
Derflow: Distributed Deterministic Dataflow
Programming for Erlang

Manuel Bravo
Université catholique de Louvain

angel.bravo@uclouvain.be

Zhongmiao Li
Université catholique de Louvain
zhongmiao.li@uclouvain.be

Peter Van Roy
Université catholique de Louvain
peter.vanroy@uclouvain.be

Christopher Meiklejohn
Basho Technologies, Inc.
cmeiklejohn@basho.com

Abstract
Erlang implements a message-passing execution model in which
concurrent processes send each other messages asynchronously.
This model is inherently non-deterministic: a process can receive
messages sent by any process which knows its process identifier,
leading to an exponential number of possible executions based
on the number messages received. Concurrent programs in non-
deterministic languages are notoriously hard to prove correct and
have led to well-known disasters.

Furthermore, Erlang natively provides distribution and process
clustering. This enables processes to asynchronously communicate
between different virtual machines across the network, which in-
creases the potential non-determinism.

We propose a new execution model for Erlang, “Determinis-
tic Dataflow Programming”, based on a highly available, scalable
single-assignment data store implemented on top of the riak core
distributed systems framework. This execution model provides
concurrent communication between Erlang processes, yet has no
observable non-determinism. Given the same input values, a deter-
ministic dataflow program will always return the same output val-
ues, or never return; liveness under failures is sacrificed to ensure
safety. Our proposal provides a distributed deterministic dataflow
solution that operates transparently over distributed Erlang, provid-
ing the ability to have highly-available, fault-tolerant, deterministic
computations.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords Dynamo; Erlang; Riak

1. Introduction
Erlang implements a message-passing execution model in which
concurrent processes send each other asynchronous messages. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Erlang ’14, September 5, 2014, Gothenburg, Sweden.
Copyright c© 2014 ACM 978-1-4503-3038-1/14/09. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2633448.2633451

model is inherently non-deterministic, in that a process can receive
messages sent by any process which knows its process identifier,
leading to an exponential number of possible executions based on
the number of messages received. Concurrent programs in non-
deterministic languages, are notoriously hard to prove correct, and
have lead to many well-known disasters. [15]

When reasoning about the correctness of our programs, we treat
every message received by a process as a ‘choice’. A series of these
‘choices’ define one execution of a program. Given this, to prove
a program is correct requires proving that each of these executions
are correct; that is, for each execution all possible inputs are able
to be processed resulting in termination. While there is work un-
derway on making this approach more viable [2], we believe that
limiting the ability to write non-deterministic code provides a rea-
sonable alternative to exhaustively checking our applications for
correctness.

In addition, Erlang natively provides distribution and clustering
as part of the runtime environment. This provides the ability to
have processes asynchronously communicate across the network
between different instances of the virtual machine. When using
asynchronous communication across the network, one can provide
even fewer guarantees regarding message delivery and reordering
[18]. Erlang, in an effort to solve both of these problems, uses
programming patterns and libraries (e.g. OTP) that are designed
to reduce the number of choices and to maintain invariants for the
remaining choices.

We propose a new execution model for Erlang, namely de-
terministic dataflow programming. This execution model pro-
vides concurrency, while also eliminating all observable non-
determinism. Given the same input values, a program written in
deterministic dataflow style will always return the same output val-
ues, or never return. These input values can be data streams as well,
which is a natural generalization of functional programming to the
concurrent setting. Our proposed solution provides a distributed
deterministic dataflow solution which operates transparently over
distributed Erlang, providing the ability to have highly-available,
fault-tolerant, deterministic computations.

The major contributions of this paper are the following:

• Prototype implementation of a deterministic dataflow extension
to Erlang called Derflow, with examples of its usage for com-
mon computations.

• Transparent distribution of computations, through the usage
of the Dynamo-inspired [6] distributed systems framework,
riak core. [3].

The remainder of this paper is organized as follows: Section 2
introduces background material related to distributed dataflow pro-
gramming and the riak core distribution model; Section 3 de-
scribes the semantics of Derflow; Section 4 discusses the imple-
mentation challenges; Section 5 discusses a few application of Der-
flow; then, Section 6 discusses integration with non-determinism;
finally, Section 7 discusses future work and concludes the paper.

2. Background
The following subsections provide background on Dynamo, the
riak core library, and deterministic dataflow programming.

2.1 Dynamo
Consistent hashing, hash-space partitioning and a configurable
data replication factor are the concepts critical for understanding
riak core’s implementation of the Dynamo mode. We discuss in
Section 4.2 how Derflow is built on top of riak core.

2.1.1 Consistent Hashing
The Amazon Dynamo paper describes a key-value based storage
system made up of a cluster of nodes, where every node in the
cluster stores some subset of the total data. To distribute this data, a
consistent hashing algorithm applied to the data’s key is then used
to determine a token in the hash-space for where this data should
be distributed.

2.1.2 Hash-Space Partitioning
The entirety of the hash space is then evenly divided between the
nodes. Each even portion of the hash space is called a partition, and
each partition is managed by a virtual node. Each physical node in
the cluster hosts a number of virtual nodes, one for each partition
assigned to that physical node. The hash resulting from running
a key through the consistent hashing algorithm determines which
partition is responsible for storing the data associated with that key.

2.1.3 Replication Factor
Dynamo replicates data on consecutive partitions. The replication
factorN determines the number of replicas. When a key is mapped
to a particular partition in the hash-space, the (N − 1) consecutive
partitions are used to store replicas of the data. This collection of
partitions is called the preference list or primaries.

2.1.4 Dynamic Cluster Membership
As the cluster grows and shrinks, partitions are redistributed to
nodes, minimizing the amount of partitions that have to move be-
tween nodes to cut down on data transfer between nodes. This is
a property of the consistent hashing algorithm described in sec-
tion 2.1.1.

2.2 Deterministic dataflow programming
Deterministic dataflow was first proposed by Gilles Kahn in 1974,
in a programming model that is now known as Kahn networks [12].
In 1977, a lazy version of this same model was proposed by Kahn
and David MacQueen [13]. However, up until recently this model
has never become part of mainstream concurrent programming.
This may be due to either the model’s inability to express non-
determinism or the simultaneous invention of two other models
for handling concurrent programming: the actor model (message
passing) and monitors (shared state) [9, 10].

However, deterministic dataflow is now becoming a more im-
portant model in mainstream programming due to the increas-
ing prominence of parallel computing, both in distributed com-
puting and in multicore processors. Recent examples include the
Oz deterministic dataflow execution model [19], the Akka library
for concurrent and distributed programming in Scala [1, 20], and
Ozma, which is a Scala language extension that adds deterministic
dataflow [7].

3. Semantics of Derflow
This section presents the semantics of Derflow in four subsections.
First, we focus on the primitive semantics which support deter-
ministic dataflow; then, we introduce data streams, a programming
technique that enriches deterministic dataflow. Then, we discuss a
lazy execution extension. Finally, we discuss issues of failure han-
dling.

3.1 Deterministic dataflow
The deterministic dataflow model uses a single-assignment store.
This store is shared through all the processes that participate
in the deterministic dataflow program. We represent the single-
assignment store as:
σ = {x1, . . . , xn}
where xi represents a variable declared in σ. The stored vari-

ables are called dataflow variables. Dataflow variables are assigned
to dataflow values. A dataflow value is either an Erlang term or a
previously declared dataflow variable.

Contrary to Erlang variables, a dataflow variable is allowed to
be unbound. Thus, the possible states of a dataflow variable are the
following: unbound, bound to a term, partially bound. The former
is the initial state of a dataflow variable after is created. After
the initial state, the dataflow variable can be either assigned to an
Erlang term or to another dataflow variable. If the dataflow variable
is assigned to another dataflow variable, we say that the variable is
partially bound if the second dataflow variable is unbound. Figure 1
diagrams the states that a dataflow variable can visit.

Therefore, the following single-assignment dataflow store is
consistent with the previous definitions:
σ = {x1 = x2, x2 = ∅, x3 = 5, x4 = [a, b, c], . . . , xn = 9}
where x1 is bound to another dataflow variable (x2), therefore,

partially bound; x2 is unbound and x3; x4 and xn are bound to
terms.

During the rest of the section, we use the following notation to
specify the state of a dataflow variable:

• xi = ∅: Variable xi is unbound.
• xi = xm: Variable xi is partially bound; therefore, it is as-

signed to another dataflow variable (xm). This also implies that
xm is unbound.

• xi = vi: Variable xi is bound to a term (vi).

Unbound

Partially
bound

Bound

xi = xj

xi = term
xj = term

Figure 1. Dataflow variable state diagram from xi perspective

• if xi does not appear assigned to anything, it means it is not
relevant to which kind of value is assigned.

Each dataflow variable has to keep some extra information in
order to implement the primitive operations on which deterministic
dataflow relies. A dataflow variable is composed as follows:
xi = {value, bound variables, waiting processes}
where value is either empty or a dataflow value, bound variables

is a set of dataflow variables that are partially bound to xi, and wait-
ing processes is a set of processes waiting for xi to be bound. The
set of waiting processes is used by the read and the bind primitive
operations later described.

The deterministic dataflow model is an extension of the func-
tional programming model with concurrency, dataflow variables
and synchronization on them. The model then guarantees that un-
der a particular input, a deterministic dataflow program will always
produce the same result. It is well known that determinism is a de-
sired property that simplifies the development of applications.

We now look at which primitives are required to transform
a functional program into a deterministic dataflow program. The
following primitives we aim to provide are: declare(), bind(x, v)
and read(x).
declare() creates a new dataflow variable into the single-

assignment store. The operation returns the identifier of the newly
created dataflow variable. More precisely, this operation can be
expressed as follows:

• Before: σ = {x1, . . . , xn}
• xn+1 = declare()

create a unique dataflow variable xn+1

store xn+1 into σ
• After: σ = {x1, . . . , xn+1 = ∅}

bind(xi, vi) binds the dataflow variable xi to the value vi. More
precisely, this operation can be expressed as follows:

• Before: σ = {x1, . . . , xi = ∅, . . . , xn}
• bind(xi, vi)

∀p ∈ xi.waiting processes, notify p

∀x ∈ xi.bound variables, bind(x, vi)

xi.value = vi

• After: σ = {x1, . . . , xi = vi, . . . , xn}

In case the program binds xi to another dataflow variable
(bind(xi, xw)), xi become equivalent to xw. Thus, xi will be bound
to the same term than xw when xw becomes bound (in case it was
not bound when bind(xi, xw) was issued). Binding xi with the
same value for several times introduces no side effect, i.e. it is
idempotent. On the other hand, if xi was already bound to the
term vw and vi do not match vw, the execution of the deterministic
dataflow program terminates due to a programming error.

read(xi) returns the term bound to xi. More precisely, this
operation can be expressed as follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• vi = read(xi)

if xi.value == (xm ∨∅)

− xi.waiting processes ∪ {self()}
− wait until xi is bound

vi = xi.value

• After: σ = {x1, . . . , xi = vi, . . . , xn}

Finally, Derflow uses the Erlang spawn primitive to add concur-
rency to the deterministic dataflow model, a fundamental feature
of the deterministic dataflow model. Furthermore, useful proper-
ties such as transparent concurrency are added. Section 5 shows
why transparency concurrency is a desirable property and how pro-
grammer can use it.

3.2 Streams
Streams are a useful technique which allow threads, or processes,
to communicate and synchronize in concurrent programming. A
stream is represented here as a list of dataflow variables, with
an unbound dataflow variable as the final element of the list. For
instance, a stream variable can be expressed as the following:
si = x1 | . . . | xn−1 | xn, xn = ∅
where x1, . . . , xn−1 are dataflow variables either bound or

partially bound, and xn is an unbound dataflow variable.
In order to add streams to Derflow, we extended the metadata

kept by a dataflow variable with a new parameter called next. This
new parameter stores the id of the dataflow variable that represents
the successor element in the stream. Thus, a dataflow variable is
now composed as follows:
xi = {value, bound variables, waiting processes, next}
There are two basic operations applicable to a stream: pro-

duce(x, v) and consume(x).
produce(xn, vn) extends the stream by binding the tail xn to vn

and creating a new tail xn+1. It returns the new tail. More precisely,
this operation can be expressed as follows:

• Before: σ = {x1, . . . , xn = ∅}
• xn+1 = produce(xn, vn)

bind(xn, vn)

xn+1 = declare()

xn.next = xn+1

• After: σ = {x1, . . . , xn = vn, xn+1 = ∅}

consume(xi) reads the element of the stream represented by xi.
It returns the read value (vi) and the identifier of the next element in
the stream (xi+1). More precisely, this operation can be expressed
as follows:

• Before: σ = {x1, . . . , xi = vi ∨ xm ∨∅, xi+1, . . . , xn}
• {vi, xi+1} = consume(xi)

vi = read(xi)

xi+1 = xi.next

• After: σ = {x1, . . . , xi = vi, xi+1, . . . , xn}

Different processes can read from the stream simultaneously.
This do not compromise determinism. Nevertheless, the number of
producers is restricted to one in order to keep determinism.

3.3 Laziness
Lazy, non-strict evaluation, or demand-driven execution, delays the
evaluation of an expression until the value is needed somewhere
else in the program. Lazy execution can improve the performance
of programs by avoiding unnecessary computation. Lazy execution
also enables the possibility of creating potentially infinite data
structures, e.g. infinite lists and infinite trees, since each element
will only be created when it is needed by the program.

The intuition of lazy evaluation is simple: a process that wants
to assign a lazy variable to a value will be suspended until the value
is needed by other process.

The only primitive we need to add is wait needed(x). This
operation suspends the caller process until the dataflow variable

x is needed. As a consequence of this new primitive, the metadata
kept by the dataflow variable has to be extended once more. A new
parameter called lazy is added to the metadata. lazy is the set of
the processes that called wait needed(x) for the variable x. The
dataflow variable is now composed as follows:
xi = {value, bound variables, waiting processes, next, lazy}
More precisely, the wait needed(x) primitive can be expressed

as follows:

• Before: σ = {x1, . . . , xi = ∅, . . . , xn}
• wait needed(xi)

if xi.waiting processes == ∅
− xi.lazy ∪ {self()}
− wait until a read(xi) is issued

• After: σ = {x1, . . . , xi, . . . , xn}

In case xi was already bound, wait needed(x) returns immedi-
ately.

Furthermore, the primitive read(x) has to be changed to notify
the processes that called wait needed(x) . More precisely, the new
read(x) primitive can be expressed as follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• vi = read(xi)

∀p ∈ xi.lazy, notify p

if xi.value == (xm ∨∅)

− xi.waiting processes ∪ {self()}
− wait until xi is bound

vi = xi.value

• After: σ = {x1, . . . , xi = vi, . . . , xn}

3.4 Failure handling
Failures introduce non-determinism. Therefore, a deterministic
program can easily become non-deterministic if care is not taken
to handle failures in a deterministic manner.

One simple approach to ensure determinism in the presence of
failures is to force processes to wait forever if a dataflow variable
is either unbound or not reachable. Obviously, this approach does
not ensure progress. Consider the following example:

• Process p0 is supposed to bind a dataflow variable, however
fails before completing its task.

• Processes p1 . . . pn are waiting on p0 to bind.
• Processes p1 . . . pn wait forever, resulting in non-termination.

However, determinism and dataflow variables provide a very
useful property for failure handling: redundant computation will
not affect the correctness of a deterministic dataflow program. We
propose a failure handling model where failed processes or tem-
porarily unreachable processes, can be restarted while still provid-
ing the guarantees of the deterministic programming model.

We classify the failures into two groups:

• Computing process failure:
Failure of an individual Erlang process which uses a value in the
single-assignment store. Given other processes may be waiting
for the result of this processes computation, this can cause the
program to block forever.

• Dataflow variable failure:
A dataflow variable stored in the single-assignment store is not
reachable. This means that computing processes issuing opera-
tions on the unreachable variable will block until the dataflow

variable becomes accesible again. This may never happen and
the computing process would block forever.

3.4.1 Computing process failure handling
Computing process failures are rather straightforward to handle;
execution can continue by re-executing the failing process with-
out having to worry about duplicate processing introducing non-
determinism.

Consider the following example:

• Process p0 reads a dataflow variable, x1.
• Process p0 performs a computation based on the value of x1,

and binds the result of computation to x2.

Two possible failure conditions can occur:

• If the output variable never binds, process p0 can be restarted
and will allow the program to continue executing deterministi-
cally.

• If the output variable binds, restarting process p0 has no effect,
given the single-assignment nature of variables.

Derflow does not provide any primitive for handling this com-
putation, as the Erlang primitives are sufficient to handle these fail-
ures. Section 5.4 provides an example on how to successfully han-
dle computing process failures.

3.4.2 Dataflow variable failure handling
Dataflow variable failures are more difficult to handle, given that
re-execution of a blocked or failed process does not guarantee
progress.

Consider the following example:

• Process p0 attempts to compute value for dataflow variable x1
and fails.

• Process p1 blocks on x1 to be bound by p0, which will not
complete successfully.

The re-execution of blocked process p1 will result in the process
immediately blocking again. Therefore we must provide a way to
identify dependencies between processes and dataflow variables in
order to provide a deterministic restart strategy which guarantees
progress. A common strategy to ensure progress in this situation
is to restart the process that declared the failed dataflow variable.
In addition, all the processes depending on the restarted process
should also be restarted.

We can use the Erlang primitives monitor/2 and link/1 to build
custom supervision trees which will guarantee a proper restart strat-
egy which will ensure progress. Nevertheless, we still need to pro-
vide a way of monitoring and killing dataflow variables of the
single-assignment store. To facilitate this, we extend our model
with two additional primitives: monitor(x) and kill(x). These prim-
itives are inspired by the failure model of Collet [4].

To support these two primitives, we extend dataflow variables
as follows:

• We extend dataflow variables allowing them to bind to a non-
usable value, represented by >. A read or bind operation on a
non-usable dataflow variable blocks the caller process forever.

• We extend dataflow variables allowing them to track pro-
cesses which have placed monitors on them. These monitors
are tracked to support the kill primitive.

Below is the updated definition of dataflow variables:
xi = {value, bound variables, waiting processes, next, lazy,

monitors}

The call monitor(xi) sets a monitor to the dataflow variable xi
and returns a stream (initially, an unbound dataflow variable y)
that will contain the reachability states that the dataflow variable
xi visits on the node that did the monitor call. The new metadata
monitors is a set that contains all the identifiers of the processes
monitoring the dataflow variable.

If the reachability state of xi changes on a node, the new
state is inserted at the end of each monitor stream that was cre-
ated on that node. A dataflow variable can visit three reachability
states: perm fail, temp fail and normal. perm fail means that the
dataflow variable is permanently unreachable. temp fail means that
the dataflow variable is temporarily unreachable but it may become
reachable again. Finally, normal means that the dataflow variable is
reachable. A dataflow variable can only visit the reachability state
normal after visiting temp fail. Figure 2 diagrams the reachability
states that a dataflow variable can visit.

More precisely, the execution of monitor(xi) can be defined as
follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• y = monitor(xi)

xi.monitors ∪ {self()}
y = declare()

• After: σ = {x1, . . . , xi, . . . , xn, y}

kill(xi) sets the dataflow variable xi to non-usable. It is a syn-
chronous operation; therefore, the caller will block until the op-
eration is completed. All processes monitoring a killed dataflow
variable must be notified. This implies that if there are reachabil-
ity problems the operation may never return. More precisely, the
execution of this operation can be defined as follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• kill(xi)

xi.value = >
∀p ∈ xi.monitors, notify p

• After: σ = {x1, . . . , xi = >, . . . , xn}

4. Implementation
The following section discusses the implementation of Derflow.

4.1 Derflow API
Derflow currently provides the following functions:

Deterministic dataflow
• {ok, Id::term()} = declare():

Creates a new unbound dataflow variable in the store. It returns
the id of the newly created variable.

• ok = bind(Id, Value):
Binds the dataflow variable Id to Value. Value can either be an
Erlang term or any other dataflow variable.

normaltemp_failure

perm_failure

Figure 2. Dataflow variable reachability state diagram.

• ok = bind(Id, Mod, Fun, Args):
Binds the dataflow variable Id to the result of evaluating
Mod:Fun(Args).

• {ok, Value::term()} = read(Id):
Returns the value bound to the dataflow variable Id. If the
variable represented by Id is not bound, the caller blocks until
it is bound.

Streams

• {ok, NextId::term()} = produce(Id, Value):
Binds the variable Id to Value. It returns the pair composed by
the atom ok and the variable NextId that represents the id of the
next element of the stream.

• {ok, NextId::term()} = produce(Id, Mod, Fun, Args):
Binds the variable Id to the result of evaluating Mod:Fun(Args).
It returns the pair composed by the atom ok and the variable
NextId that represents the id of the next element of the stream.

• {ok, Value::term(), NextId::term()} = consume(Id):
Returns the value bound to the dataflow variable Id and the id
of the next element in the stream. If the variable represented by
Id is not bound, the caller blocks until it is bound.

• {ok, NextId::term()} = extend(Id):
Declares the variable that follows the variable Id in the stream.
It returns the id of the next element of the stream. This function
is useful for achieving concurrency in some cases (e.g. The
Sieve of Eratosthenes).

Laziness

• ok = wait needed(Id):
Used for adding laziness to the execution. The caller blocks
until the variable represented by Id is needed when attempting
to read the value.

Dataflow variable failure handling

• {ok, IdStream::term()} = monitor(Id):
Registers the caller as monitor of the dataflow variable Id.
Returns the head of a stream that will contain the states that
the dataflow variable Id visits, from the caller process view.

• ok = kill(Id):
Set the dataflow variable represented by Id to non-usable.

4.2 Distribution
Derflow is implemented as an Erlang library, which relies on a
single-assignment store. This store needs to be accessible by all the
processes that participate in the execution of the Derflow program.

4.2.1 Partition strategies
In a single system, the design of such a store is simpler as the mem-
ory is accessible and shared by all the communicating processes.
Nevertheless, in a distributed fashion, the implementation becomes
tricky and keeping consistency guarantees and high grade of scala-
bility is challenging.

We considered three approaches:

• Each dataflow variable has a ’home process’, where it was
initially created. Therefore, binding the variable always sends
a message to the ’home process’, which then broadcasts the
binding to all the instances.

• Each instance of a dataflow variable knows all the other in-
stances. There are no ’home processes’. Therefore, after bind-
ing the local instance, the operation is directly broadcast to the
other instances.

• Each computing node has a partition of the single-assignment
store. All processes on a given computing node will reference
the local partition. Binding a variable sends the operation to the
local partition, which will then send it to the partition replicas.

We chose the third approach. In the first two approaches, every
process that knows about a particular dataflow variable creates a
new instance; therefore, it will eventually participate in the corre-
sponding bind operation. In some cases, the number of instances
can be large. This would result in poor performance. Nevertheless,
in the third approach, each computing node is responsible for a par-
tition of the single-assignment store; therefore no matter how many
processes know about a particular dataflow variable, the binding
operation would always be sent to the responsible and to the corre-
sponding replicas.

4.2.2 Design considerations
When choosing to implement our distributed single-assignment
store, we examined two possible choices: riak core and mnesia
[8].
mnesia provides a native Erlang implementation of a relational

database management system, which supports atomic transactions
and the ability to distribute tables across nodes through replication.
However, we look at two specific problems with mnesia:

• Problems arise in the presence of network partitions [11] where
the mnesia nodes on either side of the network partition are
able to make progress independently. Currently, no mechanisms
exist for reconciling the changes made to the database when
nodes reconnect, nor reasoning about concurrent or causally in-
fluenced operations. While the functionality for reasoning about
concurrent events is not necessary for the implementation of the
single-assignment store, Section 7 discusses a generalization of
our single-assignment variables to conflict-free replicated data
types, or CRDTs [17], where causality is desired.

• mnesia performs replication to all nodes which share a table
of data. This requires writing a custom distribution layer for
distributing the data if we want to have it partitioned to ensure
even load distribution given dynamic membership and node
failures.

Given the background discussed in Section 2.1, riak core pro-
vides solutions to both of these problems:

• riak core provides a dotted version vector [16] and vector
clock facility as a causality tracking mechanism which can
be used to reason about concurrent operations. In addition,
riak core provides mechanisms, such as active anti-entropy
and handoff, which allow us to reason about divergences be-
tween replicas.

• riak core’s distribution layer provides minimal reshuffling of
data, and predictable hashing through hash-space partitioning,
consistent hashing, and a virtual node abstraction.

4.2.3 Implementation on riak core
In implementing the partitioned single-assignment store on
riak core, we made the following design decisions:

• Data is partitioned across a series of nodes, using the hash-
space partitioning and consistent hashing techniques described
in Section 2.1.1 and Section 2.1.2.

• When declaring new dataflow variables, we write the variable
into the replica set for that variable, requiring that the write be
acknowledged by a strict quorum to ensure fault-tolerance of
the variable as described in Section 2.1.3.

• As dataflow variables become bound, we rely again on a strict
quorum to acknowledge the write, and notify all processes
waiting for the value that the variable has been bound. Given
that n/2 − 1 nodes might not accept the write or be available,
we ensure that an active anit-entropy mechanism exists to notify
any processes on the node which did not receive the update
which might be waiting when the bound value is replicated.

• If a strict quorum is not available because of a network partition,
operations on dataflow variables do not make progress until the
partition has healed.

In the event of ownership transfer, during dynamic membership
changes within the cluster, we perform the following:

• Each replica’s portion of single-assignment store is transferred
over to the target replica. As this occurs, each dataflow variable,
if bound, notifies all waiting processes on the target replica
allowing any processes which were waiting during the partition
to proceed.

• As each variable is transferred over, monitors are removed
locally and reapplied for each dataflow variable on the target
vnode, given the processes which are waiting.

• Given that the process notification of a bound variable opera-
tion is idempotent, duplicate notifications to the same process
produces no result.

5. Examples
In this section we describe some use cases for Derflow.

5.1 Concurrency transparency
In Derflow, any function that uses dataflow variables can be run
in a different process while keeping the final result same. Thus,
programmers can transparently add concurrency to their programs
(either parallelism or distribution) in a secure way without thinking
about data races and possible bugs.

One such example is a map function, that receives a stream of
inputs and applies a function to each element resulting an output
stream of equal length. The code in Derflow for a sequential map
function is the following:

map(S1, M, F, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
{ok, NextOut} = derflow:produce(S2, M, F, Value),
map(Next, F, NextOut)

end.

Nevertheless, due to the concurrency transparency property, the
programmer could easily upgrade his sequential map to a concur-
rent implementation without compromising determinism. The code
in Derflow for the concurrent implementation of the map function
is the following:

concurrent_map(S1, M, F, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
{ok, NextOut} = derflow:extend(S2),
spawn(derflow, bind, [S2, M, F, Value]),
concurrent_map(Next, F, NextOut)

end.

In this case, the programmer explicitly specified (by using the
primitive spawn(module, function, args)) that the evaluation of the

function F is done asynchronously. Therefore, the map function can
read the next element from the input stream without waiting for
the function to be evaluated. The concurrent map, when leveraging
parallel execution, will be faster than its sequential counterpart.

5.2 Concurrent deployment
In concurrent deployment, we could further leverage concurrency
transparency to concurrently and incrementally start new processes
according to need. There is no need to start all processes when
initializing programs, instead only a few processes will be started at
first and they will launch new processes during runtime according
to need. The launched processes are executed concurrently and will
terminate when it finishes its computation, without affecting the
execution of other processes.

The following example is a pipeline that implements the Sieve
of Eratosthenes. This program receives a stream of integers and
returns a stream with the integers that are prime. At each iteration
of the sieve, the stream of candidates is filtered by using the latest
prime found. Thus, one filter process is created per iteration. The
output of a filter is used as an input of the next filter. Filters are
pipelined; therefore, as soon as a filter outputs the first element of
its output stream, the next filter can start its execution. The code in
Erlang using Derflow is the following:

sieve(S1, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
{ok, SN} = derflow:declare(),
F = fun(Y) -> Y rem Value =/= 0 end,
spawn(sieve, filter, [Next, F, SN]),
{ok, NextOut} = derflow:produce(S2, Value),
sieve(SN, NextOut)

end.

filter(S1, F, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
case F(Value) of
false ->
filter(Next, F, S2);

true->
{ok, NextOut} = derflow:produce(S2, Value),
filter(Next, F, NextOut)

end
end.

5.3 Laziness
The following examples show how the wait needed primitive can
be used to implement lazy functions.

The first example implements a lazy version of a sorting algo-
rithm that sorts a list of numbers in ascending order. The Derflow
implementation is the following:

insort(List, S) ->
case List of
[H|T] ->
{ok, OutS} = derflow:declare(),
insort(T, OutS),
spawn(getmin, insert, [H, OutS, S]);

[] ->
derflow:bind(S, nil)

end.

insert(X, In, Out) ->
ok = derflow:wait_needed(Out);

case derflow:consume(In) of
{ok, nil, _} ->
{ok, Next} = derflow:produce(Out, X),
derflow:bind(Next, nil);

{ok, V, SNext} ->
if X < V ->
{ok, Next} = derflow:produce(Out, X),
derflow:produce(Next, In);

true ->
{ok, Next} = derflow:produce(Out,V),
insert(X, SNext, Next)

end
end.

The primitives that contributes to the laziness of this program are
spawn on the fourth line of insort and the wait needed function call
in the first line of the insert function. The spawn operation creates
a process when an insertion should be executed. The wait needed
causes the created process to suspend until the result is needed by
some other process. When only partial results are needed for the
sorting algorithm, the lazy implementation can have a performance
gain over the eager version.

For instance, if only the smallest number of the sorted list is
needed, we can simply read the first element of the output list.
When the input list is [1,2,3,4,5,6,7,8,9,10], both eager execution
and lazy execution performs insertion ten times. However, when the
input is [10,9,8,7,6,5,4,3,2,1], the eager version executes insertion
for 54 times; in contrast, the lazy version only executes insertion
19 times.

The second example combines lazy execution and eager exe-
cution. We implemented a bounded-buffer that connects a producer
and a consumer. Thus, the producer only produces on demand when
the consumer needs to consume. Nevertheless, the producer is al-
lowed to generate some elements in advance in order to be more
efficient. The Derflow implementation is the following:

producer(Value, N, Output) ->
if (N > 0) ->
ok = derflow:wait_needed(Output),
{ok, Next} = derflow:produce(Output, Value),
producer(Value+1, N-1, Next);

true ->
derflow:bind(Output, nil)

end.

loop(S1, S2, End) ->
ok = derflow:wait_needed(S2),
{ok, S1Value, S1Next} = derflow:consume(S1),
{ok, S2Next} = derflow:produce(S2, S1Value),
case derflow:extend(End) of
{ok, nil} ->
ok;

{ok, EndNext} ->
loop(S1Next, S2Next, EndNext)

end.

buffer(S1, BUFFER_SIZE, S2) ->
End = drop_list(S1, BUFFER_SIZE),
loop(S1, S2, End).

drop_list(S, Size) ->
if Size == 0 ->
S;

true ->
{ok, Next} = derflow:extend(S),
drop_list(Next, Size-1)

end.

consumer(S2, Size, F, Output) ->
if Size == 0 ->

ok;
true ->
case derflow:consume(S2) of
{ok, nil, _} ->
derflow:bind(Output, nil);

{ok, Value, Next} ->
{ok, NextOut} = derflow:produce(Output, F(Value)),
consumer(Next, Size-1, F, NextOut)

end
end.

The above code has three main components:

• The producer that only produces items when it is needed. This
is achieved by calling wait needed for the next element after it
has produced an item.

• The bounded buffer: It takes the output stream of the producer
and the input stream of the consumer. It firstly asks for a number
of items (BUFFER SIZE) to the producer by extending the
producer’s stream (drop list), then it keeps checking if the
consumer asks for items. In case the consumer has asked, the
bounded buffer copies an element from the producer’s stream
to the consumer’s stream and extend the producer’s stream by
one more element.

• The consumer that asks for items eagerly.

5.4 MapReduce-style example
We implement a simple framework that can concurrently launch
tasks from multiple clients, similar to MapReduce [5]. It combines
the use of dataflow variables, concurrency transparency, concurrent
deployment, and non-determinism.

In the example, clients send a MapReduce-style task to a proxy
through send task. The proxy appends received tasks to a stream
and keeps waiting for tasks. The job tracker checks the task stream,
spawns mappers and reducers concurrently for incoming tasks and
continues checking for tasks.

send_task(Proxy, Map, Reduce, Input, Output) ->
Proxy ! {Map, Reduce, Input, Output}.

jobproxy(TaskStream) ->
receive
Task ->
{ok, Next} = derflow:produce(TaskStream, Task),
jobproxy(Next)

end.

jobtracker(Superv, Tasks) ->
case derflow:consume(Tasks) of
{ok, nil, _} ->
io:format("All job finished!~n");

{ok, Value, Next} ->
{MapTask, ReduceTask, In, Out} = Value,
{Mod, MapFun} = MapTask,
{Mod2, RedFun} = ReduceTask,
MapOut = spawn_map(Superv, In, Mod, MapFun, []),
spawn_mon(Superv, Mod2, RedFun, [MapOut, Out]),
jobtracker(Next)

end.

spawn_map(Superv, Inputs, Mod, Fun, Outputs) ->
case Inputs of
[H|T] ->
{ok, S} = derflow:declare(),
spawn_mon(Superv, Mod, Fun, [H, S]),
spawnmap(T, Mod, Fun, lists:append(Outputs,[S]));

[] ->
Outputs

end.

spawn_mon(Superv, Mod, Fun, Args) ->
Pid = spawn(Module, Function, Args),
Superv ! {’SUPERVISE’, Pid, Mod, Fun, Args}.

The implementation of the proxy embodies non-determinism,
as tasks may be received in different orders due to the process
scheduler or network congestion.

However, since the proxy can not predict the arriving order
of tasks, it is impossible to write the program in a deterministic
way. In fact, this level of non-determinism only affects the order
that tasks are launched. Since each task is executed in parallel
without interaction between each other, users can not perceive non-
determinism.

The job tracker also exemplifies several concepts we proposed.
Firstly, the job tracker starts a job when it receives a new task in-
crementally and does not need to wait for all tasks before it starts
any, which is concurrent deployment. Secondly, in each job, map-
pers and reducers are launched concurrently. This exploits the con-
currency transparency property. Each mapper has its own output
stream. The reducer reads from the mappers output streams sequen-
tially. Thus, it uses the dataflow variables to synchronize the con-
current execution.

In addition, the example handles computing processes failures.
The first argument (Superv), of the jobtracker function, is the pro-
cess id of a supervisor process. Thus, all new dataflow processes
created in jobtracker (using the function spawn mon) are super-
vised by it.

According to the semantics of Derflow, redundant computation
does not affect the correctness of the program. Therefore, determin-
istic dataflow functions are idempotent. Considering this property,
we implemented a simple supervisor that restarts the failing deter-
ministic dataflow processes when a problem is detected. The code
is the following:

supervisor(Dict) ->
receive
{’DOWN’, Ref, process, _, _} ->
case dict:find(Ref, Dict) of
{ok, {Module, Function, Args}} ->
spawn_mon(self(), Module, Function, Args);

error ->
supervisor(Dict)

end;
{’SUPERVISE’, PID, Information} ->
Ref = erlang:monitor(process, PID),
Dict2 = dict:store(Ref, Information, Dict),
supervisor(Dict2)

end.

The above supervisor receives supervise and down messages.
The former is a monitoring request; therefore, the supervisor sim-
ply uses the Erlang monitor primitive to set the monitor. The latter
is received when a monitored process does not exist, it is not reach-
able or it has died. The supervisor behaves the same in all situations
by re-executing the deterministic dataflow process. The supervisor
uses dict to store the information regarding the monitored processes
such as the function executed by the process and its arguments.

Nevertheless, the shown supervisor is only one example. More
sophisticated supervisors can be implemented. For instance, the
supervisor could behave differently for temporary failures. Then,
it can decide to wait longer before restarting the computation. In
some cases, it is not efficient to restart the execution.

6. Integration with non-determinism
Deterministic dataflow is a powerful concurrent programming
model that eliminates all race conditions by design. However, it is
clear that practical applications sometimes need non-determinism.
In most cases, the non-determinism is only needed in a small part

of the program. But the need cannot be reduced to zero. For ex-
ample, a simple client-server application needs non-determinism
since the server must accept requests from any client. There is only
one point of non-deterministic choice, at the server, but it cannot
be eliminated. So our deterministic model must cohabit in a simple
way with non-deterministic execution. In this section, we show to
integrate our model with non-deterministic execution.

6.1 is det primitive
Derflow provides one primitive which allows us to support non-
deterministic execution: is det(x). This operation checks whether
a dataflow variable (x) is bound or not, which introduces non-
determinism due to different process scheduling or network delays
in each program execution.

is det(x) primitive is useful for stream management. For in-
stance, in a producer-consumer application, where the producer is
faster than the consumer, the latter might be interested in only con-
suming the latest element produced until that point. Thus, it would
like to skip some of the produced elements.

More precisely, is det can be described as follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• bool = is det(xi)

bool = xi.value == vi

• After: σ = {x1, . . . , xi, . . . , xn}

Accordingly, the Derflow API is extended as follows:

• {ok, Value::boolean()} = is det(Id):
Returns true if the dataflow variable Id is bound, false other-
wise.

A good example of the use of is det(x) is a live-streaming video
displayer. The displayer always tries to display the latest frame sent
and skip the intermediate ones. A simplified version of this program
can be written in Derflow as follows:

skip(Input, Output) ->
case derflow:consume(Input) of
{ok, nil, _} ->
derflow:bind(Output, nil);

{ok, _, Next} ->
{ok, Bound} = derflow:is_det(Next),
if
Bound ->
skip(Next, Output);

true ->
derflow:produce(Output, {ok, Input})

end
end.

display(Input) ->
{ok, Output} = derflow:declare(),
skip(Input, Output),
case derflow:consume(Output) of
{ok, Value, Next} ->
display_frame(Value),
display(Next)

end.

The skip function traverses the input stream and returns the
latest frame until that point. The display function displays the frame
returned by skip.

6.2 Integration with Erlang
One of the main limitations of the deterministic dataflow model
is that only one process can write into a stream; therefore, a simple
client-server application cannot be implemented. By using commu-
nication channels, this limitation can be overcome.

The following example shows how to do this by taking advan-
tage of the message-passing primitives of Erlang. The example im-
plements a monitoring system. It is composed of a centralized com-
ponent that receives messages from multiple sensor entities placed
elsewhere. In this example, we monitor the number of failures per
datacenter in a geo-replicated application. There is one sensor per
datacenter that sends a failure message to the central component
(through a proxy) each time a computer is down. The centralized
component registers the failures to eventually analyze the statistics.
The proxy is the component that uses the Erlang communication
channels. It receives spontaneous messages from the sensors and
serializes them by appending them to an associated stream.

observer_proxy(S) ->
receive
{Msg, From} ->
{ok, Next} = derflow:produce(S, {Msg, From}),
observer_proxy(Next)

end.

sensor(Proxy, Identifier) ->
Random = random:uniform(),
Milliseconds = round(timer:seconds(Random)),
timer:sleep(Milliseconds),
Proxy ! {computer_down, Identifier},
sensor(Proxy, Identifier).

dcs_observer(Input, Output, State) ->
case derflow:consume(Input) of
{ok, {computer_down, Identifier}, NextInput} ->
State2 = register(Identifier, State),
{ok, NextOut} = derflow:produce(Output, State2),
dcs_observer(NextInput, NextOut, State2);

{ok, _, NextInput} ->
% Ignore
dcs_observer(NextInput, Output, State)

end.
end.

The above application is mainly composed by three functions:

• observer proxy that continuously waits for messages. If a mes-
sage is received, it immediately appends it to the associated
stream. It intentionally waits forever if no messages are sent.

• sensor that sends a message to the observer proxy every time a
computer fails. The computer failure is modeled by a random
wait.

• dcs observer that registers the failures by reading the stream
associated to the observer proxy.

7. Conclusions and future work
In this paper, we have proposed Derflow, a deterministic dataflow
extension for Erlang. Derflow relies on a robust, highly available
and scalable single-assignment store built using riak core, a dis-
tributed systems framework. We have shown examples of its usage
and explained how it can be integrated with non-deterministic com-
putations.

The following paragraphs outline a series of planned extensions
to Derflow that will provide a more expressive and complete com-
putational model for large-scale distributed applications.

Generalizing to semilattices Given that our dataflow variables
can be seen as simple semilattices with two states: bound and un-
bound, we would like to extend them to more expressive semilat-
tices used to build CRDTs. This is very similar to the approach
taken by LVars [14] to provide deterministic parallel programming.
Our work expands on this work by providing this deterministic par-
allelism across computing nodes, in a fault-tolerant manner.

Similarly to LVars, we would also like to provide a threshold
read primitive over these datatypes, which would cause an applica-
tion to block and synchronize on a value until a particular threshold
is passed. However, we are still uncertain what difficulties arise
when introducing distribution into this model, given the various
failure conditions that can be experienced over computer networks.
Furthermore, some CRDTs composed by multiple semi-lattices do
not behave monotonically. This may restrict the use of threshold
reads.

Extending the Erlang syntax and runtime system Our current
model is implemented with a set of library functions. Compiler
and run-time modifications can be done to provide a simple syntax
for deterministic dataflow programs and to provide simpler ways
to control non-determinism in programs. These extensions would
provide a much more compelling computational model for the user.

Acknowledgments
We thank Nicholas Rutherford and Sean Cribbs for comments that
helped to improve the paper. This work was partially funded by the
SyncFree project in the European Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement no 609551 and by the
Erasmus Mundus Joint Doctorate Programme under Grant Agree-
ment 2012-0030.

References
[1] Akka: Building powerful concurrent and distributed applications more

easily, 2014. URL http://akka.io/.

[2] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal dynamic
partial order reduction. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’14, pages 373–384, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2544-8. . URL http://doi.acm.org/10.1145/2535838.
2535845.

[3] Basho Technologies Inc. Riak core source code repository. http:
//github.com/basho/riak_core.

[4] R. Collet. The Limits of Network Transparency in a Distributed Pro-
gramming Language. PhD thesis, Université catholique de Louvain,
Louvain-la-Neuve, Belgium, Dec. 2007.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1251254.1251264.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dy-
namo: Amazon’s highly available key-value store. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-591-5. . URL http://doi.acm.org/10.1145/
1294261.1294281.

[7] S. Doeraene and P. Van Roy. A new concurrency model for Scala based
on a declarative dataflow core. In Proceedings of the 4th Workshop
on Scala, SCALA ’13, pages 4:1–4:10, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2064-1. . URL http://doi.acm.org/
10.1145/2489837.2489841.

[8] Ericsson AB. mnesia - a distributed telecommunications dbms. http:
//www.erlang.org/doc/man/mnesia.html.

[9] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor for-
malism for artificial intelligence. In Proceedings of the 3rd Inter-
national Joint Conference on Artificial Intelligence, IJCAI’73, pages
235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publish-
ers Inc. URL http://dl.acm.org/citation.cfm?id=1624775.
1624804.

[10] C. A. R. Hoare. Monitors: An operating system structuring concept.
Commun. ACM, 17(10):549–557, Oct. 1974. ISSN 0001-0782. . URL
http://doi.acm.org/10.1145/355620.361161.

[11] Joel Reymont. [erlang-questions] is there an elephant in the room?
mnesia network partition. http://erlang.org/pipermail/
erlang-questions/2008-November/039537.html.

[12] G. Kahn. The semantics of a simple language for parallel program-
ming. In In Information Processing’74: Proceedings of the IFIP
Congress, volume 74, pages 471–475, 1974.

[13] G. Kahn and D. MacQueen. Coroutines and networks of parallel
processes. In Proc. of the IFIP Congress, volume 77, pages 994–998,
1977.

[14] L. Kuper and R. R. Newton. Lvars: Lattice-based data structures
for deterministic parallelism. In Proceedings of the 2Nd ACM SIG-
PLAN Workshop on Functional High-performance Computing, FHPC
’13, pages 71–84, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-2381-9. . URL http://doi.acm.org/10.1145/2502323.
2502326.

[15] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS XIII, pages 329–339, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-958-6. . URL http://doi.acm.org/10.1145/
1346281.1346323.

[16] N. M. Preguiça, C. Baquero, P. S. Almeida, V. Fonte, and
R. Gonçalves. Dotted version vectors: Logical clocks for optimistic
replication. CoRR, abs/1011.5808, 2010.

[17] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In X. Défago, F. Petit, and V. Villain, ed-
itors, Stabilization, Safety, and Security of Distributed Systems, vol-
ume 6976 of Lecture Notes in Computer Science, pages 386–400.
Springer Berlin Heidelberg, 2011. ISBN 978-3-642-24549-7. . URL
http://dx.doi.org/10.1007/978-3-642-24550-3_29.

[18] H. Svensson and L.-A. Fredlund. Programming distributed erlang ap-
plications: Pitfalls and recipes. In Proceedings of the 2007 SIGPLAN
Workshop on ERLANG Workshop, ERLANG ’07, pages 37–42, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-675-2. . URL
http://doi.acm.org/10.1145/1292520.1292527.

[19] P. Van Roy and S. Haridi. Concepts, techniques, and models of
computer programming. MIT press, 2004.

[20] D. Wyatt. Akka concurrency: Building reliable software in a multi-
core world. Artima, 2013.

