The ice thickness distribution (ITD) is one of the core constituents of modern sea ice models. The ITD accounts for the unresolved spatial variability of sea ice thickness within each model grid cell. While there is a general consensus on the added physical realism brought by the ITD, how to discretize it remains an open question. Here, we use the ocean–sea ice general circulation model, Nucleus for European Modelling of the Ocean (NEMO) version 3.6 and Louvain-la-Neuve sea Ice Model (LIM) version 3 (NEMO3.6-LIM3), forced by atmospheric reanalyses to test how the ITD discretization (number of ice thickness categories, positions of the category boundaries) impacts the simulated mean Arctic and Antarctic sea ice states. We find that winter ice volumes in both hemispheres increase with the number of categories and attribute that increase to a net enhancement of basal ice growth rates. The range of simulated mean winter volumes in the various experiments amounts to ∼30 % and ∼10 % of the reference values (run with five categories) in the Arctic and Antarctic, respectively. This suggests that the way the ITD is discretized has a significant influence on the model mean state, all other things being equal. We also find that the existence of a thick category with lower bounds at ∼4 and ∼2 m for the Arctic and Antarctic, respectively, is a prerequisite for allowing the storage of deformed ice and therefore for fostering thermodynamic growth in thinner categories. Our analysis finally suggests that increasing the resolution of the ITD without changing the lower limit of the upper category results in small but not negligible variations of ice volume and extent. Our study proposes for the first time a bi-polar process-based explanation of the origin of mean sea ice state changes when the ITD discretization is modified. The sensitivity experiments conducted in this study, based on one model, emphasize that the choice of category positions, especially of thickest categories, has a primary influence on the simulated mean sea ice states while the number of categories and resolution have only a secondary influence. It is also found that the current default discretization of the NEMO3.6-LIM3 model is sufficient for large-scale present-day climate applications. In all cases, the role of the ITD discretization on the simulated mean sea ice state has to be appreciated relative to other influences (parameter uncertainty, forcing uncertainty, internal climate variability).
Barthélemy Antoine, Goosse Hugues, Fichefet Thierry, Lecomte Olivier, On the sensitivity of Antarctic sea ice model biases to atmospheric forcing uncertainties, 10.1007/s00382-017-3972-7
Bitz C. M., Lipscomb William H., An energy-conserving thermodynamic model of sea ice, 10.1029/1999jc900100
Bitz C. M., Holland M. M., Weaver A. J., Eby M., Simulating the ice-thickness distribution in a coupled climate model, 10.1029/1999jc000113
Brodeau Laurent, Barnier Bernard, Treguier Anne-Marie, Penduff Thierry, Gulev Sergei, An ERA40-based atmospheric forcing for global ocean circulation models, 10.1016/j.ocemod.2009.10.005
Chevallier Matthieu, Smith Gregory C., Dupont Frédéric, Lemieux Jean-François, Forget Gael, Fujii Yosuke, Hernandez Fabrice, Msadek Rym, Peterson K. Andrew, Storto Andrea, Toyoda Takahiro, Valdivieso Maria, Vernieres Guillaume, Zuo Hao, Balmaseda Magdalena, Chang You-Soon, Ferry Nicolas, Garric Gilles, Haines Keith, Keeley Sarah, Kovach Robin M., Kuragano Tsurane, Masina Simona, Tang Yongming, Tsujino Hiroyuki, Wang Xiaochun, Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project, 10.1007/s00382-016-2985-y
Dai, A. and Trenberth, K. E.: Estimates of Freshwater Discharge from
Continents: Latitudinal and Seasonal Variations, J. Hydrometeor., 3,
660–687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2,
2002. a
Depoorter M. A., Bamber J. L., Griggs J. A., Lenaerts J. T. M., Ligtenberg S. R. M., van den Broeke M. R., Moholdt G., Calving fluxes and basal melt rates of Antarctic ice shelves, 10.1038/nature12567
Dussin, R., Barnier, B., Brodeau, L., and Molines, J.-M.: The making of the
DRAKKAR Forcing Set DFS5, Drakkar/myocean report 01-04-16, Laboratoire de
Glaciologie et de Géophysique de l'Environnement, Université de Grenoble,
Grenoble, France,
available at: https://www.drakkar-ocean.eu/forcing-the-ocean (last access: 19 August 2019), 2016. a
Eicken H., Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice, 10.1029/2000jc000583
EUMETSAT: Global sea ice concentration reprocessing dataset 1978–2015 (v1.2),
Ocean and Sea Ice Satellite Application
Facility, Norwegian and Danish Meteorological Institutes,
availabel at: http://osisaf.met.no/p/ice/ (last access: 19 August 2019), 2015. a
Goosse H., Arzel O., Bitz C. M., de Montety A., Vancoppenolle M., Increased variability of the Arctic summer ice extent in a warmer climate, 10.1029/2009gl040546
Goosse Hugues, Kay Jennifer E., Armour Kyle C., Bodas-Salcedo Alejandro, Chepfer Helene, Docquier David, Jonko Alexandra, Kushner Paul J., Lecomte Olivier, Massonnet François, Park Hyo-Seok, Pithan Felix, Svensson Gunilla, Vancoppenolle Martin, Quantifying climate feedbacks in polar regions, 10.1038/s41467-018-04173-0
Hamilton Lawrence C., Stroeve Julienne, 400 predictions: the SEARCH Sea Ice Outlook 2008–2015, 10.1080/1088937x.2016.1234518
Holland Marika M., Bitz Cecilia M., Hunke Elizabeth C., Lipscomb William H., Schramm Julie L., Influence of the Sea Ice Thickness Distribution on Polar Climate in CCSM3, 10.1175/jcli3751.1
Holland Marika M., Bitz Cecilia M., Tremblay Bruno, Future abrupt reductions in the summer Arctic sea ice, 10.1029/2006gl028024
Holland Marika M., Serreze Mark C., Stroeve Julienne, The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models, 10.1007/s00382-008-0493-4
Hunke Elizabeth C., Sea ice volume and age: Sensitivity to physical parameterizations and thickness resolution in the CICE sea ice model, 10.1016/j.ocemod.2014.08.001
Large, W. G. and Yeager, S. G.: Diurnal to decadal global forcing for ocean and
sea-ice models: The data sets and flux climatologies, Tech. rep., National
Center for Atmospheric Research, Boulder, Colorado, USA, 2004. a
Lipscomb William H., Remapping the thickness distribution in sea ice models, 10.1029/2000jc000518
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E.,
Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R.,
Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, eduted by:
Levitus, S. and Mishonov, A., NOAA atlas nesdis,
National Centers for Environmental Information, 73, 40 pp.,
available at: https://www.nodc.noaa.gov/OC5/woa13/ (last access: 19 August 2019), 2013. a
Madec, G.: NEMO ocean engine, Note du Pôle de modélisation 27, Institut
Pierre-Simon Laplace, France, iSSN No 1288-1619, 2008. a
Massonnet F., Fichefet T., Goosse H., Vancoppenolle M., Mathiot P., König Beatty C., On the influence of model physics on simulations of Arctic and Antarctic sea ice, 10.5194/tc-5-687-2011
Massonnet F., Fichefet T., Goosse H., Bitz C. M., Philippon-Berthier G., Holland M. M., Barriat P.-Y., Constraining projections of summer Arctic sea ice, 10.5194/tc-6-1383-2012
Massonnet François, Vancoppenolle Martin, Goosse Hugues, Docquier David, Fichefet Thierry, Blanchard-Wrigglesworth Edward, Arctic sea-ice change tied to its mean state through thermodynamic processes, 10.1038/s41558-018-0204-z
Massonnet, F., Barthélemy, A., Worou, K., Fichefet, T., Vancoppenolle, M., Rousset, C., and Moreno-Chamarro, E.: fmassonn/paper-itd-seaice: Accepted paper (Version 1.2.0), Zenodo, https://doi.org/10.5281/zenodo.3345604, 2019. a
Maykut Gary A., Large-scale heat exchange and ice production in the central Arctic, 10.1029/jc087ic10p07971
Maykut G. A., McPhee Miles G., Solar heating of the Arctic mixed layer, 10.1029/95jc02554
Maykut Gary A., Untersteiner Norbert, Some results from a time-dependent thermodynamic model of sea ice, 10.1029/jc076i006p01550
Meier Walter N, Stewart J Scott, Assessing uncertainties in sea ice extent climate indicators, 10.1088/1748-9326/aaf52c
Merino Nacho, Le Sommer Julien, Durand Gael, Jourdain Nicolas C., Madec Gurvan, Mathiot Pierre, Tournadre Jean, Antarctic icebergs melt over the Southern Ocean: Climatology and impact on sea ice, 10.1016/j.ocemod.2016.05.001
Notz Dirk, How well must climate models agree with observations?, 10.1098/rsta.2014.0164
Olonscheck Dirk, Notz Dirk, Consistently Estimating Internal Climate Variability from Climate Model Simulations, 10.1175/jcli-d-16-0428.1
Rabatel Matthias, Rampal Pierre, Carrassi Alberto, Bertino Laurent, Jones Christopher K. R. T., Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic, 10.5194/tc-12-935-2018
Rousset C., Vancoppenolle M., Madec G., Fichefet T., Flavoni S., Barthélemy A., Benshila R., Chanut J., Levy C., Masson S., Vivier F., The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, 10.5194/gmd-8-2991-2015
Thorndike A. S., Rothrock D. A., Maykut G. A., Colony R., The thickness distribution of sea ice, 10.1029/jc080i033p04501
Ungermann Mischa, Tremblay L. Bruno, Martin Torge, Losch Martin, Impact of the ice strength formulation on the performance of a sea ice thickness distribution model in the Arctic : ICE STRENGTH IN AN ITD MODEL, 10.1002/2016jc012128
Uotila Petteri, Iovino Doroteaciro, Vancoppenolle Martin, Lensu Mikko, Rousset Clement, Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2, 10.5194/gmd-10-1009-2017
Urrego‐Blanco Jorge R., Urban Nathan M., Hunke Elizabeth C., Turner Adrian K., Jeffery Nicole, Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model, 10.1002/2015jc011558
Vancoppenolle Martin, Fichefet Thierry, Goosse Hugues, Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 2. Importance of sea ice salinity variations, 10.1016/j.ocemod.2008.11.003
Vancoppenolle Martin, Fichefet Thierry, Goosse Hugues, Bouillon Sylvain, Madec Gurvan, Maqueda Miguel Angel Morales, Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation, 10.1016/j.ocemod.2008.10.005
Williams G., Maksym T., Wilkinson J., Kunz C., Murphy C., Kimball P., Singh H., Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles, 10.1038/ngeo2299
Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness and
Enthalpy Distribution Model in Generalized Curvilinear Coordinates, Mon. Weather
Rev., 131, 845–861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2,
2003. a, b, c
Zweng, M., Reagan, J., Antonov, J., Locarnini, R., Mishonov, A., Boyer, T.,
Garcia, H., Baranova, O., Johnson, D., Seidov, D., and Biddle, M.: World Ocean
Atlas 2013, Volume 2: Salinity, edited by: Levitus, S. and Mishonov, A.,
NOAA atlas nesdism National Centers for Environmental Information, 74, 39 pp.,
available at: https://www.nodc.noaa.gov/OC5/woa13/ (last access: 19 August 2019), 2013. a, b
Référence bibliographique
Massonnet, François ; Barthélemy, Antoine ; Worou, Koffi ; Fichefet, Thierry ; Vancoppenolle, Martin ; et. al. On the discretization of the ice thickness distribution in the NEMO3.6-LIM3 global ocean–sea ice model. In: Geoscientific Model Development, Vol. 12, no.8, p. 3745-3758 (2019)