F̂t − R̂−1
t,N T Ft

∥∥+∥∥R̂−1
t,N T Ft −R−1

t Ft
∥∥

≤ ∥∥F̂t − R̂−1
t,N T Ft

∥∥+
∥∥∥R̂−1

t,N T −R−1
t

∥∥∥∥∥Ft
∥∥,
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where the estimator R̂t,N T of the transformation matrixRt has been defined in (B.6), and

its inverse is given by R̂−1
t,N T = V̂t

(
���′

t�̂��t
N

)−1(
F′F

T

)−1
. We remark that as N and T

increase, R̂t,N T becomes invertible, as before in the Proof of Proposition 3.

The term
∥∥Ft
∥∥ is Op(1) (by Assumption A), and the term

∥∥R̂−1
t,N T −R−1

t
∥∥ is Op

( 1√
N

+
1√
T h

+�N
)

(by the same arguments as in the proof of Theorem 2).

We now show that
∥∥F̂t −R̂−1

t,N T Ft
∥∥= Op

( 1√
N

+ 1√
T h

)
. By (21) and (3), the estimated

factors can be written as

F̂t = �̂��
′
t���t
N Ft + �̂��

′
t

N Et ,

and the matrix R̂−1
t,N T can be written as (see the proof of Lemma 2)

R̂−1
t,N T =

[(
�̂��

′
t���t
N

)(
F′F

T

)(
���′

t�̂��t
N

)
+ �̂��

′
t√
N

���E

N
�̂��t√

N
+ �̂��

′
tZt,N T �̂��t

N

](
���′

t�̂��t
N

)−1(
F′F

T

)−1

=
(

�̂��
′
t���t
N

)
+
[

�̂��
′
t√
N

���E

N
�̂��t√

N
+ �̂��

′
tZt,N T �̂��t

N

](
���′

t�̂��t
N

)−1(
F′F

T

)−1
.

Then

F̂t − R̂−1
t,N T Ft = �̂��

′
t

N Et +
[

�̂��
′
t√
N

���E

N
�̂��t√

N
+ �̂��

′
tZt,N T �̂��t

N

](
���′

t�̂��t
N

)−1(
F′F

T

)−1
Ft ,

and therefore we have∥∥∥F̂t − R̂−1
t,N T Ft

∥∥∥≤
∥∥∥∥�̂��

′
t Et
N

∥∥∥∥+
(∥∥∥∥�̂��

′
t�̂��t
N

∥∥∥∥∥∥∥���E

N

∥∥∥+
∥∥∥∥�̂��

′
t�̂��t
N

∥∥∥∥∥∥Zt,N T
∥∥)

×
∥∥∥∥∥
(

���′
t�̂��t
N

)−1
∥∥∥∥∥
∥∥∥∥(F′F

T

)−1
∥∥∥∥‖Ft‖

=
∥∥∥∥�̂��

′
t Et
N

∥∥∥∥+
[
Op(1)O

(
1√
N

)
+ Op(1)Op

(
1√

T hT

)]
Op(1)Op(1)Op(1)

=
∥∥∥∥�̂��

′
t Et
N

∥∥∥∥+ Op

(
1√
N

)
+ Op

(
1√

T hT

)
.

To complete the proof, we now show that

∥∥∥∥�̂��
′
t Et
N

∥∥∥∥ = Op

(
1√
N

)
. The terms

∥∥∥ ���t√
N

∥∥∥ and∥∥∥∥ �̂��t√
N

∥∥∥∥ are of the same order, because
∥∥∥ ���t√

N

∥∥∥ = Op(1) for all t by our Assumption B2,

and

∥∥∥∥ �̂��t√
N

∥∥∥∥= Op(1) for all t by our constraint in (13). Then the norms
∥∥∥���′

t Et
N

∥∥∥ and

∥∥∥∥�̂��
′
t Et
N

∥∥∥∥
are of the same order as well and therefore, by Assumption F,

∥∥∥∥�̂��
′
t Et
N

∥∥∥∥= Op

(
1√
N

)
. n
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