
Poster: Enhancing the performance of a single
connection using Multipath QUIC

Vany V. Ingenzi∗

vany.ingenzi@uclouvain.be

UCLouvain & WELRI

Louvain-La-Neuve, Belgium

Tom Barbette
tom.barbette@uclouvain.be

UCLouvain ICTEAM

Louvain-La-Neuve, Belgium

Olivier Bonaventure∗

olivier.bonaventure@uclouvain.be

UCLouvain & WELRI

Louvain-La-Neuve, Belgium

Abstract—The QUIC protocol, designed to reduce latency and
improve internet security, faces goodput performance challenges
in high-speed networks, particularly with single-thread imple-
mentations. This poster extends an existing userspace Multipath
QUIC (MPQUIC) implementation to enhance the goodput of a
single connection by pinning different network path logics to
different cores. Our solution, mcMPQUIC, achieves a goodput
of up to 20 Gbps with ten paths/cores, surpassing the baseline
MPQUIC performance by more than five times.

Index Terms—QUIC, Multipath QUIC, Goodput performance

I. INTRODUCTION

Despite widespread deployment of QUIC [1] since its

standardization, most implementations are single-threaded and

poorly scale with multicore hosts [2]–[4]. MPQUIC [5] is an

extension of QUIC that allows a single connection to use

multiple network paths simultaneously. A network path is

defined by a 4-tuple, which includes for both the client and

server their addresses and ports.

Multithreaded QUIC implementations exist, such as

MsQuic [6], and Quinn [7]. These implementations mainly

focus on parallelizing the packet I/O. Parallelizing the QUIC

state machine for a single connection is complicated due

to the large number of dependent control states and how

often they change. Previous works on benchmarking QUIC

implementations [2]–[4] show that piqoquic-dpdk [4], M

sQuic [6], and Quinn [7] achieve a maximum goodput of

15 Gbps, 10 Gbps, and 8.22 Gbps, respectively.

This poster proposes an MPQUIC [5] based architecture

aiming to improve the parallelization of a single QUIC con-

nection. Our solution, mcMPQUIC1, employs MPQUIC to

establish multiple network paths all within a single connection.

The number of paths used for a given connection scales in

accordance with the number of cores on the host. This is

because we assign the control loop logic for each network path

to a distinct core. A stream is attached to a network path, and

the data of that stream can only be forwarded on the particular

path. mcMPQUIC is a multithreaded extension of Cloudflare’s

Quiche [8] and its multipath extension [9], initially single-

threaded. Additionally, we provide an evaluation framework2

∗This publication is supported by the Walloon Region as part of the FRFS-
WEL-T strategic axis.

1https://github.com/vanyingenzi/quiche/tree/decoupled multicore
2https://github.com/vanyingenzi/master thesis utilities

which extends the QUIC-interop runner [2], enabling the

evaluation of MPQUIC implementations and the reproduction

of our results.
II. ARCHITECTURE

The high-level goal of mcMPQUIC is to make the ap-

plication data transfer as concurrent as possible and use

multiple cores to scale the transfer. As depicted in Figure

1, mcMPQUIC architecture assigns streams to network paths,

then creates a path thread that handles the logic of a network

path and its assigned streams. We pin each path thread on one

CPU core and scale path threads depending on the number of

CPU cores on the host. In this poster, we leave it up to the

application to distribute data streams on different paths. Our

architecture was inspired by Netchannel [10]. However, while

Netchannel aggregates multiple TCP connections, it introduces

overhead and requires kernel modifications.

Path
Thread

UDP socket

Streams

App Handler

Path Thread

Path

UDP socket

Streams

App Handler

Path Thread

Path

Connection

...

...

Application
Process

Data Path

Control Path

Application
Process

MPQUIC mcMPQUIC

UDP socket

Streams

App Handler

Connection

UDP socket

Paths

Fig. 1. The mcMPQUIC architecture compared to the single-threaded
MPQUIC architecture. The data path represents the path of the application data
across the architecture and the control path is the path for control information
of the transport protocol (i.e control frames).

A. Synchronization of Path Threads

Although mcMPQUIC enables independent data transfer

across network paths, synchronization is still required for con-

trol frames (e.g., connection close, new connection ID). This

synchronization is managed through event queues associated

with each network path. When a network path receives a

control frame, it signals other local paths by placing an event in

their event queues. These event queues are stored within the

Connection data structure (Figure 1). We initially evaluated

an architecture where multiple path threads shared a data979-8-3503-5171-2/24/$31.00 ©2024 IEEE

structure containing control information. However, this design

performed poorly due to the overhead of mutual exclusion,

which prevented efficient scaling. Our analysis showed that

with two path threads, the threads spent, on average, twice as

much time waiting for access to the shared data structure as

they did receiving packets via system calls.

B. Modified MP(QUIC) Semantics

1) Streams: Even though data can be sent on multiple

streams concurrently, streams need to synchronize connection-

wide to not overwhelm the resources at the receiving hosts.

This mechanism is called flow control, and QUIC [1] defines

two operational points for flow control: connection-level flow

control and stream-level flow control. Our design disrupts

with the RFC, by doing a path-level flow control instead of

connection-level flow control to maximize parallelism. Path-

level flow control means the MAX_DATA frames will handle

the offset and manage resources on a single path. Therefore,

this minimizes the synchronization needed during data transfer.

2) Acknowledgments: MPQUIC [5] allows the application

to send acknowledgments on another path than the one it is

acknowledging the packets from. Cross-path acknowledgments

require synchronization at each transmission of an acknowl-

edgment in order to check if a packet has been acknowledged

on another network path. Hence, an mcMPQUIC endpoint

does not send acknowledgments on another path than the one

we are sending data on to eliminate this associated overhead.

III. EVALUATION

For the experiments, we solely use machines from Cloudlab

[11] for ease of repeatability [12]. Two 25GbE links connect

the client and the server. The client and server are AMD

EPYC Rome machines (Cloudlab reference: c6525-25g) run-

ning Ubuntu 22.04.2 LTS as the operating system with Linux

kernel 5.15. The hosts are connected through two different

networks using the dual port technology of the NIC. In order

to test the scalability of our solution with a higher number of

paths, we equally distribute the number of paths across the

two networks. For each number of path/core, we repeat the

experiment 10 times, each lasting 20 seconds. The payload

is generated by memory-to-memory transfer to remove any

impact of Disk I/O.

1 2 3 4 5 6 7 8 9 10111213141516

Number of paths

0

20

40

G
o
o
d
p
u
t

[G
b
p
s]

shardquic

mpquic

mcmpquic

Fig. 2. Goodput as we increase the number of paths.

A. Scalability

From Figure 2, we observe that single-threaded MPQUIC

struggles to leverage bandwidth aggregation effectively, flat-

tening at a goodput of 3.71 Gbps as the number of paths

increases. In contrast, mcMPQUIC demonstrates a remarkable

improvement, achieving a maximum average goodput of 20.83

Gbps; far surpassing the 3.71 Gbps of the baseline MPQUIC.

This substantial improvement is due to mcMPQUIC’s ability

to distribute data transfer across multiple CPU cores, unlike

the single-threaded MPQUIC. As shown, mcMPQUIC scales

up to eight paths linearly, reaching a knee capacity of 19

Gbps and achieves a usable goodput with ten paths. However,

performance relatively declines as we go beyond ten network

paths.
To have an upper bound to compare mcMPQUIC to,

we use parallel independent connections that share no state

among each other, we call it shardQUIC. As seen on Figure

2 the widening performance gap between shardQUIC and

mcMPQUIC is due to the synchronization overhead across

network paths. Unlike shardQUIC, which uses independent

QUIC connections, mcMPQUIC uses a single connection

which requires synchronization across its paths. Sharding can

be a viable solution in some use cases (e.g., file transfer), but

when data is processed on-the-fly, sharded connections are not

as transparent to the application as a single connection.

B. mcMPQUIC Bottleneck

APPLIC
ATIO

N

CONN_M
GM

T

CRYPTO

LOCKIN
G

PA
CKET_IO

UNCATEGORIZ
ED

0

20

40

C
P

U
C

y
cl

es
[%

]

12 paths

8 paths

4 paths

1 paths

Fig. 3. CPU profile for an mcMPQUIC client as the number of paths increase.

To understand the performance limit as paths increase

(Figure 2), we conducted a perf profile analysis, shown in

Figure 3. Examining the mcMPQUIC profile in Figure 3, we

observe that Packet I/O consumes the majority of CPU cycles

on the client side, up to eight paths, which is consistent with

Kempf et al. [2]. Given that the path threads control loop

is nearly symmetric, we expect the later profile to remain

unchanged as the number of paths increases for mcMPQUIC.

However, Locking tasks take more CPU cycles at the client

when we increase the number of paths/cores. This increase is

due to locking on data structures to check for event queues,

as stated in Section II.
IV. FUTURE WORK

Our solution transfers data five times faster than the baseline

MPQUIC. It is ideal for goodput-sensitive applications with

many concurrent data flows. Despite better scalability than the

baseline, a synchronization bottleneck emerges as the number

of paths increases. Furthermore, per-path flow control limits

the ability to distribute a single flow across multiple streams

on different paths. Additionally, the implementation requires

the application to be multithreaded, adding complexity. Future

efforts will address these challenges and optimize synchro-

nization overhead through improved data structures. Lastly,

as MPQUIC undergoes IETF standardization, we will ensure

compatibility with future draft versions.

REFERENCES

[1] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[2] M. Kempf, B. Jaeger, J. Zirngibl, K. Ploch, and G. Carle, “Quic on the
fast lane: Extending performance evaluations on high-rate links,” Com-

puter Communications, vol. 223, pp. 90–100, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S014036642400166X

[3] M. König, O. P. Waldhorst, and M. Zitterbart, “Quic (k) enough in the
long run? sustained throughput performance of quic implementations,”
in 2023 IEEE 48th Conference on Local Computer Networks (LCN).
IEEE, 2023, pp. 1–4.

[4] N. Tyunyayev, M. Piraux, O. Bonaventure, and T. Barbette, “A high-
speed quic implementation,” in Proceedings of the 3rd International

CoNEXT Student Workshop, 2022, pp. 20–22.
[5] Y. Liu, Y. Ma, Q. D. Coninck, O. Bonaventure, C. Huitema, and

M. Kühlewind, “Multipath Extension for QUIC,” Internet Engineering
Task Force, Internet-Draft draft-ietf-quic-multipath-06, Oct. 2023, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-
ietf-quic-multipath/06/

[6] M. Bünstorf and B. Jaeger, “Msquic–a high-speed quic implementation,”
Innovative Internet Technologies and Mobile Communications (IITM),
2023.

[7] “Quinn,” https://github.com/quinn-rs/quinn, 2024. [Online]. Available:
https://github.com/quinn-rs/quinn

[8] Cloudflare, “Quiche,” https://github.com/cloudflare/quiche, 2024.
[Online]. Available: https://github.com/cloudflare/quiche

[9] Q. D. Cloudflare, “Quiche,” https://github.com/qdeconinck/quiche, 2024.
[Online]. Available: https://github.com/qdeconinck/quiche

[10] Q. Cai, M. Vuppalapati, J. Hwang, C. Kozyrakis, and R. Agarwal,
“Towards µs tail latency and terabit ethernet: disaggregating the host
network stack,” in Proceedings of the ACM SIGCOMM 2022 Confer-

ence, 2022, pp. 767–779.
[11] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of CloudLab,” in Proceedings of

the USENIX Annual Technical Conference (ATC), Jul. 2019, pp. 1–14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19

[12] I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich, S. Manegold, N. Poly-
zotis, K. Schnaitter, P. Senellart, S. Zoupanos, and D. Shasha, “The
repeatability experiment of sigmod 2008,” ACM SIGMOD Record,
vol. 37, no. 1, pp. 39–45, 2008.

