Huveneers, François
[UCL]
We study asymptotic distributions of the sums y(n)(x) = Sigma(n-1)(k=0) psi(x + k alpha) with respect to the Lebesgue measure, where alpha is an element of R - Q and where psi is the 1-periodic function of bounded variation such that psi(x) = 1 if x is an element of [0, 1/2[ and psi(x) = -1 if x is an element of [1 /2, 1[. For every alpha is an element of R - Q, we find a sequence (n(j))(j) subset of N such that y(nj)/root j is asymptotically normally distributed. For n >= 1, let z(n) is an element of (y(m))(m <= n) be such that parallel to z(n)parallel to(L2) = max(m <= n) parallel to y(m)parallel to(L2). If a is of constant type, we show that z(n)/parallel to z(n)parallel to(L2) is also asymptotically normally distributed. We give a heuristic link with the theory of expanding maps of the interval.
- Adamczewski Boris, Répartition des suites (nα)n∈Net substitutions, 10.4064/aa112-1-1
- Baladi Viviane, Positive Transfer Operators and Decay of Correlations, ISBN:9789810233280, 10.1142/3657
- Bricmont Jean, Gawędzki Krzysztof, Kupiainen Antti, KAM Theorem and Quantum Field Theory, 10.1007/s002200050573
- Bunimovich L. A., Sinai Ya. G., Statistical properties of lorentz gas with periodic configuration of scatterers, 10.1007/bf02046760
- Burton Robert, Denker Manfred, On the Central Limit Theorem for Dynamical Systems, 10.2307/2000864
- De La Rue, Theory Probab. Math. Statist., 57, 140 (1997)
- Dettmann C. P., 10.1023/a:1026477605331
- Drmota Michael, Tichy Robert F., Sequences, Discrepancies and Applications, ISBN:9783540626060, 10.1007/bfb0093404
- Gaspard P., Briggs M. E., Francis M. K., Sengers J. V., Gammon R. W., Dorfman J. R., Calabrese R. V., 10.1038/29721
- Hardy, An Introduction to the Theory of Numbers (1960)
- Herman Michael Robert, Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations, 10.1007/bf02684798
- Hofbauer Franz, Keller Gerhard, Ergodic properties of invariant measures for piecewise monotonic transformations, 10.1007/bf01215004
- Kuipers, Uniform Distribution of Sequences (1974)
- Liardet Pierre, Volný Dalibor, Sums of continuous and differentiable functions in dynamical systems, 10.1007/bf02937328
Référence bibliographique |
Huveneers, François. Subdiffusive behavior generated by irrational rotations. In: Ergodic Theory and Dynamical Systems, Vol. 29, p. 1217-1233 (2009) |
Permalien |
http://hdl.handle.net/2078.1/35431 |