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We consider the problem of estimating the structural function in nonpara-
metric instrumental regression, where in the presence of an instrument W a
response Y is modeled in dependence of an endogenous explanatory variable Z.

The proposed estimator is based on dimension reduction and additional thresh-
olding. The minimax optimal rate of convergence of the estimator is derived
assuming that the structural function belongs to some ellipsoids which are in a
certain sense linked to the conditional expectation operator of Z given W. We il-
lustrate these results by considering classical smoothness assumptions. However,
the proposed estimator requires an optimal choice of a dimension parameter de-
pending on certain characteristics of the unknown structural function and the
conditional expectation operator of Z given W, which are not known in practice.
The main issue addressed in our work is a fully adaptive choice of this dimension
parameter using a model selection approach under the restriction that the condi-
tional expectation operator of Z given W is smoothing in a certain sense. In this
situation we develop a penalized minimum contrast estimator with randomized
penalty and collection of models. We show that this data-driven estimator can
attain the lower risk bound up to a constant over a wide range of smoothness
classes for the structural function.
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1. Introduction

Nonparametric instrumental regression models have attracted increasing attention in the
econometrics and statistics literature (c.f. Florens (2003), Darolles et al. (2002), Newey and
Powell (2003), Hall and Horowitz (2007) or Blundell et al. (2007) to name only a few). In
instrumental regression, the dependence of a response Y on the variation of an endogenous
vector Z of explanatory variables is characterized by

Y=9p(Z)+U (1.1a)
for some error term U. Additionally, a vector of exogenous instruments W such that
E[U|W] =0 (1.1b)

is supposed to be observed. The nonparametric relationship is hence modeled by the struc-
tural function . Typical examples are error-in-variable models, simultaneous equations
or treatment models with endogenous selection. However, it is worth noting that in the
presence of instrumental variables the model equations (1.1a—1.1b) are the natural general-
ization of a standard parametric model (see, e.g., Amemiya (1974)) to the nonparametric
situation. This extension has first been introduced by Florens (2003) and Newey and Pow-
ell (2003), while its identification has been studied e.g. in Carrasco et al. (2006), Darolles
et al. (2002) and Florens et al. (2010). It is interesting to note that recent applications
and extensions of this approach include nonparametric tests of exogeneity (Blundell and
Horowitz (2007)), quantile regression models (Horowitz and Lee (2007)), or semiparametric
modeling (Florens et al. (2009)) to name but a few.

The nonparametric estimation of the structural function ¢ based on a sample of (Y, Z, W)
has been studied in the literature. For example, Ai and Chen (2003), Blundell et al. (2007)
or Newey and Powell (2003) consider sieve minimum distance estimators, while Darolles
et al. (2002), Gagliardini and Scaillet (2006) or Florens et al. (2010) study penalized least
squares estimators. The optimal estimation in a minimax sense has been studied by Hall
and Horowitz (2005) and Chen and Reif§ (2008). The authors prove a lower bound for the
mean integrated squared error (MISE) and propose an estimator which can attain optimal
rates. In the present work, we extend this result by considering not only the MISE of the
estimation of ¢ but, more generally, a weighted risk (defined below), which allows us for
example to consider the estimation of the derivatives of ¢, too. We show a lower bound
for this weighted risk and propose an estimator which can attain this lower bound up to a
constant.

It has been noticed by Newey and Powell (2003) and Florens (2003) that the nonparametric
estimation of the structural function ¢ generally leads to an ill-posed inverse problem. More
precisely, consider the model equations (1.1a-1.1b). Taking the conditional expectation
with respect to the instruments W on both sides in equation (1.1a) leads to the conditional
moment equation

E[Y[W] = E[p(2)[W]. (1.2)

Therefore, the estimation of the structural function ¢ is linked to the inversion of equation
(1.2), which is not stable in general and hence an ill-posed inverse problem (for a compre-
hensive review of inverse problems in econometrics we refer to Carrasco et al. (2006)). To
cope with this instability, one generally employs regularization techniques which involve the
choice of a smoothing parameter. It is well known that the resulting estimation procedure



can attain optimal rates only if this parameter is chosen in an appropriate way. This choice
necessitates in general knowledge of characteristics of the structural function, such as the
number of its derivatives, which are not known in practise. Thus, one of the essential prob-
lems in this theoretical framework is the fully data driven choice of smoothing parameters.
In the present work, we present an adaptive method which indeed does not depend on
any properties of ¢, but which still necessitates that some characteristics of the underlying
operator are known.

One objective of this paper is the minimax optimal nonparametric estimation of the struc-
tural function ¢ based on an independent and identically distributed (i.i.d.) sample of
(Y, Z,W) obeying (1.1a-1.1b). After showing the lower risk bounds, we will follow an esti-
mation approach often used in the literature. For the moment being, suppose that the struc-
tural function can be developed by using only m pre-specified functions ey, ..., ek, say ¢ =
E?:l [¢]je;, where now only the coefficients [¢]1, ..., [¢]i are unknown. Thereby, the condi-
tional moment equation (1.2) reduces to a multivariate linear conditional moment equation,
that is, E[Y|W] = Zle[go] jE[e;(Z)|W]. Notice that solving this equation is a classical
textbook problem in econometrics (c.f. Pagan and Ullah (1999)). One popular approach
is to replace the conditional moment equation by an unconditional one. Therefore, given
k functions fi,..., fr one may consider k£ unconditional moment equations instead of the
multivariate conditional moment equation, that is, E[Y fi(W)] = Zle[go] iE[e;(Z) filW)],
l=1,...,k. Notice that once the functions { fl}le are chosen, all the unknown quantities in
the unconditional moment equations can be estimated by simply replacing the theoretical
expectation by its empirical counterpart. Moreover, a least squares solution of the esti-
mated equation leads to a consistent and asymptoticly normal estimator of the parameter
vector ([g] j)?:l under very mild assumptions. The choice of the functions {f;}¥_; directly
influences the asymptotic variance of the estimator and thus the question of optimal in-
struments arises (c.f. Newey (1990)). Nevertheless, this approach is very simple and the
estimator can be calculated with most statistical software. However, it has a major defect,
since in a vast majority of situations an infinite number of functions {e;};>1 and associ-
ated coefficients ([¢];);>1 is needed to develop the structural function . The choice of
the functions {e;};>1 now reflects the a priori information (such as smoothness) about the
structural function ¢. However, if we consider also an infinite number of functions { f;};>1
then for each k > 1 we could still consider the least squares estimator described above.
Notice that the dimension k plays the role of a smoothing parameter and we may hope
that the estimator of the structural function ¢ is also consistent as k tends to infinity at a
suitable rate. Unfortunately, this is not true in general. Let ¢y := Z?zl[apk] jej denote a
least squares solution of the reduced unconditional moment equations, that is, the vector of
coefficients ([gpk]j)g?zl minimizes the quantity Ele{E[Yfl(W)] - Z;?:l B;iEle;(Z) fi(W)]}?
over all (ﬁj)?:l- Then, ¢ converges to the true structural function as k tends to infinity
only under an additional assumption (defined below) on the basis { f;};>1. In this paper, we
show that in terms of a weighted risk a least squares estimator @y, of ¢ based on a dimension
reduction together with an additional thresholding can attain optimal rates of convergence,
provided an optimal choice of the dimension parameter k. It is worth to note that all the
results in this paper are obtained without any additional smoothness assumption on the
joint density of (Y, Z, W). In fact we do not even impose the existence of such a density.
Our main contribution is the development of a method to choose the dimension parameter k
in a fully data driven way, that is, not depending on characteristics of ¢, and assuming only
that the underlying conditional expectation operator is smoothing in a sense to be precised



below. The central result of the present paper states that for this automatic choice 7{:\, the
least squares estimator 93@ can attain the lower bound up to a constant, and is thus minimax-
optimal. The adaptive choice of k is motivated by the general model selection strategy
developed in Barron et al. (1999). Concretely, following Comte and Taupin (2003), k is the
minimizer of a penalized contrast. Note that Comte and Taupin (2003) consider a density
deconvolution problem. We illustrate all of our results by considering the estimation of
derivatives of the structural function under a smoothing conditional expectation operator.
Typically, two types of such operators are distinguished in the literature, finitely or infinitely
smoothing. It is interesting to note that Loubes and Marteau (2009) propose an adaptive
estimator for the case where the operator is known to be finitely smoothing. They derive
oracle inequalities and obtain convergence rates which differ from the optimal ones by a
logarithmic factor. We underline that in contrast to this, we provide in this work a unified
estimation procedure which can attain minimax-optimal rates in either of the both cases.
In other words, our estimation procedure attains optimal rates without knowing in advance
if the operator is finitely or infinitely smoothing.

This article is organized as follows. In the next section, we develop the minimax theory
for the nonparametric instrumental regression model with respect to the weighted risk. We
derive, as an illustration, the optimal convergence rates for the estimation of derivatives in
the finitely and in the infinitely smoothing case. Section 3 is devoted to the construction of
the adaptive estimator. An upper risk bound is shown and convergence rates for the finitely
and infinitely smoothing case are found to coincide with minimax optimal ones. All proofs
are deferred to the appendix.

2. Minimax optimal estimation

In this section, we develop a minimax theory for the estimation of the structural function
and its derivatives in nonparametric instrumental regression models.

2.1. Basic model assumptions.

It is convenient to rewrite the moment equation (1.2) in terms of an operator between
Hilbert spaces. Let us first introduce the Hilbert Spaces

Ly = {p: R? = R||l¢l% == El¢*(2)] < oo},
Ly = {¢ : RT = R| [¢fy == E[*(W)] < oo},

endowed with the inner products (p, @)z = E[p(Z2)p(Z)], ¢,¢ € L%, and (i, )y =
E[)(W)ip(W)], 1,1 € L2, respectively. Then the conditional expectation of Z given W
defines a linear operator Ty := E[p(Z)|W], ¢ € L%, which maps L% into L%,. In this
notation, the moment equation (1.2) can be written as

g :=EY[W]=E[p(2)|W] =Ty, (2.1)

where the function g belongs to LIQ/V' Estimation of the structural function ¢ is thus linked
to the inversion of the conditional expectation operator 1" and it is therefore called an in-
verse problem. Moreover, we suppose throughout this paper that the operator 7' is compact,
which is the case under fairly mild assumptions (c.f. Carrasco et al. (2006)). Consequently,
unlike in a multivariate linear instrumental regression model, a continuous generalized in-
verse of 1" does not exist as long as the range of the operator T is an infinite dimensional



subspace of LIQ/V. This corresponds to the setup of ill-posed inverse problems, with the ad-
ditional difficulty that T is unknown and has to be estimated. In what follows, we always
assume that there exists a unique solution ¢ € L2Z of equation (2.1), in other words, that g
belongs to the range of T', and that T is injective. For a detailed discussion in the context
of inverse problems see Chapter 2.1 in Engl et al. (2000), while in the special case of a
nonparametric instrumental regression we refer to Carrasco et al. (2006).

2.2. Complexity: a lower bound

In this section we show that the obtainable accuracy of any estimator of the structural
function ¢ is essentially determined by additional regularity conditions imposed on ¢ and
the conditional expectation operator T. In this paper, these conditions are characterized
through different weighted norms in L2Z with respect to a pre-specified orthonormal basis
{e;j}j=1 of L%. We formalize these conditions as follows.

Minimal regularity conditions. Given a strictly positive sequence of weights w = (w;);>1,
we denote by ||-||, the weighted norm given by

Iflle =D _wil(f,e5)z*,  Vfe L

=1

We shall measure the accuracy of any estimator @ of the unknown structural function
in terms of a weighted risk, that is E||@ — ¢||?, for a pre-specified sequence of weights
w := (wj);j>1. This general approach allows as to consider not only the estimation of the
structural function itself but also of its derivatives, as shown in section 2.4 below. Moreover,
given a sequence of weights v := (7;);>1 we suppose, here and subsequently, that for some
constant p > 0 the structural function ¢ belongs to the ellipsoid

Fo={fe Ly llel <o} (2.2)

The ellipsoid F4 captures all the prior information (such as smoothness) about the unknown
structural function ¢. Furthermore, as usual in the context of ill-posed inverse problems,
we specify the mapping properties of the conditional expectation operator 1. Therefore,
consider the sequence (||Te;|lw);j>1, which converges to zero since T' is compact. In what
follows, we impose restrictions on the decay of this sequence. Denote by T the set of all
injective compact operator mapping L2Z into L%V. Given a strictly positive sequence of
weights A := (\;)j>1 and d > 1, we define the subset T of T by

T={TeT: |fB/a<ITfRy <dlfI}, vfeL}}. (2.3)

Notice that for all T € T, it follows that d~! < ||T¢;||%,/A; < d. Furthermore, let us denote
by T* : L, — L% the adjoint of T which satisfies T*1) = E[)(W)|Z] for all v € L¥,. If now
T € T and if {e;},>1 are the eigenfunctions of T*T, then the sequence X specifies the decay
of the eigenvalues of T*T'. All results of this work are derived under regularity conditions
on the structural function ¢ and the conditional expectation operator 1" described by the
sequences v and A, respectively. However, below we provide illustrations of these conditions
by assuming a <regular decay> of these sequences. The next assumption summarizes our
minimal regularity conditions on these sequences.



Assumption Al Let v = (7j)jen, w = (wj)jen and X := (X\j)jen be strictly positive
sequences of weights with v = wg = Ao =1 and T := EjeN 'yj_l < 00, such that (wn/Yn)nen
and (Ap)nen are non-increasing, respectively.

It is worth noting that the monotonicity assumption (wy /¥, )nen only ensures that ||¢l|w
is finite, and hence the weighted risk is a well-defined measure of accuracy for estimators
of . Heuristically, this reflects the fact that we cannot estimate the s + 1-th derivative if
the structural function has only s derivatives. Moreover, in the illustration given in section
2.4, the additional assumption I' := EjeN fyj_l < oo can be interpreted as a continuity
assumption on ¢.

The lower bound. The next assertion provides a lower bound for the weighted risk which
extends the result of Chen and Reifl (2008), who have recently shown a lower bound of the
mean integrated squared error.

Theorem 2.1 Suppose that the i.i.d. (Y, Z,W)-sample of size n obeys the model (1.1a—1.1b),
that the error term U belongs to U, := {U : EBU|W = 0 and EU*|W < 0}, 0 > 0 and that
Sup;sg E[e?(Z)]W] <1, n > 1. Consider sequences vy, w and X\ satisfying Assumption Al
such that the conditional expectation operator T' associated to (Z, W) belongs to T d>1.
Define for allm > 1

kr =k (v, \w) = argmin{max(ﬁ, &)} and
keN T4 nA;

Wi [O%F
R} = R} (v, A\, w) := max( n —]> 2.4
(o Aw) B3 e

If in addition k := inf, > {(R};) ! min(wk: 7., Zﬁl wi(nA)™H} > 0 and ot > 8(3+2p%1?),
then for all m > 1 and for any estimator ¢ of p, we have

. K. 1
sup sup E[lg— ol > = mm( ) R:.
UGZ/{G QOE.F.’\; 4

Remark 2.2 The proof of the last assertion is based on Assuoad’s cube technique (c.f. Ko-
rostolev and Tsybakov (1993)), which consists in constructing 2¥» candidates of structural
functions which have the largest possible ||-|| -distance but are still statistically non distin-
guishable. In the last theorem, the additional moment condition sup;-, ]E[e?(Z )W) < nis
obviously satisfied if the basis functions {e;} are uniformly bounded (e.g. the trigonometric
basis considered in Section 2.4). However, if V' denotes a Gaussian random variable with
mean zero and variance one, which is moreover independent of (Z, W), then the additional
condition 0% > 8(1 + 2p?T'?1n) ensures that for all structural functions ¢ € F7, the error
term U :=V — @(Z) + [Tp](W) belongs to U,. This specific case is only needed to simplify
the calculation of the distance between distributions corresponding to different structural
functions (a similar assumption has been used by Chen and Reiff (2008)). On the other
hand, below we derive an upper bound assuming that the error term U belongs to U, and
that the joint distribution of (Z, W) fulfills additional moment conditions. In this situation,
Theorem 2.1 obviously provides a lower bound for any estimator as long as o is sufficiently
large. Note further that this lower bound tends only to zero if (w;j/v;);>1 is a null sequence.
In other words, in case v = 1, uniform consistency over all ¢ such that [|||% < p can only



be achieved with respect to a weighted norm weaker than the L2Z—norm, that is, if w is a
zero-sequence. This obviously reflects the ill-posedness of the underlying inverse problem.
Finally, it is important to note that the regularity conditions imposed on the structural
function ¢ and the conditional expectation operator T involve only the basis {e;};>1 in L.
Therefore, the lower bound derived in Theorem 2.1 does not capture the influence of the
basis { fi};>1 in LIZ,V used to construct the estimator. In other words, the proposed estimator
of ¢ can only attain this lower bound if {f;};>1 is appropriately chosen. O

2.3. Minimax-optimal Estimation by dimension reduction and thresholding.

In addition to the basis {e;};>1 of L% considered in the last section, we introduce now also a
basis {fi}i>1 in L¥,. In this section we derive the asymptotic properties of the least squares
estimator under minimal assumptions on these two bases. More precisely, we suppose that
the structural function ¢ belongs to some ellipsoid F7 and that the conditional expectation
satisfies a link condition, i.e., T' € 7:1)‘. Furthermore, we introduce an additional condition
linked to the basis {f;};>1. Then, under slightly stronger moment conditions, we show that
the proposed estimator attains the lower bound derived in the last section. All these results
are illustrated under classical smoothness assumptions at the end of this section.

Matrix and operator notations. Given k£ > 1, & and Fj denote the subspace of LQZ and
L%, spanned by the functions {ej}§:1 and {f;}F_,, respectively. Ej and Ej- (resp. F}, and
F kL) denote the orthogonal projections on & (resp. Fj) and its orthogonal complement
Ekl (resp. Fi), respectively. Given an operator (matrix) K, the inverse operator (matrix)
of K is denoted by K !, the adjoint (transposed) operator (matrix) of K by K*. [¢], [/]
and [K| denote the (infinite) vector and matrix of the function ¢ € L%, ¢ € L%, and the
operator K : L% — L%, with the entries [¢]; = (¢, e;), [¥]; = (¥, fi) and [K];; = (Kej, fi),
respectively. The upper k subvector and k x k submatrix of [¢], [¢] and [K] is denoted
by [¢lk, [¥]x and [K]g, respectively. Note, that [K'];, = [K],. The diagonal matrix with
entries v is denoted by diag(v) and the identity operator (matrix) is denoted by I. Clearly,
[Erelr = [plr and if we restrict F K Ej to an operator from & into Fj, then it has the
matrix [K],. Moreover, if v € R¥ then [jv|| denotes the Euclidean norm of v and given a
(k x k) matrix M let [|[M|| := supjj,<1/[Mv]| denote its spectral-norm and tr(M) its trace.
Consider the conditional expectation operator T associated to the regressor Z and the
instrument W. If [e(Z)] and [f(W)] denote the infinite random vector with entries e;(Z) and
[j(W) respectively, then [T], = E[f(W)]x[e(Z)]; which is throughout the paper assumed to

be non singular for all k > 1 (or, at least for sufficiently large k), so that [T]/,;1 always exists.
Note that it is a nontrivial problem to determine in under what precise conditions such an
assumption holds (see e.g. Efromovich and Koltchinskii (2001) and references therein).

Definition of the estimator. Let (Y1,2;,W1),..., (Y, Z,,W,) be an iid. sample of
(Y, Z,W). Since [T]y = E[f(W)]kle(Z)]}, and [g]x = EY[f(W)]x we construct estimators
by using their empirical counterparts, that is,

n n

[Tl = (1/n) Y_[FW)lele(Z))];,  and  [gls := (1/n) D Yilf(Wi)]s- (2.5)

i=1 i=1

ES
|



Then the estimator of the structural function ¢ is defined by

k At if [f]ﬁ is nonsingular
k> =
o= Be;  with  Ble=1{ | E Y ad [T <V (26

=1 0, otherwise,

~

where the dimension parameter k = k(n) has to tend to infinity as the sample size n in-
creases. In fact, the estimator ¢y takes its inspiration from the linear Galerkin approach
used in the inverse problem community (c.f. Efromovich and Koltchinskii (2001) or Hoff-
mann and Reifl (2008)).

Extended link condition. Consistency of this estimator is only possible if the least squares
solution ¢y = Z?Zl [px]je; with okl = [T, [g]x converges to the structural function ¢ as

k — oo, which is not true in general. However, the condition supycyl|[T7]; [TEix|| < oo
is known to be necessary to ensure convergence of . Notice that this condition involves
now also the basis {f;};>1 in L?,. In what follows we introduce an alternative but stronger
condition to guarantee the convergence, which extends the link condition (2.3), that is,
T e ’7:{\. We denote by 72‘D for some D > d the subset of ’7;1)‘ given by

Tip:={TeT}: suplldiag\)]*[T); "I < D}. (2.7)
keN

Remark 2.3 The link condition (2.3) implies the extended link condition (2.7) for a suitable
D > 0 if {e;} and {f;} are the eigenfunctions of 7" and if [T is only a small perturbation
of diag(A/?), or if T is strictly positive (for a detailed discussion we refer to Efromovich
and Koltchinskii (2001) and Cardot and Johannes (2010)). We underline that once both
bases {e;};>1 and { f;};>1 are specified, the extended link condition (2.7) restricts the class of
joint distributions of (Z, W) to those for which the least squares solution ¢y, is L2-consistent.
Moreover, we show below that under the extended link condition the least squares estimator
of ¢ given in (2.6) can attain minimax-optimal rates of convergence. In this sense, given
a joint distribution of (Z, W), a basis { f;};>1 satisfying the extended link condition can be
interpreted as a set of optimal instruments. Moreover, for each pre-specified basis {e;};>1,
we can theoretically construct a basis { f;};>1 of optimal instruments such that the extended
link condition is not a stronger restriction than the link condition (2.3) (see Johannes and
Breunig (2009) for more details). O

The upper bound. The following theorem provides an upper bound under the extended
link condition (2.7) and an additional moment condition on the bases, more specific, on
the random vectors [e(Z)] and [f(W)]. We begin this section by formalizing this additional
condition.

Assumption A2 There exists n > 1 such that the joint distribution of (Z, W) satisfies
(i) supjen E[e}(Z)|W] < n* and supey E[fH(W)] < n*;

(i) sup; ey Var(e;(2) i W)) < n* and
sup; ien Ble; (2) il W) — Ele; (2) il W)]I® < 8ln° Var(e;(Z) fi(W)).



It is worth noting that any joint distribution of (Z, W) satisfies Assumption A2 for suffi-
ciently large 7 if the bases {ej};>1 and {f;};>1 are uniformly bounded. Here and subse-
quently, we write a,, < b, when there exists a numerical constant C' > 0 such that a,, < C'b,
for all n € N and a,, ~ b, when a, < b, and b, < a, simultaneously.

~

Theorem 2.4 Suppose that the i.i.d. (Y, Z,W)-sample of size n obeys the model (1.1a—1.1b)
and that the joint distribution of (Z, W) fulfills Assumption A2 for some n > 1. Consider
sequences v, w and X\ satisfying Assumption A1 such that the conditional expectation op-
erator T associated to (Z,W) belongs to 7:1>"D, d,D > 1. Let k}, R} and k be as given in
Theorem (2.1). If in addition supyey k2/yk =: ¢ < 0o, then we have for all n € N with
(k)3 > 4D(/k that

sup sup B||@p: — (pHi < Dnt (02 +4I'Ddp) R},

UEUagoE]:ﬁ
Ak, wj )3 = 2 My
{4D¢/ ks + max <1’wk; 12}2>,§“j)+(k;n) P - Tl 2> T2)|
- Aps
P(1Tlk;, — [Thes |2 > 755 )-
+oP (1Tl — [Tl > 7

Remark 2.5 We emphasize that the bound in the last theorem is not asymptotic. Moreover,
it is worth noting that the term max (1, Ak [Whx MaX1<jcks wj/)\j) is uniformly bounded
by a constant if w/\ is non decreasing, which we suppose from now on. However, this is
not the case in general. O

A comparison with the lower bound from Theorem 2.1 shows that the last assertion does not
establish the minimax-optimality of the estimator. However, the upper bound in Theorem
2.4 can be improved by imposing a moment condition stronger than Assumption A2. To
be more precise, consider the centered random variable e;(Z) f;(W) —E[e;(Z) f;(W)]. Then
Assumption A2 (ii) states that its 8th moment is uniformly bounded over j,I € N. In
the next Assumption we suppose that these random variables satisfy Cramer’s condition
uniformly, which is known to be sufficient to obtain an exponential bound for their large
deviations (c.f. Bosq (1998)).

Assumption A3 There exists n > 1 such that the joint distribution of (Z, W) satisfies
Assumption A2 and in addition

(iii) sup; e Ble;(Z) W) — Ele;(2) iW)]|F <02k Var(e; (2) fi(W)), k= 3,4,....

It is well-known that Cramer’s condition is fulfilled in particular if the random variable
e;j(Z)fiW) — Elej(Z) fi(W)] is bounded. Whenever the bases {e;};>1 and {fi};>1 are
uniformly bounded it follows thus again that any joint distribution of (Z, W) satisfies As-
sumption A3 for sufficiently large . On the other hand, we show that under this additional
condition the deviation probability tends to zero faster than R;. Hence, the rate R} is
optimal and @y is minimax-optimal, which is summarized in the next assertion.

Theorem 2.6 Suppose that the assumptions of Theorem 2.4 are satisfied. In addition,
assume that the joint distribution of (Z, W) fulfills Assumption A3 and that the sequence
(w/A) is non-decreasing. For all n € N with (logk})/k < r/(280Dn*¢) and (log R) /K >
—r/(40Dn%¢) we have

sup sup E|@p: — ol S D*n' (w1 (0® +T Ddp) Ry,
Uel, QOE.F.’\;



Remark 2.7 From Theorems 2.1 and 2.6 follows that the estimator @y« attains the optimal
rate R, for all sequences 7, w and A satisfying the minimal regularity conditions from
Assumption Al. Let us elaborate on the interesting role of the sequences v, w and A.
Theorem 2.1 and 2.6 show that the faster the sequence A decreases, the slower the obtainable
optimal rate of convergence becomes. On the other hand, a faster increase of v or decrease of
w leads to a faster optimal rate. In other words, as expected, a structural function satisfying
a stronger regularity condition can be estimated faster, and measuring the accuracy with
respect to a weaker norm leads to faster rates, too. O

2.4. lllustration: estimation of derivatives.

To illustrate the previous results, we will describe in this section the prior information
about the unknown structural function ¢ by its level of smoothness. In order to simplify
the presentation, we follow Hall and Horowitz (2005) (where a more detailed discussion of
this assumption can be found) and suppose that the marginal distribution of the scalar
regressor Z and the scalar instrument W are uniformly distributed on the interval [0, 1].
It is worth noting that all the results below can be extended to the multivariate case in a
straightforward way. In the univariate case, it follows that both Hilbert spaces Lzz and L‘Q/V
are isomorphic to L?[0, 1], endowed with the usual norm ||-|| and inner product (-, -).

In the last sections, we have seen that the choice of the basis {e;};>1 is directly linked to
the a priori assumptions we are willing to impose on the structural function. In case of
classical smoothness assumptions, it is natural to consider the Sobolev space of periodic
functions W, » > 0, which for an integer r is given by

W, ={ret,: ;90 =101, j=01..r-1}

where H, := {f € L?[0,1] : f"=1 absolutely continuous , f") € L?[0,1]} is a Sobolev
space. Moreover, let us introduce the trigonometric basis

Y1 =1, haj(s) == V2cos(2m7s), Poji1(s) := V2sin(27js), s € [0,1], j € N.

It is well-known that the union |J, . Fi of ellipsoids F7? in L?[0,1] defined by using the
trigonometric basis {e; = 1;} and the weight sequence wy = 1, w; = 427, 5 > 2 in def-
inition (2.2) coincides with the Sobolev space of periodic functions W, (c.f. Neubauer
(1988a,b)). Therefore, let us denote by W := Fg,, ¢ > 0 an ellipsoid in the Sobolev space
W;. In the remainder of this section we will suppose that the prior information about the
unknown structural function ¢ is characterized by the Sobolev ellipsoid W), p > 0, i.e., that
@ is p 2 0 times differentiable. In this illustration, we consider the estimation of derivatives
of the structural function . Therefore, it is interesting to recall that, up to a constant,
for any function h € WY the weighted norm ||k, with wp = 1 and w; = 525, j > 2, equals
the L2-norm of the s-th weak derivative h(®) for each integer 0 < s < p. By virtue of this
relation, the results in the previous section imply also a lower as well as an upper bound
of the L?-risk for the estimation of the s-th weak derivative of . Finally, we restrict our
attention to conditional expectation operator T' € 7:1’\ with either

[p-A] a polynomially decreasing sequence A, i.e., A\g = 1 and \; = j72¢, j > 2, for some
a >0, or

[e-A] an exponentially decreasing sequence A, ie., \g = 1 and \; = exp(—j2%), j > 2, for
some a > 0.
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It is easily seen that the minimal regularity conditions given in Assumption A1l are satisfied
if p > 1/2. Roughly speaking, this means that the structural function is at least continuous.
The lower bound presented in the next assertion follows now directly from Theorem 2.1.
Note that the additional condition, sup;-4 E[e?(Z W] < n, n > 8, is satisfied since the
trigonometric basis is bounded uniformly by two.

Proposition 2.8 Suppose an i.i.d. sample of size n from the model (1.1a-1.1b). If p € Wy,
p > 1/2, then we have for any estimator ) of go(s), 0<s<p,
[p-A] in the polynomial decreasing case that
SupUqu Sup(pEW; {]EHSZ(S) — SD(S) HQ} 2 an(P*s)/(2p+2a+l)7
[e-A] in the exponentially decreasing case that
SupUqu Sup(pEW]’; {]EHSZ(S) _ SO(S) HQ} 2 (10g n)*(pfs)/a.

In this section, the basis of L%V is also given by the trigonometric basis {f; = ¥;};>1. In this
situation, the additional moment conditions formalized in Assumption A3 are automatically
fulfilled since both bases {e;};>1 and {f;};>1 are uniformly bounded. We suppose that the
associated conditional expectation operator T satisfies the extended link condition (2.7),
that is, T € 721),\1)' Thereby, we restrict the set of possible joint distributions of (Z, W) to
those having the trigonometric basis as optimal instruments. As an estimator of ¢(®), we
shall consider the s-th weak derivative of the estimator @y, defined in (2.6). Recall that for
each integer 0 < s < p, the s-th weak derivative of the estimator ¢y, is

1
20 (1) = > (2imj)? / Bre(w) exp(—2imju)du exp(—2irit).
JEZ 0
Applying Theorem 2.4, the rates of the lower bound given in the last assertion provide, up
to a constant, also an upper bound of the L?-risk of the estimator @,(CS), which is summarized
in the next proposition. We have thus proved that these rates are optimal and the proposed

estimator (ﬁ,(:) is minimax optimal in both cases.

Proposition 2.9 Suppose that the i.i.d. (Y, Z,W)-sample of size n obeys the model (1.1a—
1.1b). Let o € Wy, p = 3/2. For 0 < s < p consider the estimator g given in (2.6).

[p-A] In the polynomial decreasing case with dimension parameter k}; ~ nl/(@p+2a+1)

SUP{e, SUPews {IEH@](;) - ¢(8)||2} < p2(p—s)/(@pt2a+1)

[e-A] In the exponentially decreasing case with k* ~ (logn)'/(2e)
SUPy ey, SUPpews {EH@;(;) - SO(S)HQ} < (logn)~@=)/a.

Remark 2.10 We emphasize the interesting role of the parameters p and a characterizing
the regularity conditions imposed on ¢ and T respectively: As we see from Theorem 2.8
and 2.9, if the value of a increases, the obtainable optimal rate of convergence decreases.
Therefore, the parameter a is often called degree of ill-posedness (c.f. Natterer (1984)). On
the other hand, an increase of the quantity p leads to a faster optimal rate. In other words,
as expected, a smoother structural function can be estimated faster. Finally, as opposed to
the polynomial case, in the exponential case the smoothing parameter k;, does not depend
on the value of p. It follows that the proposed estimator is automatically adaptive, i.e.,
it does not depend on an a-priori knowledge of the degree of smoothness of the structural
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function . However, the choice of the smoothing parameter depends on the properties of
T, more precisely, the value of a. (]

3. Adaptive estimation under smoothness assumptions

In this section, our objective is to construct a fully adaptive estimator of the structural
function ¢. Adaptation means that in spite of the conditional expectation operator T being
unknown, the estimator should attain the optimal rate of convergence over the ellipsoid
F4 for a wide range of different weight sequences v. However, we will suppose that the
operator T' is diagonal with respect to the trigonometric basis {¢;}. In this situation,
for example, an operator with polynomially decreasing A having a degree of ill-posedness
a behaves like a-times integrating, and hence it is also called finitely smoothing. On the
other hand, when the sequence A is exponentially decreasing with degree of ill-posedness
a, the operator behaves like integrating infinitely many times, and hence it is also called
infinitely smoothing. Thus, this additional condition imposes in fact a smoothing condition
on the unknown conditional expectation operator 7'. Even if we assume that the operator
is smoothing, we do not impose any a-priori knowledge about the specific decay of A.

Our starting point is the estimator given in (2.6), which in this situation is of the form

5 —Ek: ], 1{ int [T > 1/n} & (3.1)
e [/ﬂjj 1<k~ 997 7 '

j=1
with @j and [/T\] j; defined in (2.5). In the last section, we have shown that this estimator
is minimax-optimal provided the dimension parameter k is chosen in an optimal way. In
what follows, the dimension parameter k is chosen using a model selection approach via
penalization. This choice will only involve the data and none of the sequences v and A
describing the underlying smoothness. First, we introduce some sequences which are used
below.

Definition 3.1

(i) For all k > 1, define Ay := maxigj<kwj/Aj, T := maxigj<k(wj)vi/Aj with (q@)v1 :=
max(q, 1) and

log(mk V (k + 2))
log(k + 2)

Let further ¥ be a non-decreasing function such that for all C' > 0

klog(mi V (k +2))
;Cmexp<— 6C Toa(k +2) )<2(0)<oo (3.2)

O := kAL

and sup,,cy exp ( — Ko C1 n/6 4 2logn) < X(C) with K2 = (V2 —1)/(21V2).

(ii) Define a sequence N follows,

n’ exp ( —

n/\N> < (2016d>7

Ny, := N\ d) = 1<NK —
(A, d) := max { n 5384 N

and Jdn/n < 1}.
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It is easy to see that there exists always a function ¥ satisfying condition (3.2). Consider
the estimator @E defined by choosing the dimension parameter k such that

~ . . 5
b= angmin { - pul + o2 |

1<k<N,

for some constant ¢ > 0. It is shown in Johannes and Schwarz (2010) and Comte and
Johannes (2010) that such an estimator can attain minimax-optimal rates in the context
of a deconvolution problem and a functional linear model respectively. However, this esti-
mator is only partially adaptive, since the dimension parameter is chosen using a criterion
function that involves the sequences N and § which depend on A and d. We circumvent this
problem by defining empirical versions of these sequences. The fully adaptive estimator is
then defined analogously to the one above, but uses the estimated rather than the original
sequences.

~

Definition 3.2 Let 6 := (gk);@l, N := (ﬁn)@l, be as follows.
~ 2 )
(i) Given Ay := maxij<pwj[T];; W{inf1<j<x [T];; > 1/n} and
2 2
Tk ‘= maxogjgk(wj)\/l[T]jj Il{inflgjgk [T]jj = 1/%} let

~ o~ log(T V(K +2))
Ok = ki log(k + 2)

(it) Given N} := argmax,<y<, { maxicjcy wj/n < 1}, let

—~

. T].12 1
N, := argmin { H ]"7‘ < ogn }
1SN |J|(Wj)v1 n

It worth to stress that all these sequences do not involve any a-priori knowledge about
neither the target function ¢ nor the operator T'. Now, we choose the dimension parameter
as

- ~ 5
k= argmin{ — | fell? + 540 E[Y?] k} (3.3)
1<k<Ny, n

Throughout the paper we do not address the issue that the value E[Y?] is not known in
practice. Anyway, it can easily be estimated by its empirical counterpart. Moreover the
constant 540, though suitable for the theory, may probably be chosen much smaller in
practice by a simulation study (cf. Comte et al. (2006) in the context of a deconvolution
problem).

Our main result below needs the following Assumption.
Assumption A4 The sequence N from Definition 3.1 (ii) satisfies the conditions
Aj < logn

max — and d~' min \; > 2/n.
i2Na j(wj)vi  4dn in, A >2/

By construction, these conditions are satisfied for sufficiently large n. However, let us
illustrate them by the particular examples introduced in section 2.4.
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Remark 3.3 Recall the distinction between finitely and infinitely smoothing conditional
expectation operators discussed in section 2.4. The sequences from Definition 3.1 take the
following values in either of the two cases.

[fs] In the finitely smoothing case, we have

Ak — k,2a+25’ 5k ~ k2a+23+1’ N, ~ nl/(2a+25+1)‘

[is] In the infinitely smoothing case, we have

Ay = k2s exp(kQa), Sp ~ k2a+25+1 exp(kQa)(log k)_l,

n loglogn 1/(2a)

N, ~ | log
(log n) (2a+2s+1)/(2a)

It is easily verified that the sequence N satisfies Assumption A4 in either case . O

We are now able to state the main result of this paper providing an upper risk bound for
the fully adaptive estimator.

Theorem 3.4 Assume an n-sample of (Y, Z,W'). Consider sequences w, vy, and \ satisfying
Assumption A1 such that the conditional expectation operator T' associated to (Z, W) belongs
toT € 7:1>"D, d,D > 1 and is diagonal with respect to {1;}. Let the sequences 6 and

N be as in Definition 3.1 and suppose that Assumption A4 holds. Define further N =
argmax < v, {j(w)\qjvl > 4 fgn}- Consider the estimator ¢r defined in (3.1) with k given
~J= n J

by (3.3). Then for alln > 1

~ ) wg 0
sup sup {EHgog — gp||i} < (20 + o’ + 1)4d§d[ min { max <k, k> }
U€Us peFL 1<k<NL Ve n

] 2oL + 0%)Cq + V,
+ pmax ¥ min 1,L +£ > (2oL + 0 Z)Cd vz 1],
j=1 Vi n)\j n VU\Z

where Vi 7 = E[Var(U|Z)] and (4 := (log 3d)/log 3.

Compare the last assertion with the lower bound given in Theorem 2.1. It is easily seen that
if (w/A) is non-decreasing, the second term in the upper bound of Theorem 3.4 is always
smaller than the first one. Thus, in this situation the fully adaptive estimator attains the
lower bound up to a constant as long as supy>1{0x/(3_1< <, wj/Aj)} < oo and if the optimal

dimension parameter k; given in Theorem 2.1 is smaller than wa which is summarized in
the next assertion.

Corollary 3.5 Let the assumptions of Theorem 3.4 be satisfied. If in addition (w/X) is
non-decreasing, supj>1{0x/(3_1<;<rwi/Aj)} < o0 and sup,en (ki /NL) < 1, then

sup sup {E[¢; —olla} = O(Ry), as  n — oo,
Uel, QOGJ'—!;
where k), and R}, are given in (2.4).
It is worth to note that the additional assumptions in the last assertion are sufficient to estab-

lish the order optimality of the estimator, but not necessary as it is shown in the example [is]
below.
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3.1. lllustration: estimation of derivatives (continued)

The following result shows that even without any prior knowledge on the structural function
o and for all smoothing operators T, the fully adaptive penalized estimator automatically
attains the optimal rate in the finitely and in the infinitely smoothing case. Recall that the
computation of the dimension parameter k given in (3.3) involves the sequence (N})n>1,
which in our illustration satisfies N ~ n'/(25) since wj = g%, 5> 1.

Proposition 3.6 Suppose that the i.i.d. (Y, Z,W)-sample of size n obeys the model (1.1a-
1.1b) and that U € Uy, o > 0. Consider the estimator @r given in (2.6) with k defined
by (3.3).

[fs] In the finitely smoothing case, we obtain

SUPyey, SUPLeWs, {]EH@(ES) _ (p(S)HQ} = O(n~2(p=5)/(2p+2a+1)),

[is] In the infinitely smoothing case, we have

supyer, 5w ewy {BIZS — 9|2} = O((logn)~@=)/2).

4. Concluding remarks and perspectives

We have proposed in this work a new kind of estimation procedure for the structural function
and its derivatives in nonparametric instrumental regression and proved that they can attain
optimal rates of convergence. These estimators require an optimal choice of a dimension
parameter depending on certain characteristics of the unknown structural function and
the conditional expectation operator of Z given W, which are not known in practice. By
using a penalized minimum contrast estimator with randomized penalty and collection of
models we have constructed a fully adaptive choice of this dimension parameter, which
can attain minimax-optimal rates if the conditional expectation operator of Z given W
is finitely or infinitely smoothing. However, in case the conditional expectation operator
is not smoothing anymore it is still an open question if this data driven rule leads to a
minimax-optimal estimation procedure. We are currently exploring this issue.

A. Proofs

A.1l. Proofs of section 2

Proof of the lower bound.
Proof of Theorem 2.1. Consider (Z, W) with associated conditional expectation operator

T € 7). Given ¢ := smin(p,1/(2d)) and oy, := R;(Z?’il wj/(Ajn))~1 we consider the

function ¢ = (Cay,/n)/? Zfil )\;1/ er belonging to F%, which can be realized as follows.
Since (vy/w) is monotonically increasing it follows [|¢||2 < pr(yas /wis )Ry, < p by using
successively the definition of «,, and k. Obviously for any 6 := (0;) € {-1, 1}n the
function py := Zfll 6;[¢],e; belongs to F4 too, and hence it is a possible candidate of the
structural function. Let V be a Gaussian random variable with mean zero and variance one
(V ~ N(0,1)) which is independent of (Z, W). Let Up := [Tp](W) — pa(Z) + V', then Uy
belongs to U, for all o* > 8(3 + 2p?T'?n). Obviously we have EUy|W = 0. Moreover, by
employing twice the Cauchy-Schwarz inequality the condition I' = ) jeN 'yj_l < o0 together
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with sup; B[e4(2)|W] < 5 implies [Ef(Z)[W[* < p20 X,0q7; et (2)W] < g1 for
all f e FL. From this estimate we conclude E[pj(Z)|[W] < np?T'? and |[Tee](W)[* <
]E[cpg(Z)]W} < np’T2. By combination of the last two bounds we obtain E[Uj|W] <
8{2np*I'2 + 3}. Consequently, for each 6 i.i.d. copies (V;, Z;, W;), 1 < i < n, of (Y, Z, W)
with Y := ¢g(Z) + Up form an n-sample of the model (1.1a-1.1b) and we denote their
joint distribution by Py. In case of Py the conditional distribution of Y; given Wj; is then
Gaussian with mean [T'g](W;) and variance 1. Furthermore, for j = 1,...,k} and each 6
we introduce 6) by Ol(j) = 6 for j # [ and HJ(-j) = —0;. Then, it is easily seen that the
log-likelihood of Py with respect to Py is given by

n

log d‘g:j)) Zz ~ [Tpy] W))@Aso]j[Tej](w+2[so]?;l[Tej](Wi>\2-

Its expectation with respect to Py satisfies IE p, [log(dPy/dPy;))] = 2n[<,0]? |Te;l|3 < 2nd[<,0]?)\j
by using 7 € 7. In terms of Kullback-Leibler divergence this means K L(Pp, Py;)) <
2dn [@]?Aj. Since the Hellinger distance H (Py, Py;)) satisfies H*(Py, Py;)) < KL(Pa, Py))
it follows by employing successively the definition of ¢, the property a, < x~' and the
definition of ¢ that

H?*(Py, Pyy)) < 2dn[piA; < 2dCapn < 1. (A1)
Consider the Hellinger affinity p(Py, Pyi)) A /dPgdPem then we obtain for any estimator
@ of ¢ that

o(Py. P e -voolil 55 o —olil 1
9, Pa)) \/ vdPy) + V AdPyd Py)
| @0 2O | @0 — Py l; |
1/2 2 1/2
|16 — poily 2dP9<j) |[® — wal; dP)
lve — ol [0 — po]jI?

Rewriting the last estimate by using the identity p(Py, Py;)) = 1— §H (P, Pyjy) and (A1)
we obtain
~ 2 ~ 2 1 2 1o

{Eoll = ol + g1 — o i} > 5llee — o lsl? = 51l
Combining the last lower bound and the following reduction scheme is the key argument of
this proof:

sup sup Ep[lg — ¢l = sup  Ep, & —oll2

UUs pcFr 0e{-1,1}Fn

1 o
~ 2

ok Z ij]EPg |[# — wal;l

De{—1,1}Fn i=1

1
=7 2 Z LB I3 — oli? + By |17 — e i1}

fe{-1 1}’%3 1

WV

*
n

1 ¢
> 2 Zw’ i ﬂZ:j

0e{—1,1}kn j=1 Jj=1

Hence, from the definition of { and «,, we obtain the lower bound given in the theorem. [
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Proof of the upper bounds. We begin by defining and recalhng notations to be used in
the proofs of this section. Given k > 0, denote ¢y = Z] 1lerlie; with [prlp = [T],;l[g]k
which is well-defined since [T, is non singular. Then, the identities [T(cp o))k = 0 and
[or — Brelr = [T);[TEj-¢]) hold true. Furthermore, let []y := [T]E — [T, and define
vector [B]; and [S]y by

n

Bl = > U, Z FOV){0(Z0) ~ [l le(Zle), 1 <5 < I
=1

where @k — [T)lex)k = [Blg + [S]k. Note that E[B]; = 0 due to the mean independence,
] [Tl — [Tr]r = 0. Moreover, let us introduce the

ie., E(UW) =0, and that E[S], =

events
~ 1
Q:={||[T], | <vn}, Q= {IELI T <1/2}
0= {H[T]E I>+vn} and  Qf, = {IELIIT ) > 1/2}.

Observe that Qy/, C Q in case /n > 2|[T], . Indeed if I[E]elllI[T], Y| < 1/2 then the
identity [/T\]E = [T)x{I + [T);,'[E]x} implies ||[ ]k, || 2||[T]: 1] by the usual Neumann
series argument. Moreover, in case T satisfies the extended link condition (2.7), that is
T € Tip. then 2 [T]; || < 2|l[diag(V)]; " [[diag(V)]y *[T]; | < 2¢/D/Ax since A s non

increasing. Finally, given k), R) and k defined in Theorem 2.1 we have k™ wk* 'yk* >

R > 2521 wj(nAj)~! by using successively the definition of x and R}. By combination
of the last estimate and the condition sup,ecy k3, " < ¢ it follows that (k)3 (n)\k*) <

KUKy < kT, Thus, for all n € N with (k%)% > 4D¢x™! we have 4|[T7],. H2
4D)\k*1 ndDC¢k™H (k)73 < n, and hence /2 C Q. These notations and results W111 be

used below without further reference.
We shall prove in the end of this section three technical lemmas (A.1 — A.3) which are used
in the following proofs.

Proof of Theorem 2.4. Define ¢gx := ¢y 1o and decompose the risk into two terms,
E|@x;, — olla < 2{E(18r;, — Gry 1 + Bllwy — llo} =: 2{A1 + 42}, (A.2)
which we bound separately. Consider first A>. By combination of Q¢ C Qf /2 and the identity

18z =112 = llen; —#llZLa+lelldlae we deduce Bl Gy —¢ 12 < ller; =@l + 0112 P (€5 5)-
Since (w/7) is monotonically decreasing, the last estimate together with (A.12) in Lemma
A.2 implies for all p € FY

*

Bl — ol < 4D iy max (1,205 max $0) 4 pP(0) (4.3)

Wy 1<j<ky A

by employing the definition of R;.
Consider A;. From the identity [g],. — [T [@m]rx = [Blrx + [S]kx follows

Brs, — i = {7135 + (T (Theg — i) i H1Bliy + [)is } o

= [T15 {[Blig + [S)is Yo — [TV E)is [k, {[Blig + [S)ig } o
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By making use of this identity we decompose A; further into two terms

~ ~ . 1/2 1 —
Ell G, — B2 < 2B[ding ()] 271 {[Bles + Sl HIPLa]
—~ 1
+ 2Bl [diag (@) [T s (Tl (1Bl + 1)k P 2] =2 2{An + Ao} (A4)
which we bound separately. In case of Aj; we employ successively (A.11) in Lemma
Al with M = [diag(w)]i?[ ]k*7 the elementary inequality tr(A'B!BA) < || Al tr(B!B)

valid for all (k x k) matrices A and B and the extended link condition (2.7), that is,
| [diag(\)]4° 1775,

we obtain

| [diag(w) 4, [Tl {[Bli; + [Sles }*10)

< /) D o (dingW)] ding()lg eI ) (02 + Tl — o 1)
=2D{o* 4+ P Tlle - |31 32 e (A9)
j=1

Consider now Ajs. Observe that H[diag(w)]}i,{z[T];}HZ < Dmaxigjcr: wj/Aj for all T €

1 ~—1
71 p- By employing the last inequality together with ||[T]. |1, ,, < 4D/Ag; and ||[T],.. [*1q <
n there exists a numerical constant C > 0 such that o o

B |[ding )] 271 Elis e {Blis + [8)ss}1710)
< D e 2 {ADN BN 1Bl + s Lo+ Bl 12 Bl + (5l

1<j<ks A -n

2
IL93/2}

wj _ — 1/2 1/4 1/2
<D max. {40! (1 g 1) (1 g 1) PO o)/ (B Bl +150hs 1)
()’

2L Dt (o2 +T g — o I2){ 4D 4 (k)% P K
<O max Dt (0% + Tlle — i D {4D T + ()1 P05 )
where the last bound follows from (A.8), (A.9) and (A.10) in Lemma A.10. By combination
of the last bound and (A.5) via the decomposition (A.4) there exists a numerical constant
C > 0 such that

. _ . N wj
Bl — fi 2 < €D (o + Tllp = s D {406/ + (5P} 300

j=1

Furthermore, taking into account the estimate (A.12) from Lemma A.2 with w =« and the
definition of R}, the last inequality implies

E| @k — @ |2 < C Dy (0 +4Fde){4Dg//@+(k*) |P(Qe 2)|1/4}R*

Finally, since €f , C {H[/T\]kn — [T]’ﬁ”z > Az /(4D)}, by using the decomposition (A.2) the

result of the theorem follows from the last estimate and (A.3). O
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Proof of Theorem 2.6.We start our proof with the observation that under Assumption A3

P Ak* n)\k*
2 *

P l . — l * n g X n
(H[ ]L“n [ ]—k"H > 4D) 2exp 20Dn?(ky,)? 2logz}

< 2exp{—5—

————k; +2logk,

by applying successively (A.14) in Lemma A.3 and the estimate (k};)3(nAg:) ™1 < k7! (k;‘ib)?”y,;l <
x~1¢. From this estimate we conclude for all n € N with (logk})/k}: < k/(280Dn?¢) and
(log R3) /K% > —x/(40DrC) that

_ Ao
*\12 2 n
(k2P (Tl — [Tl ? > 2 ) <2,
*\—1 - 2 )\k; <
(Ro) 7 P(IT]y, — [Ty 2 > T ) <2
By employing these estimates the assertion follows now from Theorem 2.4. O

lllustration: estimation of derivatives.

Proof of Proposition 2.8. Since for each 0 < s < p we have B[ f®) — f&)|2 ~ B[ f — f||2 we
intend to apply the general result given Theorem 2.1. In both cases the additional conditions
formulated in Theorem 2.1 are easily verified. Therefore, it is sufficient to evaluate the
lower bound R} given in (2.4). Note that the optimal dimension parameter k; satisfies
Ry ~ wis [k ~ Z;Zl wi/(nAr) since both sequences (v;/w;) and (3 o<yy<; anll) are non-
increasing.

[p-A] The well-known approximation Z§=1 §" ~ k™! for r > 0 implies

n o~ (Ve /wix) ijl wi/ N~ (k)22 Tt follows that k¥ ~ n!/(P+2e+1) and the lower
bound writes R¥ ~ n~(2p=29)/(@p+2a+1)

[e-A] Applying Laplace’s Method (c.f. chapter 3.7 in Olver (1974)) we have

no~ (Y /Wi ) Zﬁl wi/ A~ (k) exp(|k}|?*) which implies that

k: ~ {log(n/(logn)P/4)}1/(2a) = (logn)'/()(1 4 o(1)) and that the lower bound can be
rewritten as R ~ (logn)~(P=9)/e, O

Proof of Proposition 2.9. Since in both cases the dimension parameter is chosen optimal
(see the proof of Proposition 2.8) the result follows from Theorem 2.4. O

Technical assertions. The following paragraph gathers technical results used in the proofs
of this section.

Lemma A.1 Suppose that U € Uy, o > 0 and that the joint distribution of (Z, W) satisfies
Assumption A2. If in addition p € F7 with I = Z?; ’y;l < 00, then there exists a constant
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C > 0 such that for all k € N and for all z € R”

Bl2* (Bl < (1/n) 11207, (A6)
BI2* [SJsf” < (1/m) [P T 1o — gl (A7)
BBl < - ((h/n) 0> -n?)" (A%)
BI(S)sl* < - ((k/m) - T-llo — i) (A.9)
B < - (02/m)-n?)" (A10)

Moreover, given a (k x k) matrizx M, we have
Bl M{[Bg + [SI}I* < (2/n) (M M){o® +7*T |l — o3} (A.11)

Proof. The proof of (A.6) - (A.10) can be found in Johannes and Breunig (2009) and
we omit the details. The estimate (A.11) follows by employing (A.6) and (A.7) from the
identity || M{[B]x+ [Sl}|]* = ZfZIHM;{[B}E—F [S]k}|?, where M; denotes the j-th column
of M, which completes the proof. O

Lemma A.2 Let g = Tp and for each k € N denote py, := [T]El[g]& Given sequences A and

~ satisfying Assumption Al let T € T d.D and @ € F3. For each strictly positive sequence
w = (wj)jen such that w/~ is non mcreasing we obtain for all k € N

2 Wi Ak w;
— < Zk 2k hat' )
o =kl <4Ddp -, X (1, o 1 > (A.12)
Proof. The condition T € 7:1)‘[), that is, supycy/|[diag(A ] [ ],; |2 < D and ||Tf]? <
d||f||3 for all f € L%, together with the identity [Epp — gok]E = —[T}EI[TE,i-cp]E implies

|Ere — ¢ill3 < D|TEL¢|? < Dd|Ei-¢l3 < Ddy, \ip for all ¢ € F because (\/7) is
monotonically non increasing. From this estimate we conclude

1Erg — ol = llldiag(w)]*[Exe — onlell®

. 1/2) . Ak w;
< llding ()l iag Wl 71 B = ul} < Ddp F mare 2. (A.13)
Furthermore, since (w/) is non increasing, we have || Exp — ¢||2, < pwy/7x for all f € F4.

The assertion follows now by combination of the last estimate and (A.13) via a decomposi-
tion based on an elementary triangular inequality. (]

Lemma A.3 Suppose that the joint distribution of (Z,W) satisfies Assumption AS3. If in
addition the sequence X\ fulfills Assumption A1, then for all k € N we have

n/\k

PUIELIR > £5) < 2exp{— g tozs + 2oz k). (A14)

Proof. The proof of the assertion can be found in Johannes and Breunig (2009) and we
omit the details. g
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A.2. Proofs of section 3

We begin by defining and recalling notations to be used in the proof. Given u € L?[0, 1] we
denote by [u] the infinite vector of Fourier coefficients [u]; := (u, ;). In particular we use
the notations

—~ TS

- k [Q]j 1{ inf [/T\]Z..>1/n}w P .:Z&e, on ,:Zk: 9] b
=r, s T 7 L H T L HIT
D, = ]%;] [[%]; ﬂ{liﬂlik [/T\]jj = 1/ny;, @y = ]%;] [[zzf]]]]j ¥j.
Furthermore, let g be the function with Fourier coefficients [g]; := [/é\]j and observe that

[Eg = g. Given 1 < k < k’ we have then for all t € Sy, := span{ty,..., ¥}

n k

(B = 85k = 1 33 Vi () 0, T > 1/m) = (1.0

i=1 j=1 j
_ 1 n w;t]; _
(6 Bk = (1 gh = - 0 D Vit (W) T = (6 B
i=1 j=1 77
_ e wltlilel N~
{t, or)w = (T, Pyl = Z 7], = ij t];lel; = (¢ @)w- (A.15)
i=1 J=1

Consider the contrast Y(t) := ||t||2 — 2(¢, :Isg)w, for all t € L?[0,1]. Obviously it follows for
all t € S that Y(t) = ||t — @k||> — ||Pk]|? and, hence

argmin Y(¢) = ¢, Vk=>1. (A.16)
teSk

Then, the adaptive choice % of the dimension parameter can be rewritten as

~

~ __ __ 0
k = argmin {Y($;) + pen(k)}  with  pen(k) := 540 B[Y )=~ (A.17)
1<k<N, n

Then for all 1 < k < N, we have that T(%7) +pen(k) < Y(F) +pen(k) < Y(pr) +pen(k),
using first (A.17) and then (A.16). This inequality implies
155112 — llexlls < 2(8; — o, Bp)w + Pen(k) — pen(k),
which together with the identities given in (A.15) for all 1 < k < N,, implies
185 = #lla = o = exlle + 15512 = llerll? — 287 — er, e
<l — wnlls + pen(k) — pen(k) + 2(Pg — r, D — Pyl (A18)

Consider the unit ball By, := {f € Sk : ||f|lo < 1} and, for arbitrary 7 > 0 and t € S, the
elementary inequality

1
2|(t, hw| < 2[[tllw sup [{t k)o| < T2 +
teBy

k
1
= sup |(t, WY |? = 7||t]]2 + = wil[R]:]2.
TteBkK Yool 12115 T;:l il
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Combining the last estimate with (A.18) and @7 — ¢ € S, we obtain

~ ~ _ 1 =
187 =% < Il —wrll+7 135 — el +pen(k) —pen(k) +— sup [(t, ®5— D)l

T teBk\/E

Letting 7 := 1/3 it follows from [|&; — @& |2 < 2/|3; — ¢l12 + 2llx — ¢||2, that

1 5 - . -
3l1%7 - ol < 3l — o2 + pen(k) — pen(k) + 3tesgp |(t, D5 — @g)u|*.
kVk

Consider the functions ¥ and fi with Fourier coefficients [7]; = £ S°7 | V;1{|Y;| < a }9;(W5)
and [z1]; = 2 31, Yil{|Y;| > an}tp;(W;) respectively, and their centered versions v = U —

Ev and p = — Efx, then we have g — g = v + p and

~

1 5 U
3112z = el% < 5lle — wxlli + pen(k) — pen(k)

+6 sup |[(t, )02+ 12 sup [(t, B, — )02+ 12 sup |(t, <T>M + &'g —D,) |2

tEBkVE tEBk\/E teBk\/E

Decompose |(t, &, — ®,), |2 = |(t, D, — D)2 1{Q} + (¢, o, — ®,)0[1{Q} further using

|

Qq::{V1<j<Nn : ‘[T]

5~ M5 < 2|1 A > 1/”}' (A.19)

[T];5]
)

Since I{[T];; > 1/m}1{Qq} = 1{Q}, it follows that for all 1 < j < N, we have

2
<

<[£1w 1{[T],, > 1/n} — 1) 10} = |[T];51 1{2} \[be - [T
[T1;

Hence, sup;ep, |(t, D, — B,),[2 1{Q,} < %SUpteBk |(t,®,),|? for all 1 < k < N, and

1
1

1 5) — e
218 = ¢l2 < Sl —erlL +9 sup [{t,®,)uf? + pen(k) — pen(F)

eBk\/k

+ 12t€sl131p [(t, @, — )P L{QS} + 12 sup [(t, D, + By — Byl (A.20)

kVE €5k
Define A} := maxi<jck wj/|[T;51%, 7 = maxi<jer(wi)vi/I1T]551,
and 6} := kA] {log(r} v (k+2)) / log(k + 2)}. Then, it is easily seen that

log(3d)

oL < o d
K 4§ log 3

=5dCy  Vk>=1 (A.21)

with ¢4 = (log 3d)/(log 3). Moreover, define the event €, := Q, N €2, where §, is given in
(A.18) and

Q, = {NfL <N, < Nn}.
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Observe that on Q, we have (1/2)AT < < Ap < (3/2)Al for all 1 < k < N, and hence
(1/2)[AT V (k +2)] < [Ar V (k +2)] < (3/2)[AT v (k +2)], which implies

log[AT Vv (k + 2)]) (1 ~ log2 log(k +2) >
log(k + 2) log(k + 2) log(AL v [k + 2])

log(AT V [k + 2])) ( log 3/2 log(k +2) )
log(k + 2) log(k 4 2) log(AL v [k +2])/

(1/2)ka (

3 < (3/2)/<A;—§<

Using log(A7 V (k + 2))/log(k + 2) > 1, we conclude from the last estimate that

~

(120571 — (log )/ og(k +2)] < 5
(3/2)6F 1 + (log3/2)/ log(k + 2)] < 36}

57 /10 <(log 3/2)/(210g 3)8T <
<

Recall that pen(k) = 540 E[Y2] §,n~!, we define
pen(k) := 54 E[Y?]6in 1,
then it follows that on €, we have
pen(k) < pen(k) < 30pen(k) V1< k<N,
On Q, = 2, NQ,, we have k < N,,. Thus,
(pen(k v %) + pen(k) — pen(k) ) 1{0,} < (pen(k) + pen(k) + pen(k) — pen(k)) 1{24)
< 31 pen(k) V1< k<N, (A.22)

Furthermore, we obviously have Ak < nAZ for every 1 < k < N, which implies gk <n(l+
logn) 67. Consequently, peni(k) < 540E[Y?|n (1 + logn), because 6} /n < d(a0x/n < dCa
for all 1 < k < N, by (A.21) and the definition of N,. On Qf N2, we have 7<5\ < N, and
hence pen(k V k) < pen(N,,) < 54 E[Y2], which implies

(pen(k V k) + pen(k) — pen(k))1{QS N} < 594E[Y?]n (1+1ogn)1{Q N Q). (A.23)

We note further that for all ¢ € F with 3, ’yj_l =T < oo and for all z € [0,1] we have
lo(2)2 < p> jeN ’yj_l@bjz(z) < 2pT" by employing Cauchy-Schwarz inequality. Thereby, given
m > 1 such that EU?™W < o?™, it follows

E[Y?™W] < 22™(2pT + 6™ and, hence E[Y?™] < 22™(2oT + o)™. (A.24)

At the end of this section we will prove three technical Lemmata (A.5, A.8 and A.7) which
are used in the following proof.
Proof of Theorem 3.4. The proof is based on the decomposition

ElZ; - ¢llZ = Ellég — oll21{Qqp} + BlIZ; — ¢ll21{2F N} + Ell37 - ll21{05}.
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Below we show that there exist a numerical constant C' such that for all n > 1 and all
1<k<N}lwehave

~ Wj 1
BI3; — #2182} < O{ o = oul2 + pen) + domae {2 min (1, ) |

(A.25)
L2+ 0%t (2ol +0® + Dd G <<2pF+a <d+VU|z>

n n U|Z

~ w
Bl6; — 21002509} < { o~ oul2 + doma { 2 min 1.1 |
= J J

A .26
(2pI 4+ 0% + 1)*d (20T + 0%)Ca + Viyiz ( )
+ X 5 +1] ¢,
n VU|Z
~ c C
E|&; — ¢ll2 {05} < g(QPTJFO’Q)- (A.27)

The desired upper bound follows by using (A.21), that is, pen(k) < 54 (2pI'+02) d (g 6pn~*
and by employing the monotonicity of w/v, that is ||¢ — vil|2 < pwi/Ve-

Proof of (A.25). By employing the estimate (A.28) and pen(k) := 54 E[Y?] 6/ n~! we have

L 5 E[Y?] 6T
||gok—so||i<r|so—sok|i+9( sup |<t,q>y>w|z_6m>

+ pen(k V k) + pen(k) — pen(k)

+12 sup [(t, B, — )P L{QS} + 12 sup [(t, B, + By — Dy)|?

teB, % by

and, hence using that k: n on {2, we obtain for all 1 <k < N, !

n

N,
1, % E[Y2)6]
3190~ #1210 < Slle = oull 93 (sup it )P — 02
k=1 teBy n +

+12 sup [(t, B+ By — B)uf? + (pen(k v F) + pen(k) — pen(k) ) 1{}
tEBNn

N,
: E[Y?)6F
< 2o - sok|rw+92(sup|<t<1>>\ 6”k>
+

n
k=1 teBy

+12 sup [{t,®, + B, — ®y)|* + 31 pen(k),
tGBNn

where the last inequality follows from (A.22). The second term is bounded by employing
Lemma A.5. In order to control the third term, apply Lemmata A.6 and A.7. Consequently,
combining these estimates proves inequality (A.25).

Proof of (A.26). On Qg NQy,, we have N! < N, < N Applying (A.28), it follows from
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(A.23) that for all 1 < k < N}

N,
G- e} < Do — a2 +9Y (sup (1, @,)u 7 — 6 Lk
3 3 k=1 teBy n +

+ 594 E[Y?] n (1 +logn)1{Q5 N Q,}

+12 sup (£, By — @,)[> 1{Q} + 12 sup [(t, D, + Ty — D)o [
tGBNn tGBNn

Due to Lemmas A.5,A.7, A.8, and A.9, there exists a numerical constant C' such that

o~ wij 1 1
E|3: — |21{Q5 N0} < O{Iso — ullé + dpmax {73 min (1, m-)}

2 (2oL +0%)*

+ (20" + 0)n(1 + log n)P[QS] + dP[Q -

. (2pL + o2 + 1)d (y . (2oL + 02)Ca+ Vi 2
n V5|Z '

Employing Lemma A.9 now proves (A.26).
2
Proof of (A.27). Let ¢y := Z?:l[‘p]jﬂ{[T]jj > 1/n}p;. Tt is easy to see that [|@g — @rl|? <

| @k — @i ||? for all K < k and ||@x —¢||? < ||¢||? for all k > 1. Thus, using that 1 < k < NY,
we can write

El2; — la{Qp} < 2{Bl2; - & 21{05} + Bllég — ol Z1{25})

< z{EHm Bwel2{0s) + Hsoning]}.

Moreover, since sup; -4 IEY‘%;‘(W) < 64(2pT +0?)% and Ew}l(W)w?(Z) < 16 due to (A.24),
it follows from Theorem 2.10 in Petrov (1995) that

E(@ny — ¢nelZ1{025}

Ny . __
<20y w;{B(lgl, — [Thilely) 1O} + B(T)510]; — [T],,101)*1{2%)}
j=1
NY e
<on{> [ (]~ lals) ] P10
j=1

N} .
+ > wjllls BT, - [T)35)'2Pleg) 2}
j=1
< Cndn (20T +0%) + (0~ ]2) } P12,

where we used that Z;le w; < n(maxicj<yy w;) < n? due to Definition 3.2 (ii). Since
(w/7) is non-increasing, (A.27) follows from Lemma A.10, which completes the proof. [
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lllustration: estimation of derivatives

Proof of Proposition 3.6. In the light of the proof of Proposition 2.8 we apply Theorem 3.4,
where in both cases the additional conditions are easily verified (cf. Remark 3.3) and the
result follows by an evaluation of the upper bound. Note further that (w/\) is in both cases
non decreasing, and hence the second term in the upper bound of Theorem 3.4 is always
smaller than the first one.

In case [fs] we have N\ ~ (n/(logn))'/(2e+25+1) and k* := nl/(2a+20+1)  Note that k* < NL.
Thus, the upper bound is of order O((k})~2(P=%) 4 p=1) = O(n~2(p—3)/(Rat2p+1)),

In case [is] we have N! ~ {log(n/(logn)2P+2e+1)/(20))11/(20) — (Jogn)1/ () (1 4 0(1)) ~ k.
Thereby, the upper bound is of order O((k})~2?=%) + n=1) = O((logn)~®=*)/%), which
completes the proof. ]

Technical assertions. In the proof of Lemma A.5 below we will need the following Lemma,
which can be found in Comte et al. (2006).

Lemma A.4 (Talagrand’s Inequality) Let Ti,...,T, be independent random wvariables and
vi(r) = (1/n) X1 [1(Ty) — E[r(T3)]], for r belonging to a countable class R of measurable

n
functions. Then,

H?2

Elsup ()~ 6113], < C (L exp(~ (3 /60) + S expl-Kantta/ )
reR

with numerical constants Ko = (v/2 —1)/(21v/2) and C and where

sup||7|lec < Hi, E [sup |1/;;(T)|] Hsy, sup — ZWar T;)) <.
reR reR reR MY

Lemma A.5 There exists a numerical constant C > 0 such that

6 E[Y?] 67 c{ ) ((2pF+02)Cd+VU|z>}
E|( sup [(t,®,),|*———~ < =L (2pT 40?4+ 1)d(y ¥ .
Z[( b1 @) )+] “! @oriatinag

2
teBy, n VU\Z

where X(+) is the function from Definition 3.1

Proof. For t € Sj, define the function r(y, w) := 25:1 wiyL{|y| < n'/3};(w)[t);[T ]]J , then
it is readily seen that (¢, ®,)., = = S0 7(Yi, W) — E[ry(Ye, Wi)].

Next, we compute constants Hj, Ho, and v verifying the three inequalities required in
Lemma A.4. Consider H; first:

2
sup el -syupzw] (y1dlyl < n!HTT5 0 (w) ) < 20?06] = B
b J 1

Next, find Hy. Notice that

k
Blsup (£, ®)ul?] = 1 3" wyl[Th | Var(YL{¥] < nl/*}s; (7))

teBy,

k
S iZ%‘HT]J‘j!Q E[E[Y2|W] 4 (W)?] < 2B[Y2] % = [}
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As for v, we note that due to (A.24) for all ¢ € F¥ the condition U € U,, i.e., BU*|W < o2,
implies EY2|W < 2(2pI' + 02), and hence

sup Var(r () < sup [ (v 3 000} |

= up ]E[]E[YQIW] (Z wj[ﬂf ¢j<W>)2]

teBy

sup ij[tﬁ <2207 + )AL = v,

o SEI) |

k=1 teBy n
E[Y?] Al (2pT + o2) E[Y?]
< C’{ n ; E[Y?] A} exp (W(ég/Af)>

Nn oT
+n?/3 exp (ng \/E[Yz]n1/6> Z i’;}
k=1

The definition of N, together with (A.21) implies 310, 6F /n? < (4. Thereby, using (A.21),
Ag < dt; and the function ¥ given in Definition 3.1, there exists a numerical constant

C > 0 such that

Ny, 6 E[Y?] 6]
ZE[( sup [{t, @, ), |2 - n'“)J

teBy,
< {E[YﬂdZ(W) + gdz(El[YQ]) }

Q

n

Moreover, we have E[Y?] < 2(2pI" + 02) and infsoefg]E[YQ] > inf,ep E(p(Z) +U)? >
E(U - E[U|Z])? = E[Var(U|2)] = Vgl > which implies the result. O

Lemma A.6 For every n € N we have

E[ sup \(t,$u>w\2] < 2°(2pT + 02)*n 1
tEBNn

Proof. Since [u]; = [fi]; — E[g]; and Var[u]; < n'EY21{|Y]| > nl/?’}wJZ(W), it is easily
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seen that

E{ sup |(t, <I’ ] nZw]War

tEBNn

Nn

<Y E

j=1

Moreover, given m = 6 we have E[Y2|[W] < 2'2(2pT + 02)%or all p € Ff and U € U,
due to (A.24) and, hence by Markov’s inequality E[1{|Y| > n!/3}|W] < 2'2(2p' 4 02)5n~2.
Combining these estimates, we obtain

Nn
E[ sup \<t@>u>w\2] <SE

tEBNn j=1

<E[Y4!W]E[1{\Y!>n1/3}!W]> vi (W )]

28(2pI" + 02)47121/1]2-(W)] < 20N, (20T + 0?)n 2.
The result follows now from N, < n. O

Lemma A.7 There is a numerical constant C > 0 such that for all ¢ € FY and every
k.neN

~ Wj 1
E| sup (¢, ®, — D w2] cd max{]min 1, — }
s 0.8~ )| < Cpma {2 min 1.

Proof. Firstly, as ¢ € F4, it is easily seen that

E { sup |(t, &, — <I>g>w\2] < zk:[@]?ij[RQ] S ppax { i [RQ]}

>1
teBy, j=1 ]z

where R; is defined by

Rj = ([T]” 1{[T] ] >1/n} — 1) (A.28)
(75

The result follows from IERJQ- < Cdmin (1, %), which can be shown as follows. Consider
the identity

E|R;* ZEH[T]
ji

Trivially, R < 1. If 1 < 4/(n[T]3;), then obviously RI < 4/(n[T]3;) < 4d/(n);). Other-
wise, we have 1/n < [T]% /4 and hence, using Tchebychev’s 1nequahty,

| W@, 1/n}] P, < 1/n] = R+ R, (A29)

o~

— 4 War([T]jj) 16 16d
RJU < P[T]); = [Ty51 > 1[T]551 /2] < [T]2 S n[TTZ, < ni;’

where we have used that War([/\] T);;) < 4/n for all j. Combining both estimates we have
RI < 16d min (1, - ) Now consider RI We find that

|[/ﬂjj - [T]ij —
— {[ } > 1/n}| < nVar([T ]”)<4. (A.30)

R} =E
[
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Using that E[|[T1;; — [T];;]*] < ¢/n? for some numerical constant ¢ > 0 (cf. Petrov (1995),
Theorem 2.10), there exists a numerical constant ¢ > 0 such that

1 P S s Pl s T
A A o ]
<2nEH[/T\]jj_[T]jj|4] 2Vaf(ﬁ]jj)< c_ o
[T]?j [T]?j n [T]?j nA;

Combining with (A.30) gives RJI < Cdmin {1, %} for some numerical constant C' > 0,
which completes the proof. O

Lemma A.8 There is a numerical constant C > 0 such that

E{ sup |(t, ®, — <I>V>MJ1{Q;}\2] < cd(Pg) 72,

tEBNn

Proof. Given with R; from (A.28) we begin our proof observing that

Nn .
B| s 1168, - 2| <3 o EE R 1)

teBar,, > =
No
) ng [T]J?j (EVEER) Y P>,

where we have applied Cauchy-Schwarz twice. By Petrov’s inequality, there exists a numer-

ical constant ¢ > 0 such that E[[I/]?] < en™*/3 and hence, because ddy, > Zle %,
77

E[ sup |<t,§>u—¢y>w1{gg}|2] < PQC]Y2dsy, max (E[RS])Y!

tEBMm 1<j<Ny,

In analogy to (A.29), we decompose the moment of R; into two terms

-~

B[Rj] = E{ ’[T]J{?—] Ty

2

8 9
(T, > 1/} |+ I, < 1/,

Jj

which we bound by a constant using Petrov’s inequality. This completes the proof. O

Lemma A.9 For the event Qg defined in (A.19), we have P[QE] < 2(2016d/X1)" n=5.
Proof. Consider the complement of €2, given by

.. 1 —~2
Q;:{EllgjgNn : ‘[/\]” —1‘>* Vv [T]-'<1/”}-
2 17
[T,

It follows from Assumption A4 (i) that [T]?j > 2/n for all 1 < j < N,. This yields

—
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From Hoeffding’s inequality follows

which implies the result by definition of N,. O

Lemma A.10 Consider the event Q, defined in (A.19). Then we have

POr) < 4 (2016d

7
> n=b, Vn>l1.
1

Proof. Let Q; := {N! > N,} and Q;; := {N, > N,}. Then we have Q¢ = Q; U Q.

. - I . ‘ |[T;12 4(logn) .
Consider € first. By definition of IV,,, we have that min;;c Gl = o which
IJXx4Vp 'j

implies

2

[T]]j logn
il = }

c U {‘; <ipfe U (i, -1 1)

n

{Nn<N,§}c{31<j<Nl-

1<G<N), 1< N
Therefore, Q C Ulg\j\gNn{H/(;]j/[ ;=1 = 1/2}, since N} < N,. Hence, as in (A.21)
applying Hoeffding’s inequality together with the definition of N,, gives
Np, 2 7
n (T3 2016 d
PQ/]<) 2 - —2 )2 -0, A.31
mjzlexp( 288) (A>” (A.31)

2

Consider j7. Recall that l‘ilgn " > max|j|>n, due to Assumption A4, and hence

T2,
IJI(wJ)
[/T'\]Q
» jj > logn}
l7l(wj)vi n

{Nn>Nn}c{v1<j<Nn;

c (Ml 5 0 < (i@, /1, — 11> 1),

Hoeffding’s inequality together with the definition of N,, gives P[Qr7] < 2(2016d/\1)"n =6,
which by combining with (A.31) implies the result. D
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