
Nonnegative Matrix Factorization
using Parametrizable Functions

Cécile Hautecoeur

Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctorat en sciences de l’ingénieur et technologie

Dissertation committee:

Prof. François Glineur (UCLouvain, advisor)
Prof. Pierre-Antoine Absil (UCLouvain, Belgium)
Prof. Lieven De Lathauwer (KULeuven, Belgium)
Prof. Nicolas Gillis (UMons, Belgium)
Dr. Le Thi Khanh Hien (Huawei, Belgium)
Prof. Rafał Zdunek (Politechnika Wrocławska, Poland)
Prof. Philippe Lefèvre (UCLouvain, chair)

Version of September 23, 2022.

Abstract

Nonnegative Matrix Factorization (NMF) is a popular data analysis tool
for nonnegative data, able to extract meaningful features from a dataset,
compress it and filter its noise. To do so, this method factorizes an input
matrix Y as the product of two factors, the low-rank nonnegative matrices
A and X . Recently, several interesting works have analyzed the possibility
of imposing some additional structure to the NMF model, by requiring fac-
tors A and X to be based on nonnegative parametrizable functions, such
as nonnegative splines or polynomials. When the input data is structured,
for example for smooth continuous signals, this leads to factorizations that
are less sensitive to noise and better able to find the characteristic elements
of the dataset.

This thesis is a continuation of that work. We first study NMF using poly-
nomials and splines. We focus on the Hierarchical Alternating Least Squares
(HALS) algorithm, which has the advantage of quickly finding a good so-
lution, and converging to a stationary point under mild conditions. We
generalize this algorithm and observe that it obtains good results and is
competitive with existing approaches.

We also seek to generalize the NMF model in a more formal way, so that
any parameterizable function could be used in the factors. This leads to the
definition of the H-NMF (NMF on Hilbert spaces), allowing to factorize
a two-variable function (such as a matrix) as the sum of a small number
of products of one-variable functions (the characteristic elements). This
generalization is proved to have characteristics and theoretical guarantees
similar to those of the standard NMF problem.

Our generalization of HALS uses projections onto the functions under con-

| i

⋆ | Abstract

sideration (e.g. nonnegative polynomial or splines). As these projections
can be costly and difficult to compute, we consider to approximate them.
We are able to identify several cases where the algorithm keeps good con-
vergence properties, and use these results to describe heuristic projections
speeding up the algorithm without affecting its accuracy.

Finally, we consider the case of rational functions which has no theoretical
guarantees because rational functions of fixed degree do not form a convex
set. In practice, we observe that our algorithms are very sensitive to their
initialization in this case. Nevertheless, using rational functions in NMF
can lead to very good results since rational functions are able to represent
a wider range of shapes than polynomials and splines.

ii |

Acknowledgements

Achieving a thesis is a rich learning experience, which has allowed me to
develop both from a professional/scientific and personal point of view. I
would like to thank my supervisor François Glineur without whom none
of this would have been possible. François always had the art of pointing
out the right changes to be made, requiring little work but significantly im-
proving the quality. He also always found the right ways to help me when
I was having difficulties. I always felt very supported and encouraged.

I would also like to thank Stephen Vavasis, who mentored me for 3 months
during my stay in Waterloo (Canada), it was a very enriching experience.
I also thank the members of my thesis committee and jury for their careful
reading and valuable comments which undoubtedly improved the quality
of this work.

I would also like to thank my colleagues at the Euler, for the superb work-
ing atmosphere. In particular, my office-mate Loïc, for all our discussions,
about our respective theses or not, and Hazan, for his great kindness, as
well as my AsCII co-president, Charles, with whom we did our best to
contribute to (and improve?) the life of the institute. There is also Emilie
who was my guide during my first years of thesis. Not forgetting all the
Œulerians (Adrien, Benjamin, Estelle, Guillaume O., Guillaume B., Nico-
las and Sébastien), the super secretaries Marie-Christine and Pascale, the
members of the AsCII, and in general all the people of the Euler and of the
ICTEAM institute.

I would also like to thank my friends who have supported me for many
years (15 years for most of them). Of course, I warmly thank my family
who always supports me in everything I do.

| iii

⋆ | Acknowledgements

Finally, I would like to thank Martin, who has always been there during
these four years, enthusiastic about my successes and very present and
motivating during my moments of doubt. Thank you for all that you have
given me, and will give me for (I hope) many years to come.

iv |

Contents

Abstract . i

Acknowledgements . iii

Contents . v

Useful notations . vii

List of algorithms . ix

1 Introduction . 1
1.1 Objectives of the thesis . 5
1.2 Content of the thesis and publications 5

2 Preliminaries and background . 11
2.1 Nonnegative Matrix Factorization (NMF) 11
2.2 Existing improvements of NMF 15
2.3 Nonnegative parametrizable functions 20

3 NMF using Polynomials and Splines 27
3.1 HALS for NMF using linearly parametrizable functions 28
3.2 Projection onto nonnegative polynomials or splines 35
3.3 Experimental results . 37

4 Extending NMF to Hilbert spaces (H-NMF) 51
4.1 Generalizing the standard NMF problem 52
4.2 Optimizing the H-NMF problem using inner products 55
4.3 Solving the H-NMF problem 69

| v

⋆ | Contents

5 Convergence of H-NMF . 75
5.1 Block Coordinate Descent (BCD) methods for H-NMF 76
5.2 Convergence analysis of BCD methods for H-NMF 78
5.3 Convergence using inexact updates 88

6 Accelerating NMF using polynomials via inexact projections . 103
6.1 Computational effort to solve NMF using polynomials 105
6.2 Acceleration using heuristics 107
6.3 Acceleration using algorithms with early stopping 115
6.4 Discussion . 136

7 Application: Using NMF with splines for image completion . 139
7.1 Image completion using smooth NMF 140
7.2 Image completion using splines in both factors 143
7.3 Experiments . 147

8 NMF using rational functions . 155
8.1 The NMF using rational functions (R-NMF) problem 156
8.2 Uniqueness . 158
8.3 Algorithms for R-NMF . 162
8.4 Projection on nonnegative rational functions 164
8.5 Performance and Comparison of R-NMF algorithms 171
8.6 Two applications . 183
8.7 Discussion . 188

9 Discussion and conclusion . 191

A Proof of Theorem 5.7 . 197

B Description and implementation of the projection methods for
rational functions . 201

C Implementation . 205

Bibliography . 207

vi |

Useful notations

Matrices
A Matrices are represented with bold capital letters
Ai,j Element at ith row and jth column of A. Indexing starts at 1.
Ai: ith row of A

A:j jth column of A

A⊤ Transpose of matrix A

∥ · ∥F Frobenius norm of a matrix
∥ · ∥2 Euclidean norm of a vector
Rm×n Set of real matrices of size m× n
Rr Set of real vectors of size r
Ir Identity matrix of size r× r
0m×n Zero matrix of size m× n
1r Vector of ones in Rr

V d
τ Pseudo-Vandermonde matrix in Chebyshev basis, of degree d,

on discretization points τ

vec(A) Vectorization of matrix A

Hilbert spaces

H Hilbert spaces are represented with calligraphic letters
⟨·, ·⟩H Inner product ofH
∥ · ∥H Norm ofH

| vii

⋆ | Useful notations

Sets and operators

| · | Absolute value
⌈·⌉ Ceiling function
#S Cardinality of set S, i.e. the number of elements in S
A \ B Exclusion operator, i.e. A after removing the elements from B
[·]S Projection on set S
[·]+ Projection on nonnegative vectors (equivalent to a thresholding

operation, setting all negative values to 0)
Pd Set of polynomials of degree d
Pd
+ Set of nonnegative polynomials of degree d
Pd
+(I) Set of polynomials of degree d nonnegative on interval I

R Real line
R+ Nonnegative real line
S+ Set of positive semidefinite matrices
L Lorentz cone
N (µ, σ) Normal distribution with mean µ and variance σ

Acronyms

BCD Block Coordinate Descent
GRBF Gaussian Radial Basis Functions
HALS Hierarchical Alternating Least Squares
H-HALS Hierarchical Alternating Least Squares in Hilbert spaces
H-NMF Nonnegative Matrix Factorization in Hilbert spaces
NMF Nonnegative Matrix Factorization
PCA Principal Component Analysis
RKHS Reproducing Kernel Hilbert Space
SDP SemiDefinite Program
SIR Signal to Interference Ratio
SNR Signal to Noise Ratio
SOS Sum Of Squares
SVD Singular Value Decomposition

viii |

List of algorithms

2.1 Hierarchical Alternating Least Squares (HALS) 13
3.1 LP-HALS . 33
4.1 H-NMF with one block . 70
4.2 H-NMF with two blocks . 72
4.3 H-NMF with 2r blocks (H-HALS) 74
5.1 Block Coordinate Descent Algorithm (BCD) 77
6.1 Iterative heuristics for projection on nonnegative polynomials 109
6.2 Projection of close polynomial 112
6.3 Projection on nonnegative polynomials using ADMM 120
7.1 B-Splines-based Algorithm for Image Completion (BSA-IC) . 141
7.3 2B-Splines-based Algorithm for Image Completion (2BSA-IC) 146
8.1 R-NLS . 162
8.2 R-ANLS . 163
8.3 R-HANLS . 164

| ix

1
Introduction

Humans have always tried to understand the world around them by draw-
ing conclusions from observations, with varying degrees of success. How-
ever, when observations are composed of many features, they are difficult
to represent and visualize, and therefore difficult to understand and ana-
lyze. Moreover, all features may not be necessary for the aimed task, either
because they are irrelevant or because the information they provide is al-
ready provided by other features.

Nowadays, with the development of computer sciences, large data with
many features can be handled by computers using machine learning algo-
rithms, that are able to process much larger amounts of information than
humans. Nevertheless, having too many features also disturbs machine
learning algorithms, and decreases their accuracy to perform classification
or clustering tasks, for example. Moreover, increasing the number of fea-
tures slows down the algorithms and is more resource-demanding in terms
of needed memory and/or computational power. Consequently, reducing
the number of features in a dataset of observations, or being able to de-
scribe a complex dataset with a low number of features, without reducing
the provided information, is an important challenge in engineering.

To reduce the number of features, and thus the dimension of a dataset, it
is natural to identify and eliminate the less useful features for the task we
aim to perform. This is called feature selection. Feature selection methods

| 1

1 | Introduction

aim at identifying a set of features that provides a large quantity of use-
ful information while being of reduced size. The two main challenges of
feature selection are thus to correctly evaluate the quantity and the quality
of information provided by a set of features, and to smartly select the sub-
sets of features to evaluate. Indeed, evaluating all possible associations of
features is most of the time way too costly.

Two main approaches have been considered to evaluate the quantity and
quality of information provided by a set of features. On the one hand, fil-
ters use statistical tools to determine how the features are related to the
objective and/or between each other. On the other hand, wrappers apply
a learning algorithm to the selected set of features and use the obtained
accuracy to determine if this set of features provides useful information
or not. A last approach, that can be linked to wrappers, consists of us-
ing embedded methods that select the features during a learning process.
Regarding the selection of the sets of features to be evaluated, one can do
local search, starting from a set of features and browsing the most promis-
ing nearby set of features, as in Branch and Bound [95]. Alternatively, the
sets of features can be browsed randomly, which is referred to as the Las
Vegas algorithm. Interested readers can read the survey on feature selec-
tion of Kumar and Minz [78] and the references therein for more details
about feature selection methods.

Many feature selection methods are specific to the target task, for example
they use some labeled data to select features for a classification task. We
say that they are in this case supervised methods, in contradiction with un-
supervised methods that are independent from the target task. These last
years, many works have explored the possibility to do unsupervised fea-
ture selection, mainly using filters, as wrappers have an intrinsic bias from
the machine learning method they use to evaluate features; see for example
[115] and the references therein for more information about unsupervised
feature selection. This can be hard, as some features can be primordial for
certain tasks and useless for others. In general, being limited to existing
features restricts the possibilities to express accurately a dataset in a com-
pact way [129]. To avoid this problem, one can be interested in feature
extraction.

In feature extraction methods, the goal is to describe the original dataset
using a small set of new features that are different from the original ones.
Feature extraction methods can be supervised, like the Linear Discriminant

2 |

| 1.0

Analysis (LDA). But in most cases feature extraction is unsupervised, i.e.
independent from the target task. Therefore, the same feature extraction
can be used for different tasks. Those methods can either be linear or not.
Examples of nonlinear feature extraction methods, able to model complex
relationship in data, are Kernel Principal Component Analysis (KPCA) and
AutoEncoders. Linear feature extraction methods, also called linear di-
mension reduction techniques, linearly map the original data to a lower
dimensional feature space. The results of those methods are in general the
easiest to interpret for human users thanks to linearity. Examples of lin-
ear feature extraction methods are Principal Component Analysis (PCA),
Singular Value Decomposition (SVD) or Wavelet Transforms (WT). Other
examples can be found in [5].

When data is by nature nonnegative, for example when it contains occur-
rences (e.g. word counts), intensities, reflectance, ratings, etc., it is worth
wondering if it can be well described as nonnegative linear combinations
of nonnegative features. This means that the data can be expressed as non-
negative weighted sums of a few nonnegative elements. This is quite often
true in practice. This property can be explicit. For example, when data con-
sists of hyperspectral images, each pixel of the image contains a spectrum
that is the weighted sum of the spectra of the endmembers present in the
pixel [100], or when data consists of chemical spectral signatures, they are
the weighted sum of the spectral signatures of the pure species composing
them [18], or when data consists of musics, they are the sum of the instru-
ments composing them [81]. That property of nonnegative representation
can also be implicit. For example, in recommendation systems, that sug-
gest films or other items to their users based on their previous choices, the
behavior of a user can often be explained as the nonnegative combination
of the behaviors of some fictive typical users [90]. Other examples can be
found in [13, 45, 93] and the references therein.

When data can be described as nonnegative linear combinations of non-
negative factors, it is recommended to use Nonnegative Matrix Factoriza-
tion (NMF). NMF aims at describing an input data matrix Y ∈ Rm×n as the
product of two nonnegative factors A ∈ Rm×r and X ∈ Rn×r: Y ≃ AX⊤.
The rank r of the factorization is chosen to be much smaller than m and
n, i.e. r ≪ m, n. Suppose without loss of generality that Y contains n ob-
servations of m features. The second factor X , named the mixing matrix,
describes in each of its n rows the n original data using only r features, re-
ducing thus the dimension of the original data Y . Moreover, the first factor

| 3

1 | Introduction

A contains the r features extracted by the NMF in each of its columns.

Most of the time it is not possible to recover factors A and X that describe
Y exactly, due to noise. If data does not contain noise, we can do Exact-
NMF [122] to recover A and X so that Y = AX⊤. Otherwise, we aim at
finding A and X so that the difference between Y and AX⊤ corresponds
to the noise. This means that ideally the low rank product AX⊤ is ex-
pected to be a better representation of the data than Y , as it filtered the
noise out.

Imposing A and X to be nonnegative is actually a way of being less sensi-
tive to noise and more interpretable than PCA for example. Indeed, adding
a constraint limits the risks of modeling the noise. Moreover, the nonneg-
ativity of X imposes an additive description of the data, which leads to
a part-based description of the data and is therefore easier to interpret for
users [80]. NMF has proven its efficiency in many areas of data analysis
and is now a commonly used method when data is nonnegative (see for
example [46] and the references therein).

As imposing nonnegativity has a good impact on the factorization, it is
natural to wonder if imposing a certain additional structure to the factor-
ization can improve even more the performance. For this purpose, we can
regularize the factorization. This means adding a term to the objective we
aim to optimize. This new term in the objective penalizes the factors A, X

and/or the products AX⊤ that do not satisfy the wanted structure (for ex-
ample sparsity or smoothness). We can also decide to force the factors A

and/or X to have a certain structure, which is stricter than the previous
approach.

In this work, we consider the second approach, and we impose the factors
A and/or X to come from parametrizable functions. This is a particularly
good choice when data contains (observations of) continuous functions, for
example the evolution of a parameter with respect to time, or with respect
to the wavelength (like in hyperspectral images). Most of the time, data
collected this way contains samples of signals, and the use of parametriz-
able functions in the factors allows taking into consideration the fact that
the signals still evolve outside the sampling points. On the other hand,
even when data does not explicitly come from functions, it can sometimes
be well approximated by functions. For example, smooth data can most
of the time be well described by splines. Nevertheless, this still implies to
have some sort of implied topology in the collected features, as it is neces-

4 |

Objectives of the thesis | 1.2

sary to have some notion of neighborhood to talk about smoothness.

We analyze and implement algorithms for NMF using parametrizable func-
tions in A and/or X in three specific cases; namely when the considered
functions are polynomials, splines, or rational functions. Moreover, we
formalize the necessary theory and conditions to use other parametrizable
functions and to solve the problem directly on functions, without requir-
ing sampling. We therefore extend the NMF to two-dimensional functions
instead of matrices. Hereafter is a list of the main objectives of this thesis,
followed by a quick introduction to the various chapters making up this
thesis, as well as the publications linked to each chapter.

1.1 Objectives of the thesis

The three main objectives tackled in this thesis are the following:

• Analyze the possibility of using parametrizable functions in NMF
from a theoretical point of view, and determine the needed condi-
tions to use a given class of parametrizable functions.

• Develop efficient algorithms to solve NMF using parametrizable func-
tions. It is hoped that these algorithms can improve the accuracy of
factorizations, while keeping the execution time under control.

• Implement and use the developed algorithms in real-world applica-
tions to verify their utility in practice.

1.2 Content of the thesis and publications

Chapter 2: Preliminaries and background

Why? Before going any further, it is good to review the basics and make
sure we are on the same page. It is also interesting to take a quick look at
the literature to see the context of our work.

How? This chapter presents formally the standard NMF and provides a
quick overview of its existing improvements. It also provides useful in-
formation about the three nonnegative parametrizable functions that we

| 5

1 | Introduction

are interested in, namely nonnegative polynomials, splines, and rational
functions.

Chapter 3: NMF using Polynomials and Splines

Why? To find out whether the use of parameterizable functions in NMF
can be beneficial, we first analyze the case of two rather simple functions,
namely polynomials and splines. These functions have the advantage of
being linearly parametrizable (they can be expressed as a linear combina-
tion of a small number of basis elements), and have already been studied
briefly in the literature in the context of NMF.

How? We study the possibility of extending the use of Hierarchical Alter-
nating Least Squares (HALS) to polynomials or splines. We observe that
this extension can be done easily but requires to perform a projection on
the set of nonnegative polynomials or splines. Fortunately, projection on
these two sets is possible and described in the chapter. We observe that
NMF using polynomials or splines can be very accurate, and that using
an extension of HALS leads to faster algorithms than those presented in
previous works.

Associated publications
[54] C. Hautecoeur and F. Glineur. Nonnegative matrix factorization with poly-
nomial signals via hierarchical alternating least squares. In European Symposium
on Artificial Neural Networks (ESANN), pages 125–130, 2019.
[56] C. Hautecoeur and F. Glineur. Nonnegative matrix factorization over con-
tinuous signals using parametrizable functions. Neurocomputing, 416: 256–265,
2020.

Chapter 4: Extending NMF to Hilbert spaces (H-NMF)

Why? Being able to extend NMF to polynomials and splines does not
mean being able to extend it to any parametrizable function. This chapter
presents the requirements for using certain types of function, as well as
algorithms for solving the extended NMF problem.

How? We analyze the problem theoretically, assuming that functions be-
long to Hilbert spaces. Using Hilbert spaces ensures the existence of a

6 |

Content of the thesis and publications | 1.2

norm, and therefore a distance, to quantify the quality of the factoriza-
tion. We also present how to extend the classical algorithms used in NMF
to Hilbert spaces.

Associated publication
[58] C. Hautecoeur and F. Glineur. H-NMF: nonnegative and constrained matrix
factorization on Hilbert spaces; A unifying framework for NMF on signals. Sub-
mitted to SIAM Journal on Optimization (SIOPT)

Chapter 5: Convergence of H-NMF

Why? To analyze under which conditions some of the presented algo-
rithms are able to find a good solution of the H-NMF problem, with a fo-
cus on the generalization of the HALS algorithm. This algorithm requires
a projection step that can be difficult. We therefore are also interested in its
behavior when the projection step is not done exactly.

How? We analyze the ability of the algorithms to converge to a stationary
point. As the NMF problem is not convex, even in its standard form, it is
difficult to rely on a better criterion for the quality of the solution than sta-
tionarity. We observe that the needed conditions to guarantee convergence
are similar as for standard NMF.

Associated publication
[58] C. Hautecoeur and F. Glineur. H-NMF: nonnegative and constrained matrix
factorization on Hilbert spaces; A unifying framework for NMF on signals. Sub-
mitted to SIAM Journal on Optimization (SIOPT)

Chapter 6: Accelerating NMF using polynomials via inexact projec-
tions

Why? As it is possible to prove that our generalization of the HALS algo-
rithm converges under certain conditions when the projection is not per-
formed exactly, we wonder if it is possible to speed up the algorithm by
using inexact projections.

How? We consider the case of NMF using polynomials, and define sev-
eral inexact projections more or less heuristically, keeping in mind the con-

| 7

1 | Introduction

vergence results obtained in previous chapter. This allows us to observe
that it is indeed possible to define heuristic projections with theoretical
foundations that speed up the algorithm using polynomials without al-
tering its accuracy.

Associated publication
[53] C. Hautecoeur and F. Glineur. Accelerating nonnegative matrix factorization
over polynomial signals with faster projections. In 2019 IEEE 29th International
Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2019.

This chapter also contains the findings from a research visit to the University of
Waterloo, in the team of Professor Stephen Vavasis, from October to December
2021.

Chapter 7: Application: Using NMF with splines for image comple-
tion

Why? Results presented in previous chapters were obtained on synthetic
data. This chapter checks the effectiveness of our methods on a real-world
problem.

How? We use NMF with splines for image completion and observe the
efficiency of this approach that uses the smoothness of splines to obtain
more accurate images.

Associated publication
[55] C. Hautecoeur and F. Glineur. Image completion via nonnegative matrix fac-
torization using HALS and B-splines. In 28th European Symposium on Artificial
Neural Networks-Computational Intelligence and Machine Learning (ESANN), pages 73-
78, 2020.

Chapter 8: NMF using rational functions

Why? The theory and applications presented in the previous chapters
only apply when the chosen set of parametrizable functions is convex. In
this chapter we observe what happens when this is no longer the case.

How? We focus on the case of nonnegative rational functions of fixed de-
gree. We observe that the loss of convexity makes the results more variable

8 |

Content of the thesis and publications | 1.2

and more sensitive to initialization, even though they are good on average.
Therefore, it is possible to take advantage of the use of rational functions,
which are able to model a large number of shapes.

Associated publications
[59] C. Hautecoeur, F. Glineur, and L. De Lathauwer. Hierarchical alternating
nonlinear least squares for nonnegative matrix factorization using rational func-
tions. In 2021 29th European Signal Processing Conference (EUSIPCO), pages 1045–1049.
IEEE, 2021.

[57] C. Hautecoeur and F. Glineur. Factorisation nonnégative avec des fonctions
rationnelles : partitions efficaces et méthodes hybrides. In Groupe de Recherche et
d’Etudes du Traitement du Signal et des Images (GRETSI), pages 929-932, 2022.

[52] C. Hautecoeur, L. De Lathauwer, N. Gillis, and F. Glineur Least-squares meth-
ods for nonnegative matrix factorization over rational functions. Submitted to
IEEE Transactions on Signal Processing.

Figure 1.1 here after contains a summary of the implications between the
different chapters.

For all chapters, some details about implementation can be found in Ap-
pendix C, and code is available on Code Ocean: https://codeocean.com/
capsule/5065386/tree.

| 9

https://codeocean.com/capsule/5065386/tree
https://codeocean.com/capsule/5065386/tree

1 | Introduction

Introduction
Dimension reduction techniques

Chapter 1

Standard Nonnegative Matrix Factorization (NMF)
Chapter 2

Any parametrizable function Specific parametrizable functions

NMF using Polynomials or Splines
Chapter 3

NMF in Hilbert spaces (H-NMF)
Chapter 4

Convergence of H-NMF
Chapter 5

With exact updates
Section 5.1

With inexact updates
Section 5.2

Accelerating NMF using Polynomials
via inexact projection

Chapter 6

Using heuristics
Section 6.2

Using algorithms with early stopping
Section 6.3

Application: using NMF with splines
for image completion

Chapter 7

NMF using rational functions
Chapter 8

Discussion and conclusion
Chapter 9

Fig. 1.1 Structure of the thesis
10 |

2
Preliminaries and

background

2.1 Nonnegative Matrix Factorization (NMF)

Nonnegative matrix factorization (NMF) is a powerful tool, commonly
used to analyze nonnegative data. This method is able to compress data,
filter noise, and extract meaningful features and their coefficients all at
once. NMF, introduced in [97], became popular thanks to [80]. It expresses
an input data matrix Y ∈ Rm×n as the product of two nonnegative ma-
trices, the factors A ∈ Rm×r and X ∈ Rn×r: Y ≃ AX⊤. The rank r is
supposed to be small, and in particular r < min(m, n). Therefore, NMF is
a linear dimension reduction technique, that compresses input data. An-
other way to interpret NMF is to say that each column of Y , denoted Y:j,
is expressed as a nonnegative linear combination of a few nonnegative fea-
tures, the columns of A : Y:j = ∑r

k=1 A:kXjk. The coefficients of the combi-
nation are contained in the rows of X . This problem is illustrated in Figure
2.1.

Trying to factorize Y exactly is named "Exact NMF", but most of the time
this is not possible, as data contains noise. Therefore, several cost func-
tions can be considered to evaluate the quality of the factorization. Some

| 11

2 | Preliminaries and background

Y A X⊤

≃

Fig. 2.1 Illustration of the NMF problem.

of them are described in [28]. Here we focus on the Frobenius norm of the
reconstruction error. This leads to the definition of the NMF problem.

Definition 2.1. Nonnegative Matrix Factorization Given an input matrix
Y ∈ Rm×n and a factorization rank r, find nonnegative matrices A ∈ Rm×r

+

and X ∈ Rn×r
+ minimizing

argmin
A∈Rm×r

+ , X∈Rn×r
+

∥∥Y −AX⊤
∥∥2

F . (2.1)

NMF is a non-convex problem and is NP-Hard [124]. Nevertheless, sev-
eral algorithms have been developed to solve it. Some of them are briefly
presented in Section 4.3. Let us present here the commonly used Hierar-
chical Alternating Least Squares algorithm (HALS) [27, 39, 71]. The idea
of HALS is to decompose the problem in 2r blocks: the columns of A and
X . Then the problem is iteratively optimized on each block successively
while considering the other blocks as fixed. HALS is therefore a block coor-
dinate descent (BCD) algorithm. This algorithm is sketched in Algorithm
2.1, with [·]+ an operator projecting onto the set of nonnegative vectors, i.e.
thresholding negative values to 0. An advantage of this algorithm is that
equation (2.1) can be solved analytically when all blocks but one are fixed
using equation (2.2), which makes the iterations very fast.

2.1.1 Evaluating the quality of a factorization

The Frobenius norm of the reconstruction error in (2.1) enforces the fac-
torization to not deviate much from the original data. This is a good cost
function to optimize when only Y is known, but it is not really a good way

12 |

Nonnegative Matrix Factorization (NMF) | 2.1

Algorithm 2.1 Hierarchical Alternating Least Squares (HALS)

Require: Data Y ∈ Rm×n, rank r, initial A ∈ Rm×r and initial X ∈ Rn×r

while Stop Condition not encountered do
A← updateHALS(Y ,A,X)
X ← updateHALS (Y ⊤,X , A)

function UPDATEHALS(Y , A, X)
for A:k in A do

A:k ←
[

Y X:k −∑s ̸=k A:s(X:s)⊤X:k

∥X:k∥2

]

+

(2.2)

return A ▷ O(mnr) flops

to evaluate the quality of a factorization. Indeed, it does not highlight if the
noise has been filtered or not, and neither evaluates if the recovered factors
are close or not from the original ones.

Let us suppose that the ground truth is known, i.e. the matrices Ā and X̄

from which data Y has been created: Y = ĀX̄⊤ + N , with N the noise.
It is then possible to better evaluate the quality of a factorization, in the
following different ways.

• Ability to filter the noise: the ability to filter the noise of found
factors A,X can be evaluated through the relative error compared to
ĀX̄⊤, that is not known during the factorization process. We denote
this relative error as the relative residual, to distinguish it from the
error with respect to Y computed in the cost function. The lower the
relative residual is, the better the noise is filtered.

Relative residual =
∥AX⊤ − ĀX̄⊤∥F

∥ĀX̄⊤∥F
(2.3)

• Quality of factors: to evaluate the quality of found factors A,X ,
it is important to take into consideration the fact that a factorization
AX⊤ is insensitive to permutation and rescaling of the columns of
A,X . Indeed, if the columns of A and X are permuted the same
way, and column i of A is multiplied by di > 0 while column i of X

is multiplied by 1
di

, the product AX⊤ stays unchanged. Let P be a
permutation matrix, i.e. a matrix with exactly one element equal to 1

| 13

2 | Preliminaries and background

in each of its rows and columns, and all other elements equals to 0,
and D be a diagonal matrix with positive entries. If Q = P D, then
Q−⊤ = P D−1, and we have AP D = Ã ∈ Rm×r

+ and XP D−1 =

X̃ ∈ Rn×r
+ with ÃX̃⊤ = AQ(XQ−⊤)⊤ = AX⊤. And so Ã, X̃ are

nonnegative matrices leading to the same factorization as A, X .

Therefore, to analyze the quality of factors, we first compute Q∗ ∈
Rr×r

+ the best permutation and rescaling of A with respect to Ā, i.e.
Q∗ = argmin

Q=P D

∥AQ − Ā∥. Then, we compute the Signal to Inter-

ference Ratio (SIR) [28] between Ā and AQ∗ expressed in dB. The
higher the SIR is, the closer AQ∗ and Ā are:

SIR (dB) =
1
r

r

∑
k=1

10 log10

(
∥AQ∗:k∥2

2

∥AQ∗:k − Ā:k∥2
2

)
. (2.4)

• Ability to describe original data: this criterion analyzes if the orig-
inal factor Ā can be recovered from the found factor A using non-
negative linear combinations. This is interesting because if we can
recover Ā from A using nonnegative linear combinations, then any
valid Y:j can be described using nonnegative linear combinations of
A. Indeed, if Y:j = Ā(X̄⊤):j with X̄ ∈ Rn×r

+ , and Ā = AQ with
Q ∈ Rr×r

+ , then Y:j = A(QX̄⊤):j where QX̄⊤ ∈ Rn×r
+ .

To measure the ability to describe original data, we first compute Q∗

such that Q∗ = argmin
Q∈Rr×r

+

∥AQ − Ā∥. Then we compute the SIR be-

tween Ā and AQ∗. This criterion is called SIR LC. In contrast to the
SIR criterion, the SIR LC does not analyze how close to the original
signals the found signals are, but rather how well the found factors
fit the original data. The information given by the SIR LC is therefore
closer to that given by the relative residuals than by the SIR.

In general, the ground truth of a real dataset is unknown. Therefore, in
order to analyze the accuracy of an algorithm, we will regularly work on
synthetic data. After having constructed two factor matrices A and X , the
data matrix Y is built as

Y = AX⊤ + N , (2.5)

where N is a Gaussian noise, with a chosen Signal to Noise Ratio (SNR).

14 |

Existing improvements of NMF | 2.2

The noise as the same level for each column. Let the chosen SNR be s dB.
Each element of N is computed using a normal distribution of mean 0 and
variance as follows:

Nij ∼ N
(

0,
1
m

(m

∑
i=1

Y 2
ij

)
10−s/10

)
. ∀i = 1, . . . , m ; j = 1, . . . , n. (2.6)

2.2 Existing improvements of NMF

Improving NMF can be done through two main axes, either by accelerat-
ing the resolution of the problem or by improving the quality of the found
factorization. To accelerate the resolution of NMF, the focus is mainly
on the algorithms solving the problem, and researchers either try to im-
prove existing algorithms or to develop new algorithms better suited to
the problem. As an example, HALS in Algorithm 2.1 can be accelerated
by pre-computing matrices Y X and X⊤X and performing the for-loop
in updateHALS several times [47]. Some recent and interesting works to
perform fast NMF are [4, 49, 128].

Nevertheless, accelerating NMF algorithms is not our main objective in this
work, and we focus on improving the factorization quality instead. Im-
proving the quality of the factorization means being less sensitive to noise
and recovering more meaningful factors A and X . Actually, the nonnega-
tivity constraints on A and X exist in this goal. Indeed, we could neglect
the nonnegative constraints to solve problem (2.1), and the problem would
be easy to solve using truncated SVD and lead to a lower error with respect
to Y . But the factorization would then be very sensitive to noise and the
recovered factors would be more difficult to analyze for humans. Indeed,
early works on NMF showed that NMF leads to a part-based representa-
tion of the data which is easier to handle [80]. Moreover, in addition to
trivial permutations and rescaling presented in previous section, there are
infinitely many different matrices A′, X ′ that have the same product as
A, X : A′X ′⊤ = AX⊤. Imposing the nonnegativity restricts the set of
solutions. Nevertheless, most of the time the factorization AX⊤ remains
non-unique [35].

Improving the quality of the factorization often requires to pay attention
to the characteristics of the problem being solved: are data in Y sparse,

| 15

2 | Preliminaries and background

smooth, with a special shape, etc. and/or do we want the factors A, X to
have such characteristics? Once these questions have been answered, the
problem can either be regularized so that AX⊤, A and X come close to
the desired characteristics, or these characteristics can be imposed to them,
changing thus the structure of the problem.

Regularizing the NMF problem means adding a regularization term on the
cost function that penalizes the elements not satisfying the desired shape
constraint. Such a regularization term can for example encourage sparsity
[40, 63, 108, 137], smoothness [22, 40, 66, 72], orthogonality [24], or encour-
age factors to highlight meaningful similarities between recovered signals
[136]. Most of the time, the objective function of NMF then looks like:

∥∥Y −AX⊤
∥∥2

F + RAX⊤
(
AX⊤

)
+ RA(A) + RX(X) . (2.7)

More generally, fitting the cost function to the problem is a wise choice.
Indeed, the Frobenius norm is adapted to solve problems where the noise
is assumed to be Gaussian, independent and identically distributed. How-
ever, it is more appropriate to turn to the Kullback-Leiber divergence when
the observed data comes from a Poisson distribution [61, 131] or to the
Itakura-Saito divergence when the data analyzed contains audio spectra
[41, 85]. One can also consider using more general divergences that gen-
eralize the three presented divergences, like the α-divergence [26, 130], the
β-divergence [81, 116] or the Bregman divergence [3, 83].

Another approach is to impose a certain structure to factors A and X . Ac-
tually, this is the main idea behind NMF as A and X are imposed to be non-
negative. A common constraint is to impose normalization of A, so that A

is row stochastic: A1r = 1r [72, 112]. Sparsity can be enforced to A and X

by optimizing on ASX⊤ instead of AX⊤, where S = (1− θ)Ir + θ
r 1r1r⊤,

with θ ∈ [0, 1] determining the level of sparsity of A and X [66, 98, 132].
In Deep-NMF, matrix A is factorized as A = A1A2 · · ·AL to learn hierar-
chical features [40, 82, 135], while in projective NMF we require X to be
X⊤ = A⊤Y in order to approximate data using projection on its nonneg-
ative subspace [88, 89, 137].

More recently, requiring each column of A to be the sampling of a contin-
uous function has been considered. Indeed, NMF is often used to analyze
data originating from continuous signals, such as spectral data [30, 70, 107].
Those signals can be well approximated using parametrizable functions.

16 |

Existing improvements of NMF | 2.2

For example, polynomials can be used for globally smooth signals [33],
splines for piece-wise smooth signals [8, 141], or mixtures of Gaussian ra-
dial basis functions (GRBF) for signals with a few modes (described with a
few unimodal signals) [133, 139]. Moreover, using samples of parametriz-
able functions in the columns of A, named A:k, allows to describe the data
on the whole domain and not only at the sampling points. Indeed, each
column Y:j is then described by a linear combination of continuous func-
tions ∑k A:kXjk.

This thesis extends those works. We have developed and analyzed algo-
rithms to work on polynomials (Chapters 3, 6), splines (Chapters 3, 7) and
rational functions (Chapter 8). In addition, we have formalized the frame-
work necessary to perform NMF using parametrizable functions, called
NMF in Hilbert spaces (H-NMF) because data must lie in a Hilbert space
and the used functions must belong to Reproducing Kernel Hilbert Spaces,
RKHS (Chapters 4, 5).

This work may therefore remind of existing works [20, 138, 142, 145] that
use RKHS in NMF. However, kernel functions are used there to map data
to a RKHS of higher dimension, in order to extract nonlinear relationships
between elements. This can be useful to extract meaningful features from
a dataset, to perform clustering for example. However, it does not de-
scribe input data, but its mapping to a higher dimensional space, and there-
fore prevents data compression or data completion. Those approaches use
knowledge about the chosen kernel function to optimize their problem,
while in our work the kernel functions behind the RKHS do not need to be
known, the two approaches are therefore fundamentally different.

On the other hand, H-NMF has some similarities with functional Matrix
Factorization (fMF) for recommended systems. Indeed, in fMF there is no
nonnegativity constraint, but each column of factor A is expressed thanks
to a function (like a decision tree) [23, 144]. The use of functions in A is mo-
tivated by the intent to use contextual information to refine the results. The
parameters of the functions are therefore provided to the algorithm, and
the goal of the algorithm is to find the most accurate function for these pa-
rameters, while in our case the structure of the function is provided to the
algorithm and we aim at recovering its parameters. The two approaches
are therefore very distinct.

Let us now describe in a few words the existing approaches to solve the
NMF problem using parametrizable functions. Three main approaches

| 17

2 | Preliminaries and background

have been developed, using unconstrained parameters, nonnegative pa-
rameters, or constrained parameters.

Using unconstrained parameters: nonlinear least squares

In [33], Debals et al. consider the case when factor matrix A contains dis-
cretization of nonnegative polynomials in each of its columns. The poly-
nomials are imposed to be nonnegative on an interval and not only at dis-
cretization points. The authors propose a nonlinear parametrization of the
nonnegative polynomials defining matrix A. This nonlinear parametriza-
tion is presented in more details in Section 2.3.1, equation (2.13). The mix-
ing matrix X is also parametrized as Xij = C2

ij. This allows having all
parameters in the new formulation free of constraints, and therefore the
NMF problem becomes an unconstrained nonlinear least squares problem,
featuring a non-convex objective function. This problem is then solved us-
ing a standard nonlinear least squares solver.

If d is the degree of the polynomials in A and m the number of discretiza-
tion points at which the polynomials are observed, one iteration in the least
squares solver can be computed in O(dnr) flops (asymptotic complexity,
i.e. complexity for very large-scale datasets). As d < m, the asymptotic
complexity per iteration is lower than for HALS updates. Moreover, the
authors observed experimentally that this method needed fewer iterations
than HALS to converge, and that the features obtained after convergence
are smooth.

However, in practice, this method appears to be very slow compared to
HALS for small or moderate problems. Moreover, this non alternating
approach is not known to perform very well on the standard NMF prob-
lem. Furthermore, its extension to other parametrizable functions would
involve finding an unconstrained parametrization for them, which may
not be straightforward.

Using nonnegative parameters: nonnegative basis functions

In this case, matrix A can be described as A = ΠB, where Π ∈ Rm×d

contains the discretization over m points {τi}m
i=1 of d nonnegative basis

functions {πj(·)}d
j=1: Πij = πj(τi) ≥ 0 ∀i, j. Imposing coefficients in B

to be nonnegative is then sufficient to ensure the nonnegativity of A (but

18 |

Existing improvements of NMF | 2.2

may not be necessary).

This approach has been considered when matrix Π contains B-Splines by
Backenroth [8] and Zdunek et al. [141]. This problem, closer to the origi-
nal NMF problem, can be solved in an efficient way and provides smooth
features. However, constraining B to be nonnegative is a stronger con-
straint than strictly needed. Indeed, some B-Splines combined using some
negative coefficients may still be nonnegative, and it has been proven that
estimating nonnegative functions using B-Splines with nonnegative coeffi-
cients may lead to a poorer reconstruction than using nonnegative splines
[31]. This approach has also been considered for GRBF with nonnegative
coefficients in [133].

Using constrained parameters: arbitrary basis functions

This last approach considers that matrix A can be described as A = ΠB,
where Π is the discretization over m points of d basis functions, which are
now arbitrary, i.e. not necessarily nonnegative. The nonnegativity of A is
then ensured using constraints on the coefficient matrix B. If the mixing
matrix X is fixed, this constrained problem is convex and can be described
as a problem with quadratic objective. A method using active sets is sug-
gested in [139] for Gaussian Radial Basis Functions, while a method using
the Alternating Direction Method of Multipliers (ADMM [48]) is suggested
in [140] for B-Splines. The active-set method leads to a relatively large com-
putational complexity for large-scale problems [139], while the ADMM is
more suitable.

Using indicator function Φ(A) = ∑i,j ϕ(Aij), with ϕ(a) = ∞ if a < 0 and 0
otherwise, ADMM solves the following problem to update A:

min
A∈Rm×r ,B∈Rd×r

1
2
∥Y −ΠBX∥2

F + Φ(A) s.t. A = ΠB. (2.8)

Using projection [ξ]+ = max{0, ξ}, ρ > 0 and Π† = (Π⊤Π)−1Π⊤, the
iterations are (see [140] for more details):

Bt+1 = Π†[Y X⊤ + Λt + ρAt](XX⊤ + ρIr)−1

At+1 =
[
ΠBt+1 − ρ−1Λt]

+

Λt+1 = Λt + ρ(At+1 −ΠBt+1).

| 19

2 | Preliminaries and background

Note that in this approach, nonnegativity of the functions in A is only en-
sured at the discretization points. Moreover, the presented scheme updates
matrix A and matrix of coefficients B separately, each of these two matrices
satisfying only one of the constraints (nonnegativity for A, being a spline
for B). Nevertheless, when the algorithm converges it leads asymptoti-
cally to A = ΠB.

2.3 Nonnegative parametrizable functions

We now present existing knowledge about the nonnegative functions we
use.

2.3.1 Nonnegative Polynomials

Polynomials of fixed degree d can be uniquely described using d + 1 co-
efficients and a chosen basis {πi}d+1

i=1 , such as the monomial basis or the
Chebyshev basis. Then, each polynomial p(x) is described by its coeffi-
cients p ∈ Rd+1 as

p(x) = ∑d+1
i=1 piπi(x). (2.9)

Let τ ∈ Rm be a vector containing m discretization points, and V d
τ ∈

Rm×(d+1) be the Vandermonde matrix for the chosen basis, i.e. V d
τ ij =

πj(τi). It is well known that this Vandermonde matrix is ill-conditioned
when the chosen basis is the monomial basis. To avoid this issue, it is
therefore better to use another basis, such as the Chebyshev basis, com-
monly used in numerical analysis. We have

p(τ) = V d
τ p (2.10)

A univariate polynomial is nonnegative on R if and only if it is a Sum Of
Squares (SOS) polynomial, which means that it can be expressed as the
finite sum of squared polynomials: p(x) = ∑k

(
qk(x)

)2 for some polyno-
mials qk [104]. It is also possible to characterize polynomials nonnegative
on a fixed interval thanks to the Markov-Lukács theorem. Let Pd be the
set of polynomials of degree d and Pd

+([−1, 1]) be the set of polynomials of
degree d nonnegative on [−1, 1]. We have for even degree d:

p ∈ Pd
+([−1, 1]) ⇔ p(x) = a(x) + (1− x2)b(x) ∀x, (2.11)

20 |

Nonnegative parametrizable functions | 2.3

with a ∈ Pd
+, b ∈ Pd−2

+ both SOS.

For odd degree d, this equation becomes:

p ∈ Pd
+([−1, 1]) ⇔ p(x) = (1− x)a(x) + (1 + x)b(x) ∀x, (2.12)

with a, b ∈ Pd−1
+ both SOS.

Both equations (2.11) and (2.12) can be extended to any interval I using an
appropriate change of variables. Moreover, from [101], polynomials a and
b can be restricted to squared polynomials [33]. Equation (2.11) becomes
then

p ∈ Pd
+([−1, 1]) ⇔ p(x) = a2(x) + (1− x2)b2(x) ∀x, (2.13)

with a ∈ Pd/2, b ∈ Pd/2−1, and similarly for equation (2.12).

On the other hand, SOS polynomials can be expressed using positive semidef-
inite matrices [15], which can be optimized very efficiently as semidefinite
programs using interior-point algorithms (see e.g. [123]). Indeed, a degree
d polynomial a is SOS if and only if

a(x) = ∑
k

(
qk(x)

)2
= ∑

k

(
V d

x qk
)2

= V d
x ∑

k
qkq⊤k V d

x = V d
x QV d

x ∀x,

(2.14)

where Q is a positive semidefinite matrix in R

(d
2+1
)
×
(d

2+1
)

, Q ∈ S
d
2+1
+ ,

since it is a sum of positive semidefinite rank-one terms qkq⊤k . V d
x QV d

x
is called the Gram matrix representation of a. Coefficients a can be eas-
ily recovered from matrix Q, in a way that depends on the chosen basis.
For example, in the monomial basis, we have ak = ∑i,j:i+j=k Qij, and in

the Chebyshev basis ak = ∑i+j=k
Qij

2 + ∑|i−j|=k
Qij

2 . Therefore, using an

appropriate matrix Gd ∈ R
(d+1)×

(d
2+1
)2

, we have

a = Gd vec(Q) with Q ∈ S
d
2+1
+ . (2.15)

Using an appropriate matrix Rd ∈ R(d+1)×(d2
a+d2

b), it is therefore possible

| 21

2 | Preliminaries and background

to express any polynomial p ∈ Pd
+(I) as

p = Rd
[

vec(Sa)

vec(Sb)

]
, with Sa ∈ S

da
+ , Sb ∈ S

db
+ . (2.16)

For example, for an even degree d polynomial nonnegative on [−1, 1], we
have da = d/2 + 1, db = d/2, and Rd = [Gd G̃d], where Gram matrix G̃d

takes in consideration the multiplication by (1− x2).

2.3.2 Nonnegative Splines

Univariate splines with fixed interior knots {ti}k
i=1 can be uniquely de-

scribed using the B-Spline basis. This basis can be computed using the
Cox-de Boor recursion formula:

Bi,0(x) =
{

1 if x ∈ [ti, ti+1]

0 otherwise.
(2.17)

Bi,k(x) =
x− ti

ti+k − ti
Bi,k−1(x) +

ti+k+1 − x
ti+k+1 − ti+1

Bi−1,k−1(x).

The B-Spline basis consists then of all Bi,d, where d is the considered de-
gree for the splines. In this work, d = 3 which is a common choice. To
consider a closed interval, the first and the last knot are repeated 4 times.
They are therefore k+ 2 basis elements, with k the number of interior knots,
neglecting the repetitions of the first and the last knot. Each basis element
is nonzero over 4 intervals (including length zero intervals) and is a cu-
bic polynomial over these intervals. Splines are therefore piecewise cubic
polynomials. The B-Spline basis is illustrated in Figure 2.2, for k = 6 inte-
rior knots.

Traditionally, splines are analyzed over interval [0, 1]. A cubic polynomial
is nonnegative on this interval if and only if it can be expressed as (Markov-
Lukacs):

f (x) = f1(x)x + f2(x)(1− x) (2.18)

with f1, f2 two quadratic nonnegative polynomials. Moreover, a quadratic
polynomial f1(x) = a1x2 + b1x + c1 is nonnegative if and only if a1, c1 ≥ 0
and b2

1 ≤ 4a1c1. Using a (convex) rotated quadratic cone

Qr = {(x1, x2, x3) st. 2x1x2 ≥ x2
3, x1, x2 ≥ 0} (2.19)

22 |

Nonnegative parametrizable functions | 2.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.2 Illustration of the B-Spline basis for k = 6 interior knots, in red.
The first and last knot are repeated 4 times, as shown by the pink points.

this nonnegativity condition on f1(x) becomes exactly (a1, c1, b1/
√

2) ∈
Qr. Hence a cubic polynomial is nonnegative over [0, 1] if and only if it can
be written as

f (x) = (a1 − a2)x3 + (b1 − b2 + a2)x2 + (c1 + b2 − c2)x + c2 (2.20)

with q1 = (a1, c1, b1/
√

2) ∈ Qr and q2 = (a2, c2, b2/
√

2) ∈ Qr. Hence we
can write the vector of coefficients of f as a linear transformation of q1 and
q2, i.e. f = RS(q1 q2)

⊤.

Let us go back to splines. Splines consist of cubic polynomials on each
non-empty interval [ti, ti + 1]. The coefficients of each polynomial fi can
be expressed as a linear mapping of the coefficients of the four B-Splines
that are nonzero over this interval, (gi, gi+1, gi+2, gi+3). This linear map Ni
can be computed from the definition in (2.17) and is invertible. Therefore,
B-Splines coefficients can be expressed as a linear map applied to elements
of a rotated quadratic cone:




gi
gi+1
gi+2
gi+3


 = N−1

i fi = N−1
i RS

[
q1i
q2i

]
with q1i, q2i ∈ Qr. (2.21)

Imposing constraint (2.21) over all intervals i = 1, . . . , k − 1 ensures the
nonnegativity of the spline created by the coefficients g ∈ Rk+2.

| 23

2 | Preliminaries and background

2.3.3 Nonnegative Rational Functions

A rational functions is by definition a ratio of two polynomials:

f (x) =
h(x)
g(x)

. (2.22)

The degree of a rational function is d = (d1, d2), where d1 is the degree of
the numerator h and d2 is the degree of the denominator g. We focus in this
work on univariate rational functions.

Rational functions nonnegative on a fixed interval I can be described with-
out loss of generality as a ratio of two polynomials nonnegative on I [68].
Moreover, as it is often undesirable to tend to infinity, the denominator is
also imposed to be nonzero in the considered interval. From Section 2.3.1
we know that nonnegative polynomials can be expressed as a combination
of SOS polynomials or a combination of squared polynomials. Therefore,
using (2.10) and (2.16) we have that a rational function f nonnegative on
[−1, 1] with even degrees d = (d1, d2) can be expressed on discretization
points τ as:

f (τ) =

[
V d1

τ Rd1

[
Sha

Shb

]]/[
V d2

τ Rd2

[
Sga

Sgb

]
+ ϵ

]
, (2.23)

where the division is performed element-wise, Sha ∈ S

d1
2 +1
+ , Shb

∈ S

d1
2
+ ,

Sga ∈ S

d2
2 +1
+ , Sgb ∈ S

d2
2
+ and ϵ is a small fixed positive number preventing

the denominator to go to 0.

From (2.13) we know that f can also be expressed as:

fτ (h1, h2, g1, g2) =
(V

d1
2

τ h1)
2 + (1− τ 2) · (V

d1
2 −1

τ h2)
2

(V
d2
2

τ g1)2 + (1− τ 2) · (V
d2
2 −1

τ g2)2 + ϵ

; (2.24)

where h1 ∈ R
d1
2 +1, h2 ∈ R

d1
2 , g1 ∈ R

d2
2 +1, g2 ∈ R

d2
2 . The division is

performed element-wise and ‘·’ stands for the element-wise multiplication.
Similar expressions to (2.23) and (2.24) can be found to describe rational
functions with other degrees and nonnegative on other intervals.

24 |

Nonnegative parametrizable functions | 2.3

Representation (2.24) is redundant. Indeed, when multiplying h1, h2, g1,
g2, and ϵ by the same constant α, the represented function is the same, al-
though the coefficients are different. To overcome this scaling issue, we can
impose a condition on the coefficients, for example that the denominator
is monic. As we are working in Chebyshev basis, denoted as {Ti}d

i=0, we
have x2 = T2+T0

2 and TmTn = 1
2
(
Tm+n + T|m−n|

)
. Therefore, the highest

coefficient of the denominator is (if d2 ≥ 4):

1
2
(g1)

2
d2
2 +1

Td2 −
1
8
(g2)

2
d2
2

Td2 . (2.25)

The determinant is monic if

1
2
(g1)

2
d2
2 +1
− 1

8
(g2)

2
d2
2
= 1⇔ (g1) d2

2 +1
=

√
8 + (g2)

2
d2
2

2
. (2.26)

Doing something similar for representation (2.23) is possible, and requests
to add a constraint: (

Rd2

[
Sga

Sgb

])

d2+1

= 1. (2.27)

All the analyzed parametrizable functions can thus be constrained to be
nonnegative on a fixed interval, and have an explicit representation in this
case, using linear or nonlinear (for rational functions) mappings of ele-
ments in positive semidefinite cones or rotated quadratic cones.

We now have all the needed tools for the following chapters.

| 25

3
NMF using Polynomials and

Splines

NMF is regularly used to analyze data consisting of samples of continuous
functions. Such data can often be well approximated by polynomials or
splines. Therefore, it has been considered to impose the factor A to contain
in each of its columns samples of nonnegative polynomials [33], or splines
[9, 140, 141]. This allows one to recover a factor A with smooth columns,
by nature of polynomials and splines, and by this way may permit to be
less sensitive to noise than when using simple nonnegative vectors. More-
over, decomposing input data as linear combinations of functions instead
of vectors allows one to express the input signals continuously, and not
only at some discretization points.

Polynomials and splines have the advantage of being able to describe many
real-life signals using a few parameters. Polynomials are suitable for glob-
ally smooth signals, while splines are suitable for piece-wise smooth con-
tinuous signals. Moreover, both sets of functions can be uniquely described
using coefficients in a certain basis, like the monomial or the Chebyshev
basis for polynomials, or the B-spline basis for splines. We say that they
are linearly parametrizable functions.

In this chapter, we analyze the NMF problem when factor A contains in

| 27

3 | NMF using Polynomials and Splines

each of its columns the sampling of a nonnegative linearly parametriz-
able function. We go even further since we also consider the case where
data contains functions and no longer samples of functions. In this case,
A contains nonnegative linearly parametrizable functions. Section 3.1 in-
troduces this problem, called NMF on Linearly Parametrizable functions
(LP-NMF), and proposes a generalization of the Hierarchical Alternating
Least Squares (HALS) algorithm to solve it. Section 3.2 focuses on a crucial
component of the proposed HALS algorithm, namely the projection oper-
ator over the set of nonnegative functions, in the case of polynomials or
splines. In Section 3.3, we compare our approach to existing approaches
using polynomials or splines in NMF. Several numerical experiments, us-
ing both synthetic and real-world signals, allow us to assess the accuracy
and speed of algorithms.

3.1 HALS for NMF using linearly parametrizable functions

In this section, we formally define the NMF using linearly parametrizable
functions problem, and then extend the HALS algorithm, commonly used
for classical NMF, to deal this case.

3.1.1 NMF using Linearly Parametrizable functions (LP-NMF)

Let us first define formally what we mean by "linearly parametrizable func-
tions".

Definition 3.1. Linearly parametrizable functions A set of functions F
contains linearly parametrizable functions if every function f ∈ F can
be described as a linear combination of a fixed finite basis of functions
{π1(a), π2(a), . . . , πd(a)}:

f (a) =
d

∑
l=1

πl(a)fl .

Vector f ∈ Rd is called the vector of coefficients of f .

Consider now a set Y = {Y1(a), . . . , Yn(a)} of n univariate functions de-
fined over a common fixed interval I. The NMF over Linearly Parametriz-
able functions problem (LP-NMF) aims at recovering a dictionary A =

28 |

HALS for NMF using linearly parametrizable functions | 3.1

{A1(a), . . . , Ar(a)} of r nonnegative linearly parametrizable functions Ak
observed on interval I, and a nonnegative mixing matrix X ∈ Rn×r

+ , which
provide an approximate linear description of the original data as follows:

Yj(a) ≃
r

∑
k=1

Ak(a)Xjk

such that Ak(a) ≥ 0, Xjk ≥ 0

∀a ∈ I,

1 ≤ k ≤ r, 1 ≤ j ≤ n. (3.1)

Factorization rank r ≪ n is provided, as well as a the set F of linearly
parametrizable functions containing the dictionary (A ⊂ F). As F con-
tains linearly parametrizable functions, every function Ak(a) ∈ A can be
described using a vector of coefficients B:k ∈ Rd. DictionaryA is therefore
described by coefficients matrix B ∈ Rd×r.

We also introduce the set F+(I) ⊂ Rd, which is the set of coefficients de-
scribing functions in F that are nonnegative over interval I, i.e.

B:k ∈ F+(I)⇔ Ak(a) =
d

∑
l=1

πl(a)Blk ≥ 0 for all a ∈ I. (3.2)

To solve the LP-NMF problem, we need to introduce some assumptions on
the input functions in Y . We consider two cases:

1. Functions are square-integrable over interval I, and the integral of
their product with any basis function is computable, i.e. we know∫

I πl(a)Yj(a) da
∀l = 1, . . . , d ; j = 1, . . . n.

2. Functions are known for m fixed discretization points, denoted τ =

{τi}m
i=1 ⊂ I and are represented using column vectors {Y:j}n

j=1 ⊂ Rm

with Yij = Yj(τi).

This leads to the two following finite-dimensional formulations of LP-NMF,

| 29

3 | NMF using Polynomials and Splines

where basis functions are grouped in row vector π(a) = (π1(a) · · · πd(a)):

min
B,X

n

∑
j=1

∫∫∫

I

(
Yj(a)− π(a)BXj:

⊤)2 da
integrable functions

(integral cost)

or min
B,X

n

∑
j=1

m

∑∑∑
i=1

(
Yij − π(τi)BXj:

⊤)2

only observations
(sum cost)

s.t. B:k ∈ F+(I), Xjk ≥ 0 ∀ j = 1, . . . , n ; k = 1, . . . , r.

These formulations differ in the way they assess the accuracy of the re-
constructed functions: in the first case, named integral cost, the difference
between an input signal Yi(a) and its approximation is measured using the
squared functional L2 norm, while the second sum cost formulation only
sums the squared differences at the τ observation abscissas (discretization
points).

Interestingly, these two costs can be analyzed at once. Indeed, consider the
sum cost. It can be rewritten as:

min
B,X

n

∑
j=1

m

∑
i=1

Y 2
ij − 2

n

∑
j=1

(m

∑
i=1

Yijπ(τi)
)

BXj:
⊤

+
n

∑
j=1

Xj:B
⊤
(m

∑
i=1

π(τi)
⊤π(τi)

)
BXj:

⊤.

The first term can be neglected, while the elements in parenthesis can be
pre-computed. Using a similar reasoning for the integral case, we obtain
the following equivalent formulation, with matrices Z and M defined in
Table 3.1:

min
B,X

n

∑
j=1
−2Z:j

⊤BXj:
⊤ + Xj:B

⊤MBXj:
⊤ (LP-NMF)

s.t. B:k ∈ F+(I), Xjk ≥ 0 ∀ j = 1, . . . , n ; k = 1, . . . , r.

integral cost sum cost
Z ∈ Rd×n Zl j =

∫
I πl(a)Yj(a) da ∑m

i=1 πl(τi)Yij
M ∈ Rd×d Ml j =

∫
I πl(a)πj(a) da ∑m

i=1 πl(τi)πj(τi)

Table 3.1 Matrices Z and M for unified formulation of LP-NMF

30 |

HALS for NMF using linearly parametrizable functions | 3.1

Note that the sum case can be seen as an approximation of the integral one.
Indeed, if the discretization points are equally spaced, one can approxi-
mate integral

∫
I f (a)g(a) da with the Riemann sum, using |I| to denote the

length of interval I:
∫

I f (a)g(a) da ≃ |I|m ∑m
i=1 f (τi)g(τi). The Riemann sum

uses only values at discretization points.

3.1.2 A generalized HALS for LP-NMF

We propose to solve the LP-NMF problem with an adapted version of
HALS (Algorithm 2.1) that updates alternatively the columns of A (through
their coefficients contained in matrix B) and the ones of mixing matrix X .
As the considered problem is no longer symmetric, the updates of A and
X are now different, and we describe them in turn below.

Update of columns in B To update the columns in B, one must minimize
the cost

C(B, X) =
n

∑
j=1
−2Z:j

⊤BXj:
⊤ + Xj:B

⊤MBXj:
⊤ (3.3)

with respect to one column B:k at a time, while keeping all the other columns
of B and matrix X fixed. The gradient of the cost with respect to B:k is

∂C
∂B:k

(B, X) = 2
(
−ZX:k + M

r

∑
s=1

B:sX:s
⊤X:k

)
. (3.4)

Ignoring the nonnegativity constraint, the solution of this problem can be
obtained by canceling the gradient:

∂C
∂B:k

(B, X) = 0⇒MB:k =
ZX:k −M ∑s ̸=k B:sX:s

⊤X:k

X:k
⊤X:k

. (3.5)

To take the nonnegativity constraint B:k ∈ F+(I) into account, one sim-
ply projects the unconstrained solution on set F+(I), using Equation (3.9)
presented in next section. This is optimal thanks to the fact that cost C is
convex quadratic in B:k. A formal proof of the optimality of this approach
can be found later in Chapter 5 (Lemma 5.2). This approach leads to the
following update for the columns in B, using the fact that matrix M is

| 31

3 | NMF using Polynomials and Splines

invertible:

B:k ←
[
(M)−1ZX:k −∑s ̸=k B:sX:s

⊤X:k

X:k
⊤X:k

]

F+(I)
(3.6)

The projection operator onto F+(I), denoted as [·]F+(I), is not as straight-
forward to compute as in the case of standard HALS for which projec-
tion over nonnegative vectors is a simple thresholding operation, see Al-
gorithm 2.1. In particular, nonnegativity of the coefficients is in general not
equivalent to nonnegativity of the function. Nevertheless, computing this
projection is possible, and is presented in Section 3.2 in the case of polyno-
mials and splines.

Update of columns in X To update columns in X , we compute the gra-
dient of the cost with respect to X:k

∂C
∂X:k

(B, X) = 2
(
−Z⊤B:k +

r

∑
s=1

X:sB:s
⊤MB:k) (3.7)

Cancellation of the gradient followed by projection onto the feasible set
(X:k ≥ 0) provides the update:

X:k ←
[

Z⊤B:k −∑s ̸=k X:sB:s
⊤MB:k

B:k
⊤MB:k

]

+

(3.8)

where [·]+ is the straightforward projection over nonnegative reals: [ξ]+ =

max{ξ, 0}. Again this update is optimal (Lemma 5.2).

The pseudo-code for LP-HALS, our adapted version of HALS, can be found
in Algorithm 3.1, including the number of floating point operations for
each statement. Besides the two updates described above, we normal-
ize (or scale) all columns of B after each full update according to B:k ←

B:k(
B:k
⊤MB:k

)1/2 , scaling the columns of X accordingly. And similarly, we

normalize the columns of X after each full update with X:k ← X:k(
X:k

⊤X:k

)1/2 ,

and scale the columns of B accordingly.

We also use the acceleration technique introduced in [47], which consists
in performing the first for loop of the updates several times. Note that the
matrices Z, M and M1 = M−1Z can be pre-computed. Looking at the

32 |

HALS for NMF using linearly parametrizable functions | 3.1

Algorithm 3.1 LP-HALS

Require: matrices Z, M , rank r, initial B ∈ Rd×r and initial X ∈ Rn×r

M1 = M−1Z

while Stop Condition not encountered do
B ← updateB(M1, M , B, X)
X ← updateX (Z, M , B, X)

function UPDATEB(M1, M , B, X)
P = M1X , Q = X⊤X ▷ (2n− 1)r(d + r) flops

for B:k in B do
t = P:k −∑s ̸=k B:sQsk ▷ 2d(r− 1) flops
B:k ← Projection(t/Qkk) ▷ P +d flops

for B:k in B do ▷ Normalization
nb← (B:k

⊤MB:k)
1/2 ▷ 2d2 + 2d− 1 flops

B:k ← B:k/nb, X:k ← X:k · nb ▷ d + n flops

return B ▷ O(rP + nrd)

function UPDATEX(Z, M , B, X)
P = Z⊤B, Q = B⊤MB ▷ (2d− 1)r(n + d + r) flops

repeat min(1 + ρX /2, 10) times
for X:k in X do

t = P:k −∑s ̸=k X:sQsk ▷ 2n(r− 1) flops
X:k ← max(0, t/Qkk) ▷ 2n flops

until no more progress
for X:k in X do ▷ Normalization

nx ← (X:k
⊤X:k)

1/2 ▷ 3n− 1 flops
X:k ← X:k/nx, B:k ← B:k · nx ▷ n + d flops

return X
▷ O(nrd)

update of B, it is not straightforward to compute the complexity of the
projection onto the set of nonnegative functions, and this depends on the
chosen functions. Moreover, it is expected that this projection can be quite
costly and no significative gain is likely to be achieved when repeating the
corresponding for loop.

| 33

3 | NMF using Polynomials and Splines

Considering now the update of X , we see that the ratio between the num-
ber of flops needed for one complete iteration and the number of flops for
iterations doing only the first for loop is equal to:

ρX = 1 +
(2d− 1)(d + r + n) + 4n + d− 1

2nr

Using the results obtained for HALS updates in [47], update of matrix X

is performed max{1 + ρX
2 , 10} times before alternating (updates are also

stopped when the improvement is no longer significant, see [47]).

As this acceleration scheme does not modify the order of complexity of the
algorithm, we can say that updating both matrices B and X can be done
with a total complexity of O(rP + nrd) where P is the complexity of the
projection (this estimate is based on r < d < n). The complexity of the
projection depends only on the degree d, as we will see in the next section.
Since d < n, the complexity is therefore dominated by O(nrd) for large
datasets (when n and m are very large). Asymptotically, the complexity of
LP-HALS is therefore lower than the complexity of standard HALS which
is O(nrm).

Let us now say a word about how our algorithm LP-HALS fits in with ex-
isting work on NMF using polynomials or splines. Existing works are de-
scribed briefly in Section 2.2. We can see that our method with the sum cost
uses an arbitrary basis function Π ∈ Rm×d; with Πil = πl(τi), to describe
the functions via constrained parameters B, and is thus close to [140].

Nevertheless, our approach differs from previous work in several ways.
First it does not explicitly compute matrix A but uses the coefficients B in-
stead. In principle this allows working with an infinite-dimensional matrix
A (i.e. infinitely many observation points), which is in essence what we do
when using the integral cost formulation. Then, our approach ensures the
nonnegativity of the functions in A over the entire considered interval, and
not only at discretization points. This is ensured using projections (see Sec-
tion 3.2, for both polynomials and splines), which is the main new ingredi-
ent in our approach. We use sum of squares (SOS) in the projection step to
represent nonnegative polynomials as in [33], but we solve the problem as
a semidefinite program, instead of using a least squares solver. The good
accuracy and good convergence properties of the suggested method are
assessed trough experiments in Section 3.3.

34 |

Projection onto nonnegative polynomials or splines | 3.2

3.2 Projection onto nonnegative polynomials or splines

To perform the update of B in LP-HALS we need to project its columns
onto the set F+(I), so that the functions used in the factorization remain
nonnegative. This projection, which is performed on a vector of coefficients
f ∈ Rd, can be obtained as the solution of the following minimization
problem, using the Gram matrix M defined in Table 3.1:

[f]F+(I) =argming∥f − g∥2
M s.t. g ∈ F+(I) (3.9)

=argming(f − g)⊤M (f − g) s.t. g ∈ F+(I)

M is a symmetric and positive definite matrix and it can thus be expressed
as M = L⊤L with L ∈ Rd×d (Cholesky decomposition of M). Therefore

[f]F+(I) =argming∥L(f − g)∥2
2 s.t. g ∈ F+(I).

Note that matrix M defines the metric used for the projection. It actually
comes from the Hessian of the cost function with respect to a column of B.

The objective function is easy to handle, since it is a convex quadratic in
g, and the main difficulty is the constraint g ∈ F+(I). We now explain
how this minimization problem can be solved when the set F contains
polynomials or splines.

3.2.1 Projection onto nonnegative polynomials

In Section 2.3.1 we showed several ways to represent polynomials nonneg-
ative on a given interval. Using in particular equation (2.16), it is possi-
ble to express the projection on polynomials of degree d, nonnegative on a
given interval, as the solution of the following semidefinite program (SDP):

min t

s.t. (u, t) ∈ Ld+1 Lorentz cone: ∥u∥ ≤ t

Sa ∈ S
da
+ , Sb ∈ S

db
+ Semidefinite cones

u = L

(
f −Rd

[
vec(Sa)

vec(Sb)

])
u = L(f − g).

| 35

3 | NMF using Polynomials and Splines

Figure 3.1 illustrates the result of such a projection.

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00

0

1

2
Function f
Projection of f onto
 the nonnegative set

Fig. 3.1 Projection of a degree 8 polynomial onto the set of polynomials
nonnegative on [−1, 1].

3.2.2 Projection onto nonnegative splines

Splines are characterized by their degree and their number of interior knots.
In this work we focus on splines of degree 3. In Section 2.3.2 we showed
that using B-Spline basis, it necessary and sufficient to impose constraint
(2.21) over all intervals to ensure the nonnegativity of the spline created
by the coefficients g. If k interior knots are used, the basis contains k + 2
elements (g ∈ Rk+2) over the k− 1 nonzero intervals and the problem is:

min t

s.t (u, t) ∈ Lk+2

q1i ∈ Qr, q2i ∈ Qr ∀i = 1, · · · k− 1

g ∈ Rk+2




gi
gi+1
gi+2
gi+3


 = N−1

i RS

[
q1i
q2i

]
∀i = 1, · · · k− 1

u = L(g − f).

An example of projection using this method is presented in Figure 3.2, to-
gether with another approach that imposes the B-Spline coefficients to be

36 |

Experimental results | 3.3

nonnegative, but not the spline itself (as proposed in [8] and [141], see also
the next section). Splines with nonnegative B-Splines coefficients are al-
ways nonnegative, but there exist nonnegative splines that cannot be de-
scribed in such a way [31]. Therefore, this second approach is less accurate
than the projection described above, which can be observed in the figure.

0.0 0.2 0.4 0.6 0.8
−1.5

−1.0

−0.5

0.0

0.5

1.0

Function f
Projection of f onto the nonnegative set (0.027)
Projection of f using nonnegative coefficients (0.033)

Fig. 3.2 Example of projection onto the set of splines nonnegative on
[0, 1], using a spline with 9 equally spaced interior knots. The number in
parenthesis is the value of the cost function (3.9).

3.3 Experimental results

In this section, we assess the performance of the LP-HALS algorithm (Al-
gorithm 3.1) through experiments over both synthetic and real signals. Our
method is compared with standard HALS method and approaches from
previous works using also polynomials or splines in the factors.

We work on a synthetic dataset created as follows. Matrix X̄ ∈ Rn×r is ran-
domly generated using a normal distributionN (0, 1) with negative values
replaced by zero. Matrix Ā contains the discretization over m points of r
functions, which can be either random nonnegative polynomials, random
nonnegative splines or real reflectance signals (coming from the U.S. Ge-
ological Survey (USGS) database [77]1). Discretization points are equally
spaced over [−1, 1], including for the reflectance signals as they are closer
to polynomials and splines in this configuration (it improves the best pos-
sible recovery). The input data to factorize is then Y = ĀX̄⊤ + N where

1https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library

| 37

https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library

3 | NMF using Polynomials and Splines

N ∈ Rm×n is an additive Gaussian noise with a chosen signal-to-noise
ratio (SNR) (see Section 2.1.1 for more details). Using such an artificially
created synthetic dataset lets us assess the error compared to the ground
truth of input signals: Y ∗ = ĀX̄⊤, denoted as the relative residual. This
was described in more details in Section 2.1.1.

In our experiments, we use the Chebyshev basis to represent polynomi-
als and B-Splines to represent splines. We work with the Chebyshev ba-
sis instead of the monomial basis to have better conditioned matrices and
thus avoid some numerical issues. Our algorithms are compared to sev-
eral other methods constraining the columns of matrix A in problem (2.1)
to be the discretization of continuous functions. These approaches are thus
comparable to the LP-NMF problem using the sum cost. We implemented
these methods based on the cited papers, and list them below:

• HALS: standard HALS algorithm applied on (2.1) (Algorithm 2.1).

• P-LS: A contains nonnegative polynomials, represented using un-
constrained parameters, using equation (2.13). X is also factorized
using unconstrained parameters as Xij = C2

ij. Problem is then solved
using a nonlinear Least Squares solver [33]. We use in this work the
function least_squares from python 2 with default parameters. The
problem is thus solved using a trust region reflective algorithm.

• PS-HALS and PI-HALS: our LP-HALS algorithm using polynomi-
als, respectively with sum cost and with integral cost.

• S-MU: A contains splines with nonnegative B-Splines coefficients.
A contains thus nonnegative splines but can not contain all existing
nonnegative splines. Problem is solved using Multiplicative Updates
[141].

• S-ADMM: A contains splines constrained to be nonnegative at the
considered sampling points. Problem is solved using the Alterna-
tive Direction Method of Multipliers [140], see Section 2.2 for more
details.

• SS-HALS and SI-HALS: our LP-HALS algorithm using splines, re-
spectively with sum cost and with integral cost.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
least_squares.html

38 |

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

Experimental results | 3.3

Projections in LP-HALS are computed using conic programs solved by
MOSEK fusion version 9 [6]. Algorithms are stopped when cost function
∥Y −AX⊤∥ no longer improves, namely when |previous cost− cost|/cost <
10−7.

3.3.1 Quality of recovered signals

We first compare the signals recovered by our algorithm to the vectors re-
covered by HALS. Each test uses n = 50 observations and r = 3 basis
elements. We use in LP-HALS functions parametrized with 21 coefficients:
polynomials of degree 20 and splines with 19 interior knots regularly dis-
tributed in [−1, 1]. Basis signals in original factor A are either polynomi-
als or splines with 21 coefficients (Figure 3.3) or real reflectance signals of
olivine, spessartine and hypersthene (Figure 3.4). When original factor A

contains polynomials or splines without noise and the integral case is con-
sidered, the inputs of our algorithms are the functions in Y . Otherwise, the
signals are discretized over m = 100 points for polynomials or splines and
on 414 points for the real reflectance signals. Integrals needed to compute
Z in the integral case are approximated using a piecewise interpolation of
order 1 of the data. However, matrix M is always computed using inte-
grals for the integral case, as the basis functions are perfectly known. When
noise is added to the data, its SNR is equal to 20 dB.

In Figure 3.3 we test the performance of our algorithms using the appropri-
ate functional set F (polynomials if the original factor A contains polyno-
mials and splines if the original factor A contains splines). We observe that
the signals recovered in the noiseless case are similar for the three tested
methods. However, when noise is added to the signals, signals recovered
by HALS are less smooth than the signals recovered by our algorithms.
They are also less similar to the original signals. This is due to worse filter-
ing of the noise, as indicated by the higher relative residual. It is interest-
ing to observe that the recovery of splines is worse than for polynomials,
even if the residues are similar. A deeper inspection of the recovered sig-
nals shows that they have a higher representation power than the original
signals, that can be recovered as a nonnegative linear combination of the
found signals. This phenomenon occurs because the basis defined by the
original splines has a non-unique representation. We observed this kind
of behavior mostly on low-degree polynomials and on dense splines (with
many nonzero coefficients).

| 39

3 | NMF using Polynomials and Splines

Case without noise Case with noise

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

Polynomials_with_noise_0_1
Ground Truth
PS-HALS
PI-HALS

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

Polynomials_with_noise_20_1
Ground Truth
PS-HALS
PI-HALS

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Splines_with_noise_0_0

Ground Truth
SS-HALS
SI-HALS

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Splines_with_noise_20_0

Ground Truth
SS-HALS
SI-HALS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00
Sum case
Integral case

Usual HALS
Ground truth

Residual (for all):
around 15 · 10−4

Residual HALS:0.045
Residual LP-HALS:0.03

Residual (for all):
around 3 · 10−4

Residual HALS: 0.04
Residual LP-HALS: 0.02

Fig. 3.3 Example of recovered signals. Top: polynomials, Bottom:
splines, Left: case without noise, Right: case with noise level 20dB. Our
algorithm obtains very similar performances in integral and sum case.

If we observe the recovered signals when A contains real reflectance sig-
nals in Figure 3.4, we observe again that the signals recovered by HALS
are non-smooth in cases with noise. The relative residual is also worse as
it is around 0.04, instead of 0.02 for the others. However, HALS is much
better in the noiseless case with a residual around 4 · 10−4 instead of 0.015,
as it is able to describe the "less smooth" parts of the signals, unlike low-
degree polynomials or splines. It is interesting to notice that the residues
of our methods do not change much between the noise-free and the noisy
case, while they are very different between these two cases for HALS. This
suggests that our methods are less sensitive to noise than HALS.

The observations made in this section are based over one test which is not
enough to draw firm conclusions. In the next section we present tests made
several times, to have a better idea of the performance of the algorithms.
Moreover, we compare our methods to other similar approaches.

40 |

Experimental results | 3.3

Case without noise Case with noise

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
5Reflectance_signals_with_noise_0_1

PS-HALS
PI-HALS
SS-HALS
SI-HALS
HALS
Ground Truth

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
5Reflectance_signals_with_noise_20_1

PS-HALS
PI-HALS
SS-HALS
SI-HALS
HALS
Ground Truth−1.0 −0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00
5Reflectance_signals_with_noise_20_1

PS-HALS
PI-HALS
SS-HALS
SI-HALS
HALS
Ground Truth

Residual HALS: 4 · 10−4

Residual LP-HALS: 0.015
Residual HALS: 0.04

Residual LP-HALS: 0.02

Fig. 3.4 Example of recovered signals of spessartine. Left: noiseless case,
Right: noisy case. PS-HALS and PI-HALS obtains very similar perfor-
mance, like SS-HALS and SI-HALS.

3.3.2 Comparison between sum and integral cases

We compare the performance of our algorithms using the sum or the inte-
gral costs. Figure 3.5 present the results when data contains r = 3 polyno-
mials of degree 12 with n = 100 observations, sampled at m = [25, 50, 100,
150, 250, 500] equally spaced discretization points on [−1, 1] for sum case.
Data does not contain noise. LP-HALS uses polynomials of degree 12 or
splines with 11 interior knots. Residues are computed over 15000 points
equally spaced in [−1, 1].

On polynomial signals, when no noise is added to the data, the integral
cost provides better results for both polynomials and splines when few
discretization points are available. This is expected as the integrals contain
the perfect information about the data, unlike the discretization. However,
as soon as 150 discretization points are available, the behavior of the two
cost functions becomes very similar.

In Figure 3.6, we observe the performance of our algorithms using the same
data as for the previous test except that the basis elements are splines with
19 interior knots and a noise of 20dB is added to the data. LP-HALS uses
polynomials of degree 20 or splines with 19 interior knots. Due to noise,
the integrals in Z must be approximated. We use a piecewise interpolation
of rank 1 of the input data.

In this case, the sum case using splines seems slightly better than the inte-
gral one. On the other hand, the integral case using polynomials is better

| 41

3 | NMF using Polynomials and Splines

R
el

at
iv

e
re

si
du

al

102

10−3

10−2

10−1
Evolution of the residues

PS-HALS
PI-HALS
SS-HALS
SI-HALS

Number of discretization points

Fig. 3.5 Performance of our algorithms over polynomial signals. No
noise is added. Average over 10 problems. Axes are in logarithmic scale.

than the sum case when very few discretization points are available, but
the two approaches become very close when the number of discretization
points increases. During our experimentation we observed that the ap-
proach used to approximately compute the integrals required for the inte-
gral case has a large influence on the final results. Hence, the performance
of the integral case may be improved with a more accurate evaluation of
the integrals. Nevertheless, using the sum cost is already quite robust, es-
pecially when the number of discretization points is large enough. There-
fore, based on the results obtained in these tests, we recommend using the
integral cost when the input functions are known and the sum cost if they
are provided as vectors.

3.3.3 Comparison with other approaches

Unless stated otherwise, the following tests are made over polynomials of
degree 12 and splines with 11 interior knots, with n = 100 observations as
well as a noise level of 20 dB. Tests are made over r = 5 real reflectance
signals when possible, otherwise r = 3 polynomial signals of degree 12 are
used. Each result is the average over 10 tests.

42 |

Experimental results | 3.3

R
el

at
iv

e
re

si
du

al

102
10−2

10−1

100
Evolution of the residues

PS-HALS
PI-HALS
SS-HALS
SI-HALS

Number of discretization points

Fig. 3.6 Performance of our algorithms over spline signals with noise of
20 dB. Average over 10 problems. Axes are in logarithmic scale.

Performance on large datasets
To study their computational performance, we run each algorithm during
20 iterations for an increasing number of observations and discretization
points (n = m), over polynomial signals. Figure 3.7 illustrates that one

103 104

n=m

10−1

100

101

Ti
m

e
(s

ec
)

HALS
P-LS
PS-HALS
PI-HALS
S-MU
S-ADMM
SS-HALS
SI-HALS

Fig. 3.7 Time for 20 iterations without initialization for increasing n = m. S-MU
and S-ADMM display very similar performances, as SS-HALS and SI-HALS.

iteration of HALS, S-MU and S-ADMM has O(mn) complexity, while for
LS it is only O(n) [33]. In contrast, time spent in computations increases
very moderately with n = m for our methods, because they spend a large
fraction of their computational time on the projection step (more than 95%

| 43

3 | NMF using Polynomials and Splines

for n = m = 104), which does not depend on n neither m.

Note that the initialization time is not presented in this graph. For P-LS and
our methods, this initialization can be quite costly, in O(mn), but must be
computed only once. Moreover, all presented algorithms are influenced by
the initial values of matrices A and X , and a way to find the best solution
is to run the algorithm with different initial values. In this case, the ini-
tialization of our algorithms and P-LS must only be computed once for all
runs.

Among our methods, PS-HALS has a higher computational time. A look
at the projections in this case shows that matrix M is not as sparse as for
the other approaches. The lower sparsity of M slows down the projections
(performed by an interior-point method) and thus the algorithm in general.

When increasing only the number of observations n, we observed that the
accuracy of HALS was significantly improved, while the improvement was
less important for the other methods, especially when using polynomials.
However, the opposite was observed when increasing the number of dis-
cretization points m: functional-based methods showed better improve-
ment compared to HALS.

Performance when the number of coefficients varies
We analyze the influence of the size of the chosen parametrizable set F , i.e.
we study the influence of the degree for polynomials or the number of in-
terior knots for splines. In Figure 3.8, we observe that our algorithms and
P-LS spend more time in computations when the degree d of polynomials
increases, and that this slowdown is more consequent for LP-HALS. For
P-LS method, increasing d increases the size of the least-square problem to
solve, while for our methods it increases the size of the positive semidef-
inite matrices in the SDP. Moreover, we observe than using higher-degree
polynomials is beneficial only until a certain point. The choice of the de-
gree of the polynomials is thus important. The same observations can be
made for splines if we increase the number of interior knots, even though
the increase in time is less pronounced than for polynomials. Time perfor-
mance of S-MU and S-ADMM is not much influenced by the number of
interior knots of the splines.

We observe that S-ADMM obtains a slightly higher residual than our meth-
ods, unlike S-MU that obtains similar residues. S-MU is also much faster
than our methods. When we look at the best recovery of the used re-

44 |

Experimental results | 3.3

10 20 30
Degree of polynomials

100

101

102

Ti
m

e
(s

ec
)

HALS
P-LS
PS-HALS
PI-HALS

10 20 30
Degree of polynomials

0.02

0.04

0.06

0.08

R
es
id
ue

s

HALS
P-LS
PS-HALS
PI-HALS

20 40 60
Interior knots

0

20

40

60

Ti
m
e
(s
ec

)

Evolution of needed time
HALS
S-MU
S-ADMM
SS-HALS
SI-HALS

20 40 60
Interior knots

0.02

0.03

0.04

R
es

id
ue

s

Evolution of the residues
HALS
S-MU
S-ADMM
SS-HALS
SI-HALS

Fig. 3.8 Performance for increasing degree (Top) or increasing number of
interior knots (Bottom). Left: needed time, Right: residues. S-MU obtains
similar residues than our methods.

flectance signal using splines, we observe that the spline coefficients are
nonnegative. As S-MU uses splines with nonnegative coefficients, it is
not surprising that it obtains good results in this configuration. However,
when we compare the performances of our methods to S-MU on nonneg-
ative splines without imposing nonnegative coefficients, we observe that
S-MU is not always able to recover accurate signals (see for example Table
3.2). Nevertheless, it is interesting to notice that using splines with non-
negative coefficients can be accurate in some situations. Note that this idea
could also be used in our LP-HALS approach and would accelerate its pro-
jection step. It will be explored in Chapters 5 and 7.

Performance over noisy data
We now pay attention to the performance of the algorithms over various
levels of noise on the data, as displayed in Figure 3.9. We observe that
when using polynomials or splines in factor A, obtained residues appear
to be almost insensitive to the noise, unlike the vector-based HALS. The
computational effort required by all methods appears to be independent
of the level of noise, except for P-LS that is much faster when data is more

| 45

3 | NMF using Polynomials and Splines

Method Time Its SIRA SIRX Res
S-MU 0.26 115.25 13.90 36.70 18

SS-HALS 1.89 31.50 48.27 42.27 1

Table 3.2 Performance of S-MU and SS-HALS over nonnegative spline
signals with negative coefficients in the B-Spline basis. Noise level is 20dB,
r = 3, n = m = 500, and the number of interior knots = 20. Test over
10 problems and 10 initializations. Time is expressed in seconds and Its
stands for the number of iterations. SIR measure has been presented in
Section 2.1.1 and should be as high as possible. Res are the relative residu-
als multiplied by 103, that should be as low as possible.

noisy.

20 40
Noise level dB

0

10

20

30

Ti
m

e
(s

ec
)

Evolution of needed time
HALS
P-LS
PS-HALS
PI-HALS
S-MU
S-ADMM
SS-HALS
SI-HALS 20 40

Noise level dB

0.00

0.05

0.10

0.15

R
es

id
ue

s

HALS
P-LS
PS-HALS
PI-HALS
S-MU
S-ADMM
SS-HALS
SI-HALS

Fig. 3.9 Performance for different noise levels. Rightmost value is the
noise-free situation (replacing the 50 dB mark). All algorithms obtain sim-
ilar residues except HALS.

Detailed analysis of tests with reflectance signals
Table 3.3 contains the average results of the considered algorithms over
n = 250 observations of reflectance signals using 10 random mixing ma-
trices X̄ to build data Y . Each algorithm is tested on the 10 inputs us-
ing 10 different starting values (100 tests in total). Noise level is 20dB on
which functional NMF provides good results (see Figure 3.9). Moreover,
based on results from Subsection 3.3.3, we used polynomials of degree 20
and splines with 30 interior knots. We observe that splines obtain better
residues than polynomials that obtains better residues than HALS. This is
not so surprising as the chosen splines have a higher degree of freedom
than the chosen polynomials. Nevertheless, this means that splines man-
aged to avoid overfitting of the noise. Moreover, methods using splines are
generally faster than methods using polynomials.

46 |

Experimental results | 3.3

Method Time Its SIRA SIRX SIR LCA SIR LCX Res
HALS 0.11 61.33 7.85 3.62 29.23 21.94 24.27
P-LS 101.74 497.00 11.41 4.27 35.27 23.24 16.63

PS-HALS 85.29 230.22 7.20 3.78 34.56 22.60 16.73
PI-HALS 58.05 235.22 7.19 3.72 34.42 22.49 16.81

S-MU 2.05 542.22 9.67 4.02 37.24 22.78 13.93
S-ADMM 46.99 10317.56 12.05 4.44 31.53 18.33 16.85
SS-HALS 17.52 131.00 9.79 4.26 36.85 22.83 13.87
SI-HALS 19.55 131.67 9.79 4.27 36.81 22.81 13.92

Table 3.3 Performance of the algorithms over real reflectance signals of
Adularia, Clinochlore, Hypersthene, Olivine and Spessartine. Time ex-
pressed in seconds, Its stands for the number of iterations. SIR and SIR
LC have been presented in Section 2.1.1 and should be as high as possible.
Res are the residues multiplied by 103, that should be as low as possible.
The boxplots of the residues for each method are showed in Figure 3.10.

HALS P-LS PS-HALSPI-HALS S-MU S-ADMMSS-HALSSI-HALS

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

Re
sid

ue
s

Fig. 3.10 Boxplot of the obtained residues for each method in Table 3.3.

We see also that S-ADMM obtains a significantly higher residual than the
other methods using splines. We could observe during our tests that this
behavior occurs for datasets with many observations. For n = 100 for ex-
ample, the results of S-ADMM are comparable to the other methods using
splines. Nevertheless, our method using splines in the sum case leads to

| 47

3 | NMF using Polynomials and Splines

the best residual.

The method leading on average to the closest signals to the ground truth is
P-LS. In general, HALS-based methods seem to obtain matrices A and X

with worse SIR than the other methods when we assess them by looking
only at permutation and rescaling of the obtained signals. However, the
representation power of the recovered basis is similar to that of the other
methods (and sometimes even better) when using the best nonnegative
linear combinations of obtained matrices (SIR LC).

We can observe in Figure 3.11 the evolution of the residues with respect
to elapsed time (including time for initialization). Our stopping criterion
appears to be in general well-adapted to the tested methods, as they all
seem to have converged. In this example, S-ADMM appears to stop a bit
too early while P-LS stops a bit too late, while the other methods stop at
the right time. The S-MU and HALS methods are significantly faster than
the others in the presented case.

10−4 10−3 10−2 10−1 100 101 102

time (sec)

10−2

10−1

100

101

re
si

du
es

HALS
P-LS
PS-HALS
PI-HALS
S-MU
S-ADMM
SS-HALS
SI-HALS

10−2 10−1 100 101 102

time (sec)

10−2

2 × 10−2

3 × 10−2

4 × 10−2

re
si

du
es

HALS
P-LS
PS-HALS
PI-HALS
S-MU
S-ADMM
SS-HALS
SI-HALS

10−2 10−1 100 101 102

time (sec)

10−2

2 × 10−2

3 × 10−2

4 × 10−2

re
si

du
es

HALS
P-LS
PS-HALS
PI-HALS
S-MU
S-ADMM
SS-HALS
SI-HALS

Fig. 3.11 Evolution and zoom on this evolution of the residues for each
method with respect to time. A point is plotted every 10 iterations. The y-
scale of the zoom is no longer in log-scale to improve readability. Polyno-
mial methods converge in a similar way, while ADMM is the only spline-
based method stopping with a residual similar to the polynomial ones.

48 |

Experimental results | 3.3

Discussion
The tests we performed demonstrate that extending the NMF framework
to handle polynomial or spline signals enables the recovery of smoother
features and is less sensitive to noise when compared to standard NMF
applied to discretized signals.

We have adapted the HALS algorithm to this extension. Our new LP-
HALS algorithm requires the ability to project over sets of nonnegative
linearly parametrizable functions, which is computationally feasible for
polynomials and splines. Two cost functions can be considered, both com-
petitive with existing approaches. Integral cost is recommended when in-
tegrals involving the input signals are computable, while the sum cost can
be used if only discretized values are available.

Our algorithms are naturally well-suited to deal with data originating from
nonnegative polynomials or nonnegative splines. However, they also lead
to good results for (relatively) smooth real-world reflectance signals. The
choice of the degree of parametrization is important to obtain as accurate
results as possible. The degree of parametrization is the degree of the used
polynomials or the number of interior knots of the splines. A too low de-
gree affects negatively the precision of the algorithms, while a too high
degree has a low impact on the precision, but impacts greatly the compu-
tational time. The degree of parametrization is a hyperparameter, and its
ideal value can therefore be found with usual techniques such as cross val-
idation. However, it is worth keeping in mind that linear combinations of
polynomials and splines do not affect the degree of parametrization. Thus,
a reasonable approach to find the most suitable degree is to take some sig-
nals from the input data, and analyze their degree, taking into account the
fact that the data may be noisy. Finally, when hesitating between several
degrees, it is good to remember that a degree that is too high does reduce
the accuracy much, but mostly increases the time needed (and conversely
for a too low degree). Choosing a degree that is a little too high is therefore
rarely a problem in practice.

Moreover, the computational effort spent by our method does not increase
much with the problem size compared to existing approaches, which makes
it possible to handle large-scale problems (i.e. with large numbers of obser-
vations or discretization points).

| 49

4
Extending NMF to Hilbert

spaces (H-NMF)

In the previous chapter we explored with success the possibility to impose
a factor of NMF to be derived from nonnegative polynomials or splines.
Such a problem can be solved on matrices, by sampling the polynomials
and splines, but we explained that it can also be used on functions, pro-
vided that it is possible to compute the integrals of each input function
multiplied by each basis element of polynomials or splines. This chap-
ter aims at generalizing the results from the previous chapter, and previ-
ous works on NMF using functions (e.g. polynomials, splines or GRBF). It
presents a unifying framework that can handle a range of function classes
as wide as possible, in Section 4.1. This unified framework is called Non-
negative Matrix Factorization on Hilbert spaces (H-NMF). An associated
optimization problem, with a cost function based on inner products, is pre-
sented in Section 4.2. This section also presents some situations where the
optimization problem can be simplified. Finally, in Section 4.3, we ana-
lyze usual algorithms for standard NMF and state the conditions needed
to generalize them for H-NMF.

| 51

4 | Extending NMF to Hilbert spaces (H-NMF)

4.1 Generalizing the standard NMF problem
As its name suggests, the Nonnegative Matrix Factorization problem aims
at describing an input matrix Y as a product of two nonnegative factors,
the matrices A and X : Y ≃ AX⊤. To reduce the dimension of AX⊤ in
comparison to Y , A and X are imposed to have only r columns. Therefore,
Y is expressed as the sum of r rank-one matrices: Y ≃ ∑r

k=1 A:k(X:k)
⊤.

Moreover, each column of Y is a nonnegative linear combination of r char-
acteristic nonnegative factors, the columns of A: Y:j ≃ ∑r

k=1 A:kXjk, and
similarly for the rows of Y , whose characteristic factors are the columns
of X : Yi: ≃ ∑r

k=1 Aik(X:k)
⊤. Therefore, each element Yij of Y is approxi-

mated as the sum of the products between the columns of A and X eval-
uated on i and j respectively, Yij ≃ ∑r

k=1 AikXjk. This problem is solved
by minimizing the Frobenius norm of the reconstruction error Y −AX⊤

(other cost functions are possible but outside the scope of this work). It is
described in Definition 4.1.

Definition 4.1. Nonnegative Matrix Factorization Given an input matrix
Y ∈ Rm×n and a factorization rank r, find nonnegative matrices A ∈ Rm×r

+

and X ∈ Rn×r
+ minimizing

argmin
A∈Rm×r

+ , X∈Rn×r
+

∥∥Y −AX⊤
∥∥2

F . (4.1)

This leads to matrices A and X such that

Y ≃ AX⊤ =
r

∑
k=1

A:k(X:k)
⊤ (4.2)

which is equivalent to

Y:j ≃
r

∑
k=1

A:kXjk ∀j ∈ {1, · · · , n} , Yi: ≃
r

∑
k=1

Aik(X:k)
⊤ ∀i ∈ {1, · · · , m}

(4.3)

and Yij ≃
r

∑
k=1

AikXjk ∀i ∈ {1, · · · , m}, j ∈ {1, · · · , n}.

(4.4)

52 |

Generalizing the standard NMF problem | 4.1

Our goal is now to generalize this problem to an input function of two vari-
ables Y(a, x) : A×X 7→ R, lying in a Hilbert space H. For matrices, those
two variables are the indices of rows and columns, i.e. A = {1, 2, . . . , m}
and X = {1, 2, . . . n}. In general A and X can contain all kinds of sets such
as indices, positions (e.g. for images), ranges of spectra (binding energy in
chemistry or wavelengths in imaging), times ranges (for time series), etc.

Let us define ⊗ the tensor product between two univariate functions A :
A 7→ R and X : X 7→ R as

[
A⊗ X

]
(a, x) = A(a)X(x) ∀a ∈ A, x ∈ X. (4.5)

We aim at describing the input function Y as a sum of r rank-one terms,
and we consider that rank-one functions of two variables are separable
functions, i.e. functions R : A × X 7→ R such that R = Ra ⊗ Rx, with
Ra : A 7→ R and Rx : X 7→ R.

Let Ã and X̃ be the considered constrained functions sets (with nonneg-
ativity constraints for example). We aim to find 2r univariate functions
Ak ∈ Ã, Xk ∈ X̃ ∀k = 1, · · · , r that approximate the input data Y as
Y ≃ ∑r

k=1 Ak ⊗ Xk.

This means that, when x is fixed, each function Y(:, x) : A 7→ R is de-
scribed as a linear combination of functions Ak, Y(:, x) ≃ ∑r

k=1 AkXk(x),
and similarly, when a is fixed, each function Y(a, :) : X 7→ R is described
as a linear combination of functions Xk, Y(a, :) ≃ ∑r

k=1 Ak(a)Xk. More-
over, each element Y(a, x) is approximated as the sum of the products be-
tween the functions Ak and Xk evaluated on a and x respectively, Y(a, x) ≃
∑r

i=k Ak(a)Xk(x). To solve this problem, we suppose that both ∑r
k=1 Ak ⊗

Xk and Y belong to a Hilbert space H, in order to minimize the norm of
the reconstruction error Y−∑r

k=1 Ak ⊗ Xk. This leads us to a tentative def-
inition for the H-NMF. This definition is provisional, since we will see in
the next section the conditions necessary to implement it in practice. The
actual definition of H-NMF is given in Definition 4.4.

Definition 4.2. NMF on Hilbert spaces (H-NMF) - provisional - Given
two sets A and X, two nonnegative sets of functions Ã defined on A 7→
R+ and X̃ defined on X 7→ R+, an input function of two variables Y :
A × X 7→ R and a factorization rank r. Find 2r nonnegative functions

| 53

4 | Extending NMF to Hilbert spaces (H-NMF)

{Ak}r
k=1, with Ak ∈ Ã ∀k, and {Xk}r

k=1, with Xk ∈ X̃ ∀k, minimizing

argmin
Ak∈Ã, Xk∈X̃ ∀i

∥∥∥Y−
r

∑
k=1

Ak ⊗ Xk

∥∥∥
2

H
. (4.6)

The goal is to obtain factors Ak, Xk such that

Y ≃
r

∑
k=1

Ak ⊗ Xk (4.7)

which is equivalent to

Y(:, x) ≃
r

∑
k=1

AkXk(x) ∀x ∈ X , Y(a, :) ≃
r

∑
k=1

Ak(a)Xk ∀a ∈ A

(4.8)

and Y(a, x) ≃
r

∑
k=1

Ak(a)Xk(x) ∀x ∈ X, a ∈ A.

(4.9)

Remark 4.1. Having nonnegative functions in Ã and X̃ provides an addi-
tive representation of Y. However, most of the results presented in next
sections do not rely on this nonnegativity. Therefore, we can define a sim-
ilar problem where sets Ã and X̃ are not imposed to contain nonnegative
functions: the Constrained Matrix Factorization on Hilbert spaces problem
(H-CMF).

Figure 4.1 bellow illustrates this problem on the spectrum images dataset
from [79]. Spectrum images contain spectral (A) and spatial (X) informa-
tion of mixture of chemical elements. Each pixel of Y, Y(:, x), contains the
mixture of the binding energy levels of a few chemical elements whose
binding energy level is contained in functions Ak. At the same time, each
binding energy level of Y, Y(a, :), has an intensity map that is the mixture
of the intensity maps of the chemical elements, contained in the functions
Xk.

Examples of H-NMF problems

• In standard NMF, A = {1, · · · , m}, X = {1, · · · , n} and Ã = {A :
A 7→ R+} = Rm

+, X̃ = Rn
+.

54 |

Optimizing the H-NMF problem using inner products | 4.2

Y =
{

Y(:, x1), Y(:, x2), · · · , Y(:, x), · · ·
}

Y(:, x) ≃ A1X1(x) + · · · + ArXr(x)

{
, , · · · ,

x = index of the pixel,
i.e. the position of the element

}
+ · · · +

=
{

Y(a1, :), Y(a2, :), · · · , Y(a, :), · · ·
}

Y(a, :) ≃ A1(a)X1 + · · · + Ar(a)Xr
{

, , · · · ,
a = binding energy (eV)

}
+ · · · +

Fig. 4.1 Illustration of H-NMF on the spectrum images dataset from [79].

• Consider that A contains discretization of functions as in [8, 33, 133,
139, 141], or in Chapter 3 (the sum cost), with τ = {τi}m

i=1 the set
of discretization points and F the set of considered functions, while
X contains vectors. We have A = τ , Ã = { f (τ)| f ∈ F}, X =

{1, · · · , n} and X̃ = Rn
+.

• In Figure 4.1, A is a range of binding energy levels (and therefore
contains an infinite number of points) and X contains the possible
positions of the elements (that are two-dimensional). We can con-
sider several constraints in Ã and X̃ , one example is to consider that
Ã is a set of nonnegative splines to impose local smoothness on the
factors Ak, and to consider only the nonnegative constraint in X̃ :
X̃ = {X : X 7→ R+}.

• Consider a hyperspectral image from which we aim to identify the
constituent endmembers and their abundance maps (see e.g. [45] for
an example of NMF on this kind of dataset). In this case, A is a
range of wavelengths (that can be finite or not) and X contains the
positions of the pixels. We can consider the same constraints as in
previous case.

4.2 Optimizing the H-NMF problem using inner products

In this section, we analyze the conditions under which Definition 4.2 is
suitable. We also discuss some properties of the cost function (4.6), com-

| 55

4 | Extending NMF to Hilbert spaces (H-NMF)

ment the choice of sets A, X and constraints Ã, X̃ in H-NMF, and present
situations where the problem can be simplified.

4.2.1 Needed theory and assumptions for H-NMF

We suppose that input data Y belongs to a Hilbert space H. This implies
the existence of a inner product ⟨·, ·⟩H and thus of a norm ∥ · ∥H, and allows
us to define a cost function. Nevertheless, as shown in Equation (4.9), the
goal of H-NMF is to obtain a factorization that is pointwise close to the
input data by minimizing the norm of the error. However, it is not always
true that functions close in norm are also close pointwise. Consider for
example the L[−1,1]

2 space, i.e. the space of square integrable functions on
domain [−1, 1], with inner product < f , g >=

∫ 1
−1 f (a)g(a) da. Let f , g ∈

L[−1,1]
2 such that f (a) =

{
g(a) if a ̸= 0

g(0) + M else
with M arbitrary large. Then

∥ f − g∥ = 0, while | f (0)− g(0)| = M for some arbitrary parameter M.

Actually, L[−1,1]
2 is not a Hilbert space, because it contains elements like

f − g that have zero-norm but are not equal to 0. We could work instead
on the Hilbert space of equivalence classes of functions in L[−1,1]

2 . In this
Hilbert space, f and g belong to the same class, and are thus considered
as equivalent, as they are equal almost everywhere. However, this is also
not adequate in our case, because we need to be able to evaluate prop-
erly our functions at all points. We therefore consider function spaces with
a bounded evaluation functional: the Reproducing Kernel Hilbert Spaces
(RKHS) defined below.

Definition 4.3. Reproducing Kernel Hilbert Space (RKHS) Consider a set
A and space F = { f : A 7→ R}, the space of all functions from A to R.
The space A ⊆ F is a Reproducing Kernel Hilbert space if and only if

1. A is a Hilbert space, with inner product ⟨·, ·⟩A, and

2. ∀a ∈ A, the linear evaluation functional δa : A 7→ R, δa(f) = f (a) is
a bounded operator.

RKHS have many interesting properties. Some of them are listed below.

Proposition 4.1. If A is a RKHS on F = { f : A 7→ R}, then

1. ∀a ∈ A, there is a unique function ka ∈ A such that f (a) = ⟨ f , ka⟩A
∀ f ∈ A. Function ka is called the reproducing kernel for the point a.

56 |

Optimizing the H-NMF problem using inner products | 4.2

2. The linear span of functions {ka}a∈A is dense in A.

3. The function K : A ×A 7→ R, K(a, a′) = ka(a′) = ⟨ka, ka′⟩A is a
kernel function, called the reproducing kernel of A. This means that for
every choice of n valid points {ai}n

i=1 ⊆ A, the matrix M , defined by
Mi,j = K(ai, aj), is positive semi-definite.

4. Every kernel function is the reproducing kernel of a RKHS, and this RKHS
is unique.

5. Suppose { fn} ⊆ A. If there is f ∈ A such that limn→∞ ∥ fn − f ∥ = 0,
then f (a) = limn→∞ fn(a) ∀a ∈ A.

Proof. More information about RKHS and kernel functions, as well as proofs
of the above statements, can be found in [7, 99].

This last property indicates that it makes sense to consider iterative algo-
rithms to solve the H-NMF problem on RKHS, as when the iterates con-
verge in norm, they also converge pointwise, which is the expected desir-
able behavior.

In fact, it is relatively rare to encounter a Hilbert functional space that is not
a RKHS. However, there are space of functions that are not Hilbert spaces,
like L[−1,1]

2 or the restriction of L[−1,1]
2 to continuous functions. Neverthe-

less, many functions belong to a RKHS. In particular, polynomials of finite
degree and splines with a finite number of fixed interior knots are RKHS
as shown by lemma below.

Lemma 4.1. Given n linearly independent basis functions Πi, the span of these
functions H =

{
∑n

i=1 αiΠi ∀α ∈ Rn} is a RKHS. This is the case for finite
degree polynomials or splines with a fixed and finite number of interior knots.

Proof. A more detailed proof can be found in Chapter 3 of [7]. We aim to
find a reproducing kernel function forH, kx = ∑n

i=1 βx
i Πi, so that

n

∑
i=1

αiΠi(x) = f (x) = ⟨ f , kx⟩ =
〈 n

∑
i=1

αiΠi,
n

∑
i=1

βx
i Πi

〉
H ∀αi, x.

| 57

4 | Extending NMF to Hilbert spaces (H-NMF)

Let α = [α1 · · · αn]⊤ ∈ Rn and Π(x) = [Π1(x) · · ·Πn(x)]⊤ ∈ Rn, then

f (x) = ⟨ f , kx⟩ ⇔ α⊤Π(x) = ∑
i,j

αiβ
x
j ⟨Πi, Πj⟩H ∀α ∈ Rn, ∀x.

Let M ∈ Rn×n be the Gram matrix, Mi,j = ⟨Πi, Πj⟩H. As functions Πi are
linearly independent, M is positive-definite. Let βx = [βx

1 · · · βx
n]
⊤ ∈ Rn.

f (x) = ⟨ f , kx⟩ ⇔ α⊤Π(x) = α⊤Mβx ∀α ∈ Rn, ∀x

⇔ βx = M−1Π(x) ∀x ∈ X.

We can therefore define the kernel function K(x, y) = Π(y)⊤M−1Π(x),
that is the reproducing kernel ofH, andH is a Reproducing Kernel Hilbert
Space.

We aim at describing input data Y using a sum of products Ak ⊗ Xk, as
defined in Equation (4.5). It turns out that if Ak ∈ A ∀k and Xk ∈ X ∀k
with A, X being two RKHS, the space of sums of products Ak ⊗ Xk is a
RKHS as well. It is actually the tensor product of RKHS A and X .

Theorem 4.2. Tensor product of RKHS Consider two RKHS A and X defined
on A 7→ R and X 7→ R respectively, and Ka, Kx, their reproducing kernels. The
tensor product ofA and X , L = A⊗X is also a RKHS, with reproducing kernel
K
(
(a′, x′), (a, x)

)
= Ka(a′, a)Kx(x′, x).

Tensor product L is the completion of the set {∑j
s=1 As ⊗ Xs} with j finite, As ∈

A, Xs ∈ X ∀k and ⊗ the product from (4.5), i.e.

Y ∈ L ⇔ Y = lim
j→∞

Yj with {Yj} a Cauchy sequence and Yj =
j

∑
s=1

As ⊗ Xs

(4.10)
The inner product of space L is so that:

⟨A⊗ X, A′ ⊗ X′⟩L = ⟨A, A′⟩A⟨X, X′⟩X (4.11)

Proof. This theorem is Theorem 5.24 from [99].

From the results obtained above, using RKHS in H-NMF makes sense and
does not add strong constraints to the problem compared to using Hilbert
spaces, while giving better theoretical assurances. Moreover, it also allows

58 |

Optimizing the H-NMF problem using inner products | 4.2

us to write the cost function of the H-NMF problem in a different way, as
we will see now. We first present a useful lemma for that.

Lemma 4.2. Given two sets A and X, two RKHS A ⊆ {A : A 7→ R} and
X ⊆ {X : X 7→ R}, with L their tensor product, i.e. L = A⊗ X . Suppose
A ∈ A, X ∈ X and Y ∈ L. Define g : X 7→ R with g(x) = ⟨Y(:, x), A⟩A and
f : A 7→ R with f (a) = ⟨Y(a, :), X⟩X .

Then g ∈ X , f ∈ A and

⟨Y, A⊗ X⟩L = ⟨g, X⟩X = ⟨ f , A⟩A. (4.12)

Proof. By Equation (4.10), we have Y = limj→∞ Yj with {Yj} a Cauchy se-

quence and Yj = ∑
j
s=1 As ⊗ Xs.

Let us define the sequence of aj = ⟨Yj, A ⊗ X⟩L. By Cauchy-Schwarz in-
equality, we have

|aj − am| = |⟨Yj −Ym, A⊗ X⟩L| ≤ ∥Yj −Ym∥L∥A⊗ X∥L.

As {Yj} is a Cauchy sequence, so is {aj} and {aj} converges to ⟨Y, A⊗ X⟩.
Moreover, by definition of the inner product of L (4.11) and the linearity of
the inner product we have

aj =
j

∑
s=1
⟨As, A⟩A⟨Xs, X⟩X =

〈 j

∑
s=1
⟨As, A⟩AXs, X

〉
X

. (4.13)

We now define gj ∈ X as gj = ∑
j
s=1⟨As, A⟩AXs. Sequence {gj} is a Cauchy

sequence. Indeed,

∥gj − gm∥2
X =

j

∑
s1=m

j

∑
s2=m
⟨As1 , A⟩A⟨As2 , A⟩A⟨Xs1 , Xs2⟩X

=
j

∑
s1=m

j

∑
s2=m
⟨As1 ⊗ Xs1 , A⊗ Xs2⟩L⟨As2 , A⟩A

=
〈

Yj −Ym,
j

∑
s=m

A⊗ Xs⟨As, A⟩A
〉
L

≤ ∥Yj −Ym∥L
∥∥∥

j

∑
s=m

A⊗ Xs⟨As, A⟩A
∥∥∥
L

Cauchy-Schwarz ineq.

| 59

4 | Extending NMF to Hilbert spaces (H-NMF)

We have

∥∥∥
j

∑
s=m

A⊗ Xs⟨As, A⟩A
∥∥∥

2

L
=

j

∑
s1=m

j

∑
s2=m
∥A∥2

A⟨Xs1 , Xs2⟩X ⟨As1 , A⟩A⟨As2 , A⟩A

= ∥A∥2
A
〈

Yj −Ym,
j

∑
s=m

A⊗ Xs⟨As, A⟩A
〉
L

∥∥∥
j

∑
s=m

A⊗ Xs⟨As, A⟩A
∥∥∥
L
≤ ∥A∥2

A∥Yj −Ym∥L Cauchy-Schwarz inequality.

This allows us to say that ∥gj − gm∥X ≤ ∥Yj − Ym∥L∥A∥A. As {Yj} is a
Cauchy sequence, so is {gj}, and {gj} converges to g ∈ X .

As X is a RKHS, by proposition 4.1.5

g(x) = lim
j→∞

gj(x) = lim
j→∞
⟨

j

∑
s=1

AsXs(x), A⟩A = lim
j→∞
⟨Yj(:, x), A⟩A.

As {Yj} is a Cauchy sequence, g(x) = ⟨Y(:, x), A⟩A.

As {gj} is a Cauchy sequence, sequence {aj} converges to ⟨g, X⟩A. There-
fore we have ⟨Y, A⊗ X⟩L = ⟨g, X⟩X with g ∈ X and g(x) = ⟨Y(:, x), A⟩A.
To conclude the proof, a very similar reasoning can be done to find the
result using f : A 7→ R with f (a) = ⟨Y(a, :), X⟩X .

This lemma allows us to express the cost function of the H-NMF problem
in three different ways, in the theorem below.

Theorem 4.3. Given two sets A and X, two RKHS A ⊆ {A : A 7→ R} and
X ⊆ {X : X 7→ R} and a RKHS H ⊆ {Y : A×X 7→ R}, containing the
tensor product of A and X , i.e. L = A ⊗ X ⊆ H. Suppose H and L have
matching inner product, i.e. ⟨·, ·⟩H = ⟨·, ·⟩L on points in L.

Considering Y1 the projection of Y on L, the cost function

∥∥∥Y−
r

∑
k=1

Ak ⊗ Xk

∥∥∥
2

H
(4.14)

60 |

Optimizing the H-NMF problem using inner products | 4.2

is equivalent to both

∥Y∥2
H +

r

∑
k1=1

r

∑
k2=1
⟨Ak1 , Ak2⟩A⟨Xk1 , Xk2⟩X − 2

r

∑
k=1
⟨ fk, Ak⟩A

with fk ∈ A; fk(a) = ⟨Y1(a, :), Xk⟩X ∀a ∈ A

(4.15)

and

∥Y∥2
H +

r

∑
k1=1

r

∑
k2=1
⟨Ak1 , Ak2⟩A⟨Xk1 , Xk2⟩X − 2

r

∑
k=1
⟨gk, Xk⟩X

with gk ∈ X ; gk(x) = ⟨Y1(:, x), Ak⟩A ∀x ∈ X.
(4.16)

Proof. As L is a RKHS, it is a closed subspace ofH. Using L⊤ the orthogo-
nal complement of L, any element Y ∈ H can be written as

Y = Y1 + Y2 Y1 ∈ L, Y2 ∈ L⊥. (4.17)

The decomposition is unique and Y1 is actually the projection of Y on L :
Y1 = argminY1∈L∥Y−Y1∥H [36]. Equation (4.14) can be written as

∥∥∥Y−
r

∑
k=1

Ak ⊗ Xk

∥∥∥
2

H
= ∥Y∥2

H +

∥∥∥∥
r

∑
k=1

Ak ⊗ Xk

∥∥∥∥
2

H
− 2
〈
Y,

r

∑
k=1

Ak ⊗ Xk
〉
H.

Using (4.17) this is equal to

∥∥∥Y
∥∥∥

2

H
+

r

∑
k1,k2=1

〈
Ak1⊗Xk1 , Ak2⊗Xk2

〉
H− 2

r

∑
k=1

(〈
Y1, Ak⊗Xk

〉
H+⟨Y2, Ak⊗Xk⟩H

)
.

As Y2 ∈ L⊥ and Ak ⊗ Xk ∈ L, the inner product ⟨Y2, Ak ⊗ Xk⟩H is equal to
zero ∀k. The proof is concluded using Lemma 4.2.

We observe that, in both cases, we can work on Y1, the projection of the
input data Y on L = A ⊗ X , using inner products ⟨·, ·⟩A and ⟨·, ·⟩X on
chosen spaces A and X , instead of inner product ⟨·, ·⟩H. Note that A and
X are not the constraints on functions Ak and Xk. Instead, spacesA and X
should contain the constraints Ã and X̃ : Ã ⊆ A and X̃ ⊆ X .

With the information obtained in this section, and especially the results
from Theorem 4.3 we can now define the H-NMF problem more precisely.

| 61

4 | Extending NMF to Hilbert spaces (H-NMF)

Definition 4.4. NMF on Hilbert space Given two sets A and X, two RKHS
A ⊆ {A : A 7→ R} and X ⊆ {X : X 7→ R} and two nonnegative functions
sets Ã ⊆ A defined on A 7→ R+ and X̃ ⊆ X defined on X 7→ R+. Given
input function Y : A×X 7→ R, so that Y ∈ H, with H a RKHS containing
L = A⊗X , with matching inner product, i.e. ⟨·, ·⟩H = ⟨·, ·⟩L on points in
L. Given r a rank of factorization, find 2r nonnegative functions {Ak}r

k=1,
with Ak ∈ Ã ∀k, and {Xk}r

k=1, with Xk ∈ X̃ ∀k, solving:

argmin
Ak∈Ã,Xk∈X̃ ∀k

∥Y−
r

∑
k=1

Ak ⊗ Xk∥2
H. (4.18)

Considering Y1 the projection of Y on L, we can rewrite problem (4.18) as

argmin
Ak∈Ã,Xk∈X̃ ∀k

r

∑
k1,k2=1

⟨Ak1 , Ak2⟩A⟨Xk1 , Xk2⟩X − 2
r

∑
k=1
⟨ fk, Ak⟩A

with fk ∈ A; fk(a) = ⟨Y1(a, :), Xk⟩X ∀a ∈ A

(4.19)

or the equivalent

argmin
Ak∈Ã,Xk∈X̃ ∀k

r

∑
k1,k2=1

⟨Ak1 , Ak2⟩A⟨Xk1 , Xk2⟩X − 2
r

∑
k=1
⟨gk, Xk⟩X

with gk ∈ X ; gk(x) = ⟨Y1(:, x), Ak⟩A ∀x ∈ X

. (4.20)

4.2.2 Properties of the cost function

Let us analyze the differentiability of the cost function in Definition 4.4,
when A and X are RKHS. For this purpose, we first recall the definition of
the Fréchet differentiability that can be used for RKHS.

Definition 4.5. Fréchet differentiability Let D and G be normed vector
spaces and f be a function on an open subset U of D; f : U ⊂ D 7→ G.
Function f is Fréchet differentiable at u ∈ U if there exists a bounded linear
operator L : D 7→ G such that

lim
∥h∥D→0

∥ f (u + h)− f (u)− L(h)∥G

∥h∥D

= 0.

By the Riesz representation theorem, when D is a RKHS, the operator L
can be defined as L(h) = ⟨D f , h⟩D, with D f ∈ D. If L exists, it is unique.

62 |

Optimizing the H-NMF problem using inner products | 4.2

Note that for Euclidean spaces, D f is the gradient of f . Therefore, in the
rest of this paper, we will refer to D f as the gradient. This gradient is a
linear operator, in the sense that Da f+bg = aD f + bDg.

Lemma 4.3. Given a RKHS D, and a fixed element Y ∈ D. Let f1 : D 7→ R

with f1(A) = ⟨Y, A⟩D, f2 : D 7→ R with f2(A) = ⟨A, Y⟩D, and f3 : D 7→ R

with f3(A) = ⟨A, A⟩D, we have D f1 = D f2 = Y and D f3 = 2A.

Proof. These gradients can be found using definition 4.5. For example, G =

D⟨Y,A⟩D is such that

lim
∥h∥D→0

|⟨Y, A + h⟩D − ⟨Y, A⟩D − ⟨G, h⟩D|
∥h∥D

= lim
∥h∥D→0

|⟨Y− G, h⟩D|
∥h∥D

= 0

which is satisfied when G = Y.

Proposition 4.4. The problem defined in Definition 4.4 is differentiable (in Fréchet
sense) in each Ai, Xi ∀i, A = {Ai}r

i=1, and X = {Xi}r
i=1. Let fV be the cost

∥Y − ∑r
k=1 Ak ⊗ Xk∥2 when all variables are considered as fixed except V. We

have

D fAi
=

r

∑
k=1

2Ak⟨Xk, Xi⟩X − 2 fi D fXi
=

r

∑
k=1

2Xk⟨Ak, Ai⟩A − 2gi

D fA =
{ r

∑
k=1

2Ak⟨Xk, Xi⟩X − 2 fi
}r

i=1 D fX =
{ r

∑
k=1

2Xk⟨Ak, Ai⟩A − 2gi
}r

i=1.

Proof. Using problem (4.20), we have

fXi = ∑
k1,k2 ̸=i

⟨Ak1 , Ak2⟩A⟨Xk1 , Xk2⟩X − 2 ∑
k ̸=i

(〈
gk, Xk

〉
X − ⟨Ak, Ai⟩A⟨Xk, Xi⟩X

)

+ ⟨Ai, Ai⟩A⟨Xi, Xi⟩X − 2⟨gi, Xi⟩X

Then, using the linearity of the Fréchet differentiation and Lemma 4.3 we
obtain:

D fXi
=

r

∑
k=1

2⟨Ak, Ai⟩AXk − 2gi

As all the partial derivatives {D fXi
}r

i=1 exist and are continuous (because

| 63

4 | Extending NMF to Hilbert spaces (H-NMF)

gi is independent from Xi), we have

D fX =
{ r

∑
k=1

2⟨Ak, Ai⟩AXk − 2gi

}r

i=1
.

The gradients on Ai and A can be obtained using a similar reasoning, using
this time problem (4.19).

Now we give a condition for which input function Y belongs to space L =

A⊗X .

Proposition 4.5. Let A and X be RKHS. Function Y : A×X 7→ R belongs to
space L = A⊗X when A or X is finite dimensional and Y(a, :) ∈ X ∀a ∈ A,
Y(:, x) ∈ A ∀x ∈ X.

Proof. Suppose X is finite dimensional. It is therefore possible to find an
orthonormal basis of X , {Fi

x}n
i=1, with n finite. Let {kx} be the set of repro-

ducing kernels of X , and f i : A→ R defined by f i(a) = ⟨Y(a, :), Fi
x⟩X . As

X has dimension n, they are at most n linearly independent elements in
{kx}, and the linear span of functions kx is a finite-dimensional subspace
of the normed space X , and is therefore a complete space. However, it is
known that the linear span of functions kx is dense in X , which means that
the closure of this span is equal to X .

As the linear span of functions kx is complete, it contains its closure, and
therefore it is equal to X . Consequently, every X ∈ X can be described as
a finite linear combination of reproducing kernels, which leads to

f i(a) = ⟨Y(a, :),
n

∑
j=1

αjkxj⟩X =
n

∑
j=1

αj⟨Y(a, :), kxj⟩X =
n

∑
j=1

αjY(a, xj)

⇒ f i =
n

∑
j=1

αjY(:, xj) ∈ A ∀i as A is a vector space, and Y(:, xj) ∈ A.

As Y(a, :) ∈ X ∀a ∈ A, we also have

Y(a, :) =
n

∑
i=1
⟨Y(a, :), Fi

x⟩X Fi
x ⇒ Y(a, x) =

n

∑
i=1
⟨Y(a, :), Fi

x⟩X Fi
x(x)

⇒ Y =
n

∑
i=1

f i ⊗ Fi
x ∈ L as f i ∈ A.

64 |

Optimizing the H-NMF problem using inner products | 4.2

We can use the same reasoning when A is finite dimensional.

We now give some examples of problems studied in the literature, and
present them in the H-NMF framework (Definition 4.4).

Proposition 4.6. Some problems in the H-NMF framework:

1. Standard NMF: A = {1, · · · , m},A = {A : A 7→ R} = Rm, Ã = Rm
+.

2. NMF in transformed domain: A = {1, · · · , m}, A = {A ∈ Rm | A =

W α, with W ∈ Rm×d fixed, α ∈ Rd×1} where W is a transform (such
as the wavelet transform), and Ã = {A = W α, with A ≥ 0 and α a
sparse vector (with few nonzero elements) }. [102]

3. Discretization of functions: A = {ai}m
i=1, A = {A : A 7→ R} = Rm and

Ã = {nonnegative functions discretized on A like polynomials [33, 56],
splines [9, 56], rational functions [59], or GRBF [139]}

4. Polynomial NMF: A = [−1, 1], A = {polynomials of degree d with
domain A}, with inner product ⟨A1, A2⟩A =

∫ 1
−1 A1(a)A2(a) da and

Ã = {polynomials in A nonnegative on A} (Chapter 3).

5. Spline NMF: A=[−1, 1], A={splines of degree 3 with fixed interior knots
{ti}k

i=1, with domain A}, with same inner product as above and Ã =

{splines in A nonnegative on A} (Chapter 3).

6. Nonnegative functions: The work of Marteau-Ferey & al.[91] suggests that
it is possible to model non-negative functions in a non-parametric way. If
set A is finite, of size m, and ϕ is an universal feature map, we can con-
sider the RKHS A = {A : A 7→ R} with inner product ⟨A1, A2⟩A =

∑a∈A A1(a)A2(a),A is therefore equivalent to Rm. The set of nonnegative
functions can then be expressed as Ã = {A ∈ A | A(a) = ϕ(a)⊤Mϕ(a)
∀a ∈ A, where M ⪰ 0}. Details for solving problems in such sets can be
found in [91].

The definitions for X can be any of these six statements. In case 1, 2, 3 and 6,
H = Rm×n, while in cases 4 and 5, H ⊂ L2, the space of square integrable
functions. Note that in the fourth and the fifth case,A could be defined differently,
as long as Ã ⊆ A, and A is a RKHS. We can for example consider higher degree
polynomials in A than in Ã. This could make Y belong to space L = A⊗X , by
Proposition 4.5.2, and therefore avoid to project Y on L. Comments on the choice
of spaces A, X , Ã and X̃ are made in more details in next section.

| 65

4 | Extending NMF to Hilbert spaces (H-NMF)

4.2.3 Comments on the choice of spaces A, X , Ã and X̃
In this section, we analyze the H-NMF problem (Definition 4.4) when spaces
Ã and X̃ are linearly parametrizable, and we comment the choice of RKHS
A and X .

Linearly parametrizable sets of functions
If every element in Ã can be described as a linear combination of a finite
basis ΠA = {ΠA

l }
dA
l=1 , we say that Ã is linearly parametrizable. In this

case, every element in Ã can be uniquely described using a coefficient ma-
trix CA ∈ RdA : A = ∑dA

l=1 ΠA
l CA

l . An example of a linearly parametrizable
set of functions is the set of polynomials of fixed degree. Note that it is not
necessary that all the elements spanned by ΠA belong to Ã, therefore the
set of nonnegative polynomials of fixed degree is also linearly parametriz-
able.

Let us analyze the expression of the inner products in the cost function of
H-NMF when Ã and/or X̃ are linearly parametrizables:

1. If Ã is linearly parametrizable, we can precompute M A ∈ RdA×dA

with M A
l,j = ⟨ΠA

l , ΠA
j ⟩A and {ZA

l }
dA
l=1, with ZA

l (x) = ⟨Y1(:, x), ΠA
l ⟩A

∈ X . We have then

(a) ⟨Al , Aj⟩A = CAl
⊤

M ACAj ,

(b) gk(x) = ⟨Y1(:, x), Ak⟩A = ∑dA
l=1 C

Ak
l ZA

l (x).

Similarly, if X̃ is linearly parametrizable, ⟨Xl , Xj⟩X = CXl
⊤

M XCXj ,

and fk(a) = ∑dX
l=1 C

Xk
l ZX

l (a).

2. If both sets Ã, X̃ are linearly parametrizable, we can also precompute
matrix ZAX ∈ RdA×dX , with ZAX

lq = ⟨ZA
l , ΠX

q ⟩X = ⟨Y, ΠA
l ⊗ΠX

q ⟩H
(see Lemma 4.2) and have:

(a) ⟨gk, Xj⟩X = CAk
⊤

ZAXCXj .

Moreover, as elements in ΠA are linearly independent, M A is invert-
ible. This matrix is also positive semi-definite, as it is a Gram matrix,
and we can therefore find its Cholesky decomposition LA, such that

LALA⊤ = M A, and similarly we can find LX . Let CA ∈ RdA×r con-
tain in each of its columns CA

:k , the coefficients of Ak, and similarly
for CX ∈ RdX×r. Neglecting the constraint, the cost function (4.20) is

66 |

Optimizing the H-NMF problem using inner products | 4.2

equivalent to

r

∑
k1,k2=1

CA
:k1

⊤
M ACA

:k2
CX

:k1

⊤
M XCX

:k2
− 2

r

∑
k=1

CA
:k
⊤

ZAXCX
:k

which is equivalent up to a constant to

∥∥LA⊤CACX⊤LX −LA⊤M A−1
ZAXM X−1

LX∥∥2
F. (4.21)

This means that when both A and X are linearly parametrizable, the
problem becomes the minimization of a Frobenius norm on coeffi-
cient matrices, after some preprocessing to compute matrices ZAX ,
M A and M X .

Using linearly parametrizable functions also allows us to compute more
efficiently projections on Ã or X̃ . Indeed we have:

argmin
A∗∈Ã

∥A∗ − A∥2
A = argmin

∑
dA
i=1 C∗i ΠA

i ∈Ã

∥∥LA⊤(C∗ −CA)∥∥2
2. (4.22)

Therefore we can optimize on the coefficients C∗ using a Euclidean norm
instead of the function A∗ with norm based on the inner product ⟨·, ·⟩A.
The LP-NMF problem presented in Chapter 3 is thus a special case of the
H-NMF problem.

To summarize, some inner products of equations from Theorem 4.3 can be
replaced by matrix products using a precomputed Gram matrix containing
the inner products of the basis elements ΠA and/or ΠX . Moreover, we can
optimize directly on the coefficients instead of the whole function which
often decreases the complexity of the problem. This can significantly im-
prove the time performances of the algorithms solving H-NMF, especially
if the computation of the inner products is time-consuming.

Choosing appropriate spaces A and X
As stated in Proposition 4.6, choosing large spaces A and X may avoid
projecting the input function Y on set L = A⊗ X , but the inner product
may also become harder to compute. Moreover, this is not always possible
as Y is not imposed to belong to a RKHS. On the contrary, having smaller
sets A and X may simplify the computation of the inner product, but also
complicate the computation of the projection of Y. For example, choosing

| 67

4 | Extending NMF to Hilbert spaces (H-NMF)

A = Ã and X = X̃ , would make the optimization problem trivial, but the
projection of Y on L becomes very difficult, and this choice does not make
sense. Moreover, it is not always possible to make this choice, since non-
negativity constraints prevent Ã and X̃ from being RKHS. It is therefore
important to be careful when describing a H-NMF problem.

The examples presented in this section are intended to show that it is often
possible to use different setsA,X for the same problem. The choice of these
sets should not be neglected as it influences the solution of the problem, as
well as its resolution.

Suppose that Y is a continuous function of two variables. In this case, A
and X can be spaces of continuous functions of one variable. But this can
be difficult to handle if function Y is not known exactly. A possibility is to
perform a preprocessing step to approximate the input data, using for ex-
ample Chebfun developed by Battles and Trefethen [11] that uses polyno-
mials interpolant to model a function. The work of Trefethen and its team
actually has several similarities with ours. Indeed, in [119] and [118], they
develop several approaches to factor matrices via as LU, QR or SVD factor-
ization, in the case where the matrices are what they call ”quasimatrices”,
i.e. matrices where one of the dimensions is infinite, or even ”cmatrices”,
matrices where both dimensions are infinite, and which can therefore be
seen as two-dimensional functions. This is done by using linear combina-
tions or inner products of Chebfun approximations, which is close to what
we do. However, the use of Chebfun assumes that the input function is
known, or at least that it can be calculated at any given point, which is not
always the case. Using Chebfun in the context of H-NMF is a very inter-
esting idea for future work, but we do not focus on that here. Instead, we
use the input information as provided.

For example, if the input function Y is known via m × n discretization
points, {(τ A

i , τ X
j)}m,n

i=1,j=1, we can choose to work onA = Rm and X = Rn.

If we want to approximate Y using sets Ã and X̃ , we can now consider Ã′
and X̃ ′ with Ã′ = {A(τ A) | A ∈ Ã}, where A(τ A) ∈ Rm is the evaluation
of function A at points {τA

i }m
i=1, and similarly X̃ ′ = {X(τ X) | X ∈ X̃ }.

As another example, consider that Y ∈ Rm×n is a matrix containing the
information about the mean value over known intervals of functions:

Yi,j =

∫ ai+1
ai

∫ xj+1
xj

Y(a, x) dadx

(xj+1 − xj)(ai+1 − ai)
.

68 |

Solving the H-NMF problem | 4.3

Then we can again work in A′ = Rm and X ′ = Rn with Ã′ =
{

α | αi =

∫ ai+1
ai A(a) da

ai+1−ai
; A ∈ Ã

}
and X̃ ′ =

{
β | βj =

∫ xj+1
xj X(x) dx

xj+1−xj
; X ∈ X̃

}
. If Ã is

linearly parametrizable, we have

∫ ai+1
ai

A(a) da

ai+1 − ai
=

dA

∑
j=1

CA
j

∫ ai+1
ai

ΠA
j (a) da

ai+1 − ai
.

Therefore, in this case, we can use results from Section 4.2.3 with basis

Π̃
A ∈ Rm×dA , Π̃

A
i,j =

∫ ai+1
ai ΠA

j (a) da
ai+1−ai

.

4.3 Solving the H-NMF problem

Many algorithms have been proposed to solve the NMF problem and many
of them rely on a block-decomposition of the problem, and solve the prob-
lem by alternatively optimizing on each block, considering the other blocks
as fixed. Three kinds of decomposition can be considered: either the prob-
lem is seen as a unique block, or it is divided in two blocks, the factors A

and X , or it is divided in 2r blocks, the columns of A and X (in H-NMF,
the functions Ak and Xk). Below we present those three decompositions,
the algorithms used to solve them, and the conditions needed to be able to
extend those algorithms to H-NMF.

We consider the original problem (4.1) with Frobenius norm. Extensions
of this problem (with regularization, additional constraints, etc.) can be
adapted in similar ways.

4.3.1 Considering one block

Consider a vector a ∈ Rm. The nonnegativity constraint on this vector
can easily be expressed as a = h.2 where h ∈ Rm and .2 is the square
performed element-wise. The NMF problem becomes then minE,F ∥Y −
E.2(F .2)⊤∥2 with the factors A = E.2 and X = F .2. This problem is un-
constrained and can therefore be solved using any nonlinear least squares
(nls) solver. [25]

| 69

4 | Extending NMF to Hilbert spaces (H-NMF)

Extending this method to H-NMF is possible when the cost function can
be expressed as a Frobenius norm and the set of constraints Ã and X̃ can
be described as Ã = {Φ(p); p ∈ RdA} and X̃ = {Ψ(q); q ∈ RdX}. The
cost function can be expressed as a Frobenius norm when Y is a matrix, or
both sets Ã and X̃ are linearly parametrizable (see Equation (4.21)), or Ã
is linearly parametrizable and X = R, or reversely. It is important that
Φ(p) ∈ Ã ∀p ∈ RdA , to ensure that the constraints are satisfied, however,
it is not necessary that a function is described by a unique vector of coef-
ficient p. This is the case for polynomials nonnegative on an interval, for
example [101], and this method is used for H-NMF on discrete polynomi-
als in [33]. The algorithm is sketched on Algorithm 4.1.

Algorithm 4.1 H-NMF with one block

Input: Y : A×X 7→ R, Φ : RdA 7→ Ã, Ψ : RdX 7→ X̃
function 1-BLOCK_H-NMF(Y)

nls_solver
p1,...,pr ,q1,...,qr

(Y−∑r
k=1 Φ(pk)⊗Ψ(qk))

4.3.2 Considering two blocks A and X

The idea in this scheme is to alternatively solve the NMF problem on A

considering X as fixed, and on X considering A as fixed. Several options
exist, we list below the most common ones:

• Multiplicative Updates (MU): this very common approach was pro-
posed in early works on NMF [80]. The idea is to update each ele-
ment of the factor matrix by multiplying it by a nonnegative number.
This ensures the resulting matrix to stay nonnegative. The update is
chosen to not increase the cost function. A common way to choose
the update, is to perform a gradient descent with appropriate step-
size. To update A, for example, the gradient is −(Y − AX⊤)X .

Choosing stepsize ηi,j =
Ai,j

[AX⊤X]i,j
, different for each element, we

have the following update, with ⊙ the element-wise multiplication
and ⊘ the element-wise division:

A← A + η ⊙ (Y −AX⊤)X = A⊙ Y X ⊘ [AX⊤X]

Therefore, the multiplicative updates of the standard NMF problem

70 |

Solving the H-NMF problem | 4.3

are

A← A⊙ Y X ⊘AX⊤X X ← X ⊙ Y ⊤A⊘XA⊤A (4.23)

Those updates have the advantage to maintain the nonnegativity of
A and X throughout iterations, without increasing the cost function.
They also have low complexity, but MU can require many iterations,
and is not ensured to converge to a stationary point.

To extend MU to H-NMF, the updates should keep the constraint
satisfied, which is not trivial. For example, consider the set of non-
negative polynomials of degree d. This set is not closed under mul-
tiplication, and an update similar to (4.23) would not keep the con-
straint satisfied.

This approach is used in [141] on discrete splines with nonnegative
coefficients. This is possible because the constraint is a "simple" non-
negative constraint as we work on splines with nonnegative coeffi-
cients instead of nonnegative splines.

• (Other) Gradient-based methods: when using other stepsizes, we can
satisfy the constraint by projecting the found update on the feasible
set [84]. Consider [x]P the projection of x on setP and gradients from
Proposition 4.4, the updates for H-NMF would be:

As ←
[

As + ηA
(
−∑

k
Ak⟨Xk, Xs⟩X + 2 fs

)]

Ã
, fs(a) = ⟨Y1(a, :), Xs⟩X

Xs ←
[

Xs + ηX
(
−∑

k
Xk⟨Ak, As⟩A + 2gs

)]

X̃
, gs(x) = ⟨Y1(:, x), As⟩A

Note that all elements As are updated at the same time, and the same
holds for all Xs. To be able to perform such an update, linear com-
binations of A and X must be computable, as well as functions fs
and gs. Moreover, it must be possible to project onto sets Ã and X̃ .

• As for one-block optimization, we can use functions Φ and Ψ and
alternatively optimize on one factor with a non-linear least squares
solver while considering the other factor as fixed. The necessary con-
ditions to use this methods are the same as in the one-block case.

• Active set method: this method has been developed for constraints of

| 71

4 | Extending NMF to Hilbert spaces (H-NMF)

the form {gi(x) ≥ 0}n
i=1, with x the variables of the problem. To be

able to use the active set method for H-NMF, the constrained sets Ã
and X̃ must be describable using a finite number of nonnegativity
constraints. This approach has been used in [139] on discrete GRBF,
imposed to be nonnegative on discretization points only.

• Alternating Direction Method of Multipliers (ADMM): this method
is used to solve separable cost functions with linear constraints [44].
Using ΦÃ(·) the indicator function of Ã, the H-NMF problem with
X fixed can be written as:

argmin
A,B

r

∑
k1,k2=1

⟨Xk1 , Xk2⟩X ⟨Bk1 , Bk2⟩A − 2
r

∑
k=1
⟨ fk, Bk⟩A +

r

∑
k=1

ΦÃ(Ak)

such that Ak = Bk ∀k = 1 . . . r.

Ak ∈ Ã , Bk ∈ A ∀k = 1 . . . r.

To use ADMM for H-NMF, the problem should be easy to solve
when A or X is fixed and the constraints Ak ∈ Ã and Xk ∈ X̃ are
neglected. It should also be easy to project onto sets Ã and X̃ . This
approach is used in [140] on nonnegative discrete splines.

The 2-block optimization of NMF problem is sketched on Algorithm 4.2.
Note that A and X do not need to be updated with the same method.

Algorithm 4.2 H-NMF with two blocks

Input: A and X RKHS, Ã ⊆ A, X̃ ⊆ X ,
input function Y, initial X = {Xk}r

k=1 with Xk ∈ X̃ ∀k

function 2-BLOCK_H-NMF(Y,X)
Compute Y1, the projection of Y on A⊗X .
repeat

fk : A 7→ R, fk(a) = ⟨Y1(a, :), Xk⟩X ∀k ∈ [1, .., r]
A← argmin

Ak∈Ã ∀k
∑k1,k2

⟨Xk1 , Xk2⟩X ⟨Ak1 , Ak2⟩A − 2 ∑k⟨ fk, Ak⟩A

gk : X 7→ R, gk(x) = ⟨Y1(:, x), Ak⟩A ∀k ∈ [1, .., r]
X ← argmin

Xk∈X̃ ∀k
∑k1,k2

⟨Xk1 , Xk2⟩X ⟨Ak1 , Ak2⟩A − 2 ∑k⟨gk, Xk⟩X

until convergence

72 |

Solving the H-NMF problem | 4.3

4.3.3 Considering 2r blocks Ak, Xk k = 1, . . . , r

For standard NMF, dividing the problem in 2r blocks, the columns of A
and X, and optimizing alternatively on each of them, allows us to solve
each subproblem analytically. Indeed, as the cost function is a squared
norm, it is possible to show that the best update is the projection of the
best unconstrained update, i.e. the update that cancels the gradient, onto
the nonnegative set [75], using [ξ]+ = max(ξ, 0):

A:k ←
[

Y X:k −∑s ̸=k A:s(X:s)⊤X:k

∥X:k∥2

]

+

∀k

X:k ←
[

Y ⊤A:k −∑s ̸=k X:s(A:s)⊤A:k

∥A:k∥2

]

+

∀k

These updates are optimal and unique when ∥X:k∥2 and ∥A:k∥2 are nonzero.
Actually, when ∥Xk:∥2 and ∥A:k∥2 are nonzero throughout all iterations, it
is possible to prove that the algorithm converges to a stationary point [75].
This algorithm is called the Hierarchical Alternating Least Squares (HALS)
algorithm [27].

To extend this approach to H-NMF, it must be possible to compute the
unconstrained update, which is the case if linear combinations of A and
X are computable, as well as functions fs and gs. Moreover, one must
be able to project onto sets Ã and X̃ . This approach has been considered
in [133] for discrete GRBF, but the projection was estimated using a mul-
tiplicative update of the columns of the factors A and X . We considered
this approach using exact projections in Chapter 3.

An interesting observation to make about this algorithm is that the projec-
tion tends to favor solutions at the boundary of the feasible set. In the case
of vectors (standard NMF), this results in sparse vectors (since negative
values are set to zero). In the case of functions, the result does not necessar-
ily have many zeros. Take the case of polynomials for example: by nature
these functions cannot be zero at many points (unless they are zero every-
where), so projection does not tend towards a sparse signal. In the case of
splines it is possible to have sparse signals, but it is not guaranteed at all
that the projection results in sparse signals, as it depends on the position of
the interior knots and the negative/zero zones of the signal to be projected.
Sparsity is therefore in general not promoted with H-HALS as opposed to
conventional HALS. Nevertheless, it is worth considering whether spar-

| 73

4 | Extending NMF to Hilbert spaces (H-NMF)

sity makes sense when using functions. If it does, the choice of function
set should be adapted (like splines), and other techniques should be used
to encourage sparsity (e.g. by regularizing the cost function, see the end of
Section 5.2 for another comment on sparsity).

In Section 5.2 of the next chapter, it is proved that the Hilbert HALS method
(H-HALS), sketched on Algorithm 4.3, preserves the properties of standard
NMF, i.e. projecting the unconstrained solution on the feasible set is opti-
mal and, if Ã, X̃ are convex and ∥Ak∥2, ∥Xk∥2 are nonzero throughout all
iterations, the algorithm converges to a stationary point. We observe that
the LP-HALS algorithm (Algorithm 3.1) is a special case of the H-HALS
algorithm for linearly parametrizable functions (see Section 4.2.3).

Note that it is also possible, although much less common, to define r + 1
blocks, by dividing A in r blocks and keeping X as one block, or the other
way around.

Algorithm 4.3 H-NMF with 2r blocks (H-HALS)

Input: A and X RKHS, Ã ⊆ A, X̃ ⊆ X , input function Y,
initials X = {Xk}r

k=1, A = {Ak}r
k=1 with Xk ∈ X̃ , Ak ∈ Ã ∀k

function H-HALS(Y,A,X)
Compute Y1, the projection of Y on A⊗X .
repeat

for k ∈ [1...r] do
fk : A 7→ R, fk(a) = ⟨Y1(a, :), Xk⟩X
Ak ←

[
fk−∑s ̸=k As⟨Xs ,Xk⟩X

∥Xk∥2
X

]

Ã
for k ∈ [1...r] do

gk : X 7→ R, gk(x) = ⟨Y1(:, x), Ak⟩A
Xk ←

[
gk−∑s ̸=k Xs⟨As ,Ak⟩A

∥Ak∥2
A

]

X̃
until Convergence

74 |

5
Convergence of H-NMF

In the previous chapter, we have presented a general framework to per-
form NMF using functions, the H-NMF framework. We have also pre-
sented several ways to extend the algorithms of NMF to H-NMF. In partic-
ular, we have presented an extension of the HALS algorithm, the H-HALS
algorithm, whose iterations are computable under mild conditions, and re-
quires performing projections on the functions of interest. In this chapter,
we first show that this algorithm can be described as a Block Coordinate
Descent (BCD) method. We then analyze the convergence properties of
this algorithm and compare them to the known convergence properties of
standard HALS (Section 5.2). We observe that both algorithms have com-
parable convergence properties when the updates are performed exactly.
Moreover, we analyze in Section 5.3 the convergence properties when the
updates are not performed exactly. This is very informative as the projec-
tion step of the H-HALS algorithm can be difficult to perform, and there-
fore could be computed using heuristics instead, which results in an inex-
act update. The iterates are supposed to be solution of smaller scale mini-
mization problems, and we show that under mild conditions H-HALS will
converge to a stationary point or a nearly-stationary point when the it-
erates are ϵ-stationary, or solutions of a minimization problem with less
restrictive constraints, or close to the optimal iterate.

| 75

5 | Convergence of H-NMF

5.1 Block Coordinate Descent (BCD) methods for H-NMF

To simplify the notations, we first rewrite the H-NMF problem. Suppose,
we have n blocks {xi}n

i=1, where each block xi belongs to a RKHS Fi, and
that the constraint on this block is defined by set Pi, i.e. xi ∈ Pi ⊆ Fi ∀i.
Let P = P1 × · · · × Pn, F = F1 × · · · × Fn, and x = (x1, · · · , xn). Let f
be the cost function, and fi(ξ ; x) be the cost function when all blocks are
considered as fixed except block i:

fi(ξ ; x) = f (x1, . . . , xi−1, ξ, xi+1, . . . , xn) ξ ∈ Fi, x ∈ P . (5.1)

The Block Coordinate Descent (BCD) algorithm, sketched on Algorithm
5.1, aims then to solve:

min
x

f (x1, · · · , xn) such that x = (x1, · · · , xn) ∈ P1 × · · · × Pn = P .

(5.2)

For H-NMF, f is one of the cost function from Definition (4.4), and

• when considering 2 blocks, x1 = A, x2 = X, F1 = Ar, P1 = Ãr,
F2 = X r, P2 = X̃ r, with Ar = A× · · · × A r times, and similarly for
Ãr, X r, X̃ r,

• when considering 2r blocks, xi =

{
Ai ∀i = 1, · · · , r

Xi−r ∀i = r + 1, · · · , 2r
,

Fi =

{A ∀i = 1, · · · , r
X ∀i = r + 1, · · · , 2r

and Pi =

{Ã ∀i = 1, · · · , r
X̃ ∀i = r + 1, · · · , 2r

.

Note that we consider in this section that every update of the BCD algo-
rithm is the exact minimizer when all blocks except one are considered
as fixed (Equation (5.3)). This approach is sometimes referred to as the
alternating minimization method, to specify the exactness of the update.
Nevertheless, as we will also consider inexact updates in the next section,
we decided to keep the name BCD.

Moreover, for simplicity we consider only a cyclic update of the blocks, i.e.
block i + 1 is updated after block i, and once last block n has been updated,
we start a new cycle at block 1.

76 |

Block Coordinate Descent (BCD) methods for H-NMF | 5.1

Algorithm 5.1 Block Coordinate Descent Algorithm (BCD)

Input: x0 ∈ P
function BCD(x0)

t = 0
Repeat:

for i = 1, 2, . . . , n do

xt+1
i = argmin

ξ

fi(ξ ; xt) such that ξ ∈ Pi (5.3)

xt+1
j = xt

j ∀j ̸= i

t = t + 1

Optimality of updates presented in Algorithm 4.3 We now verify that
the updates of Algorithm 4.3 are optimal, and therefore H-HALS is a BCD
method. First, let us observe functions fi(ξ ; x) when the problem is de-
composed in 2r blocks.

Lemma 5.1. Let Oi = ∥As∥2
A if block i is Xs and Oi = ∥Xs∥2

X if block i is As.
For all x ∈ P , the block functions fi(ξ ; x) are quadratic, 2Oi-strongly convex
and

fi(ξ1 + ξ2 ; x) = fi(ξ1 ; x) + ⟨D fi(ξ ;x)(ξ1), ξ2⟩Fi + ∥ξ2∥2
Fi

Oi, (5.4)

D fi(ξ ;x)(ξ1 + ξ2) = D fi(ξ ;x)(ξ1) + 2Oiξ2 (5.5)

Proof. The quadratic structure of the functions can be easily observed in
Equations (4.15) and (4.16). The presented result is the Taylor expansion
of a quadratic function, where the Hessian has been replaced by its exact
value. It can be verified using Equations (4.15), (4.16) and Proposition 4.4.

Lemma 5.2. If throughout algorithm, we have ∥xi∥2
Fi
≥ δ > 0 ∀i = 1, . . . , 2r,

then the updates defined in H-HALS Algorithm (4.3) are optimal, meaning that
H-HALS is a BCD method corresponding thus to Algorithm 5.1.

Proof. Updates of H-HALS Algorithm (4.3) can be described as the projec-
tion on set Pit of the best unconstrained update (that is the update that

| 77

5 | Convergence of H-NMF

cancels the gradient):

xt+1
it

=
[
argmin

ξ

fit(ξ ; xt)
]
Pit

.

We aim to compute

xt+1
it

= argmin
ξ

fit(ξ ; xt) such that ξ ∈ Pit .

Suppose that x̄ is the unconstrained minimizer of fit(ξ ; xt), and suppose
without loss of generality that ξ = x̄ + ϵ, we have

xt+1
it

= x̄ + argmin
ϵ

fit(x̄ + ϵ ; xt) such that x̄ + ϵ ∈ Pit

= x̄ + argmin
ϵ
⟨D fit (ξ ;xt)(x̄), ϵ⟩+ ∥ϵ∥2

Fi
Ot

it such that x̄ + ϵ ∈ Pit by (5.4).

By definition of x̄, D fit (ξ ;xt)(x̄) = 0, and by definition, Ot
it = ∥xj∥2

Fi
for a

certain j ̸= i. By assumption, Ot
it ≥ δ > 0. Therefore we aim to solve

xt+1
it

= x̄ + argmin
ϵ
∥ϵ∥2
Fi

such that x̄ + ϵ ∈ Pit .

And thus, the optimal update is

xt+1
it

= argmin
ξ

∥ξ − x̄∥2
Fi

such that ξ ∈ Pit ,

which is the projection of x̄ on set Pit and is thus the definition of the up-
date of H-HALS.

We will see in the next section that the condition ∥xi∥2
Fi
≥ δ > 0 ∀i =

1, . . . , 2r, is often a reasonable condition.

5.2 Convergence analysis of BCD methods for H-NMF

When then H-NMF problem (Definition 4.4) is considered as one unique
block, the convergence of Algorithm 4.1 is the convergence of the chosen

78 |

Convergence analysis of BCD methods for H-NMF | 5.2

nonlinear least-squares solver. When two or 2r blocks are considered, we
suppose in this section that the update of each block is performed exactly.
This is a strong assumption for a two blocks decomposition. Therefore, the
following results are more suited for the H-HALS Algorithm 4.3.

It is known that every limit point of HALS on standard NMF is a station-
ary point if the norm of the columns of A and X never goes to zero [75]. If
we furthermore impose the norm of A:k and X:k to stay bounded for all k,
the feasible set of the problem is compact, and by the Bolzano-Weierstrass
theorem we know that there is a least one converging subsequence, con-
verging thus to a stationary point. This last assumption can be done with-
out loss of generality, see [46], Section 8.1.4 for more details. We observe in
this section that similar convergence properties can be found for H-HALS,
under certain conditions on the sets Ã and X̃ .

Recall the following definition of stationarity, used when the feasible set is
convex.

Definition 5.1. Stationarity Consider the real Hilbert space F , the feasi-
ble convex set P ⊆ F , and the minimization problem with continuously
differentiable function (in Fréchet sense) f : F → R

min
x

f (x) such that x ∈ P .

We stay that x∗∈P is a stationary point if and only if ⟨D f (x∗), x−x∗⟩F ≥0
∀x ∈ P .

Consider F = F1 × · · · × Fn with inner product ∑n
i=1⟨xi, yi⟩Fi , and f ∗i de-

fined as f ∗i (ξ) = fi(ξ ; x∗) ∀ξ ∈ Fi. If f is continuously block-differentiable,
i.e. all fi(ξ ; x) are continuously differentiable for all x ∈ P , we have for
(5.2):

⟨D f (x∗), x− x∗⟩F =
n

∑
i=1
⟨D f ∗i

(x∗i), xi − x∗i ⟩Fi . (5.6)

We can also consider a Nash equilibrium whose definition is the following.

Definition 5.2. Nash equilibrium Considering the same problem as in
Definition 5.1, x∗ is a Nash equilibrium if and only if x∗ ∈ P and for all
i = 1, . . . , n

f (x∗1 , · · · , x∗i−1, x∗i , x∗i+1, · · · , x∗n) ≤ f (x∗1 , · · · , x∗i−1, ξ, x∗i+1, · · · , x∗n) ∀ξ ∈ Pi.

| 79

5 | Convergence of H-NMF

This definition is equivalent to saying that f (x∗) = fi(x∗i ; x∗) ≤ fi(ξ ; x∗)
∀ξ ∈ Pi, ∀i = 1, . . . , n. In certain situations those two definitions are equiv-
alents.

Lemma 5.3. Suppose that the feasible set P is a Cartesian product of convex
blocks Pi, and fi(ξ ; x) is convex and continuously differentiable on ξ for all x ∈
P and i = 1, . . . , n. Then, x∗ is a Nash equilibrium if and only if it is a stationary
point.

Proof. Suppose x∗ is a Nash equilibrium, and assume by contradiction that
it is not a stationary point, implying that there exists x ∈ P such that
⟨D f (x∗), x − x∗⟩F < 0. As the feasible domain is the Cartesian product
of Pi, and by hypothesis on fi(ξ ; x), Equation (5.6) holds, which implies
that it must exist an index i such that xi ∈ Pi and ⟨D f ∗i

(x∗i), xi − x∗i ⟩Fi < 0.
We have for all λ ∈ [0, 1]

f ∗i (x∗i + λ(xi − x∗i)) = f ∗i (x∗i) + λ⟨D f ∗i
(x∗i), xi − x∗i ⟩Fi + e(λ(xi − x∗i)),

where limλ→0
|e(λ(xi−x∗i))|

λ = 0 as f ∗i is differentiable. Therefore, e(λ(xi −
x∗i)) goes faster to 0 than λ, so that we can find a feasible point (asPi is con-
vex) ξ = x∗i + λ(xi − x∗i) with λ small enough such that f ∗i (ξ) < f ∗i (x∗i),
which is a contradiction. Therefore a Nash equilibrium is a stationary
point.

In the other direction, when x∗ is a stationary point, using that f ∗i is convex
and differentiable, we have

0 ≤ ⟨D f ∗i
(x∗i), ξ − x∗i ⟩Fi ≤ f ∗i (ξ)− f ∗i (x∗i) ∀ξ ∈ Pi ∀i,

and thus f (x∗) = f ∗i (x∗i) ≤ f ∗i (ξ) ∀ξ ∈ Pi ∀i which concludes the proof.

To improve readability, in what follows, the space Fi is no longer men-
tioned explicitly in the norms and inner products. We now present some
useful lemma and assumptions in order to be able to describe the conver-
gence properties of the BCD Algorithm 5.1.

Lemma 5.4. Consider a sequence {xt} with n blocks, where xt+1 differs from xt

only along block it, which is such that f (xt)− f (xt+1) ≥ δ∥xt+1
it
− xt

it∥
2 with

80 |

Convergence analysis of BCD methods for H-NMF | 5.2

δ > 0, and f is a lower-bounded function. We have

∞

∑
t=0

n

∑
i=1
∥xt+1

i − xt
i∥2 < ∞.

Proof. Using the hypothesis on the update, we have

f (x0)− f (xT) =
T−1

∑
t=0

f (xt)− f (xt+1) ≥
T−1

∑
t=0

δ∥xt
it − xt+1

it
∥2.

As f lower bounded, we can say that

∞

∑
t=0
∥xt

it − xt+1
it
∥2 < ∞.

This concludes the proof since xt+1 differs from xt only along block i.

Corollary 5.1. Consider a sequence {xt} with n blocks, where xt+1 differs from
xt only along block it, which is such that ⟨D fit (ξ ;xt)(xt+1

it
), xt

it − xt+1
it
⟩ ≥ 0.

Moreover, suppose f is a lower bounded function and fit(ξ ; xt) is 2δ-strongly
convex with δ > 0. Then ∑∞

t=0 ∑n
i=1 ∥xt+1

i − xt
i∥2 < ∞.

Proof. As fit(ξ ; xt) is 2δ-strongly convex, we have:

fit(xt
it ; xt) ≥ fit(xt+1

it
; xt) + ⟨D fit (ξ ;xt)(xt+1

it
), xt

it − xt+1
it
⟩+ δ∥xt

it − xt+1
it
∥2.

Using the hypothesis on the update,

f (xt)− f (xt+1) ≥ δ∥xt
it − xt+1

it
∥2.

Proof is concluded using Lemma 5.4.

This leads us to one main convergence theorem, where we suppose that
block functions are 2δ-strongly convex, a relatively strong assumption. Nev-
ertheless, we will see that this assumption is satisfied by the H-HALS al-
gorithm under mild conditions (see Lemma 5.6) .

The proof hereunder is very similar to those in [14] and [126], but we tran-
scribe it anyway because in [14] and [126] the proofs are written for Eu-
clidean spaces, and we work in RKHS instead. Moreover, we will use this

| 81

5 | Convergence of H-NMF

proof as a basis for other reasonings in the following section. In fact, work-
ing in RKHS spaces rather than Euclidean spaces does not raise any partic-
ular problem in the proof.

Theorem 5.2. Convergence BCD Consider the BCD Algorithm 5.1, where all
block functions fi(ξ ; xt) are 2δ-strongly convex, with δ > 0 and continuously
differentiable. Moreover, suppose that feasible sets Pi are closed and convex, and
that cost function is lower-bounded. Every limit point of a sequence generated by
this algorithm is a stationary point.

Proof. Suppose x̄ is a limit point of the iterates {xt} of the BCD algorithm.
As all feasible sets Pi are closed, x̄ is also feasible. By Equation (5.3)

f (xt) ≥ f (xt+1) ∀k. (5.7)

Moreover, as the cost function is lower-bounded, { f (xt)} converges to
f (x̄).

As the update is optimal, xt
it is a Nash equilibrium of fit(ξ ; xt). As Pi is

convex, we have by Lemma 5.3 ⟨D fit (ξ ;xt)(xt+1
it

), xt
it − xt+1

it
⟩ ≥ 0. There-

fore, because block functions fit(ξ ; xt) are 2δ-strongly convex, we can use
Corollary 5.1 to obtain:

lim
t→∞

n

∑
i=1
∥xt+1

i − xt
i∥2 = 0.

Suppose {xtj} converges to the limit point x̄. Then, {xtj+1} also converges
to x̄, and so does {xtj+N}, for any finite number N.

Consider {xtj+1} a subsequence of {xt} that converges to x̄ and is the result
of an update of block i (xtj+1 differs from xtj only along the ith block). Such
a subsequence exists for all i as in a cycle of N = n updates each block is
updated once. In this case, we have by definition of the update that:

fi(x
tj+1
i ; xtj) ≤ fi(ξ ; xtj) ∀ξ ∈ Pi ∀i = 1, . . . n.

Taking the limit of tj going to infinity, as f is continuous, we obtain:

fi(x̄i ; x̄) ≤ fi(ξ ; x̄) ∀ξ ∈ Pi ∀i = 1, . . . n. (5.8)

82 |

Convergence analysis of BCD methods for H-NMF | 5.2

As Pi is convex, and by the first order optimality condition, we have that:

⟨D fi(x ;x̄i)
(x̄i), ξ − x̄i⟩ ≥ 0 ∀ξ ∈ Pi ∀i = 1, . . . n.

As the set P is Cartesian, we can conclude that

⟨D f (x̄), x− x̄⟩ ≥ 0 ∀x ∈ P ,

which is the definition of a stationary point and conclude the proof.

We now present three assumptions. The two first ones are useful to ensure
that every limit point of a sequence generated by the BCD algorithm for
the H-NMF problem converges to a stationary point, while the third one
ensures that any sequence generated by the BCD algorithm for the H-NMF
problem has a convergent subsequence.

Assumption 5.1. Convex and Non null Suppose that Ã ⊆ A and X̃ ⊆ X
are closed convex sets whose elements have norm larger than δ : ∥Ak∥2

A ≥ δ >

0, ∀Ak ∈ Ã, and ∥Xk∥2
X ≥ δ > 0, ∀Xk ∈ X̃ .

Note that the Non null assumption can often be satisfied by imposing fac-
tors to be larger than ϵ at all points in their domain (instead of only being
nonnegative): A(a) ≥ ϵ ∀a ∈ A and X(x) ≥ ϵ ∀x ∈ X, and this restriction
does not affect the convexity of the set, as shown by lemma below.

Lemma 5.5. SupposeA∗ is a convex set of functions defined in A 7→ R, lying in
a RKHS. Let Ã be the restriction of A∗ to elements that are pointwise larger than
ϵ everywhere: Ã = {A ∈ A∗|A(a) ≥ ϵ ∀a ∈ A}. Then Ã is also convex.

Proof. As the evaluation functional of Hilbert spaces (and thus RKHS) is
linear, we have ∀A1, A2 ∈ Ã, t ∈ [0, 1]

(tA1 + (1− t)A2)(a) = tA1(a) + (1− t)A2(a) ≥ ϵ ∀a ∈ A.

Moreover, as A∗ is convex, tA1 + (1 − t)A2 ∈ A∗ and thus tA1 + (1 −
t)A2 ∈ Ã.

We observe with this lemma that imposing nonnegativity, or restricting
all functions to be larger than ϵ, does not affect the convexity of the con-
strained set. Convexity is thus the main requirement in the Convex and
Non null assumption.

| 83

5 | Convergence of H-NMF

Assumption 5.2. Convex - 2 blocks Suppose Ã ⊆ A and X̃ ⊆ X are closed
convex sets. Let M A ∈ Rr×r defined by MA

ij = ⟨Ai, Aj⟩A and M X ∈ Rr×r

defined by MX
ij = ⟨Xi, Xj⟩X . Suppose that throughout algorithm M A and M X

are invertible and trace
(
M A−1) ≤ δ−1 and trace

(
M A−1) ≤ δ−1.

The two assumptions above ensure to have strongly-convex functions, as
proved by the Lemma bellow.

Lemma 5.6. Assumptions 5.1 and 5.2 ensure that the block functions fi(ξ ; xt)

are 2δ-strongly convex throughout the BCD algorithm.

Proof. Assumption 5.1 is for the 2r blocks decomposition, and can be easily
verified using Lemma 5.1.

Assumption 5.2 is for the two blocks decomposition. Indeed, by definition
of strong-convexity f1(ξ ; x) is strongly convex if and only if

⟨D f1(ξ ;x)(ξ1)− D f1(ξ ;x)(ξ2), ξ1 − ξ2⟩Fi ≥ µ∥ξ1 − ξ2∥2
Fi

Using the definition of the cost function and its derivative, this means

r

∑
i=1

〈 r

∑
k=1

2(A1 − A2)k⟨Xk, Xi⟩X , (A1 − A2)i

〉
A
≥ µ∥A1 − A2∥2

A

⇔
r

∑
i=1

r

∑
k=1

M X
ki M

A
ki ≥ µ

r

∑
k=1

M A
kk

⇔ 2⟨M X , M A⟩ ≥ µ⟨Ir, M A⟩

Using Cholesky decompositions LX⊤LX = M X and LA⊤LA = M A, this
becomes

⇔ 2∥LXLA⊤∥2
F ≥ µ∥LA∥2

F

If M X is invertible, so is LX , and ∥LX−1
LXLA⊤∥2

F ≤ ∥LX−1∥2
F∥LXLA⊤∥2

F
and therefore

⇔ 2
∥LA∥2

F

∥LX−1∥2
F

≥ µ∥LA∥2
F

84 |

Convergence analysis of BCD methods for H-NMF | 5.2

As ∥LX−1∥2
F = ⟨Ir, M X−1⟩ = trace

(
M X−1), we have

⇔ 2
µ
≥ trace

(
M X−1)

.

The same reasoning can be done for f2(ξ ; x), and the block functions are
thus 2δ-strongly convex.

We present now the third assumption.

Assumption 5.3. Boundedness Ã ⊆ A and X̃ ⊆ X are bounded sets. More-
over, if A is an infinite dimensional space, for every ϵ > 0 there is a finite-
dimensional subspace W ⊂ A such that infw∈W ∥A− w∥ < ϵ ∀A ∈ Ã. Sim-
ilarly, if X is an infinite dimensional space, for every ϵ > 0 there is a finite-
dimensional subspace W ⊂ X such that infw∈W ∥X− w∥ < ϵ ∀X ∈ X̃ .

To satisfy this assumption, we can use the following lemma.

Lemma 5.7. Consider H-NMF problem under the Convex and Non null Assump-
tion (5.1) where sets Ã and X̃ are such that ∀Ai, Aj ∈ Ã, Xi, Xj ∈ X̃ , we have
(nonnegativity condition): ⟨Ai, Aj⟩⟨Xi, Xj⟩ ≥ 0.

Moreover, suppose that αA ∈ Ã ∀α ≥ min
(
1, γ
∥A∥A

)
, for a γ > 0, and similarly

αX ∈ X̃ ∀α ≥ min
(
1, γ
∥X∥X

)
, i.e. it is possible to scale elements in Ã and X̃ .

If problem is solved using BCD Algorithm (5.1), we can consider without loss of
generality that sets Ã and X̃ are bounded, with ∥A∥2

A, ∥X∥2
X ≤ max

(
γ2, ∥Y∥H+

∥Y−∑r
k=1 A0

k ⊗ X0
k∥H

)
, where {A0

k}r
k=1, {X0

k}r
k=1 are the initial iterates of the

algorithm.

Proof. By triangular inequality, and the fact that Algorithm 5.1 decreases
the cost function at each iteration, we have:

∥∥∥Y−
r

∑
k=1

A0
k ⊗ X0

k

∥∥∥
H
≥
∥∥∥Y−

r

∑
k=1

At
k ⊗ Xt

k

∥∥∥
H
≥
∥∥∥

r

∑
k=1

At
k ⊗ Xt

k

∥∥∥
H
− ∥Y∥H.

By the nonnegativity condition, we have
∥∥∑r

k=1 At
k ⊗ Xt

k∥2
H ≥ ∑r

k=1 ∥At
k ⊗

Xt
k∥2
H ≥ ∥At

s ⊗ Xt
s∥2
H ∀s. Therefore

∥∥Y
∥∥
H +

∥∥∥Y−
r

∑
k=1

A0
k ⊗ X0

k

∥∥∥
H
≥
∥∥At

s ⊗ Xt
s
∥∥
H =

∥∥At
s
∥∥
A
∥∥Xt

s
∥∥
X ∀s.

| 85

5 | Convergence of H-NMF

Hence it is always possible to find α ≥ min
(
1, γ
∥At

s∥A
)
; 1

α ≥ min
(
1, γ
∥Xt

s∥X
)

so that

α2∥At
s∥2
A,

1
α2 ∥X

t
s∥2
X ≤ max

(
γ2, ∥Y∥H +

∥∥∥Y−
r

∑
k=1

A0
k ⊗ X0

k

∥∥∥
H

)
.

By hypothesis, αAt
s and 1

α Xt
s are feasible points, which lead to the same cost

as At
s and Xt

s.

An example of feasible α is

α =





√
∥Xt

s∥
∥At

s∥
if ∥At

s∥∥Xt
s∥ ≥ γ2

γ
∥At

s∥
else if ∥At

s∥ ≥ γ

∥Xt
s∥

γ else if∥Xt
s∥ ≥ γ

1 otherwise.

(5.9)

Let us modify slightly Algorithm 5.1: let x̃t+1
i be the solution of Equation

(5.3), and define xt+1 = g(x̃t+1), where g is a continuous function that
rescales At

s, Xt
s as αAt

s,
1
α Xt

s with α from (5.9). It is easy to check that
conclusion of Lemma 5.4 becomes ∑∞

t=0 ∑n
i=1 ∥x̃t+1

i − xk
i ∥2 < ∞. Therefore,

if {xtj} converges to x̄, so does {x̃tj+1}. As g is a continuous function,
g(x̃tj+1) converges to g(x̄). The sequence {xtj} is by definition contained
in the bounded closed sets Ã and X̃ , therefore x̄ is finite, and g(x̄) = x̄,
and {xtj+1} converges to x̄ as well. Therefore, the proof of Theorem 5.2
still holds, and we can consider without loss of generality that Ã and X̃
are bounded.

We can now present the convergence theorems for the H-NMF algorithms.

Theorem 5.3. Convergence of H-HALS Consider the H-NMF problem (Defi-
nition 4.4) under Assumption 5.1, solved using H-HALS (Algorithm 4.3). Every
limit point of the generated sequence is a stationary point.

If in addition the Boundedness Assumption (5.3) is satisfied, any sequence gener-
ated by H-HALS has a convergent subsequence converging to a stationary point.

Proof. By Assumption 5.1 and Lemma 5.6, the conditions of Lemma 5.2 are
satisfied, and H-HALS is thus a BCD algorithm. Moreover, Assumption

86 |

Convergence analysis of BCD methods for H-NMF | 5.2

5.1 and Lemma 5.6 also ensure that Theorem 5.2 holds. Therefore, every
limit point generated by the H-HALS algorithm is a stationary point.

If the Boundedness assumption is also satisfied, sets Ã and X̃ are compact
([92], Proposition 3.9). Therefore, any sequence generated by the H-HALS
algorithm has a convergent subsequence, converging thus to a stationary
point.

This theorem thus shows that it is possible to prove the same kind of con-
vergence for Algorithm 5.1 for H-NMF as for standard NMF, under very
similar conditions. For two block decomposition, the theorem becomes:

Theorem 5.4. Convergence of two-blocks decomposition of H-NMF Con-
sider the H-NMF problem (Definition 4.4) under Assumption 5.2, decomposed in
two blocks and solved using BCD Algorithm 5.1. Every limit point of the gener-
ated sequence is a stationary point.

If in addition the Boundedness Assumption (5.3) is satisfied, any sequence gen-
erated by the algorithm has a convergent subsequence converging to a stationary
point.

Proof. By Assumption 5.2 and Lemma 5.6, Theorem 5.2 holds, and every
limit point generated by the BCD algorithm is a stationary point.

If the Boundedness assumption is also satisfied, sets Ã and X̃ are com-
pact, and any sequence generated by the BCD algorithm has a convergent
subsequence converging to a stationary point.

Note that as the sets Fi are all RKHS, x̄i(a) = limtj 7→∞ x
tj
i (a) ∀a (Property

4.1.5) which means that the evaluation of the factorization also converges.

Comment about the convergence results We have seen in Assumption
5.1 and Lemma 5.5 that the strongest assumption required for H-HALS
to converge is the convexity of the set of constraints. The sets considered
in Chapter 3, namely polynomials or splines of fixed degree, satisfy this
condition.

Nevertheless, this condition can be restrictive. We will see in Chapter 8 a
case where the considered set of functions is not convex, namely the case

| 87

5 | Convergence of H-NMF

of nonnegative rational functions of fixed degree. It turns out that using H-
HALS is more delicate in this case. Nevertheless, in practice, the algorithm
gives good results on average.

On the other hand, a commonly used constraint in classical NMF is not
convex: the sparsity constraint. This means that the tools developed in
Chapter 4 do not apply in this case (or at least without theoretical guar-
antees). Nevertheless, many of the tools developed for classical NMF with
sparsity constraints could be adapted to H-NMF (e.g. regularization, or the
ASX⊤ factorization presented in Section 2.2, coming from [66, 98, 132]).
This could be an interesting direction for future research.

It should also be noted that sparsity does not make sense for all functions.
For example, looking for polynomials of low degree with many roots is not
very judicious, while sparsity has much more sense in the case of splines
(see earlier discussion at the end of Section 4.3). Moreover, sparsity may
be imposed or promoted on only one of the two factors (and actually, this
often makes sense). If, for example, we are working in a situation as in
Chapter 3 where one factor contains functions and the other is a matrix,
then we can encourage sparsity of the matrix with the usual techniques
used in NMF. These techniques do not always have theoretical guarantees,
but give good results in practice.

5.3 Convergence using inexact updates

In this section, we analyze the behavior of block-coordinate descent (BCD)
algorithm (sketched in Algorithm 5.1) when the updates are inexact. We
consider problems where the block functions fi(ξ, x) derived from the cost
function are continuous and strongly convex, and the feasible set is a Carte-
sian product of the feasible sets of the blocks. This is the case in the H-
HALS Algorithm (4.3), provided that the iterates do not become zero dur-
ing the resolution.

Studying the behavior of inexact BCD has two main interests. First, it al-
lows us to study the behavior of H-HALS when the Convex and Non null
Assumption (5.1) is not satisfied. Indeed, the fact that the factors can not
have a zero norm is a known problem in NMF and is most often prevented
by excluding elements with too small norm from the set of solutions (which

88 |

Convergence using inexact updates | 5.3

is the equivalent of our Non null assumption in Assumption 5.1) [75, 76].
Some works have considered algorithms that allow a factor to go to zero
(e.g. [110]), but this leads to a rank reduction during the factorization,
which is usually not a desirable behavior. Indeed, if a factor is set to 0 at
some point in the execution of the algorithm, it will often get stuck at 0,
regardless of the chosen rank. However, if a factor tends to 0 throughout
algorithm, it indicates that the chosen rank is too high and the factor in
question can still be manually truncated at the end of the algorithm if this
makes sense. In this section, we explore a variation where excluding those
null elements from the solution set is not needed, while preventing the it-
erates from being zero during resolution, and thus ensuring convergence.

The second and main interest is that the projection step in Algorithm 4.3 is
not trivial and can not always be performed exactly. The goal of this section
is to have some theoretical information about the convergence when the
projection is not exact. The presented inexact cases are illustrated using
H-NMF on splines using the B-Spline basis.

We analyze three approaches with inaccuracy: using ϵ-stationarity, approx-
imating indicator functions or using general inexact updates.

5.3.1 Using ϵ−stationarity

Modifying the definition of stationarity (Definition 5.1), we describe what
is called ϵ-stationarity [67]:

Definition 5.3. ϵ-stationarity Consider the real Hilbert spaceF , the convex
set of constraintsP ⊆ F , and the minimization problem with continuously
differentiable function (in Fréchet sense) f : F → R

min
x

f (x) such that x ∈ P .

Given ϵ > 0, point x∗ is an ϵ-stationary point if and only if ⟨D f (x∗), x −
x∗⟩F ≥ −ϵ ∀x ∈ P .

From this definition, we define ϵ-valid updates:

Definition 5.4. ϵ-valid updates Let δ > 0 and ϵ > 0. The iterate xt+1
i = ξ

is an ϵ-valid update if and only if

| 89

5 | Convergence of H-NMF

1. ξ ∈ Pi (feasibility)
2. ⟨D fi(x ;xt)(ξ), xi − ξ⟩ ≥ −ϵ ∀xi ∈ Pi (ϵ-stationarity)
3. fi(xt

i ; xt)− fi(ξ ; xt) ≥ δ∥ξ − xt
i∥2 (improving quality)

(5.10)

Note that if fi(x ; xt) is 2δ-strongly convex, the optimal value
x∗i = argmin

x∈Pi

fi(x ; xt) is ϵ-valid. Indeed, as x∗i is optimal the two first con-

ditions are satisfied. We can see that condition 3 is also satisfied following
a similar reasoning as in Corollary 5.1. Therefore, ϵ-valid updates are more
general than usual exact updates.

Assessing ϵ-validity can be hard in practice, due to the second criterion.
Nevertheless, there are situation where assessing this criterion is possible,
for example when using nonnegative vectors (Theorem 5.7), nonnegative
splines (see end of this section), or nonnegative polynomials (Lemma 6.2).
The ϵ-validity property is then used to allow zero-norm elements in P , or
as a criterion to evaluate the quality of a heuristic, or as a stopping criterion
for the iterative algorithm used to compute the updates.

The convergence properties of an algorithm with ϵ-valid updates can be
analyzed using an approach similar to that of the BCD algorithm (Theorem
5.2).

Theorem 5.5. Consider problem (5.2) where cost function f is lower-bounded,
with n blocks, and blocks fi(ξ ; x) are continuously differentiable for all x ∈ P .
Moreover, sets Pi are closed and convex. Assume that this problem is solved using
a BCD approach where Equation (5.3) is replaced by an update satisfying (5.10).

Every limit point of a sequence generated by such algorithm is a nϵ-stationary
point.

Proof. Suppose x̄ is a limit point of {xt}. By Lemma 5.1 and the third hy-
pothesis of (5.10), we have f (xt) ≥ f (xt+1). Therefore, f monotonically
decreases. As f is lower bounded, { f (xt)} converges to f (x̄). By hypoth-
esis 3, Lemma 5.4 holds, which means that ∑∞

t=0 ∑n
i=1 ∥xt+1

i − xt
i∥2 < ∞.

Moreover, if {xtj} converges to the limit point x̄ so do {xtj+N} for any fi-
nite N.

Consider {xtj+1} a subsequence of {xt} that converges to x̄ and is the re-

90 |

Convergence using inexact updates | 5.3

sult of an update of block i. As P is a closed set, x̄ is a feasible point by
hypothesis 1. By the ϵ-stationarity of the update, we have:

⟨D fi(x ;xt)(x
tj+1
i), ξ − x

tj+1
i ⟩ ≥ −ϵ ∀ξ ∈ Pi ∀i.

As the cost function is continuously block-differentiable, the left part of this
equation is continuous. Taking the limit of tj going to infinity, we obtain
for all blocks i

⟨D fi(x ;x̄)(x̄), ξ − x̄i⟩ ≥ −ϵ ∀ξ ∈ Pi ∀i.

As the set P is the Cartesian product of Pi, we can conclude that

⟨D f (x̄), x− x̄⟩ =
n

∑
i=1
⟨D fi(ξ ;x̄)(x̄i), xi − x̄i⟩ ≥ −nϵ ∀x ∈ P

which means that every limit point of the algorithm is a nϵ-stationary
point.

Corollary 5.6. Consider H-NMF from Definition 4.4 with n the number of blocks,
equals to two or 2r, and suppose that Ã and X̃ are closed and convex sets. Note
that Ã and X̃ can contain 0-norm elements. This problem is solved using a BCD
approach where Equation (5.3) is replaced by a ϵ-valid update.

Every limit point of a sequence generated by such algorithm is a nϵ-stationary
point.

This corollary suggests that it is sometimes possible to remove the nonzero
norm condition of sets A and X in H-NMF and still converge to an ϵ-
stationary point. This is confirmed by theorem below.

Theorem 5.7. Consider the H-NMF problem from Definition 4.4. Suppose A =

Rm, X = Rn, Ã = [0, M]m and X̃ = [0, M]m (standard NMF problem bounded
above by M).

Suppose that the problem is divided in 2r blocks, the columns of A and X , and
solved using BCD Algorithm 5.1, with update (5.3) replaced by:

x̃t+1
i = argmin

ξ

fi(ξ ; xt) such that ξ ∈ Pi

xt+1
i = x̃t+1

i + λ[xt
i − x̃t+1

i]Pi (5.11)

| 91

5 | Convergence of H-NMF

where λ ∈ [0, 1], ∥xt+1
i ∥2 ≥ δ > 0 and xt+1

i is ϵ-valid.

For any ϵ, if δ and x0 are chosen so that 2M
√

δ max(n, m) f (x0) ≤ ϵ, and
∥x0

i ∥ ≥ δ for all i, then a valid update xt+1
i always exists. The resulting algo-

rithm converges to a 2rϵ-stationary point.

Proof. See Appendix A.

This theorem proves that in certain situation it is always possible to find an
ϵ-valid update without restricting sets A and X to not contain zero-norm
elements.

An example using B-splines with nonnegative coefficients The B-spline
basis, denoted Π, is often used to represent splines and has the nice prop-
erty that every element in the basis is nonnegative. Therefore, splines with
nonnegative coefficients are nonnegative as well, even though some non-
negative splines have negative coefficients [31]. It is therefore possible to
use splines with nonnegative coefficients to represent a subset of nonneg-
ative functions (see e.g. [8, 141]). However, the B-spline basis is not or-
thogonal and it is not possible to project a spline by simply thresholding
its coefficients. Instead, we can solve a constrained least square problem
on the coefficients (see Section 3.2 for more details):

min
f
∥Π(f − g)∥2 s.t. f ≥ 0. (5.12)

Nevertheless, solving (5.12) is much more costly than thresholding. There-
fore, we use ϵ-stationarity to try to combine the best of both, under the
Convex Non null Assumption (5.1).

Based on Theorem 5.7, if c̄ contains the coefficients of the best uncon-
strained update, and ct

i contains the coefficients of the previous update xt
i ,

we aim to use as update:

xt+1
i = Π

(
[c̄]+ + λ

[
ct

i − [c̄]+
]
+

)
, for λ ∈ [0, 1]. (5.13)

In this case, we know by Equation (5.5) that

D fi(x ;xt)(xt+1
i) = D fi(x ;xt)(Πc̄) + 2OiΠ

(
λ
[
ct

i − [c̄]+
]
+
+ [c̄]+ − c̄

)

92 |

Convergence using inexact updates | 5.3

As D fit (x ;xt)(Πc̄) = 0, and splines with nonnegative coefficients are non-

negative, this gradient is nonnegative. This means that ⟨D fi(x ;xt)(xt+1
i), x⟩

≥ 0 ∀x ∈ Pi. Therefore, condition 2 of ϵ-validity becomes ⟨D fi(x ;xt)(xt+1
i),

−xt+1
i ⟩ ≥ −ϵ, which can be easily verified.

We decided to work with ϵ = 10−3. If the thresholding of the coefficients
Π[c̄]+ is ϵ-valid (i.e. when λ = 0), it is chosen as update. Otherwise, we
chose the smallest λ ∈ [0, 1] so that xt+1

i is ϵ-valid. However, such a λ does
not always exist. If Equation (5.13) is never valid, the update is performed
using the exact projection. The hope is that situation does not occur too
often.

To test this approach, we created a synthetic dataset Y ∗ = ĀX̄⊤, where
Ā contains discretization over 200 points of 5 nonnegative splines with
30 equispaced interior knots in [-1,1]. Factor X̄ ∈ R5×200

+ is a mixing
matrix generated using a normal distribution, thresholded to be nonnega-
tive. When indicated, a Gaussian noise N with noise level 20dB is added:
Y = Y ∗ + N . The accuracy of the methods is measured through the rela-
tive residues as presented in Section 2.1.1

Figure 5.1 illustrates that using a combination of thresholding and exact
projection leads to the best results in terms of accuracy, just like exact pro-
jection, because these two methods converge to stationary points. How-
ever, it is faster than exact projection as it is accelerated by using some
non-exact thresholding steps.

5.3.2 Using approximations of indicator functions

The following approach has been inspired from the block successive upper-
bound minimization algorithm (BSUM) from [103]. The objective function
of problem (5.2) can be written as

min
x

f (x) +
n

∑
i=1

ri(xi),

where ri is an indicator function of the considered set, meaning that ri(xi) =

0 if xi ∈ Pi, ∞ otherwise. In this section we aim to relax this problem. In
[103], function f was upper bounded with an easier function u. Let us in
our case replace indicators ri with convex functions ui. The relaxed prob-

| 93

5 | Convergence of H-NMF

Time No noise

Thres. NN Combi.
0

20

40

Ti
m
e

Residues

Thres. NN Combi.
0.00

0.05

0.10

R
es
id
ua

ls
Time

Noisy

Thres. NN Combi.
0

5

10

15

Ti
m
e

Residues

Thres. NN Combi.

0.05

0.10

0.15
R
es
id
ua

ls

Fig. 5.1 Comparison of H-NMF on splines using thresholding (Thres.),
splines with nonnegative coefficients (NN) or a combination of both
(Combi.). Tests repeated three times over three initializations (9 tests in
total). The upper figures are for a test without noise, while the lower fig-
ures are for a test with noise level 20dB.

lem is

min
x

f (x) +
n

∑
i=1

ui(xi). (5.14)

Note that the problem is now unconstrained. Let us analyze the conver-
gence of a BCD algorithm on (5.14), where we allow to modify u during
iterations such that

0 ≤ ut+1
i (x) ≤ ut

i(x) ∀i, t, x. (5.15)

This condition ensures that the sequence of functions {ut
i} converges to a

function ūi ∀i. This condition is illustrated in Figure 5.2. We observe in
this figure that an element infeasible for ut

i has to be infeasible for all uk
i

94 |

Convergence using inexact updates | 5.3

with k ≤ t. At the end of this section, we present an example using two
constraints u, with u1 an easier but also more restrictive constraint that u2.

xi

ui(xi)

u0
i

u1
i

u2
i

ui

Fig. 5.2 Illustration of a valid choice of constraint functions ut
i . In this

example, points xi should be nonnegative.

To analyze this approach, let us define Ft(x) = f (x) + ∑n
i=1 ut

i(xi). We can
adapt Lemma 5.4:

Lemma 5.8. Consider the sequence {xt} with n blocks, where xt+1 differs from
xt only along block it, and the sequence {ut

i} with convex functions ut
i satisfying

(5.15). Moreover, suppose that ⟨D fit (ξ ;xt)(xt+1
it

) + pt+1
it

, xt
it − xt+1

it
⟩ ≥ 0, for

some pt+1
it
∈ ∂ut+1

it
(xt+1

it
). If f is a lower bounded function and fit(ξ ; xt) is

2δ-strongly convex, then

∞

∑
t=0

n

∑
i=1
∥xt+1

i − xt
i∥2 < ∞.

Proof. Using the fact that ut+1
it

is convex, and fit(ξ ; xt) is 2δ-strongly con-

| 95

5 | Convergence of H-NMF

vex, we have that (for some pt+1
it
∈ ∂ut+1

it
(xt+1

it
)):

Ft(xt)− Ft+1(xt+1) = f (xt)− f (xt+1) +
n

∑
i=1

[
ut

i(xt
i)− ut+1

i (xt
i)
]

≥ fit(xt
it ; xt)− fit(xt+1

it
; xt) + ut+1

it
(xt

it)− ut+1
it

(xt+1
it

)

≥ ⟨D fi(ξ ;xt)(xt+1
it

) + pt+1
it

, xt
it − xt+1

it
⟩+ δ∥xt

it − xt+1
it
∥2

≥ δ∥xt
it − xt+1

it
∥2 by hypothesis.

We can then conclude as in Lemma 5.4, using F instead of f .

We can now prove the convergence theorem:

Theorem 5.8. Consider problem (5.14), with convex ut
i satisfying (5.15). Sup-

pose that function f is lower bounded, with block functions fi(ξ ; xt) 2δ-strongly
convex and continuously differentiable.

Every limit point of a sequence generated by a BCD algorithm is a stationary point
of

min f (x) +
n

∑
i=1

ūi(xi).

Proof. The proof is similar to Theorem 5.2. Suppose x̄ is a limit point of the
sequence {xt}.

Ft(xt)− Ft(xt+1) ≥ Ft(xt)− Ft+1(xt) as the update is optimal

= f (xt) +
n

∑
i=1

ut
i(xt

i)− f (xt)−
n

∑
i=1

ut+1
i (xt

i)

≥ 0 by Equation(5.15).

Therefore, the objective function is decreased at each step. Moreover, this
objective function is lower bounded, and the sequence {Ft(xt)} converges
to f (x̄) + ∑n

i=1 ūi(x̄). As the update is optimal, if xt+1 differs from xt only
along block it, we know by first order optimality condition that

⟨D fit (ξ ;xt)(xt+1
it

) + pt+1
it

, xt
it − xt+1

it
⟩ ≥ 0 for some pt+1

it
∈ ∂ut+1

it
(xt+1

it
) ∀t
(5.16)

Therefore, Lemma 5.8 holds, which means that ∑∞
k=0 ∑n

i=1 ∥xt+1
i − xt

i∥2 <

∞. Moreover, if {xtj} converges to the limit point x̄ so do {xtj+N} for any

96 |

Convergence using inexact updates | 5.3

finite N. Consider {xtj+1} a subsequence of {xt} that converges to x̄ and is
the result of an update of block i. As the update is optimal, we have:

fi(x
tj+1
i ; xtj) + u

tj+1
i (x

tj+1
i) ≤ fi(ξ ; xtj) + u

tj+1
i (ξ) ∀ξ.

Taking the limit when tj goes to infinity, we have for all blocks i

fi(x̄i ; x̄) + ūi(x̄i) ≤ fi(ξ ; x̄) + ūi(x) ∀ξ.

As ξ is unconstrained, using first order optimality conditions we have:

⟨D fi(x ;x̄)(x̄i) + p̄i, ξ − x̄i⟩ ≥ 0 ∀ξ , for some p̄i ∈ ∂ūi(x̄i) ∀i.

We can conclude that

⟨D f (x̄) + p̄, ξ − x̄⟩ ≥ 0 ∀ξ, for some p̄ ∈ ∂ū(x̄)

which means that every limit point of the algorithm is a stationary point of
min f (x) + ∑n

i=1 ūi(xi) and concludes the proof.

Example using B-splines As stated in previous section, splines with non-
negative coefficients are useful to represent nonnegative functions, but are
not as complete as nonnegative splines [31]. Projecting splines on their
nonnegative set is not trivial and uses conic optimization on a sum of
squares (SOS) representation of nonnegative splines (see Section 3.2.2). This
is quite costly compared to constrained least squares. From what is ex-
plained above, we can first optimize on splines with nonnegative coeffi-
cients and then on nonnegative splines.

Indeed, as the set of nonnegative splines contains the set of splines with
nonnegative coefficients, its indicator function is a lower bound on the in-
dicator function of splines with nonnegative coefficients. Function u is thus
defined as follows. Let k be the first iteration so that f (xt) − f (xt+1) ≤
10−3 f (xt) (the algorithm starts to converge), we have:

ut
i =

{
indicator function of splines with nonnegative coefficients if t ≤ k

indicator function of nonnegative splines if t > k.
(5.17)

Additionally, we also set a time limit of 100 seconds to switch between the

| 97

5 | Convergence of H-NMF

two indicator functions, but this limit was never reached in practice (so
the change always took place thanks to the condition on the convergence
of f). Also, as the projection must be exact, we can not anymore use the
thresholding from previous section. Figure 5.3 illustrates this method on
same data as in Section 5.3.1. We observe that using first splines with non-
negative coefficients and then nonnegative splines help the algorithm to
converge faster on average to the solution and the quality of the solution is
not impacted by this change.

Time No noise

Splines Coefs. Combi.

25

50

75

Ti
m
e

Residues

Splines Coefs. Combi.
0

1

2

3

R
es
id
ua

ls

1e−6

Time
Noisy

Splines Coefs. Combi.

20

40

Ti
m
e

Residues

Splines Coefs. Combi.
0.016

0.017

0.018

R
es
id
ua

ls

Fig. 5.3 Illustration of the use of splines with nonnegative coefficients
as a first step for H-NMF on nonnegative splines (Combi). Tests repeated
three times over three initializations (9 tests in total). The upper figures are
for a test without noise, while the lower figures are for a test with noise
level 20dB.

98 |

Convergence using inexact updates | 5.3

5.3.3 Updates close in norm to optimal updates

Let us consider the following inexact update with error ϵ, decreasing con-
dition δ > 0, and where xt+1 differs from xt only along block it:

xt+1
it
∈ {ξ | fit(xt

it ; xt)− fit(ξ ; xt) ≥ δ∥ξ− xt
it∥

2;
∥∥ξ− argmin

x∈P
fit(x ; xt)

∥∥ < ϵ}
(5.18)

Note that this set can contain unfeasible points, and that if fit(x ; xt) is 2δ-
strongly convex, this set is never empty as the true minimizer is always
feasible (this can be proved using a similar reasoning as in Corollary 5.1).

Theorem 5.9. Consider problem (5.2), where every update is in set (5.18). If
objective function f is lower bounded, and block functions fi(ξ ; x) are strongly
convex and continuously differentiable, then every limit point of a sequence of
updates {xk}, x̄ is such that:

f (x̄) ≤ fi(x ; x̄) + ∥D fi(ξ ;x̄)(x̄)∥ ϵ ∀x ∈ Pi.

Furthermore, suppose that ∥xt+1
it
− argminx∈P fit(x ; xt)∥ ≤ ϵt. If for all ϵ > 0

there is an iteration k so that ϵt ≤ ϵ for all t ≥ k (the norm of the becomes arbitrary
close to zero), and if the norm of the gradient is bounded, and sets Pi are closed and
convex, then every limit point of a sequence of such update is a stationary point.

Proof. As f is lower bounded, Lemma 5.4 holds and ∑∞
k=1 ∑n

i=1 ∥xt+1
i −

xt
i∥2 < ∞. Suppose that x̄ is a limit point of {xk}. Then there exists a

sequence {xtj} that converges to x̄, and so does {xtj+1}. Consider such a
sequence, where each xtj is the result of an update on block i.

Suppose x∗i is the optimal value for fi(ξ ; xtj+1). As fi(ξ ; xtj+1) is 2δ-

strongly convex, at each iteration satisfying (5.18), we have (with α
tj+1
i =

x
tj+1
i − x∗i)

fi(x
tj+1
i , xtj+1) ≤ fi(x∗i ; xtj+1) + ⟨D

fi(ξ ;xtj+1
)
(x

tj+1
i), α

tj+1
i ⟩ − δ∥αtj+1

i ∥2

≤ fi(x ; xtj+1) + ⟨D
fi(ξ ;xtj+1

)
(x

tj+1
i), α

tj+1
i ⟩ ∀x ∈ Pi

≤ fi(x ; xtj+1) + ∥D
fi(ξ ;xtj+1

)
(x

tj+1
i)∥ ϵ ∀x ∈ Pi,

where the last inequality is obtained using the Cauchy-Schwarz inequality,

| 99

5 | Convergence of H-NMF

and the second hypothesis in (5.18) that ensures that ∥αtj+1∥ ≤ ϵ. As f is
continuously block-differentiable, taking the limit when tj goes to infinity,
we have

f (x̄) ≤ fi(xi ; x̄) + ∥D fi(ξ ;x̄)(x̄)∥ϵ ∀xi ∈ Pi ∀i. (5.19)

This last expression is computable and provides a bound on the distance
to a Nash equilibrium (Definition 5.2) in each block-direction.

If ∥xt+1
it
− argminx∈P fit(x ; xt)∥ ≤ ϵt and for all ϵ′ > 0 there is a iteration

k so that ϵt ≤ ϵ′ for all t ≥ k, we can do exactly the same reasoning using
ϵ′ instead of ϵ and t ≥ k to obtain again Equation (5.19). As ϵ′ can be
arbitrarly small and ∥D fi(ξ ;x̄)(x̄)∥ is bounded, this expression is equivalent
to

f (x̄) ≤ fi(xi ; x̄) ∀xi ∈ Pi ∀i. (5.20)

If sets Pi are closed, x̄i ∈ Pi ∀i. Furthermore, if sets Pi are convex, x̄ is a
stationary point of f by Lemma 5.3.

For H-NMF using 2r-block decomposition, a way to ensure ∥D fi(ξ ;x̄)(x̄)∥
to be bounded is to bound xt

i , as proved by Lemma 5.9 below. This can
be done by restricting domain P to elements with norm below a chosen
threshold. In most situations this can be done without loss of generality,
using a similar reasoning as in Lemma 5.7.

Lemma 5.9. For H-NMF from Definition 4.4 using 2r-blocs decomposition, the
norm of the gradient ∥D fi(ξ ;xt)(xt

i)∥ is bounded by the initial cost and Ot
i =

∥xt
l∥2 for a l ̸= i:

∥D fi(ξ ;xt)(xt
i)∥2 ≤ 4 f (0)Ot

i .

Proof. If xt
i is an element Xs ∈ X̃ , then

∥D fi(ξ ;xt)(xt
i)∥ =

∥∥∥
r

∑
k=1

2Xt
k⟨At

k, Ai⟩A − 2gt
i

∥∥∥
2

X
From Proposition 4.4.

Let E(a, x) = −2Y1(a, x) + 2 ∑r
k=1 Xt

k(x)At
k(a) ∈ A⊗X , then

∥D fi(ξ ;xt)(xt
i)∥ =

∥∥⟨−E(:, x), At
i⟩A
∥∥2
X .

100 |

Convergence using inexact updates | 5.3

Suppose that {Fn
x } is an orthonormal basis ofX . Then, E(a, :) = ∑n⟨E(a, :),

Fn
x ⟩X Fn

x . Let E′n(a) = ⟨E(a, :), Fn
x ⟩X , E′n ∈ A, which implies E(:, x) = ∑n E′n

Fn
x (x), and thus E = ∑n E′n ⊗ Fn

x . Therefore

∥D fi(ξ ;xt)(xt
i)∥ = ∑

n1,n2

⟨E′n1
, At

i⟩A⟨E′n2
, As⟩A⟨Fn1

x , Fn2
x ⟩X = ∑

n
(⟨E′n, At

i⟩A)2

≤∑
n
∥E′n∥2

A∥As∥2
A by Cauchy Schwarz inequality

We have ∥E∥2
L = ∑n1,n2

⟨E′n1
, E′n2
⟩A⟨Fn1

x , Fn2
x ⟩X = ∑n ∥E′n∥2

A. Moreover,
∥E∥2

L = 4 f (xt)− 4∥Y2∥2
H. Therefore ∥D fi(ξ ;xt)(xt

i)∥ ≤ 4 f (0)Ot
i .

A similar proof can be performed for elements in A.

Corollary 5.10. Consider the H-NMF from Definition 4.4 using 2r-block decom-
position. Suppose that M ≥ ∥x∥2 ≥ δ > 0 ∀x ∈ Pi ∀i, for chosen M, δ (M can
be chosen using Lemma 5.7 for example). Moreover, suppose that every update is
in set (5.18) with ϵt changing for each update such that for all ϵ > 0 there exist k
such that ϵt ≤ ϵ for all t ≥ k. Then every limit point of a sequence of updates is a
stationary point.

Example using B-splines The interior-point method used to solve the
conic problem computing the projection on nonnegative splines is itera-
tive. It is thus possible to progressively increase the number of iterations
and/or to decrease the tolerance of the method throughout iterations, in
order to have an error on the projection that goes to zero. We decided to
start with a tolerance in the solver of 10−2. This tolerance is divided by two
every ten iterations of H-HALS.

Another possibility is to project on the set of splines that are nonnegative
on a set of points (discretization of the problem), and not on the whole in-
terval. If the cardinality of this set of points increases during the iterations,
the error of the projection will also go to zero. We decided to start with 100
discretization points. The number of discretization points is multiplied by
two every ten iterations of H-HALS. Note that in this case we are not sure
that the iterates are admissible. Both methods use the previous iterate if
the first condition of set (5.18) is not satisfied.

Figure 5.4 shows that using discretization is a good idea in general, but as
this approach may find infeasible points, the found points are feasible only
asymptotically. On the other hand, decreasing progressively the tolerance

| 101

5 | Convergence of H-NMF

of the solver does not seem to help much in this case. This is most probably
because interior-point method used to solve the conic problem converges
in few iterations and increasing or decreasing the tolerance does not influ-
ence it much. However, in other cases, considering iterative methods with
decreasing tolerance/increasing number of iterations could have more im-
pact, such as for projecting polynomials on the nonnegative set using a
nonlinear least squares solver. This will be explored in next chapter.

Time No noise

Splines Tol. Discr.

50

100

150

Ti
m
e

Residues

Splines Tol. Discr.

1

2
R
es
id
ua

ls

1e−7

Time
Noisy

Splines Tol. Discr.

10

20

30

Ti
m
e

Residues

Splines Tol. Discr.
0.0152

0.0154

0.0156

0.0158

R
es
id
ua

ls

Fig. 5.4 Illustration of the decreasing of the tolerance (Tol.) and the dis-
cretization of the problem (Discr.). Tests repeated three times over three
initializations (9 tests in total). The upper figures are for a test without
noise, while the lower figures are for a test with noise level 20dB.

102 |

6
Accelerating NMF using
polynomials via inexact

projections

In Chapter 3 we have presented an algorithm, LP-HALS, to perform NMF
using nonnegative polynomials or splines. We have shown that this algo-
rithm can lead to a more accurate factorization of the input data in terms
of reconstruction ability and noise filtering than standard NMF on vectors.
Moreover, LP-HALS has the same convergence properties as the standard
HALS problem, as shown in Chapter 5. However, this algorithm relies on
repeated computation of projections over the set of nonnegative polyno-
mials or splines at each iteration. This projection can dominate the compu-
tational effort of the algorithm, as illustrated in Section 6.1, and LP-HALS
can be significantly slower than HALS, especially for small and moderate
size datasets and for polynomials of high degree. As splines are piece-
wise polynomials of degree 3, the problem is less present in this case, even
though it still exists.

In this chapter, we focus on the case of LP-HALS using polynomials. Our
goal is to alleviate the cost of the projection onto nonnegative polynomials,
by developing faster projection approaches, possibly approximate. This is

| 103

6 | Accelerating NMF using polynomials via inexact projections

motivated by the results obtained in Chapter 5 where it has been shown
that the projections do not need to be exact in order to guarantee conver-
gence of the LP-HALS algorithm. To the best of our knowledge, previous
works to improve performance of polynomial optimization have focused
mainly on polynomials with high degree, and/or with several variables
[60, 96], which does not really correspond to our goal since the polyno-
mials we consider are univariate and of low degree. Some works focus
on the shape of positive semidefinite matrices involved in the SDP for-
mulation, like in [1, 51, 143], where the Alternating Direction Method of
Multipliers (ADMM) is used to exploit sparsity of the positive semidef-
inite matrices, but again this is of main interest when the degree of the
polynomials is high. On the other hand, a common method to improve
performance when solving SDPs is to use the Burer-Monteiro heuristic in-
stead of interior-point methods [16, 21]. Moreover, the set of nonnegative
polynomials is the intersection between two sets: the set of nonnegative
functions and the set of polynomials. Projection on this intersection can
also be solved in principle using alternating projections on these two sets
[34, 37]. As projecting on nonnegative functions is not possible, we need
to discretize the polynomials to use this idea, and therefore to optimize on
another projection problem, close to the original one.

In Section 6.2 we explore this idea as well as several other algorithms based
on a discretization of the projection problem. Those algorithms do not have
theoretical guarantees on the original (continuous) projection problem, but
present the advantage of being very fast. Despite the lack of theoretical
guarantees, those heuristic projections accelerate the algorithm very sig-
nificantly while attaining essentially the same final accuracy. This is pre-
sented in the numerical experiments reported in Section 6.2.4.

In Section 6.3 we use the theoretical results from Chapter 5 to design pro-
jection methods adapted to the NMF problem using polynomials. Those
methods are mainly iterative projection methods that are stopped before
convergence, once they meet some conditions, using ADMM or Burer-
Monteiro, as those approaches have shown their usefulness for solving
polynomial optimization or SDPs. Again, the presented methods are much
faster than LP-HALS using exact projection, without affecting significantly
the obtained accuracy. It is however difficult for them to beat the heuristic
methods from Section 6.2, even though some are competitive. Neverthe-
less, this chapter confirms that LP-HALS using polynomials can be signif-
icantly accelerated without affecting the accuracy performance by using

104 |

Computational effort to solve NMF using polynomials | 6.1

approximate projection instead of exact projection on the set of nonnega-
tive polynomials.

6.1 Computational effort to solve NMF using polynomials

Let P-LS denote the method of [33] that solves the NMF problem using
polynomials via an unconstrained parametrization of nonnegative poly-
nomials (this method has been presented in Section 2.2). P-HALS denotes
the LP-HALS algorithm using nonnegative polynomials. Figure 6.1(a) dis-
plays time needed to compute 20 iterations of both P-LS and P-HALS as
well as usual HALS (which does not enforce the polynomial structure), for
r = 3 polynomials of degree d = 12, and for a growing number n of obser-
vations and number m of discretization points (with n = m).

Standard HALS is faster than polynomial-based algorithms for small-scale
problems, but P-HALS and later P-LS become competitive as the size of
the problem increases. Moreover, iteration times for P-HALS do not vary
much with the size of the problem, as the semidefinite optimization-based
projections over nonnegative polynomials are by far the most time-con-
suming part of the algorithm, as seen in Figure 6.1(b) (more than 97% of
the computational time spent). We therefore explore ways to accelerate
those polynomial projections in the next sections.

103 104n=m10−1

100

101

102

tim
e

(s
ec

)

HALS
P-LS

P-HALS

(a) Needed time (in seconds)

103 104n=m

98

99

ra
tio

 (%
)

P-HALS

(b) Ratio projection/total time

Fig. 6.1 Performances of the P-HALS algorithm over large datasets, us-
ing r = 3, d = 12, 103 ≤ m = n ≤ 104 and a signal to noise ratio of 20dB
(see Section 6.2.4 for details about the used datasets).

| 105

6 | Accelerating NMF using polynomials via inexact projections

Reminder: projection on nonnegative polynomials. Properties of non-
negative polynomials have been presented in Section 2.3.1, and the projec-
tion on polynomials nonnegatives on a fixed interval has been presented
in Section 3.2.1. Let Pd

+(I) be the set of polynomials of degree d nonnega-
tives on interval I. As a reminder, the projection of polynomial f of degree
d with coefficients f on the set Pd

+(I) can be expressed as (using matrix
L ∈ R(d+1)×(d+1)):

argmin
g s. t. g∈Pd

+(I)
∥L(f − g)∥2

2 (6.1)

This problem has a conic formulation, using Rd ∈ R(d+1)×(d2
a+d2

b):

min t

such that u = L⊤
(

Rd
[

vec(Sa)

vec(Sb)

]
− f

)

(u, t) ∈ Ld+1, Sa ∈ S
da
+ , Sb ∈ S

db
+ . (6.2)

The projection is then recovered from optimal values S∗a and S∗b using:

g = Rd
[

vec(S∗a)
vec(S∗b)

]
(6.3)

where g contains the coefficients of the projected polynomial. We use
Mosek fusion to solve this problem [6].

Interior-point solvers are able to solve this projection problem exactly in an
efficient way as the degree d of the polynomials is supposed to be small.
However, it is known [69] that interior-point solvers cannot take advantage
of prior solutions of nearby instances, i.e. they cannot warm-start. Actu-
ally, giving as initialization a point close to the solution may even tend to
slow down the algorithms. This is due to the fact that interior-point meth-
ods rely on the central path to reach the solution. However, a point close
to the solution is unlikely to belong to this central path or even to be close
from it. This is a shortcoming in our context where the projection is a sub-
problem of an iterative algorithm, whose iterates are not expected to be
very far from each other, especially when the algorithm starts converging.
Therefore, it is reasonable to think that using information from previous
projections could have a benefit, but it is not really possible to exploit it
when using the interior-point solver.

106 |

Acceleration using heuristics | 6.2

6.2 Acceleration using heuristics

We introduce below several new heuristic algorithms designed to replace
the costly projection over polynomials nonnegative on interval I. They al-
low one to find a polynomial g that is close to the polynomial to project f .
This polynomial g is constrained to be nonnegative on a set of discretiza-
tion points D ⊂ I, but is no longer strictly enforced to be nonnegative over
the whole interval I. We are thus solving another projection problem, close
to the original one.

6.2.1 General heuristics

Discretization heuristic. A first approach consists in solving the projec-
tion from (6.1) with constraint g(x) ≥ 0 ∀x ∈ I relaxed to g(x) ≥ 0 ∀x ∈ D
where set D ⊂ I contains a finite number D of points (#D = D). This re-
laxed projection problem becomes a second-order cone optimization prob-
lem, and is solved faster than the exact version.

Figure 6.2 shows how the chosen number D of discretization points im-
pacts this method: both the computation times and the accuracy (norm of
the error with respect to exact projection) are reported, as well as an esti-
mate of the total proportion of I where the projection is negative (the lower,
the better). Choosing more discretization points significantly slows down
the algorithm, but also significantly decreases the projection error as well
as the length of negative subintervals.

Two iterative heuristics The next idea is derived from the fact that poly-
nomial curve fitting, i.e. projection on the set of polynomials, is much faster
than the projections (exact or the discretization heuristic) presented previ-
ously, as it corresponds to solving a linear system. Consequently, another
way to project a given discretized polynomial f (x) is to repeatedly trun-
cate the negative parts of f (x) (projection on the nonnegative set) and ap-
ply polynomial curve fitting on the obtained points (projection on the set of
polynomials). In other words, this performs alternating projection [16, 21].
This is illustrated in Figure 6.3.

More concretely, we consider a set D ⊂ I containing a finite number of
points D. We fit a degree-d polynomial to points (λi, yi) (∀λi ∈ D) where

| 107

6 | Accelerating NMF using polynomials via inexact projections

10−2 10−1 100

time (sec)

10−5

10−3

10−1

101
er

ro
r

(20,1e+02) - 4.15e-02
(20,1e+03) - 5.63e-03
(20,1e+04) - 9.70e-05
(50,1e+02) - 1.26e-01
(50,1e+03) - 1.42e-02
(50,1e+04) - 5.73e-04

Fig. 6.2 Influence of discretization parameter D on projection using dis-
cretization heuristic. The width of symbols increases with D. Legend indi-
cates (d, D) and an estimate of the length of subintervals where projection
is negative.

yi = f (λi) for every abscissa λi such that f (λi) > 0, and yi = ϵ otherwise
(with ϵ a small positive number). As the fitted polynomial still contains
negative values in general, we propose two iterative approaches to ulti-
mately obtain a nonnegative polynomial:

H1: At each iteration, use the obtained approximation as the initial poly-
nomial for the next fit [34].

H2: At each iteration, add ϵ to the values yi where the obtained approxi-
mation is still negative.

Pseudo-code for these two approaches is presented in Algorithm 6.1. To
improve the performance of these heuristics, the value of ϵ is doubled at
each iteration (but bounded by 0.1, this upper bound has been chosen ex-
perimentally). We observed that this doubling of ϵ significantly speeds up
H2, while it is less important for H1.

Figure 6.4 shows the influence of the chosen number of discretization points,
D, and (initial) parameter ϵ for the first heuristic, H1. We observe that the
choice of ϵ does not influence the performance much. On the other hand,
higher-degree polynomials require more discretization points to obtain a
more accurate result. However, considering too many discretization points
does not improve performance, as we can observe in the figure for polyno-
mials of degree 20. Our second heuristic shows very similar performance,
except that it is roughly twice as slow, as it typically requires more inner
iterations to converge (around 15 instead of 7).

108 |

Acceleration using heuristics | 6.2

→ →

Step 1 Step 2 Step 3

Fig. 6.3 Illustration of the discretization/thresholding (step 2) and the
resulting fitting (step 3).

Algorithm 6.1 Iterative heuristics for projection on nonnegative polynomi-
als

Input: f is the polynomial to project and Πf evaluates it at points D.

function HEURIPROJ(f , D , Π, ϵ > 0, maxiter)
iter = 0, d = degree of f
vals = Πf , g = f
while min(Πg)< 0 and iter<maxiter do

if H1 then
vals = Πg
vals[vals<0] = ϵ

else
neg = Πg < 0
vals[neg] = max(vals[neg],0) + ϵ

g = PolynomialCurveFitting(D, vals, d)
iter=iter+1, ϵ = min(0.1, 2ϵ)

return g

| 109

6 | Accelerating NMF using polynomials via inexact projections

10−2 10−1

time (sec)

101er
ro

r
(20,1e-03,1e+03) - 1.11e-16
(20,1e-02,1e+03) - 2.26e-04
(20,1e-01,1e+03) - 1.11e-16
(20,1e-02,1e+02) - 4.09e-03
(20,1e-02,1e+04) - 1.11e-16
(50,1e-02,1e+03) - 1.47e-03
(50,1e-01,1e+04) - 1.11e-16
(50,1e-02,1e+04) - 1.11e-16

10−2 10−1

time (sec)

101er
ro

r

(20,1e-03,1e+03) - 1.11e-16
(20,1e-02,1e+03) - 2.26e-04
(20,1e-01,1e+03) - 1.11e-16
(20,1e-02,1e+02) - 4.09e-03
(20,1e-02,1e+04) - 1.11e-16
(50,1e-02,1e+03) - 1.47e-03
(50,1e-01,1e+04) - 1.11e-16
(50,1e-02,1e+04) - 1.11e-16

Fig. 6.4 Influence of the parameters on first heuristic. Different symbols
correspond to different values of parameter ϵ, while bigger symbols corre-
spond to more discretization points). Legend indicates (d, ϵ, D) - estimated
length of negative subintervals.

6.2.2 Proximal projection

This approach aims to take advantage from the fact that iterations of P-
HALS tend to become close from each other, and thus that information
about nearby projections is known (especially when the algorithm starts
to converge). Suppose that the projection of f1(x) is g1(x), and that f2(x)
is close to f1(x), with δ(x) = f1(x)− f2(x) and δ the coefficient vector of
δ(x), with ∥δ∥ small. The problem to solve is:

g2 = argming∥L(f1 − δ − g)∥2
2 such that g ∈ Pd

+(I)

which is equivalent to

g2 + δ = argming̃∥L(f1 − g̃)∥2
2 such that g̃ − δ ∈ Pd

+(I)

This last problem is very similar to the one used to find g1, except that
g̃ − δ must belong to Pd

+(I) instead of g̃ ∈ Pd
+(I). Nevertheless, as δ(x)

is a small perturbation, we propose to estimate g2 as g2 = g1 − δ. Of
course, polynomial g2(x) obtained in such a way can contain negative val-
ues. Therefore, we search for the maximal γ ∈ [0, 1] such that g2 = g1−γδ

is nonnegative over the considered interval. As g1 is nonnegative such a
γ always exists and should be as large as possible in order to stay close to
the estimated solution g1 − δ. Since Pd

+(I) is a convex set, we can use a
bisection search to find the maximal γ (nonnegativity of g2 is checked on

110 |

Acceleration using heuristics | 6.2

a set D of D discretization points defined as for the other heuristics). The
pseudo-code of this method is presented in Algorithm 6.2.

Figure 6.5 illustrates performance of the proximal algorithm. In this case,
increasing the number of discretization points does not reduce the error
too much but decreases the length of negative subintervals at the price of a
larger needed time. As expected, the algorithm performs better when the
known polynomial is closer to the polynomial to project.

10−4 10−3 10−2

time (sec)

10−5

10−3

10−1

er
ro

r

(20,1e-02,1e+03) - 8.31e-04
(20,1e-03,1e+03) - 4.29e-04
(20,1e-01,1e+03) - 1.35e-03
(20,1e-02,1e+02) - 1.22e-02
(20,1e-02,1e+04) - 2.00e-05
(50,1e-02,1e+03) - 2.00e-03
(50,1e-02,1e+04) - 1.70e-05
(50,1e-01,1e+03) - 1.09e-03

10−4 10−3 10−2

time (sec)

10−5

10−3

10−1

er
ro

r

(20,1e-02,1e+03) - 8.31e-04
(20,1e-03,1e+03) - 4.29e-04
(20,1e-01,1e+03) - 1.35e-03
(20,1e-02,1e+02) - 1.22e-02
(20,1e-02,1e+04) - 2.00e-05
(50,1e-02,1e+03) - 2.00e-03
(50,1e-02,1e+04) - 1.70e-05
(50,1e-01,1e+03) - 1.09e-03

Fig. 6.5 Influence of the parameters on proximal heuristic. Different
symbols correspond to different distances between the polynomial to
project and the polynomial with known projection. Bigger symbols are for
more discretization points. Legend indicates (d, ∥δ∥, D) - estimated length
of negative subintervals.

6.2.3 Performance comparison for heuristics

Figure 6.6 shows performance of each heuristic in comparison to the ex-
act projection. The polynomial to project is compared to its projection
on 100 equispaced points (i.e., matrix L is build using 100 discretization
points, see Section 3.2 for more information), while set D contains 103

equispaced points and the length of negative subintervals is estimated
trough 106 points. Parameter ϵ is chosen as 10−2 for heuristics 1 and 2. To
evaluate the proximal projection, we use a polynomial with known pro-
jection and impose the coefficient vector of this polynomial f1 to be at
distance 10−2 from f , the coefficient vector of the polynomial to project
(∥f1 − f∥2 = 10−2).

Figure 6.6(a) shows that the heuristics are significantly faster than the exact
projection, especially for large degrees. Proximal projection is the fastest,

| 111

6 | Accelerating NMF using polynomials via inexact projections

Algorithm 6.2 Projection of close polynomial

Input: f is the polynomial to project and Πf evaluates it at points D. f1
is a polynomial close to f and with known projection g1.

function PROXIPROJ(f , Π, f1, g1, maxiter=100)
iter = 0, d = degree of f
δ = f1 − f , g = g1 − δ
vals = Πg1, valsd = Πδ
γmin = 0, γmax = 1
for iter in (0,maxiter) do:

γ = (γmin+γmax)/2
if min(vals - γ valsd)<0 then:

γmax = γ
else

γmin = γ

return g1-γminδ

but requires to know the projection of a close polynomial. The two iterative
heuristics display similar performance, even though heuristic 2 is slightly
slower, and are faster than the discretization heuristic. In Figure 6.6(b), we
observe that their approximation error is similar, and much larger than the
error of the two other approaches. Figure 6.6(c) illustrates that all methods
lead to a solution with only very few negative points (on average less than
2% of the total interval length for all methods). The discretization heuristic
performs worst on that aspect.

From this test, it appears that if information about close polynomials is
known, using the proximal projection leads to very good results almost
instantly. Otherwise, the discretization leads to more accurate results but
is slower than the two iterative heuristics, which obtain similar results with
fewer negative values but also a larger approximation error than the other
approximations. All approximations are faster than the exact projection,
which was our main objective. Nevertheless, the ultimate effect of these
approximation errors and times has to be evaluated in the context of the
whole algorithm for NMF using polynomials.

112 |

Acceleration using heuristics | 6.2

10 20 30 40 50
degree

10−3

10−2

10−1

100
tim

e
(s

ec
)

Exact Projection
Discretization
Heuristic 1
Heuristic 2
Proximal Projection

(a) Needed time (in seconds)

10 20 30 40 50
degree

10−3

10−2

10−1

100

tim
e

(s
ec

)

Exact Projection
Discretization
Heuristic 1
Heuristic 2
Proximal Projection

10 20 30 40 50
degree

10−3

10−2

10−1

100

101

er
ro

r

Discretization
Heuristic 1
Heuristic 2
Proximal Projection

(b) Projection error

10 20 30 40 50
degree

10−14

10−11

10−8

10−5

10−2

ra
tio

Exact Projection
Discretization
Heuristic 1
Heuristic 2
Proximal Projection

(c) Ratio of negative points

Fig. 6.6 Performance of the heuristics presented in this section.

6.2.4 Performance of heuristics for NMF using polynomials

In this section we analyze how the use of our heuristics to compute approx-
imate projections impacts the P-HALS algorithm. In particular, we study
whether the approximation errors have any negative effect on the conver-
gence of the algorithm and the accuracy of the solutions, and whether the
use of faster projections decreases the total computational time.

In our experiments, we choose to use D = 103 discretization points for all
algorithms, parameter ϵ equal to 10−2 for heuristics H1 and H2, and we
decide to apply the proximal projection heuristic when the last updated
polynomial is closer than 10−1, i.e. the norm of the difference between vec-
tors of coefficients of polynomial to project and last updated polynomial is
lower than 10−1. Degree of the sought basis polynomials is d = 12. All al-
gorithms are stopped when iterations no longer improve the cost function:
|cost− previous cost|/cost < 10−8.

| 113

6 | Accelerating NMF using polynomials via inexact projections

We perform our tests over synthetic input signals, created as Y = ĀX̄⊤ +

N where matrix Ā ∈ Rm×r contains some ground truth signals, mix-
ing matrix X̄ ∈ Rn×r is randomly generated using a normal distribution
N (0, 1) with negative values replaced by zero, and N ∈ Rm×n is an ad-
ditive Gaussian noise with a signal-to-noise ratio (SNR) of 20 dB. The use
of synthetic signals allows us to compute the error with respect to ground
truth, which is Y ∗ = ĀX̄ , as explained in Section 2.1.1.

We now proceed to compare the average performance of several algorithms
for NMF, including standard HALS (that does not consider polynomials),
the P-LS method based on least squares [33] as well as P-HALS with and
without approximate projections (using the discretization, H1 or H2 heuris-
tics). The proximal projection heuristic is tested in combination with both
standard P-HALS and P-HALS using H1.

Polynomial input signals. We first test with an input dataset containing
r = 3 polynomials of degree 12 (contained in matrix Ā), with n = m = 500.
We observe in Table 6.1 that HALS is fastest but obtains a final solution
with significantly worse accuracy than all other methods, as it ignores the
polynomial structure of the input signals. The P-LS method is more ac-
curate than HALS, but much slower than all methods. All methods based
on P-HALS compute even more accurate solutions. Among those, methods
using approximate projections are, as expected, faster or much faster. More
surprising is the fact that, despite their use of inexact projections, they con-
verge to final solutions with accuracy similar to P-HALS with exact projec-
tions, and even sometimes a little better and using fewer iterations. Use of
the proximal projection heuristic further decreases computational times, at
the cost of very slightly larger residues, and thus the accuracy is slightly
impacted.

Real reflectance input signals. We also tested our algorithms with r = 5
real reflectance signals discretized over m = 414 points equally spaced
over [−1, 1], coming from the U.S. Geological Survey database [77]1, con-
tained in matrix Ā.

Figure 6.7 compares performance of the same algorithms, over 100 tests.
Again, we see that our heuristics allows P-HALS to converge faster, espe-
cially when using heuristics H1 or H2. Using the proximal projection re-

1Adulania, Clinochlore, Hypersthene, Olivine and Spessartine from https://www.usgs.
gov/labs/spec-lab/capabilities/spectral-library

114 |

https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library
https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library

Acceleration using algorithms with early stopping | 6.3

Method Time Iterations Res
HALS 0.66 224.62 0.01437
P-LS 36.1 448.39 0.01075

P-HALS 10.87 186.84 0.00890
P-HALS+Prox 6.94 150.67 0.00896

P-HALS with Discr. 10.56 178.32 0.00891
P-HALS with H1 2.55 170.73 0.00792
P-HALS with H2 4.94 161.13 0.00793

P-HALS with H1+Prox 2.03 151.44 0.00795

Table 6.1 Average performance on synthetic polynomial signals over 10
tests using 10 initializations (100 tests in total), of HALS, P-LS, P-HALS,
and five of our heuristic variants of P-HALS.

sults in even faster computations using fewer iterations, but with slightly
larger final residues. This is coherent with what we observed in the previ-
ous section, and is maybe due to a premature stop of the algorithm because
the proximal projection becomes too close to the previous iterate.

From the presented tests, we advise to use heuristic H1 with P-HALS as
it obtains the best performance and performs better projection than H2,
as presented in section 6.2.3. The use of proximal projection in P-HALS
leading to slightly less accurate solutions further accelerates the algorithm.

In general, our numerical experiments suggest that performing an exact
projection is not necessary for P-HALS to converge, and show that the
heuristic projection algorithms introduced in this section significantly ac-
celerate the P-HALS algorithm while preserving the final accuracy of the
computed solutions. However, there is no theoretical guarantee of con-
vergence for these heuristic projections, and it is thus possible that in cer-
tain situations these heuristics prevent the convergence of the algorithm.
Therefore, in the next section, we will use results from Chapter 5.3 to define
approximate projections for P-HALS with some theoretical guarantees.

6.3 Acceleration using algorithms with early stopping

In this section, we analyze several ways to perform projections onto the
set of nonnegative polynomials of fixed degree using iterative algorithms
with early stopping, inspired from results of Section 5.3.3 and from previ-

| 115

6 | Accelerating NMF using polynomials via inexact projections

HALS

386.07

P-LS

981.44

P-HALS

395.62

PHALS
 +Prox
159.4

Disc.

394.67

H1

272.22

H2

256.06

H1
+Prox
160.1

10−1

100

101

102

Ti
m

e
(s

ec
)

(a) Distribution of CPU time (in seconds) + mean iterations in legend

HALS P-LS P-HALS PHALS
 +Prox

Disc. H1 H2 H1
+Prox

0.025

0.030

0.035

0.040

0.045

0.050

R
es

(b) Final residual (res)

Fig. 6.7 P-NMF algorithms applied to real reflectance signals.

ous work on optimization problems on nonnegative polynomials. Tradi-
tionally, problems on nonnegative polynomials are solved using semidef-
inite programming (SDP) via interior-point methods [2, 111], as presented
in the beginning of this chapter. But LP-HALS is an iterative algorithm
that requires to project onto nonnegative polynomials several times, and
on similar instances. It would therefore be good if the projection algorithm
could be warm-started, but this is not feasible for interior-point methods.

We consider the use of the ADMM or the Burer-Monteiro approach to
compute the projection on nonnegative polynomials, as both of these ap-
proaches can be warm-started, unlike interior-point methods, and have
already been used successfully in the context of polynomials optimization,
or SDP [1, 16, 143]. Moreover, those methods are iterative, and from the

116 |

Acceleration using algorithms with early stopping | 6.3

results of Section 5.3.3 it is expected that they allow the P-HALS to con-
verge to a stationary point even if they are stopped early, as long as they
are asymptotically run until convergence. Of course, in practice it is not
possible to run indefinitely the algorithms, but we expect that this good
theoretical property makes it possible to have an effective algorithm in
practice. We could observe during testing that LP-HALS can indeed be sig-
nificantly sped up by using ADMM or Burer-Monteiro approaches instead
of interior-point methods, without impacting negatively the accuracy.

6.3.1 Projection using ADMM

Using Alternating Direction Method of Multipliers (ADMM) to solve prob-
lems on nonnegative polynomials has been considered in the past. Indeed,
the matrix R in (6.2) is sparse, especially when the degree of the polyno-
mials increases. Using ADMM allows us to take into account this sparsity
and to improve the performance of the algorithm when the degree of poly-
nomials is high [1, 143]. However this does not correspond to our objec-
tive as the degree of the considered polynomials is too low for algorithms
presented in [1] and [143] to be more efficient than a good interior-point
method.

However, we try to take advantage of the knowledge of the solution of
problems close to the one to be solved, and this is allowed by ADMM. Let
us rewrite problem (6.2) in an appropriate way to use ADMM. Let δ

Sd
+
(·)

be the indicator function of Sd
+. The projection problem is

min
Sa ,Sb ,Ya ,Yb

∥∥∥L⊤
(

Rd
[

vec(Sa)

vec(Sb)

]
− f

)∥∥∥
2
+ δ

S
da
+
(Ya) + δ

S
db
+

(Yb) (6.4)

such that
[
Sa
Sb

]
=

[
Ya
Yb

]
.

Considering the two sets of variables (Sa, Sb) and (Ya, Yb), the augmented

| 117

6 | Accelerating NMF using polynomials via inexact projections

Lagrangian of (6.4) is

L
(
(Sa, Sb), (Ya, Yb), (Λa, Λb), ρ

)
=
∥∥∥L⊤

(
Rd
[

vec(Sa)

vec(Sb)

]
− f

)∥∥∥
2
+ δ

S
da
+
(Ya)

+δ
S

db
+

(Yb) + ⟨Λa, Ya −Sa⟩+ ⟨Λb, Yb −Sb⟩+
ρ

2
∥Ya −Sa∥2 +

ρ

2
∥Yb −Sb∥2

(6.5)

To use ADMM, we need to identify the minimum of L with respect to
(Sa, Sb) and with respect to (Ya, Yb), the other variables being considered
as fixed.

Minimization of the Lagrangian with respect to (Sa, Sb)

In (6.5), Sa and Sb are used in their matrix and vectorized form, which
complicates the computation of the minimum of L according to (Sa, Sb).
We can choose to work on

(
vec(Sa), vec(Sb)

)
as ⟨A, B⟩ = vec(A)⊤vec(B).

Nevertheless, we can also choose to impose the symmetry of Sa and Sb as
positive semidefinite matrices are symmetric. This will also simplify the
update of (Ya, Yb), as explained in Section 6.3.1. Therefore, we can work
on the following representation of the matrices, which takes into account
their symmetry:

svec(Sa)=

[
Sa(1,1)√

2
, Sa(1,2) , Sa(1,3) , . . . ,

Sa(2,2)√
2

, Sa(2,3) , Sa(2,4) , . . . ,
Sa(da ,da)√

2

]

(6.6)
This representation is not exactly the same as the commonly used svec pre-
sented for example in [117], but has similar properties. Indeed, with this
representation one can easily compute the inner product:

⟨A, B⟩ = 2 svec(A)⊤svec(B). (6.7)

Moreover, it is quite straightforward from equation (6.6) to manipulate the
columns of R to find R̃ so that

R

[
vec(Sa)

vec(Sb)

]
= R̃

[
svec(Sa)

svec(Sb)

]
. (6.8)

To optimize L on (Sa, Sb) we compute the gradient of L using the svec
representation (note that using the svec representation slightly modifies
the problem, as it imposes that Sa and Sb are symmetric matrices, but this

118 |

Acceleration using algorithms with early stopping | 6.3

is not an issue).

∂L

∂

[
svec(Sa)

svec(Sb)

] =2R̃⊤LL⊤R̃

[
svec(Sa)

svec(Sb)

]
− 2R̃⊤LL⊤f − 2

[
svec(Λa)

svec(Λb)

]

− 2ρ

[
svec(Ya −Sa)

svec(Yb −Sb)

]
(6.9)

As the problem is unconstrained and convex, the minimization of L on
(Sa, Sb) can therefore be obtained by setting the gradient to zero:

[
svec(Sa)

svec(Sb)

]
= (R̃⊤LL⊤R̃ + ρI)−1

(
R̃⊤LL⊤f +

[
svec(Λa + ρYa)

svec(Λb + ρYb)

])
.

(6.10)

Minimization of the Lagrangian with respect to (Ya, Yb)

The problem we aim to solve can be written as

argmin
(Ya ,Yb)

∥Ya −Sa + Λa/ρ∥2 + ∥Yb −Sb + Λb/ρ∥2 s.t. Ya ∈ S
da
+ , Yb ∈ S

db
+ .

(6.11)
We can easily see that this problem consists of two projections, the projec-
tion of Sa − Λa/ρ onto S

da
+ and the projection of Sb − Λb/ρ onto S

db
+ . Let

[·]S represent the projection onto set S . The solution of (6.11) is therefore

(Ya, Yb) =
(
[Sa −Λa/ρ]

S
da
+

, [Sb −Λb/ρ]
S

db
+

)
(6.12)

As Λa and Λb are obtained by linear combinations of Sa, Ya and Sb, Yb
(see Algorithm 6.3), if Sa and Sb are symmetric matrices (which is the case
if they are obtained using equation (6.10)), matrices Sa − Λa/ρ and Sb −
Λb/ρ are symmetric. If QAEAQ⊤A is the eigenvalue decomposition of Sa −
Λa/ρ and QBEBQ⊤B is the eigenvalue decomposition of Sb − Λb/ρ, and
[·]+ is an operator that sets all negative values to 0, the projections are

(Ya, Yb) =
(
QA[EA]+Q⊤A , QB[EB]+Q⊤B

)
. (6.13)

ADMM algorithm
Thanks to the developments carried out in the two previous sections, we
can now write a sketch of the ADMM algorithm to project a polynomial

| 119

6 | Accelerating NMF using polynomials via inexact projections

of degree d on the nonnegative set Pd
+. Note that the algorithm returns

(Ya, Yb) as the computed projection, because this ensures to have a feasible
point, but if the algorithm has converged, it should be equal to (Sa, Sb).
Moreover, if ρ is fixed, the iterates of the algorithm converge to a solu-
tion of (6.4). Indeed, the considered functions are both convex, and we are
working with 2-block ADMM (see Theorem 8 of [38]).

Algorithm 6.3 Projection on nonnegative polynomials using ADMM

Input: f the coefficients of the polynomial to project, Y 0
a ∈ S

da
+, Y 0

b ∈ S
db
+

function PROJ_ADMM(f , Y 0
a ,Y 0

b)

l=0, ρ0 = 1, Λa = 0(da)×(da), Λb = 0db×db

while not EndCond do[
svec(Sa)l+1

svec(Sb)
l+1

]
=
(
R̃⊤LL⊤R̃+ρlI

)−1
(
R̃⊤LL⊤f+

[
svec(Λl

a+ρlY l
a)

svec(Λl
b+ρlY l

b)

])

(Y l+1
a , Y l+1

b) =
(
[Sl+1

a −Λl
a/ρl]

S
da
+

, [Sl+1
b −Λl

b/ρl]
S

db
+

)

(
Λl+1

a , Λl+1
b
)
=
(
Λl

a + ρl(Y l+1
a −Sl+1

a), Λl
b + ρl(Y l+1

b −Sl+1
b)

)

ρl+1 = UpdateRho; l = l + 1

Return R̃

[
svec(Y end

a)
svec(Y end

b)

]

As the projection is used inside an iterative algorithm, we use (Y 0
a , Y 0

b) =

(Y
prev

a , Y
prev

b), the result of projection performed at the previous iteration.
If we are at the first iteration, (Y 0

a , Y 0
b) are initialized as random rank-one

positive semidefinite matrices. Finding a good EndCond and UpdateRho is
not trivial. As this algorithm is part of an outer iterative algorithm, an
idea inspired from Section 5.3.3 is to aim for an approximate projection
during the first iterations and to project exactly only when the algorithm
starts to converge. We can hope that such a behavior is achieved when
we fix the number of iterations in Algorithm 6.3 to a small number, and
keep ρ unchanged. Indeed, as we use the result of previous projection as
a first guess, the hope is that when the algorithm starts to converge the
projections are more and more precise.

Otherwise, we can also use Boyd’s method from [17]. Let us assume that
we have fixed the parameters tol, maxRho, minRho, and let el+1 =

120 |

Acceleration using algorithms with early stopping | 6.3

√∥∥Y l+1
a −Sl+1

a

∥∥2
+
∥∥Y l+1

b −Sl+1
b

∥∥2

max
(√∥∥Sl+1

a

∥∥2
+
∥∥Sl+1

b

∥∥2
,

√∥∥Y l+1
a

∥∥2
+
∥∥Y l+1

b

∥∥2)and el+1
D =

ρl

√∥∥Y l+1
a −Y l

a

∥∥2
+
∥∥Y l+1

b −Y l
b

∥∥2

√∥∥Λl+1
a

∥∥2
+
∥∥Λl+1

b

∥∥2
.

We have

EndCond = min(el+1,el+1
D)<tol, UpdateRho =





min(2ρl ,maxRho) if el+1 > 10el+1
D

max(ρl /2,minRho) if el+1
D > 10el+1

ρl else.
(6.14)

Using stationarity information
The ϵ-stationarity measure is an approximate stationarity measure defined
in Definition 5.3. From Theorem 5.5 we know the following.

Theorem 6.1. Let B be the coefficients of polynomials contained in A. Then

B∗:k =
(M)−1ZX:k−∑s ̸=k B:sX:s

⊤X:k

X:k
⊤X:k

is the unconstrained update of B (see Equa-
tion (3.6)). Suppose that X is such that Xkj ≥ δ, and X is updated using the
standard HALS algorithm. Every limit point of P-HALS is rϵ-stationary if the
updates of B:k satisfy

1. B:k
t+1 ∈ Pd

+(I)

2. 2⟨LL⊤(B:i
t+1 −B∗:k

t+1), x−B:k
t+1⟩ ≥ −ϵ ∀x ∈ Pd

+(I)

3. 2⟨LL⊤(B:k
t+1 −B∗:k

t+1), B:k
t −B:k

t+1⟩ ≥ 0

(6.15)4. ∥B:k
t+1∥ ≥ δ

Proof. The two first conditions are the same as in Theorem 5.5.

By the fourth condition, the NMF problem on a column of B or X consid-
ering all other variables as fixed is a strongly convex problem with µ ≥ δ.
Using the third condition and a similar reasoning as in Corollary 5.1, the
third condition of Theorem 5.5 holds.

Using Algorithm 6.3, condition 1 is always satisfied. Moreover, condition 4
is a common problem concerning the convergence of HALS. Nevertheless,
if the chosen rank is not too high, it is rare that elements become zero, espe-
cially when the algorithm starts to converge. We can therefore reasonably
neglect this constraint. However, conditions 2 and 3 are not negligible and
not always met. Let us analyze them more deeply.

| 121

6 | Accelerating NMF using polynomials via inexact projections

Lemma 6.1. At convergence, conditions 2 and 3 of equation (6.15) are satisfied,
with ϵ = 0.

Proof. As the ADMM algorithm converges to a solution of (6.4) [38], it con-
verges to a ϵ = 0 - stationary point and conditions 2 and 3 are satisfied at
convergence.

Lemma 6.2. Let Gend
1 ∈ R

da(da+1)
2 , Gend

2 ∈ R
db(db+1)

2 ,
[
Gend

1
Gend

2

]
=

2(R̃⊤LL⊤R̃)

[
svec(Y end

a −Send
a)

svec(Y end
b −Send

b)

]
+ρend−1

[
svec(Y end−1

a −Y end
a)

svec(Y end−1
b −Y end

b)

]
+

[
svec(Λend

a)

svec(Λend
b)

]
.

Condition 2 is equivalent to svec−1(Gend
1) ∈ S

da
+ and svec−1(Gend

2) ∈ S
db
+ and

2
〈 [Gend

1
Gend

2

]
,
[

svec(Y end
a)

svec(Y end
b)

] 〉
≤ ϵ.

Proof. As x ∈ Pd
+(I), it can be described as x = R̃

[
svec(Xa)

svec(Xb)

]
with Xa ∈

S
da
+ and Xb ∈ S

db
+ , by Equations (6.3) and (6.8). Moreover, every Xa ∈ S

da
+

and Xb ∈ S
db
+ define a feasible x. Considering that B:k

t+1 is found using
Algorithm 6.3 on f = B∗:k

t+1, we can rewrite condition 2 as:

2
〈

LL⊤
(

R̃

[
svec(Y end

a)

svec(Y end
b)

]
−B∗:k

t+1
)

, R̃

[
svec(Xa − Y end

a)

svec(Xb − Y end
b)

] 〉
≥ −ϵ. (6.16)

From Algorithm 6.3, we can observe that R̃⊤LL⊤B∗:k
t+1 = (R̃⊤LL⊤R̃ +

ρlI)

[
svec(Sl+1

a)

svec(Sl+1
b)

]
−
[

svec(Λl
a + ρlY l

a)

svec(Λl
b + ρlY l

b)

]
∀l. Using the definition of Λl+1

a

and Λl+1
b and the definition of Gend

1 , Gend
2 presented in the statement of

this lemma, we observe that condition 2 is equivalent to

2
〈 [Gend

1
Gend

2

]
,
[

svec(Xa − Y end
a)

svec(Xb − Y end
b)

] 〉
≥ −ϵ. (6.17)

Let us note that if there exist (Xa, Xb) such that
〈 [Gend

1
Gend

2

]
,
[

svec(Xa)

svec(Xb)

] 〉
<

0, condition 2 cannot be satisfied. Indeed, (αXa, αXb) is also feasible for

122 |

Acceleration using algorithms with early stopping | 6.3

all α ≥ 0, therefore when α goes to infinity, condition 2 goes to −∞. To
avoid that, as the positive semidefinite cone is self dual, we must have
svec−1(Gend

1) ∈ S
da
+ and svec−1(Gend

2) ∈ S
db
+ to satisfy condition 2. The

value of ϵ is then 2
〈 [Gend

1
Gend

2

]
,
[

svec(Y end
a)

svec(Y end
b)

] 〉
≥ 0.

Thanks to Lemma 6.2, condition 2 is computable. Therefore, Theorem 6.1
provides a stopping criterion: as soon as conditions 2 and 3 are satisfied,
the projection algorithm can stop while still ensuring convergence of the
outer algorithm to a rϵ−stationary point.

6.3.2 Projection using Burer-Monteiro approach

From Equation (2.13), we know that all nonnegative polynomials can be
expressed using rank-one matrices Sa and Sb in problem (6.2). Let ⊗K be
the Kronecker product, we can rewrite problem (6.2) as

min
sa∈Rda ,sb∈Rdb

∥∥∥L⊤
(

Rd
[
sa ⊗K s⊤a
sb ⊗K s⊤b

]
− f

)∥∥∥, (6.18)

The Jacobian of the residual in (6.18) can be easily computed and is equal
to:

Jsa ,sb = L⊤Rd

[
Ida ⊗K sa + sa ⊗K Ida 0d2

a×db

0d2
b×da Idb ⊗K sb + sb ⊗K Idb

]
(6.19)

The problem can then be solved using a nonlinear least squares solver.
We use the least_squares solver of python2 with default parameters. At
each projection, the previous solution is used as first guess, as for ADMM.
This approach is comparable to the Burer-Monteiro approach of rank 1 for
solving the projection problem in SDP form (6.3). Indeed, in the Burer-
Monteiro approach the positive semidefinite matrices are constrained to
be low rank and factorized using low-rank matrices: S = F F⊤ where
F ∈ Rs×s with s much smaller than d. In our case s = 1. We also
consider the use of other ranks in this Burer-Monteiro approach, i.e. use

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
least_squares.html#id2

| 123

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#id2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#id2

6 | Accelerating NMF using polynomials via inexact projections

∑s
k=1 sak ⊗K sa

⊤
k and ∑s

k=1 sbk ⊗ sb
⊤
k instead of Sa and Sb. The Jacobian is

close to expressions (6.19) for each sak, sbk.

6.3.3 Parameters of proposed projection methods

We now analyze the performance of the proposed projection methods with
various parameters.

Datasets and comparison tools
To build input data Y , we first build two matrices A and X . A can have
two different forms:

• Pol: A contains the discretization of r polynomials of degree d non-
negative on [−1, 1]. The coefficients of the r polynomials are built
using random positive-semidefinite matrices S∗a and S∗b of rank 1,
using representation of Equation (6.3).

• Refl: A contains discretization of reflectance signals. The reflectance
signals are the signals of Adulania, Clinochlore, Hypersthene, Olivine,
Spessartine, Andesine, Celestine and Kaolinite from [77], r is there-
fore equal to 8. Those signals are discretized on 414 points and are
illustrated in Figure 6.8.

Factor X ∈ Rn×r
+ is a random matrix whose rows follow a Dirichlet dis-

tribution with parameter α = 1/r. We then create input data Y as Y =

AX⊤+N , where N is an additive Gaussian noise with a chosen signal-to-
noise ratio (SNR). The algorithms are compared in term of accuracy using
the relative residual, SIR and SIR LC criteria presented in Section 2.1.1.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

0.02

0.04

0.06

0.08

0.10

Fig. 6.8 The reflectance signals of Adulania, Clinochlore, Hypersthene,
Olivine, Spessartine, Andesine, Celestine and Kaolinite.

124 |

Acceleration using algorithms with early stopping | 6.3

To determine the parameters of the ADMM and Burer-Monteiro approaches,
we tested various choices on a dataset containing polynomials of degree
d = 20 (Pol). We use m = 200, n = 500, r = 5 and data does not contain
noise. All parameters are tested 10 times over different initialization. The
problem we aim to solve at this stage is a subproblem of the NMF problem.
Indeed, we suppose that matrix X is fixed and known, so that the problem
becomes convex: minA ∥Y −AX⊤0 ∥F. We consider five cases:

• X0 is random (Random).

• X0 is such that ∥Y −ÃX⊤
0 ∥

∥Y ∥ = 0.1 or 0.05 or 0.01, with Ã the initializa-
tion of A (0.1, 0.05, 0.01).

• X0 is the ground truth mixing matrix, Y = A0X⊤0 (Exact).

This lets us observing whether the methods behave differently throughout
the outer NMF process, when we are close or not to the solution.

This convex problem is solved by updating iteratively the columns of ma-
trix A. Iterations are stopped once either ∥At −At−1∥| < 10−12, or∣∣∣∥Y −AtX⊤

0 ∥−∥Y −At−1X⊤
0 ∥
∣∣∣

∥Y ∥ < 10−16, or time exceeds 1000 seconds. Figures

summarizing the tests display the following error: ∥Y −AX⊤
0 ∥−∥Y −A∗X⊤

0 ∥
∥Y ∥

with A∗ the optimal solution. Obtaining a zero error is thus possible.

A second test is performed, on the same input data Y but this time on the
full NMF problem. This test shows the average evolution of the relative
residual of tested approaches. All approaches are run during exactly 100
seconds.

Parameters of ADMM
We considered the following parameters in the ADMM projection from
Algorithm 6.3:

• Algorithm performs exactly 10 iterations with ρ = 1 fixed (10 its)

• Algorithm performs exactly 50 iterations with ρ = 1 fixed (50 its)

• Algorithm performs maximum 50 iterations, the stopping criterion
and the update of ρ follow Boyd’s method, presented in equation
(6.14) with maxRho= 104, minRho= 10−4 (rho_1e-4)

• Same except that maxRho= 108, minRho= 10−8 (rho_1e-8)

| 125

6 | Accelerating NMF using polynomials via inexact projections

• Algorithm performs maximum 50 iterations,with ρ = 1 fixed. The
stopping criterion is the one presented in Section 6.3.1 (statio).

• Same except that if algorithm was not able to stop in 50 iterations,
we use an interior-point algorithm to solve the projection problem
(combi).

The last approach ensures that the NMF algorithm converges to an almost
stationary point by Theorem 6.1. Indeed, either the algorithm has stop
because conditions (5.10) are satisfied, or the projection has been done us-
ing the interior point algorithm that converges to the optimal solution and
satisfies thus conditions (5.10). The hope in this last approach is that the
ADMM algorithm converges often in less than 50 iterations and that the
interior point solver is not very much used.

Results are summarized in Figure 6.9. On the convex problem, we observe
that all methods are very good in the "Random" situation, as they are fast
and find the optimal solution. In this case using exactly 10 iterations is
the fastest, using the combination is the slowest and other parameters are
comparable in terms of time.

Moreover, the combination is not much influenced by the situation: times
are comparable and recovered errors are always very good, most of the
time around 10−12 or below, except in the "Exact" situation where the worst
case is around 10−7 . This method is the most accurate and among the
fastest (except in "Random" situation). It is therefore very suited for the
convex case.

On the contrary, using 10 iterations is not suited for the convex problem
as it obtains the worse error on average and is among the slowest meth-
ods, except in "Random" case where it is the fastest. Approaches using
maximum 50 iterations have very similar behaviors. Therefore, using a
stopping criterion does not seem to help. The time gained in performing
fewer iterations is probably compensated by the time needed to compute
the criterion.

When looking at performance on the NMF problem, conclusions are sur-
prisingly the opposite from the convex case. Indeed, in this case using
exactly 10 iterations is the fastest and the most accurate, while the combi-
nation is significantly slower. Methods using maximum 50 iterations have
speed in between and obtain again very similar results. A plausible expla-
nation that could explain this very different behavior is the following. The

126 |

Acceleration using algorithms with early stopping | 6.3

goal in NMF is to obtain quickly a "good enough" projection, to update A

quickly, knowing that X will still change, so it is not necessary to find the
optimal A for X given. As using only 10 iterations is faster than combin-
ing methods, this approach is the most efficient. In the convex case, the
combination needs fewer iterations to converge as each iteration is better
and it is faster thanks to that.

Random 0.1 0.05 0.01 Exact
Residues of NMF problem

100

101

102

103

Ti
m

e

Needed time to find bestA

Random 0.1 0.05 0.01 Exact
Residues of NMF problem

10−15

10−12

10−9

10−6

Er
ro

r

Recovered error

0 20 40 60 80 100
Time

10−4

10−3

10−2

10−1

100

Re
sid
ue
s

Evolution of algorithms no noise

10its 50its rho_1e-4 rho_1e-8 statio combi

0 20 40 60 80 100
Time

10−1

100

Re
sid
ue
s

Evolution of algorithms noisy case

10its 50its rho_1e-4 rho_1e-8 statio combi

0 20 40 60 80 100
Time

10−4

10−3

10−2

10−1

100

Re
sid
ue
s

Evolution of algorithms no noise

10its 50its rho_1e-4 rho_1e-8 statio combi

Fig. 6.9 Performance of the ADMM approach for the projection, using
various parameters. Methods using a stopping criterion are limited to 50
iterations. Top: performance on convex problem with fixed X . Bottom:
performance on NMF problem.

Parameters of Burer-Monteiro method
The main parameters of the Burer-Monteiro method are the rank and preci-
sion of the projection, that can be controlled through the maximal number
of iterations and the tolerance. Three quantities are evaluated throughout
the algorithm: the change of the objective function, the difference between
successive iterates, and the norm of the gradient. When one of these quan-
tities becomes smaller than the tolerance, the algorithm is stopped. Let us

| 127

6 | Accelerating NMF using polynomials via inexact projections

first evaluate good values of precision parameters for rank 1.

We tested the following parameters:

• Maximum 10 iterations - tolerance = 10−12 (10 its)

• Maximum 50 iterations - tolerance = 10−12 (50 its)

• Maximum 106 iterations - tolerance = 10−2 (1e-2)

• Maximum 106 iterations - tolerance = 10−4 (1e-4)

• Maximum 106 iterations - tolerance = 10−6 (1e-6)

• Maximum 106 iterations - tolerance = 10−8 (1e-8)

We observe in Figure 6.10 that on the convex problem, using maximum 10
iterations during the projection is faster than using maximum 50 iterations.
Similarly, a tolerance of 10−2 leads to a faster resolution than when using
a tolerance of 10−4 that is faster than 10−6 which itself is faster than 10−8.
This might seem logical since methods with a higher tolerance will inter-
rupt the projection algorithm earlier. However, it is important to remember
that this projection is only one step in the iterative algorithm and that these
more tolerant methods might require more iterations to converge, which
does not seem to be the case. It is also interesting to note that random and
exact cases are solved quicker than during NMF process.

When we look at the error obtained by each algorithm on the convex case,
we observe that a tolerance of 10−2 or 10−4 almost never allows the algo-
rithm to converge to the solution. This is not so surprising because these
two tolerances are quite high. Allowing to have maximum 10 iterations
may also sometimes lead to difficulties to find the exact solution, but most
of the time some tests among the ten tests performed are able to converge
to the exact solution. Other parameters are able to find the exact solution
at least once. Nevertheless, all methods have comparable average error.

Looking now at the test on the full NMF problem, we observe that using
a tolerance of 10−2 leads to the fastest method, but when there is no noise
this method converges to factors with higher residual. However, there is no
such problem in the noisy case. This is not very surprising as in the convex
case the Burer-Monteiro approach with tolerance 10−2 was also not able to
converge to the solution. However, using maximum 10 iterations is also
very fast and obtains the best residual after 100 seconds in both noisy and
not noisy cases. This method was not significantly faster than the others in

128 |

Acceleration using algorithms with early stopping | 6.3

the convex case, but stands out in terms of speed in the NMF problem. A
plausible explanation for the good behavior of this method is the fact that
its precision evolves during the solving process. Indeed, at the beginning,
the initial guess of the projection is inaccurate and allowing only 10 itera-
tions leads to a poor result, but as the algorithm evolves, the initial guess of
the projection becomes more and more accurate, and the found solutions
are more and more precise. This behavior is probably more helpful for the
NMF problem, which explains the supremacy of the approaches using 10
iterations, both for Burer-Monteiro and ADMM approaches.

Random 0.1 0.05 0.01 Exact
Residues of NMF problem

100

101

102

103

Ti
m

e

Needed time to find bestA

Random 0.1 0.05 0.01 Exact
Residues of NMF problem

10 10

10 8

10 6

10 4

10 2

Er
ro
r

Recovered error

0 20 40 60 80 100
Time

10−3

10−2

10−1

100

Re
sid

ue
s

Evolution of algorithms no noise

10its 50its 1e-2 1e-4 1e-6 1e-8

0 20 40 60 80 100
Time

10−1

100

Re
sid

ue
s

Evolution of algorithms noisy case

10its 50its 1e-2 1e-4 1e-6 1e-8

0 20 40 60 80 100
Time

10−3

10−2

10−1

100

Re
sid

ue
s

Evolution of algorithms no noise

10its 50its 1e-2 1e-4 1e-6 1e-8

Fig. 6.10 Performance of the Burer-Monteiro approach using various pa-
rameters. Top: performance on convex problem with fixed X . Bottom:
performance on NMF problem.

We now analyze the performance of the Burer-Monteiro approach when
rank varies. We test this approach on ranks 1, 2, 3, 4 and 5 using maxi-
mum 10 iterations. Results are summarized in Figure 6.11. We observe
on this figure that, in the convex case, increasing the rank clearly increases
the needed time. Moreover, on average, using only a rank equals to 1 ob-
tains worse results than using a rank equals to 2 or more. For higher ranks

| 129

6 | Accelerating NMF using polynomials via inexact projections

there is no significant differences in terms of error. These results on the
convex problem suggest using a rank-2 Burer-Monteiro approach. This is
confirmed by the test performed on the full NMF problem as this approach
is on average the fastest method and leads to residues among the best.

Random 0.1 0.05 0.01 Exact
Residues of NMF problem

100

101

102

Ti
m

e

Needed time to find bestA

Random 0.1 0.05 0.01 Exact
Residues of NMF problem

10 12

10 10

10 8

10 6

10 4

10 2

Er
ro
r

Recovered error

0 20 40 60 80 100
Time

10−4

10−3

10−2

10−1

100

Re
sid

ue
s

Evolution of algorithms no noise

r1 r2 r3 r4 r5

0 20 40 60 80 100
Time

10−1

100

Re
sid

ue
s

Evolution of algorithms noisy case

r1 r2 r3 r4 r5

0 20 40 60 80 100
Time

10−4

10−3

10−2

10−1

100
Re

sid
ue

s
Evolution of algorithms no noise

r1 r2 r3 r4 r5

Fig. 6.11 Performance of Burer-Monteiro approach using various ranks.
Top: performance on convex problem with fixed X . Bottom: performance
on NMF problem.

This section allowed us to determine the most interesting parameters for
the ADMM and Burer-Monteiro approaches. We will now compare the
performance of these two algorithms with their best parameters.

6.3.4 Comparison of projection approaches for P-HALS

We first analyze the performance of the different projections proposed in
the context of the NMF problem where original signals are polynomials
(dataset Pol). In this case, it is possible for the methods to recover exactly
the factors of the input data.

130 |

Acceleration using algorithms with early stopping | 6.3

The comparison includes the following algorithms:

• Vectors: the standard HALS algorithm, solving the problem on vec-
tors and not polynomials,

• IP: P-HALS using interior-point projection method,

• BM: P-HALS using Burer-Monteiro projection, with maximum 10 it-
erations and rank 2,

• ADMM: P-HALS using ADMM with exactly 10 iterations,

• ADMM_p: P-HALS using ADMM with Boyd’s stopping criterion
and MaxRho=104, MinRho=10−4, with maximum 10 iterations,

• ADMM_s: P-HALS using ADMM stopping criterion on stationarity,
with maximum 10 iterations,

• Heuri: P-HALS using heuristic H1 as projection.

Those algorithms are then compared in several situations where data is ei-
ther noiseless or with noise level 20 dB, and where (m, n, r, d) = (500, 500,
5, 20); (500, 500, 10, 20); (50, 500, 5, 20); (500, 50, 5, 20) or (500, 500, 5, 6). Each
set of parameters is tested 10 times.

On noiseless data
We observe in Figure 6.12 that HALS using vectors is very accurate: it is
fast and obtains a low residual as there is no noise to perturb the algorithm.
P-HALS using heuristic H1 is the only method that is able to beat it. Indeed,
this approach obtains a lower residual and obtains comparable SIR and SIR
LC in comparable time. In general, methods can be classified as follows
(from best to worst): Heuri - Vectors - ADMM-based approaches - BM - IP.
We see that the goal to accelerate P-HALS using interior point projection
(IP) is achieved for all methods. Heuristic H1 is ultimately faster than the
projections based on theory.

When m is smaller (m = 50 instead of 500), HALS using vectors obtains
a lower residual and a higher SIR LC, while heuristic H1 obtains a worse
residual, but its SIR LC stays good on average. Both methods obtain a
lower SIR. Other approaches have unchanged performance. Having only
50 discretization points decreases the size of the dataset, but this is not
enough to explain the better performance of HALS using vectors, as this
method is not better when n = 50. The explanation may come from the
fact that observing 50 points of a degree 20 polynomials leads to a observed

| 131

6 | Accelerating NMF using polynomials via inexact projections

signal that is less smooth, with less structure, that can be easier to factor by
standard NMF. This would also explain why the SIR is a bit lower (having
less information about structure makes it more difficult to reconstruct the
original signals), while the two other criteria are higher. The fact that the
heuristic approach obtains a high residual and a high SIR LC on average
may look strange, but is explained by the fact that the heuristic obtains
a high residual and a low SIR LC in a few tests and good results for the
others. As the residues have value close to 0, their average value is more
impacted than the average value of the SIR LC (e.g. 10−1+9·10−8

10 ≃ 10−2

while 40+9·100
10 = 94). P-HALS using heuristic H1 is therefore not able to

converge in all ten tests performed. As this approach has no convergence
properties, it is not surprising that its performance is degraded when the
signals are known less precisely.

When changing other parameters (n, r, d) the results do not change signif-
icantly, and are therefore not presented in Figure 6.12.

On noisy data
We observe in Figure 6.13 that HALS using vectors has difficulties to fil-
ter out the noise. Indeed, it obtains a higher residual and a lower SIR LC.
The SIR is also a bit lower but not significantly. This is worsened when
the number of observation is low (n = 50 instead of 500). Among meth-
ods using polynomials, the heuristic is the fastest, followed by ADMM ap-
proaches, then Burer-Monteiro and finally the interior-point method. This
is the same order than in the noiseless case. All methods obtain comparable
results in terms of SIR, SIR LC and residual after 100 seconds.

We observe in Figure 6.14 that when m is decreased to 50, HALS using
vectors obtains a residual comparable to the other approaches, while P-
HALS using projections relying on Burer-Monteiro approach or interior-
point method are the methods obtaining the best SIR and SIR LC. More-
over, P-HALS using ADMM projection obtains results (very) slightly better
than P-HALS using heuristic H1. When changing other parameters (r, d)
the results do not change significantly, and are therefore not presented.

In general, on polynomial signals, NMF using vectors obtain good results
in the noiseless case, but has difficulties to filter out the noise. The only
method able to compete with NMF using vectors on the noiseless case,
both in terms of time and accuracy, is P-HALS using heuristic H1. In
general, this method obtains very good results, even though it is less ef-

132 |

Acceleration using algorithms with early stopping | 6.3
0 20 40 60 80 100

Time

5
10
15
20
25
30

SI
R

(d
B)

Evolution of SIR of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

m=500, n=500, r=5, d=20 m=50, n=500, r=5, d=20

0 20 40 60 80 100
Time

5
10
15
20
25
30

SI
R

(d
B)

Evolution of SIR of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

0

10

20

30

SI
R
LC
 (d

B)

Evolution of SIRLC of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

10−5

10−3

10−1

Re
sid

ua
l

Evolution of residual of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

5
10
15
20
25
30

SI
R

(d
B)

Evolution of SIR of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

0

10

20

30

40

SI
R
LC
 (d

B)

Evolution of SIRLC of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

10−8

10−6

10−4

10−2

100

Re
sid

ua
l

Evolution of residual of algorithms, no noise

Vectors IP BM ADMM ADMM_ ADMM_s Heuri

Fig. 6.12 Evolution graph of SIR, SIR LC and residual of the tested meth-
ods, when (m, n, r, d) = (500, 500, 5, 20) and (m, n, r, d) = (50, 500, 5, 20).
The data is noiseless. Each evolution graph is the average of 10 tests.

ficient when the number of observation points (m) is not large enough.
P-HALS using ADMM projection is in general faster than P-HALS using
Burer-Monteiro projection that is faster than P-HALS using interior-point
projection, while all methods obtain comparable results in terms of SIR,

| 133

6 | Accelerating NMF using polynomials via inexact projections
0 20 40 60 80 100

Time

5

10

15

20

25

30

SI
R

(d
B)

Evolution of SIR of algorithms noisy case

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

m=500, n=500, r=5, d=20 m=500, n=50, r=5, d=20

0 20 40 60 80 100
Time

5

10

15

20

25

30

SI
R

(d
B)

Evolution of SIR of algorithms noisy case

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

0

10

20

30

SI
R

LC
 (d

B)

Evolution of SIRLC of algorithms noisy case

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

10−2

10−1

100

Re
sid

ua
l

Evolution of esidual of algo ithms noisy case

Vecto s IP BM ADMM ADMM_p ADMM_s Heu i

0 20 40 60 80 100
Time

5

10

15

20

SI
R
(d
B)

Evolution of SIR of algorithms noisy case

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

0

5

10

15

20

SI
R

LC
 (d

B)
Evolution of SIRLC of algorithms noisy case

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

10−2

10−1

100

Re
sid

ua
l

Evolution of esidual of algo ithms noisy case

Vecto s IP BM ADMM ADMM_p ADMM_s Heu i

Fig. 6.13 Evolution graph of SIR, SIR LC and residual of the tested meth-
ods, when (m, n, r, d) = (500, 500, 5, 20) and (m, n, r, d) = (500, 50, 5, 20).
The data is noisy. Each evolution graph is the average of 10 tests.

SIR LC and residual. The objective of this work, that is accelerating NMF
using polynomials with interior-point projection, is therefore met.

134 |

Acceleration using algorithms with early stopping | 6.3

0 20 40 60 80 100
Time

5

10

15

20

25

SI
R
(d
B)

Evolution of SIR of algorithms noisy case

Vectors IP BM ADMM ADMM_p ADMM_s Heuri
0 20 40 60 80 100

Time

5
10
15
20
25
30

SI
R

(d
B)

Evolution of SIR of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

0

10

20

30

SI
R

LC
 (d

B)

Evolution of SIRLC of algorithms noisy case

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

10−1

100

Re
sid

ua
l

Evolution of esidual of algo ithms noisy case

Vecto s IP BM ADMM ADMM_p ADMM_s Heu i

Fig. 6.14 Evolution graph of SIR, SIR LC and residual of the tested meth-
ods, when (m, n, r, d) = (50, 500, 5, 20). The data is noisy. Each evolution
graph is the average of 10 tests.

Performance on reflectance signals Refl
We also test the methods when the input signals are mixtures of reflectance
signals (Refl), to confirm the results when signals do not come from poly-
nomials. Our methods can therefore not recover the input signals exactly.
We tested the factorization over n = 100 observations using degree 12, 20
or 40 polynomials, but they were no main differences between these three
cases: using a degree equals to 12 leads to worse residuals, while using
a degree equals to 40 leads to slightly worse factors in terms of SIR LC,
but the comparison between the different approaches stays identical. We
tested the factorization on noiseless data, and noisy data with noise level
20 dB.

Figure 6.16 shows the results for degree d = 20 with or without noise. We
observe that polynomial-based approaches are better in terms of both SIR
LC and residual than HALS based on vectors. However, all methods are
barely able to recover the original signals, as it can observed by comparing

| 135

6 | Accelerating NMF using polynomials via inexact projections

Figures 6.8 and 6.15.

Among polynomial-based methods, using as projection heuristic H1 is again
the fastest and leads to very accurate results, especially when there is no
noise in the data. ADMM-based methods are also quite efficient, while
Burer-Monteiro approach is slower and a bit less accurate, and interior-
point projection leads to the slowest and the less accurate results after 100
seconds.

−1.0 −0.5 0.0 0.5 1.0
0.0
0.5
1.0
1.5
2.0
2.5

Factor A for HALSFactor A for HALS

−1.0 −0.5 0.0 0.5 1.0
0

1

2

3

4

Factor A for ADMM
fixedFactor A for ADMM with 10 iterations

Fig. 6.15 Illustration of signals recovered by HALS using vectors (left)
and ADMM using 10 iterations (right).

6.4 Discussion

In this chapter, we have presented several ways to project polynomials on
the set of polynomials of same degree that are nonnegative on a given in-
terval. We have first analyzed heuristic projections, that are not ensured
to converge but find quickly a good approximation. We observed that the
heuristic named H1 was the most promising. This heuristic projects a poly-
nomial by truncating its negative values, and fitting the obtained signal.

We then tested two methods based on iterative algorithms with early stop-
ping. One is based on the Alternating Direction Method of Multipliers
(ADMM), and the other one is the result of the application of the Burer-
Monteiro approach on the projection problem. Those two methods can be
warm started by a good guess of the solution, which makes them particu-
larly interesting for use in iterative algorithms that can use the solutions of
the previous iteration as first guess.

136 |

Discussion | 6.4
0 20 40 60 80 100

Time

5
10
15
20
25
30

SI
R

(d
B)

Evolution of SIR of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

Noiseless Data Data with noise level 20dB

0 20 40 60 80 100
Time

6

8

10

12

SI
R
(d
B)

Evolution of SIR of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

0

20

40

60

80

SI
R

LC
 (d

B)

Evolution of SIRLC of algorithms, no noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

10−8
10−6
10−4
10−2
100

Re
sid

ua
l

Evolution of residual of algorithms, no noise

Vectors IP BM ADMM ADMM_ ADMM_s Heuri

0 20 40 60 80 100
Time

6

8

10

12

SI
R
(d
B)

Evolution of SIR of algorithms high noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

0

10

20

30

40

SI
R

LC
 (d

B)

Evolution of SIRLC of algorithms high noise

Vectors IP BM ADMM ADMM_p ADMM_s Heuri

0 20 40 60 80 100
Time

10−1

100

Re
sid

ua
l

Evolution of esidual of algo ithms high noise

Vecto s IP BM ADMM ADMM_p ADMM_s Heu i

Fig. 6.16 Evolution graph of SIR, SIR LC and residual of the tested meth-
ods over n = 100 mix of real reflectance signals. The used degree for poly-
nomials is d = 20. Each evolution graph is the average of 10 tests.

We observed during our tests that many of the proposed approximate pro-
jections are indeed accelerating the P-HALS algorithm, without impacting
the quality of the recovered solution. Actually, the most heuristic methods,
i.e. ADMM using 10 iterations and our best heuristic H1 are on average

| 137

6 | Accelerating NMF using polynomials via inexact projections

the more efficient methods, as they are faster and not less accurate than
the other approaches. The heuristic H1 is even comparable to HALS using
vectors in terms of time, while having the good accuracy properties of P-
HALS most of the time. However, when the number of discretization point
is too low, P-HALS using the heuristic method has more difficulties to con-
verge to a good point and obtains worse results than the other versions of
P-HALS. Otherwise this method is recommended.

Therefore, if the number of observation points is large compared to degree
of the used polynomials, using P-HALS with the heuristic projection H1
is competitive with standard HALS in terms of time while being very ac-
curate. If the number of observation points is smaller, it is better to use
ADMM with 10 iterations to perform the projection. This algorithm is also
quite fast, while always being accurate (in the tests we performed at least).

To conclude, we explored the possibility of using iterative algorithms with
early stopping to perform the projection in P-HALS as well as some heuris-
tic projections, and showed that this accelerates the algorithm. However,
we also observed in our tests that a projection approach can be very fast
and accurate for the convex problem minA ∥Y −AX⊤∥ (that considers X

as fixed), while being very slow and inaccurate for the real non convex full
NMF problem minA,X ∥Y −AX⊤∥. It is therefore particularly important
to test the approximate projections within the P-HALS algorithm to see if
they are relevant, and not use only theoretical information.

138 |

7
Application: Using NMF

with splines for image
completion

Many state-of-the art methods for image completion rely on two main as-
sumptions: images are smooth, except at edges, and low-rank [65, 86, 134].
As images are composed of nonnegative pixels, NMF can be an interesting
approach since it factorizes a matrix as the product of two low-rank matri-
ces (resulting thus in a low-rank matrix) [106, 114, 127]. The smoothness is
usually enforced via regularization, either on the produced image [86], or
on its factors [134].

Recently, Sadowski and Zdunek proposed a different technique where the
smoothness constraint is imposed on one factor of the NMF problem by
constraining it to be a linear combination of piece-wise smooth elements,
namely B-Splines [106]. This approach leads to promising results, but at the
cost of a relatively high computational time. Our goal is to use a similar
idea for image completion while keeping a low computational effort, using
for this our LP-HALS algorithm from Chapter 3 for NMF using splines.

We test two approaches: either using our LP-HALS algorithm to constrain
one factor of the NMF problem to contain splines and therefore be smooth,

| 139

7 | Application: Using NMF with splines for image completion

using an approach very similar to Sadowski and Zdunek, or imposing both
factors of the NMF problem to contain splines. We observe that using LP-
HALS to impose smoothness on one factor is faster and slightly more accu-
rate than the original approach of Sadowski and Zdunek, while imposing
smoothness simultaneously on both factors of the NMF problem is more
robust, and more accurate for difficult problems (with many missing pix-
els or with noisy images), but a bit less accurate in easier situations.

7.1 Image completion using smooth NMF

Smooth-NMF, presented in [140], consists in the following problem: given
a matrix Y ∈ Rm×n, a factorization rank r and a (discretized) B-Spline
basis with d splines S ∈ Rm×d, find matrices A ∈ Rm×r, B ∈ Rd×r and
X ∈ Rr×n minimizing

∥Y −AX⊤∥2
F such that A = SB ≥ 0, X ≥ 0. (7.1)

To use smooth-NMF for image completion, Sadowski and Zdunek pro-
posed Algorithm 7.1 in [106], inspired from [134]. This algorithm succes-
sively solves a smooth-NMF problem based on a guess Y of the image W

to be recovered. This guess is updated using the low-rank matrix AX⊤

produced by NMF, where known pixels are replaced by their true value.
Iterations are stopped once AX⊤ is close enough to W on the known pix-
els. To ensure smoothness on both the rows and the columns, smooth-NMF
is performed on the image and on its transpose.

Note that lines 5 to 7 in Algorithm 7.1 where inferred from descriptions in
[106], as the authors did not provide pseudocode of these elements. More-
over, the condition of the while loop has been slightly modified by remov-
ing the absolute value to stop the algorithm when the error increases. As
the image can be smoother in its rows or its column, the error can increase
between line 5 and 7. Nevertheless, we want this error to decrease after
each full iteration, otherwise the algorithm is stopped.

To solve the smooth-NMF problem, the authors used the algorithm from
[140], which solves the problem alternatively on matrices A and X . Ma-
trix X is updated using the popular Hierarchical Alternating Least Squares
(HALS) method (Algorithm 2.1), while matrix A is updated with the Alter-

140 |

Image completion using smooth NMF | 7.1

Algorithm 7.1 B-Splines-based Algorithm for Image Completion (BSA-IC)

This algorithm iteratively uses NMF over splines in one factor to smooth
the rows or the columns of the resulting image.
Input: W ∈ Rm×n is the incomplete matrix with support Ω. Y is a first
guess for W , by default 0m×n, A ∈ Rm×r and X ∈ Rn×r are initialized
randomly if not provided. A is initialized to contain nonnegative splines.

function BSA-IC(W , Ω, Y , A ≥ 0, X ≥ 0, δ = 10−2)
2: E = 0, EΩ =

(
W −AX⊤

)
Ω = 0 ▷ E contains the initial error

e2 = ∥E∥F, e1 = e2 + δ + 1
4: YΩ = WΩ

while e1−e2
e2

> δ do

6: (A, X) = Smooth-NMF(Y , A, X) ▷ Smooth rows
Y = AX⊤, YΩ = WΩ

8: (X , A) = Smooth-NMF(Y ⊤, X , A) ▷ Smooth columns
E = 0, EΩ =

(
W −AX⊤

)
Ω = 0

10: e1 = e2, e2 = ∥E∥F

Y = AX⊤, YΩ = WΩ

12: return Y

| 141

7 | Application: Using NMF with splines for image completion

nating Direction Method of Multipliers (ADMM) [48]. The ADMM update
of A solves

min
A,B

1
2∥Y −SBX⊤∥2

F + Φ(A) such that SB = A (7.2)

where Φ(A) is the indicator function of the nonnegative set (Φ(a) = 0
if a ≥ 0, +∞ otherwise). Applying ADMM on this problem gives the
following iterative scheme, using [ξ]+ = max{0, ξ}, τ > 0 and the pseudo-
inverse S† = (S⊤S)−1S⊤:

Bt+1 = S†[Y X + Λt + ρAt](X⊤X + ρIr)−1

At+1 =
[
SBt+1 − ρ−1Λt]

+
, Λt+1 = Λt + ρ(At+1 −SBt+1).

Algorithm 7.1 is able to complete images properly but at the cost of a rel-
atively high CPU time compared to existing approaches. We propose to
tackle the smooth-NMF subproblem using LP-HALS from Chapter 3 on
splines, that we denote as S-HALS. This method is potentially faster than
the ADMM approach, especially when fast heuristics are used to project
splines onto their nonnegative set. Indeed, it has been shown that using
heuristics for the projection step could benefit the algorithm in terms of
CPU time without impacting significantly its accuracy (see Section 5.3 and
Chapter 6).

Our S-HALS method alternates between updates of matrix B (the coeffi-
cients of A = SB) and matrix X . This algorithm is explained in details in
Algorithm 3.1, and is recalled in Algorithm 7.2 below. Projection in line 5
of updateB can be done exactly (see Section 3.2.2), but instead we choose
to compute it in an approximate but much faster way: we project each B-
Spline coefficients on the nonnegative set, which ensures that the resulting
spline is nonnegative (although not all nonnegative splines can be obtained
in this way). This is a heuristic way to perform the projection with the ad-
vantage of being very fast.

Both S-HALS and the ADMM algorithm are limited to 500 iterations (we
observed during our tests that it was necessary to allow the algorithm to
make a few hundred iterations to reach a satisfactory convergence) and
are stopped when the relative residual is below 10−7. Let At and X t be the

142 |

Image completion using splines in both factors | 7.2

matrices obtained at iteration t. The relative residual is:

∥Y −AtX t⊤∥ − ∥Y −At+1X t+1⊤∥
∥Y −At+1X t+1⊤∥

< 10−7. (7.3)

Algorithm 7.2 S-HALS (a Smooth-NMF method)

M = S⊤S, Z = S⊤Y , M1 = M−1Z

1: function UPDATEB(M1, B, X)
2: P = M1X , Q = X⊤X

3: for B:k in B do
4: t = P:k −∑j ̸=k B:jQjk

5: B:k ← Projection(t/Qkk)

6: return B

function UPDATEX(Z, M , B, X)
P = Z⊤B, Q = B⊤MB

for Xk: in X do
t = Pk: −∑j ̸=k QkjXj:

Xk: ← max(0, t/Qkk)

return X

7.2 Image completion using splines in both factors

In Algorithm 7.1, the image is smoothed by alternatively smoothing its
rows and its columns. We consider in this section the possibility to impose
both A and X to contain splines at the same time, in order to smooth both
rows and columns of the image at the same time. Given a matrix W ∈
Rm×n whose entries are known on support Ω, we aim to minimize the
distance between W and AX⊤ on Ω . Moreover, we decide to have the
possibility to use a guess of the solution, Y , and we aim to minimize the
distance between Y and AX⊤ on Ω (the entries not belonging to Ω). A
parameter λ allows us to balance the weight between these two distances.
Let SA be the B-Spline basis for splines in A, with BA the coefficients of
the splines, and similarly for SX and BX . The problem is thus

min
BA≥0,BX≥0

C(BA, BX) = ∑
(i,j)∈Ω

(
Wi,j − (SABAB⊤X S⊤X)i,j

)2 (7.4)

+ λ ∑
(i,j)∈Ω

(
Yi,j − (SABAB⊤X S⊤X)i,j

)2 (7.5)

We solve this problem using an approach close to S-HALS. The gradient of

| 143

7 | Application: Using NMF with splines for image completion

C(BA, BX) with respect to a column of BA is

∂C(BA, BX)

BA :k
=2 ∑

(i,j)∈Ω
SA
⊤
i:
(
Wi,j − (SABAB⊤X S⊤X)i,j

)
SX j:BX :k

+ 2λ ∑
(i,j)∈Ω

SA
⊤
i:
(
Yi,j − (SABAB⊤X S⊤X)i,j

)
SX j:BX :k (7.6)

We then equal the gradient to zero, to obtain

∑
(i,j)∈Ω

SA
⊤
i: SAi:BA :kBX

⊤
:k SX

⊤
j: SX j:BX :k + λ ∑

(i,j)∈Ω

SA
⊤
i: SAi:BA :kBX

⊤
:k SX

⊤
j: SX j:BX :k

= ∑
(i,j)∈Ω

SA
⊤
i:
(
Wi,j −∑

l ̸=k
SAi:BA :lBX

⊤
:l SX

⊤
j:
)
SX j:BX :k

+ λ ∑
(i,j)∈Ω

SA
⊤
i:
(
Yi,j −∑

l ̸=k
SAi:BA :lBX

⊤
:l SX

⊤
j:
)
SX j:BX :k.

Let Ωi be the set of indices j such that (i, j) ∈ Ω, and similarly for Ωi.
Suppose also that DX is a diagonal matrix, with diagonal element DXi,i =

∑j∈Ωi
BX
⊤
:k SX

⊤
j: SX j:BX :k + λ ∑j∈Ωi

BX
⊤
:k SX

⊤
j: SX j:BX :k. We have then

BA :k = (S⊤A DXSA)
−1
(

∑
(i,j)∈Ω

SA
⊤
i:
(
Wi,j −∑

l ̸=k
SAi:BA :lBX

⊤
:l SX

⊤
j:
)
SX j:BX :k

+ λ ∑
(i,j)∈Ω

SA
⊤
i:
(
Yi,j −∑

l ̸=k
SAi:BA :lBX

⊤
:l SX

⊤
j:
)
SX j:BX :k

)
.

Finally, we threshold the coefficients to zero. This is not the optimal update
of BA:k when BA:j , j ̸= k and X are fixed, but has the advantage of being
very fast:

BA
∗
:k =

[
BA :k

]
+

. (7.7)

As the problem is symmetric in its two factors, we can derive the updates

144 |

Image completion using splines in both factors | 7.2

of the columns of X from the updates of the columns of A:

BX
∗
:k =

[
(S⊤X DASX)

−1
(

∑
(i,j)∈Ω

SX
⊤
i:
(
W⊤

i,j−∑
l ̸=k

SXi:BX :lBA
⊤
:l SA

⊤
j:
)
SA j:BA :k

+ λ ∑
(i,j)∈Ω

SX
⊤
i:
(
Y ⊤i,j −∑

l ̸=k
SXi:BX :lBA

⊤
:l SA

⊤
j:
)
SA j:BA :k

)]

+

(7.8)

We can then solve this problem using an iterative algorithm, presented
in Algorithm 7.3. As each inner iteration of this algorithm is very time-
consuming, we limit the number of inner iterations to 10. We observed
during experiments that this limit was enough. A particular case of this
Algorithm is when λ = 0. In this case the guess of W , namely Y , is not
used. It makes therefore no sense to repeat the main loop in this case, and
the limit number of inner iterations is increased to 500. Note that even
when λ is chosen as different from 0, we use λ = 0 for the very first itera-
tion, as no previous guess is known at this stage.

Figure 7.1 shows results for various values for λ on an image of a boat
with 512× 512 pixels, with 90% of missing pixels. B-Spline basis for both
A and X contains 100 interior knots equally spaced in interval [0, 1], and
the splines are discretized on 512 equally spaced points in [0, 1], see next
section for more details on the tests.

0 1
18

1
9
3
18

2
9

3/9 4/9 5/9 6/9 7/9 8/9 1

λ

200

400

600

800

Ti
m
e
(s
ec
)

Evolution of time
2BSA-IC

0 1
18

1
9
3
18

2
9

3/9 4/9 5/9 6/9 7/9 8/9 1

λ

16.4

16.6

16.8

17.0

17.2

17.4

SI
R

Evolution of signal to interference ratio (SIR)
2BSA-IC

Fig. 7.1 Performance of 2BSA-IC algorithm with various values of λ on
an image with 90% of missing pixels. Evolution of time (left) and signal to
interference ratio (right).

We observe that the needed time increases with λ , but the most precise λ

| 145

7 | Application: Using NMF with splines for image completion

Algorithm 7.3 2B-Splines-based Algorithm for Image Completion
(2BSA-IC)

This algorithm uses NMF over splines in both factors to smooth both row
and columns of the resulting image at the same time.
Input: W ∈ Rm×n is the incomplete matrix with support Ω. λ0 is the
parameter of the algorithm, by default λ0 = #Ω

#Ω
. Y is an initial guess for

W . If Y is not provided, the very first λ is equal to 0. B0
A ∈ R

dA×r
+ and

B0
X ∈ R

dX×r
+ are initialized randomly if not provided.

function 2BSA-IC(W , Ω, λ0, Y , B0
A ≥ 0, B0

X ≥ 0, δ = 10−2, ftol =
10−7)

2: e2 = C(BA, BX), e1 = e2 + δ + 1
if Y is None then

4: λ = 0, Y = 0m×n

while e1−e2
e2

> δ do ▷ Outer loop
6: it = 0

r2 = C(BA, BX), r1 = r2 + 1 + f tol

8: while it < 10 and r1−r2
r2

>ftol do ▷ Inner loop
for k in 0, . . . , r do

10: BA :k = Equation (7.7)

for k in 0, . . . , r do
12: BX :k = Equation (7.8)

if λ == 0 and it == 0 then ▷ Only first it. using λ = 0
14: λ = λ0

r1 = r2, r2 = C(BA, BX)
16: it = it + 1

e1 = e2, e2 = C(BA, BX)

18: Y = SABASX
⊤BX

⊤

return Y

146 |

Experiments | 7.3

(with higher SIR) are λ = 1/18, 1/9, 3/18. Choosing λ = #Ω
#Ω

= 1
9 is thus a

reasonable choice (#Ω is the cardinality of Ω, i.e. the number of elements in
Ω). Note that using λ = 1 has similarities with BSA-IC using the S-HALS
algorithm presented in the previous section. Indeed, when λ = 1, it is not
necessary to split the problem in two sums ∑(i,j)∈Ω and ∑(i,j)∈Ω, but we

can sum on all (i, j) instead, using matrix W :

W i,j =

{
Wi,j if (i, j) ∈ Ω
Yi,j else

This simplifies and accelerates the computation a lot. However, in the pre-
sented test we did not use this acceleration. As this special case turns out to
be much less accurate compared to the others, we decided to not improve
our implementation.

On the other hand, based on the results for 2BSA-IC, we considered to use
also a λ in the BSA-IC Algorithm (7.1), but results were not convincing in
this case. Moreover, algorithms where much slower than when not using
λ. Those results are therefore not presented in what follows.

7.3 Experiments

Methods to perform image completion are compared on two criteria: the
needed time and the signal to interference ratio (SIR). The needed time
should be as low as possible, while the SIR computes the similarity be-
tween the obtained image and the original (ground truth) image (before
removing pixels). It should therefore be as high as possible. This measure
has been presented in Equation (2.4). We use cubic B-Splines as basis for
splines. The tests presented below are performed on a 512× 512 boat im-
age (see Figure 7.6) with 90% of missing pixels. The pixels are removed
randomly.

Choosing the number of B-splines to be used is an important component
in all the proposed algorithms: one can either choose a fixed number (50 or
100), or perform a run with some number of splines and use its final image
as input for a subsequent run with more splines (we tried 50 → 100 and
25→ 50→ 100). Two more types of runs are reported: in an ’inner’ run, as
suggested in previous work [106], the number of B-splines is incremented

| 147

7 | Application: Using NMF with splines for image completion

progressively from 3 up to 100 during the update of matrices A and X

[140]. However, we did not find that tweak, where the increase happens
during each iteration, to be very effective. Instead we designed an ’outer’
run, similar in spirit to the successive 50 → 100 and 25 → 50 → 100 runs,
where a different number of B-Splines is used at each iteration: we use
min(3 · i + 10, 100) splines for the ith iteration (increasing the number of
splines by 3 at each iteration prevents too quick stagnation). All tests are
performed with a rank r = 50.

Figure 7.2 (left) establishes that our methods (Algorithm 7.1 with S-HALS,
and 2BSA-IC) are both more efficient than Algorithm 7.1 with ADMM
(more than four times faster). The signal to interference ratio (SIR) is on av-
erage higher for S-HALS than for the other methods, even though ADMM
is competitive in terms of accuracy when the number of splines is increased
progressively. Increasing progressively the number of splines is a good
idea and provide the most accurate results for all methods, and in partic-
ular the ’outer’ increase of splines is the best. An explanation for this im-
provement could be that the image is first reconstructed from its low-rank
elements, and then improved [134].

50 100 50-100 25-50-100 Outer Inner
number of splines

101

102

Ti
m

e
(s

ec
)

Evolution of time
ADMM S-HALS 2BSA-IC

50 100 50-100 25-50-100 Outer Inner
number of splines

16.0

16.5

17.0

17.5

18.0

SI
R

Evolution of signal to interference ratio (SIR)
ADMM S-HALS 2BSA-IC

50 100 50-100 25-50-100 Outer Inner
number of splines

16.0

16.5

17.0

17.5

18.0

SI
R

Evolution of signal to interference ratio (SIR)
ADMM S-HALS 2BSA-IC

Fig. 7.2 Performance of the methods with varying number of B-Splines.
The y-axis for time is in logarithmic scale.

We also analyze the methods with different choices of factorization rank
r, using r = 25, r = 50 or r = 100. We include in the comparison a case
where r is increased at each iteration: r = 25 + 5 · i (Evolutive), inspired
from [134]. All methods are now tested with an ’outer’ increment of the
number of splines, as it is the most efficient. We observe in Figure 7.3 that

148 |

Experiments | 7.3

all methods obtain better results with higher rank, but at the cost of more
computational effort. For example, for ADMM, the benefits for r = 100
compared to r = 50 is small compared to the increase in time. Moreover,
using an evolutive rank is not interesting as it is not significantly better nor
faster than using a constant rank

25 50 100 Evolutive
rank

102

103

Ti
m

e
(s

ec
)

Evolution of time
ADMM S-HALS 2BSA-IC

25 50 100 Evolutive
rank

17.2

17.4

17.6

17.8

18.0

18.2

18.4

SI
R

Evolution of signal to interference ratio (SIR)
ADMM
S-HALS
DIC

50 100 50-100 25-50-100 Outer Inner
number of splines

16.0

16.5

17.0

17.5

18.0

SI
R

Evolution of signal to interference ratio (SIR)
ADMM S-HALS 2BSA-IC

Fig. 7.3 Performance of the methods with varying rank. The y-axis for
time is in logarithmic scale.

Let us now observe the behavior of the algorithms when they are many
missing pixels. The methods are tested with rank r = 100 and an ’outer’
increment in the number of splines. We observe in Figure 7.4 that increas-
ing the number of missing pixels decreases the accuracy of the algorithms,
which is quite logical. However, the degradation is rather small and linear
when less than 90% of pixels are missing, while the degradation becomes
exponential when more than 90% of pixels are missing, the problem be-
coming much more difficult in this case. For example, when 99% of pix-
els are missing, Algorithm 7.1 using both S-HALS and ADMM is highly
degraded, and the recovered SIR is very low (only 6dB), while the needed
time increases significantly. However, the performance of 2BSA-IC is much
less degraded: the needed time does not increase, and the SIR stays around
13-14 dB. This is illustrated in Figure 7.7.

Let us now observe what happens when noise is added to the data (i.e. the
known points of the input image). The input image has 90% of missing
pixels, and the methods are tested with rank r = 100 and an ’outer’ in-
crement of the number of splines. We observe in Figure 7.5 that when the
noise is not too high (SNR above 40 dB), the performances are not much

| 149

7 | Application: Using NMF with splines for image completion

70 80 90 95 97 99
% missing pixels

102

103

Ti
m
e
(s
ec
)

Evolution of time
ADMM S-HALS 2BSA-IC

70 80 90 95 97 99
% missing pixels

5.0

7.5

10.0

12.5

15.0

17.5

20.0

SI
R

Evolution of signal to interference ratio (SIR)
ADMM S-HALS 2BSA-IC

50 100 50-100 25-50-100 Outer Inner
number of splines

16.0

16.5

17.0

17.5

18.0

SI
R

Evolution of signal to interference ratio (SIR)
ADMM S-HALS 2BSA-IC

Fig. 7.4 Performance of the methods when the number of missing pixels
increase. The y-axis for time is in logarithmic scale.

impacted. When the noise level increases to a SNR of 20dB, the perfor-
mances are degraded a bit in terms of accuracy, and they are even more
degraded when noise level increase to an SNR of 10dB. Note however that
2BSA-IC is less impacted than the other methods and becomes better than
them in this case. From this case and the previous one (with the increas-
ing number of missing pixels), we can conclude that the 2BSA-IC method
is the most robust, even though it is a bit less accurate than the BSA-IC
Algorithm when only 90% of pixels are missing.

10 20 40 60 No Noise
noise level (dB)

101

102

103

Ti
m

e
(s

ec
)

Evolution of time
ADMM S-HALS 2BSA-IC

10 20 40 60 No Noise
noise

12

13

14

15

16

17

18

SI
R

Evolution of signal to interference ratio (SIR)
ADMM
HALS
DIC

50 100 50-100 25-50-100 Outer Inner
number of splines

16.0

16.5

17.0

17.5

18.0

SI
R

Evolution of signal to interference ratio (SIR)
ADMM S-HALS 2BSA-IC

Fig. 7.5 Performance of the methods for different levels of noise. The
y-axis for time is in logarithmic scale.

To illustrate the results obtained in this section, Figure 7.6 displays sev-

150 |

Experiments | 7.3

eral examples of recovered images with 90% of missing pixels, with rank
fixed to 100 for the 512 × 512 grayscale image and 50 for the 256 × 256
color images. For color images, algorithms were applied on each color
channel independently. This is not optimal as the color channels are not re-
ally independent. Extending our approaches to tensors or to multivariate
splines could therefore be a way to deal better with color images, which
we leave as interesting future work. All algorithms use an ’outer’ run with
a maximal number of splines equal to 100. We observe on all three images
that S-HALS is significantly faster and slightly more accurate than ADMM,
while 2BSA-IC is the fastest method but also the least accurate, although
its accuracy is close to that of the other two methods

Figure 7.7 displays several examples of recovered images with 99 % miss-
ing pixels. The other parameters are the same. We observe that all images
are significantly degraded when compared to Figure 7.6, but the images
obtained by 2BSA-IC are this time by far the best and this method is sig-
nificantly faster than the others. This illustrates well that 2BSA-IC is more
robust than BSA-IC. Both images also illustrate that S-HALS is more ap-
propriate than ADMM for BSA-IC as it is faster and slightly more accurate.

Some ideas for further improvement To improve the methods, one idea
is to impose the sparsity of the factors in addition to their smoothness,
imposed thanks to the splines. One could thus consider splines with few
non-zero coefficients. This could be done either by adding a regularization
term in the minimized cost functions, or during the projection. Indeed,
rather than simply setting all the negative coefficients of splines to zero,
one could consider keeping only the significant coefficients (either a small
number of coefficients, or only the coefficients above a certain value).

Alternatively, one could consider rational functions rather than splines in
the NMF. Indeed, as presented in Chapter 8, rational functions are smooth
and with some peaks, characteristics shared by images, which are gener-
ally smooth except at the edges of the objects. We leave the testing of these
two ideas for further research.

| 151

7 | Application: Using NMF with splines for image completion

Original image Input image ADMM S-HALS 2BSA-IC

0 100 200 300 400 500

0

100

200

300

400

500

(735 s. - 18.40) (89 s. - 18.42) (46 s. - 18.07)

0 50 100 150 200 250

0

50

100

150

200

250

(252 s. - 17.72) (43 s. - 18.22) (14 s. - 17.37)

0 50 100 150 200 250

0

50

100

150

200

250

(238 s. - 15) (37 s. - 15.52) (12 s. - 14.56)

Fig. 7.6 Example of recovered images for 90% of missing pixels. (CPU
time - SIR). The black pixels in input image are replaced by white pixels in
order to better handle the given information.

152 |

Experiments | 7.3

Original image Input image ADMM S-HALS 2BSA-IC

0 100 200 300 400 500

0

100

200

300

400

500

(2485 s. - 4.78) (257 s. - 5.69) (43 s. - 12.69)

0 50 100 150 200 250

0

50

100

150

200

250

(640 s. - 2.89) (128 s. - 3.28) (56 s. - 12.34)

0 50 100 150 200 250

0

50

100

150

200

250

(652 s. - 2.59) (76 s. - 2.97) (5 s. - 10.63)

Fig. 7.7 Example of recovered images for 99% of missing pixels. (CPU
time - SIR). The black pixels in input image are replaced by white pixels in
order to better handle the given information

| 153

8
NMF using rational

functions

We observed in previous chapters that using polynomials or splines as fac-
tors A and/or X in NMF may improve the quality of the factorization and
allow it to be less sensitive to noise. When the columns of the input ma-
trix Y are samples of nonnegative continuous signals, mostly smooth with
possibly some peaks, it makes sense to consider that they are samples of
nonnegative rational functions. Indeed, when the denominator of a ratio-
nal function is close to zero, it results in a peak in the signal. In fact, rational
functions are able to represent a large range of shapes and curves [64].

NMF over rational functions, named R-NMF, is presented in Section 8.1.
In Section 8.2, we prove that unlike standard NMF, R-NMF is essentially
unique under mild conditions, which is very important when the objective
is to recover the sources behind data, as in blind source separation.

Unlike for nonnegative polynomials or splines, the set of nonnegative ra-
tional functions of fixed degree is not convex, and the projection on it is
not easy to compute, to use the H-HALS algorithm. Therefore, we explore
in Section 8.4 several methods to approximately project on nonnegative ra-
tional functions, with the goal to determine whether some methods lead to
better projections and/or if some are more adapted for R-NMF, i.e. lead to

| 155

8 | NMF using rational functions

better factorizations.

One of the main advantages of HALS for standard NMF is the simplicity
of its iterations, allowing for a quick resolution of the problem. However,
when using rational functions, each iteration is difficult due to the pro-
jection. It is thus questionable whether this approach is suitable for this
problem. Therefore, we consider other block-coordinate descent (BCD) ap-
proaches involving fewer blocks in Section 8.3, the R-ANLS and R-NLS
methods. Those approaches solve at each iteration larger problems closer
to the original problem. Methods are then analyzed and compared in Sec-
tion 8.5, where we find that R-HANLS is suited for large-scale data and/or
to obtain quickly a good factorization, while R-ANLS can obtain a more
accurate factorization but is slower and more resource-demanding. R-NLS
can only be used for very small datasets.

Moreover, R-NMF is more accurate than NMF using polynomials, splines,
or vectors on various datasets, like semi-synthetic datasets containing mix-
ture of real reflectance signals, and on a real problem, the Indian Pines
classification problem.

8.1 The NMF using rational functions (R-NMF) problem

Consider an input data matrix Y ∈ Rm×n, containing in each of its columns
the samples of a continuous signal taken in m known discretization points
τ = {τi}m

i=1 ⊂ R, the sampling points need not to be taken equidistantly.
Let T be the interval on which τ is defined: T = [τmin, τmax], and Fd,T

be the set of rational functions of degree d nonnegative on T. The goal of
R-NMF is to approximate the columns of Y , i.e. Y:j for j = 1, 2, . . . , n, as a
nonnegative linear combination of r functions in Fd,T

Y:j ≃
r

∑
k=1

Ak(τ)Xjk ∀j. Ak ∈ Fd,T
+ ∀j , X ∈ Rn×r

+ (8.1)

However, as the input signals are known only at points τ , to evaluate the
quality of the factorization, we focus on the discretization of Fd,T on τ :
Rd,T

τ = { f (τ)| f ∈ Fd,T} ⊂ Rm
+, and use the Frobenius norm ∥ · ∥F of the

reconstruction error of Y as objective function.

Definition 8.1 (R-NMF). Given an input matrix Y ∈ Rm×n, discretization

156 |

The NMF using rational functions (R-NMF) problem | 8.1

points τ ∈ Rm, the set Rd,T
τ of rational functions of degree d nonnegative

on T and evaluated on τ , and a factorization rank r ≥ 1. R-NMF aims to
compute a nonnegative matrix A ∈ Rm×r

+ containing elements of Rd,T
τ in

each of its columns, i.e. A:k ∈ Rd,T
τ ∀k, and a nonnegative matrix X ∈

Rn×r
+ solving

min
A:k∈Rd,T

τ ,X∈Rn×r
+

n

∑
j=1

∥∥∥Y:j −
r

∑
k=1

A:kXjk

∥∥∥
2

F
. (8.2)

The choice of rational functions is motivated by their ability to represent
a large range of shapes and their utility in applications; in particular they
generalize polynomials or splines [120], and they represent the natural way
of modeling linear dynamical systems in the frequency domain [64].

A rational function is defined as the ratio of two polynomials: f (x) = h(x)
g(x) .

Throughout this work, we consider univariate rational functions with fixed
degree d = (d1, d2), such that h is of degree d1 and g of degree d2. As
the degree is fixed, the set of rational functions is not a vector space (for
example it is easy to check that 1

x + 1
x+1 is of degree (1, 2) and not (1, 1)).

Nevertheless, this set can be parametrized. Indeed, a rational function non-
negative on a fixed interval can be described as a ratio of two polynomi-
als nonnegative on the same interval [68], and nonnegative polynomials
can be parametrized using sums of squares [101]. Moreover, as it is often
undesirable for factors to tend to infinity, the denominator is imposed to
be nonzero in the considered interval. More details are presented in Sec-
tion 2.3.3. Consider for example the case of a rational function of degree
d = (2d′1, 2d′2) nonnegative on [−1, 1]. Let V d

τ be the Vandermonde-like
matrix for the chosen basis of polynomials (in our case, the Chebyshev ba-
sis). Using the coefficients (h1, h2, g1, g2) ∈ Rd′1+1×Rd′1 ×Rd′2+1×Rd′2 the
evaluation of this function on points τ can be written as (the multiplication
’·’ and the division are performed element-wise):

fτ (h1, h2, g1, g2) =
(V

d′1
τ h1)2 + (1− τ 2) · (V d′1−1

τ h2)2

(V
d′2

τ g1)2 + (1− τ 2) · (V g′2−1
τ g2)2 + ϵ

. (8.3)

However, this representation is redundant, as multiplying the numerator
and the denominator by the same constant leads to the same rational func-

| 157

8 | NMF using rational functions

tion with other coefficients. Therefore, we impose the denominator g to be
monic using (g1)d′2+1 = 1

2

√
8 + (g2)

2
d′2

(see Equation (2.26)).

8.2 Uniqueness

In this section, we focus on exact factorizations Y = AX⊤. In such a
factorization, if the column A:k is scaled by a factor αk while the column
X:k is scaled by factor 1

αk
, AX⊤ remains unchanged, as it is the sum of

the same rank-one terms. Moreover, applying the same permutation to the
columns of A and X also keeps AX⊤ unchanged. This defines essentially
unique factorizations.

Definition 8.2. Y = AX⊤ is said to have an essentially unique factor-
ization if all the factorizations of Y can be obtained only using consistent
permutations and scalings/counterscaling of columns of A/X .

As shown in Lemma 8.1, a matrix Y with factorization Y = AX⊤ admits
an infinite number of other factorizations not resulting from permutations
and scalings. To have an essentially unique factorization, we must thus
add constraints on A and/or X . In NMF, the factors A and X are nonneg-
ative. This constraint restricts the possibilities of equivalent factorizations
and allows, under certain conditions, for an essentially unique factoriza-
tion. However, these conditions are quite restrictive, and are not met in
general, see [43] and [46, Chap. 4] and the references therein.

Lemma 8.1. Let Y = AX⊤, with A ∈ Rm×r, X ∈ Rn×r, and rank(Y) = r.
Matrices A′ ∈ Rm×r and X ′ ∈ Rn×r factorize Y if and only if A′ = AQ and
X ′⊤ = Q−1X⊤ where Q ∈ Rr×r is an invertible matrix.

Proof. For all invertible matrices Q ∈ Rr×r, A′ = AQ and X ′⊤ = Q−1X⊤

have has product Y . On the other hand, suppose A′X ′⊤ = AX⊤. As
rank(Y) = r, matrices A, X , A′ and X ′ must be rank r as well, and matri-
ces A′⊤A′ and X ′⊤X ′ are invertible. We have

A′X ′⊤ = AX⊤ ⇒ X ′⊤ = (A′⊤A′)−1A′⊤AX⊤ = QAX⊤

and A′X ′⊤ = AX⊤ ⇒ A′ = AX⊤X ′(X ′⊤X ′)−1 = AQX .

158 |

Uniqueness | 8.2

As A′ and A have rank r, QX must be invertible. We have

Q−1
X = QA ⇔ A′⊤A′X ′⊤X ′ = A′⊤AX⊤X ′

And therefore A′ = AQX and X ′⊤ = Q−1
X X⊤.

If we consider that the columns of matrix A are samples of rational func-
tions, it is possible to prove that the product AX⊤ is essentially unique un-
der certain conditions on the rational functions contained in the columns
of A [32]. Indeed, at most one column can contain a polynomial and the
poles of all rational functions must be distinct. The number of discretiza-
tion points must also be greater than twice the sum of the degrees of the
rational functions in A, for example m > 2r(d1 + d2) in R-NMF.

In R-NMF, the considered rational functions must be nonnegatives and of
the same degrees. The exact R-NMF problem described below is thus a
special case of [32]. Theorem 8.1 shows that it is possible to ensure that
exact R-NMF is essentially unique with milder conditions on A.

Definition 8.3. Exact R-NMF Given Y ∈ Rm×n
+ , τ , Rd,T

τ and r as in R-
NMF, compute, if possible, A ∈ Rm×r

+ with A:k ∈ Rd,T
τ for all k and X ∈

Rn×r
+ such that Y = AX⊤.

Let us introduce some useful lemmas and notations. A rational function
f (x) of degree d = (d1, d2) can be written as follows, with α ̸= 0:

f (x) =
α ∏d1

i=1(x− zi)

∏d2
j=1(x− pj)

zi, pj ∈ C, zi ̸= pj ∀i, j, (8.4)

with Z = {zi}d1
i=1 the zeros of f (x), and P = {pj}d2

j=1 its poles, includ-
ing the complex zeros/poles. In case of multiple poles, the poles are con-
sidered as distinct. Let f1, f2 be two rational functions with poles P1 =

{p1, p2, p3} with p1 = p2 = p3 and P2 = {p1, p2} respectively. The set of
all poles is {p1, p2, p3} and the set of unique poles, i.e. poles appearing in
exactly one function is {p3}.

Lemma 8.2. Let { fl}r
l=1 be a collection of rational functions in the form (8.4),

with Pl = {pl j}d2
j=1 holding the poles of fl and Zl = {zli}d1

i=1 holding the zeros
of fl . Let S = {sk}m

k=1 be the set of unique poles, i.e. poles appearing in exactly
one function. Then any function f =∑l βl fl with βl ̸= 0 has a denominator with

| 159

8 | NMF using rational functions

degree at least equal to the cardinality of S (=m).

Proof. Let U be the set of all poles in { fl}r
l=1. The function f can be written

as:

f (x) =
∑l βlαl ∏d1

i=1(x− zli)∏q∈U\Pl
(x− q)

∏q∈U (x− q)
.

We have S ⊆ U , and all sk are therefore potential poles of f . Let us check
if they can be simplified by the numerator or not.

If sk ∈ S is a pole appearing only in Pl , we have sk ∈ U \ Pi ∀i ̸= l.
Therefore, when x = sk, only the lth term is non-zero in the numerator.
Moreover, sk /∈ U \ Pl and sk ̸= zli ∀i as sk is a pole of fl . The numerator
is therefore nonzero when x = sk and sk is a pole of f . As this is valid for
all sk ∈ S , rational function f has denominator degree at least equal to the
cardinality of S = m.

Lemma 8.3. Let { fl}r
l=1 be a collection of r rational functions in form (8.4), of

degree d = (d1, d2), and τ = {τi}m
i=1 be a set of distinct discretization points

with m > d1 + rd2, such that the denominators of functions fl do not cancel at
these points. If there exist a rational function f ∗ of degree d such that f ∗(τ) =

∑r
l=1 βl fl(τ), then f ∗ = ∑r

l=1 βl fl .

Proof. Let Zl = {zli}d1
i=1 and Pl = {pl j}d2

j=1 be the zeros and the poles of fl

and Z̃ = {z̃i}d1
i=1 and P̃ = { p̃j}d2

j=1 be the zeros and poles of f ∗. We have

f ∗(τ) =
r

∑
l=1

βl fl(τ)

⇔ α̃ ∏d1
i=1(τ − z̃i)

∏d2
j=1(τ − p̃j)

=
∑r

l=1 βlαl ∏i(τ − zli)∏k ̸=l ∏d2
j=1(τ − pkj)

∏r
l=1 ∏d2

j=1(τ − pl j)

⇔
(

α̃
d1

∏
i=1

(τ − z̃i)
)(r

∏
l=1

d2

∏
j=1

(τ − pl j)
)
= (8.5)

(d2

∏
j=1

(τ − p̃j)
)(r

∑
l=1

βlαl

d1

∏
i=1

(τ − zli)
r

∏
k ̸=l

d2

∏
j=1

(τ − pkj)
)

(8.6)

160 |

Uniqueness | 8.2

Elements (8.5) and (8.6) are polynomials of degree at most d1 + rd2, eval-
uated at discretization points τ . As τ contains m distinct points with
m > d1 + rd2, these two polynomials must be equal everywhere. There-
fore, f ∗ = ∑r

l=1 βl fl .

We now present conditions on matrices A and X that imply that the exact
R-NMF AX⊤ is essentially unique.

Theorem 8.1. Let A ∈ Rm×r and X ∈ Rn×r be of rank r. Suppose all columns
of A are the discretizations of rational functions Aj for j = 1, 2, . . . , r, of degree
(d1, d2) on m distinct points τ = {τi}m

i=1, with m > d1 + rd2 and τ not con-
taining poles of the functions Aj. Suppose that for all sets containing 2 functions
or more, they are at least d2 + 1 unique poles, i.e. poles appearing in exactly one
function. Then the exact R-NMF AX⊤ is essentially unique.

Proof. Let A′, X ′ be such that A′X ′⊤ = AX⊤. As A, X are of rank r,
we know by Lemma 8.1 that each column A′:j can be written as a linear
combination of the columns of A: A′:j = ∑r

l=1 βlA:l = ∑r
l=1 βl Al(τ). To be

valid, A′:j must be the discretization of a rational function of degree (d1, d2),
we name this function A′j. As m > d1 + rd2, by Lemma (8.3), A′j must be
the linear combination of the rational functions in A: A′j = ∑l βl Al .

To avoid the trivial case of permutation and scaling, there must be at least
one A′:j that is the combination of two or more columns of A. As all sets
{Aj} containing two functions or more have at least d2 + 1 unique poles,
using Lemma 8.2 we know that A′j has denominator degree at least d2 + 1.
This is in contradiction with the fact that A′j is a rational function with
degree (d1, d2). It is therefore not possible to find a valid and not trivial
A′ such that A′X ′⊤ = AX⊤ and the factorization AX⊤ is essentially
unique.

Corollary 8.2. Let A ∈ Rm×r and X ∈ Rn×r be of rank r, with the columns
of A obtained through evaluation of rational functions of degree (d1, d2) on m
distinct points τ ∈ Rm, with m > d1 + rd2, and τ not containing poles of
functions in A. If each function has at least

⌈ d2+1
2
⌉

poles distinct from all other
functions, the exact R-NMF AX⊤ is essentially unique.

Note that the nonnegativity constraint is not necessary for Theorem 8.1
and Corollary 8.2 to hold. Nevertheless, when using a representation like
(8.3), functions Aj does not have real poles on interval T = [τmin, τmax],

| 161

8 | NMF using rational functions

thanks to the ϵ added to the denominator. This means that in this case the
condition “τ not containing poles of functions in A” is always met.

8.3 Algorithms for R-NMF

In this section, we present three different block decompositions of R-NMF
leading to different algorithms.

m

n

AX⊤

1 block

=

m

r n

r
A

X⊤

2 blocks

=
A:1

X:1
⊤

+ · · ·+
A:r

X:r
⊤

2r blocks

Fig. 8.1 Illustration of the three block-decomposition.

8.3.1 General Nonlinear Least Squares approach (R-NLS)

We substitute in (8.2) A:k by fτk from Equation (8.3), and Xjk by C2
jk to

express the R-NMF problem in an unconstrained way:

Algorithm 8.1 Nonlinear Least Squares

function R-NLS(Y)

A, X ← argmin
h1k ,h2k ,

g1k ,g2k ,C

n

∑
j=1

∥∥∥Y:j −
r

∑
k=1

fτk (h1k, h2k, g1k, g2k)C
2
jk

∥∥∥
2
. (8.7)

return A, X

This problem can be solved using a standard nonlinear least squares solver.
The same approach for polynomials has been proposed in [33]. Note how-
ever that in the cited work a compression method is suggested to pre-
process the data and reduce the complexity of the problem, but this is not
possible in our case because rational function are not linearly parametriz-

162 |

Algorithms for R-NMF | 8.3

able, that is, they cannot be described using a linear combination of some
basis elements.

8.3.2 Using Alternating Nonlinear Least Squares (R-ANLS)

Using all-at-once algorithms as R-NLS to solve NMF problems may be
computationally costly, especially for large problems. Therefore, many
NMF algorithms consider instead alternating schemes [27],[74],[80],[84].
The problem is then solved by alternating on A and X considering the
other matrix as fixed, as sketched in Algorithm 8.2. As fτk is a nonlinear
function, each sub-problem is nonlinear, and this method is called alternat-
ing nonlinear least squares.

Algorithm 8.2 Alternating Nonlinear Least Squares

function R-ANLS(Y , A, X)
while Stop condition not encountered do:

A←argmin
h1k ,h2k ,
g1k ,g2k

n

∑
j=1

∥∥∥Y:j −
r

∑
k=1

fτk (h1k, h2k, g1k, g2k)Xjk

∥∥∥
2

(8.8)

X ←
(

argmin
C∈Rn×r

n

∑
j=1

∥∥∥Y:j −
r

∑
k=1

A:kC2
jk

∥∥∥
2
)2

(8.9)

return A, X

Problems (8.8) and (8.9) are unconstrained and can be solved using a stan-
dard nonlinear least squares solver. Note that problem (8.9) is separable in
n independent sub-problems, as the rows of X , are independent (which is
not the case for the rows of A):

Xj: ←
(

argmin
Cj:∈Rr

∥∥∥Y:j −
r

∑
k=1

A:kC2
jk

∥∥∥
2
)2

∀j ∈ {1, · · · , n}.

8.3.3 Using Hierarchical Alternating Nonlinear Least Squares (R-HANLS)

A popular and effective approach for NMF is the Hierarchical Alternat-
ing Least Squares method (HALS). This method further decomposes the

| 163

8 | NMF using rational functions

problem in smaller blocks: the columns of A/X are updated successively,
considering all the other elements as fixed [27]; see also [47]. Because of
the quadratic structure of the objective function, minimizing (8.2) when all
variables are fixed except a column of A or X can be done by projecting the
unconstrained minimizer on the corresponding feasible region (see Section
5.2 and in particular Lemma 5.2). This region is the setRd,T

τ of nonnegative
rational functions with fixed degrees (for A), or the set Rn

+ of nonnegative
vectors (for X).

The unconstrained minimizer can easily be found for columns of A and X

by canceling the gradient. Algorithm 8.3 sketches this approach, using [·]S
for the projection on set S. The projection on Rn

+ is a simple thresholding
operation, setting all negative values to 0, while the projection on Rd,T

τ is
not trivial and discussed in the next section. Moreover, Equation (8.11)
is separable: the value of Xik can be computed independently from Xjk,
but this is not the case for A:k in Equation (8.10), as the projection is not
separable unlike the thresholding operation.

Algorithm 8.3 Hierarchical Alternating Nonlinear Least Squares

function R-HANLS(Y , A, X)
while Stop condition not met do

for A:k ∈ A do

A:k ←
[

Y X:k −∑s ̸=k A:s(X:s)⊤X:k

∥X:k∥2

]

Rd,T
τ

(8.10)

for X:k ∈ X do

X:k ←
[

Y ⊤A:k −∑s ̸=k X:s(A:s)⊤A:k

∥A:k∥2

]

Rn
+

(8.11)

return A, X

8.4 Projection on nonnegative rational functions

As mentioned in Section 8.1, rational functions nonnegative on a fixed in-
terval T can be described as a ratio of two polynomials nonnegative on

164 |

Projection on nonnegative rational functions | 8.4

T, with denominator further imposed to be nonzero on T. Let Pd be the
set of polynomials of degree d, Pd

+(T) be the set of polynomials of degree
d nonnegative on interval T, Pd

++(T) be the set of polynomials of degree
d positive on interval T, and z be the result of evaluating a function z(x)
on discretization points τ = {τi}m

i=1: z = z(τ). Projecting z on rational
functions nonnegative on T is therefore equivalent to solving:

min
h∈Pd1

+ (T),g∈Pd2
++(T)

∥∥∥∥z − h(τ)
g(τ)

∥∥∥∥
2

2
. (8.12)

8.4.1 Existing approaches to approximate (nonnegative) rational functions

Solving problem (8.12) is not trivial, even when neglecting the nonneg-
ativity constraints. If many works exist in the unconstrained case, most
of them consider the infinity norm in (8.12) [121], and there are very few
works imposing nonnegativity: to the best of our knowledge this problem
is only addressed in [105, 113], for the infinity norm.

In the unconstrained case, many works are based on another representa-
tion of rational functions, namely the Barycentric representation which is
as follows

f (x) =
d

∑
i=1

ωizi
x− αi

/
d

∑
i=1

ωi
x− αi

. (8.13)

The advantage of this representation is that the basis used, that is, the sets
of {αi}d

i=1, can be adapted as the algorithm proceeds to avoid numerical
problems at nonsmooth points [42], or Froissart doublets [94]. Moreover,
when x → αi, then f (x) → zi, which allows one to optimize only the
ωi. The most common method using this representation is the adaptive
Antoulas–Anderson method (AAA) [94]. This method gradually increases
the size of the basis by judiciously choosing the αi points to be added. It
does not seek to optimize a particular norm, but is a good initialization
for future optimization [29, 42, 62, 73]. On the other hand, even if it is not
presented as such, one can see Vector Fitting as using the same representa-
tion. In this method, the whole basis is chosen at once. Then one optimizes
iteratively, using at each iteration the poles of the denominator found at
previous iteration as new basis [50].

In both methods, once the basis is chosen, the numerator h and denom-
inator g of f are found by optimizing ∥zg(τ) − h(τ)∥ rather than ∥z −

| 165

8 | NMF using rational functions

h(τ)/g(τ)∥. These methods give good results, but are difficult to use in
the context of nonnegative rational functions, because nonnegativity is dif-
ficult to express in Barycentric form.

In general, many methods try to get rid of the denominator which is diffi-
cult to optimize. Thus, [109] but also [87] and [125] have proposed to solve
the problem iteratively, using a guess of the denominator, gk−1, improved
throughout iterations, by solving

(gk, hk) = argmin
g∈Pd2 ,h∈Pd1

∥∥∥zg(τ)− h(τ)
gk−1(τ)

∥∥∥. (8.14)

In the same idea, a special case of the RKFIT algorithm from [12] focuses on
finding a good denominator by solving the following problem iteratively:

min
gk∈Pd2

∥∥∥zgk − h′(gk; z, gk−1)

gk−1

∥∥∥, (8.15)

where h′(gk; z, gk−1) = argmin
h

∥∥∥zgk−h
gk−1

∥∥∥. The problem in h when gk is fixed

has an analytic solution (the solution of a similar problem is presented in
Appendix B, in the explanation of RKFIT+). This reformulation allows for
fewer parameters to be optimized at each iteration.

When using the infinity norm in (8.12), if g(τi) is positive for all i, the prob-
lem can be rewritten as:

min
h∈Pd1 ,g(τi)>0,u

u s.t.
{

zig(τi)− h(τi) ≤ ug(τi)

h(τi)− zig(τi) ≤ ug(τi)
. (8.16)

If we fix u, then the problem is a feasibility problem, and therefore it is
possible to perform a bisection search on u to find the solution. This is the
method used in [105, 113] to solve the problem on nonnegative rational
functions. The numerator and the denominator of the rational functions
are modeled using Sum Of Squares (SOS), which makes problem (8.16) a
SDP feasibility problem for u fixed.

Finally, using Equation (8.3), it is possible to see problem (8.12) as an un-
constrained nonlinear least squares problem and to solve it using standard
methods [121].

166 |

Projection on nonnegative rational functions | 8.4

8.4.2 Proposed projection methods

Let us present five approaches to solve the projection problem on nonneg-
ative rational functions. Some details of implementation are omitted and
presented in Appendix B instead, to lighten the text.

Least Squares: Using Equation (8.3), the projection problem (8.12) can be
rewritten in an unconstrained way and solved using a standard nonlinear
least squares solver, as in R-NLS or R-ANLS.

Alternating Least Squares: The projection problem can also be divided in
two blocks, and solved using a BCD approach. Finding the best possible
numerator when the denominator g is fixed is a convex problem on poly-
nomials:

argmin
h∈Pd1

+ (T)

∥∥∥∥z − h(τ)
g(τ)

∥∥∥∥
2

. (8.17)

This problem is described in more details in Appendix B.

When the numerator h is fixed, finding the best denominator is a challenge
as the problem is not convex. Actually this problem is a special case of
the projection on rational functions, when the degree of the numerator is
equal to 0. So it can also be solved using nonlinear least squares solvers via
Equation (8.3). As second problem has fewer variables than the original
one, we can hope that it will be solved faster.

Algorithm 8.4 Alternating Least Squares
Input: z: signal to approximate, d1, d2: degree of the numera-
tor/denominator, τ : discretization points, g: initial guess of the denom-
inator, tol: tolerance of the algorithm

1: function ALTERNATING LS(z, d1, d2, τ , g, tol)
2: while errprev−err

err >tol do
3: h = argmin(8.17)
4: g = argmin

g∈Pd2
++(T)

∥z − h(τ)/g(τ)∥2.

5: f (τ) = h(τ)/g(τ)
6: errprev = err, err = ∥z − f (τ)∥2

7: return f (τ)

Conic: This method is inspired by Equation (8.14). From a given estimate
of the denominator g̃, we aim to recover the rational function by optimiz-

| 167

8 | NMF using rational functions

ing a problem without variables at the denominator. The problem we aim
to solve is not the same as in (8.14), and is motivated in Appendix B. In-
deed, we aim to approximate z by f (τ) = h(τ)

g̃(τ)+δ(τ)
, with g̃ ∈ Pd2

++(T)
fixed, by solving

argmin
h∈Pd1

+ (T),δ∈Pd2
+ (T)

∥∥∥∥
z g̃(τ) + zδ(τ)− h(τ)

g̃(τ)

∥∥∥∥
2

. (8.18)

Note that the parametrization f (τ) = h(τ)
g̃(τ)+δ(τ)

allows representing any
rational function nonnegative on a fixed interval, and that the cost function
of problem (8.18) is an upper bound of the cost function of problem (8.12).
Moreover, if z is a nonnegative rational function of appropriate degrees,
for any g̃ it is possible to find h and d such that cost function (8.18) is equal
to zero and z = f (τ).

The choice of g̃ is crucial for this algorithm: the smaller is δ, and therefore
the closer is g̃ from the denominator of the rational function, the closer are
(8.18) and (8.12). Thus problem (8.18) is solved iteratively, updating g̃ as
g̃ + δ. Note that to avoid to increase g̃ indefinitely, it is normalized so that
g̃(τm) = 1 before a new iteration, without loss of generality. This method
is sketched in Algorithm 8.5.

Algorithm 8.5 Conic
Input: z: signal to approximate, d1, d2: degree of the numera-
tor/denominator, τ : discretization points, g̃: initial guess of the denom-
inator, tol: tolerance of the algorithm

1: function CONIC(z, d1, d2, τ , g̃, tol)
2: while nb >tol and errprev−err

err >tol do
3: h, δ = argmin(8.18)
4: g = g̃ + δ

5: f (τ) = h(τ)
g(τ)

6: nb = ∥g̃− g/g(τm)∥2; g̃ = g/g(τm)
7: errprev = err; err = ∥z − f (τ)∥2

8: return f (τ)

RKFIT+: This approach is inspired from the RKFIT method presented in
[12]. The idea of this method is to first recover a good candidate for the
denominator and then find the best numerator knowing the denominator.

168 |

Projection on nonnegative rational functions | 8.4

This last problem is a convex problem on polynomials, and has been de-
scribed for the Alternating Least Squares method in Equation (8.17).

To find a good denominator, we consider (8.18) and replace h(τ) by its best
value when δ and g̃ are considered as fixed, without taking into account
the nonnegativity constraint. This means that we consider h′(g̃, δ, z, τ) =

argminh∈Pd1

∥∥z + zδ(τ)−h(τ)
g̃(τ)

∥∥ instead of h. As the nonnegativity constraint
is omitted, this problem can be solved analytically using matrix operations
(see Appendix B for more details). This leads us to the following problem:

argmin
δ∈Pd2

+ (T)

∥∥∥∥z +
zδ(τ)

g̃(τ)
− h′(g̃, δ, z, τ)

g̃(τ)

∥∥∥∥
2

. (8.19)

To find a good projection on the set of nonnegative rational functions we
iterate over instances of problem (8.19). An iterative scheme is useful be-
cause problem (8.19) relies on the fixed parameter g̃. The pseudo-code
of RKFIT+ is quite similar to the one of Conic (Algorithm 8.5). Line 7 is
deleted, and lines 3 and 4 are replaced by g = argmin(8.19) + g̃. Moreover,
problem (8.17) is solved after the while loop to recover the numerator.

LinProj: This approach has been inspired from [105, 113]. In this case
we consider the infinity norm instead of the squared norm, to express the
problem as a bisection search over feasibility problems on polynomials as
in (8.16). These feasibility problems can even have linear constraints if we
impose h and g to be nonnegative on points τi ∈ τ instead of being non-
negative on interval T (this is different from what is done in [105, 113]).
The feasibility problem is then:

find(h, g) s. t.





zig(τi)− h(τi) ≤ ug(τi)

h(τi)− zig(τi) ≤ ug(τi)

h(τi) ≥ 0; g(τi) ≥ 1
∀i, (8.20)

and a bisection algorithm is sketched in Algorithm 8.6. Note that g is pre-
vented from containing values smaller than 1 at points τi without loss of
generality, to simplify the feasibility problem, preventing [−ug(τi), ug(τi)]
from being too small.

| 169

8 | NMF using rational functions

Algorithm 8.6 LinProj
Input: z: signal to approximate, d1, d2: degree of the numera-
tor/denominator, τ : discretization points, tol: tolerance of the algorithm

function LINPROJ(z, d1, d2, τ , tol)
umax = maxi

{
zi −∑m

s=1 zs/m
}

; umin = 0
while umax − umin > tol do

umed = (umax + umin)/2
if problem (8.20) on umed is feasible then

umax = umed
else

umin = umed

Find h, g a feasible solution of (8.20) using umax

return h(τ)
g(τ)

8.4.3 Comparison of the projection methods

We now compare the five proposed approaches to approximately project
onto nonnegative rational functions. Algorithms have a tolerance tol of
10−8. We consider two sets of inputs:

• The signals to project are the discretization of nonnegative rational
functions, whose numerator and denominator degrees are d1 and d2,
respectively. An exact recovery is thus possible (exact).

• The signals to project are the same as in previous case except that we
add a Gaussian noise with noise level 20dB (noisy).

Unless specified otherwise, the rational functions have degree (16, 16), with
250 discretization points equally spaced on [−1, 1]. Figure 8.2 displays the
results. The quality of the final projection is computed as the squared norm
of the difference between the signal to project and the computed projec-
tion, divided by the squared norm of the signal to project. The first ob-
servation from this figure is that no method outperforms all others. In-
deed, even though RKFIT+ seems quite appropriate for "exact" data, as it
obtains the lowest relative error and is among the fastest, it is quite inaccu-
rate for noisy data. On the contrary, Least Squares and Alternating Least
Squares provide the best projections on noisy data, but they obtain high
errors when there is no noise. When comparing these two approaches, the
Least Squares appears to be the best as it is significantly faster and obtain
more accurate results. Therefore, we do not consider Alternating Least

170 |

Performance and Comparison of R-NMF algorithms | 8.5

Squares in what follows. The Linproj generally obtains low relative errors,
but sometimes it is unable to find a good candidate when there is noise.
Finally, the Conic approach is not very accurate compared to the others,
but it is the fastest.

We conclude from these experiments that the Least Squares and the RK-
FIT+ methods seem the more promising projection methods, but they are
not always better than the others, and do not outperform them signifi-
cantly.

8.5 Performance and Comparison of R-NMF algorithms

In this section, we briefly discuss the computational complexity of the pro-
posed algorithms, before to compare the R-NMF algorithms presented in
Section 8.3 on purely synthetic datasets to analyze their reconstruction abil-
ity and their efficiency. Then the most promising methods are compared
to standard HALS and LP-HALS using polynomials or splines from Chap-
ter 3 on semi-synthetic datasets. The least squares solver used for the ex-
perimentation is the function least_squares from python1, with default
parameters, using thus a trust region reflective algorithm [19].

Note that unlike LP-HALS using polynomials or splines, R-NMF approaches
do not satisfy the hypothesis of Theorems 5.3 and 5.4, as the set of ratio-
nal functions of fixed degree is not convex. Moreover, updates of R-NMF
algorithms are not exact due this non convexity. Indeed, the minimiza-
tion problem solved in R-NLS and R-ANLS are nonconvex, and there is no
guarantee of convergence, and the same hold for the projection problem
solved in R-HANLS. R-NMF methods have thus no theoretical guarantees.
Nevertheless, we observe their actual behavior in practice in this section.

8.5.1 Algorithmic complexity of the methods

Let the following reasonable assumption apply: r < d < n, m, where d is
the number of degrees of freedom of the used function, e.g., d1 + d2 + 1 for
rational functions, the degree plus one for polynomials, and the number of
interior knots plus two for splines. r is the rank of factorization, n is the

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
least_squares.html

| 171

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

8 | NMF using rational functions

Increasing degree

Increasing number of discretization points

Exact data:

Exact data:

10 20 30

100

101

102

Least Squares Alternating LS Conic RKFIT+ LinProj

10 20 30

10−12

10−8

10−4
Least Squares
Alternating LS
Conic
RKFIT+
LinProj

102 103

100

101

102

Least Squares Alternating LS Conic RKFIT+ LinProj

102 103

10−12

10−9

10−6

10−3 Least Squares
Alternating LS
Conic
RKFIT+
LinProj

Times(sec)

degree

Relative error

degree

Times(sec)

discr. points

Relative error

discr. point

Noisy data:

Noisy data:

10 20 30
10−1

100

101

102

Least Squares Alternating LS Conic RKFIT+ LinProj

10 20 30

10−1

101

Least Squares
Alternating LS
Conic
RKFIT+
LinProj

102 103

100

101

102

Least Squares Alternating LS Conic RKFIT+ LinProj

102 103

10−2

10−1

100

101
Least Squares
Alternating LS
Conic
RKFIT+
LinProj

Times(sec)

degree

Relative error

degree

Times(sec)

discr. points

Relative error

discr. points

10 20 30
10−1

100

101

102

Least Squares Alternating LS Conic RKFIT+ LinProj

Fig. 8.2 Comparison of the projection methods. The results are averaged
over 10 trials. The plots represents the time needed for computations (left)
and the relative error (right).

172 |

Performance and Comparison of R-NMF algorithms | 8.5

number of observations, and m is the number of discretization points. Let
the complexity of the least squares solver be ls(k) where k is the size of the
Jacobian, and p(k) be the complexity of the projections for polynomials and
splines, where k is the number of variables to optimize by the algorithm.

We know that an update of HALS for X has complexity O(rmnI), where I
is the number of iterations. The complexities of LP-HALS, R-HANLS using
least-squares projection, R-ANLS and R-NLS can also be computed. Their
value is summarized in Table 8.1. Among HALS methods, R-HANLS is
the slowest. Indeed, rational functions are not linearly parametrizable and
m appears in the complexity, unlike for polynomials or spline, where m
is replaced by d which is significantly lower. Nevertheless, R-HANLS is
much faster than R-ANLS or R-NLS for large datasets.

HALS Poly/splines R-HANLS
O(rmnI) O(rdnI + rp(d2)I) O(rmnI + r ls(md)I)

R-ALS R-LS
O(rmnI + ls(rdmn)I) O(ls(rmn(n + d)))

Table 8.1 Computational complexity of the various NMF methods.

8.5.2 Datasets

We use synthetic datasets generated as follows. We generate matrix X̄ ∈
Rn×r

+ randomly, following a Dirichlet distribution whose parameters are
equal to α = 1/r. The data provided to the algorithms is Y = ĀX̄⊤ +

N where N is additive Gaussian noise with known Signal to Noise Ratio
(SNR). The matrix Ā is generated in two different ways:

• a "purely synthetic" Ā which is the discretization of r nonnegative
rational functions. The functions are generated as follows. We first
create a nonnegative polynomial of degree d1 that is perturbed using
a rational function of degree (1, 2). This creates a smooth signal with
some peaks. The signal is then projected on the set of nonnegative
rational functions of degree (d1, d2). In this situation, it is therefore
possible to find the exact solution of the problem.

• a "semi-synthetic" Ā whose columns are the real reflectance signals of
Adulania, Clinochlore, Hypersthene, Olivine, Spessartine, Andesine,

| 173

8 | NMF using rational functions

Celestine and Kaolinite evaluated on 414 nonequally spaced points.
These signals are showed in Figure 8.3 (left) and come from the U.S.
Geological Survey (USGS) database [77]. Those signals are not par-
ticularly close to rational functions, but they are generally smooth
even though they present some peaks. If r is smaller than 8, we only
consider the first r signals in the list.

In all our experiments we impose methods to have the same number of
degrees of freedom (except standard HALS which operates over unstruc-
tured nonnegative vectors). This means that if we use rational functions
with degree (d1,d2), we use polynomials of degree d1 + d2, and splines of
degree 3 with d1 + d2 − 1 interior knots.

Let At, X t denote the factors obtained at iteration t. The stopping criterion
of the algorithms is the following:

sct =
∥Y −At−1X t−1⊤∥ − ∥Y −AtX t⊤∥

∥Y −AtX t⊤∥
< 10−12. (8.21)

We also impose algorithms to have a maximum running time. Methods
based on HALS are limited to 200 seconds, while R-ANLS and R-NLS are
limited to 1000 seconds. These times have been inspired from Table 8.1,
and selected to be not too important, while allowing the algorithm to con-
verge in most cases, as we will see in the experiments. The quality of the
factorization is evaluated using the relative residual and the SIR, presented
in Section 2.1.1.

In what follows, each test is performed 10 times, using different initializa-
tions. To summarize the performance, we compute the minimal and the
maximal value obtained for each criterion, and put a marker at the mean
value of the criterion. If the graph shows the evolution of two criteria with
respect to a parameter (like n, m, d or r), only the mean value is presented
to improve readability. We consider that an algorithm converged at itera-
tion t if sct−sco

sct < 10−3 for all o ≥ t. This is used to evaluate the time needed
by each algorithm, that it is the time needed to converge.

8.5.3 Initialization of the projections in R-HANLS

R-HANLS, described in Algorithm 8.3, is an iterative algorithm that uses a
projection at each iteration. An important characteristic of this algorithm is

174 |

Performance and Comparison of R-NMF algorithms | 8.5

0.5 1.0 1.5 2.0 2.5
Wavelength (µm)

0.25

0.50

0.75

Re
fle

ct
an

ce
Reflectance signals

0.5 1.0 1.5 2.0 2.5
Wavelength (µm)

0.2

0.4

0.6

0.8

Re
fle

ct
an

ce

Example of mixing

Fig. 8.3 Left: Considered real reflectance signals. Right: Example of mix-
ing of those signals with noise level 20dB. Each of the five signals is a col-
umn of Y .

that the successive iterates for the same block tend to become close to each
other. Therefore, we should consider exploiting knowledge from previous
iterations:

• Least Squares: use the previous projection as a starting point of the
least squares solver.

• Conic and RKFIT+: use the previously obtained denominator as first
guess.

• LinProj: use a potentially better umax = maxi{|zi − fprev(τi)|} .

Moreover, the tolerance of the projection methods is decreased progres-
sively from 10−2 to 10−8, and Conic and RKFIT+ are limited to one itera-
tion. This allows us to obtain accurate results in a reasonable time.

Figure 8.4 compares all projection methods in HALS, without using infor-
mation about previous projection (dotted lines) or using this information
(straight lines). We used a semi-synthetic dataset with r = 3 signals, and
n = 100 observations, that does not contain noise. We observe that using
information about previous projections is mostly interesting for the Least
Squares projection. Indeed, in this case, it accelerates significantly the con-
vergence of the algorithm and reduce its oscillations. Otherwise, the in-
terest is lower, but it still makes sense to use information about previous
iterations.

| 175

8 | NMF using rational functions

20 40 60
Time (sec)

10−4

10−3

R
el
at
i
e
er
ro
r

E olution of the error at each iteration
LS_random
LS
LinProj_random
LinProj

20 40 60
Time (sec)

10−4

10−3

R
el
at
iv
e
er
ro
r

Evol tion of the error at each iteration
Conic_random
Conic
RKFIT+_random
RKFIT_+

20 40 60
Time (sec)

10−4

10−3

R
el
at
iv
e
er
ro
r

Evol tion of the error at each iteration
Conic_random
Conic
RKFIT+_random
RKFIT_+

20 40 60
Time (sec)

10−4

10−3

R
el
at
iv
e
er
ro
r

Evol tion of the error at each iteration
Conic_random
Conic
RKFIT+_random
RKFIT_+

Fig. 8.4 Evolution of the relative error with respect to time, using pre-
vious iterates as initialization or not (Random case). Left figure presents
results for Least Squares and LinProj projection. Right figure presents re-
sults for Conic and RKFIT+ projections.

8.5.4 Purely synthetic dataset

Let us present the result with and without noise separately.

Case without noise: In this case there is no noise to filter, but it is still
interesting to analyze the data and find the factors behind them. By the
uniqueness property of rational functions presented in Section 8.2, we can
hope that the methods based on rational functions are able to recover the
original signals. We observe in Figure 8.5 that even though the SIR of meth-
ods using rational functions are on average better than the SIR recovered
by HALS, this is not always the case, and there is much more variabil-
ity on the results when using rational functions than when using HALS.
Nevertheless, the best SIR obtained by methods using rational functions
are much better than the best SIR obtained when using HALS (except for
R-HANLS using LinProj projection).

Moreover, HALS obtains the best residue, which is expected as it has much
more degrees of freedom. It is therefore difficult to beat HALS in terms of
pure data approximation when data is noiseless. Among methods using
rational functions, we can see that the LinProj projection is not appropriate;
this method is therefore not presented in what follows. The other R-NMF
methods have similar performance, except in terms of computation time.
Nevertheless, it seems that R-ANLS is the most accurate method in terms
of obtained residual, while R-HANLS-based methods are faster.

We observe in Figure 8.6 that when the number of observations n is small

176 |

Performance and Comparison of R-NMF algorithms | 8.5

0.00 0.02 0.04 0.06 0.08
Residue

20

40

60

80

SI
R

Average value of relative residues and SIR
HALS (82.19 sec)
R-HANLS
 LS (98.05 sec)
R-HANLS
 Conic (149.40 sec)
R-HANLS
 LinProj (160.71 sec)
R-HANLS
 RKFIT+ (156.60 sec)
R-ANLS (669.19 sec)
R-NLS (782.95 sec)

HALS (82.19 sec)
R-HANLS
 LS (98.05 sec)
R-HANLS
 Conic (149.40 sec)
R-HANLS
 LinProj (160.71 sec)
R-HANLS
 RKFIT+ (156.60 sec)
R-ANLS (669.19 sec)
R-NLS (782.95 sec)

Fig. 8.5 Average performance, with n = [20, 100], d = [6, 10], r = [5, 10].
Data is not noisy.

0.000 0.005 0.010 0.015 0.020
Residue

10

20

30

40

SI
R

Evolution of residue and SIR
HALS
R-HANLS
 LS
R-HANLS
 Conic
R-HANLS
 RKFIT+
R-ANLS
R-NLS

n=20 n=100

Fig. 8.6 Performance for varying n. Data is not noisy.

(n = 20), R-NLS is able to recover the original signals, as this method ob-
tains a low residual and a high SIR. However, it is unable to do so when the
number of observations increases. We may wonder if this bad result is due
to a too tight time constraint, which prevents the algorithm from converg-
ing, but even by running the algorithm for 1h (that is, three times longer),
the performance did not improve significantly. R-ANLS is the most robust
method among methods using rational functions when n changes as its
residual is not impacted by this change, unlike other R-NMF methods.

Case with noise: When noise is added to the dataset, NMF is also use-
ful to filter noise in the data, which can be evaluated through the relative
residual: a low relative residual means a good ability to filter the noise.

| 177

8 | NMF using rational functions

0.01 0.02 0.03 0.04 0.05 0.06
Residue

12.5

15.0

17.5

20.0

22.5

SI
R

Evolution of residue and SIR
HALS
R-HANLS
 LS
R-HANLS
 Conic
R-HANLS
 RKFIT+
R-ANLS
R-NLS

Low Noise (40dB) High Noise (20dB)

Fig. 8.7 Average performance for varying level of noise, with n =
[20, 100], d = [6, 10], r = [5, 10].

Figure 8.7 shows the average results for low and high noise levels. We ob-
serve that the performance of all algorithms deteriorates when the level
of noise increases, as expected. Using the Conic or RKFIT+ projections in
R-HANLS does not work well when the noise level is high. Moreover, the
noise level has a high impact on the residual of HALS, which means that
this method is not good at filtering the noise on the data. However, the
quality of the recovered factors is not much impacted by the noise level
and stays around 35 dB. R-HANLS LS and R-ANLS obtains the best per-
formance when the noise level is high both in terms of SIR and residue. We
see in Figure 8.8 that increasing n, the number of observations, has a very
different impact depending on the used methods: it makes R-NLS perform
worse, but it helps the other methods, especially HALS.

Combining R-NMF methods We analyzed the possibility of combining
methods using rational functions to see if such combinations could have
better performance. To do so, we performed a new test on synthetic data,
with d1 = d2 = 10. The data was constructed with polynomials perturbed
with a (1,10) polynomial (not (1,2) unlike in Section 8.5.2). The parame-
ters are (m,n,r) = (200,100,5). It can be seen in Figure 8.9 that in this case
R-NLS fails to find a good solution, probably because of the number of ob-
servations. R-ANLS and R-HANLS have quite comparable performance in
terms of accuracy, but R-HANLS is faster.

178 |

Performance and Comparison of R-NMF algorithms | 8.5

0.01 0.02 0.03 0.04 0.05
Residue

15

20

SI
R

Evolution of residue and SIR
HALS
R-HANLS
 LS
R-HANLS
 Conic
R-HANLS
 RKFIT+
R-ANLS
R-NLS

n=20 n=100

Fig. 8.8 Average performance for varying n, data is noisy.

0.000 0.025 0.050 0.075 0.100
Residues

25

50

75

100

125

SI
R

Performance without noise
HALS (61.96 sec)
R-HALS (23.41 sec)
R-ALS (505.75 sec)
R-LS (789.93 sec)

HALS (61.96 sec)
R-HALS (23.41 sec)
R-ALS (505.75 sec)
R-LS (789.93 sec)

0.000 0.025 0.050 0.075 0.100
Residues

25

50

75

100

125

SI
R

Performance without noise
HALS (61.96 sec)
R-HALS (23.41 sec)
R-ALS (505.75 sec)
R-LS (789.93 sec)

HALS (61.96 sec)
R-HALS (23.41 sec)
R-ALS (505.75 sec)
R-LS (789.93 sec)

0.02 0.04 0.06 0.08 0.10
Residues

10

20

30

SI
R

Performance with noise
HALS (0.24 sec)
R-HALS (7.78 sec)
R-ALS (415.29 sec)
R-LS (848.44 sec)

HALS (0.24 sec)
R-HALS (7.78 sec)
R-ALS (415.29 sec)
R-LS (848.44 sec)

0.02 0.04 0.06 0.08 0.10
Residues

10

20

30

SI
R

Performance with noise
HALS (0.24 sec)
R-HALS (7.78 sec)
R-ALS (415.29 sec)
R-LS (848.44 sec)

HALS (0.24 sec)
R-HALS (7.78 sec)
R-ALS (415.29 sec)
R-LS (848.44 sec)

Fig. 8.9 Performance on a synthetic dataset, without noise (Left) and
with noise level 20dB (Right).

We combine the methods in pairs as follows: the first method is executed
until it reaches a tolerance sct < 10−2 (8.21). Then, the second method
is initialized with the factors obtained by the first one, and executed until
convergence. We therefore use one partition to initialize another. These
hybrid methods are called "method 1 - method 2".

We observe in Table 8.2 that associating the methods makes it possible to
improve at least 2 criteria out of 3 (namely the time, the residual and the
SIR) in more than 40 % of the cases, and even the methods which are the
least easy to help are improved on at least two criteria in more than 30 %
of the cases. Moreover, we see in the Tables 8.3 and 8.4 that the most ac-
curate methods are always hybrid methods. Combining two methods can
therefore help to improve the performance of the algorithm, and allows

| 179

8 | NMF using rational functions

to obtain the best results in terms of residual and SIR. However, there is
no particular effect of these associations on the variability of the methods,
which is illustrated in Figure 8.10 (the most accurate methods may also
perform poorly in some tests).

Initialize with another method is better for at least
1 criterion 2 criteria 3 criteria

HALS 60% 31% 5 %
R-HANLS 56% 37% 3 %
R-ANLS 76% 44% 17 %
R-NLS 86% 55% 41 %

All methods 70% 42 % 15%

Table 8.2 Percentage of cases where initializing with another method im-
proves one or more of the three efficiency criteria: time, residual and SIR.

0.02 0.04 0.06 0.08 0.10
Residues

10

20

30

40

SI
R

Performance with noise
R-NLS - HALS (42.31 sec)
HALS (0.24 sec)
R-NLS - R-HANLS (166.40 sec)
R-ANLS - R-HANLS (100.81 sec)
R-HANLS (7.78 sec)
R-ANLS (415.29 sec)
HALS - R-HANLS (13.46 sec)
R-HANLS- R-ANLS (445.21 sec)

R-NLS - HALS (42.31 sec)
HALS (0.24 sec)
R-NLS - R-HANLS (166.40 sec)
R-ANLS - R-HANLS (100.81 sec)
R-HANLS (7.78 sec)
R-ANLS (415.29 sec)
HALS - R-HANLS (13.46 sec)
R-HANLS- R-ANLS (445.21 sec)

Fig. 8.10 Performance of some hybrid methods in noisy case.

It is also interesting to note that, in the noisy case, initializing the methods
with R-NLS gives the most accurate results (Table 8.4). However, in Figure
8.9 we saw that this method used alone is the least accurate of the four on
average. This is a bit counter-intuitive, since one could suppose that it is
more interesting to initialize with a fast method which solves the problem
locally, then to refine with the slower method which takes into account the
whole problem, but it is here the reverse which is more efficient in the noisy
case. We also observe that the hybrid methods ending with HALS or R-
HANLS are faster than the others, which is quite logical. Indeed, obtaining
a tolerance of 10−2 is quite easy and requires only a few iterations, so the
complexity is dominated by the second method.

In the tests carried out, the most accurate method when there is no noise

180 |

Performance and Comparison of R-NMF algorithms | 8.5

Best On average Over all tests
time HALS - R-HANLS HALS - R-HANLS

(20 sec) (2.57 sec)
residual R-HANLS - HALS R-HANLS - R-ANLS

(9.5·10−6) (1.9 · 10−10)
SIR R-HANLS - R-ANLS R-HANLS - R-ANLS

(70.64) (176.58)

Table 8.3 Best methods when there is no noise.

Best On average Over all tests
time HALS HALS

(0.24 sec) (0.05 sec)
residual R-NLS - HALS R-NLS - R-ANLS

(0.027) (0.015)
SIR R-NLS - R-HANLS R-NLS - R-HANLS

(30.96) (40.17)

Table 8.4 Best methods in the noisy case.

is the association LR-HANLS - R-ANLS, and in the noisy case R-NLS -
R-ANLS (this method obtains a residual close to R-NLS - R-HANLS, but
a much higher SIR). It is important to keep in mind that methods using
rational functions obtain very variable results depending on the problem
to be solved, and even on the initialization, and that these methods will
therefore not necessarily be the best in other situations. A fairly robust
conclusion remains: combining the different partitions in a hybrid method
often improves the performance of the algorithm.

8.5.5 Semi-synthetic dataset

We saw in previous sections that using rational functions in NMF when
data is composed of rational functions can help significantly the algorithm,
but is very sensitive to initialization. The use of rational functions is espe-
cially relevant for difficult problems, i.e. for high noise levels and when
only a few observations are available.

Let us analyze the performance of the algorithms in the semi-synthetic
case, when the noise level is high (20dB) and the number of observations
is low (n = 20). This will allow us to validate whether using rational func-

| 181

8 | NMF using rational functions

tion is beneficial in such situations. We compared the methods to HALS
as before, but also to LP-HALS using polynomials or splines from Chapter
3. Using results of previous section, we also considered the combinations
R-ANLS - R-HANLS and R-NLS - R-HANLS.

Figure 8.11 displays the results. We observe that the R-NMF methods ob-
tain the smallest residues, and are thus best to filter the noise. Among
these methods, the combination R-NLS - R-HANLS obtains the best SIR in
a reasonable time (it is among the fastest R-NMF methods). LP-HALS us-
ing polynomials obtains also low residues and is competitive with R-NMF
methods, while LP-HALS using splines is a bit less accurate in this case.
Nevertheless, all methods using functions are able to filter the noise un-
like HALS using vectors that obtains high residues. Figure 8.12 shows that

0.02 0.03 0.04 0.05 0.06 0.07 0.08
Residue

5

10

15

20

25

SI
R

Average value of relative residues and SIR
HALS (0.21 sec)
Poly (26.78 sec)
Splines (34.40 sec)
R-HANLS
 LS (85.63 sec)
R-ANLS (146.78 sec)
R-NLS (303.53 sec)
R-ALS - R-HANLS (49.23 sec)
R-NLS - R-HANLS (62.04 sec)

HALS (0.21 sec)
Poly (26.78 sec)
Splines (34.40 sec)
R-HANLS
 LS (85.63 sec)
R-ANLS (146.78 sec)
R-NLS (303.53 sec)
R-ALS - R-HANLS (49.23 sec)
R-NLS - R-HANLS (62.04 sec)0.025 0.030 0.035 0.040 0.045 0.050 0.055

Residue

8

9

10

11

SI
R

Average value of relative residues and SIR
HALS (0.21 sec)
Poly (26.78 sec)
Splines (34.40 sec)
R-HANLS
 LS (85.63 sec)
R-ANLS (146.78 sec)
R-NLS (303.53 sec)
R-ALS - R-HANLS (49.23 sec)
R-NLS - R-HANLS (62.04 sec)

HALS (0.21 sec)
Poly (26.78 sec)
Splines (34.40 sec)
R-HANLS
 LS (85.63 sec)
R-ANLS (146.78 sec)
R-NLS (303.53 sec)
R-ALS - R-HANLS (49.23 sec)
R-NLS - R-HANLS (62.04 sec)

Fig. 8.11 Performance on semi-synthetic dataset.

when a small number of signals are mixed, r = 3, some methods based
on rational functions manage to recover a good approximation of the orig-
inal signals, but when the number of original signal increases, for r = 5
or 8, the recovered signals do not really resemble the original ones, which
is illustrated in Figure 8.13. We also observe in this figure that the signals
recovered by HALS are very nonsmooth.

On the other hand, changing the degree does not influence much the SIR.
However, Figure 8.14 shows that choosing a too low number of degrees
of freedom (d = 12) penalizes the algorithms in terms of relative residue,
especially when using polynomials or splines. The fact that rational func-
tions already obtain good results for d = 12 can be explained because ra-
tional functions are able to express a larger variety of shapes than polyno-
mials or splines for the same degrees of freedom. However, this advan-
tage turns into a drawback when the number of degrees of freedom is too

182 |

Two applications | 8.6

high. Indeed, the performance of the methods using rational functions are
slightly degraded for larger degrees, because the algorithm starts to model
the noise. This is the case in particular for approaches using R-HANLS.
Nevertheless, the variability seems to be reduced in this case (the worst
case is better than when using a lower number of degrees of freedom).

0.02 0.03 0.04 0.05 0.06 0.07
Residue

6

8

10

12

14

SI
R

Evolution of residue and SIR
HALS
Poly
Splines
R-HANLS
 LS
R-ANLS
R-NLS
R-ALS - R-HANLS
R-NLS - R-HANLS

r=3 r=5 d=8

Fig. 8.12 Performance for varying rank.

8.6 Two applications

After the analysis from previous section on synthetic data, we now observe
the performance of our methods in two real-world problems.

8.6.1 Using (R-)NMF for spectrum images unmixing

We test our method to unmix difficult spectrum images of multicomponent
nanostructures from [18] and [79], where the authors use a method called
MCR-LLM (Multivariate Curve Resolution by Log-Likelihood Maximiza-
tion) to solve the unmixing problem. We apply the same preprocessing (see
the cited papers for more information about the datasets), and scale the in-
put data matrix so that each row has unit Manhattan norm and normalize
the rows of matrix X̄ in the decomposition (this is done without loss of
generality in NMF by scaling Ā so that ĀX̄⊤ stays unchanged). We use
k-means clustering to initialize weights in X , and matrix A is initialized

| 183

8 | NMF using rational functions

0.5 1.0 1.5 2.0 2.5
Wavelength (µm)

0.00

0.05

0.10
Re

fle
ct

an
ce

Signals recovered using Vectors

0.5 1.0 1.5 2.0 2.5
Wavelength (µm)

0.00

0.05

0.10

Re
fle

ct
an

ce

Signals recovered using R-NLS

0.5 1.0 1.5 2.0 2.5
Wavelength (µm)

0.00

0.05

0.10

Re
fle

ct
an

ce

Signals recovered using Vectors

0.5 1.0 1.5 2.0 2.5
Wavelength (µm)

0.00

0.05

0.10

0.15

Re
fle

ct
an

ce

Signals recovered using R-NLS

Fig. 8.13 Example of recovered factor A for r = 3 (up) or 8 (down), for
HALS using vectors (left) or R-NLS (right).

d=12 d=20 d=400.00

0.01

0.02

0.03

Re
sid

ue
s

Evolution of relative residues
Poly
Splines
R-HANLS
 LS
R-ANLS
R-NLS
R-ANLS-
 R-HANLS
R-NLS-
 R-HANLS

Fig. 8.14 Performance for varying degree of freedom (d).

using the unconstrained minimizer corresponding to this fixed X (an ini-
tial iterate that does not satisfy the constraints does not cause any trouble
in our implementation).

184 |

Two applications | 8.6

A first one-dimensional dataset [18] contains the energy loss of the compo-
nents compared to their position. The shape of such an energy loss does
not look like a rational function. However, the relative abundance of each
element should vary smoothly with its position, hence we will approxi-
mate it using rational functions of degrees d1 = d2 = 20. Because we use
a random initialization, we report the best result out of ten runs for each
method (as noise seems to be Poisson [18], we use the Kullback-Leibler di-
vergence on the error to pick the best out of the ten tests). Then we compare
the results between different methods visually, as depicted Figure 8.15.

We observe that R-NMF gives results similar to those of MCR-LLM, ex-
cept that the relative abundances are smoothed thanks to the rational func-
tions. When using standard NMF the result displays more noise, and
features several unexpected peaks for all abundances, especially for SiO2
(blue curve). Using splines or polynomials also leads to some noise but
with a lower level than standard NMF. However our lack of knowledge in
chemistry does not allow us to clearly determine the best method between
MCR-LLM and R-NMF.

Using MCR-LLM

R
el

at
iv

e
ab

un
da

nc
e 1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
CW TiAl TiN Ta Hf SiO2 Si

0 6 12 18 24 30
Position, nm

| | |
0 500 1000 1500 2000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

S

In
te

ns
it

y,
ar

b.
un

it
s

1000 1500 2000
Energy loss, eV

Using R-NMF

R
el

at
iv

e
ab

un
da

nc
e 1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
CW TiAl TiN Ta Hf SiO2 Si

0 6 12 18 24 30
Position, nm

| | |
0 500 1000 1500 2000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

S

In
te

ns
it

y,
ar

b.
un

it
s

1000 1500 2000
Energy loss, eV

Using standard HALS

R
el

at
iv

e
ab

un
da

nc
e 1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
CW TiAl TiN Ta Hf SiO2 Si

0 6 12 18 24 30
Position, nm

| | |
0 500 1000 1500 2000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

S

In
te

ns
it

y,
ar

b.
un

it
s

1000 1500 2000
Energy loss, eV

Using LP-HALS with splines

R
el

at
iv

e
ab

un
da

nc
e 1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

CW TiAl TiN Ta Hf SiO2 Si

0 6 12 18 24 30
Position, nm

| | |
0 500 1000 1500 2000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

S

In
te

ns
it

y,
ar

b.
un

it
s

1000 1500 2000
Energy loss, eV

Fig. 8.15 Results of different methods on 1D dataset. Result obtained
using polynomials were close to the ones obtained with splines.

For the next two-dimensional dataset [79], we reshape all images into vec-

| 185

8 | NMF using rational functions

tors to form the input matrix. The dataset contains the binding energy
(instead of the energy loss), which resembles rational functions more. Fur-
thermore, relative abundances are computed in a 2D space, so that we can-
not properly represent them with univariate rational functions. Therefore,
we use rational functions to represent the binding energy, with degrees
d1 = d2 = 44, and report again on the best out of ten tests in Figure 8.16.

All methods are able to discriminate the three categories C0, C1 and C2
in the abundance maps, and there is no noticeable difference between the
three approaches using NMF. This time, NMF methods obtain abundances
that appear less discriminate than MCR-LLM. Note however that other
state-of-the-art methods presented in [79] are unable to distinguish be-
tween the three categories, so our method still makes sense in this case.

Using MCR-LLM

R
el

at
iv

e
ab

un
da

nc
e

0 200 400 0 200 400 0 200 400

In
te

ns
it

y,
ar

b.
un

it
s

Binding energy (eV)

Using R-NMF

R
el

at
iv

e
ab

un
da

nc
e

0 200 400 0 200 400 0 200 400

In
te

ns
it

y,
ar

b.
un

it
s

Binding energy (eV)

Using standard HALS

R
el

at
iv

e
ab

un
da

nc
e

0 200 400 0 200 400 0 200 400

In
te

ns
it

y,
ar

b.
un

it
s

Binding energy (eV)

Using LP-HALS with polynomials

R
el

at
iv

e
ab

un
da

nc
e

0 200 400 0 200 400 0 200 400

In
te

ns
it

y,
ar

b.
un

it
s

Binding energy (eV)

Fig. 8.16 Results of different methods on 2D dataset. Results obtained
using splines are not represented but they are very close to results obtained
with polynomials.

186 |

Two applications | 8.6

8.6.2 Using (R-)NMF for classification

We explore now the possibility of using R-NMF in a real problem: the In-
dian Pines classification problem. Classification is performed using the
k-nearest-neighbors (KNN) algorithm with k = 5. A portion of 70% of the
data is used for training.

The data is pre-processed by NMF as follows. Let Y ∈ R200×21025 be the
dataset, with 21025 observations of which 6307 should be classified. As
the signals are spectra, it can be assumed that they are close to polynomi-
als, splines or rational functions. We approximate Y as AX⊤ using NMF,
where A contains in its columns sampled functions (note that there is no
knowledge of labels at this stage). We use the R-HANLS methods for ratio-
nal functions due to the high number of observations. Then the classifica-
tion is performed on X⊤ instead of Y . The hope is that NMF filters noise
in the data, while limiting the number of factors.

We also considered PCA to do the preprocessing (PCA does not have a
nonnegativity constraint). Moreover, we tested the method of [32] but the
results were not convincing (the accuracy was always below 68%). Perhaps
the size of the dataset is too large, or imposing the degrees to be always
equal is not optimal for this approach. Nevertheless, we tested the fac-
torization with rational functions without nonnegativity constraints, using
our R-HANLS algorithm, with projection onto rational functions using a
least squares solver (Rational). This projection may not be ideal in the case
without nonnegativity constraints, but it gives an idea of performance. It
also shows that our approach can easily be extended to other sets than the
set of nonnegative rational functions. Methods are tested 10 times over
different initializations. The number of degrees of freedom is 20, and all
methods are limited to 100 seconds. The best factorization for each rank
is selected using a K-fold with 5 folds on the 70% of data constituting the
training set. As a base line, we use the result of the classification on the
whole dataset without preprocessing. It is thus independent of the rank,
and corresponds to rank r = 200.

Figure 8.17 shows the accuracy obtained according to the factorization rank
considered during pre-processing. It confirms the interest of using R-NMF
since this method obtains the best results when r < 15. For higher rank
values, NMF using splines also obtains very good results, while R-NMF
starts to slightly overfit. We also see that imposing nonnegativity makes

| 187

8 | NMF using rational functions

5 7 9 11 13 15 17 19
rank of factorization

0.70

0.71

0.72

0.73

0.74

0.75

0.76

ac
cu
ra
cy

Baseline
PCA

Rational
Vectors

Polynomials
Splines

R-NMF

Fig. 8.17 Accuracy of classification using NMF as preprocessing with
various factorization ranks.

sense, since PCA and Rational, which do not enforce this constraint, obtain
the worst results. Note that the classification problem has 16 classes, and
PCA starts to be competitive with the baseline from r = 16. It appears
that, in this case, PCA needs at least as many features as classes to be able
to describe properly the dataset, while NMF-based methods are able to
describe the dataset properly with fewer features, thanks to their better
ability to filter noise.

On the other hand, using standard NMF improves the baseline only for
ranks higher than 15, while using polynomials or splines improves accu-
racy compared to standard NMF, but to a lesser extent than when using
rational functions.

8.7 Discussion

We introduced R-NMF, a factorization model using nonnegative rational
functions to unmix sampled signals, and presented three approaches to
solve the problem. We observed that R-NMF performs better than other
NMF approaches on semi-synthetic data or real-life data. A likely expla-

188 |

Discussion | 8.7

nation is that, as polynomials and splines, rational functions have less pa-
rameters than data points, and hence some form of noise averaging takes
place unlike for HALS using vectors. Moreover, they generalize polynomi-
als and splines, and are thus able to express a wider range of shapes, which
allows R-NMF to recover more representative signals.

On the other hand, the presented methods to compute R-NMF do not ob-
tain very satisfactory results when the data are actually rational functions.
Indeed, even when there is no noise, these methods are not always able to
recover the original signals and this despite the fact that the factorization
to be recovered is unique, see Section 8.2.

To explain this phenomenon, note that for R-ANLS and R-HANLS each
update is not guaranteed to be optimal, and these two methods do thus
inexact BCD. But doing inexact BCD was not a problem for polynomi-
als or splines (see Section 5.3 and Chapter 6), so this explanation is not
enough. Another explanation is that the set of rational functions is not
convex, and is not even closed for addition, so there may be many local
minima in which the algorithms can get stuck, which also explain why
R-NMF is very sensitive to the initialization. To overcome this sensitivity
problem, the best thing we can do for now is to solve the problem with
several initializations, and to choose the best factorization among those
obtained. This makes particular sense when using R-NMF in the context
of machine learning algorithms that have methods for selecting the best
initialization, such as the K-fold used for classification in Section 8.6.2.

From our results, it appears that R-HANLS obtains on average worse re-
sults than R-ANLS. Moreover, R-NLS is able to obtain good results on very
small problems, but when the problem size increases the method slows
down very strongly and has difficulties to converge. Furthermore, R-NLS
is resource demanding, and R-ANLS also but to a lesser degree. Therefore,
we recommend using R-NLS only for very small problems, when n < 50
for example. For small problems, R-ANLS is accurate and not too slow
(when n < 1000). However, for larger problems, R-HANLS is more appro-
priate as it is much less demanding. However, when possible, it should
be initialized by a few iterations of R-NLS or R-ANLS to improve perfor-
mance.

One way of investigation to reduce the complexity of the algorithms is to
consider other representations of rational functions than fractions of poly-
nomials that could be more accurate, but for which the nonnegativity con-

| 189

8 | NMF using rational functions

dition is not trivial, like barycentric representation [42, 94] or sum of frac-
tions [50], which is left for future work.

Furthermore, the methods presented in this paper can be extended to a
wider range of rational functions where the numerator and the denomina-
tor are not imposed to be nonnegative polynomials, but can be any non-
negative function. To use least-squares based methods, a parametrization
of the nonnegativity of the used functions is necessary. If an R-HANLS
approach is chosen, the only necessity is that the projection exists. This
means, for the Least Squares or the Alternating Least Squares projection,
that a parametrization of the nonnegativity of the used functions exists.
For Conic projection, a description of the nonnegativity constraint of the
used functions must exist (without caring if it is the numerator or the de-
nominator). RKFIT+ requires an operator h′ computing the best numera-
tor when the denominator is fixed (possibly neglecting the nonnegativity).
Finally, the LinProj projection requires the functions that are used to be lin-
early parametrizable, in order to keep the problem linear. This comment
highlights the many existing possibilities when performing R-NMF.

190 |

9
Discussion and conclusion

In this thesis, we explored the possibility of using parametrizable func-
tions in NMF to obtain better factorizations of datasets containing sam-
pling of continuous signals. Moreover, we generalized the NMF problem
to the H-NMF problem that handles two-dimensional functions and not
only matrices, allowing thus to avoid the sampling of the input signals.
For this purpose, we defined a product between two univariate functions
A : A 7→ R and X : X 7→ R as Y(a, x) = (A⊗ X)(a, x) = A(a)X(x), with
Y : A×X 7→ R. Our generalization of NMF aims at expressing a two-
dimensional function Y(a, x) : A×X 7→ R as the sum of r products of two
unidimensional functions, the factors Ak, Xk for k = 1 . . . r. We have thus
Y = ∑r

k=1 Ak ⊗ Xk, with Ak : A 7→ R and Xk : X 7→ R for all k = 1, . . . , r.

Some theoretical results This generalization is possible under some con-
ditions. Input function Y must belong to a RKHS. Moreover, we impose
factor functions Ak and Xk to belong to RKHS as well, respectively A and
X for all k. This ensures that the evaluations of the factor functions is well
defined. Of course, it is still possible to impose furthers constraints on the
factors Ai, Xi such as nonnegativity constraints. We have then Ak ∈ Ã ⊆
A ∀k, and similarly Xk ∈ X̃ ⊆ X ∀k.

We presented several ways to solve the H-NMF problem, inspired from
methods solving the standard NMF problem. However, we mainly focused

| 191

9 | Discussion and conclusion

on the H-HALS algorithm that generalizes the HALS algorithm. This al-
gorithm optimizes the problem by iteratively minimizing it alternatively
on a factor Ak or Xk while considering all other factors as fixed. When
sets Ã and X̃ are closed and convex, the H-HALS algorithms has conver-
gence properties similar to those of the HALS algorithm for standard NMF.
Indeed, if it is possible to avoid factors Ak, Xk to become 0-norm through-
out algorithm, then H-HALS converges to a stationary point of the H-NMF
problem. However, if computing each iteration of HALS is straightforward
for standard NMF, H-HALS requests to project on sets Ã, X̃ at each iter-
ation. This projection can be difficult, or at least difficult to be performed
exactly.

H-HALS using inexact iterations We therefore explored several situa-
tions where the iterations of H-HALS are not performed exactly, mostly
due to inexact projections. If all iterates are ϵ-stationary point of the in-
termediate problems (that consider the problem on one factor, considering
the others as fixed), the solution found by H-HALS will be at worse 2rϵ-
stationary. In another setting, the constraints can be handled with approxi-
mations of the indicator functions of sets Ã and X̃ , named ut, and those ap-
proximations functions can evolute throughout iterations. If 0 ≤ ut+1 ≤ ut

for all iteration t, H-NMF converges to a stationary point of the problem
using indicator function u∞. Finally, if all iterations have a distance to the
exact update smaller than ϵ, the H-NMF algorithm converges to a point
close to a Nash equilibrium (the distance to the Nash equilibrium depends
on ϵ). Moreover, if ϵ tends to 0 , H-HALS converges to a stationary point
under mild conditions.

The first result provides a stopping criterion for iterative projection algo-
rithms and gives a general condition to know if found points are good
enough. Moreover, this result on ϵ-stationary points can allow dealing
with cases where the functions Ak, Xk may have 0-norm, see Theorem 5.7.
This result has been used for splines (Section 5.3.1) and polynomials (Sec-
tion 6.3.1) to accelerate the H-HALS algorithm . The second result allows
one to project on subsets of Ã, X̃ and increase progressively the size of
these subsets, as illustrated for splines in Section 5.3.2 . Finally, the third
result is also the most general and allows one to have information about
the quality of the factorization, if the error can be quantified. Moreover, it
indicates that computing projections more and more precisely allows con-
verging to a stationary point. This is especially useful for iterative projec-

192 |

| 9.0

tion algorithms. It has been used with success to accelerate H-HALS using
polynomials in Section 6.3. In the same Chapter 6, we also considered other
heuristics to project on nonnegative polynomials, in order to accelerate the
algorithm. Those heuristic projections obtain results similar than the accel-
erations based on theory, and are even often faster, but their convergence
to a stationary point is not guaranteed.

H-NMF in practice If NMF generalizes well to H-NMF from a theoretical
point of view, manipulating functions is more difficult in practice. This is
why we considered the use of functions parametrizable using a low num-
ber of parameters. The simplest case is when the considered functions are
linear combinations with nonnegative coefficients of a few basis elements,
denoted as Π = {Πl}, for example splines with nonnegative coefficients
in the B-spline basis (see Chapter 7). Indeed, in this case, the problem is
very close to the standard NMF problem. If ΠA is the basis for Ã, and ΠX

the basis for X̃ , we can compute matrices Z with Zi,j = ⟨Y, ΠA
i ⊗ΠX

j ⟩H,

M A with M A
i,j = ⟨ΠA

i , ΠA
j ⟩A and M X with M X

i,j = ⟨ΠX
i , ΠX

j ⟩X . Then the
problem can be solved on Z instead of Y, and on the coefficients of Ak, Xk,

denoted as CA
:k , CX

:k , using the fact that ⟨Ai, Aj⟩A = CA
:i
⊤

MC A
:j and simi-

larly for ⟨Xi, Xj⟩X . Matrices CA
:k and CX

:k must be nonnegative.

In the case of linearly parametrizable functions, whose coefficients are not
imposed to be nonnegative, like nonnegative polynomials and nonnega-
tive splines, it is also possible to work with matrices Z, M A and M X , but
the constraints on CA and CX become more complex. This is presented
for polynomials and splines in Chapter 3.

It is also possible to work with functions that are not linearly parametriz-
able, as rational functions. In this case, it is not anymore possible to com-
pute matrices Z, M A and M X , but it is necessary to compute inner prod-
ucts between Y, Ak and Xk at each iteration instead. This is presented for
discrete rational functions in Chapter 8.

Computing the inner products between Y, Ak and Xk is not always easy,
especially as the input data does not always have the expected shape. Most
of the time, input data contains in fact samples of continuous functions. In
this case, we could attempt to interpolate the functions, but it is easier to
work on the known points instead. The problem then becomes again a
problem over matrices and is thus easier to solve. We can then wonder
why working on functions, if they are discretized anyway?

| 193

9 | Discussion and conclusion

The fact that behind each column of A and X there is a function has a main
advantage: the linear combinations of the columns of A and X preserve
the properties and the structure of the functions behind them, which can
improve a lot the performance of NMF in terms of accuracy. For exam-
ple, polynomials are globally smooth, splines are piece-wise smooth, and
rational functions are generally smooth with some peaks.

Moreover, even though we did not explore much this path in this thesis,
working directly on functions is possible. Indeed, Trefethen & al. [11, 118,
119] have develop Chebfun to represent functions relying on very precise
polynomial interpolations, which allows modeling the input data Y. More-
over, Marteau-Ferey & al. [91] have proposed a structure to model nonneg-
ative functions, which is an interesting approach to model factors Ak and
Xk, and would be an exciting future work.

Using functions in NMF is therefore possible in theory and several ap-
proaches to use H-NMF in practice have been explored in this work, using
polynomials, splines, or rational functions. Even though the approach of
this thesis is quite theoretical, we showed in Chapter 7 that using H-NMF
can be very useful in practice, for example in the context of image or matrix
completion.

In Chapter 8 we analyzed the case of rational functions of fixed degree, that
do not form a convex set (and the set of rational functions of fixed degree
is not even a vector space). Therefore, this case does not meet the con-
ditions to have theoretical guarantees. Nevertheless, we could show that
even in this case, the results of H-NMF are interesting in terms of accuracy
of the factorization. For example, H-NMF using rational functions is more
accurate than H-NMF using polynomials or splines to model the dataset
from the real Indian Pines classification problem using a small rank, and
leads to better classification results. H-NMF using polynomials or splines
are also more accurate than standard NMF for this problem. This good
result comes at the price of a slower algorithm on average, because ratio-
nal functions are not linearly parametrizable, and H-NMF using rational
functions is also more sensitive to the initialization, probably due to the
non-convexity of that set of parametrizable functions.

Perspectives We considered polynomials, splines and rational functions
in this work, but many other functions with interesting properties can be
explored in the H-NMF framework, such as sums of exponentials or more

194 |

| 9.0

general descriptions of nonnegative functions, for example the one pro-
posed in [91]. It is also possible to use different functions for factors A and
X (for example splines in A and rational functions in X), or to consider ra-
tios of splines (instead of ratios of polynomials) or even piece-wise rational
functions. The possibilities offered by H-NMF are therefore quite broad.

Moreover, it would be interesting to consider input functions rather than
discretizations of functions, using for example Chebfun [11, 118, 119].

Furthermore, this work focused on the minimization of the Frobenius norm
of the error, but other cost functions can be considered to be more adapted
to the problem to be solved, creating several interesting algorithmic chal-
lenges due to the loss of the Euclidean structure.

The final word To conclude, in this thesis we have presented a general
framework allowing to perform NMF using functions: the H-NMF (Chap-
ter 4). To solve this new problem, we focused on the generalization of
the HALS algorithm, namely the H-HALS, which has very similar theo-
retical properties as the HALS (Chapter 5). We used these results to per-
form H-NMF with polynomials or splines (Chapter 3), and showed that the
performance in terms of factorization quality could be greatly improved
compared to standard NMF, and in particular could allow image/matrix
completion to be performed efficiently (Chapter 7). This performance im-
provement comes at the cost of a slower algorithm, especially for small and
medium instances, or when the degree of the polynomials or the number
of interior points of the splines is high. To overcome this problem, we have
considered several heuristics, allowing to speed up the algorithm signifi-
cantly, without deteriorating its performance (Chapter 6).

Finally, we have analyzed a case where the functions of interest are not con-
vex, and which therefore does not allow us to have any theoretical assur-
ance of convergence: the case of H-NMF using rational functions (Chap-
ter 8). In this case also, very good results have been observed in terms of
average quality of the factorization. However, the algorithm is then very
sensitive to its initialization and may also obtain very bad results. Never-
theless, H-NMF with rational functions obtains better results than H-NMF
using polynomials or splines in a classification problem. In such machine
learning problems, there are ways to select the most promising classifica-
tion, and thus smooth out the initialization sensitivity problem of H-NMF
using rational functions.

| 195

A
Proof of Theorem 5.7

Let us first recall Theorem 5.7.

Theorem A.1. Consider the H-NMF problem from Definition 4.4. SupposeA =

Rm, X = Rn, Ã = [0, M]m and X̃ = [0, M]m (standard NMF problem bounded
above by M).

Suppose that the problem is divided in 2r blocks, the columns of A and X , and
solved using BCD Algorithm 5.1, with update (5.3) replaced by:

x̃t+1
i = argmin

ξ

fi(ξ ; xt) such that ξ ∈ Pi

xt+1
i = x̃t+1

i + λ[xt
i − x̃t+1

i]Pi (A.1)

where λ ∈ [0, 1], ∥xt+1
i ∥2 ≥ δ > 0 and xt+1

i is ϵ-valid.

For any ϵ, if δ and x0 are chosen so that 2M
√

δ max(n, m) f (x0) ≤ ϵ, and
∥x0

i ∥ ≥ δ for all i, then a valid update xt+1
i always exists. The resulting algo-

rithm converges to a 2rϵ-stationary point.

Proof. The projection on Ã and X̃ is a threshold operation:

(
[ξ]Ã/X̃

)
j =





0 if ξ j ≤ 0
ξ j if ξ j ∈ [0, M]

M if ξ j ≥ M
.

| 197

A | Proof of Theorem 5.7

When (xt
i − x̃t+1

i)j ≤ 0, then (xt+1
i)j = (x̃t+1

i)j ∈ [0, M]. Otherwise, 0 ≤
(xt+1

i)j = (x̃t+1
i)j + λ(xt

i − x̃t+1
i)j ≤ λ(xt

i)j + (1− λ)(xt
i)j ≤ M. Therefore,

xt+1
i ∈ Pi ∀λ ∈ [0, 1] and condition 1 is always respected.

Concerning condition 3, we know by Lemma 5.2 that x̃i
t+1 = [x∗]Pi where

x∗ is such that D fi(ξ ;xt)(x∗) = 0. We have then, using Equation (5.5):

⟨D fi(ξ ;xt)(xt+1
i), xt

i − xt+1
i ⟩ ≥ 0⇔ 2Ot

i ⟨xt+1
i − x∗, xt

i − xt+1
i ⟩ ≥ 0

⇔ 2Ot
i ∑

j

(
xt+1

i − x∗
)

j

(
xt

i − xt+1
i
)

j ≥ 0. (A.2)

• If (x)∗j ≤ 0 then (x̃t+1
i)j = 0 and (xt+1

i)j = λ(xt
i)j. This means that

(
xt+1

i − x∗
)

j

(
xt

i − xt+1
i
)

j =
(
λxt

i − x∗
)

j

(
(1− λ)xt

i
)

j which is nonneg-
ative when λ ∈ [0, 1].

• If (x)∗j ∈ [0, M] then (x̃t+1
i)j = (x)∗j . This means that

(
xt+1

i − x∗
)

j

(
xt

i −
xt+1

i
)

j =
(
λ[xt

i − x∗i]Pi)j
(

xt
i − x∗ + λ[xt

i − x∗]Pi

)
j. If xt

i − x∗i ≤ 0 the
first element of the product is 0. Otherwise, both elements are non-
negative, which means that the product is always nonnegative.

• Finally, if (x)∗j ≥ M, then (x̃t+1
i)j = M and (xt+1

i)j = M. This means

that
(

xt+1
i − x∗

)
j

(
xt

i − xt+1
i
)

j =
(

M − (x∗)j
)(
(xt

i)j − M
)
, which is

nonnegative.

Therefore, all elements in the sum in (A.2) are nonegative, and as Oi is
always nonnegative, condition 3 is always respected.

Concerning condition 2, first observe that x̃t+1
i always respect this condi-

tion as it is optimal. Therefore, if ∥x̃t+1
i ∥ ≥ δ, choosing λ = 0 is a valid

choice.

Otherwise, observe that when λ = 1,
(

xt+1
i
)

j ≥
(
xt

i
)

j ∀j, and thus ∥xt+1
i ∥2 ≥

∥xt
i∥2 ≥ δ. On the contrary, when λ = 0, ∥xt+1

i ∥2 = ∥x̃t+1
i ∥2 < δ. As

the function determining xt+1
i is continuous in λ, it is possible to choose

λ∗ ∈ [0, 1] such that ∥xt+1
i ∥2 = δ.

198 |

| 1.0

Now the question is if xt+1
i using λ∗ satisfies condition 2.

⟨D fi(ξ ;xt)(xt+1
i), xi − xt+1

i ⟩ ≥ −ϵ ∀xi ∈ Pi

⇔
(

min
xi∈Pi
⟨D fi(ξ ;xt)(xt+1

i), xi − xt+1
i ⟩

)
≥ −ϵ

⇔ 2Ot
i min

xi∈Pi
∑

j

(
xt+1

i − x∗
)

j

(
xi − xt+1

i
)

j ≥ −ϵ

At minimum,
(

xi
)

j =

{
M if

(
xt+1

i − x∗
)

j < 0→
(
xt+1

i
)

j = M
0 else

,

⇔ 2Ot
i ∑(

xt+1
i −x∗

)
j
>0

(
xt+1

i − x∗
)

j

(
xt+1

i
)

j ≤ ϵ

As ∑i aibi ≤
√

∑i a2
i

√
∑i b2

i (Cauchy-Schwarz inequality):

⇐ 2Ot
i

√√√√ ∑(
xt+1

i −x∗
)

j
>0

(
xt+1

i − x∗
)2

j

√√√√ ∑(
xt+1

i −x∗
)

j
>0

(
xt+1

i
)2

j ≤ ϵ

⇐ − 2Ot
i∥xt+1

i − x∗∥ ∥xt+1
i ∥ ≥ −ϵ

Note that Ot
i∥xt+1

i − x∗∥2 = fi(xt+1
i ; xt)− fi(x∗ ; xt) by Lemma (5.1)

⇔ 2
√

Ot
i (fi(xt+1

i ; xt)− fi(x∗ ; xt))δ ≤ ϵ using λ∗

We have
√

Ot
i = ∥xt

k∥ ≤ M
√

max(m, n) , fi(xt+1
i ; xt) ≤ f (x0), and

− f (x∗) ≤ 0, so

⇐ 2M
√

max(n, m)
(

f (x0)
)
δ ≤ ϵ

It is then possible to satisfy all conditions when 2M
√

max(n, m)
(

f (x0)
)
δ ≤

ϵ. Note that the constraint on ϵ is stronger that needed due to the numerous
simplifications. Nevertheless, using ϵ−stationarity we manage to consider
the whole spaces Ã and X̃ and not subspaces without zeros elements, and
we theoretically bounded the stationarity of the obtained point.

| 199

A | Proof of Theorem 5.7

200 |

B
Description and

implementation of the
projection methods for

rational functions

We describe the projection methods in more details.

Least Squares: we use the least_squares method of python, provided
with the jacobian of the cost function, with default parameters. It therefore
solves the problem using a trust region reflective algorithm. The algorithm
is stopped when either the cost function is not enough improved anymore,
or the iterates are too close to each others, or the norm of the gradient is
very small.

Alternating Least Squares: problem (8.17) is as a conic problem. Indeed,
using Markov-Lukacs theorem, nonnegative polynomials can be expressed
using sum of squares polynomials (SOS), and SOS can be expressed us-
ing positive semidefinite matrices [15]. Therefore, problem (8.17) can be
rewritten using appropriate matrices: Vτ (g) a Vandermonde-like matrix
taking into account the known denominator, Vτ (g) ∈ Rm×(d1+1) and R ∈

| 201

B | Description and implementation of the projection methods
for rational functions

R(d1+1)× d2
1
2 +d1+1 the matrix recovering the coefficients of the polynomial

from the positive semi-definite matrices. R is built using Gram matrices,
see Section 2.3.1. Let Sd

+ be the set of positive semidefinite matrices in
Rd×d. We have

min

(S1,S2)∈S
d1
2 +1

+ ×S
d1
2

+

∥∥∥∥∥z − Vτ (g)R
[

vec(S1)

vec(S2)

] ∥∥∥∥∥

2

. (B.1)

Problem (B.1) can be compressed using the singular value decomposition
of Vτ (g) = UΣW⊤. It can be proved that using Ṽ = ΣW⊤ and z̃ = U⊤z

leads to the same minimization problem, to one constant. It is solved using
Mosek 9.1 [6]. The problem of finding the best denominator is solved using
the same solver as for Least Squares.

Conic: A way to bypass the division difficulty is to consider the modifica-
tion suggested in [10] on which we add nonnegativity constraints:

min
h∈Pd1

+ (T), g∈Pd2
+ (T), g(τm)=1

∥∥∥∥
zg(τ)− h(τ)

g̃(τ)

∥∥∥∥
2

(B.2)

where g̃ ∈ Pd2
+ (T) is fixed so that g̃(τm) = 1. This equation is equivalent

to (8.12) when g(τ) = g̃(τ) > 0. It transforms the problem into a simpler
problem on polynomials.

The normalization of g is important to avoid the trivial solution g = h = 0,
and can be done without loss of generality as using αh and αg leads to the
same rational function f = h/g. Unfortunately, even with normalization,
this approach leads to poor reconstruction results, even when input z is
exactly the discretization of a nonnegative rational function. We observed
that the error is often much smaller on (B.2) than on (8.12). For example,
suppose that g(τi) and h(τi) are very small and g̃(τi) = 1. In this case,
zi g(τi)−h(τi)

g̃(τi)
can be much smaller than zi − h(τi)

g(τi)
. Adding a regularization

term on the cost function λ∥h(τ) − g̃(τ)∥2 with various λ ≥ 0 allows to
reduce the problem but not in a sufficient way.

We therefore slightly modify the approach and approximate z by f (τ) =
h(τ)

g̃(τ)+δ(τ)
, where g ∈ Pd1

+ (T), g̃, δ ∈ Pd2
+ (T) and g̃ is fixed.

202 |

| 2.0

So ∥z − f (τ)∥2 =

∥∥∥∥
z g̃(τ) + zδ(τ)− h(τ)

g̃(τ)
· g̃(τ)

g̃(τ) + δ(τ)

∥∥∥∥
2

. (B.3)

As δ and g̃ are nonnegative, 0 < g̃(τ)
δ(τ)+g̃(τ)

≤ 1. The cost function of (B.4)
is thus an upper bound of the cost function of problem (8.12):

min
h∈Pd1

+ (T),δ∈Pd2
+ (T)

∥∥∥∥|z +
zδ(τ)− h(τ)

g̃(τ)

∥∥∥∥
2

. (B.4)

Solving problem (B.4) ensures to have a rational function that leads also to
a low cost in problem (8.12), which was not the case when solving (B.2).
It can be solved in a similar way as (B.1). Using appropriate matrices

Vτ (g̃, z) ∈ Rm×(d1+d2+2) and R ∈ R(d1+d2+2)× d2
1
2 +d1+

d2
2
2 +d2+2 , we have:

min
(S1,S2,D1,D2)∈

S
d1
2 +1

+ ×S
d1
2

+ ×S
d2
2 +1

+ ×S
d2
2

+

∥∥∥∥∥z + Vτ (g̃, z)R




vec(S1)

vec(S2)

vec(D1)

vec(D2)




∥∥∥∥∥

2

. (B.5)

Problem (B.5) can be compressed, using the singular value decomposition
of Vτ (g̃, z) = UΣW⊤, with Ṽ = ΣW⊤ and z̃ = U⊤z. This problem is
solved using Mosek 9.1 solver.

RKFIT+: operator h′ from (8.19) can be solved analytically using matrix
V1 such that h(τ)

g̃(τ)
= V1h, where h is the coefficient vector of h (such a

matrix always exists). Problem becomes:

h′(g̃, δ, z, τ)

g̃(τ)
= V1 argminh

∥∥∥z +
zδ(τ)

g̃(τ)
− V1h

∥∥∥
2
. (B.6)

The solution of this problem can be expressed using V †
1 the pseudo-inverse

of V1 as:
h′(g̃, δ, z, τ)

g̃(τ)
= V1V †

1

(
z +

zδ(τ)

g̃(τ)

)
. (B.7)

| 203

B | Description and implementation of the projection methods
for rational functions
Similarly, we can define V2 so that zδ(τ)

g̃(τ)
= V2δ, where δ is the coef-

ficient vector of δ. Problem (8.19) is then min
δ∈Pd2

+ (T)
∥(I − V1V†

1)(z +

V2δ)∥2. This problem can be compressed, using SVD decomposition of
(I − V1V †

1)V2: UΣW⊤. The cost becomes ∥U⊤(I − V1V †
1)z + ΣW⊤δ∥2.

The problem can then be solved using Mosek 9.1, in a similar way than
(B.1).

The problem of finding the best numerator for a fixed denominator is prob-
lem B.1, presented in the Alternating Least Squares approach.

LinProj: this problem is solved using Mosek 9.1. This solver sometimes
consider a problem as feasible when the constraint is violated by a value
smaller than 10−6. To avoid this small violation to lead to a huge value of
maxi

(∣∣zi − h(τi)
g(τi)

∣∣), g(τ) is imposed to be greater than 1.

204 |

C
Implementation

The code used for this thesis is available on Code Ocean, with some repre-
sentative tests: https://codeocean.com/capsule/5065386/tree.

The code is written in Python, using MOSEK version 9.1.3 [6] to solve some
optimization problems. The structure of the code is the following:

• Main files:

⋄ ClassesA.py: this file describes the factors A/X. It contains an
abstract class Factors with all functions that must be imple-
mented by a class of factors to be usable by H-HALS. It also
contains class PosMat that implement all these functions when
factors contains nonnegative vectors (standard case).

⋄ ClassesY.py: this file describes the input data Y : A×X 7→ R,
with all useful functions for H-HALS. Three kind of data are
considered:

* Matrices: Both domains A and X are discrete and Y can
thus be described as a matrix.

* HilbFun: Both domains A and X are continuous and Y is
thus described as a function of two variables.

| 205

https://codeocean.com/capsule/5065386/tree

C | Implementation

* ListFun: Domain A is continuous while domain X is dis-
crete. Input Y is then described as a list of functions.

This file also contains class realData that describes input Y when
both factors {Ak}r

k=1 and {Xk}r
k=1 are known. This is useful for

testing.

⋄ HilbertHALS: this file contains the implementation of the H-
HALS algorithm.

• Additional folders:

⋄ Poly: this folder contains functions needed for H-HALS using
polynomials. In particular, file PHALS is the class for factors
containing nonnegative polynomials.

⋄ Spline: this folder contains functions needed for H-HALS using
splines. In particular, file SHALS is the class for factors contain-
ing nonnegative splines.

⋄ Ratio: this folder contains functions needed for H-NMF using
rational functions. In particular, file Ratio is the class for factors
containing nonnegative rational functions (R-HANLS) and file
RatioLS contains the implementation of R-NLS and R-ANLS.

⋄ Test: this folder contains used datasets, helpers to perform tests
and notebooks with main results. Those notebooks are also very
useful to better understand how to use our implementation of
H-HALS in practice.

Our implementation uses results from Section 4.2.3 and work on precom-
putable Z instead of Y (when neither A nor X contains linearly parametriz-
able functions, Z = Y).

206 |

Bibliography

[1] A. A. Ahmadi, G. Hall, A. Papachristodoulou, J. Saunderson, and
Y. Zheng. Improving efficiency and scalability of sum of squares
optimization: Recent advances and limitations. In 2017 IEEE 56th
annual conference on decision and control (CDC), pages 453–462. IEEE,
2017.

[2] A. A. Ahmadi and A. Majumdar. Some applications of polynomial
optimization in operations research and real-time decision making.
Optimization Letters, 10(4):709–729, 2016.

[3] M. Ahookhosh, L. T. K. Hien, N. Gillis, and P. Patrinos. Multi-block
Bregman proximal alternating linearized minimization and its appli-
cation to orthogonal nonnegative matrix factorization. Computational
Optimization and Applications, 79(3):681–715, 2021.

[4] A. M. S. Ang and N. Gillis. Accelerating nonnegative matrix
factorization algorithms using extrapolation. Neural computation,
31(2):417–439, 2019.

[5] F. Anowar, S. Sadaoui, and B. Selim. Conceptual and empirical com-
parison of dimensionality reduction algorithms (PCA, KPCA,LDA,
MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Computer Science Review,
40:100378, 2021.

[6] M. ApS. The MOSEK optimization toolbox for Python manual. Version
9.3., 2021.

[7] N. Aronszajn. Theory of reproducing kernels. Transactions of the
American mathematical society, 68(3):337–404, 1950.

| 207

⋆ | Bibliography

[8] D. Backenroth. Methods in functional data analysis and functional ge-
nomics. Columbia University, 2018.

[9] D. Backenroth, R. T. Shinohara, J. A. Schrack, and J. Goldsmith.
Nonnegative decomposition of functional count data. Biometrics,
76(4):1273–1284, 2020.

[10] I. Barrodale and J. Mason. Two simple algorithms for discrete ratio-
nal approximation. MATHEMATICS of computation, 24(112):877–891,
1970.

[11] Z. Battles and L. N. Trefethen. An extension of matlab to continu-
ous functions and operators. SIAM Journal on Scientific Computing,
25(5):1743–1770, 2004.

[12] M. Berljafa and S. Güttel. The RKFIT algorithm for nonlinear rational
approximation. SIAM Journal on Scientific Computing, 39(5):A2049–
A2071, 2017.

[13] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J.
Plemmons. Algorithms and applications for approximate nonneg-
ative matrix factorization. Computational statistics & data analysis,
52(1):155–173, 2007.

[14] D. P. Bertsekas. Nonlinear programming. Scientific, Athena,
1999. Using errata updated the 1/18/2016, available at
http://www.athenasc.com/nlperrata.pdf.

[15] G. Blekherman, P. A. Parrilo, and R. R. Thomas. Semidefinite optimiza-
tion and convex algebraic geometry. SIAM, 2012.

[16] N. Boumal, V. Voroninski, and A. Bandeira. The non-convex Burer-
Monteiro approach works on smooth semidefinite programs. Ad-
vances in Neural Information Processing Systems, 29, 2016.

[17] S. Boyd, N. Parikh, and E. Chu. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now Pub-
lishers Inc, 2011.

[18] N. Braidy and R. Gosselin. Unmixing noisy co-registered spectrum
images of multicomponent nanostructures. Scientific reports, 9(1):1–8,
2019.

[19] M. A. Branch, T. F. Coleman, and Y. Li. A subspace, interior, and
conjugate gradient method for large-scale bound-constrained mini-

208 |

Bibliography | ⋆

mization problems. SIAM Journal on Scientific Computing, 21(1):1–23,
1999.

[20] I. Buciu, N. Nikolaidis, and I. Pitas. Nonnegative matrix factorization
in polynomial feature space. IEEE Transactions on Neural Networks,
19(6):1090–1100, 2008.

[21] S. Burer and R. D. Monteiro. Local minima and convergence in
low-rank semidefinite programming. Mathematical programming,
103(3):427–444, 2005.

[22] D. Cai, X. He, J. Han, and T. S. Huang. Graph regularized nonnega-
tive matrix factorization for data representation. IEEE transactions on
pattern analysis and machine intelligence, 33(8):1548–1560, 2010.

[23] T. Chen, H. Li, Q. Yang, and Y. Yu. General functional matrix fac-
torization using gradient boosting. In International Conference on Ma-
chine Learning, pages 436–444. PMLR, 2013.

[24] S. Choi. Algorithms for orthogonal nonnegative matrix factorization.
Neural Networks IJCNN, pages 1828–1832, 2008.

[25] M. Chu, F. Diele, R. Plemmons, and S. Ragni. Optimality, compu-
tation, and interpretation of nonnegative matrix factorizations. In
SIAM Journal on Matrix Analysis. Citeseer, 2004.

[26] A. Cichocki, H. Lee, Y.-D. Kim, and S. Choi. Non-negative matrix fac-
torization with α-divergence. Pattern Recognition Letters, 29(9):1433–
1440, 2008.

[27] A. Cichocki, R. Zdunek, and S.-i. Amari. Hierarchical ALS algo-
rithms for nonnegative matrix and 3D tensor factorization. In Inter-
national Conference on Independent Component Analysis and Signal Sep-
aration, pages 169–176. Springer, 2007.

[28] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari. Nonnegative ma-
trix and tensor factorizations: applications to exploratory multi-way data
analysis and blind source separation. John Wiley & Sons, 2009.

[29] S. Costa and L. N. Trefethen. AAA-least squares rational ap-
proximation and solution of Laplace problems. arXiv preprint
arXiv:2107.01574, 2021.

[30] A. M. Darsono, C. C. Toh, S. Saat, A. A. M. Isa, N. A. Manap, and
M. M. Ibrahim. β-divergence nonnegative matrix factorization on

| 209

⋆ | Bibliography

biomedical blind source separation. Journal of Telecommunication,
Electronic and Computer Engineering (JTEC), 9(2):1–4, 2017.

[31] C. De Boor and J. W. Daniel. Splines with nonnegative B-spline coef-
ficients. Mathematics of computation, 28(126):565–568, 1974.

[32] O. Debals, M. Van Barel, and L. De Lathauwer. Löwner-based blind
signal separation of rational functions with applications. IEEE Trans-
actions on Signal Processing, 64(8):1909–1918, 2015.

[33] O. Debals, M. Van Barel, and L. De Lathauwer. Nonnegative matrix
factorization using nonnegative polynomial approximations. IEEE
Signal Processing Letters, 24(7):948–952, 2017.

[34] F. Deutsch and F. Deutsch. Best approximation in inner product spaces,
volume 7. Springer, 2001.

[35] D. Donoho and V. Stodden. When does non-negative matrix factor-
ization give a correct decomposition into parts? In Advances in Neural
Information Processing Systems 16, pages 1141–1148. MIT Press, 2004.

[36] J.-M. Dufour. Hilbert spaces. https://jeanmariedufour.github.io/ResE/
Dufour_1999_C_TS_HilbertSpaces.pdf, 1999.

[37] R. L. Dykstra. An algorithm for restricted least squares regression.
Journal of the American Statistical Association, 78(384):837–842, 1983.

[38] J. Eckstein and D. P. Bertsekas. On the Douglas–Rachford splitting
method and the proximal point algorithm for maximal monotone
operators. Mathematical Programming, 55(1):293–318, 1992.

[39] J. Feng, X. Huo, L. Song, X. Yang, and W. Zhang. Evaluation of differ-
ent algorithms of nonnegative matrix factorization in temporal psy-
chovisual modulation. IEEE Transactions on Circuits and Systems for
Video Technology, 24(4):553–565, 2013.

[40] X.-R. Feng, H.-C. Li, J. Li, Q. Du, A. Plaza, and W. J. Emery. Hyper-
spectral unmixing using sparsity-constrained deep nonnegative ma-
trix factorization with total variation. IEEE Transactions on Geoscience
and Remote Sensing, 56(10):6245–6257, 2018.

[41] C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factor-
ization with the Itakura-Saito divergence: With application to music
analysis. Neural computation, 21(3):793–830, 2009.

210 |

Bibliography | ⋆

[42] S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, and B. Beckermann. Ra-
tional minimax approximation via adaptive barycentric representa-
tions. SIAM Journal on Scientific Computing, 40(4):A2427–A2455, 2018.

[43] X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma. Nonnega-
tive matrix factorization for signal and data analytics: Identifiabil-
ity, algorithms, and applications. IEEE Signal Processing Magazine,
36(2):59–80, 2019.

[44] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson. Optimal pa-
rameter selection for the alternating direction method of multipliers
(ADMM): quadratic problems. IEEE Transactions on Automatic Con-
trol, 60(3):644–658, 2014.

[45] N. Gillis. The why and how of nonnegative matrix factorization. Reg-
ularization, Optimization, Kernels, and Support Vector Machines, 12(257),
2014.

[46] N. Gillis. Nonnegative matrix factorization. SIAM, 2020.

[47] N. Gillis and F. Glineur. Accelerated multiplicative updates and hier-
archical ALS algorithms for nonnegative matrix factorization. Neural
computation, 24(4):1085–1105, 2012.

[48] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk. Fast al-
ternating direction optimization methods. SIAM Journal on Imaging
Sciences, 7(3):1588–1623, 2014.

[49] R. Gu, Q. Du, and S. J. Billinge. A fast two-stage algorithm for
non-negative matrix factorization in streaming data. arXiv preprint
arXiv:2101.08431, 2021.

[50] B. Gustavsen and A. Semlyen. Rational approximation of frequency
domain responses by vector fitting. IEEE Transactions on power deliv-
ery, 14(3):1052–1061, 1999.

[51] Y. Hachez. Convex optimization over non-negative polynomials:
structured algorithms and applications. Université Catholique de Lou-
vain, 2003.

[52] C. Hautecoeur, L. De Lathauwer, N. Gillis, and F. Glineur. Least-
squares methods for nonnegative matrix factorization over rational
functions. 2022.

| 211

⋆ | Bibliography

[53] C. Hautecoeur and F. Glineur. Accelerating nonnegative matrix fac-
torization over polynomial signals with faster projections. In 2019
IEEE 29th International Workshop on Machine Learning for Signal Pro-
cessing (MLSP), pages 1–6. IEEE, 2019.

[54] C. Hautecoeur and F. Glineur. Nonnegative matrix factorization with
polynomial signals via hierarchical alternating least squares. In Eu-
ropean Symposium on Artificial Neural Networks (ESANN), pages 125–
130, 2019.

[55] C. Hautecoeur and F. Glineur. Image completion via nonnegative
matrix factorization using HALS and B-splines. In 28th European
Symposium on Artificial Neural Networks-Computational Intelligence and
Machine Learning (ESANN), pages 73–78, 2020.

[56] C. Hautecoeur and F. Glineur. Nonnegative matrix factorization over
continuous signals using parametrizable functions. Neurocomputing,
416:256–265, 2020.

[57] C. Hautecoeur and F. Glineur. Factorisation nonnégative avec des
fonctions rationnelles : partitions efficaces et méthodes hybrides. In
Groupe de Recherche et d’Etudes du Traitement du Signal et des Images
(GRETSI 2022), pages p. 929–932, 2022.

[58] C. Hautecoeur and F. Glineur. H-NMF: Nonnegative and con-
strained matrix factorization on Hilbert spaces; a unifying frame-
work for NMF on signals. 2022.

[59] C. Hautecoeur, F. Glineur, and L. De Lathauwer. Hierarchical alter-
nating nonlinear least squares for nonnegative matrix factorization
using rational functions. In 2021 29th European Signal Processing Con-
ference (EUSIPCO), pages 1045–1049. IEEE, 2021.

[60] D. Henrion and J. Malick. Projection methods in conic optimization.
In Handbook on Semidefinite, Conic and Polynomial Optimization, pages
565–600. Springer, 2012.

[61] L. T. K. Hien and N. Gillis. Algorithms for nonnegative matrix fac-
torization with the Kullback–Leibler divergence. Journal of Scientific
Computing, 87(3):1–32, 2021.

[62] J. M. Hokanson and C. C. Magruder. Least squares rational approxi-
mation. arXiv preprint arXiv:1811.12590, 2018.

212 |

Bibliography | ⋆

[63] P. O. Hoyer. Non-negative matrix factorization with sparseness con-
straints. Journal of machine learning research, 5(Nov):1457–1469, 2004.

[64] A. Ionita. Lagrange rational interpolation and its applications to approx-
imation of large-scale dynamical systems. PhD thesis, Rice University,
2013.

[65] T.-Y. Ji, T.-Z. Huang, X.-L. Zhao, T.-H. Ma, and G. Liu. Tensor com-
pletion using total variation and low-rank matrix factorization. In-
formation Sciences, 326:243–257, 2016.

[66] S. Jia and Y. Qian. Constrained nonnegative matrix factorization for
hyperspectral unmixing. IEEE Transactions on Geoscience and Remote
Sensing, 47(1):161–173, 2008.

[67] B. Jiang, T. Lin, S. Ma, and S. Zhang. Structured nonconvex and non-
smooth optimization: algorithms and iteration complexity analysis.
Computational Optimization and Applications, 72(1):115–157, 2019.

[68] D. Jibetean and E. de Klerk. Global optimization of rational func-
tions: a semidefinite programming approach. Mathematical Program-
ming, 106(1):93, 2006.

[69] E. John and E. A. Yıldırım. Implementation of warm-start strate-
gies in interior-point methods for linear programming in fixed di-
mension. Computational Optimization and Applications, 41(2):151–183,
2008.

[70] H. Kameoka, M. Nakano, K. Ochiai, Y. Imoto, K. Kashino, and
S. Sagayama. Constrained and regularized variants of non-negative
matrix factorization incorporating music-specific constraints. In
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE Interna-
tional Conference on, pages 5365–5368. IEEE, 2012.

[71] E. Karahan, P. A. Rojas-Lopez, M. L. Bringas-Vega, P. A. Valdés-
Hernández, and P. A. Valdes-Sosa. Tensor analysis and fusion of
multimodal brain images. Proceedings of the IEEE, 103(9):1531–1559,
2015.

[72] S. Khoshsokhan, R. Rajabi, and H. Zayyani. Sparsity-constrained
distributed unmixing of hyperspectral data. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(4):1279–
1288, 2019.

| 213

⋆ | Bibliography

[73] U. Khristenko and B. Wohlmuth. Solving time-fractional differential
equation via rational approximation. arXiv preprint arXiv:2102.05139,
2021.

[74] H. Kim and H. Park. Nonnegative matrix factorization based on
alternating nonnegativity constrained least squares and active set
method. SIAM journal on matrix analysis and applications, 30(2):713–
730, 2008.

[75] J. Kim, Y. He, and H. Park. Algorithms for nonnegative matrix and
tensor factorizations: a unified view based on block coordinate de-
scent framework. Journal of Global Optimization, 58(2):285–319, 2014.

[76] T. Kimura and N. Takahashi. Global convergence of a modified
HALS algorithm for nonnegative matrix factorization. In Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015
IEEE 6th International Workshop on, pages 21–24. IEEE, 2015.

[77] R. Kokaly and al. USGS spectral library version 7, 2017.

[78] V. Kumar and S. Minz. Feature selection: a literature review.
SmartCR, 4(3):211–229, 2014.

[79] F. B. Lavoie, N. Braidy, and R. Gosselin. Including noise charac-
teristics in MCR to improve mapping and component extraction
from spectral images. Chemometrics and Intelligent Laboratory Systems,
153:40–50, 2016.

[80] D. D. Lee and H. S. Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788, 1999.

[81] V. Leplat, N. Gillis, and A. M. Ang. Blind audio source separation
with minimum-volume beta-divergence NMF. IEEE Transactions on
Signal Processing, 68:3400–3410, 2020.

[82] H.-C. Li, G. Yang, W. Yang, Q. Du, and W. J. Emery. Deep
nonsmooth nonnegative matrix factorization network with semi-
supervised learning for sar image change detection. ISPRS Journal
of Photogrammetry and Remote Sensing, 160:167–179, 2020.

[83] L. Li, G. Lebanon, and H. Park. Fast Bregman divergence NMF using
Taylor expansion and coordinate descent. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 307–315, 2012.

214 |

Bibliography | ⋆

[84] C.-J. Lin. Projected gradient methods for nonnegative matrix factor-
ization. Neural computation, 19(10):2756–2779, 2007.

[85] H. Liu, W. Wang, L. Xue, J. Yang, Z. Wang, and C. Hua. Speech en-
hancement based on discrete wavelet packet transform and Itakura-
Saito nonnegative matrix factorisation. Archives of Acoustics, pages
565–572, 2020.

[86] Y. Liu, Z. Long, and C. Zhu. Image completion using low tensor tree
rank and total variation minimization. IEEE Transactions on Multime-
dia, 21(2):338–350, 2018.

[87] H. L. Loeb. On rational fraction approximations at discrete points. PhD
thesis, Columbia University, 1959.

[88] Y. Lu, Z. Lai, Y. Xu, J. You, X. Li, and C. Yuan. Projective robust
nonnegative factorization. Information Sciences, 364:16–32, 2016.

[89] P. Luo, X. Qu, L. Tan, X. Xie, W. Jiang, L. Huang, W. H. Ip, and K. L.
Yung. Robust ensemble manifold projective non-negative matrix fac-
torization for image representation. IEEE Access, 8:217781–217790,
2020.

[90] X. Luo, M. Zhou, Y. Xia, and Q. Zhu. An efficient non-negative
matrix-factorization-based approach to collaborative filtering for
recommender systems. IEEE Transactions on Industrial Informatics,
10(2):1273–1284, 2014.

[91] U. Marteau-Ferey, F. Bach, and A. Rudi. Non-parametric models for
non-negative functions. Advances in neural information processing sys-
tems, 33:12816–12826, 2020.

[92] R. Melrose. Functional analysis lecture notes for 18.102.
https://math.mit.edu/ rbm/18-102-S17/Chapter3.pdf, Mai 2017.

[93] G. R. Naik. Non-negative Matrix Factorization Techniques. Springer,
2016.

[94] Y. Nakatsukasa, O. Sète, and L. N. Trefethen. The AAA algorithm
for rational approximation. SIAM Journal on Scientific Computing,
40(3):A1494–A1522, 2018.

[95] P. M. Narendra and K. Fukunaga. A branch and bound algorithm for
feature subset selection. IEEE Transactions on computers, 26(09):917–
922, 1977.

| 215

⋆ | Bibliography

[96] J. Nie. Regularization methods for sum of squares relaxations
in large scale polynomial optimization. Submitted for publication.,
September, 2009.

[97] P. Paatero and U. Tapper. Positive matrix factorization: A non-
negative factor model with optimal utilization of error estimates of
data values. Environmetrics, 5(2):111–126, 1994.

[98] A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and
R. D. Pascual-Marqui. Nonsmooth nonnegative matrix factorization
(nsNMF). IEEE transactions on pattern analysis and machine intelligence,
28(3):403–415, 2006.

[99] V. I. Paulsen and M. Raghupathi. An introduction to the theory of repro-
ducing kernel Hilbert spaces, volume 152. Cambridge university press,
2016.

[100] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone,
G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri,
et al. Recent advances in techniques for hyperspectral image pro-
cessing. Remote sensing of environment, 113:S110–S122, 2009.

[101] V. Powers and B. Reznick. Polynomials that are positive on an inter-
val. Transactions of the American Mathematical Society, 352(10):4677–
4692, 2000.

[102] J. Rapin, J. Bobin, A. Larue, and J.-L. Starck. NMF with sparse reg-
ularizations in transformed domains. SIAM journal on Imaging Sci-
ences, 7(4):2020–2047, 2014.

[103] M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified convergence
analysis of block successive minimization methods for nonsmooth
optimization. SIAM Journal on Optimization, 23(2):1126–1153, 2013.

[104] B. Reznick. Some concrete aspects of Hilbert’s 17th problem. Con-
temporary mathematics, 253:251–272, 2000.

[105] T. Roh and L. Vandenberghe. Discrete transforms, semidefinite pro-
gramming, and sum-of-squares representations of nonnegative poly-
nomials. SIAM Journal on Optimization, 16(4):939–964, 2006.

[106] T. Sadowski and R. Zdunek. Image completion with smooth non-
negative matrix factorization. In International Conference on Artificial
Intelligence and Soft Computing, pages 62–72. Springer, 2018.

216 |

Bibliography | ⋆

[107] P. Sajda, S. Du, T. R. Brown, R. Stoyanova, D. C. Shungu, X. Mao,
and L. C. Parra. Nonnegative matrix factorization for rapid recovery
of constituent spectra in magnetic resonance chemical shift imaging
of the brain. IEEE transactions on medical imaging, 23(12):1453–1465,
2004.

[108] Y. E. Salehani and S. Gazor. Smooth and sparse regularization for
NMF hyperspectral unmixing. IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, 10(8):3677–3692, 2017.

[109] C. Sanathanan and J. Koerner. Transfer function synthesis as a ratio
of two complex polynomials. IEEE transactions on automatic control,
8(1):56–58, 1963.

[110] T. Sano, T. Migita, and N. Takahashi. A novel update rule of HALS al-
gorithm for nonnegative matrix factorization and Zangwill’s global
convergence. Journal of Global Optimization, pages 1–27, 2022.

[111] P. Seiler. Sosopt: A toolbox for polynomial optimization. arXiv
preprint arXiv:1308.1889, 2013.

[112] Z. Shu, X.-J. Wu, C. You, Z. Liu, P. Li, H. Fan, and F. Ye. Rank-
constrained nonnegative matrix factorization for data representa-
tion. Information Sciences, 528:133–146, 2020.

[113] A. Siem, E. de Klerk, and D. den Hertog. Discrete least-norm ap-
proximation by nonnegative (trigonometric) polynomials and ratio-
nal functions. Structural and Multidisciplinary Optimization, 35(4):327–
339, 2008.

[114] V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic. One-class matrix
completion with low-density factorizations. In 2010 IEEE interna-
tional conference on data mining, pages 1055–1060. IEEE, 2010.

[115] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F. Martínez-
Trinidad. A review of unsupervised feature selection methods. Arti-
ficial Intelligence Review, 53(2):907–948, 2020.

[116] D. L. Sun and C. Fevotte. Alternating direction method of multipli-
ers for non-negative matrix factorization with the beta-divergence.
In 2014 IEEE international conference on acoustics, speech and signal pro-
cessing (ICASSP), pages 6201–6205. IEEE, 2014.

| 217

⋆ | Bibliography

[117] M. J. Todd, K.-C. Toh, and R. H. Tütüncü. On the Nesterov-Todd di-
rection in semidefinite programming. SIAM Journal on Optimization,
8(3):769–796, 1998.

[118] A. Townsend and L. N. Trefethen. Continuous analogues of matrix
factorizations. Proc. R. Soc. A, 471(2173):20140585, 2015.

[119] L. N. Trefethen. Householder triangularization of a quasimatrix.
IMA journal of numerical analysis, 30(4):887–897, 2009.

[120] L. N. Trefethen. Approximation Theory and Approximation Practice, Ex-
tended Edition. SIAM, 2019.

[121] L. N. Trefethen, Y. Nakatsukasa, and J. Weideman. Exponential node
clustering at singularities for rational approximation, quadrature,
and PDEs. Numerische Mathematik, 147(1):227–254, 2021.

[122] A. Vandaele, N. Gillis, F. Glineur, and D. Tuyttens. Heuristics for
exact nonnegative matrix factorization. Journal of Global Optimization,
65(2):369–400, 2016.

[123] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM
review, 38(1):49–95, 1996.

[124] S. A. Vavasis. On the complexity of nonnegative matrix factorization.
SIAM Journal on Optimization, 20(3):1364–1377, 2009.

[125] L. Wittmeyer. Rational approximation of empirical functions. BIT
Numerical Mathematics, 2(1):53–60, 1962.

[126] Y. Xu and W. Yin. A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative ten-
sor factorization and completion. SIAM Journal on imaging sciences,
6(3):1758–1789, 2013.

[127] Y. Xu, W. Yin, Z. Wen, and Y. Zhang. An alternating direction algo-
rithm for matrix completion with nonnegative factors. Frontiers of
Mathematics in China, 7(2):365–384, 2012.

[128] F. Yahaya, M. Puigt, G. Delmaire, and G. Roussel. Random projection
streams for (weighted) nonnegative matrix factorization. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3280–3284. IEEE, 2021.

218 |

Bibliography | ⋆

[129] J. Yan, B. Zhang, N. Liu, S. Yan, Q. Cheng, W. Fan, Q. Yang, W. Xi,
and Z. Chen. Effective and efficient dimensionality reduction for
large-scale and streaming data preprocessing. IEEE transactions on
Knowledge and Data Engineering, 18(3):320–333, 2006.

[130] S. Yang and M. Ye. Multistability of α-divergence based NMF algo-
rithms. Computers & Mathematics with Applications, 64(2):73–88, 2012.

[131] Z. Yang, H. Zhang, Z. Yuan, and E. Oja. Kullback-Leibler divergence
for nonnegative matrix factorization. In International Conference on
Artificial Neural Networks, pages 250–257. Springer, 2011.

[132] Z. Yang, Y. Zhang, W. Yan, Y. Xiang, and S. Xie. A fast non-smooth
nonnegative matrix factorization for learning sparse representation.
IEEE access, 4:5161–5168, 2016.

[133] T. Yokota, R. Zdunek, A. Cichocki, and Y. Yamashita. Smooth non-
negative matrix and tensor factorizations for robust multi-way data
analysis. Signal Processing, 113:234–249, 2015.

[134] T. Yokota, Q. Zhao, and A. Cichocki. Smooth parafac decomposi-
tion for tensor completion. IEEE Transactions on Signal Processing,
64(20):5423–5436, 2016.

[135] J. Yu, G. Zhou, A. Cichocki, and S. Xie. Learning the hierarchical
parts of objects by deep non-smooth nonnegative matrix factoriza-
tion. IEEE Access, 6:58096–58105, 2018.

[136] Y. Yuan, M. Fu, and X. Lu. Substance dependence constrained sparse
NMF for hyperspectral unmixing. IEEE Transactions on Geoscience and
Remote Sensing, 53(6):2975–2986, 2015.

[137] Z. Yuan and E. Oja. Projective nonnegative matrix factorization for
image compression and feature extraction. In Scandinavian Conference
on Image Analysis, pages 333–342. Springer, 2005.

[138] S. Zafeiriou and M. Petrou. Nonlinear non-negative component anal-
ysis algorithms. IEEE Transactions on Image Processing, 19(4):1050–
1066, 2010.

[139] R. Zdunek. Approximation of feature vectors in nonnegative matrix
factorization with Gaussian radial basis functions. In International
Conference on Neural Information Processing, pages 616–623. Springer,
2012.

| 219

⋆ | Bibliography

[140] R. Zdunek. Alternating direction method for approximating smooth
feature vectors in nonnegative matrix factorization. In 2014 IEEE In-
ternational Workshop on Machine Learning for Signal Processing (MLSP),
pages 1–6. IEEE, 2014.

[141] R. Zdunek, A. Cichocki, and T. Yokota. B-spline smoothing of fea-
ture vectors in nonnegative matrix factorization. In International
Conference on Artificial Intelligence and Soft Computing, pages 72–81.
Springer, 2014.

[142] D. Zhang, Z.-H. Zhou, and S. Chen. Non-negative matrix factor-
ization on kernels. In Pacific Rim International Conference on Artificial
Intelligence, pages 404–412. Springer, 2006.

[143] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. Exploiting spar-
sity in the coefficient matching conditions in sum-of-squares pro-
gramming using ADMM. IEEE control systems letters, 1(1):80–85,
2017.

[144] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations
for cold-start recommendation. In Proceedings of the 34th international
ACM SIGIR conference on Research and development in Information Re-
trieval, pages 315–324, 2011.

[145] F. Zhu, P. Honeine, and M. Kallas. Kernel nonnegative matrix factor-
ization without the curse of the pre-image-application to unmixing
hyperspectral images. arXiv preprint arXiv:1407.4420, 2014.

220 |

	Abstract
	Acknowledgements
	Contents
	Useful notations
	List of algorithms
	Introduction
	Objectives of the thesis
	Content of the thesis and publications

	Preliminaries and background
	Nonnegative Matrix Factorization (NMF)
	Existing improvements of NMF
	Nonnegative parametrizable functions

	NMF using Polynomials and Splines
	HALS for NMF using linearly parametrizable functions
	Projection onto nonnegative polynomials or splines
	Experimental results

	Extending NMF to Hilbert spaces (H-NMF)
	Generalizing the standard NMF problem
	Optimizing the H-NMF problem using inner products
	Solving the H-NMF problem

	Convergence of H-NMF
	Block Coordinate Descent (BCD) methods for H-NMF
	Convergence analysis of BCD methods for H-NMF
	Convergence using inexact updates

	Accelerating NMF using polynomials via inexact projections
	Computational effort to solve NMF using polynomials
	Acceleration using heuristics
	Acceleration using algorithms with early stopping
	Discussion

	Application: Using NMF with splines for image completion
	Image completion using smooth NMF
	Image completion using splines in both factors
	Experiments

	NMF using rational functions
	The NMF using rational functions (R-NMF) problem
	Uniqueness
	Algorithms for R-NMF
	Projection on nonnegative rational functions
	Performance and Comparison of R-NMF algorithms
	Two applications
	Discussion

	Discussion and conclusion
	Proof of Theorem 5.7
	Description and implementation of the projection methods for rational functions
	Implementation
	Bibliography

