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Abstract

Boundary estimation appears naturally in economics in the context of produc-
tivity analysis. The performance of a firm is measured by the distance between
its achieved output level (quantity of goods produced) and an optimal production
frontier which is the locus of the maximal achievable output given the level of the
inputs (labor, energy, capital, etc.). Frontier estimation becomes difficult if the out-
puts are measured with noise and most approaches rely on restrictive parametric
assumptions. This paper contributes to the direction of nonparametric approaches.

We consider a general setup with unknown frontier and unknown variance of a
normally distributed error term, and we propose a nonparametric method which
allows to identify and estimate both quantities simultaneously. The asymptotic
consistency and the rate of convergence of our estimators are established, and simu-
lations are carried out to verify the performance of the estimators for small samples.
We also apply our method on a dataset concerning the production output of Amer-
ican electricity utility companies.
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1 Introduction

Boundary estimation problems arise naturally in economics, in the context of productivity

analysis. When analyzing the productivity of firms, one may compare how the firms

transform their inputs W (labor, energy, capital, etc.) into an output X (the quantity

of goods produced). In this context, the set of technically possible outputs is determined

by a production frontier τ(W ) which is the geometric locus of optimal production plans.

The economic efficiency of the firm operating at the level (W0, X0) is then measured in

terms of the distance between its production level X0 and the boundary level τ(W0).

Efficiency and productivity analysis have been applied in many different fields of eco-

nomic activity, including industry, hospitals, transportation, schools, banks, public ser-

vices, etc. Frontier models were even introduced to measure the performance of portfolios

in finance, in the line with the seminal work of Markovitz (1959) using Capital Assets

Pricing Models (CAPM), where W measures the risk of a portfolio and X its average

return. Gattoufi, Oral and Reisman (2004) cite more than 1,800 published articles on

efficiency analysis, appearing in more than 400 journals in business and economics.

In deterministic frontier models it is assumed that τ(W ) corresponds to the boundary

of the support of X . For a random sample (Wi, Xi) one then has P (Xi ≤ τ(Wi)) = 1.

Most nonparametric approaches are then based on the idea of enveloping the data. Farrell

(1957) introduced Data Envelopment Analysis (DEA), based on either the conical hull

or the convex hull of the data. Deprins et al. (1984) extended the idea to non convex

sets and suggested the Free Disposal Hull (FDH) estimator, equal to the smallest free

disposal set containing all the data. Statistical properties of these estimators are well

known (see Banker, 1993; Korostelev et al., 1995a,b; Kneip et al., 1998; Gijbels et al.,

1999; Park et al. 2000; Jeong, 2004; Jeong and Park, 2006; Kneip et al. 2008; Park et al.

2010; Daouia et al. 2010). However all these methods rely on the unrealistic assumption

of deterministic frontier models that the outputs Xi are observed without noise. In the

presence of noise, the envelopment methods will be biased and not consistent.

More realistic stochastic frontier models assume that observed outputs Yi represent

underlying, “true” outputs Xi contaminated with some additional noise. In most of the

stochastic frontier approaches developed in the econometric literature, a fully parametric

model is assumed. For instance, in the pioneering work of Aigner et al. (1977) and

Meeusen and van den Broek (1977), we have an iid sample of (Wi, Yi) of inputs and

outputs generated by the basic model

Yi = τ(Wi) exp(−Ui) exp(Vi), (1.1)

where τ(Wi) is a parametric production function (e.g. a Cobb-Douglas) quantifying the
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optimal attainable output for a given input level Wi. Moreover, Ui > 0 is a positive

random variable having a jump at the origin that represents the inefficiency; in parametric

models, Ui has a known density depending on one or two unknown parameters (often

a half normal, truncated normal or exponential). So the latent unobserved output is

Xi = τ(Wi) exp(−Ui). The noise term is Zi = exp(Vi), where Vi ∈ R has usually a

normal density with mean zero and unknown variance. Finally, Ui is supposed to be

conditionally independent of Vi, given Wi. These approaches have been very popular in

the econometric literature and estimation is based on standard parametric techniques, like

maximum likelihood or modified least squares methods (see Greene 2008, for a survey).

However, these approaches rely on very restrictive assumptions on both the frontier

function and on the stochastic part of the model. A crucial issue is the specification of the

distribution of the inefficiencies Ui. While some central limit arguments can be advocated

for the Gaussian noise, there does usually not exist any information justifying particular

distributional assumptions on Ui.

Recent attempts have been made to attack the problem from a non- or semi-parametric

point of view. Using nonparametric techniques it is possible to avoid any parametric

assumptions on the structure of τ(Wi). Important contributions in this direction are Fan

et al. (1996) and Kumbhakar et al. (2007). They, however, still rely on parametric

specifications for the density of Ui.

Even when assuming Gaussian noise, dropping parametric assumptions on the struc-

ture of the distribution of Ui greatly complicates the problem and enforces to develop

completely new methods. Estimation of the boundary τ(W ) of X then necessitates to

solve a complicated, non-standard deconvolution problem.

In order to concentrate on the core of the problem, we will start by analyzing a slightly

simplified version of the general model which assumes that the boundary τ(·) is constant,
i.e. τ(W ) ≡ τ for all W and some fixed, but unknown τ > 0. With X = τ exp(−U) and

Z = exp(V ) the general setup then reduces to the following situation: There are i.i.d.

observations Y1, . . . , Yn with a density g on R+, generated by the model

Yi = Xi · Zi, (1.2)

where Xi is a latent unobserved true signal having a density f on the support [0, τ ], with

f(τ) > 0 for some unknown τ > 0, and Zi is the noise. We assume that Zi is independent

of Xi and is log-normally distributed. More precisely, logZi ∼ N(0, σ2), where σ2 > 0 is

an unknown variance. The problem then consists in estimating τ as well as σ, when only

the Yi’s are observable.

Our estimation procedure for the simplified model (1.2) is based on the maximization
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of a penalized profile likelihood. Based on local constant or local linear approximation

techniques this approach is then generalized to define estimators for the stochastic frontier

model (1.1). Precise descriptions of estimators and a corresponding asymptotic theory

are given in Sections 2 and 3.

Our basic approach is similar to the setup described in Hall and Simar (2002). They

propose a nonparametric approach where the noise has an unspecified symmetric density

with variance σ2 converging to zero when the sample size increases. Different from their

approach we avoid the restriction of having the noise converging to zero when the sample

size increases. We want to note, however, that a lognormal distribution of Z is crucial

to ensure identifiability in our context, while Hall and Simar (2002) rely on unspecified

error distributions.

As already mentioned above, (1.2) with unknown τ and σ leads to a non-standard

deconvolution problem. The novelty of our approach consists in the simultaneous estima-

tion of both parameters and the derivation of resulting convergence rates. The problem

of estimating an unknown boundary τ for a known error variance σ2 has already been

studied in a number of papers, see e.g. Goldenshluger and Tsybakov (2004), Delaigle and

Gijbels (2006), Meister (2006), or Aarts, Groeneboom and Jongbloed (2007). Another

related problem is the deconvolution problem with unknown error variance, but without

assuming the existence of a finite boundary. Butucea and Matias (2005), Butucea, Matias

and Pouet (2008), as well as Schwarz and Van Bellegem (2009) proposed estimators under

this model, and they proved (among others) the identifiability and consistency of their

estimators.

The paper is organized as follows. Sections 2 and 3 describe our estimation proce-

dure and corresponding asymptotic properties, respectively. Numerical illustrations are

presented in Section 4. We first begin with a simulation study to verify the performance

of the estimators in (1.2) for small samples. We then compare the performance of our

estimator of a production frontier with the procedure proposed in Hall and Simar (2002).

We also apply our procedure to analyze the production outputs of American electricity

utility companies. Proofs of some core results can be found in Section 5.

2 Estimation procedure

2.1 Estimation under the simplified model

Recall that under model (1.2), the latent variable X is defined on [0, τ ] and its density

f satisfies f(τ) > 0. In addition, let g be the density of the observed variable Y . Also

note that the model can equivalently be written as Y ∗ = X∗ + Z∗, where Y ∗ = log Y ,
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X∗ = logX and where Z∗ ∼ N(0, σ2) is independent of X∗, and σ2 is unknown.

Whenever confusion is possible, we will add a subindex 0 to indicate the true quantities

(e.g. f0, g0, τ0, ... stand for the true densities f and g and the true value of τ). Let φ(z)

denote the standard normal density, and recall that the density ρσ of a log-normal random

variable with parameters µ = 0, σ2 > 0 is given by ρσ(z) =
1
σz
φ( log z

σ
) for z > 0. For all

y > 0 we can then write

g0(y) =

∫ τ0

0

f0(x)
1

x
ρσ0

(
y

x
)dx =

∫ 1

0

h0(t)
1

tτ0
ρσ0

(
y

tτ0
)dt

=
1

σ0y

∫ 1

0

h0(t)φ

(
1

σ0
log

y

tτ0

)
dt, (2.1)

where

h0(t) = τ0f0(tτ0) for 0 ≤ t ≤ 1.

For an arbitrary density h defined on [0, 1] and for arbitrary values of τ > 0 and σ > 0,

define

gh,τ,σ(y) =
1

σy

∫ 1

0

h(t)φ

(
1

σ
log

y

tτ

)
dt.

Obviously, g0 ≡ gh0,τ0,σ0
. It will be shown in the next section that under some additional

assumptions all parameters of the model are identifiable.

Our estimation procedure relies on the maximization of a penalized profile likelihood.

Obviously the likelihood function is based on the density gh,τ,σ. Note that this density

not only depends on the parameters τ and σ, but also on the underlying density h. We

will use histogram-type estimators to approximate h, and therefore maximization will be

done over all possible values of τ , σ as well as all h in the specified class of histogram

estimators. A penalization is introduced in order to account for a possible smoothness of

h0.

More precisely, for a pre-specified natural number M let

Γ =
{
γ = (γ1, . . . , γM) : γk > 0 for all k and

M∑

k=1

γk = M
}
,

and define

hγ(t) = γ1I(t = 0) +
M∑

k=1

γkI(qk−1 < t ≤ qk)

for 0 ≤ t ≤ 1, where qk = k/M (k = 0, 1, . . . ,M). It is clear that hγ is a density for all

γ ∈ Γ. Then

ghγ ,τ,σ(y) =
1

σy

∫ 1

0

hγ(t)φ

(
1

σ
log

y

tτ

)
dt =

1

σy

M∑

k=1

γk

∫ qk

qk−1

φ

(
1

σ
log

y

tτ

)
dt.
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Estimators τ̂ , σ̂ (and ĥ := hγ̂) of τ0, σ0 (and h0) are now obtained by maximizing the

following penalized likelihood:

(τ̂ , σ̂, γ̂) = argmaxτ>0,σ>0,γ∈Γ

{
n−1

n∑

i=1

log ghγ ,τ,σ(Yi)− λ pen(ghγ ,τ,σ)
}
,

where λ ≥ 0 is a fixed value independent of n, and where

pen(ghγ ,τ,σ) = max
3≤j≤M

|γj − 2γj−1 + γj−2|

The procedure also leads to an estimator ĝ := gĥ,τ̂ ,σ̂ of the density g0 of Y .

Note that λ can be taken equal to zero, which means that we consider both penalized

and non-penalized estimators. However, as will be shown in the next section, the penalized

estimator attains a better rate of convergence if h0 is smooth. It is then preferable over

the non-penalized one. It is also important to highlight here that λ is a parameter that

is chosen independent of the sample size, which is in contrast to most other penalized

estimation methods in the literature, where λ is usually chosen as a function of the

sample size n.

Note that pen(ĝ) = max3≤j≤M |ĥ( j
M
) − 2ĥ( j−1

M
) + ĥ( j−2

M
)|. But max3≤j≤M |h0(

j
M
) −

2h0(
j−1
M

) + h0(
j−2
M

)| = M−2max3≤j≤M |h′′
0(

j−1
M

)|(1 + oP (1)). Since pen(ĝ) = OP (M
−2)

we thus ensure that the structure of our discretized estimator appropriately reflects the

underlying smoothness of h0 if M ≡ Mn → ∞. We also refer to the proofs of the

asymptotic results shown in the next section for better understanding the motivation for

the precise formula of the penalty term.

Also note that although the above procedure is valid for practical purposes, we need to

be a bit more precise when developing the asymptotic results in Section 3. In particular,

we will require that σ and τ belong to a compact interval and that the function hγ(t) is

uniformly bounded above on [0, t] and uniformly bounded below from 0 for t close to 1.

However, except for the latter condition on the lower bound for hγ , these conditions do

not play any role in practice, since the intervals and the upper bound can be chosen in

an arbitrary way. We refer to assumption (A1) below for the precise formulation of the

support of σ, τ and hγ.

Remark 2.1 Our use of histogram-type estimators of h0 is motivated by computa-

tional feasibility. Note that ghγ ,τ,σ(y) is a linear function of γ. This greatly simplifies the

maximization problem. For fixed τ, σ, the corresponding optimal values γ̂(τ, σ) of γ can

easily be determined by applying standard optimization techniques. Subsequent maxi-

mization over τ, σ leads to a numerically stable algorithm with moderate computation

times.
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One will usually tend to assume that the true density h0 is smooth on [0, 1]. In

this case penalized likelihood estimation with λ > 0 simply corrects a default of the

“pure” histogram estimator which due to its discontinuous nature does not make any use

of smoothness of h0. This type of penalization is unnecessary when relying on smooth

sieve estimators. For example, h may alternatively be approximated by cubic B-splines

with M equidistant knots. It will be shown in Section 3 that if h0 is twice continuously

differentiable, then spline-based estimators (without penalty) achieve the same rate of

convergence as penalized histogram-based estimators. The drawback of this alternative

approach is that it leads to a maximization problem which is much more complex from

a computational point of view. When trying to implement spline-based estimators we

encountered prohibitive computation times as well as serious problems with numerical

stability.

2.2 Incorporating covariates

Let us return to the general model (1.1) incorporating some d-dimensional covariate

W ∈ R
d, d ≥ 1. We then have Yi = τ(Wi) exp(−Ui) exp(Vi), and data consist of i.i.d.

observations (Wi, Yi), i = 1, . . . , n. For some value w0 in the interior of the support of

W the problem to be considered is to estimate the boundary τ0(w0) of the conditional

distribution of X = τ0(W ) exp(−U) given W = w0.

Our setup consists in a straightforward generalization of the conditions used for an-

alyzing the simplified model. We suppose that the conditional distribution of V given

W = w0 is N(0, σ2(w0)) with a true variance σ2
0(w0) possibly depending on w0. As

mentioned in the introduction we furthermore assume that the components U and V of

the model are conditionally independent (conditionally to W ), and that U is a positive

random variable. Then obviously exp(−U) takes values in [0, 1], and it is assumed that

the conditional distribution of exp(−U) given W = w0 possesses a density h0w0
with

h0w0
(1) > 0. Consequently, the conditional density f0w0

of X = τ0(W ) exp(−U) given

W = w0 satisfies h0w0
(t) = τ0(w0)f0w0

(tτ0), 0 ≤ t ≤ 1. Using the same notation as above,

the conditional density of Y given W = w0 is then equal to g0w0
= gh0w0

,τ(w0),σ(w0).

Resorting to the same ideas as in Hall and Simar (2002), the problem of estimating

τ0(w0) can be viewed as a local boundary problem. The approach then consists in spec-

ifying a bandwidth b and determining estimates τ̂ (w0) of τ(w0) and σ̂2(w0) of σ
2(w0) by

the penalized likelihood procedure described above, using only those observations Yi with

‖Wi − w0‖2 ≤ b (where ‖ · ‖2 is the Euclidean distance). More precisely, for given b > 0,
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λ > 0, and nb := ♯{Wi : ‖Wi − w0‖2 ≤ b}, the estimators are to be determined by

(τ̂ (w0), σ̂(w0), γ̂(w0)) = argmaxτ>0,σ>0,γ∈Γ

{
n−1
b

∑

i:‖Wi−w0‖2≤b

log ghγ ,τ,σ(Yi)−λpen(ghγ ,τ,σ)
}
.

(2.2)

The estimators ĥw0
= hγ̂(w0) and ĝw0

= gĥw0
,τ̂(w0),σ̂(w0)

then provide estimates of the

conditional densities h0w0
and g0w0

.

The basic motivation of this estimation procedure of course consists in the fact that

under suitable smoothness assumptions (see Section 3) the conditional density g̃b of Y

given ‖Wi − w0‖2 ≤ b satisfies g̃b(y) = g0w0
(y) + O(b2). Indeed, it will be shown in the

next section that when b → 0, nbd → ∞ as n → ∞, the resulting estimators achieve the

same (logarithmic) rates of convergence as the estimators obtained under the simplified

model (1.2).

We want to emphasize that in the presence of covariates the proposed procedure (2.2)

constitutes a very simple approach which is based on a “locally constant” approximation

of τ0(·) and σ2
0(·). While it is common practice to assume that the distributions of U

and V are approximately constant, researchers usually cannot exclude considerable local

variation of the frontier function τ0(·). In such situations one may tend to prefer some

method relying on some “locally linear” approximation of τ0(·).
In order to construct such a procedure first note that when taking logarithms in (1.1)

we obtain log Yi = log τ(Wi) − Ui + Vi. By definition, for any value w in the support of

W we have E(V | W = w) = 0. Additionally assume that in a small neighborhood of the

point w0 of interest E(U | W = w) is constant, while τ0(·) is sufficiently smooth and can

be well represented by a Taylor expansion, i.e. log τ0(w) ≈ log τ0(w0) + β(w0)
T (w − w0)

with β(w0) =
∂
∂w

(log τ0)(w)|w=w0
. For a small b > 0 we then obtain

log Yi ≈ α(w0) + β(w0)
T (Wi − w0)− U0

i + Vi, if ‖Wi − w0‖2 ≤ b,

where α(w0) = log τ0(w0) − E(U | W = w0) and U0
i = Ui − E(U | W = w0). The terms

−U0
i + Vi can then be interpreted as (approximately) zero mean error terms, and hence

α(w0) and β(w0) can be estimated by ordinary local least squares. The estimate β̂(w0)

of β(w0) provides information about the local variation of log τ0(·). This can be used

to calculate a suitable correction of the likelihood function. Obviously, for all Wi with

‖Wi − w0‖2 ≤ b we have:

log Ỹi := log Yi − β(w0)
T (Wi − w0) ≈ α(w0)− U0

i + Vi = log τ0(w0)− Ui + Vi,

and thus

Ỹi ≈ τ0(w0) exp(−Ui) exp(Vi),
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which suggests to estimate the parameters of interest using a penalized likelihood based

on Ỹi instead of Yi. This will provide estimators τ̂(w0) and σ̂(w0). Then by using α̂(w0),

a natural estimate of E(U | W = w0) is given by log τ̂ (w0)− α̂(w0).

When combining these arguments we arrive at the following alternative estimation

method:

[1 ] Fix a bandwidth b > 0 and determine estimates α̂(w0) and β̂(w0) by minimizing
∑

i:‖Wi−w0‖2≤b

(log Yi − α− βT (Wi − w0)
2)

over all α and β.

[2 ] Calculate log
̂̃
Y i := log Yi − β̂(w0)

T (Wi − w0), i = 1, . . . , nb. Then determine esti-

mates τ̂(w0), σ̂(w0), γ̂(w0) by using (2.2) with Yi being replaced by
̂̃
Y i, i = 1, . . . , nb.

[3 ] Finally, we also have Ê(U | W = w0) = log τ̂(w0) − α̂(w0), as an estimator of the

conditional expected inefficiency level.

In order to avoid an overloading of the present paper a theoretical analysis of this mod-

ification is omitted. However, the general structure of the theory presented in Section

3 strongly indicates that these alternative estimators will achieve the same rates of con-

vergence as those obtained by directly applying (2.2). In many applications one may

nevertheless expect some improvement in finite sample behavior when using [1] and [2]

instead of (2.2). In our simulation study (see Section 4) we concentrate on estimates

based on [1] and [2], and it turns out that they show a surprisingly high level of accuracy.

Remark 2.2 In practice, one will of course be interested in estimating τ(·) not only at

a single point w0 but at a whole sequence w01, w02, . . . of different possible values of W .

The above procedures can then be used at any point w0i, but estimation error will induce

some random fluctuations of the resulting τ̂ (w0i). It will therefore sometimes make sense

to additionally use some nonparametric smoothing procedure in order to generate a final

estimate of τ(·) from the raw estimates τ̂(w01), τ̂ (w02), . . . . For example, one may use

kernel estimators. Other interesting candidates are isotonic regression methods, since in

most applications it can be assumed that τ(w) is monotone in w. Details are not in the

scope of the present paper.

3 Asymptotic results

In this section we establish the rate of convergence of our estimators. The proofs of these

results can be found in the online supplement, except for our core result in Theorem 3.2,

8



whose proof is given in the appendix.

For the asymptotic results for the simplified model (1.2), we need to make the following

assumptions:

(A1) For some 0 < σmin < σmax < ∞, 0 < τmin < τmax < ∞, 0 < hmin < hmax < ∞,

and 0 < δ < 1 the estimators (ĝ, τ̂ , σ̂) defined in steps 1 and 2 of our procedure are

determined by minimizing over all

(hγ, τ, σ) ∈ Hn × [τmin, τmax]× [σmin, σmax],

where Hn ⊂ Hhmin,hmax,δ. Here, Hhmin,hmax,δ denotes the set of all square integrable

densities h with support [0, 1] satisfying

– supt∈[0,1] h(t) ≤ hmax, as well as

– inft∈[1−δ,1] h(t) ≥ hmin.

(A2) h0 ∈ Hhmin,hmax,δ and is twice continuously differentiable, τ0 ∈ [τmin, τmax], and

σ0 ∈ [σmin, σmax].

(A3) For some 0 < β < 1/5, M = Mn ∼ nβ as n tends to ∞.

(A4) For some A >
√
2, P (log Y < −A(log n)1/2σ0) = o(n−1).

Remark 3.1 Note that condition (A4) is a natural condition, and is satisfied when e.g.

h0 ≡ 0 on a small interval [0, ǫ] close to 0.

For two arbitrary densities g1 and g2, let

H2(g1, g2) =
1

2

∫ (√
g1(y)−

√
g2(y)

)2
dy

be the Hellinger distance between g1 and g2.

Theorem 3.1 Assume (A1)–(A4). Then, if λ ≥ 0,

H2(ĝ, g0) = OP (M
−2
n ),

and if λ > 0,

pen(ĝ) = OP (M
−2
n ).

Theorem 3.2 Under the assumptions of Theorem 3.1, σ0 and τ0 are identifiable, and we

have:
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a) If λ = 0 (i.e. without penalization),

σ̂ − σ0 = OP

(
(log n)−1

)
, (3.1)

τ̂ − τ0 = OP

(
(log n)−

1

2

)
. (3.2)

b) If λ > 0 (i.e. with penalization),

σ̂ − σ0 = OP

(
(logn)−2

)
, (3.3)

τ̂ − τ0 = OP

(
(logn)−

3

2

)
, (3.4)

ĥ(1)− h0(1) = OP

(
(logn)−1

)
. (3.5)

It can easily be seen from the proof given in the appendix that the validity of (3.1) -

(3.5) does not depend on the method employed to construct the estimator ĝ of g0. It is

only required that ĝ possesses an appropriate structure, i.e. ĝ ≡ gĥ,τ̂ ,σ̂, and that ĝ adopts

a polynomial rate of convergence such that H2(ĝ, g0) = OP (n
−2β) for some β > 0. The

precise value of β does not play any role.

For deriving (3.1) and (3.2) it is additionally only required that τ̂ , τ0 ∈ [τmin, τmax],

σ̂, σ0 ∈ [σmin, σmax] as well as ĥ, h0 ∈ Hhmin,hmax,δ. Smoothness of h0 is of no importance.

On the other hand, smoothness of h0 as well as pen(ĝ) = OP (M
−2
n ) constitute the further

conditions used for deriving (3.3) - (3.5).

For the case with covariates, the following slightly different assumptions need to be

imposed:

(B1) This equals (A1).

(B2) h0w0
∈ Hhmin,hmax,δ and is twice continuously differentiable, τ0(w0) ∈ [τmin, τmax],

and σ0(w0) ∈ [σmin, σmax].

(B3) For some 0 < β < 1/5, M = Mn ∼ (nbdn)
β as n tends to ∞ and the bandwidth bn

satisfies bn → 0, nbdn → ∞ and bnMn = O(1).

(B4) For some A >
√
2, sup‖w−w0‖2≤bn P (log Y < −A(log n)1/2σ0(w)|W = w) = o((nbdn)

−1).

(B5) g0w(y), σ(w) and τ(w) are twice continuously differentiable with respect to w at

w = w0 (for all y).

(B6) w0 is a point in the interior of the support of W . Furthermore, W possesses a

density q, and q(w) is continuously differentiable at w = w0.

10



Theorem 3.3 Assume (B1)–(B6). Then, if λ ≥ 0,

H2(ĝw0
, g0w0

) = OP (M
−2
n ),

and if λ > 0,

pen(ĝw0
) = OP (M

−2
n ).

Theorem 3.4 Under the assumptions of Theorem 3.3, the conclusions of Theorem 3.2

remain valid (but with σ̂, σ0, . . ., replaced by σ̂(w0), σ0(w0), . . .).

Adapting notations, the proof of Theorem 3.4 is exactly the same as that of Theorem

3.2.

We end this section with a result about the rate of convergence of our estimators when

the true density is more than twice continuously differentiable. From now on, we suppress

the dependence on w0 in the case with covariates, and use the notations σ̂, σ0, τ̂ , τ0, . . .,

both for the case with and without covariates.

Our estimator does not make use of a higher degree of smoothness of h0. However,

if h0 is m-times continuously differentiable for some m > 2 faster (logarithmic) rates of

convergence may be achieved by relying on estimators which determine smooth approxi-

mations ĥ of h0. For example, our histogram estimator may be replaced by suitable spline

approximations. But as already mentioned in Section 2, determining a spline estimator ĥ

as well as σ̂ and τ̂ by maximizing the resulting likelihood seems to be extremely difficult

from a computational point of view. But the following theorem shows that any estimation

method can be applied which ensures that the corresponding convoluted density ĝ = gĥ,τ̂ ,σ̂
possesses some polynomial rate of convergence.

Theorem 3.5 For some m = 0, 1, 2, . . . let Hm
hmin,hmax,hm,max,δ

⊆ Hhmin,hmax,δ denote a

space of m-times continuously differentiable functions with supt∈[0,1] |h(m)(t)| ≤ hm,max.

Assume that

1) h0 ∈ Hm
hmin,hmax,hm,max,δ

,

2) there exist estimators (ĥ, τ̂ , σ̂) ∈ Hm
hmin,hmax,hm,max,δ

× [τmin, τmax]× [σmin, σmax] such

that ĝ = gĥ,τ̂ ,σ̂ satisfies

H2(ĝ, g0) = OP (n
−κ) for some κ > 0.

Then,

σ̂ − σ0 = OP

(
(log n)−(1+m

2
)
)
, (3.6)

τ̂ − τ0 = OP

(
(log n)−

m+1

2

)
, (3.7)

ĥ(1)− h0(1) = OP

(
(log n)−

m
2

)
. (3.8)
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4 Numerical illustrations

4.1 Some Monte-Carlo experiments for the simplified model

The Monte-Carlo scenario we consider is inspired by the econometric literature on stochas-

tic frontier models, as described in the introduction, Section 1. Mimicking (1.1), we can

write

Y = τ exp(−U) exp(V ), where U > 0 and V ∼ N(0, σ2).

So in our notation (1.2), X = τ exp(−U) is the signal and Z = exp(V ) is the noise.

Often U is an exponential or a half-normal random variable, as in Aigner et al. (1977)

and Meeusen and van den Broek (1977), or a truncated normal random variable, as in

Stevenson (1980). In the exponential case the density of U is

U ∼ Exp(β) ⇐⇒ fU(u) = β exp(−βu) I(u > 0),

where I(·) is the indicator function. Moreover, µU = σU = 1/β. For the truncated normal

case, the density of U is a normal density with mean α and variance β2 but truncated at

zero:

U ∼ N+(α, β2) ⇐⇒ fU(u) =
Φ−1

(
α/β

)
√
2πβ

exp

{
−1

2

(
u− α

β

)2
}

I(u > 0).

Mean and variance of U are then given by µU = α+cβ and σ2
U = β2(1−c(α/β)−c2) with

c = φ(α/β)/Φ(α/β). Here φ and Φ represent the density and the cumulative distribution

function of a standard normal variable. The very popular half-normal is the particular

case where α = 0. We will concentrate on four examples. Two exponential cases and two

truncated normal cases.

Example 1: Exponential Signal, U ∼ Exp(β)

The density of X can be written as

f(x) =
β

τβ
xβ−1I(0 ≤ x ≤ τ).

In our simulation study we consider the cases β = 2 as well as β = 1. For β = 2 the

density f(x) is linearly increasing from 0 to 2/τ 2 on [0, τ ], while for β = 1 the ran-

dom variable X is uniform on [0, τ ]. In the Monte-Carlo experiments below we tuned

the value of σ (size of the noise V ) as a factor of σU . We choose σ = ρntsσU with

ρnts = 0, 0.01, 0.05, 0.25, 0.50, 0.75.
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Example 2: Truncated Normal Signal, U ∼ N+(α, β2)

Here the density of X is given by

f(x) =
Φ−1

(
α/β

)
√
2πβ

exp

{
−1

2

(
log(τ)− log(x)− α

β

)2
}

x−1I(0 ≤ x ≤ τ).

Here we first consider the case where U is a half-normal, i.e. the density of U is decreasing

from zero: we choose U ∼ N+(0, (0.80)2) providing values E(U) = 0.6383 and σU = 0.4822

which are not too far from the case of the Exp(2)-distribution. In the second scenario

we consider U ∼ N+(0.60, (0.60)2). The resulting mean E(U) = 0.7726 and standard

deviation σU = 0.4761 are of the same order of magnitude as above, but here the density

is increasing from zero to E(U) and then decreasing. For, V we follow the same scenario

as for the Exponential case with σ = ρntsσU .

In the simulations we fixed arbitrarily the boundary at τ = 1, so that the signal is

X = e−U . Figure 1 displays the densities of X for the 4 cases considered here. Note that

only in the first case of an Exp(2)-distribution the density of X is strictly decreasing from

the boundary point. In the two situations with truncated normal distributions the density

of X is increasing a little when leaving the boundary point (τ = 1) and then decreases. In

the fourth case, the jump of the density at the boundary is rather small and the mode is

far from the boundary point. This latter scenario is certainly the most complicated one.

We want to emphasize that large values of ρnts may result in huge noise to signal

ratios in the space of the observations. Table 1 evaluates the ratio σZ/σX for the four

experiments. We see also that in all scenarios the variances of the corresponding signals

X are of the same order of magnitude. This facilitates the comparison across the various

experiments.

In Tables 2 to 5, we display the results obtained with MC = 500 replications of each

experiment. In the columns log10 λ, we indicate the optimal values (given by the Monte-

Carlo experiment) obtained over the grid search log10 λ = −4,−3,−2,−1, 0, 1, 2, 3, 4,

where “optimal” is in terms of the sum of the Root Mean Squared Error (RMSE) of

τ̂ and of σ̂.1 These are not the optimal values for estimating τ and σ separately, the

individual optimal values may in some cases be different from the values reported in the

table by an order 10 or 102, but globally the results are rather stable in terms of the

RMSE.

For the number of bins we used the rule M = max
(
3, c× round(n1/5)

)
where round(a)

is the nearest integer to a. We fix c = 2. Note that we obtained very similar results in

1Some previous pilot experiments showed indeed that finer grids for the values of λ were not necessary,
the results being rather stable to small changes in λ. We choose this “rough” grid for limiting the
numerical burden in the Monte-Carlo experiments.
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some pilot experiments with c = 3 (and even with c = 1 but here the number of bins

was very small). For the selected sample sizes n = 50, 100, 500 this rule of thumb gives

M = 4, 5 and 7, respectively.

When we look to the 4 tables, we first see that our estimators behave rather well for

reasonable sample sizes and not too much noise. Looking through each table, we also see

that the performances behave as expected: horizontally, when the sample size increases we

improve the performance of the estimators for both τ and σ. Vertically, we can investigate

the effect of increasing the size of the noise. We see that when increasing the noise from

ρnts = 0 to 0.50 the performance deteriorates. This effect is stronger for estimating τ

than for estimating σ, in particular for large samples.

We also note that an increasing density for X from 0 to τ (Table 2) gives better results

than the others. The most difficult case (small jump and mode far from the boundary)

is reported in Table 5. As is to be expected, the performance is less good but still quite

reasonable. We also note that when ρnts = 0.50 or 0.75, in some cases, the performance

seems to be quite similar. This might be due to the “rough” grid we used for selecting

the optimal λ.

To summarize, we can conclude that the procedure for estimating τ and σ works pretty

well even for moderate sample sizes. In applications in economics, where X will be output,

U firm inefficiencies and V the noise, we may expect the size of the noise to be relatively

small with respect to the size of the signal. In this case, even with small samples we may

expect good behavior of our estimators. The suggested rule of thumb for selecting the

number of bins also seems to be a good choice in our experiments. Finally, the selection

of the penalty parameter λ seems not to be crucial. In practice, with a real sample, we

suggest to use a bootstrap procedure to estimate the RMSE of the estimators as a tool

for selecting λ. In the next subsection we give an example of such algorithm.

4.2 Estimation of a production frontier: Monte-Carlo experi-

ments

We investigate now the performance of the procedure described in Section 2.2 to estimate

a production frontier, i.e., estimation of a boundary in the presence of covariates. We will

compare our estimator of the frontier function with the one suggested in Hall and Simar

(2002) (henceforth HS), by using the same scenario used by HS, which is a noisy version

of the setup described in Gijbels et al. (1999). We have

Y = τ(W ) exp(−U) exp(V ),
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where τ(w) = w1/2, U ∼ Exp(3), V ∼ N(0, (0.0667)2) and W ∼ U[0, 1], with the random

variables W,U and V independent in this scenario. Note that ρnts = σV /σU = 0.20.

Figure 2 depicts a typical sample and the corresponding estimates on a grid of 11 values

of w. We can see a very good fit even for a small sample size of n = 100. For each

value of w, the value of λ was chosen by the following bootstrap algorithm. At each given

w, we draw bootstrap random samples of size nb, (Y
∗,m
1 , . . . , Y ∗,m

nb
), for m = 1, . . . , B,

by sampling with replacement from the nb values Yj in the original sample such that

‖Wj −w‖2 ≤ b. Next, for a given value of λ, we compute the original estimator τ̂λ(w) and

its bootstrap analogue τ̂ ∗,mλ (w), for m = 1, . . . , B. Then several measures could be used

to select the optimal λ over a grid of values. The results below were obtained by using

the bootstrap estimate of the relative root mean squared error of τ(w):

crit(λ) =

√√√√ 1

B

B∑

m=1

(
τ̂ ∗,mλ (w)− τ̂λ(w)

)2
/τ̂λ(w).

This criterion was evaluated over a grid of 5 values in the log-scale of λ, log10 λ =

−2,−1, 0, 1, 2 with B = 200. Other measures have been used (like the simple RMSE,

etc,...) giving qualitatively the same results.

Table 6 presents the results of Monte-Carlo experiments where the bias and the MSE

of the estimators are calculated using 500 Monte-Carlo replications. For the estimation of

the frontier levels, we can compare with the results in Table 10 in Hall and Simar (2002).

We noticed through the experiments that the choice of λ does not seem to be so crucial,

and we used our bootstrap algorithm to select its value. To summarize the results of

Table 6, we see that for τ(w) the MSE of our new estimator behaves much better than in

HS: for n = 100 our MSE is 30% of the MSE in HS (50% when w = 0.75) and for n = 500

the MSE is less than 50% of the MSE in HS for all cases. For the estimation of σ(w) the

MSE seems to be good, but no comparison with HS is possible.

4.3 American electricity utility companies

As in Hall and Simar (2002), we now consider an empirical example coming from Chris-

tensen and Greene (1976) concerning 123 American electricity utility companies. We use,

as in HS, only the variables Y = logQ and W = logC, where Q is the production output

and C is the total cost involved in the production. Figure 5 displays the data along with

point-wise estimates of the production frontier τ(w), over a selected grid of 21 values of w.

The bandwidth taken is, as in HS, b = 0.51. The figure also shows a smooth estimator of

the frontier obtained by running a kernel smoother (quartic kernel with same bandwidth
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0.51) through the estimated boundary points. As in HS, to avoid edge effects we restrict

the estimation to w ∈ [1.5, 5].

Comparing with Figure 3 in HS, we observe that the estimation of the frontier func-

tion is much smoother than in HS, where important jumps appear in their Figure 3 for

their estimate of the boundary points. Here we see that some data points are above the

estimated frontier, which was not the case in HS. This is not a surprise since their setup

is based on the assumption that the noise is converging to zero when the sample size

increases. Here the model allows for large noise levels.

Note also that in our procedure we have much more information on the production

process, because we have at each value of w an estimate of the standard deviation σ(w) of

the noise and an estimate of the conditional expected inefficiency level E(U |W = w). The

results are shown in Table 7. It appears that the noise is rather stable over the various

levels of the cost, but that the mean of the inefficiency level seems to decrease when the

production cost increases. Note that the table also provides the number of points nb(w)

selected around w by the bandwidth b.

5 Appendix

Proof of Theorem 3.2. We first consider Assertion a) and take λ ≥ 0. By assumption

H2(ĝ, g0) = OP (M
−2
n ) = OP (n

−κ) for κ = 2β. Recall that gh,τ,σ(y) =
1
σy

∫ 1

0
h(t)φ

(
1
σ
log y

tτ

)
dt

for all possible values (h, τ, σ) ∈ Hhmin,hmax,δ × [τmin, τmax]× [σmin, σmax]. By definition of

φ we have

gh,τ,σ(y) = w(y, τ, σ) · v(y, h, τ, σ), (5.1)

where w(·) and v(·) are defined by

w(y, τ, σ) :=
1√
2π

1

σy
exp

(
−(log y)2

2σ2
+

(log y)(log τ)

σ2

)
, (5.2)

v(y, h, τ, σ) :=

∫ 1

0

h(t) exp

(
(log y)(log t)

σ2

)
exp

(
−(log tτ)2

2σ2

)
dt. (5.3)

Let 0 < zmin < zmax <
κσ2

min

σ2
0

, and for z ∈ [zmin, zmax] set

yz,n := exp
((

2σ2
0z logn

)1/2)
.

Obviously, exp
(

−(log(tτ))2

2σ2

)
is bounded above and below by exp

(
−(log((1−δ)τ))2

2σ2

)
and

exp
(
− (log τ)2

2σ2

)
for all 1 − δ ≤ t ≤ 1. This implies that there exist constants 0 < C0 <
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C1 < ∞ such that (see equations (A.10) - (A.12) in the online supplement for some details

on the arguments)
C0

(logn)1/2
≤ v(yz,n, h, τ, σ) ≤

C1

(logn)1/2
, (5.4)

for all z ∈ [zmin, zmax], all (h, τ, σ) ∈ Hhmin,hmax,δ × [τmin, τmax] × [σmin, σmax], and all

sufficiently large n.

Since by construction of zmin and zmax, we have that exp
(
− (log yz,n)2

2σ2

)
= n−σ2

0
z/σ2

with

supz∈[zmin,zmax] supσ∈[σmin,σmax] σ
2
0z/σ

2 < κ, the definition of w in (5.2) as well as relations

(5.1) and (5.4) imply the existence of some κ∗ > 0 such that

sup
z∈[zmin,zmax]

sup
(h,τ,σ)∈Hhmin,hmax,δ×[τmin,τmax]×[σmin,σmax]

n−κ

gh,τ,σ(yz,n)
= O(n−κ∗

) as n → ∞.

(5.5)

Now, let Nn denote the largest integer with Nn ≤ yzmax,n − yzmin,n. There then exists

a unique sequence zmin =: z0 < z1 < · · · < zNn ≤ zmax such that yzj,n − yzj−1,n = 1 for all

j = 1, . . . , Nn. Obviously, Nn → ∞ as n → ∞. By assumption H2(ĝ, g0) = OP (n
−κ), and

hence
∑Nn

j=1

∫ yzj,n
yzj−1,n

(
√

ĝ(y) −
√

g0(y))
2dy = OP (n

−κ). The mean value theorem implies

that for every j = 1, . . . , Nn there exists some z̃j ∈ [zj−1, zj ] such that
∫ yzj,n

yzj−1,n

(
√

ĝ(y)−
√
g0(y))

2dy = (
√

ĝ(yz̃j ,n)−
√

g0(yz̃j ,n))
2.

We can infer that
∑

z̃∈Zn
(
√

ĝ(yz̃,n)−
√

g0(yz̃,n))
2 = OP (n

−κ), where Zn = {z̃1, . . . , z̃Nn}.
It follows that supz̃∈Zn

(
√

ĝ(yz̃,n) −
√

g0(yz̃,n))
2 = OP (n

−κ). At the same time ĝ ≡ gĥ,τ̂ ,σ̂
as well as g0 ≡ gh0,τ0,σ0

, and (5.5) thus leads to

sup
z̃∈Zn



√

gĥ,τ̂ ,σ̂(yz̃,n)

gh0,τ0,σ0
(yz̃,n)

− 1




2

= OP (n
−κ∗

), sup
z̃∈Zn

(√
gh0,τ0,σ0

(yz̃,n)

gĥ,τ̂ ,σ̂(yz̃,n)
− 1

)2

= OP (n
−κ∗

).

(5.6)

Together with (5.1) and the definitions of w and v in (5.2) and (5.3) we therefore obtain

sup
z̃∈Zn

| log
gĥ,τ̂ ,σ̂(yz̃,n)

gh0,τ0,σ0
(yz̃,n)

|

= sup
z̃∈Zn

∣∣∣∣∣−(
σ2
0

σ̂2
− 1)z̃ log n+

(2σ2
0 z̃ log n)

1/2

σ̂2
log τ̂ − (2σ2

0 z̃ log n)
1/2

σ2
0

log τ0 + log
v(yz̃,n, ĥ, τ̂ , σ̂)

v(yz̃,n, h0, τ0, σ0)

∣∣∣∣∣
= OP (n

−κ∗/2). (5.7)

But (5.4) implies that supz̃∈Zn
| log v(yz̃,n,ĥ,τ̂ ,σ̂)

v(yz̃,n,h0,τ0,σ0)
| = OP (1). Consequently,

sup
z̃∈Zn

∣∣∣∣−(
σ2
0

σ̂2
− 1)z̃ logn+

(2σ2
0 z̃ log n)

1/2

σ̂2
log τ̂ − (2σ2

0 z̃ logn)
1/2

σ2
0

log τ0

∣∣∣∣ = OP (1) (5.8)
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Since Zn contains an increasing number of Nn elements, τ̂ − τ0 = OP

(
(log n)−1/2

)
as

well as σ̂ − σ0 = OP ((logn)−1), and hence the identifiability of σ0 and τ0, are immediate

consequences of (5.8).

This completes the proof of Assertion a). Note that the above arguments only require

H2(ĝ, g0) = OP (n
−κ) and do not at all depend on λ. The proof of Assertion b) is based

on an analysis of the structure of ĥ to be obtained under penalized estimation. This then

allows a more precise evaluation of the difference log
v(yz̃,n,ĥ,τ̂ ,σ̂)

v(yz̃,n,h0,τ0,σ0)
.

Let γ̂ = γ̂τ̂ ,σ̂ and pj := γ̂Mn−j − 2γ̂Mn−j+1+ γ̂Mn−j+2 and recall that by construction of

our estimator ĥ we have ĥ(Mn−j
Mn

) = γ̂Mn−j, j = 0, 1, . . . ,Mn − 1, and ĥ(0) = γ̂1 = ĥ( 1
M
).

Obviously, with γ(1) := Mn(ĥ(
Mn−1
Mn

)− ĥ(1)) we then obtain ĥ(Mn−1
Mn

) = γ(1) 1
Mn

+ ĥ(1) as

well as

ĥ(
Mn − j

Mn
) = ĥ(1) + γ(1) j

Mn
+

j∑

k=2

(j − k + 1)pk, j = 2, . . . ,Mn − 1. (5.9)

For all j = 2, . . . ,Mn − 1,

|
j∑

k=2

(j − k + 1)pk| ≤ (M2
n max

k
|pk|)

∑j
k=2(j − k + 1)

M2
n

≤(M2
n max

k
|pk|)

1

2
(
j

Mn
)2. (5.10)

Furthermore, Theorem 3.1 implies that

M2
n max

2≤k≤Mn−1
|pk| = M2

npen(ĝ) = OP (1). (5.11)

Let J denote the largest integer such that J
Mn

≤ δ. Relations (5.9) and (5.10) then
imply that

|γ(1)| =
|ĥ(Mn−J

Mn
)− ĥ(1)−

∑J
k=2(J − k + 1)pk|

J/Mn

≤ |hmax − hmin|+ |∑J
k=2(J − k + 1)pk|

δ − 1/Mn
= OP (1). (5.12)

Recall that ĥ is constant between the points 1
Mn

, 2
Mn

, . . . . Therefore, there exists a

constant B2 < ∞, which can be chosen independently of Mn, such that for all t ∈ [0, 1],

ĥ(t) = ĥ(1)− γ(1)(t− 1) +RM(t), |RM(t)| ≤ (M2
n max

k
|pk|) ·

(
1

2
(t− 1)2 +

B2

Mn

)
.

(5.13)

On the other hand, a Taylor expansion of the true function h0 yields

h0(t) = h0(1) + h′
0(1)(t− 1) +R2(t), where R2(t) ≤ max

s∈[0,1]
|h′′

0(s)| · (t− 1)2 (5.14)

18



Using partial integration, some straightforward calculations show that for each j =

1, 2, 3, . . . there exist constants 0 < D0,j < D1,j < ∞ such that

D0,j

(z log n)(j+1)/2
≤
∫ 1

0

|t− 1|j exp
(
(log yz,n)(log t)

σ2

)
exp

(−(log tτ)2

2σ2

)
dt

=

∫ 1

0

|t− 1|jt(2σ2
0z logn/σ

4)1/2 exp

(−(log tτ)2

2σ2

)
dt ≤ D1,j

(z logn)(j+1)/2

(5.15)

for all z ∈ [zmin, zmax], all (h, τ, σ) ∈ Hhmin,hmax,δ × [τmin, τmax] × [σmin, σmax], and all

sufficiently large n.

Note that the derivatives of t(2σ
2
0z logn/σ

4)1/2 exp
(

−(log tτ)2

2σ2

)
with respect to σ and τ are

sums of terms which are of the general formD3·(z log n)1/2(log t)t(2σ
2
0
z logn/σ4)1/2 exp

(
−(log tτ)2

2σ2

)

and D4(log t)
jt(2σ

2
0
z logn/σ4)1/2−s exp

(
−(log tτ)2

2σ2

)
, where D3, D4 are constants, and where

j = 0, 1, 2 as well as s = 0, 1. But for a suitable choice of constants relation (5.15)

remains valid when replacing |t − 1|j by | log t|j and t(2σ
2
0z logn/σ

4)1/2 by t(2σ
2
0z logn/σ

4)1/2−s.

It then follows from a straightforward Taylor expansion that for all j = 0, 1, . . . there

exist some constants Aj, A
∗
j < ∞ such that

∣∣∣∣
∫ 1

0

(t− 1)jt(σ
2
0
z logn/σ̂4)1/2 exp

(−(log tτ̂)2

2σ̂2

)
dt−

∫ 1

0

(t− 1)jt(σ
2
0
z logn/σ4

0
)1/2 exp

(−(log tτ0)
2

2σ2
0

)
dt

∣∣∣∣

≤ Aj

(z log n)(j+1)/2
|σ̂ − σ0|+

A∗
j

(z log n)(j+1)/2
|τ̂ − τ0| (5.16)

It has already been shown above that σ̂ − σ0 = OP ((logn)−1) as well as τ̂ − τ0 =

OP

(
(logn)−1/2

)
. By definition of the function v(·), relations (5.4) as well as (5.9) - (5.16)

then obviously imply that for α = 1
2

sup
z̃∈Zn

| log v(yz̃,n, ĥ, τ̂ , σ̂)

v(yz̃,n, h0, τ0, σ0)
|

= sup
z̃∈Zn

∣∣∣∣∣∣
log

∫ 1

0

(
ĥ(1)− γ(1)(t− 1)

)
t(2σ

2
0
z̃ logn/σ̂4)1/2 exp

(
−(log tτ̂ )2

2σ̂2

)
dt

∫ 1

0
(h0(1) + h′

0(1)(t− 1)) t(2σ
2
0
z̃ logn/σ4

0
)1/2 exp

(
−(log tτ0)2

2σ2
0

)
dt

∣∣∣∣∣∣
+OP ((log n)

−α)

= sup
z̃∈Zn

∣∣∣∣∣∣

∫ 1

0

(
ĥ(1)− h0(1)− (γ(1) + h′

0(1))(t− 1)
)
t(2σ

2
0 z̃ logn/σ

4
0)

1/2
exp

(
−(log tτ0)2

2σ2
0

)
dt

∫ 1

0
(h0(1) + h′

0(1)(t− 1)) t(2σ
2
0
z̃ logn/σ4

0
)1/2 exp

(
−(log tτ0)2

2σ2
0

)
dt

∣∣∣∣∣∣

+OP ((logn)
−α) (5.17)
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By (5.6) and (5.17) we now obtain the following generalization of (5.8):

sup
z̃∈Zn

| log
gĥ,τ̂ ,σ̂(yz̃,n)

gh0,τ0,σ0
(yz̃,n)

|

≤ sup
z̃∈Zn

∣∣∣∣−(
σ2
0

σ̂2
− 1)z̃ log n+

(2σ2
0 z̃ logn)

1/2

σ̂2
log τ̂ − (2σ2

0 z̃ logn)
1/2

σ2
0

log τ0

+

∫ 1

0

(
ĥ(1)− h0(1)− (γ(1) + h′

0(1))(t− 1)
)
t(2σ

2
0
z̃ logn/σ4

0
)1/2 exp

(
−(log tτ0)2

2σ2
0

)
dt

∫ 1

0
(h0(1) + h′

0(1)(t− 1)) t(2σ
2
0
z̃ logn/σ4

0
)1/2 exp

(
−(log tτ0)2

2σ2
0

)
dt

∣∣∣∣

+OP ((logn)
−α)

= OP ((log n)
−α). (5.18)

Here, again α = 1
2
. Since Zn contains an increasing number of Nn elements, this already

leads to |σ̂ − σ0| = OP ((log n)−1.5), |τ̂ − τ0| = OP ((log n)−1), and |ĥ(1) − h0(1)| =

OP

(
(logn)−1/2

)
.

But |τ̂ − τ0| = OP ((logn)−1) (instead of |τ̂ − τ0| = OP

(
(logn)−1/2

)
) implies that for

j = 0 the error of the Taylor expansions in (5.16) can even be bounded by OP ((log n)−1.5)

(instead of OP ((log n)−1)). Together with (5.9) - (5.15) we can then conclude that (5.17)

and (5.18) even hold with α = 1.

Since Zn contains an increasing number of Nn elements, |τ̂ − τ0| = OP ((logn)−1)

|σ̂ − σ0| = OP ((log n)−2), |τ̂ − τ0| = OP ((log n)−1.5), |ĥ(1) − h0(1)| = OP ((log n)−1), as

well as |γ(1) + h′
0(1)| = OP

(
(log n)−1/2

)
are immediate consequences of (5.15) and (5.18)

with α = 1. �
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Figure 1: Density of X in the 4 scenarios considered.
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Table 1: Links between various noise to signal ratios for the 4 scenarios: the table evaluates
the ratios σZ/σX for different values of ρnts > 0.

Case σX ρnts = 0.01 ρnts = 0.05 ρnts = 0.10 ρnts = 0.25 ρnts = 0.50 ρnts = 0.75
U ∼ Exp(2) 0.2357 0.0212 0.1061 0.2125 0.5365 1.1115 1.7686
U ∼ Exp(1) 0.2887 0.0346 0.1735 0.3490 0.9076 2.0921 3.9881

U ∼ N+(0, 0.82) 0.2319 0.0208 0.1040 0.2082 0.5252 1.0851 1.7188
U ∼ N+(0.6, 0.62) 0.2179 0.0218 0.1093 0.2188 0.5519 1.1391 1.8017
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Table 2: Example 1.a: U ∼ Exp(2) with µU = σU = 0.5

Noise to signal ratios: ρnts = 0, σ = 0, σZ/σX = 0
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0129 0.45e-03 1 0.0066 0.45e-03 1 0.0013 0.08e-03 -3
BIAS -0.0087 0.41e-03 -0.0042 0.42e-03 -0.0009 0.02e-03
STD 0.0095 0.18e-03 0.0050 0.17e-03 0.0009 0.08e-03

Noise to signal ratios: ρnts = 0.01, σ = 0.005, σZ/σX = 0.0212
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0151 0.0118 -1 0.0100 0.0079 -2 0.0035 0.0036 -2
BIAS -0.0082 0.0083 -0.0055 -0.0010 -0.0010 0.0006
STD 0.0127 0.0084 0.0084 0.0079 0.0034 0.0036

Noise to signal ratios: ρnts = 0.05, σ = 0.025, σZ/σX = 0.1061
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0239 0.0279 -1 0.0178 0.0190 -2 0.0079 0.0073 -2
BIAS -0.0092 0.0112 -0.0019 -0.0054 0.0000 0.0001
STD 0.0221 0.0255 0.0177 0.0182 0.0079 0.0073

Noise to signal ratios: ρnts = 0.10, σ = 0.05, σZ/σX = 0.2125
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0312 0.0363 -1 0.0215 0.0250 -1 0.0125 0.0101 -2
BIAS -0.0054 0.0083 -0.0038 0.0090 -0.0009 0.0008
STD 0.0308 0.0353 0.0212 0.0234 0.0125 0.0101

Noise to signal ratios: ρnts = 0.25, σ = 0.125, σZ/σX = 0.5365
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0485 0.0492 -1 0.0352 0.0332 -1 0.0161 0.0144 -1
BIAS 0.0022 0.0039 0.0020 0.0049 0.0055 0.0050
STD 0.0485 0.0491 0.0351 0.0329 0.0152 0.0136

Noise to signal ratios: ρnts = 0.50, σ = 0.250, σZ/σX = 1.1115
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0660 0.0554 1 0.0540 0.0432 -1 0.0312 0.0189 -1
BIAS 0.0297 0.0253 0.0134 -0.0019 0.0200 -0.0022
STD 0.0590 0.0493 0.0523 0.0432 0.0239 0.0188

Noise to signal ratios: ρnts = 0.75, σ = 0.375, σZ/σX = 1.7686
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0957 0.0627 1 0.0750 0.0544 -1 0.0527 0.0251 -1
BIAS 0.0604 0.0103 0.0250 -0.0090 0.0385 -0.0094
STD 0.0743 0.0619 0.0708 0.0537 0.0360 0.0233
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Table 3: Example 1.b: U ∼ Exp(1) with µU = σU = 1

Noise to signal ratios: ρnts = 0, σ = 0, σZ/σX = 0
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0259 0.46e-03 1 0.0138 0.39e-04 -3 0.0026 0.24e-04 -4
BIAS -0.0180 0.43e-03 -0.0098 0.13e-04 -0.0018 0.08e-04
STD 0.0187 0.19e-03 0.0098 0.37e-04 0.0019 0.23e-04

Noise to signal ratios: ρnts = 0.01, σ = 0.01, σZ/σX = 0.0346
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0339 0.0198 -2 0.0228 0.0169 -2 0.0079 0.0072 -2
BIAS -0.0210 -0.0021 -0.0130 -0.0008 -0.0026 0.0007
STD 0.0266 0.0197 0.0188 0.0169 0.0075 0.0072

Noise to signal ratios: ρnts = 0.05, σ = 0.05, σZ/σX = 0.1735
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0535 0.0469 -2 0.0370 0.0350 -2 0.0191 0.0155 -2
BIAS -0.0196 -0.0143 -0.0067 -0.0121 -0.0013 -0.0020
STD 0.0498 0.0447 0.0365 0.0328 0.0191 0.0154

Noise to signal ratios: ρnts = 0.10, σ = 0.10, σZ/σX = 0.3490
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0783 0.0741 -2 0.0581 0.0552 -1 0.0356 0.0242 -2
BIAS -0.0131 -0.0262 -0.0249 0.0196 0.0002 -0.0040
STD 0.0773 0.0694 0.0525 0.0517 0.0356 0.0239

Noise to signal ratios: ρnts = 0.25, σ = 0.25, σZ/σX = 0.9076
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.1280 0.1154 -1 0.0988 0.0840 -1 0.0444 0.0399 -1
BIAS -0.0205 0.0062 -0.0251 0.0182 -0.0230 0.0239
STD 0.1264 0.1154 0.0956 0.0821 0.0380 0.0320

Noise to signal ratios: ρnts = 0.50, σ = 0.50, σZ/σX = 2.0921
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.1141 0.1552 1 0.0919 0.1431 1 0.0627 0.0502 -1
BIAS -0.0668 0.1110 -0.0628 0.1204 -0.0239 0.0245
STD 0.0926 0.1085 0.0671 0.0774 0.0580 0.0438

Noise to signal ratios: ρnts = 0.75, σ = 0.75, σZ/σX = 3.9881
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.1138 0.1697 2 0.0872 0.1495 1 0.0678 0.0549 -1
BIAS -0.0414 0.1029 -0.0460 0.1153 -0.0197 0.0233
STD 0.1061 0.1351 0.0742 0.0952 0.0649 0.0498
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Table 4: Example 2.a: U ∼ N+(0, 0.82) so µU = 0.6383 and σU = 0.4822

Noise to signal ratios: ρnts = 0, σ = 0, σZ/σX = 0
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0259 0.93e-04 -2 0.0127 0.29e-04 -4 0.0025 0.35e-03 0
BIAS -0.0186 0.34e-04 -0.0090 0.14e-04 -0.0017 0.25e-03
STD 0.0181 0.87e-04 0.0090 0.26e-04 0.0019 0.25e-03

Noise to signal ratios: ρnts = 0.01, σ = 0.0048, σZ/σX = 0.0208
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0314 0.0183 0 0.0210 0.0137 -2 0.0091 0.0083 -2
BIAS -0.0225 0.0181 -0.0130 0.0034 -0.0052 0.0041
STD 0.0219 0.0020 0.0165 0.0133 0.0074 0.0073

Noise to signal ratios: ρnts = 0.05, σ = 0.0241, σZ/σX = 0.1040
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0660 0.0519 -2 0.0441 0.0385 -2 0.0186 0.0155 -2
BIAS -0.0397 0.0133 -0.0227 0.0083 -0.0096 0.0065
STD 0.0528 0.0503 0.0378 0.0376 0.0159 0.0142

Noise to signal ratios: ρnts = 0.10, σ = 0.0482, σZ/σX = 0.2082
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0775 0.0640 -3 0.0552 0.0456 -2 0.0309 0.0224 -2
BIAS -0.0401 0.0089 -0.0255 0.0068 -0.0167 0.0103
STD 0.0663 0.0635 0.0491 0.0452 0.0260 0.0200

Noise to signal ratios: ρnts = 0.25, σ = 0.1206, σZ/σX = 0.5252
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.1112 0.0894 -2 0.0999 0.0672 -2 0.0640 0.0349 -2
BIAS -0.0570 0.0102 -0.0436 0.0126 -0.0377 0.0186
STD 0.0956 0.0889 0.0900 0.0661 0.0517 0.0295

Noise to signal ratios: ρnts = 0.50, σ = 0.2411, σZ/σX = 1.0851
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.1109 0.1009 1 0.0941 0.0920 1 0.0915 0.0451 -2
BIAS -0.0898 0.0830 -0.0808 0.0824 -0.0634 0.0239
STD 0.0652 0.0575 0.0483 0.0410 0.0660 0.0383

Noise to signal ratios: ρnts = 0.75, σ = 0.3617, σZ/σX = 1.7188
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0995 0.0856 1 0.0777 0.0716 1 0.0432 0.0531 1
BIAS -0.0627 0.0554 -0.0529 0.0555 -0.0310 0.0469
STD 0.0773 0.0653 0.0570 0.0452 0.0301 0.0249
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Table 5: Example 2.b: U ∼ N+(0.6, 0.62) so µU = 0.7726 and σU = 0.4761

Noise to signal ratios: ρnts = 0, σ = 0, σZ/σX = 0
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0448 0.98e-04 -2 0.0255 0.13e-03 -2 0.0052 0.38e-03 0
BIAS -0.0312 0.37e-04 -0.0169 0.50e-04 -0.0036 0.29e-03
STD 0.0322 0.90e-04 0.0191 0.12e-03 0.0038 0.24e-03

Noise to signal ratios: ρnts = 0.01, σ = 0.0048, σZ/σX = 0.0218
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.0574 0.0180 -1 0.0386 0.0187 -1 0.0222 0.0183 -2
BIAS -0.0396 0.0151 -0.0294 0.0176 -0.0144 0.0128
STD 0.0416 0.0098 0.0251 0.0064 0.0170 0.0130

Noise to signal ratios: ρnts = 0.05, σ = 0.0238, σZ/σX = 0.1093
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.1391 0.1030 -4 0.1038 0.0776 -4 0.0579 0.0473 -2
BIAS -0.0998 0.0641 -0.0672 0.0428 -0.0410 0.0314
STD 0.0971 0.0807 0.0792 0.0649 0.0409 0.0354

Noise to signal ratios: ρnts = 0.10, σ = 0.0476, σZ/σX = 0.2188
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.1592 0.1146 -4 0.1193 0.0843 -3 0.0759 0.0533 -2
BIAS -0.1160 0.0644 -0.0772 0.0426 -0.0540 0.0343
STD 0.1091 0.0949 0.0911 0.0728 0.0534 0.0408

Noise to signal ratios: ρnts = 0.25, σ = 0.1190, σZ/σX = 0.5519
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.1760 0.1138 -4 0.1483 0.0894 -3 0.1111 0.0554 -2
BIAS -0.1183 0.0351 -0.0959 0.0301 -0.0824 0.0373
STD 0.1304 0.1083 0.1132 0.0843 0.0747 0.0410

Noise to signal ratios: ρnts = 0.50, σ = 0.2381, σZ/σX = 1.1391
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.2120 0.1223 -4 0.1854 0.0885 -4 0.1436 0.0498 -3
BIAS -0.1380 0.0123 -0.1212 0.0267 -0.0842 0.0195
STD 0.1611 0.1218 0.1404 0.0844 0.1164 0.0459

Noise to signal ratios: ρnts = 0.75, σ = 0.3571, σZ/σX = 1.8017
n = 50 n = 100 n = 500

τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ τ̂ σ̂ log10 λ
RMSE 0.2284 0.1247 -3 0.1812 0.0876 2 0.1465 0.0523 -3
BIAS -0.1545 -0.0046 -0.1226 0.0711 -0.0841 0.0091
STD 0.1684 0.1248 0.1336 0.0512 0.1200 0.0515
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Figure 2: Frontier estimates on a grid of 11 values of w for n = 100 (left panel) and
n = 500 (right panel).
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Table 6: Estimated bias and MSE over 500 Monte-Carlo simulated samples, at 3 different
values of w, for n = 100 and n = 500; HS = Hall-Simar (2002). At each value of w, 200
bootstrap replications are used for selecting λ.

n w = 0.25 w = 0.50 w = 0.75
100 τ(w) new BIAS .0034 .0046 -.0030

MSE .0004 .0008 .0014
HS BIAS .0048 .0017 -.0003

MSE .0014 .0025 .0028
σ(w) new BIAS -.0071 -.0031 .0009

MSE .0003 .0003 .0003

500 τ(w) new BIAS .0083 .0105 .0064
MSE .0002 .0004 .0004

HS BIAS .0009 .0041 .0041
MSE .0005 .0007 .0011

σ(w) new BIAS -.0053 -.0033 -.0005
MSE .0001 .0001 .0001
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Figure 3: American electricity utility data: frontier estimates on a grid of 21 values of
w = log(cost).
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Table 7: American electricity utility data: estimates of τ(w), σ(w) and E(U |W = w);
nb(w) indicates the active number of data points used for the local linear approximation.

values of w nb(w) τ̂(w) σ̂(w) Ê(U |W = w)
1.50 10 7.15 0.0342 0.0769
1.68 12 7.26 0.0421 0.0682
1.85 17 7.41 0.0404 0.0607
2.02 19 7.61 0.0398 0.0447
2.20 26 7.79 0.0357 0.0463
2.38 27 7.97 0.0340 0.0472
2.55 28 8.17 0.0257 0.0504
2.72 35 8.35 0.0250 0.0446
2.90 37 8.58 0.0193 0.0504
3.08 42 8.73 0.0258 0.0453
3.25 43 8.98 0.0246 0.0464
3.42 42 9.21 0.0214 0.0482
3.60 38 9.33 0.0226 0.0404
3.78 34 9.41 0.0272 0.0325
3.95 32 9.49 0.0232 0.0255
4.12 28 9.70 0.0250 0.0284
4.30 24 9.86 0.0227 0.0278
4.47 22 10.02 0.0237 0.0300
4.65 21 10.19 0.0201 0.0294
4.83 20 10.35 0.0199 0.0301
5.00 15 10.47 0.0123 0.0278
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Proof of Theorem 3.1. Let

Fn =
{
y → ghγ ,τ,σ(y) =

1

σy

Mn∑

k=1

γk

∫ qk

qk−1

φ
(1
σ
log

y

tτ

)
dt : τmin ≤ τ ≤ τmax,

σmin ≤ σ ≤ σmax,

Mn∑

k=1

γk = Mn, 0 ≤ γk ≤ hmax for all k = 1, . . . ,Mn,

and inf
1−δ≤t≤1

hγ(t) ≥ hmin

}
. (A.1)

For any g(·) = 1
σ·

∫ 1

0
h(t)φ

(
1
σ
log ·

tτ

)
dt, define the projection ontoFn by πng(y) = ghγ ,τ,σ(y),

where the vector γ is determined such that H(g, πng) is minimal. Some easy calculations

show that

γk = Mn

∫ qk

qk−1

h(t)dt (A.2)

(k = 1, . . . ,Mn), and hence

πng(y) =
Mn

σy

Mn∑

k=1

∫ qk

qk−1

h(t)dt

∫ qk

qk−1

φ
(1
σ
log

y

tτ

)
dt.
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Let q∗k = (qk−1 + qk)/2 and let R0(y, t) =
∂
∂t
φ
(

1
σ0

log y
tτ0

)
. Consider

∣∣∣E(log πng0(Y ))− E(log g0(Y ))
∣∣∣ =

∣∣∣
∫ [

log
πng0(y)

g0(y)

]
g0(y) dy

∣∣∣

≤
∫ ∣∣∣πng0(y)

g0(y)
− 1
∣∣∣g0(y) dy =

∫ ∣∣∣πng0(y)− g0(y)
∣∣∣ dy

≤ Mn

σ0

Mn∑

k=1

∫
1

y

∣∣∣
∫ qk

qk−1

∫ qk

qk−1

(h0(s)− h0(t)) ds φ
( 1

σ0

log
y

tτ0

)
dt
∣∣∣ dy

≤ Mn

σ0

Mn∑

k=1

∫
1

y

∣∣∣
∫ qk

qk−1

∫ qk

qk−1

(h0(s)− h0(t)) ds φ
( 1

σ0
log

y

q∗kτ0

)
dt
∣∣∣ dy

+
Mn

σ0

Mn∑

k=1

∫
1

y

∣∣∣
∫ qk

qk−1

∫ qk

qk−1

(h0(s)− h0(t)) dsR0(y, ηk(t))(t− q∗k) dt
∣∣∣ dy

=
Mn

σ0

Mn∑

k=1

∫
1

y

∣∣∣
∫ qk

qk−1

∫ qk

qk−1

h′
0(q

∗
k)(s− t) dt ds φ

( 1

σ0
log

y

q∗kτ0

)∣∣∣ dy +O(M−2
n )

= O(M−2
n ), (A.3)

using two Taylor expansions of first order, where ηk(t) is between t and q∗k for any qk−1 <

t < qk. Next, note that for all g ∈ Fn, we have that

E
[
log g(Y )− log g0(Y )

]2
=

∫ [
log

g(y)

g0(y)

]2
g0(y) dy = 4

∫ [
log

√
g(y)√
g0(y)

]2
g0(y) dy

≤ 4

∫ [ √g(y)√
g0(y)

− 1
]2
g0(y) dy = 4

∫
[
√

g(y)−
√

g0(y)]
2 dy

= 4H2(g, g0),

which is uniformly bounded for all g ∈ Fn. Hence, for all g ∈ Fn, Var(log g(Y )) ≤ D for

some D < ∞, and

n−1

n∑

i=1

log g(Yi)− E(log g(Y )) = OP (n
−1/2).

Consider now a subset F∗
n of Fn of size nκ2Mn for some κ2 > 0, and let 0 < κ3 < 1/2. Let

ymax = exp{A(logn)1/2σ0 + log τ0} and ymin = exp{−A(log n)1/2σ0}, where A >
√
2, and

define

g̃(y) =





g(y) ymin ≤ y ≤ ymax

g(ymax) y > ymax

g(ymin) y < ymin.
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Then, it is clear that maxg∈F∗

n
|E(log g(Y )) − E(log g̃(Y ))| ≤ C

2
n−κ3(logn)1/2 for some

0 < C < ∞. Hence,

P
(
max
g∈F∗

n

∣∣∣n−1

n∑

i=1

log g(Yi)− E(log g(Y ))
∣∣∣ ≥ Cn−κ3(log n)1/2

)

≤ P
(
max
g∈F∗

n

∣∣∣n−1
n∑

i=1

log g̃(Yi)− E(log g̃(Y ))
∣∣∣ ≥ C

2
n−κ3(log n)1/2

)

+P
(
max
1≤i≤n

log Yi − log τ0
σ0

> A(logn)1/2
)
+ P

(
max
1≤i≤n

− log Yi

σ0
> A(log n)1/2

)

= P1 + P2 + P3 (say).

Using Bernstein’s inequality (see e.g. Serfling (1980), p. 95), we obtain that

P1 ≤ 2nκ2Mn exp
(
− 1

4

C2n−2κ3 log n

2n−1D +Kn−1(log n)n−κ3(log n)1/2

)

≤ 2nκ2Mn exp
(
−K ′n1−2κ3 logn

)
≤ 2nκ2Mnn−K ′n1−2κ3

= o(1),

for some 0 < K,K ′ < ∞, provided Mn = O(n1−2κ3) and provided K ′ (and hence C) is

chosen sufficiently large. This together with assumption (A3) implies that κ3 should be

chosen at most equal to (1 − β)/2 which is strictly between 2/5 and 1/2 depending on

the value of β. Now, note that

P2 ≤ nP (log Y > log τ0 + A(logn)1/2σ0) ≤ nP (logZ/σ0 > A(logn)1/2)

≤ n√
2π

1

A
√
log n

exp
{
− A2

2
logn

}
=

1

A
√
2π

1√
logn

n1−A2

2 = o(1),

since A >
√
2. Moreover, from assumption (A4) we know that P3 ≤ nP (Y < ymin) = o(1).

Hence,

max
g∈F∗

n

∣∣∣n−1
n∑

i=1

log g(Yi)− E(log g(Y ))
∣∣∣ = OP (n

−κ3(log n)1/2). (A.4)

Next, we specify the set F∗
n. Divide the interval [0, hmax] into O(nκ2) intervals [αj, αj+1]

with αj = jn−κ2 (j = 0, 1, . . . , O(nκ2)). Also, divide [τmin, τmax] into O(nκ2) intervals

[τi, τi+1] with τi = τmin + in−κ2 (i = 0, 1, . . . , O(nκ2)) and similarly, divide [σmin, σmax]

into O(nκ2) intervals [σl, σl+1] with σl = σmin + ln−κ2, (l = 0, 1, . . . , O(nκ2)). Let

F∗
n =

{
y → ghγ ,τ,σ(y) ∈ Fn : there exist i, l, j1, . . . , jMn such that

τ = τi, σ = σl, γk = αjk for all k = 1, . . . ,Mn

}
. (A.5)

Then, it is clear that the number of elements of F∗
n is nκ2(Mn+2). We will show that

sup
g∈Fn

inf
g∗∈F∗

n

∣∣∣n−1
n∑

i=1

[
log g(Yi)− log g∗(Yi)

]∣∣∣ = oP (n
−κ4) (A.6)
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for some κ4 > 0. In a similar way it can also be shown that

sup
g∈Fn

inf
g∗∈F∗

n

∣∣∣E
[
log g(Y )− log g∗(Y )

]∣∣∣ = o(n−κ4). (A.7)

To prove (A.6), note that for any ghγ ,τ,σ(·) ∈ Fn, there exist a τi, a σl, and αj1, . . . , αjMn

such that 0 < τ − τi < n−κ2 , 0 < σ−σl < n−κ2 , 0 < γk−αjk < n−κ2 for all k = 1, . . . ,Mn.

Denote this element of F∗
n by gh∗,τ∗,σ∗ . Then, for any y > 0,

log gh,τ,σ(y)− log gh∗,τ∗,σ∗(y)

=
[
logw(y, τ, σ)− logw(y, τ ∗, σ∗)

]
+
[
log v(y, h, τ, σ)− log v(y, h∗, τ ∗, σ∗)

]

= T1(y, g, g
∗) + T2(y, g, g

∗),

where

w(y, τ, σ) :=
1√
2π

1

σy
exp

(
−(log y)2

2σ2
+

(log y)(log τ)

σ2

)
, (A.8)

v(y, h, τ, σ) :=

∫ 1

0

h(t) exp

(
(log y)(log t)

σ2

)
exp

(
−(log tτ)2

2σ2

)
dt. (A.9)

It can be easily shown that supg∈Fn
infg∗∈F∗

n
|n−1

∑n
i=1 T1(Yi, g, g

∗)| = oP (n
−κ4) if κ4 < κ2.

In fact, write

P
(
sup
g∈Fn

inf
g∗∈F∗

n

∣∣∣n−1

n∑

i=1

T1(Yi, g, g
∗)
∣∣∣ > n−κ4

)

≤ P
(
min

i
log Yi < −A(log n)1/2σ0

)
+ P

(
max

i
log Yi > log τ0 + A(logn)1/2σ0

)

+P
(
sup
g∈Fn

inf
g∗∈F∗

n

∣∣∣n−1
n∑

i=1

T1(Yi, g, g
∗)I
{
− A(logn)1/2σ0 ≤ log Yi

≤ log τ0 + A(logn)1/2σ0

}∣∣∣ > 1

2
n−κ4

)
.

As before (see the derivation for P2 and P3) we have that the first two terms above are o(1).

For the third term note that the expression between absolute values is OP ((log n)n
−κ2) =

oP (n
−κ4) uniformly over g. Next , write

P
(
sup
g∈Fn

inf
g∗∈F∗

n

∣∣∣n−1
n∑

i=1

T2(Yi, g, g
∗)
∣∣∣ > n−κ4

)

≤ P
(
min

i
log Yi < −A(log n)1/2σ0

)

+P
(
sup
g∈Fn

inf
g∗∈F∗

n

∣∣∣n−1

n∑

i=1

T2(Yi, g, g
∗)I
{
−A(log n)1/2σ0 ≤ log Yi ≤ 0

}∣∣∣ > 1

2
n−κ4

)

+P
(
sup
g∈Fn

inf
g∗∈F∗

n

∣∣∣n−1
n∑

i=1

T2(Yi, g, g
∗)I{Yi > 1}

∣∣∣ > 1

2
n−κ4

)

= S1 + S2 + S3.
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Clearly, by assumption (A4), S1 = o(1). Next, consider S2. We focus attention on

the term involving log v(Yi, h, τ, σ) − log v(Yi, h
∗, τ, σ), as the terms dealing with τ − τ ∗

and σ − σ∗ can be dealt with in a similar way. It is easy to see that on the interval

[exp{−A(logn)1/2σ0}, 1], the function y →
∫ 1

0
exp{ (log y)(log t)

σ2 } exp{− (log tτ)2

2σ2 }dt attains its
maximum for y = exp{−A(log n)1/2σ0} and hence v(y, h, τ, σ)− v(y, h∗, τ, σ) is bounded

by Cn−κ2n2A2σ2
0/σ

2
min for some constant 0 < C < ∞. By choosing κ2 large enough, this

will be o(n−κ4) uniformly on the interval [exp{−A(log n)1/2σ0}, 1]. Since the function

v(y, h, τ, σ) is bounded below from zero uniformly over all y in [exp{−A(log n)1/2σ0}, 1]
and all gh,τ,σ ∈ Fn, it follows that also log v(y, h, τ, σ)− log v(y, h∗, τ, σ) is o(n−κ4). Hence,

S2 = 0 for n large enough.

In order to deal with S3, define vδ(y, h, τ, σ) by integrating over the interval [1 − δ, 1]

instead of [0, 1] in (A.9). Let 0 < zmin < zmax < κσ2
minσ

−2
0 where κ = 2β and β is defined

in condition (A3), and for z ∈ [zmin, zmax] set

yz,n := exp
((

2σ2
0z logn

)1/2)
.

Since h ∈ Hhmin,hmax,δ is bounded by hmax, it is now immediately seen that

sup
z∈[zmin,zmax]

∣∣∣ v(yz,n, h, τ, σ)
vδ(yz,n, h, τ, σ)

− 1
∣∣∣→ 0 as n → ∞ (A.10)

uniformly for all (h, τ, σ) ∈ Hhmin,hmax,δ × [τmin, τmax]× [σmin, σmax]. Furthermore,
∫ 1

1−δ

h(t) exp

(
(log yz,n)(log t)

σ2

)
dt ≥ hmin

∫ 1

1−δ

t(2σ
2
0
z logn/σ4)1/2dt

=
hmin(1− (1− δ)(2σ

2
0
z logn/σ4)1/2+1)

(2σ2
0z log n/σ

4)1/2 + 1

≥ hmin

(2σ2
0z logn/σ

4)1/2 + 1
, (A.11)

and
∫ 1

0

h(t) exp

(
(log yz,n)(log t)

σ2

)
dt ≤ hmax

∫ 1

0

t(2σ
2
0
z logn/σ4)1/2dt

≤ hmax

(2σ2
0z logn/σ

4)1/2 + 1
. (A.12)

Now, write

n−1
n∑

i=1

(
log v(Yi, h, τ, σ)− log v(Yi, h

∗, τ ∗, σ∗)
)
I(Yi > 1)

= n−1
n∑

i=1

I(Yi > 1)

v(Yi, h̃, τ̃ , σ̃)

(
[v(Yi, h, τ, σ)− v(Yi, h

∗, τ, σ)]

+[v(Yi, h
∗, τ, σ)− v(Yi, h

∗, τ ∗, σ)] + [v(Yi, h
∗, τ ∗, σ)− v(Yi, h

∗, τ ∗, σ∗)]
)
,
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for some intermediate h̃, τ̃ and σ̃. Then, each Yi in this sum can be written as Yi =

exp((2σ2
0Z̃i log n)

1/2) for some Z̃i > 0. It is now easily seen using (A.11) and (A.12) that

n−1
∑n

i=1 T2(Yi, g, g
∗)I(Yi > 1) = OP (n

−κ2) = oP (n
−κ4) uniformly over g.

It now follows from (A.4), (A.6) and (A.7) that

sup
g∈Fn

∣∣∣n−1

n∑

i=1

log g(Yi)− E(log g(Y ))
∣∣∣ = OP (n

−min(κ3,κ4)(logn)1/2). (A.13)

Now, let κ = min(κ3, κ4). Since κ3 needs to be at most (1−β)/2 and κ4 can be any value

smaller than κ2, which on its turn can be chosen as large as needed, it follows that the

highest possible value for κ is κ = (1− β)/2.

Next, denoting the γ-vector corresponding to πng0 by γ0, and defining the function

h̃0(s) = Mn

∫ s

s−1/Mn

h0(t) dt,

it follows from (A.2) that γ0k = h̃0(qk) for all k = 3, . . . ,Mn, and hence

γ0k − 2γ0,k−1 + γ0,k−2 = M−1
n h̃′

0(q
∗
k) +

1

2
M−2

n h̃′′
0(ξk)−M−1

n h̃′
0(q

∗
k−1)−

1

2
M−2

n h̃′′
0(ξk−1)

= M−2
n h̃′′

0(ηk) +O(M−2
n ) = O(M−2

n ),

uniformly in k, where q∗k = (qk−1 + qk)/2 as before, and where ξk, ξk−1 and ηk are inter-

mediate points. It now follows that pen(πng0) = O(M−2
n ). Moreover,

n−1
n∑

i=1

log ĝ(Yi)− λ pen(ĝ) ≥ n−1
n∑

i=1

log g(Yi)− λ pen(g)

for any g ∈ Fn. Now, consider

0 ≤ λ pen(ĝ) (A.14)

≤ E[log g0(Y )− log ĝ(Y )] + λ pen(ĝ)

=
[
n−1

n∑

i=1

log g0(Yi)− n−1
n∑

i=1

log ĝ(Yi) + λ pen(ĝ)
]

−
[
n−1

n∑

i=1

log g0(Yi)− E(log g0(Y ))
]
+
[
n−1

n∑

i=1

log ĝ(Yi)− E(log ĝ(Y ))
]

≤ n−1
n∑

i=1

log g0(Yi)− n−1
n∑

i=1

log πng0(Yi) + λ pen(πng0) +OP (n
−κ(logn)1/2)

≤ E[log g0(Y )− log πng0(Y )] + λ pen(πng0) +OP (n
−κ(logn)1/2)

= O(M−2
n ) +OP (n

−κ(logn)1/2) = OP (M
−2
n ),
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by assumption (A3) and since κ = (1 − β)/2. Here, the third and the fourth inequality

follow from (A.13) and the first equality in the last line is a consequence of (A.3). This

shows that

λ pen(ĝ) = OP (M
−2
n ),

and also that

E[log g0(Y )− log ĝ(Y )] = OP (M
−2
n ).

It now follows from Reiss (1989) (p. 99) that

H2(ĝ, g0) ≤
∫

log
(g0(y)
ĝ(y)

)
g0(y) dy = E[log g0(Y )− log ĝ(Y )] = OP (M

−2
n ),

which finishes the proof. �

Proof of Theorem 3.3. The proof is similar to the one of Theorem 3.1, and we therefore

only focus on the most important differences. Using the abbreviated notations nb =
∑n

i=1 I(‖Wi − w0‖2 ≤ bn) and g0i(·) = g0Wi
(·), and by ordering the data in such a way

that the first nb observations are the ones for which ‖Wi − w0‖2 ≤ bn, we can write with

κ = (1− β)/2

0 ≤ λ pen(ĝw0
)

≤ n−1
b

nb∑

i=1

E
[
log g0i(Yi)− log ĝw0

(Yi)|W = Wi

]
+ λ pen(ĝw0

)

=
[
n−1
b

nb∑

i=1

log g0i(Yi)− n−1
b

nb∑

i=1

log ĝw0
(Yi) + λ pen(ĝw0

)
]

−
[
n−1
b

nb∑

i=1

{
log g0i(Yi)− E(log g0i(Yi)|W = Wi)

}]

+
[
n−1
b

nb∑

i=1

{
log ĝw0

(Yi)−E(log ĝw0
(Yi)|W = Wi)

}]

≤
[
n−1
b

nb∑

i=1

log g0w0
(Yi)− n−1

b

nb∑

i=1

log πng0w0
(Yi) + λ pen(πng0w0

)
]

+
[
n−1
b

nb∑

i=1

{
log g0i(Yi)− log g0w0

(Yi)
}]

+OP ((nb
d
n)

−κ(log n)1/2)

≤ E[log g0w0
(Y )− log πng0w0

(Y )|W = w0] + λ pen(πng0w0
)

+OP (b
2
n) +OP ((nb

d
n)

−κ(logn)1/2)

= O(M−2
n ) +OP ((nb

d
n)

−κ(log n)1/2) = OP (M
−2
n ).

The remainder of the proof is similar to the proof of Theorem 3.1. �
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Proof of Theorem 3.5. Recall that supt∈[0,1] |h(m)(t)| ≤ hm,max as well as supt∈[0,1] |h(t)| ≤
hmax for all h ∈ Hm

hmin,hmax,hm,maxδ. By using Taylor expansions it is now immediately seen

that this implies the existence of a constant Hmax such that supt∈[0,1] |h(j)(t)| ≤ Hmax for

all j = 0, 1, . . . , m and all h ∈ Hm
hmin,hmax,hm,max,δ

.

The theorem is proved by induction over m = 0, 1, 2, . . . . The arguments used in

the proof of Assertion a) of Theorem 3.2 readily generalize to the present situation and

already show that (3.6) - (3.8) hold for m = 0.

Now consider the case that m > 0 and assume that the assertions of the theorem

hold for all m∗ = 0, . . . , m− 1. The proof follows from a generalization of the arguments

used in the proof of Assertion b) of Theorem 3.2. We already know that σ̂ − σ0 =

OP

(
(logn)−(1+(m−1)/2)

)
as well as τ̂ − τ0 = OP

(
(log n)−m/2

)
. Therefore, (5.16) implies

∣∣∣∣
∫ 1

0

(t− 1)jt(σ
2
0
z logn/σ̂4)1/2 exp

(−(log tτ̂)2

2σ̂2

)
dt (A.15)

−
∫ 1

0

(t− 1)jt(σ
2
0
z logn/σ4

0
)1/2 exp

(−(log tτ0)
2

2σ2
0

)
dt

∣∣∣∣ = OP ((z logn)
−(m+1)/2)

for all j = 0, . . . , m. Taylor expansions of h0 and ĥ then provide

h0(t) = h0(1) +
m−1∑

j=1

h
(j)
0 (1)(t− 1)j +R3(t), where |R3(t)| ≤ Hmax · (t− 1)m

ĥ(t) = ĥ(1) +

m−1∑

j=1

ĥ(j)(1)(t− 1)j +R4(t), where |R4(t)| ≤ Hmax · (t− 1)m

Recall that supt∈[0,1] |h(j)
0 (t)| ≤ Hmax and supt∈[0,1] |ĥ(j)(t)| ≤ Hmax for all j = 0, . . . , m.

By (5.15) and (A.15) a straightforward generalization of the arguments leading to (5.17)

and (5.18) then yields

sup
z̃∈Zn

| log
gĥ,τ̂ ,σ̂(yz̃,n)

gh0,τ0,σ0
(yz̃,n)

|

= sup
z̃∈Zn

∣∣∣∣−(
σ2
0

σ̂2
− 1)z̃ logn +

(2σ2
0 z̃ log n)

1/2

σ̂2
log τ̂ − (2σ2

0 z̃ log n)
1/2

σ2
0

log τ0

+

∑m−1
j=0 (ĥ

(j)(1)− h
(j)
0 (1))

∫ 1

0
(t− 1)jt(2σ

2
0 z̃ logn/σ

4
0)

1/2
exp

(
−(log tτ0)2

2σ2
0

)
dt

∑m−1
j=0 h

(j)
0 (1)

∫ 1

0
(t− 1)jt(2σ

2
0
z̃ logn/σ4

0
)1/2 exp

(
−(log tτ0)2

2σ2
0

)
dt

∣∣∣∣

= OP ((log n)
−m/2). (A.16)

Since Zn contains an increasing number of Nn elements, τ̂ − τ0 = OP

(
(log n)−(1+m)/2

)
,

σ̂ − σ0 = OP

(
(logn)−(1+m/2)

)
, and |ĥ(j)(1) − h

(j)
0 (1)| = OP

(
(log n)−m/2

)
are immediate

consequences of (5.15) and (A.16). �
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