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Abstract

We present version 2 of the MSnbase R/Bioconductor package. MSnbase provides

infrastructure for the manipulation, processing and visualisation of mass spectrometry

data. We focus on the new on-disk infrastructure, that allows the handling of large raw

mass spectrometry experiments on commodity hardware and illustrate how the package

is used for elegant data processing, method development, and visualisation.
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Introduction

Mass spectrometry is a powerful technology to assay chemical and biological samples. It is

used in routine applications with well characterised protocols such as in clinical settings, as

well as a development platform, with the aim to improve on existing protocols and devise

new ones. The complexity and diversity of mass spectrometry yield complex data of consid-

erable size, that require non trivial processing before producing interpretable results. The

complexity and size of these data constitute a signi�cant challenge for protocol development:

in addition to the development of sample processing and mass spectrometry methods that

yield the raw data, it is essential to process, analyse, interpret and assess these new data to

demonstrate the improvement in the technical, analytical and computational work�ows.

Practitioners have a diverse catalogue of software tools at their disposal. These range from

low level software libraries that are aimed at programmers to enable the development of new

applications, to more user-oriented applications with graphical user interfaces which provide

a more limited set of functionalities to address a de�ned scope. Examples of software libraries

include Java-based jmzML1 or C/C++-based ProteoWizard.2 Thermo Scienti�c Proteome

Discoverer (Thermo Fisher Scienti�c), MaxQuant3 and PeptideShaker4 are among the most

widely used user-centric applications.

In this software note, we present version 2 of the MSnbase5 software, available from the

Bioconductor6 project. The package, like other software such as Python-based pyOpenMS,7

spectrum_utils8 or Pyteomics,9 o�ers a platform that lies between low level libraries and end-

user software. MSnbase provides a �exible R10 command-line environment for metabolomics

and proteomics mass spectrometry-based applications. It lays out a sound infrastructure to

work with raw mass spectrometry data from MS �les in mzML, mzXML, mzData or ANDI-

MS/netCDF format as well as quantitative and proteomics identi�cation data. The package

enables manipulation (for example subsetting, �ltering, or accessing speci�c parts thereof),

detailed step-by-step processing (for example smoothing and centroiding of pro�le-mode

MS data, or normalisation and imputation of quantitative data), analysis and visualisation
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of these data and the development of novel computational mass spectrometry methods.11

Extensive documentation and use cases are provided in package vignettes 12 and work�ows.13

Here, we focus on the new developments pertaining to raw mass spectrometry data handling

and processing.

Infrastructure for raw data

In MSnbase, mass spectrometry experiments are handled as MSnExp objects. While the

implementation is more complex, it is useful to schematise a raw data experiment as being

composed of raw data, i.e. a collection of individual spectra, as well as spectra-level metadata

(Figure 1). Each spectrum is composed of m/z values and associated intensities. The

metadata are represented by a single table with variables along the columns and each row

associated to a spectrum. Among the metadata available for each spectrum, there are

MS level, acquisition number, retention time, precursor m/z and intensity (for MS level

2 and above), and many more. MSnbase relies on the mzR package2 to import raw mass

spectrometry data from one of the many community-maintained open standards formats

(mzML, mzXML, mzData or ANDI-MS/netCDF) and provides a rich and principled interface

to manipulate such objects. The code chunk below illustrates such an object as displayed in

the R console and an enumeration of the metadata �elds.

> show(ms)

MSn experiment data ("OnDiskMSnExp")

Object size in memory: 0.54 Mb

- - - Spectra data - - -

MS level(s): 1 2 3

Number of spectra: 994

MSn retention times: 45:27 - 47:6 minutes

- - - Processing information - - -
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Figure 1: Schematic representation of what is referred to by raw data: a collection of mass
spectra and a table containing spectrum-level annotations along the lines. Raw data are
imported from one of the many community-maintained open standards formats (mzML,
mzXML, mzData or ANDI-MS/netCDF).

Data loaded [Sun Apr 26 15:40:58 2020]

MSnbase version: 2.13.6

- - - Meta data - - -

phenoData

rowNames: MS3TMT11.mzML

varLabels: sampleNames

varMetadata: labelDescription

Loaded from:

MS3TMT11.mzML

protocolData: none

featureData

featureNames: F1.S001 F1.S002 ... F1.S994 (994 total)

fvarLabels: fileIdx spIdx ... spectrum (35 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

> fvarLabels(ms)

[1] "fileIdx" "spIdx"
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[3] "smoothed" "seqNum"

[5] "acquisitionNum" "msLevel"

[7] "polarity" "originalPeaksCount"

[9] "totIonCurrent" "retentionTime"

[11] "basePeakMZ" "basePeakIntensity"

[13] "collisionEnergy" "ionisationEnergy"

[15] "lowMZ" "highMZ"

[17] "precursorScanNum" "precursorMZ"

[19] "precursorCharge" "precursorIntensity"

[21] "mergedScan" "mergedResultScanNum"

[23] "mergedResultStartScanNum" "mergedResultEndScanNum"

[25] "injectionTime" "filterString"

[27] "spectrumId" "centroided"

[29] "ionMobilityDriftTime" "isolationWindowTargetMZ"

[31] "isolationWindowLowerOffset" "isolationWindowUpperOffset"

[33] "scanWindowLowerLimit" "scanWindowUpperLimit"

[35] "spectrum"

In the following sections, we describe how MSnbase can be used for data processing and

visualisation. An example of its ability to also e�ciently handle very large mass spectrom-

etry experiments (in this case with 5,773,464 spectra in 1,182 mzXML �les) is provided as

supplementary information. We will also illustrate how it makes use of the forward-pipe

operator (%>%) de�ned in the magrittr package. This operator has proved useful to de-

velop non-trivial analyses by combining individual functions into easily readable and elegant

pipelines.

5

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 29, 2020. . https://doi.org/10.1101/2020.04.29.067868doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.067868
http://creativecommons.org/licenses/by/4.0/


On-disk backend

The main feature in version 2 of the MSnbase package was the addition of di�erent backends

for raw data storage, namely in-memory and on-disk. The following code chunk demonstrates

how to import data from an mzML �le to create two MSnExp objects that store the data either

in memory or on disk.

library("MSnbase")

raw_mem <- readMSData("file.mzML", mode = "inMemory")

raw_dsk <- readMSData("file.mzML", mode = "onDisk")

Both modes rely on the mzR2 package to access the spectra (using the mzR::peaks()

function) and the metadata (using the mzR::header() function) in the data �les. The

former is the legacy storage mode, implemented in the �rst version of the package, that

loads all the raw data and the metadata into memory upon creation of the in-memory

MSnExp object. This solution doesn't scale for modern large dataset, and was complemented

by the on-disk backend. The on-disk backend only loads the metadata into memory when

the on-disk MSnExp is created and accesses the spectra data (i.e. m/z and intensity values) in

the original �les on disk only when needed (see below and Figure 2 (d)), such as for example

for plotting. There are two direct bene�ts using the on-disk backend, namely faster reading

and reduced memory footprint. Figure 2 shows 5-fold faster reading times (a) and over a

10-fold reduction in memory usage (b).

Because the on-disk backend does not hold all the spectra data in memory, direct manip-

ulations of these data are not possible. We thus implemented a lazy processing mechanism

for this backend that caches any data manipulation operations in a processing queue in the

object itself. These operations are then applied only when the user accesses m/z or intensity

values. As an additional advantage, operations on subsets of the data become much faster

since data manipulations are applied only to data subsets instead of the full data set at once.

Also, on-disk data access is parallelized by data �le ensuring a higher performance of this
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Figure 2: (a) Reading time (triplicates, in seconds) and (b) data size in memory (in MB) to
read/store 1, 5 and 10 �les containing 1431 MS1 (on-disk only) and 6103 MS2 (on-disk and
in-memory) spectra. (c) Filtering benchmark assessed over 10 interactions on in-memory and
on-disk data containing 6103 MS2 spectra. (d) Access time to spectra for the in-memory
(left) and on-disk (right) backends for 1, 10, 100 1000, 5000 and all 6103 spectra. Benchmarks
were performed on a Dell XPS laptop with an Intel i5-8250U processor 1.60 GHz (4 cores,
8 threads), 7.5 GB RAM running Ubuntu 18.04.4 LTS 64-bit and an SSD drive. The data
used for the benchmarking are a TMT 4-plex experiment acquired on a LTQ Orbitrap Velos
(Thermo Fisher Scienti�c) available in the msdata package and described in14.
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backend over conventional in-memory data representations. As an example, the following

short analysis pipeline, that can equally be applied to in-memory or on-disk data, retains

MS2 spectra acquired between 1000 and 3000 seconds, extracts the m/z range corresponding

to the TMT 6-plex range and focuses on the MS2 spectra with a precursor intensity greater

than 11× 106 (the median precursor intensity).

ms <- ms %>%

filterRt(c(1000, 3000)) %>%

filterMz(120, 135)

ms[precursorIntensity(ms) > 11e6, ]

As shown on Figure 2 (c), this lazy mechanism is signi�cantly faster than its application

on in-memory data. The advantageous reading and execution times and memory footprint

of the on-disk backend are possible by retrieving only spectra data from the selected subset

hence avoiding access to the full raw data. Once access to the spectra m/z and intensity

values become mandatory (for example for plotting), then the in-memory backend becomes

more e�cient, as illustrated on Figure 2 (d). The bene�t of accessing data in memory is

however reduced by underlying copies that are performed during the subsetting operation.

When subsetting an in-memory MSnExp into a new, smaller in-memory MSnExp instance, the

matrices that contain the spectra for the new object are copied, thus leading to increased

execution time and (transient, if the original data are replaced) memory usage. Figure 2

(d) shows that the larger the subset, the smaller the bene�ts of an in-memory backend

become. The example with the 6103 spectra, corresponding to the full data (i.e. all spectra

are already in memory and there is no memory management overhead) is representative of

memory access only and constitutes the best case scenario.

The on-disk backend has become the preferred backend for large data, and the only viable

alternative when the size of the data exceeds the available RAM and/or when several MS

levels are to be loaded and handled simultaneously. The in-memory backend can still prove
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useful in cases when small MS2-only data are to be analysed, and will remain available in

future versions of MSnbase.

Prototyping

The MSnExp data structure and its interface constitute an e�cient prototyping environment

for computational method development. We illustrate this by demonstrating how to imple-

ment the BoxCar15 acquisition method. In a nutshell, BoxCar acquisition aims at improving

the detection of intact precursor ions by distributing the charge capacity over multiple nar-

row m/z segments and thus limiting the proportion of highly abundant precursors in each

segment. A full scan is reconstructed by combining the respective adjacent segments of the

BoxCar acquisitions. The MSnbaseBoxCar package16 is a small package that demonstrates

this. The simple pipeline is composed of three steps, described below, and illustrated with

code from MSnbaseBoxCar in the following code chunk.

1. Identify and �lter the groups of spectra that represent adjacent BoxCar acquisitions

(Figure 3 (b)). This can be done using the �lterString metadata variable that identi�es

BoxCar spectra by their adjacent m/z segments with the bc_groups() function and

�ltering relevant spectra with the filterBoxCar().

2. Remove any signal outside the BoxCar segments using the bc_zero_out_box() func-

tion from MSnbaseBoxCar (Figures 3 (c) and (d)).

3. Using the combineSpectra function from the MSnbase, combine the cleaned BoxCar

spectra into a new, full spectrum (Figure 3 (e)).

bc <- readMSData("boxcar.mzML", mode = "onDisk") %>%

bc_groups() %>% ## identify BoxCar groups (creates 'bc_groups')

filterBoxCar() %>% ## keep only BoxCar spectra

bc_zero_out_box() %>% ## remove signal outside of BoxCar segments
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combineSpectra(fcol = "bc_groups", ## reconstruct full spectrum

method = boxcarCombine)

After processing of the BoxCar data, the �nal object can either be further analysed using

MSnbase or written back to disk as an mzML �le using writeMSData() for processing with

other tools.

All the functions for the processing of BoxCar spectra and segments in MSnbaseBoxCar

were developed using existing functionality implemented in MSnbase, illustrating the �exibil-

ity and adaptability of the MSnbase package for computational mass spectrometry method

development.

Visualisation

The R environment is well known for the quality of its visualisation capacity. This also holds

true for mass spectrometry.18�21 Here, we conclude the overview of version 2 of the MSnbase

package by highlighting the �exibility of the software to visualise and assess the e�ciency of

raw data processing. Figure 4 compares the raw MS pro�le data imported from an mzML �le

for serine and the same data after smoothing, centroiding and m/z re�nement, as illustrated

in the code chunk below. Detailed execution and description of these operations can be

found in the MSnbase: centroiding of pro�le-mode MS data MSnbase vignette.

serine_mz <- 106.049871

serine_proc <- ms %>%

smooth(method = "SavitzkyGolay", halfWindowSize = 4L) %>%

pickPeaks(refineMz = "descendPeak") %>%

filterMz(c(serine_mz - 0.01, serine_mz + 0.01)) %>%

filterRt(c(175, 187))
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Figure 3: BoxCar processing with MSnbase. (a) Standard full scan with (b) three corre-
sponding BoxCar scans showing the adjacent segments. Figure (c) shows the overlapping
intact BoxCar segments and (d) the same segments after cleaning, i.e. where peaks outside
of the segments were removed. The reconstructed full scan is shown on panel (e). Spectra
visualisation, as shown here, rely on the ggplot217 package.
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Figure 4: Visualisation of data smoothing and m/z re�nement using MSnbase. (a) Raw MS
pro�le data for serine. Upper panel shows the base peak chromatogram (BPC), lower panel
the individual signals in the retention time � m/z space. The horizontal dashed red line
indicates the theoretical m/z of the [M+H]+ adduct of serine. (b) Smoothed and centroided
data for serine with m/z re�nement. The horizontal red dashed line indicates the theoretical
m/z for the [M+H]+ ion and the vertical red dotted line the position of the maximum signal.
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Package maintenance and governance

The �rst public commit to the MSnbase GitHub repository was in October 2010. Since then,

the package bene�ted from 12 contributors22 that added various features, some particularly

signi�cant ones such as the on-disk backend described herein. Contributions to the package

are explicitly encouraged, rewarded by an o�cial contributor status and governed by a code

of conduct.

According to MSnbase's Bioconductor page, there are 36 Bioconductor packages that

depend, import or suggest it. Among these are pRoloc23 to analyse mass spectrometry-

based spatial proteomics data, msmsTests,24 DEP,25 DAPAR and ProStaR26 for the statistical

analysis of quantitative proteomics data, RMassBank27 to process metabolomics tandem MS

�les and build MassBank records, MSstatsQC28 for longitudinal system suitability moni-

toring and quality control of targeted proteomic experiments and the widely used xcms29

package for the processing and analysis of metabolomics data. MSnbase is also used in

non-R/Bioconductor software, such as for example IsoProt,30 that provides a reproducible

work�ow for iTRAQ/TMT experiments. The BioContainers31 project o�ers a dedicated

container for the MSnbase package, this facilitating the reuse of the package in third-party

pipelines. MSnbase currently ranks 101 out of 1823 packages based on the monthly down-

loads from unique IP addresses, tallying over 1000 downloads from unique IP addresses each

months.

As is custom with Bioconductor packages, MSnbase comes with ample documentation.

Every user-accessible function is documented in a dedicated manual page. In addition, the

package o�ers 5 vignettes, including one aimed at developers. The package is checked nightly

on the Bioconductor servers: it implements unit tests covering 72% of the code base and,

through its vignettes, also provides integration testing. Questions from users and developers

are answered on the Bioconductor support forum as well as on the package GitHub page. The

package provides several sample and benchmarking datasets, and relies on other dedicated

experiment packages such as msdata32 for raw data or pRolocdata23 for quantitative data.
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MSnbase is available on Windows, Mac OS and Linux under the open source Artistic 2.0

license and easily installable using standard installation procedures.

The growth of MSnbase and the user support provided over the years attest to the core

maintainers commitment to long-term development, and the quality and maintainability of

the code base.

Discussion

We have presented here some important functionality of MSnbase version 2. The new on-disk

infrastructure enables large scale data analyses,33 either using MSnbase directly or through

packages that rely on it, such as xcms. We have also illustrated how MSnbase can be used for

standard data analysis and visualisation, and how it can be used for method development

and prototyping.

The version of MSnbase used in this manuscript is 2.14.2. The main features presented

here were available since version 2.0. The code to reproduce the analyses and �gures in this

article is available at https://github.com/lgatto/2020-msnbase-v2/.

Associated Content

Supplementary �le 1: script documenting the processing of 1182 mzXML �les (5773464

spectra) using MSnbase.
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1 Introduction

This document describes handling of mass spectrometry data from large experiments using
the MSnbase package and more specifically its on-disk backend. For demonstration purposes,
the MassIVE data set MSV000080030 is used. This consists of over 1,000 mzXML files from
swab-samples collected from hands and various personal objects of 80 volunteers.

2 Data handling and analysis with MSnbase

In this section we demonstrate data handling and access by MSnbase on a large experiment
consisting of more than 1,000 data files.

To reproduce the analysis described in this document, download the MSV000080030 folder
from ftp://massive.ucsd.edu/MSV000080030/ and place it into the same folder as this
document.

Below we load the required libraries and define the files to be analyzed.

library(MSnbase)

library(magrittr)

library(pryr)

fls <- dir("MSV000080030/ccms_peak/Forensic_study_80_volunteers/",

pattern = "mzXML", full.names = TRUE, recursive = TRUE)

The data set consists of 1182 mzXML files. We next load the data using the two different
MSnbase backends "inMemory" and "onDisk". For the in-memory backend, due to the larger
memory requirements, we import the data only from a subset of the files.

ms_mem <- readMSData(fls[grep("Hand", fls)], mode = "inMemory")

Next we load data from all mzXML files as an on-disk MSnExp object.

ms_dsk <- readMSData(fls, mode = "onDisk")

Below we count the number of spectra per MS level of the whole experiment.

table(msLevel(ms_dsk))

##

## 1 2

## 1173678 4599786

Note that the in-memory MSnExp object contains only MS2 spectra (in total 2140520) from
a subset of data files. However, the data import was much slower (over ~ 12 hours for the
in-memory backend while creating the on-disk object from the full data data set took ~ 3
hours).

Next we subset the on-disk object to contain the same set of spectra as the in-memory MSnExp

and compare their memory footprint.

ms_dsk_hands <- ms_dsk %>%

filterFile(grep("Hand", fls)) %>%

filterMsLevel(2L)
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object_size(ms_mem)

## 21.8 GB

object_size(ms_dsk_hands)

## 617 MB

Since the on-disk object stores only spectra metadata in memory it occupies also much less
system memory. As a comparison, the on-disk MSnExp for the full experiment was still much
smaller than the in-memory object:

object_size(ms_dsk)

## 1.66 GB

2.1 Basic MS data access functionality

Before evaluating the MSnbase performance on the large data set we provide some general
description of the MSnbase data classes and basic data access operations. MS data from
raw data files in mzML, mzXML, mzData or netCDF format is represented by the MSnExp

object which organizes the spectra from the original files in an one-dimensional list. Functions
like rtime and msLevel allow to extract the retention time and MS level, respectively. They
return a numeric (or integer) vector with the same length as the number of spectra in the
MSnExp. In the example below we use the rtime function to extract the retention times for
each spectrum.

rts <- rtime(ms_dsk)

length(rts)

## [1] 5773464

head(rts)

## F0001.S0001 F0001.S0002 F0001.S0003 F0001.S0004 F0001.S0005 F0001.S0006

## 0.470 0.803 1.136 1.468 1.801 2.134

The fromFile function can be used to determine the source file (sample) of a specific spectrum
in the MSnExp object. This function returns an integer vector, of the same length as spectra
in the experiment, with the file index. The file names can be accessed with the fileNames

method. An MSnExp object can be subsetted with [ and e.g. the index of the spectra that
should be retained. In the code block below we subset our ms_dsk object to keep only spectra
from the 3rd file.

one_file <- ms_dsk[fromFile(ms_dsk) == 3]

length(one_file)

## [1] 4911

Note that there are also dedicated filter functions to subset an MSnExp object such as filter
File, filterMsLevel, filterRt, filterMz, filterPrecursorMz or filterIsolationWindow.
In the example below we use the filterRt function to further subset our data to keep only
spectra acquired within a certain time range.

one_file <- filterRt(one_file, rt = c(40, 300))

length(one_file)

## [1] 1996
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As mentioned above, the MSnExp object is comparable with a list of spectra. Thus, to extract
a single spectrum from it we can use [[. This will return an object of type Spectrum which
encapsules/represents all information of the measured spectrum (i.e. m/z and intensity values
as well as metadata information). In the example below we extract the 15th spectrum from
our data subset and access its m/z values with the mz function.

sp <- one_file[[15]]

mz(sp)

## [1] 400.4412 431.2400 1617.8282

This particular spectrum has only 3 peaks.

Note that m/z or intensity values can also be directly extracted from the MSnExp object as
shown in the example below. The result will be a list of numeric vectors, each element
representing the m/z values for each spectrum in the object.

mzs <- mz(one_file)

class(mzs)

## [1] "list"

length(mzs)

## [1] 1996

In addition, it is also possible to extract all m/z and intensity values from an MSnExp object
as a data.frame as shown in the code block below, but this is not suggested, since it loads
all the data into memory but all MS spectrum metadata such as MS level or precursor m/z
get lost.

df <- as(one_file, "data.frame")

head(df)

## file rt mz i

## 1 1 40.118 387.2650 88

## 2 1 40.118 389.2627 192

## 3 1 40.118 474.2964 164

## 4 1 40.450 387.2416 212

## 5 1 40.450 389.2666 184

## 6 1 40.450 445.2680 132

nrow(df)

## [1] 2854657

Note that for all these operations it is irrelevant whether an in-memory or on-disk backend
was used. In general it is advisable to use the on-disk backend especially for experiments with
more than ~ 50 files.

2.2 Performance of the on-disk backend on large scale data sets

To demonstrate MSnbase’s efficiency in processing large scale experiments we perform some
standard subsetting, data access and manipulation operations.

We first compare the performance of the on-disk and in-memory backend on accessing m/z
values with the mz function on a set of 100 randomly selected spectra. The performance is
assessed with the microbenchmark function.
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set.seed(123)

idx <- sample(seq_along(ms_mem), 100)

library(microbenchmark)

microbenchmark(mz(ms_mem[idx]),

mz(ms_dsk_hands[idx]),

times = 5)

## Unit: seconds

## expr min lq mean median uq max

## mz(ms_mem[idx]) 46.77433 47.461748 47.80530 47.92476 48.37474 48.49095

## mz(ms_dsk_hands[idx]) 3.58289 3.636521 12.96023 3.64256 26.93021 27.00896

## neval

## 5

## 5

For this combined subsetting and data access operation the on-disk backend performed better
than the in-memory MSnExp, while even requiring much less memory.

Next we extract all MS2 spectra with a retention time between 50 and 60 seconds and a
precursor m/z of 108.5362 (+/- 5ppm). This subsetting operation is performed on the on-disk
MSnExp object representing the full experiment with the 1182 data files/samples. To assess
the performance of the following operations we use system.time calls that record elapsed
time in seconds.

system.time(

ms_sub <- ms_dsk %>%

filterMsLevel(2L) %>%

filterRt(c(50, 60)) %>%

filterPrecursorMz(mz = 108.5362, ppm = 5)

)["elapsed"]

## elapsed

## 4.571

In total length(ms_sub) spectra were selected from in total 928 data files/samples. The plot
below shows the data for the first spectrum.

system.time(

plot(ms_sub[[1]])

)["elapsed"]

## elapsed

## 0.291

Since there seems to be quite some background noise in the MS2 spectrum we next remove
peaks with an intensity below 50 by first replacing their intensities with 0 (with the remove

Peaks call) and subsequently removing all 0-intensity peaks from each spectrum with the
clean call. In addition we normalize each spectrum by dividing the maximum intensity per
spectrum from the spectrum’s intensities.

system.time(

ms_sub <- ms_sub %>%

removePeaks(t = 50) %>%

clean(all = TRUE) %>%
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Figure S1: Example spectrum of the data set

normalize(method = "max")

)["elapsed"]

## elapsed

## 0.006

The result on the first spectrum is shown below.

system.time(

plot(ms_sub[[1]])

)["elapsed"]
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Figure S2: Example spectrum after cleaning
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1https://github.
com/jorainer/
metabolomics2018

## elapsed

## 0.161

Note that any of the data manipulations above are not directly applied to the data but cached
in the object’s internal lazy processing queue (explaining the very short running time of the
normalization call). The operations are only effectively applied to the data when m/z or
intensity values are extracted from the object, e.g. in the plot call above.

For additional workflows employing MSnbase see also metabolomics20181 that explains filtering,
plotting and centroiding of profile-mode MS data with MSnbase and subsequent pre-processing
of the (label free/untargeted) LC-MS data with the xcms package (that builds upon MSnbase

for MS data representation and access).

2.3 System information

The present analysis was run on a MacBook Pro 16,1 with 2.3 GHz 8-Core Intel Core i9 CPU
and 64 GB 2667 MHz DDR4 memory running macOS version 10.15.5. The R version and the
version of the used packages are listed below.

sessionInfo()

## R version 4.0.2 (2020-06-22)

## Platform: x86_64-apple-darwin17.0 (64-bit)

## Running under: macOS Catalina 10.15.5

##

## Matrix products: default

## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib

## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

##

## locale:

## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

## attached base packages:

## [1] stats4 parallel stats graphics grDevices utils datasets

## [8] methods base

##

## other attached packages:

## [1] microbenchmark_1.4-7 BiocParallel_1.22.0 pryr_0.1.4

## [4] magrittr_1.5 MSnbase_2.14.2 ProtGenerics_1.20.0

## [7] S4Vectors_0.26.1 mzR_2.22.0 Rcpp_1.0.5

## [10] Biobase_2.48.0 BiocGenerics_0.34.0 BiocStyle_2.16.0

## [13] rmarkdown_2.3

##

## loaded via a namespace (and not attached):

## [1] tinytex_0.25 tidyselect_1.1.0 xfun_0.16

## [4] purrr_0.3.4 lattice_0.20-41 colorspace_1.4-1

## [7] vctrs_0.3.2 generics_0.0.2 htmltools_0.5.0

## [10] yaml_2.2.1 vsn_3.56.0 XML_3.99-0.5

## [13] rlang_0.4.7 pillar_1.4.6 glue_1.4.1

## [16] affy_1.66.0 foreach_1.5.0 affyio_1.58.0

## [19] lifecycle_0.2.0 plyr_1.8.6 mzID_1.26.0

## [22] stringr_1.4.0 zlibbioc_1.34.0 munsell_0.5.0
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## [25] pcaMethods_1.80.0 gtable_0.3.0 codetools_0.2-16

## [28] evaluate_0.14 labeling_0.3 knitr_1.29

## [31] IRanges_2.22.2 doParallel_1.0.15 preprocessCore_1.50.0

## [34] scales_1.1.1 BiocManager_1.30.10 limma_3.44.3

## [37] farver_2.0.3 impute_1.62.0 ggplot2_3.3.2

## [40] digest_0.6.25 stringi_1.4.6 bookdown_0.20

## [43] dplyr_1.0.1 ncdf4_1.17 grid_4.0.2

## [46] tools_4.0.2 tibble_3.0.3 crayon_1.3.4

## [49] pkgconfig_2.0.3 ellipsis_0.3.1 MASS_7.3-51.6

## [52] iterators_1.0.12 R6_2.4.1 MALDIquant_1.19.3

## [55] compiler_4.0.2
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