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Abstract

Rural electrification in developing countries is a significant challenge. In 2016, 1.1
billion people still lacked access to electricity worldwide, 84% of them located in
rural areas [48]. Alongside central grid expansion and standalone home energy sys-
tems, microgrids are expected to play an important role towards universal electricity
access [48]. The investment planning of microgrids is a constrained optimization
problem that has to account for both distribution and generation assets in a green
field context. Furthermore, it is subject to uncertainty, notably related to the power
consumption of newly connected users or to the intermittency of renewable power
production.

In this work, we propose an original approach to tackle the joint planning of dis-
tribution and generation from the viewpoint of mathematical optimization. The
non-convex power flow equations and integer investment decision variables give rise
to a mixed-integer and non-convex optimization problem. Due to the inherent com-
plexity of such problems, we propose a hierarchy of planning models with increasing
precision, based on convex relaxations of power flow equations. We assess the perfor-
mances of these models in terms of power flow modelling accuracy, feasibility of the
solutions and computational tractability. The tests, performed on a real-world use
case, highlight how the feasibility of planning solutions heavily relies on the accuracy
of power flows modelling. Among the proposed models, the Convex DistFlow-based
formulation proves to be successful in providing adequate microgrid design solutions
for all the operating conditions considered.
In a second phase, we extend this model with the aim of integrating load-related
uncertainty. To this end, we propose a robust planning approach that delivers mi-
crogrid design solutions which operate successfully in both nominal and worst antic-
ipated loading conditions. This approach is shown to present a reasonable increase
in runtime compared with the deterministic planning method on which it is based.

This work investigates in detail the performances of microgrid planning models
based on convex relaxations of power flow equations. Hence, it constitutes a first
step towards leveraging the recent advances of power flow modelling in a microgrid
planning context.
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1Introduction and
background

1.1 Electrification of rural areas

1.1.1 Energy access

Humankind has always relied on energy to survive. From the mastering of fire (cook-
ing, lighting, heating, crafting) to the harvesting of wind and water energy (irriga-
tion, food processing, load lifting), energy has been a key enabler for human civiliza-
tions in terms of major technological, and, thereby, societal advances [13]. A further
step was taken with the invention of steam machines that allowed to turn heat into
mechanical work [13]. Coupled with the exploitation of high energy density fossil
fuels, it dramatically increased the energy amount available to humans and allowed
to exploit natural resources more than ever before, giving birth to our modern in-
dustrialized, fossil fuel-based economy [13].
However, even if the average French citizen’s total energy consumption1 equates the
mechanical energy of more than 400 permanently available human slaves [51], there
are significant disparities between regions of the world regarding energy access. This
concerns both the energy use per capita and the energy mix, as shown on Fig. 1.1.
As a matter of fact, it highlights that:

(i) High income countries inhabitants use roughly ten times more energy than
those living in low income countries

(ii) Low income countries heavily rely on biomass for their energy needs, among
which cooking and heating [35].

1Direct and indirect use, i.e. the so called grey energy of all consumed products and services
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Fig. 1.1: Final energy use per capita and fuel mix in selected low, middle and high-
income countries, 2015 (toe: ton of oil equivalent). Adapted from [48]

Yet, it is widely acknowledged that energy access is a necessary condition to improve
living conditions in developing countries and for the development process at large
[8, 48]. In particular, the United Nations included energy access as one of their 17
Sustainable Development Goals (SDGs) for 2030 [8]. Indeed, it is considered as es-
sential to other SDGs covering amongst others education, poverty reduction, gender
equality, fight against climate change, economic development and health. With re-
spect to this last point, one third of world’s population depends on solid biomass
(wood, animal dung, etc.) for cooking, which is often done in rudimentary installa-
tions, thereby creating health threatening smokes [48].

1.1.2 From grid expansion to individual power
generation systems

The access to "modern energy services" [48] is largely achieved through the access
to electricity. In this regard, there are large disparities between different parts of
the world (Fig.1.2). In 2016, 1.1 billion people (14% of the world’s population)
still lacked electricity access, the vast majority of them being located in sub-Saharan
Africa. At global scale, 84% of people lacking electricity access lived in rural areas in
2016 [48]. Hence, universal electricity access is first and foremost a rural electrifica-
tion issue.
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Fig. 1.2: Population without access to electricity by region. Adapted from [48]

The various options for rural electrification may be divided in three main cate-
gories:

(i) Grid expansion: the considered area is connected to the existing grid at dis-
tribution or transmission level depending on the estimated power demand

(ii) Microgrid: A local power network that is limited to the considered area and
not connected to any other existing network

(iii) Standalone systems: Integrated systems that are not connected to any net-
work, typically delivering power to a single household, most of them being
diesel generators or solar systems including batteries [48]

Grid expansion versus decentralized electrification

Option (i) corresponds to classical power system expansion, while options (ii) and
(iii) are decentralized solutions, not relying on any existing infrastructure. The for-
mer has traditionally been the way to electrify new areas and still represents 97%
of the new connections realized since 2000 [48]. Nonetheless, grid expansion in ru-
ral areas suffers from several drawbacks. Indeed, the distance between these rural
areas on one side and existing power infrastructures on the other side may be very
long. The cost of building new lines to interconnect them may thus quickly become
prohibitive, more specifically under circumstances of capital scarcity. Furthermore,
these remote locations may be located in rough terrain, adding technical constraints
to economical ones.
Decentralized options, i.e. microgrids and standalone systems, usually have lower
upfront costs than grid expansion and provide viable alternatives. The International
Energy Agency (IEA) foresees that they will play a significant role in providing
power to unelectrified areas from now to 2030. Indeed, in its Energy For All scenario,
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where the universal electricity access is reached by 2030, IEA expects about 550 mil-
lion new connections to be made via grid expansion , 450 million via microgrids and
330 million via standalone systems [48]. In this scenario, decentralized systems will
thus roughly account for 60% of new connections, with 35% for microgrids alone.

Microgrids versus standalone systems

The choice for one or another decentralized option is highly dependent on the geo-
graphical and demographical context. Microgrids are generally the cheapest option
for densely populated remote areas, while standalone systems may be economically
more attractive in remote areas with sparse populations [48].
Microgrids do nonetheless present advantages over standalone systems. First, they
allow to use electricity generation means more efficiently thanks to their pooling
between a larger amount of users [30]. Then, they can accommodate larger capacity
generation units which in turn allows for supplying larger loads, e.g. for industrial
or commercial applications [30]. This is illustrated on Fig. 1.3. Finally, unlike stan-
dalone systems, microgrids are scalable solutions which, in time, may be connected
to the central grid if this one is extended to the area covered by these microgrids [48].

Fig. 1.3: Price of Energy Services Provided by Energy Fuels and Technologies.
Adapted from [87]. The range of energy services made available by microgrids not
only includes residential but also productive applications
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1.1.3 Challenges in microgrids development

Among the spectrum of available options for rural electrification, this work ad-
dresses the investment planning of microgrids on the basis of engineering and op-
timization. However, there are also numerous and important socio-economic chal-
lenges to deal with when implementing microgrids, parts of which are illustrated
below.
A first challenge is related to the affordability of microgrids. Indeed, even though the
unit cost of energy might be lower when switching from traditional means, e.g. can-
dles, to electricity supplied through the microgrid, upfront connexion costs can be a
barrier to the poorest inhabitants [48]. Then, the microgrid financial viability itself
may be a challenge as well in the case of low payment capacity. The tariffs should be
designed accordingly to the business model (for profit, partly or fully subsidised by
authorities or donators), depending on the costs these tariffs are supposed to cover,
e.g. capital, operation, maintenance costs [87]. A badly designed tariff could result
in vicious circles where the lack of payments from newly connected users results
in insufficient incomes for the microgrid owner. This translates into poor mainte-
nance, hence a low system reliability and frequent outages that contribute to lower
the value of the microgrid for customers who are thus willing to pay less and less for
it [87].
Operators training and adequate maintenance expenses are of paramount impor-
tance as well. Indeed, cases are reported in India where the failure to meet these
requirements led to microgrids becoming inoperational even though sufficient in-
vestments had been made for their implementation [87]. Finally, cultural factors
play a role, the will to keep traditions being a potential obstacle for the acceptance
of modern energy sources by local populations [48].
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1.2 Joint investment planning of autonomous mi-
crogrids

1.2.1 Characterization of the problem

Definition of planning

As exposed in section 1.1, the present work focuses on the investment planning of
microgrids for the electrification of rural and remote areas. In this context, we define
the concept of planning as follows:

Planning: Procedure that delivers an investment plan for the considered system over
the planning horizon. It consists in determining which assets are to be placed, when
and where they should be placed. These investment decisions must be made in a
way that is optimal regarding the planning objectives while being compliant with
the problem constraints.

Autonomous microgrids

A majority of authors define a microgrid as a grouping of generators and loads oper-
ated in a coordinated way, connected to the main grid as a unique entity and capable
of functioning in islanding mode [47, 81, 80]. As we address the problem of electri-
fying remote areas, we will only consider autonomous microgrids, i.e. that are not
physically connected to a central network and are thus operated in standalone. As
stated in section 1.1, these systems might eventually be connected to the main grid
if it is expanded at a later state, but they are initially planned to be able to function
by their own.
This means that an autonomous microgrid should include enough generation capac-
ity to cover the consumption of all connected users. It is a major paradigm shift
compared to usual low voltage distribution networks that only route the energy
produced by larger plants connected to higher voltage levels. When implementing
an autonomous microgrid, both distribution and generation assets have to be built.
Planning them separately, in a sequential way, might be suboptimal. We thus choose
to address the problem in a joint way by considering both types of assets simultane-
ously in the planning process. The drawback of this approach is that it increases the
computational burden.
Distribution planning encompasses the design of all elements, i.e. lines, transformers
and switches, that interconnect the nodes of the network. This includes:

(i) Feeder routing: determine the optimal layout of electrical lines, i.e. the graph
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of the network (including potential sectionalizing switches). The graph of the
network is almost always required to be connected (no islanding) and is very
often radial in distribution context. Geographical obstacles have to be consid-
ered when performing feeder routing.

(ii) Line sizing: choose the appropriate type and size of conductor for each line
section, that will determine its current carrying capacity or thermal rating.

(iii) Transformer/substation siting: select the nodes where new transformers
should be located

(iv) Transformer/substation sizing: determine the rating of new transformers or
substations

Generation planning consists in designing generation units integrated in the sys-
tem, which involves:

(i) Generation siting: select the nodes where new generators should be located
(ii) Energy source: choose the appropriate generation technology and energy

source, e.g. oil, gas, biomass, PV (Photovoltaic systems) or WT (Wind Tur-
bines). There may be a cap on the share of RES (Renewable Energy Sources)-
based generation in the electricity mix to account for the intermittency related
to it.

(iii) Generation sizing: determine the rating of new generators
(iv) Batteries siting and sizing: Autonomous systems including intermittent gen-

eration often integrate storage systems in order to compensate for the variabil-
ity of intermittent resources

The planning of autonomous microgrids generally concerns areas with no existing
infrastructure, which is referred to as green field planning approach.

Multistage planning

As mentioned above, the planning process should not only determine the assets type
and siting but also the timing of investments over the planning horizon. Indeed, the
electrical consumption of the microgrid users may increase in time, particularly in
newly electrified areas where the improvement of living conditions can lead to a
demand for more sophisticated electrical appliances, e.g. for increasing comfort and
entertainment. It is thus necessary to be able to reinforce the microgrid capacity in
time to account for an increasing load. The phasing of investments has furthermore
an economic interest as it may be profitable to delay investments in time to lower
their net present value and thereby reduce the global cost of the project. Finally, the
project initiator may be subject to budgetary constraints preventing him to realize all
needed investments at once, which necessitates a progressive phasing of investments.
This progressive phasing is from here on referred to as multistage planning.
Some authors do not implement this phasing and consider all investments at once
(static planning). Other works determine the phasing in an approximate way by
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solving a sequence of static planning problems each covering a single timestep of the
planning horizon , which may be suboptimal as each subproblem only considers a
single timestep and is blind to the future condition (pseudodynamic planning [32]).
Finally, a dynamic planning problem considers all timesteps at once to account for
the whole planning horizon when phasing investments.

Operational feasibility

Even though the problem at hand concerns long term investments, it is also neces-
sary to incorporate the operation of the microgrid to the planning procedure as both
are strongly interrelated [75]. As a matter of fact, the microgrid must be able to op-
erate properly for all foreseeable conditions that may arise during its lifetime. These
are notably determined by the evolution of the microgrid users electric consump-
tion, that is observed both at intraday (rhythm of daily activities, lighting needs at
different times of the day) and long term timescales (increasing amount of connected
users and/or electrical appliances).
Incorporating intraday load variations to the planning problem, even on a hourly
basis, represents significant computational challenges as the planning horizon of mi-
crogrids is typically in the order of several decades, which represents hundreds of
thousands of hours, hence as many timesteps to consider in the planning process.
Operational feasibility of a microgrid and, more generally, of a power system, can
be assessed through four criteria:

(i) Adequacy: the capacity of the system to cover the whole electrical energy
consumption of customers while ensuring reliable and safe system operation
[49]. Spinning reserve requirements may be considered in order to compensate
generation outages

(ii) Reliability: the ability to guarantee the continuity of supply in case of contin-
gencies. It is measured by a series of performance indices, for example related
to the duration and frequency of outages

(iii) Power Quality: set of standards defining the allowed value range for quality
indices related to the frequency, waveform, amplitude and balance of the three-
phase voltage supply

(iv) Equipment limits: operating range in which assets should be and for which
their lifetime is determined, including: line thermal rating, generator capa-
bility curve, transformer rating, battery minimum and maximum State Of
Charge (SOC), battery maximum charge and discharge rate

Power flow equations

AC power systems are governed by Power Flow (PF) equations that relate nodal
quantities, i.e. bus voltages and power injections, and branch quantities, i.e. power
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flows. These equations, that are at the heart of every AC power system optimization
related problem, represent a computational challenge as they are non-convex. This
implies that corresponding optimization problems are generally NP-hard and may
present several local optima [74], which greatly complicates the search for a global
optimum.
The distribution system planning related works may incorporate an exact version
(AC PF), a relaxation or an approximation of these equations (see chapter 3 for more
details about relaxations and approximations).

Mixed-Integer problem

The autonomous microgrid planning includes variables representing both invest-
ment decisions and operational setpoints. The former are intrinsically discrete as
they relate to a discrete and finite set of investment options ( there are only so many
lines and generators types and sizes) while the latter are continuous quantities, e.g.
voltage and active power.
Mixed-integer problems are known to be hard to solve due to their partially combina-
torial character. As a matter of fact, the discrete nature of the solution space implies
that its size grows exponentially with the size of the problem, which is known as the
’curse of dimensionality’. As a simple illustration, the number of possible radial net-
works connecting n nodes (in graph theory, the number of spanning trees) is equal
to nn�2. This already makes around 2.7 � 1023 different possibilities of building a
20 node-network, without even considering the sizing of branches nor the siting and
sizing of generators.

Uncertainty

There are three major sources of stochasticity in the microgrid planning problem.
The first one is the inherent uncertainty in load forecasting. Then, microgrids incor-
porating intermittent generation, such as PhotoVoltaïc (PV) installations or Wind
Turbines (WT), are also subject to forecast errors regarding their output power. At
last, contingencies , whether due to climatic conditions or human errors, introduce
another degree of unpredictability in the planning problem.
Uncertainty also affects interconnected power systems, for the same reasons exposed
above. However, microgrids do not benefit from the sophisticated Supervisory Con-
trol And Data Acquisition (SCADA) systems nor the level of redundancy character-
istic of larger power systems, which makes them more vulnerable to uncertainty.

Planning objectives

The planner’s objectives may be multiple as they depend on the underlying business
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model. They can relate to economical considerations, e.g. minimizing investment
and/or operational costs, minimizing losses or maximizing profits. Technical crite-
ria can also be addressed, e.g. by minimizing bus voltage deviations from their nom-
inal values, minimizing equipment loading or maximizing the reliability. Finally,
environmental criteria may come into play, by maximizing the share of renewable
energy in the generation mix or minimizing the emissions of greenhouse gases.
From a computational point-of-view, multi-objective optimization obviously presents
an additional challenge.

Optimization methods

A large variety of optimization methods have been employed in the field of power
system planning. They can be divided into two broad categories: mathematical op-
timization and heuristic methods. The former exploit the mathematical structure of
the problem to get a provably optimal solution to the problem while the latter rely on
predefined rules to explore the feasibility space of the problem and do not guarantee
the optimality of a solution. Mathematical optimization problems are classified ac-
cording the type of variables (continuous and/or discrete) , constraints and objectives
(linear, quadratic, conic, positive semi-definite, polynomial, posynomial, non-linear)
they include. Heuristics vary widely depending on the implemented rules. A large
proportion of heuristics employed in the power system planning literature belong
to the class of Evolutionary Algorithms (EA) that mimic the functioning of natu-
ral systems when looking for an optimal solution, e.g. Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), Ant Colony Algorithm (ACA) or Simulated
Annealing (SA).

1.2.2 Related work

Evolution of distribution systems planning

The majority of works related to autonomous microgrids planning originate from
distribution systems planning in the context of conventional power systems, i.e. cen-
tralized and interconnected networks with different voltage levels. This topic has
been the subject of a growing attention during the last fifteen years or so. This is
due to the massive increase of Decentralized Generation (DG) units, mainly PVs
and WTs, installed both at medium and low voltage level in a context of energy de-
carbonization and strongly supported by incentive measures [100, 81]. As a matter
of fact, distribution networks were traditionally passive in the way that they routed
the electrical energy, produced by large power plants connected to the transmission
grid, to the end-users. Hence, they were designed for unidirectional flow patterns,
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with a ’Fit and Forget’ approach where the distribution network sizing was per-
formed such that it would be able to accomodate the expected peak loading con-
ditions, given the expected load growth, with little or no additional actions needed
during its operation[81].
This approach is not suitable anymore for the Distribution System Operators (DSO)
in the presence of numerous DG units as these can radically change the flow patterns,
increase current levels, cause overvoltage and blind protection systems [3]. There are
two options for DSOs to cope with DG units. The first is to reinforce their network
by investing in new larger capacity lines and transformers , which quickly becomes
expensive. The second option is to increase the observability and controllability of
distribution networks (e.g. smart metering and smart substations) to implement op-
erational strategies aiming at relieving the aforementioned constraints, hence delay-
ing costly investments. These strategies, referred to as Active Distribution Network
(ADN) management include Demand Side Management (DSM), DG dispatch and
curtailment, network reconfiguration through line switching, Volt/Var control and
battery operation [81].

In the previous section, we characterized the autonomous microgrid planning prob-
lem by presenting its main features. We now undertake a (non-exhaustive) litera-
ture review to identify the gaps and remaining open questions from which we infer
relevant research axes for the present work. We only review references explicitly
dealing with distribution system planning in the current section, while the litera-
ture more specifically related to subparts of the problem will be introduced in the
relevant chapters. The reviewed references are grouped hereafter depending on the
degree to which they include DG in the planning process. A more detailed charac-
terization of these works according to the features identified in section 1.2.1 is given
in tables 1.1 and 1.2.

Passive distribution systems planning

As mentioned above, distribution systems traditionally supplied passive loads and
hosted little or no generation units injecting power on the network. Hence, these
systems were designed as tree-like feeder structures originating from distribution
transformers, being reinforced in time to account for load growth. Most of these
passive approaches aim at minimizing reinforcement costs. A dynamic program-
ming approach (DP) is proposed in [78] for the multistage expansion planning of
an existing distribution system facing load growth through reconductoring (replac-
ing existing lines by higher capacity ones), transformer uprating or installation of
new ones. A separable linear approach is presented in [34] to perform distribution
expansion planning with feeder routing and sizing and substation siting. A similar
problem is tackled with a specifically designed heuristic approach mimicing expert
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judgement and accouting for real geographical obstacles in [83]. A heuristic network
reinforcement algorithm is presented in [31] to optimally select conductor sizes in
a distribution system facing load growth. Reliability costs,representing the cost of
outages and unserved energy, are accounted for in [22]where feeder routing and siz-
ing is performed in a green field context using a GA (Genetic Algorithm). A similar
problem is tackled in [20] using an AIS (Artificial Immune System) algorithm. A
complete distribution system planning method where feeder routing and sizing as
well as substation siting and sizing are treated is developed in [54] using a GA and
in [84] using an ICA (Imperalist Competitive Algorithm). The same problem is for-
mulated for the simultaneous planning of Low Voltage (LV) and Medium Voltage
(MV) distribution networks including reliability costs and solved with a PSO (Parti-
cle Swarm Optimization) algorithm in [101].

Distribution systems expansion planning accounting for distributed generation

A second facet of the distribution system planning literature approaches the expan-
sion planning of such systems in cases where DG units are installed at various nodes
of the network by consumers, with little or no control from the DSO, which thus
needs to accommodate them as best it can. A multistage joint expansion planning of
lines and transformers accounting for DG units present at different nodes of the net-
work is presented in [45] and [46], using a DC load flow model and considering load
shedding and DG curtailment as planning alternatives. A heuristic approach aiming
at improving the hosting capacity of distribution networks for DG units is imple-
mented in [4]where feeder routing and switch location are done in such a way as bal-
ancing the expected curtailed power during line contingencies over the set of feeders.
References [37] and [38] deal with both green field and expansion planning of feed-
ers, switches and transformers in networks hosting DG units with a multi-objective
approach aiming at maximizing the reliability of the system and minimizing its total
cost simultaneously, using PSO and DP approaches respectively. In reference [63],
the authors approach the switch investment planning in order to be able to reconfig-
ure the network topology with the goal of reducing DG units curtailment. A graph
approach is implemented in [56] to evaluate in the planning procedure the reliability
of a distribution network hosting DG units. In a similar context , the feeder routing
and sizing problem is first exactly formulated as a MINLP, then gradually relaxed in
a tractable MILP in [89].

Joint planning of distribution and generation

The last category of works presented in this section goes a step further as these refer-
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ences include DG units as a planning alternative, meaning that these are now consid-
ered to be installed by the DSO that has now control over their siting and size. The
HOMER (Hybrid Optimization of Multiple Energy Resources) software [1] is used
in [57] to design a multi-energy microgrid supplying heat and power in a remote con-
text, choosing among different generation and storage technologies and using a single
node representation gathering all electrical appliances (no consideration of network
graph). A similar problem is treated with a PSO algorithm in [61], where both envi-
ronmental and economic factors are aggregated in a single objective function and the
operational management of storage and generation units is accounted for. Reference
[76] presents a full version of the multistage joint expansion planning problem deal-
ing with the siting and sizing of feeders, DG units and transformers. The authors
of [32] follow a similar approach while also integrating reliability costs. Reference
[88] deals with a comparable formulation, further adds socio-environmental costs to
the objective function and considers yearly budget limits. Finally, a multi-objective
approach is developed in [102] that aims at minimizing both gas emissions and total
system costs in the joint expansion planning of distribution and generation assets,
using a GA and including load- and intermittent generation-related uncertainty.
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References
[78] [34] [83] [31] [22] [20] [54] [84] [101] [45] [4] [37]

Objective
Minimize

Losses x x x x x x x x x x x
OPEX x x x x x x x x x x

CAPEX x x x x x x x x x x x x
Voltage deviations x

Gas emissions

Maximize Reliability x x x x x x x
DG penetration x x

Constraints

Network
Connectivity x x x x x x x x x

Radiality x x x x x x x
Geographical obstacles x

Lines Thermal rating x x x x x x x x x x x x

Generation Capability curve x
Maximum RES share

Transformer Thermal rating x x x x
Voltage Amplitude x x x x x x x x x x x
Battery (Dis)charge rate and SOC

Reliability Spinning reserve
Outage duration/frequency

Investment
decisions

Generator /
Transformers

Siting x x x x x x
Capacity x x x x

Technology

Lines Routing x x x x x x x x x x
Conductor type x x x x x x x x x x x

Batteries Siting
Capacity

Switches Siting x x

Operational
decisions

Generation dispatch / curtailment x
Line switching x x

Battery dispatch
DSM/load shedding x

Multistage
Static x x x x x x x

Pseudo dynamic x x x
Dynamic x x

Uncertainty
Load x x

Generation x
Contingencies x x

Power flow
modelling

AC x x x x x
Relaxation

Approximation x x x x x

Method Mathematical optimization DP MILP MILP MILP
Heuristic x x GA AIS GA ICA PSO x x PSO

Table 1.1: Classification of reviewed works following the identified criteria
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References
[63] [56] [89] [57] [61] [76] [32] [88] [102]

Objective
Minimize

Losses x x x x x x x
OPEX x x x x x x x x x

CAPEX x x x x x x x x x
Voltage deviations

Gas emissions x x x x

Maximize Reliability x
DG penetration x x

Constraints

Network
Connectivity x x x x

Radiality x x x x x x
Geographical obstacles

Lines Thermal rating x x x x x x x

Generation Capability curve x x x x x x
Maximum RES share x x

Transformer Thermal rating x x x x x
Voltage Amplitude x x x x x x
Battery (Dis)charge rate and SOC x x

Reliability Spinning reserve x x
Outage duration/frequency x x

Investment
decisions

Generator /
Transformers

Siting x x x x x
Capacity x x x x x x

Technology x x x x x

Lines Routing x x x x x x
Conductor type x x x x x

Batteries Siting
Capacity x x

Switches Siting x

Operational
decisions

Generation dispatch / curtailment x x x x x x
Line switching x x

Battery dispatch x x
DSM/load shedding x x x

Multistage
Static x x x

Pseudo dynamic x x x
Dynamic x x x

Uncertainty
Load x x x

Generation x x
Contingencies x x

Power flow
modelling

AC x x x x
Relaxation x

Approximation x x

Method Mathematical optimization MILP MILP MINLP MILP
Heuristic x x x PSO GA GA

Table 1.2: Classification of reviewed works following the identified criteria (cont’d)



16 Chapter 1 Introduction and background

Existing tools

In addition to the aforementioned research works, software tools have been devel-
oped to address the planning of microgrids. We focus on two of them, which have
been used to lay out the design of microgrids in real-world cases.
The first one, HOMER is a commercially available software that helps the microgrid
planner to optimally design a decentralized generation system. It allows to choose
among a wide range of generation and storage technologies and sizes, and to simu-
late numerous operational strategies and scenarios related to battery operation, RES
generation production profile, fuel costs, etc. Nonetheless, HOMER aggregates all
system components on a single bus, hence it does not account for the layout of the
network. It optimizes the generation system design by exhaustively enumerating all
possible combinations of system components and sizes. This optimization approach
does not scale for larger search spaces, e.g. in the case of feeder routing. As a matter
of fact, there exist nn�2 different radial layouts for a network connecting a set of
n nodes, which means that there are 108 possible ways to connect 10 nodes with a
radial network for example. This precludes the use of exhaustive search space explo-
ration for such problems.
The second tool is the Reference Electrification Model/Reference Network Model
(REM/RNM), developed in the framework of the Low-cost energy technologies for
Universal Access, a research project jointly led by the Massachusetts Institute of
Technology (MIT, USA) and the IIT Comillas University (Spain). This tool aims
at determining, for every load point in an unelectrified area, the least-cost electrifi-
cation mode (grid extension, microgrid or individual home energy system) and the
layout and size of both distribution and generation assets. The determination of the
optimal electrification mode is performed by the REM part of the tool with a clus-
tering procedure. The detailed generation and network design is then made by the
RNM. The main advantage of this tool is that it allows to handle very large areas
including several millions of customers and delivers a large scale target architecture
for the electrification of these areas. On the other side, the local generation and dis-
tribution designs are performed separately, through heuristic approaches [60].

Current limitations

The analysis of tables 1.1 and 1.2 allows to highlight the limitations of the existing
literature regarding the problem at hand.
First, it can be observed that only few references tackle the joint planning of distri-
bution and generation [61, 76, 32, 88, 102].
Then, the majority of reviewed works do not incorporate any representation of the
different uncertainty sources, which is limiting in high RES potential contexts. Fur-
thermore, a lot of these works are based on approximated representations of PF
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equations. More precisely, mathematical optimization approaches neither include
exact nor relaxed version of these equations at the exception of [89]. Some heuristic
approaches do rely on exact AC equations since these approaches perform the opti-
mization of discrete variables and the verification of constraints (here, PF equations)
separately. In this case, the constraint satisfaction problem is only a Non-Linear
(NL) one. However, the objective and constraints cannot be handled separately in
mathematical optimization. Hence, AC PF equations make the problem MINLP
in this framework, which is computationally challenging even for a limited amount
of decision variables. Yet, it is important to accurately represent PF equations in a
planning problem to guarantee the operational feasibility of the optimal solution.
As a matter of fact, inaccuracies regarding the computation of power flows and volt-
age may lead to an overoptimistic assessment of constraints satisfaction and deliver
a planning solution which is not feasible in reality.
We also observe that most presented works are based on heuristics rather than mathe-
matical optimization. The former allow to treat large problems, a priori too compu-
tationally intensive for a mathematical optimization approach. However, heuristics
suffer from several shortcomings:

(i) The optimality of solutions delivered by heuristic approaches may not be
proved

(ii) In cases where the optimization is stopped before convergence to a solution
due to a limited computation budget, heuristics do not provide any measure
of the distance to optimality (the optimality gap)

(iii) Some of these approaches(EA for example) are based on random operators and
may thus deliver different solutions from one run to another

(iv) They often rely on a significant amount of optimization parameters that need
to be fine-tuned to obtain adequate results and do not benefit from widely
adopted commercial implementations

(v) Mainly academic approaches, not often implemented in the industry

On the contrary, a mathematical optimization approach presents several advan-
tages:

(i) It delivers provably optimal solutions and determines the optimality gap if it
is stopped before converging to an optimal solution

(ii) It is deterministic and, for the same problem, it will deliver the same results
run after run

(iii) There are many commercially available, off-the-shelf solvers dedicated to the
different classes of mathematical optimization problems, which allows to focus
on the model of the problem rather than implementing an algorithm or tuning
an existing one

(iv) It is widely adopted in the industry
(v) There is a growing interest and community in power systems research around

the relaxations of PF equations, partly due to significant performance im-
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provements of commercial solvers during the last decade or so. They are now
very well studied for various operational problems, e.g. Optimal Power Flow
(OPF) problems

This comparison between analytical (mathematical optimization) and heuristic
methods should nonetheless be nuanced as analytical methods also present disadvan-
tages, the most critical one being the computational burden. Indeed, the guarantee
of optimality may come at the cost of a larger computational burden, depending
on the underlying model. Typically, the planning problem presented above is com-
putationally challenging for real size problems and analytical approaches based on
accurate power flow representations might not be applicable as they could fail to
converge. Heuristics and approximations, even though they do not guarantee exact
results nor an exhaustive exploration of the search space, can thus be helpful to find
’good’ solutions for real-world problems and might be necessary in this context.

Besides the above considerations, we observed that comparing the methods and
results originating from various references was not an easy task. As a matter of fact,
there is a growing amount of benchmarks and databases available to compare the
results of different methods developed for operational problems such as OPF or Unit
Commitment (UC). Yet, we could not find similar resources for planning problems.
We believe this is due to the complex nature of such problems, but also to the wide
variety of constraints, objectives, models and algorithms that are considered by the
different authors.

Bearing the above elements in mind, we chose to direct this work towards the
mathematical optimization framework by using various relaxations of power flow
equations. The goal is to make the most of these potentially very accurate approaches
and to identify the extent to which they can be applied to real-size problems.

We also deliberately chose not to address flexibility (storage or demand response)
in this work. The reason for this is that we aim at assessing the performances and
applicability of various mathematical programming formulations for the considered
planning problem. Yet, as it is shown in chapter 4, the problem is already challeng-
ing when only considering distribution lines and generators, hence we do not want
to further increase the computational burden. Nonetheless, there is no modelling
restriction that prevents from integrating storage or demand response in the chosen
mathematical programming framework and the models presented in this work can
directly be expanded to include such elements.
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1.3 Open questions

When comparing the characterization of autonomous microgrid planning with the
existing approaches to solve it, we observe that these approaches do not capture all
of its features. For that reason, this thesis aims at investigating the following open
questions:

• How does the accuracy of power flow modelling, and more precisely the use
of convex relaxations of power flow equations , impact the quality of planning
solutions?

• Is it possible to devise scalable (that remain computationally tractable for a
growing problem size) and accurate joint planning methods that leverage the
strength of mathematical optimization?

• How to account for the uncertainty inherent to the planning of autonomous
microgrids in a scalable way?

1.4 Document structure

The rest of the document is structured as follows. We begin to tackle the problem
from a network planning perspective using a dynamic programming approach in
chapter 2. This method relies on an exact representation of the three-phase, unbal-
anced, AC power flow problem to check the feasibility of a network planning so-
lution. The optimal investment plan is determined as the lightest path in a graph
representing all possible investment trajectories. Such an approach is already com-
putationally challenging for the sole network planning problem due to the explicit
enumeration of the different possible combinations of investment decisions. In order
to be able to tackle the whole joint planning problem, including generation plan-
ning, we decide to shift from this graph-based optimization approach to a convex
optimization-based framework. A brief introduction to convex optimization is given
in chapter 3. In chapter 4, we present a deterministic and non-convex formulation of
the autonomous microgrid planning problem. Then, we study the existing convex
relaxations of power flow equations on the basis of which we propose a hierarchy of
growing accuracy, convex relaxations of the planning problem. These are based on
the Network Flow, Taylor-Hoover and Convex DistFlow relaxations of power flow
equations respectively. The proposed models are tested on a real-world planning case
in order to compare their computing needs, the quality of their respective solutions,
and their modelling accuracy, taking the Convex DistFlow-based planning model as
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a reference. Chapter 5 addresses in more detail the accuracy of the Convex Dist-
Flow relaxation of power flow equations in the context of an Optimal Power Flow
problem. We then consider the inclusion of load related uncertainty in the planning
problem in chapter 6 and we propose a stochastic planning approach, built upon the
previous deterministic method, that delivers a robust planning solution in the con-
text of imperfect load forecasting. Finally, we summarize the main results obtained
with both deterministic and stochastic planning approaches and conclude this work
with future perspectives and avenues of research.
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2A dynamic programming
approach to network
planning

This chapter is an adaptation of: B. Martin, E. De Jaeger, F. Glineur, and A. Latiers.
A dynamic programming approach to multi-period planning of isolated micro-
grids. In Advances in Energy System Optimization, pages 123–137. Springer, 2017

2.1 Problem definition

2.1.1 Graph formulation of the problem

Formally, the problem of distribution planning may be expressed using graph the-
ory. The aim is to connect a set of vertices or nodes E(the loads) with a set of edges
V(network lines). Those two sets form an the graph G � pV ,Eq. Graph G is undi-
rected as power may flow in both directions. An important planning choice is to
decide whether to build a meshed network or a radial one. Meshed networks, if
well planned, may reduce losses, voltage constraints [5] and enhance reliability by
providing alternative feeding routes in case of contigencies [23]. However, they are
more complex to plan [5]. Furthermore, they require more sophisticated protection
schemes, which renders the DSO’s (Distribution system operators) reluctant to im-
plement them. In this chapter, we will only focus on radial distribution network.
Hence, graph G is a tree, where there is only one path from one vertex to another.
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2.1.2 Objective function and constraints

The objective is to minimize the Net Present Value of the system over the planning
horizon T as expressed by (1).

min
ut,b,i,j

Ţ

t�1

¸
i,jPV

¸
bPB

1

p1� rqt p ut,b,i,j � li,j � cb � Elossi,j,t � Cenq (1)

There are two cost components: investments costs (CAPEX) to build new lines or
reinforce existing ones and operational costs (OPEX) related to losses. Investments
in lines are chosen among a set B of available branches. The discount rate is r, the
decision variable ut,b,i,j is 1 if a line of type b is placed between nodes i and j at
timestep t and is 0 otherwise. The length of the line beween nodes i and j is li,j rkms,
the cost of a type b branch is cbr${kms. The second term in the equation is the cost
of losses, where Elossi,j,t represent the losses in the line between nodes i and j during
timestep t rkWhs and Cen the cost of energy r${kWhs. There are three types of
constraints. First, the graph must be a connected tree (2), meaning that every node
is supplied at all times by a unique route. n is the amount of nodes to be supplied,
with n � |V |

|E| � n� 1 (2)

The following constraints are related to power flows, node voltages and branch cur-
rents. At first, balance of active and reactive power injections must be respected at
all nodes, as stated by (3). Pk and Qk are the active and reactive power injections
at node k (positive if power is consumed) and Pl,k and Ql,k are active and reactive
power flows from node l to node k. For the rest of the paper, the complex power
notation is used for more convenience: St,k � Pt,k � jQt,k.

Sk �
¸
l�k

Sl,k @k, l P V (3)

Then, nodal voltages should be bound as in (4), Vn being the nominal voltage and
Vi the voltage phasor at node i.

0.9 � Vn ¤ |Vi| ¤ 1.1 � Vn @i P V (4)

Finally, branch currents are limited by the thermal rating of lines (5), Imax,b being
the ampacity of conductors of type b and Ii,j the current flowing from node i to
node j in phasor form with bi,j the type of the branch linking i and j.

|Ii,j | ¤ Imax,bi,j @i, j P V (5)

The last type of constraints concerns investment trajectory. The load is considered
to grow through the planning horizon. Voltage and ampacity constraints can thus
only become worse with time with growing power flows on the same network. This
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implies that investments cannot be unmade and the size of the lines may only be
growing (6).

Sizei,j,t ¤ Sizei,j,t�1 @i, j P V, t � 1, ..., T � 1 (6)

A power flow problem is solved to verify that constraints (3) to (5) are satisfied.
The choice is made for a three-phase backward forward sweep algorithm. The main
modelling features are the following:

(i) Loads are represented as one, two or three current sources depending on
whether they are single-, two- or three-phase. They are considered as constant-
power loads.

(ii) Generators are considered as negative loads (i.e. they consume a negative cur-
rent which is equivalent to inject a positive current)

(iii) Voltage drops (or rises in case of positive current injection towards the grid)
on the three phases of a line are computed with the full impedance matrix and
the three-phase currents, taking into account the mutual impedances effect

(iv) Only series impedances are considered, not shunt capacitances. This hypothe-
sis is valid for short lines in distribution networks. Methodologically, it would
not add any difficulty to the problem to consider shunt capacitances. It only
necessitates to slightly adapt the power flow algorithm.

(v) The network is considered balanced but the loads are not, hence a full three-
phase power problem is solved

Comparative tests have been carried out to assess the loss of accuracy when using
a single-phase load flow instead of a three-phase one to compute voltages on a dis-
tribution network with only single-phase loads. For this comparison, single-phase
loads are replaced by three-phase loads with the same total power but evenly dis-
tributed on the three phases. Furthermore, intrinsic unbalance of the line impedances
is neglected. These 2 hypotheses allow to draw an equivalent single-line diagram on
which a single-phase load flow is run. It has been found that voltages relative errors
up to 4% are introduced when using this single-phase approximation. Hence, it justi-
fies the use of a full three-phase load flow calculation for distribution systems where
there are many single-phase loads and generators. The backward forward sweep algo-
rithm is proven to be faster than traditional Newton-Raphson or Gauss-Seidel meth-
ods for radial networks [28]. It is an iterative method in which currents (backward
sweep) and voltages (forward sweep) are successively computed and updated with
the result of previous iterations until convergence. The interested reader can refer to
[28] for more details on this algorithm. The modelling of branches and loads, based
on the work of [103] and [28], has been slightly adapted to explicitly model 4-wires
networks.
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2.1.3 Input data

There are three types of data for this planning study. First, there is the set of n
cartesian coordinates pX,Y q rkms for each node. Then, the load consumption is
given for each node and each timestep t of the planning horizon tSt,1, ..., St,nu
rkV As. Finally, there is the set of available electric conductors B, with their re-
spective impedance matrices Zb and costs cb, b P 1, ..., nB with nB the amount of
different available conductor types .

2.2 Problem decomposition and tool structure

The goal is to solve (1) subject to constraints (2) - (6) while having an existing and
feasible power flow solution. In (1), the decision variables ut,b,i,j aggregate three
different decisions: place a line between nodes i and j, give it the size b and build it
at timestep t. All these decisions are discrete by nature, making the problem subject
to the curse of dimensionality. If 15 nodes are to be connected in a radial way with 3
different branch sizes available, there are 2�1015 possible trees connecting the nodes.
For each of them, there are 5 � 106 different possibilities for branch sizes. There are
thus 1022 different possible networks, without even taking investment timing into
account. To avoid this computational intractability, decision making is separated
in four. Firstly, the architecture is determined. Then, all possible combinations of
branch sizes are generated and constraints are evaluated for each alternative. The
timing of investments is finally decided. The following subsections are dedicated to
each subproblem.

2.2.1 Network routing

In (1), OPEX and CAPEX are simultaneously minimized, which are conflicting ob-
jectives as the cheapest lines (the ones with smallest cross-sections) are also the ones
that generate the highest losses. Nevertheless, preliminary tests have shown that the
cost of losses is always an order of magnitude below the cost of investments. In-
vestment minimization may thus be considered alone in first approximation. Cost
of investment in new lines or reinforcement of existing ones depends on the cross-
section of the conductor and the length of the line. As network sizing has not been
done yet, only the total length of the lines can be minimized . The problem is thus re-
duced to a Minimum Spanning Tree (MST) problem. The Kruskal algorithm is used
to find the MST [14]. First, the n � pn� 1q{2 possible branches between n nodes are
defined. Then, the Kruskal algorithm chooses the routes in a greedy way [14]. The
center of the graph is defined as the node with the smallest eccentricity, that is, with
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the smallest maximum distance to any other node of the network. This node will be
the feeding node of the network, i.e. where the necessary generation is placed. It is
further called the source node. This heuristic decision is motivated by the fact that
this node is likely to be a good position for a generator as it minimizes the distance
between this generator and any load point, hence reducing voltage drops and losses.
In an expansion planning, the feeding node of the network is already existing and we
have to consider it as the source node, whether it is the center of the graph or not.
Data about graph connectivity is stored in a connectivity matrix C rn�ns, which is
the output of the ’Network routing’ subproblem (see Fig. 2.2). Node i is said to be
the feeding node of node j if there is a branch between both and i is upstream from
j relative to the source node. C is a defined as follows (0.7):

Ci,j �

$'&'%
1 if i is the feeding node of j

�1 if j is the feeding node of i
0 otherwise

(0.7)

2.2.2 Network sizing

The goal here is to enumerate the different possible network alternatives with branch
sizes chosen among a set B of branches. Let nB be the cardinality of this set. With
n�1 branches, there are nn�1

B choices for network sizing, which rapidly grows with
an increase in the amount of available conductors or nodes. Again, a decomposition
technique is proposed to reduce computational burden, which consists of three steps:

• Feeder decomposition

• Decreasing size of branches

• Section decomposition

First, the radial nature of the network can be exploited. Indeed, power flows on one
feeder neither influence power flows nor voltage plan on adjacent feeders. Feeders
can thus be considered as independent networks that can be optimized separately.
Then, as generation is located at the center of the network, power flows are always di-
rected from the center to the extreme nodes of the network. This means that current
flowing in the branches may only increase when getting closer to the center. This
implies that a particular branch size should always be greater than or equal to the
size of any branch located downstream. Finally, the search space is further reduced
by specifying that branches located on the same section should have the same size.
A section of a feeder is defined as a set of branches of this feeder with no junction. In
the network shown on Fig. 3, there are 2 feeders. The 2 feeders connect the nodes
r1�10�11�12�13�14�15�16�17�18�19�20s and r1�8�6�7�5�4�3�2�9s
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respectively. One section is for example r1� 8� 6s. The output of this subblock is
a set S of nalt matrices Bk , each one representing the branch size of each network
alternative (see Fig. 2.2 ).
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Fig. 2.1: Graph T of the transition costs between different network alternatives at
successive timesteps

2.2.3 Constraints verification and transition costs

There is now a set of nalt network alternatives. A network alternative is character-
ized by its connectivity matrix, common to all alternatives, and its matrixB, which
differs from one alternative to another. Constraint (2) is always respected with the
Kruskal algorithm presented above. Remaining constraints may be divided in two
types. Static constraints (3) to (5), related to power flows and equipment limits, must
be ensured at each timestep while the transition constraint (6) must hold between each
two successive timesteps. Let alternative k be considered at timestep t and alternative
l at timestep t+1, k, l P 1, ..., nalt. This particular transition is written kt Ñ lt�1.
There are three verifications to make:

1. Constraints (3) to (5) hold for alternative k at t

2. Constraints (3) to (5) hold for alternative l at t� 1

3. Constraint(6) holds from k to l

If these three steps are respected, it Ñ jt�1 is assigned a finite transition cost
CktÑlt�1

. It includes the reinforcement cost from i to j and the operational cost
during timestep t � 1. The former is the cost of additional conductor. The latter is
the cost of losses on network l with particular load consumptions at all nodes dur-
ing timestep t � 1,tSt�1,1, ..., St�1,nu. If one of the three steps is not respected,
CktÑlt�1 � 8.
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The output of this subblock is the transition graph T (see Fig. 2.2) .On this graph
T , each node represents a network alternative at a given timestep. An edge between
nodes kt and lt�1 has a weight equal to CktÑlt�1 , thus representing the evolution
from alternative k to alternative l for branches sizes. Two additional nodes are de-
fined: Init corresponds to the initial situation before the beginning of planning hori-
zon (timestep 0) when there is no network. CInitÑk1

k P 1, ..., nalt thus comprises
the total cost of building particular alternative k plus the cost of losses on this par-
ticular network at first timestep. Node Last represents the situation after timestep
T . CkTÑLast is set to zero as there are no further investments considered after the
end of planning horizon.

2.2.4 Investment timing with dynamic programming

As mentioned in the introduction, the goal of this planning is to determine not only
a network able to supply power demand at the beginning of the planning horizon,
but also to decide the reinforcements that will be made afterwards to cope with a
growing demand from the nodes.
Once the transition graph has been defined, the least-cost sequence of investment is
still to be found. As mentioned in the beginning of this paper, a dynamic program-
ming approach is chosen to handle this multistage problem, in a similar way to [78].
This approach is adapted to problems to which Bellman’s principle of optimality
applies. This principle states that at any timestep of a multistage decision making
problem, the optimal decision policy for future timesteps should not depend on pre-
viously made decisions but only on the current state of the system [15]. This is the
case for this problem as future investment and operational costs only depend on the
current state of the system, not on the way it got at this current state. In this case,
the state variables xt of the system are the set of branches sizes at a given timestep
t P 1, ..., T and the decision variables are the reinforcement decisions ut. The state
equation can be written in a compact form [79] (7).

xt � xt�1 � ut; (7)

The minimization objective may be written as follows (8), withCoptpx0q the optimal
solution cost for the whole planning horizon given the initial state x0 for which there
is no network yet.

Coptpx0q � min
u1,...,uT

¸
tP1,...,T

Costputq (8)

The idea behind dynamic programming is to make use of Bellman’s principle of
optimality to rewrite (8) in a recursive way by defining the function fminpxtq as
the optimal solution cost for all τ ¥ t given the state xt (9). This form is called
Bellman Optimality Equation [79]. It can be interpreted as follows: at each timestep,
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the optimal solution cost for future timesteps is the minimum of the sum of current
decision cost and the optimal solution cost at the next timestep given the state in
which current decision will bring the system. xt�1 is obtained from state xt and
decision ut�1 with the state equation (7). CxtÑxt�1

is the transition cost defined in
subsection 2.2.3. At the last timestep, fminpxT q � 0.

fminpxtq � min
ut�1

r CxtÑxt�1
� fminpxt�1q s (9)

The problem is thus solved in an iterative way. To do that, Dijkstra’s algorithm
[14] is applied to the previously defined transition graph T . As a matter of fact, this
algorithm is based on the same recursive principle as Bellman Optimality Equation.
The output of this subblock is the set U of investment decisions with their respective
timing (see Fig. 2.2).
It might be objected that a simpler, blind policy could be applied to decide the timing
of investments. Such policy consists in making investments as late as possible, i.e.
when constraints are not satisfied and investments are needed to relieve constraint
violations. This accounts for the fact that the net present value of a particular invest-
ment is decreasing with the time of investment. Nonetheless, anticipating line re-
inforcements can help reduce losses, hence operational costs, even when constraints
are not yet violated. There might thus be a trade-off between these two opposite
effects. Dynamic programming is suited to find such a trade-off thanks to the con-
sideration of the simultaneous impact of present and future decisions on the global
net present value.

2.2.5 Global structure of the planning tool

In previous subsections, the four different subblocks of the planning tool have been
defined. The following diagram (Fig. 2.2) summarizes the articulation of these sub-
blocks, the three types of input data they use and the information they exchange.
The output is the set U of investment decisions. As mentionned in section (2.1), an
investment decision mentions the reinforcement (conductor size increase), the line
being concerned by this reinforcement and the timestep at which the investment is
made.

2.3 Case-study

The planning tool presented in section (2.2) is applied to a 20-node dataset used in
[22]. This dataset, including cartesian coordinates of nodes, power consumptions
and conductor data, can be found in [21]. Network upgrading can be realized either
by reconductoring or reinforcement. In the former case, the existing conductor is
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Fig. 2.2: The problem has 3 different types of data. There are 4 subblocks that per-
form the following functions: (1) Network routing, (2) Network sizing, (3) Con-
straint verification and cost evaluation and (4) Investment timing. The output is the
set U of investment decisions with their respective timing.

removed and replaced by a conductor of bigger capacity. In the latter case, a conduc-
tor is added in parallel to the existing one to reduce the total impedance of the line
and increase its ampacity. In this study, only reinforcement is considered. A single
conductor type is used, and up to three such conductors can be placed in parallel,
which gives three possible branch sizes, named hereafter 1, 2 and 3. In this case,
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the impedance of size 2 and 3 lines is thus half and a third of size 1 lines impedance
respectively. In subsection 2.2.2, a rule has been introduced to limit the size of the
search space: every branch of a section of a feeder should have the same size. For
this case study, the relevance of this rule is tested by running 2 planning studies, one
with this rule (case 1) and the other one without (case 2). The planning horizon is set
to 20 years. Load consumption is growing at at constant and uniform yearly rate of
10%, with consumptions at the beginning of the planning horizon being the same as
in [21], for a total initial load of 4.9 rMVAs. Relevant parameters for the planning
study are presented in Table 2.1. The cost of lines is made of two components. The
first one is a fixed one, called the building cost of line in Table 2.1. It is common
to all lines and corresponds to pole installation. The second component is the cost
of conductors. If is obtained by multiplying the unit conductor cost by the amount
of lines in parallel (1,2 or 3). Both cases have been run on a 2.7Ghz Intel Core i7
processor with 8Go memory.

Planning horizon 20 rY earss
Interest rate 10%
Cost of losses 60 r${MWhs
Yearly load growth 10%
Base voltage 13.8 rkV s
Conductor resistance 0.64 rΩ{kms
Conductor reactance 0.45 rΩ{kms
Conductor ampacity 214 rAs
Building cost of line 23000 r${kms
Unit conductor cost 8220 r${kms

Table 2.1: Parameters used for the planning study

Initial and final network (year 1 and year 20) are presented for cases 1 and 2 in
Table 2.4. Tables 2.2 and 2.3 illustrate the differences in the sequences of investment
for cases 1 and 2, with the third line of these tables representing the upgrade in the
line size. Fig. 2.3 shows the final network for case 2, with network graph and branch
sizes.
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Branch 2-4 4-5 5-6 2-9 2-9
Year 6 6 6 9 10

Reinf. 2 � 3 2 � 3 2 � 3 1 � 2 2 � 3

Table 2.2: Investment sequence: case 1

B 2-4 6-8 5-6 4-5 2-9 2-4 2-9
Y 2 2 3 5 6 8 12
R 1 � 2 2 � 3 2 � 3 2 � 3 1 � 2 2 � 3 2 � 3

Table 2.3: Investment sequence: case 2
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Fig. 2.3: Final network for case 2. Thick lines represent branches of size 3, normal
lines branches of size 2 and dashed lines branches of size 1. Node 1 is the center of
the network, where generation is placed.

Several observations can be made for results in Table 2.4. First, initial and final
solutions are very close for both cases. Then, branch (16-17) can have a lower size
by relaxing the aforementioned rule. Furthermore, the removal of this rule allows
to have a more progressive investment sequence (Tables 2.3 and 2.4) for case 2. This
means that some costs happen later in time. These costs thus contribute less to the
total NPV of the system because of the time value of money. The cost for case 1 is
1393 rk$s while it is 1385 rk$s for case 2, which makes a 0.6% difference. Execution
times are respectively 200rss and 467rss for cases 1 and 2. This comparative case
study thus shows that the rule that has been imposed to limit computational burden
does not yield a significant error while substantially reducing execution time. How-
ever, it has to be confirmed for bigger problems with more nodes and longer feeder
sections.
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Case 1 Case 2
Branch Year 1 Year 20 Year 1 Year 20

1-8 3 3 3 3
8-6 3 3 2 3
6-7 1 1 1 1
6-5 2 3 2 3
5-4 2 3 2 3
4-2 2 3 1 3
2-3 1 1 1 1
2-9 1 3 1 3

1-10 3 3 3 3
10-11 2 2 2 2
11-15 2 2 2 2
15-16 2 2 2 2
16-17 2 2 1 1
17-18 1 1 1 1
17-19 1 1 1 1
17-20 1 1 1 1
10-12 1 1 1 1
12-13 1 1 1 1
12-14 1 1 1 1

Table 2.4: Branches size at the beginning of years 1 and 20 where reinforcements take
place. Gray cells show differences between the 2 cases

2.4 Discussion

The proposed approach has introduced some simplifications. As a matter of fact,
network sizing and network routing have been decoupled to limit the computational
burden. However, it may introduce a loss of optimality because the behaviour of a
network depends not only on its graph but also on the size of its branches. By defin-
ing the graph first, other topologies are dismissed that may lead, with appropriate
branch sizing, to better solutions.
Limiting factors for the problem are mainly the amount of nodes and the amount
of available conductors. The duration of the planning study is less critical regarding
problem size as the number of evaluations to make grows linearly with the amount
of planning steps, while a growing amount of nodes or available conductors pro-
duces a combinatorial explosion of the amount of network alternatives to evaluate
at each timestep. For example, adding an extra conductor type (four instead of three
types) multiplies the amount of network alternatives by a factor 5 in the case-study
presented in the previous section.
Hence, the biggest limitation concerns the size of the problems that can be solved:
this approach, in its current form, did not converge in less than one day for a 40-node
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network. Furthermore, we did not consider generation planning yet.
A last limitation is the fact that the proposed approach is not suited for meshed dis-
tribution networks. Indeed, the Backward-Forward Sweep Algorithm form used in
the present case only works with radial networks. However, it can be extended to
weakly meshed network as described in [103].
The field of approximate dynamic programming gathers a set of approximation
methods to cope with the traditional curse of dimensionality encountered in dy-
namic programming. Further research might thus be oriented towards the investiga-
tion of such methods to cope with problems of bigger size. However, for the rest of
this work, we decide to focus on convex optimization-based formulations to tackle
the joint planning problem. Indeed, recent developments in convex power flow for-
mulations offer interesting perspectives for the joint planning of microgrids.





3Convex optimization
background

Convex optimization presents two major advantages over non-convex optimization.
First, every optimum is necessarily a global one. Then, there are efficient algorithms
allowing to solve large convex problems, which has been made possible by the devel-
opment of polynomial-time interior-point methods for linear, second order cone and
semidefinite problems [93]. However, the autonomous microgrid planning problem
is not convex. Hence, its needs to be convexified in order to make use of the powerful
convex optimization tools.
This chapter aims at providing an introduction to the mathematical optimization
tools used in the subsequent chapters in order to make the present document self-
contained. It is by no means intended to be an exhaustive treatment of such a wide-
ranging topic as convex optimization. The developments presented in this chapter
are partly based on reference [16], to which the interested reader is referred for in-
depth coverage of the subject.

3.1 Constrained optimization

3.1.1 Problem formulation

Solving a constrained optimization problem consists in selecting, among a set of pos-
sible decisions (or actions), those that result in the best possible outcome given prede-
fined limitations. Depending on the context, we may want to maximize or minimize
a certain quantity that is function of the aforementioned decisions. For the rest of
this chapter, we will focus on minimization problems.
A constrained minimization problem can be mathematically formulated as follows,
with x P Rn a vector of n real-valued variables, fpxq a real valued function,
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gpxq : Rn ÞÑ RE and hpxq : Rn ÞÑ RI vector-valued functions of x:

min
x
fpxq

s.t.

gipxq � 0 i � 1, ..., E

hipxq ¤ 0 i � 1, ..., I (10)

The set of possible decisions is represented by the variables x, the outcome of the
problem is the objective function fpxq whose value depends on x and the context
and the limitations are modelled by equality and inequality constraints, respectively
gpxq and hpxq. Optimization problems are characterized by the form of their ob-
jective and constraint functions, hence there is a rich variety of classes: linear op-
timization, non-linear optimization, quadratic optimization, non-convex optimiza-
tion, polynomial optimization, etc. We will focus on the distinction between convex
and non-convex problems.

3.1.2 Feasible set

Constraints gpxq � 0 and hpxq ¤ 0 in (10) define the feasible set F of the problem,
i.e. a subset of Rn containing the allowed values for x, as expressed hereunder

F � tx P Rn|gipxq � 0 i � 1, ..., E ^ hpxq ¤ 0 i � 1, ..., Iu (11)

The problem (10) may thus be rewritten as

min
xPF

fpxq (12)

An example of feasible set is given on Fig. 3.1 in the case of a two-dimensional
problem with variables x � rx1 x2s, no equality constraints and a set of linear
inequality constraints.
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Fig. 3.1: Example of a 2-D feasible set determined by linear inequalities

3.1.3 Objective function minima

In general, an objective function fpxqmay present several minima on a given feasible
set F . We can distinguish local minima and global minima.
A local minimum x�l is a point belonging to F such that Dδ ¡ 0 : }px�x�l q} ¤ δ ñ
fpx�l q ¤ fpxq for x P F , i.e. there exists a neighbourhood of x�l in which fpx�l q
is the smallest value of fpxq.
A global minimum x�g is a point of F that corresponds to the smallest value of fpxq
on its whole feasible set, i.e. fpx�g q ¤ fpxq@x P F . The difference between local
and global minima is illustrated on Fig. 3.2.
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Fig. 3.2: Illustration of local (blue dots) and global (red dot) minima
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3.2 Convexity in optimization

3.2.1 Convex sets and functions

A convex set C is such that the line segment joining any two points of C is entirely
contained in C [16]. This is mathematically written as:

C is convex ô xθ � yp1� θq P C @x, y P C, 0 ¤ θ ¤ 1 (13)

An important property of convex sets is that the intersection of convex sets is also
a convex set. Examples of convex and non-convex sets are given on Fig. 3.3.

Fig. 3.3: Non-convex set (left) and convex set (right) in two-dimension

A function f : Rn ÞÑ R is convex if its domain is a convex set and the line
segment joining any two points of its graph lies above the function [16]. For x1, x2 P
dompfq, this is formally defined as

f is convex ô fpθx1 � p1� θqx2q ¤ θfpx1q � p1� θqfpx2q 0 ¤ θ ¤ 1 (14)

This is equivalently expressed by the condition that the epigraph of the function, i.e.
the subspace of Rn�1 containing all points located above the graph of the function,
is a convex set [16]. These two equivalent properties are illustrated on Fig. 3.4
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Fig. 3.4: The epigraph (shaded surface) of the convex function fpxq is a convex set

3.2.2 Convex optimization problems

Characterization

A convex optimization problem is such that its objective function fpxq and its feasi-
ble set are both convex [16]. A convex constraint defines a convex set. As mentioned
above, the intersection of convex sets is also convex. Hence, if all constraints of the
problem are convex, the feasible set F is also convex.
The only convex equality constraints gipxq � 0 are linear ones. As a matter of fact,
with x P Rn, gipxq � 0 defines an hypersurface in Rn�1 ( e.g. a curve in a plane, a
surface in the three-dimensional space, etc). For this hypersurface to include all line
segments connecting any two of its points, it necessarily needs to be an hyperplane
defined by a linear equation of the form aTx � b � 0, a P Rn and b P R being
constant. There is a wider range of convex inequality constraints as hipxq ¤ 0 is
convex as soon as hipxq is.
A convex optimization problem is thus of the following form with fpxq and hipxq
convex functions:

min
x
fpxq

s.t.

gipxq � aTi x� bi � 0 i � 1, ..., E

hipxq ¤ 0 i � 1, ..., I (15)
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Global optimality

Convex problems have a highly valuable property in terms of optimization: any lo-
cal minimum is also a global minimum [16]. Looking back at Fig. 3.2, it is easily seen
that this function of two variables is not convex and presents several local minima
with a function value strictly superior to that at the global minimum.

Classes of convex problems

We consider three classes of convex problems in this work:

(i) Linear Problems (LP)
(ii) Second-Order Cone Problems (SOCP)

(iii) SemiDefinite Problems (SDP)

These problems all have linear objective functions and equality constraints and differ
in their inequality constraints.
A Linear Problem has linear inequality constraints of the form:

aTi x� bi ¤ 0 i � 1, ..., I (16)

Second-order cone problems have inequality constraints of the following form,
Ai, Ci P Rm�n and bi, di P Rm[93]:

}ATi x� bi} ¤ DT
i x� di i � 1, ..., I (17)

With x P Rn, they rely on a second-order cone (also called Lorentz cone or ice-
cream cone) in Rm�1, for which a three-dimensional example is given on Fig. 3.5.

A semidefinite problem is expressed in its standard form as follows [93]. X is the
matrix of variables, trp.q is the trace operator and X © 0 means that the matrix X is
positive-semidefinite.

min
X

trpC�Xq
s.t.

trpA�iXq ¤ bi

X © 0 (18)

It can be shown that LP is a particular case of SOCP which in turn is a particular
case of SDP [93], i.e. LP � SOCP � SDP .
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Fig. 3.5: Three-dimensional second-order cone defined by
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3.3 From non-convex to convex problems

3.3.1 Relaxation and approximation

As it is shown in chapter 4, the autonomous microgrid planning problem is non-
convex due to its constraints. We thus want to make it convex to benefit from effi-
cient optimization algorithms. This can be done in two ways: relaxing or approxi-
mating the constraints. In the former case, non-convex constraints are replaced by
convex constraints that are weaker, i.e. less stringent than the original ones. In the
latter case, non-convex constraints are replaced by convex ones that are not neces-
sarily weaker. This means that relaxing constraints does not remove any part of the
feasible space while approximating them might, which is illustrated on Fig. 3.6.

Given that a relaxation does not remove any part of the feasible space of the orig-
inal problem, its minimal objective value fpx�Rq is a lower bound (as we are solving a
minimization problem) on the actual minimal objective value fpx�q of the original
problem [16]:

fpx�Rq ¤ fpx�q (19)

This is easily understandable as the relaxed feasible space FR includes the whole
original feasible spaceF . Hence, the minimal objective value fpx�Rq is at most fpx�q
and might be inferior if x�R P FRzF .
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Fig. 3.6: The original non-convex feasible space is enclosed by the thick curve. The
relaxed and approximated feasible spaces are in gray. (Left) A linearly relaxed feasi-
ble space that contains the whole original feasible space (Right) The approximated
feasible space removes some parts of the original feasible space

3.3.2 Sources of non-convexity and convexification techniques

In this section, we address reformulation and convexification techniques that will be
used in the various models presented in chapter 4.

Linear disjunctive reformulation for mixed-integer bilinear equality constraints

As it has been mentioned above, some investment decisions regarding the design of
microgrid equipments are discrete to represent the finite set of available sizes, e.g.
for electrical conductors. This introduces an additional complexity in the equations
modelling the microgrid and its investment decisions. Let us for example consider
equation (4.4), presented in chapter 4, that we reproduce here :

pij � pji � Rllij (20)

If we consider a given line with a resistance of RlrΩs between nodes i and j,
equation (20) states that the losses on this line, expressed by the term pij � pji, are
equal to the product of Rl and lij , respectively the line resistance and line current
squared amplitude. Now, let us consider that the presence of a line between nodes i
and j is no longer given as an input of the problem but depends on a decision variable
µij . This binary variable determines whether a line is placed between nodes i and j
(µij � 1) or not (µij � 0). The resistance between nodes i and j is now variable and
we denote it by the variable Rij . There are two possible situations.

1. A line is built (µij � 1) and the resistance is equal to Rl
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2. No line is built (µij � 0) and the resistance is infinite. In this situation, the
constraint does not apply as there should be no power flow, hence no losses,
without any line.

This can be expressed by Rij � Rl{µij . Then, (20) becomes

pij � pji � Rl
µij

lij ô µijppij � pjiq � Rllij (21)

While (20) was a linear equality constraint, we now have to deal with bilinear
terms including continuous variables pij and pji and the binary variable µij in (21).
This constraint expresses a disjunction, i.e. it represents two different and discon-
nected parts of the feasible space, depending on the investment decision value µij .
We can reformulate (21) with two inequality constraints to get rid of bilinear terms.
In the following, the operators . and . represent the upper and lower bound of a given
expression respectively, which are constants that are computed offline.

p1� µijqpRllij � ppij � pjiqq ¤ Rllij � ppij � pjiq ¤ p1� µijqpRllij � ppij � pjiqq
(22)

The equivalence of (21) and (22) is easily checked. Ifµij � 0 then ppij�pjiq andRllij
are not constrained, i.e. they may take any value in pppij � pjiq, ppij � pjiqqand
pRllij , Rllijq respectively. HenceRllij �ppij � pjiq should be able to vary between

pRllij�ppij � pjiq, Rllij�ppij � pjiqqwhich is expressed by the inequalities. When
µij � 1 then both left- and right-hand terms fall to 0 which implies ppij � pjiq �
Rllij .

Lift-and-project relaxation

Products of continuous variables may be transformed with a lift-and-project relax-
ation. If we take x and y , both continuous variables and we want to remove a xy
term of a constraint, we first lift it in a higher dimension space by introducing a new
variable z � xy and replacing all xy terms by z, which linearizes bilinear terms.
The solution to the problem is then projected back onto the original px, yq space to
recover values of the true variables of the problem. While the linear disjunctive re-
formulation presented above is exact, the lift-and-project method is a relaxation, i.e.
it is not necessarily exact as there might not be a one-to-one mapping between z and
px, yq [93]. The lift-and-project relaxation may also be used for any type of non-
linear terms, such as quadratic terms (see for example squared amplitudes of currents
and voltages in the (4) model presented in chapter 4).
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Integrality constraints

Another source of non-convexity lies in the integrality constraints. These force a
subset of the variables to be integer (binary variables are a particular case of integer
variables). The resulting feasible space is non-connected, which makes it inherently
non-convex. We illustrate this on Fig. 3.7.
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Fig. 3.7: Mixed-integer feasible set obtained by taking the feasible set described on
Fig. 3.1 and adding integrality constraints on x1 and x2. The resulting feasible set,
indicated by black dots, is clearly non-connected, hence non-convex

A mixed-integer problem is thus non-convex, even though all constraints but
integrality constraints are convex.
In the following section, we describe the basic principles of the branch-and-bound
(B&B) algorithm which allows to deal with mixed-integer problems.

3.3.3 Branch-and-bound algorithm

Mixed-integer problems are most of the time solved through the use of the B&B
method [24]. We describe hereunder the basic operations of this algorithm based on
[12] and we give an illustrating example inspired by the same reference. The inter-
ested reader is referred to [98] for a more detailed treatment of this topic.
The principle of the B&B algorithm is to solve a succession of continuous relaxations
of the original mixed-integer problem until all integrality constraints are satisfied. It
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relies on the fact that for a given problemP , the minimal value of a relaxation f�R acts
as a lower bound on the minimal value of the actual problem:f�R ¤ f� (c.f. above).
The basic operations of this algorithm are the following:

• Determine a feasible solution to the original problem. It is called the incum-
bent and its objective value acts as an upper bound UB on the minimal objec-
tive value of the problem.

• Partition the feasible set, i.e. define a series of subproblems having the same
objective but smaller, disconnected feasible spaces.

• For every subproblem SP , obtain a lower bound f�SP , R on the optimal ob-
jective value by solving a continuous relaxation of the subproblem. There are
three possible outcomes

1. A fractional solution is found (i.e. including non-integer values for vari-
ables that should be integer in the original problem). If f�SP,R ¥ UB,
then the feasible space of this subproblem is discarded because UB ¤
f�SP , R ¤ f�SP , which means that we cannot hope to find a better in-
teger solution than we already have with the current incumbent on this
subspace. Otherwise a new branching is performed

2. If no feasible solution is found, then the subspace is discarded as well

3. If an integer feasible solution with a strictly smaller objective value than
UB is found, then it becomes the new UB. Otherwise it is discarded. In
both cases, no further branching is required from this subproblem.

An illustration of a simple B&B algorithm execution is given on Fig. 3.8.
Implementations of B&B algorithms largely vary from one application to another
[24]. Several parameters may be adapted, such as the search direction in the B&B tree
(breadth first versus depth first) or branching criteria. Furthermore, additional cuts
(i.e. constraints) may be added during the algorithm execution to efficiently remove
some parts of the feasible space, hence speeding the tree exploration, by using the
results already obtained during the tree exploration. Those include Gomory cuts
[2], flow cuts or zero-half cuts.
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P

SP1 SP2

SP21 SP22

xk ¤ 3 xk ¥ 4

xl ¤ 4 xl ¥ 5

Infeasible

x�P,R � p..., xk � 3.4, ...q
LB � f�P,R

x�P,R � p..., xl � 4.7, ...q
LB � f�SP2,R

  UB

f�SP22,R
� UB

x�P,R � p..., xm � 7.8, ...q
LB � f�SP21,R

  UB

SP211 SP212

xm ¤ 7 xk ¥ 8

Fig. 3.8: Example of B&B algorithm execution. The tree represents the progressive
partition of the initial feasible space
1) P is continuously relaxed and has a fractional solution: xk � 3.4 while it should
be integer. We branch on this variable and divide the feasible space in two parts: the
first corresponds to xk ¤ 3 and the second one to xk ¥ 4
2) A continuous relaxation of SP1 is solved and is infeasible, hence the correspond-
ing subspace is discarded
3) The continuous relaxation of SP2 also delivers an optimal solution that is frac-
tional, hence a branching is performed on the xl variable, creating two new sub-
problems
4) The continuous relaxation of SP22 has an optimal objective value equal to the
current upper bound, hence it is discarded
5) The continuous relaxation of SP21 gives a fractional optimal solution, hence a
branching is performed on the xm variable, creating two new subproblems
6) The process continues until all parts of the feasible space have been discarded. The
optimal solution to the original problem is the best integer solution found during the
execution of the algorithm



4Deterministic and convex
formulations for the joint
planning of autonomous
microgrids

A preliminary and partial version of this chapter’s content has been published as
: B. Martin, E. D. Jaeger, and F. Glineur. Comparison of convex formulations
for the joint planning of microgrids. In CIRED - Open Access Proceedings Jour-
nal, 2017(1):2174–2178, 2017. In particular, the real-world test-case and the use of
Matpower to check the feasibility and accuracy of the planning solutions are new
features of this thesis

Having introduced the necessary mathematical tools in chapter 3, we can now
present the different planning models developed in this work.
First, we formulate a non-convex version of the joint planning problem. Then, we
study various convex relaxations of power flow equations. This allows us to build a
hierarchy of convex joint planning models. In a second phase, we test all these joint
planning models on a real-world use case to assess the adequacy of their solution, the
accuracy of power flow modelling and their runtime.

4.1 Definitions and modelling assumptions

This section defines the notations for the sets, parameters and variables that will
be used throughout different formulations of the joint planning problem as well as
the underlying modelling assumptions. All electric quantities are expressed in per
unit [pu]. This is usual in power systems modelling because assets parameters values
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(generators, lines,...) are similar to each other when expressed in pu, regardless of
the rating of these assets. Furthermore, voltages remain close to the unity, hence
reducing deviations in numeric values between different voltages and making the
problem numerically better conditioned [52],[55].

4.1.1 Notations

A. Sets and related indices

V : i P V Set of vertices of the network
E : pi, jq P E Set of directed edges representing allowed lines location in the

network
G : g P G Set of available generation technologies
L : l P L Set of available line types
Y : y P Y Set of years of the planning horizon
T : t P T Set of hourly timesteps of the planning horizon

B. Parameters

n � cardpVq Amount on nodes in the network
Λ � cardpLq Amount of different line types
Dij Distance between nodes i and j
H Amount of simulated hours per year of the planning horizon
pCit , q

C
it Active and reactive power consumption at node i at timestep t

gl, bl Conductance and susceptance per unit length for line type l
rl, xl Resistance and reactance per unit length for line type l
Sl Maximum apparent power for line type l
v,v Min. and max. admissible voltage
∆θ Max. admissible angle difference between two buses l
pg
R, pg

R Min and max. rated power for units of generation technology g
PF

g
Min. power factor (inductive and reactive) for units of generation
technology g

CBGgf Fixed cost [MU] of building a technology g generator
CBGgv Variable cost in MU per unit installed power of building a tech-

nology g generator
CBLf Line structure cost in MU per unit length of building a line: ex-

cavation, pole installation
CBLlv Conductor cost in MU per unit length of type l line
CPgf ,CPgv Fixed cost [MU] (resp. variable cost MU per unit produced

power) of producing power for 1 hour with technology g gen-
erators

d Discount rate

C. Variables
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pGigt, q
G
igt Active and reactive power production of a g technology genera-

tor located at node i at timestep t

pijlt, qijlt Active and reactive power flowing from node i to node j on a
type l line at timestep t

vit Voltage at node i at timestep t

θijt Voltage angle difference between nodes i and j at timestep t

λijly P t0, 1u Binary variable representing the presence or not of a type l line
between nodes i and j at year y

ωijly P t0, 1u Binary variable indicating the presence of at least one line be-
tween nodes i and j at year y

γigy Binary variable representing the decision to invest in a technol-
ogy g generator located at node i during year y

ρigy Rated power of technology g generator located at node i during
year y

fijy Fictitious flows used to ensure the connectivity of the network

The set of variables may be divided in two categories. The first one contains the
investment decision variables, indexed over Y : λijly and ρigy (ωijly and fijy being
auxiliary variables used to ensure connectivity of the network). The second category
is composed of operational variables, indexed over T : pGigt, q

G
igt, pijlt, qijlt, vit and

θijt.

4.1.2 Modelling assumptions

Time scales

We consider two time scales in the planning problem: the investment and the op-
erational time scales. First, investments decisions are taken once a year throughout
the planning horizon (Fig. 4.1, top). Then, we have to make a trade-off for the op-
erational time scale resolution. It needs to be fine enough to capture the variation
of loading conditions. However, we do not intend to model system dynamics nor
transients but we rather want to assess the system ’steady-state’ feasibility for the dif-
ferent forecast loading conditions. Furthermore, the finer the resolution, the heavier
the computational burden. We thus choose to model a limited amount of represen-
tative days (e.g. weekday and weekend, winter and summer) on a hourly time scale
(Fig.4.1, bottom).
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t �

y �

1 2 3 H pY � 1qH YH

1 2 Y

Fig. 4.1: Investment (top, yearly) and operational (bottom, hourly) time scales for
the joint planning problem

Investment modelling

The decision to invest in some asset is intrinsically binary: either the investment
is made or not. When the investment decision is taken (e.g. a line is built between
nodes i and j), we consider that a choice is made between a finite set of options corre-
sponding to a finite assets portfolio (e.g. a 100mm2 Aluminium Conductor Steel Re-
inforced cable is chosen among the following available sizes: 100,150 and 200mm2).
Hence, the sizing variable is discrete for lines. However, regarding generation tech-
nologies that will be considered (Internal Combustion Engine (ICE), PV array,...),
we consider that the available rated power range is wide enough to be considered as
continuous.

Network modelling

As explained in the above paragraph, we consider a finite set of electric conductors
for the wiring of the network. When planning investments in lines, there are two
types of actions: reinforcing corresponds to adding an extra line in parallel of the
existing ones in order to increase the available distribution capacity between two
nodes, while reconductoring consists in removing existing conductors and replacing
them by larger capacity conductors. In this context, we only consider reinforcement.
Hence, a conductor may not be removed but new conductors may be added in paral-
lel of existing ones. More precisely, there may be at most one line of each conductor
type in parallel between two given nodes.
Hence, the power flow between two nodes is expressed as the sum of power flows on
the parallel conductors between these nodes (eq. (1.2)) and each one of these flows
has a non-zero value only if the investment in the corresponding conductor has been
made (λijly � 1 in eq. (1.4)).

The following hypotheses are made throughout the models presented in the rest of
this work.

(i) The hourly timescale chosen at operational level implies that power system
dynamics may be ignored. Hence the planning problem may be modelled as a
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succession of steady states, which allows the use of the power flow equations
framework.

(ii) Given the short line distances in a distribution network, shunt capacitances in
the π model of lines are neglected. Nonetheless, the inclusion of line capaci-
tance in the models is straightforward with the adopted modelling framework
(see chapter 5 for models including line capacitances)

(iii) The network is considered to be perfectly balanced between the 3 phases, al-
lowing the use of the equivalent single phase representation. This hypothesis
may be questioned (see chapter 2), particularly at low voltage level where indi-
vidual network connections are mostly single-phase, which introduces intrin-
sic unbalance between the three phases. However, in a green field context, it
is possible to allocate the different users on the three phases in such a way as
to obtain a globally balanced load at network scale. Furthermore, the three-
phase modelling would constitute an additional computational burden whose
cost does not justify the benefits.

(iv) loads are modelled as constant power (P) loads

Generator modelling

If the investment decision in technology g generator has been made for node i
(γigy � 1), then we consider the rating of a generator ρigy as a continuous variable
limited by lower and upper bounds pgR and pgR. Inside these bounds, the rating of
a generator may be continuously increased once a year but can’t be decreased.
To avoid additional binary variables, the commitment decision of generators is not
modelled. Furthermore, the active power output of a particular generator has no
lower bound, it can operate from 0 to 100 % of its rated power.
The reactive capability curve of a generator is modelled with a maximum power fac-
tor which is symmetrical for injection and consumption of reactive power by the
generator. This means that the capability curve is triangular.
Finally, we do not model voltage control and we do not impose voltage setpoints.
In the models, the voltage at each node (with or without generator) is free to vary
within the admitted range, while remaining determined by the power flow formula-
tion specific to each model.

4.2 Non-convex joint planning model

We present here a first version for the joint planning model. This is an intuitive
model, i.e. it is written without aiming at a particular mathematical form and ex-
pressed naturally in terms of the classical power system variables: voltages, power
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flows and power productions. This model is non-convex, as it will be shown here-
under, hence it is referred to as Non-convex joint planning model (NC-JPM) .

4.2.1 Objective

As stated in chapter 1, different objectives might be considered depending on the
planner. We choose a classic objective which consists in minimizing the total net
present value of the system including investment and operation costs over the life-
time of the project. This may easily be adapted for other planning objectives such
as the minimization of greenhouse gases emissions or the minimization of unserved
energy.
The objective function of (NC-JPM) is composed of three terms. The first one,
corresponding to the first line, is the investment cost in generators from different
technologies throughout the planning horizon, hereafter referred to as generation
CAPEX (capital expenditures). Generators have fixed investment costs, irrespective
of their size, and variable investment costs, proportional to their rated power. As
γijy doesn’t represent the investment being made at year y but the investment that
has already been made at year y, the timing of investment is expressed through the dif-
ference of these variables between successive years. The second term corresponds to
investments costs in lines, hereafter referred to as lines CAPEX. They are expressed
similarly to generation CAPEX, with a fixed term representing structure costs and
a variable term representing conductor costs. The last term represents operational
expenditures (OPEX), which correspond here to fuel costs. In what follows, diesel
generators are considered to have a linear generating cost function. Finally, as we
want to minimize the net present value of the system, cash flows are discounted with
a discount rate d after the first year.

4.2.2 Constraints

The constraints of the joint planning model may be divided in four categories.

The first one models the physics of the problem.(1.2) and (1.3) represent nodal active
and reactive power balance arising from Kirchhoff’s current law (KCL). Active and re-
active power flows are expressed through equations (1.4) and (1.5).

The second category of constraints is related to network equipments limits. The
thermal limit of lines is modelled by (1.6), while (1.7) and (1.8) represent the lim-
its on voltage magnitude and phase angle difference respectively. (1.9) determines
whether or not two nodes are connected by at least a line. (1.10) ensures there are
enough lines in the network to make it connected, i.e. to make it at least a tree. How-
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ever, this doesn’t guarantee connectivity. Hence, (1.11),(1.12) and (1.13) impose that
the network is connected, i.e. contains no islands, through the use of fictitious flows
fijy. Note that we don’t force the network to be radial.

The third category of constraints is about generation equipment limits. Constraint
(1.14) sets limits to the rated power of generators for the different available technolo-
gies and makes it conditional upon the investment decision for generators. Then, the
active power output of a generator is limited by its rated power (1.15) and the reac-
tive power production is limited by the maximal power factor of the generator (1.16).

The last category of constraints ensures that investments are not unmade, both for
distribution and generation assets (1.17) -(1.19).

The model (NC-JPM) is non-convex because of the presence of binary variables and
the load flow equations (1.4),(1.5) which are non-convex even in the absence of bi-
nary variables. The non-convexity introduced by binary/integer variables may be
handled with branch-and-bound algorithms (c.f. chapter 3). In the following sec-
tions, we study the various power flow formulations and their convex relaxations.

4.3 Representations of power flows

We wrote (NC-JPM) with the classical polar representation of power flows. This is
also called the Bus Injection Model (BIM) as it is written as a function of bus electrical
quantities, i.e. voltage magnitude and angles [74]. This BIM is presented in (BIM) in
its polar form. The non-convex character of the power flow equations is obvious in
this formulation with the sin and cos terms, the bilinear and square terms.
However, there are other formulations of the power flow equations: the Branch Flow
Model (BFM), also known as DistFlow, which is the other well known formulation and
two more recently proposed models, the power divider and the elliptical power flow
formulations [74].

The DistFlow model, first proposed in [9] is based on branch quantities: currents
and flows. It can be seen that this model is also non-convex, hence it is called Non-
Convex DistFlow Model (NC-DFM) from this point. The current between nodes i
and j is written Iij ,R andX refer to the line resistance and reactance. Note that for
the sake of clarity, we present the formulation in its purest form without investment
variables, i.e. the network is considered as already built.
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Model 1 Non-convex joint planning model (NC-JPM)

Minimize:

¸
iPV,gPG

�
γig1C

BG
gf � ρig1C

BG
gv �

¸
y¥2

1

p1� dqy�1
rpγig,y � γig,y�1qCBGgf � pρig,y � ρig,y�1qCBGgv s

�

�
¸

pi,jqPE

Dij

�
ωij1C

BL
f �

¸
lPL

λijl1C
BL
lv �

¸
y¥2

1

p1� dqy�1
rpωig,y � ωig,y�1qCBLf

� pλijl,y � λijl,y�1qCBLlv s
�
�

¸
iPV,gPG,tPT

1

p1� dqt div H

8760

H

�
γigyC

P
gf � pgitC

P
gv

�
(1.1)

Subject to:

Physical constraints¸
gPG

pGigt � pCit �
¸

pi,jqPE

pijt @i P V, t P T (1.2)

¸
gPG

qGigt � qCit �
¸

pi,jqPE

qijt @i P V, t P T (1.3)

pijt �
¸
lPL
pλijlygl{Dijqrv2

it � vitvjt cospθijtqs �
¸
lPL
pλijlybl{Dijqrvitvjt sinpθijtqs

@pi, jq P E , t P T , y P Y : y � t div H � 1 (1.4)

qijt �
¸
lPL
pλijlybl{Dijqrvitvjt cospθijtq � v2

its �
¸
lPL
pλijlygl{Dijqrvitvjt sinpθijtqs

@pi, jq P E , t P T , y P Y : y � t div H � 1 (1.5)
Network constraints

p2
ijt � q2

ijt ¤
¸
lPL
pλijlySlq2 @pi, jq P E , t P T , y P Y : y � t div H � 1 (1.6)

v ¤ vit ¤ v @i P V, t P T (1.7)

�∆θ ¤ θijt ¤ ∆θ @pi, jq P E , t P T (1.8)¸
lPL

λijly
Λ

¤ ωijy ¤
¸
lPL

λijly pi, jq P E , l P L, y P Y (1.9)¸
pi,jqPE

ωijy ¥ 2� pn� 1q @pi, jq P E , y P Y (1.10)
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fijy ¤ ωijy � n @y P Y, pi, jq P E (1.11)¸
pi,jqPL

f1jy � n� 1 @i P V, y P Y (1.12)

¸
pi,jqPE

fjiy � 1�
¸

pi,jqPL

fijy @pi, jq P E , y P Y (1.13)

Generation constraints

γigypg
R ¤ ρigy ¤ γigypg

R @i P V, g P G, y P Y
(1.14)

0 ¤ pGigt ¤ ρigy @i P V, g P G, t P T , y P Y : y � t div H � 1

(1.15)

|qGigt| ¤ pGigt tanpcos�1pPF gqq @i P V, g P G, t P T
(1.16)

Investment constraints

γig,y ¥ γig,y�1 @i P V, y P Y : y ¡ 2 (1.17)
ρig,y ¥ ρig,y�1 @i P V, y P Y : y ¡ 2 (1.18)
λijl,y ¥ γijl,y�1 @pi, jq P E , y P Y : y ¡ 2 (1.19)

(1.20)

Model 2 Bus Injection Model (polar)(BIM)

Solve:

¸
gPG

pGig � pCi �
¸

pi,jqPE

pijt (2.1)

¸
gPG

qGigt � qCit �
¸

pi,jqPE

qijt (2.2)

pij � gijrv2
i � vivj cospθijqs � bijrvivj sinpθijqs (2.3)

qij � bijrvivj cospθijq � v2
i s � gijrvivj sinpθijqs (2.4)
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Model 3 Non-Convex DistFlow Model (NC-DFM)

Solve:

¸
gPG

pGig � pCi �
¸

pi,jqPE

pijt (3.1)

¸
gPG

qGigt � qCit �
¸

pi,jqPE

qijt (3.2)

p2
ij � q2

ij � |vi|2|Iij |2 (3.3)

pij � pji � Rij |Iij |2 (3.4)

qij � qji � Xij |Iij |2 (3.5)

|vj |2 � |vi|2 � 2pRijpij �Xijqijq � pR2
ij �X2

ijq|Iij |2 (3.6)

The (NC-DFM) model is equivalent to (1.2)-(1.5) for radial networks only [74].
As a matter of fact, (3.6) is obtained by squaring the voltage drop equation vi� vj �
IijpRij � jXijq, i.e. by multiplying each term of the equation by its complex con-
jugate. The complex voltage drop equation consists of two real equations in polar
coordinates: the first one equates the magnitude of left-hand and right-hand terms
and the second one equates the phase of these two terms. The aformentioned relax-
ation thus consists in only enforcing the magnitude constraint, not the angle one,
which means that angles are lost in this squaring process.

Hence, (NC-DFM) is a relaxation of (1.2)-(1.5) in the general context where net-
works can be meshed. However, in a radial setup, voltage angles may be recovered
in a unique way after the computation, starting from any reference node and propa-
gating the true complex voltage drop equation along the branches of the network.
The reason for this is that there exists only one path between two nodes in a radial
network. This is not the case in a meshed network where there exists some cycles.
Yet, (NC-DFM) doesn’t ensure that angle differences add up to 0�2kπ along a cycle,
hence there might be inconsistencies [74]. This means that, for example, when a bus
belongs to a cycle and is considered as the reference bus (θ � 0), then after propagat-
ing the voltage drop equation around the cycle back to the reference bus we might
obtain θ � 0� 2kπ.

As mentioned in [74], (NC-DFM) may be augmented with a set of cycle-related con-
straints to make it exact for meshed networks as well. Nonetheless, the networks
obtained in the test-case presented below are always radial, hence these constraints
are not necessary in this case.
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4.4 Convex relaxations of power flow equations

The planning model (NC-JPM) presented above may be seen as a extension of the
classical Optimal Power Flow (OPF) problem where not only operational costs linked
to the operation of the system are minimized but also investment costs. Hence, in
this section, we review the existing literature about convex formulations of the OPF
problems that may be extended for our planning problem.
This section is, to a large extent, based on [74] regarding the formalism, the structure
and content. The primary goal here is to give a basic understanding of the underlying
mathematical concepts and to give a big picture of the convex relaxations used in
power flow-related optimization problems. The interested reader may refer to [74]
for more details. Note that, in accordance with the previous, we only focus on the
formulation of power flows, hence investment variables are not considered here and
the network is considered as fixed.

4.4.1 Semidefinite Programming relaxations

The Bus Injection Model (BIM) of the load flow equations is expressed in polar coor-
dinates v � |v|=θ in (2.1)-(2.4). It may also be expressed in rectangular coordinates
v � vR � jvI , with vR � <pvq and vI � =pvq. In the latter coordinates, power
flow equations are quadratic in vR and vI , i.e. they contain the degree 2 monomials
tpvR1 q2, vR1 vR2 , ..., vR1 vRn , vR1 vI1 , ...vR1 vIn, ..., pvInq2u .

Shor relaxation Let’s define the vector x̂ P R2n of degree 1 monomials of rectan-
gular voltage components x̂ � rvR1 ... vRn vI1 ... v

I
ns The Shor relaxation, proposed

in [90] and applied to the OPF by [7] is composed of two steps: first the quadratic
monomials are lifted in the W space by defining the W P R2n�2n matrix as

W � x̂T x̂

This constraint may then be equivalently expressed as follows:#
W © 0

rankpWq � 1

The second step of the relaxation consists in dropping the rank constraint which
is nonconvex. Expressing the power flow equations with the lifted variables stored
in matrix W, the feasible set of the relaxation thus takes the following form:
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$'''&'''%
trpA1Wq � a1

...

trpA1Wq � am
W © 0

In this generic writing of the feasible set, the first block represents the set of power
flow equations in the W space. They can all be expressed as a trace constraint on a
product of W and another matrix of constant values depending on the parameters of
the network. These constraints are thus linear. The last line represents the semidef-
inite constraint on W, which gives its character to the relaxation and is convex.

This relaxation is shown to be exact on numerous IEEE test cases, however coun-
terexamples exist. There exists sufficient conditions for it to be exact, however they
do not apply to real-world networks [74].

Moment-based relaxation The moment-based relaxation proposed by [58] and
first applied to the OPF by [73] can be seen as a generalization of the Shor relax-
ation. Its principle is to lift monomials in a higher dimension space Y . In this space,
constraints that are redundant in the original space are added to the relaxation, tight-
ening it.
We can formulate the principle as follows, x̂ being defined as in the Shor relaxation.
Let us first define xk as the vector of degree k monomials based on the order 1 mono-
mials of rectangular voltage components contained in x̂ (hence x1 � x̂) . Let us as-
sume a generic polynomial constraint gpx̂q ¥ 0. If we construct the matrix xTk xk, it
is semidefinite positive (SDP) by construction. Then, if we multiply it by the scalar
gpx̂q, the resulting matrix remains SDP as gpx̂q is constrained to be nonnegative.
Hence, the constraint gpx̂qxTk xk © 0 is redundant with gpx̂q ¥ 0. It is then relaxed
in the lifted Y space with a functional Ly and the order k-moment relaxation can be
generically written as :

$'&'%
Lytgpx̂xT1 x1qu © 0

...

Lytgpx̂xTk xkqu © 0

The hierarchy of real-valued moment-based relaxations of the OPF is a Lasserre hier-
archy. Each order of this hierarchy generalizes the previous order relaxations of the
hierarchy. Under certain conditions, it can be shown that this hierarchy converges
to global optimality for a finite order. In practical cases, it can be shown that low-
order moment-based relaxations suffice to reach global optima for a broad variety
of optimization problems including power flow equations. However, the computa-
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tional burden of such relaxations rapidly grows with the order of the relaxations and
systems over 10 nodes might become computationally intractable. Still, models with
tens or hundreds of nodes might be treated by exploiting the sparsity (i.e. incidence
matrices of power systems are sparse) of real networks and enforcing higher order
relaxations only on a subset of nodes.

As a concluding remark for the Shor and moment-based relaxations, the authors
in [74] point out that SDP relaxations and solvers cannot compete yet with nonlinear
(NL) solvers when looking for a local optimum. Further developments are thus
needed in this area.

4.4.2 Second Order Cone relaxations

The various SOCP relaxations presented hereunder are shown to be exact under cer-
tain conditions depending on the configuration of the network and the considered
elements. Those are summarized in [62]. It should be noted that sufficient condi-
tions for exactness are less stringent for radial networks than meshed networks as the
angle relaxation is exact in the former case

Jabr relaxation This formulation proposed in [50] is based on the BIM model of
power flow equations. It can be seen as a SOCP relaxation of the Shor relaxation
presented above when written in complex variables. In this case, W P Cn�n is
hermitian. The SDP constraint imposes that all principal minors are positive [93].
The SOCP relaxation consists in keeping this condition only for 1 � 1 and 2 � 2

principal minors, which is written

#
Wii ¥ 0

WiiWjj ¥ |Wij |2 ôWiiWjj ¥ p<pWijqq2 � p=pWijqq2

The second constraint is a rotated Second Order Cone (SOC) constraint that
may be rewritten as two canonical SOC constraints by introducing new variables
a � Wii�Wjj

2 ,b � Wii�Wjj

2 and c as follows:

WiiWjj ¥ p<pWijqq2 � p=pWijqq2 ô a2 � b2 ¥ p<pWijqq2 � p=pWijqq2

ô
#
p<pWijqq2 � p=pWijqq2 ¤ c2

c2 � b2 ¤ a2
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Quadratic Convex (QC) relaxation This relaxation developed in [27] starts from
the polar formulation of the BIM model. The terms v2

i , vivj cospθijq and vivj sinpθijq
are lifted, i.e. replaced by variables cii, cij and sij respectively. Then, these new vari-
ables are constrained to belong to convex envelopes of the terms they replace, i.e. v2

i ,
vivj cospθijq and vivj sinpθijq respectively. Convex envelopes of these terms are sets
of constraints that delimit a convex portion of space comprising the nonconvex fea-
sibility space for these terms based on the lower and upper bounds on the variables
v and θ.The QC formulation is shown to be a tightening of Jabr’s formulation.

Convex DistFlow relaxation This formulation [33] is a convex relaxation of (NC-
DFM) . The first step is to introduce the variables lij � |Iij |2 and wi � |vi|2. This
removes the nonconvexity of (3.4),(3.5) and (3.6) that become (4.4),(4.5) and (4.6)
respectively. However, (3.3) remains nonconvex due to the bilinear right-hand side
wilij . This equality constraint defines the surface of a cone (see Fig. 4.2, left), which
is clearly a non-convex space. The equality constraint is thus relaxed into an inequal-
ity constraint, which means that we consider the interior (volume) of the cone as
well as its surface (see Fig. 4.2, right).
Eq. (4.3) appears as a rotated SOC constraint (4.3). This is transformed in two canon-
ical SOC constraints in the same way as in Jabr’s relaxation.

Fig. 4.2: Relaxation of (3.3) (left) into (4.3) (right) means that both the interior (vol-
ume) of the cone and its surface are considered

This relaxation implies that voltage and current variables, wi and lij , could be
larger than they should be with the power flow constitutive equation (3.3). If the
objective is to minimize a convex function of the losses or the produced power, then
the right-hand term of (4.3) should tend to be equal to the left-hand term. As a mat-
ter of fact, (4.4),(4.5) show the linear dependence between active and reactive losses
and squared current amplitude. To reduce the value of the losses, hence to minimize

the objective, the solver should take the lowest possible value for lij , i.e. p
2
ij�q

2
ij

wi
.

In radial networks, if both terms of (4.3) are equal, then the relaxation is exact. It is
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important to mention that, as proven in [26], Jabr’s formulation is equivalent to the
CDF formulation. The latter has proven to be exact on radial setups in numerous
practical cases. Chapter 5 takes a more detailed look at the accuracy of the CDF for-
mulation in the context of an optimal reactive power dispatch for loss minimization
in an onshore windfarm.

Model 4 Convex DistFlow Relaxation (C-DFM)

Solve:

¸
gPG

pGig � pCi �
¸

pi,jqPE

pijt (4.1)

¸
gPG

qGigt � qCit �
¸

pi,jqPE

qijt (4.2)

p2
ij � q2

ij ¤ wilij (4.3)

pij � pji � Rij lij (4.4)
qij � qji � Xij lij (4.5)

wj � wi � 2pRijpij �Xijqijq � pR2
ij �X2

ijqlij (4.6)

Compared to SDP relaxations, SOCP relaxations offer computational advantages
while being sometimes weaker (Fig. 4.3. In particular, the smaller number of vari-
ables of the SOCP compared to the matrix formulation of the SDP and the maturity
of SOCP solvers compared to SDP solvers allows to apply the SOCP models on
comparatively larger problems [93].

4.4.3 Linear relaxations

This section concludes the set of convex relaxations of power flow equations. Lin-
ear relaxations (LP) are weaker than SOCP and SDP relaxations (Fig. 4.3) but they
offer the advantage to rely on very developed, state-of-the-art solvers able to handle
very large problems. Furthermore, the inclusion of integer variables is highly facili-
tated by the maturity of Mixed Integer Linear Programming (MILP) solvers, that far
surpasses that of MISOCP or MISDP.

The network flow relaxation This relaxation is the simplest one as it only retains
network flow conservation constraints (5.1) and (5.2) . If there are no bus shunt ad-
mittances, then this formulation is independent of the voltages. Finally, constraints
(5.3) and (5.4) prevent the lines to artificially "generate" power.
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Model 5 Network flow relaxation (NFM)

Solve:

¸
gPG

pGig � pCi �
¸

pi,jqPE

pijt (5.1)

¸
gPG

qGigt � qCit �
¸

pi,jqPE

qijt (5.2)

pij � pji ¥ 0 (5.3)
qij � qji ¥ 0 (5.4)

This relaxation only considers power flows and omits how these are related to
currents and voltages. This has several implications:

(i) There are no losses as no constitutive equation models them
(ii) A power flow solution of this relaxed model, if observed in a real-case, could

imply unacceptable voltage levels as these are not taken into account in the
model

Taylor-Hoover relaxation This formulation developed in [94] uses lifted variables
wi � |vi|2 (the w symbol, though not being used in the original formulation is kept
for sake of consistency) in linear combinations of power flow equations that lead to
valid equalities linking lifted voltage variables and power flows (6.3) and (6.4) . It is
presented here without bus shunt elements.

Model 6 Taylor-Hoover relaxation (THM)

Solve:

¸
gPG

pGig � pCi �
¸

pi,jqPE

pijt (6.1)

¸
gPG

qGigt � qCit �
¸

pi,jqPE

qijt (6.2)

gijppij � pjiq � bijpqij � qjiq � pg2
ij � b2ijqpwi � wjq (6.3)

bijppij � pjiq � gijpqij � qjiq � 0 (6.4)

The linear combination of power flow equations that produces equations eqs.
(6.3) and (6.4) causes a loss of information. Indeed, eqs. (2.1) and (2.2) both represent



4.5. Linear approximations and relaxations of
Second Order Cone constraints

65

two equations: one for the active/reactive power flow from node i to node j and one
for the active/reactive power flow from node j to i.
Yet, equations (6.1) and (6.2) are the same in both directions pi, jq and pj, iq. Half of
the ’information’ about power flows is thus lost in the relaxation process.

In this form, the Taylor-Hoover relaxation allows to have negative active/reactive
losses with eq. (6.4) as long as they are compensated with positive positive reac-
tive/active losses. It also allows a situation with no active nor reactive losses. To
avoid non-physical negative losses, we will augment it with eqs. (5.3) and (5.4) in
subsequent models.
The Taylor-Hoover relaxation does model voltages. Nonetheless, being a relaxation,
these voltages can be under/overestimated in comparison with the true physical val-
ues corresponding to a given power flow situation, which might produce voltage
bounds violations, hence infeasible solutions in real cases.

McCormick relaxations As mentioned before, power flow equations can be ex-
pressed as a degree 2 polynomial of bus voltages real and imaginary parts. Mc-
Cormick relaxations [70] are convex envelopes of degree 2 monomials x2 and xy
based on valid inequalities derived from lower and upper bounds on x and y.

4.4.4 Hierarchy of convex power flow relaxations

We conclude this section with an analysis of the relationship between the different
presented formulations (Fig. 4.3). A formulation is said to dominate another one if
feasible space of the former is entirely contained in the feasible space of the latter. In
other words, the former model is a more accurate relaxation of the AC power flow
equations than the latter. This analysis originates from [74] and gives an up-to-date
picture of the dominance relationships established by various authors regarding the
presented models.

4.5 Linear approximations and relaxations of
Second Order Cone constraints

We saw in the previous section a hierarchy of convex relaxations for power flow
equations. In particular, SOCP relaxations are characterised by the presence of SOC
constraints. In this context, an SOC constraint defines a conic feasible space of di-
mension 3 noted L2 and defined by x2 � y2  � z2. In this section, we introduce
inner and outer linear approximation techniques for L2 that will be used in the fol-
lowing sections to develop linear models for the joint planning problem. They will
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Moment-based relaxation,
degree > 1

Shor
relaxation

Jabr/Convex DistFlow
relaxation

Quadratic Convex
relaxation

Taylor-Hoover
relaxation

McCormick
relaxation

Network Flow
relaxation

LP

SOCP

SDP

Fig. 4.3: Established dominance between the power flow relaxations presented above
(the arrow head indicates the dominated formulation). Adapted from [74]

generically denoted by xSOC constraintyIA and xSOC constraintyOA respec-
tively.

4.5.1 Inner approximation

A first way to linearly approximate L2 is to build an inner polyhedron with f faces
that fits in it. In particular, we define the following approximation that corresponds
to an inner square pyramid:

|x| � |y| ¤ z (23)

This is more restrictive than L2 as it defines a smaller feasible space enclosed in the
the original one.

4.5.2 Outer approximation

This outer approximation is a relaxation of L2 as it defines a larger feasible space
that encloses the original one by building an outer, circumscribed polyhedron with
f faces, similarly to the inner approximation (Fig. 4.4). A naive way of doing it is to
write one linear inequality for each of the f faces of this polyhedron. The accuracy
ε of this relaxation is ε � cospπ{fq�1 � 1 � π2{2f2 [41].
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Fig. 4.4: Original feasible space defined by a conic constraint (blue) and relaxed fea-
sible space defined by the outer approximation (yellow)

A more efficient method (i.e. with less additional constraints) to define an outer
polyhedron has been first described by Ben-Tal and Nemirovski in [10]. We present
here a slightly improved version presented in [41]. It approximates L2 with Lκ de-
fined as follows.

Lκ � tpz, α0, β0, ..., ακ, βκq P R2κ�3u

s.t.

#
α0 � x

β0 � y
,

$'''&'''%
αi�1 � αi cos π

2i � βi sin π
2i

βi�1 ¥ βi cos π
2i � αi sin π

2i

βi�1 ¤ βi cos π
2i � αi sin π

2i

z � ακ cos π
2κ � βκ sin π

2κ

@0 ¤ i ¤ κ

This is a lift-and-project relaxation as it introduces new variables. Nevertheless, it
represents an outer polyhedron approximation when projected back in the original
3D space px, y, zq, i.e. when auxiliary variables α and β are not considered. The
Lκ relaxation introduces 2κ� 2 additional variables, κ� 1 additional equality con-
straints and 2κ additional inequality constraints. As shown in [41], its accuracy is
expressed by ε � cospπ{2κq�1 � 1 � π2{22κ.
This means that, for an accuracy ε � 10�4, κ needs to be equal to 8, which repre-
sents 18 new variables and 25 new constraints, while the naive approximation would
require 223 additional constraints for the same level of accuracy.
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4.6 Convex models for the joint planning problem

Thus far, we presented a non-convex joint planning model (NC-JPM) . We showed
that the non-convexity had two principal causes: integer investment variables and
power flow equations. We showed two different techniques to deal with the non-
convexity of the former. We then presented a set of convex relaxations of power
flow equations ranging from SDP to LP models. As mentioned, these formulations
have a decreasing accuracy when going from SDP to LP.
When a power system investment planning problem integrates one of these formula-
tions, it inherits its inaccuracy regarding continuous electrical variables, i.e. currents,
voltages and power flows. However, as it has already been mentioned, the purpose
of such a planning problem is to deliver an investment plan for the generation and
distribution assets. Its useful output thus consists of discrete investment variables.
Continuous electrical variables, linked to the operation of the system, only serve to
check the feasibility of a particular investment solution regarding the operating con-
ditions that might be encountered.
Hence, the idea is to compare a set of growing accuracy formulations for the joint
planning problem regarding:

(i) The investment solution
(ii) The feasibility of this solution

(iii) The computation time

As a matter of fact, more accurate models might quickly become computationally
intractable for a growing size of the problem, i.e. when there are more discrete invest-
ment options, nodes or timesteps. We thus intend to identify the trade-off between
the computational burden and the quality of the solution.
In order to assess the quality of a solution, we need to compare it to a reference
solution that is known to be feasible and accurate, whether in terms of the objec-
tive function value or the set of optimum variables values. We present a Convex
DistFlow-based planning model in 4.6.3 that will be shown to be feasible in all tested
cases and accurate. Hence, it will be used as the reference model. Three other mod-
els (NF-JPM) , (TH-JPM) , (TH-JPM-L) are introduced in 4.6.1 and 4.6.2. These
are weaker but less computationally intensive relaxations of the problem, that will
be compared to (CDF-JPM) . These three models all have IA and OA variants (In-
ner/Outer Approximation of thermal rating constraints).

4.6.1 Network flow joint planning model

This first model is the simplest one. It incorporates the network flow formulation
(NF-JPM) . Capacity constraints are enforced for generators and lines. It may thus
be cast as a multi-commodity capacitated facility location/network design problem
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[71] where active and reactive power are two different commodities. The objective
function is the same as in (NC-JPM) . Eqs. (7.2) - (7.5) are the network flow model
equations. Connectivity of the network is enforced through constraints (7.7) - (7.11).
Then, constraints (7.13)-(7.15) ensure no investments are unmade during the plan-
ning horizon. Finally, constraints (7.16) - (7.18) represent the rating and production
limit of generators both for active and reactive power. These three constraints sets are
identical in (NC-JPM) . Finally, as the thermal rating constraint of lines is a quadratic
(SOC) constraint and we want to keep the model linear, we use one of the two linear
approximations presented in section 4.5 in (7.6).

Model 7 Network Flow-based Joint Planning Model (NF-JPM)

Minimize:

¸
iPV,gPG

�
γig1C

B
gf � ρig1C

B
gv �

¸
y¥2

1

p1� dqy�1
rpγig,y � γig,y�1qCBgf � pρig,y � ρig,y�1qCBgvs

�

�
¸

pi,jqPE

Dij

�
ωij1C

BL
f �

¸
lPL

λijl1C
BL
lv �

¸
y¥2

1

p1� dqy�1
rpωig,y � ωig,y�1qCBLlf

� pλijl,y � λijl,y�1qCBLlv s
�
�

¸
iPV,gPG,tPT

1

p1� dqt div H

8760

H

�
γigyC

P
gf � pgitC

P
gv

�
(7.1)

Subject to:¸
gPG

pGigt � pCit �
¸

pi,jqPE

pijt @i P V, t P T (7.2)

¸
gPG

qGigt � qCit �
¸

pi,jqPE

qijt @i P V, t P T (7.3)

pijt � pjit ¥ 0 @pi, jq P E , t P T (7.4)
qijt � qjit ¥ 0 @pi, jq P E , t P T (7.5)
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B
p2
ijt � q2

ijt ¤
�¸
lPL

λijlySl


2FIA or OA

@pi, jq P E , t P T , y P Y : y � t div H � 1

(7.6)

¸
lPL

λijly
Λ

¤ ωijy ¤
¸
lPL

λijly @pi, jq P E , l P L, y P Y (7.7)¸
pi,jqPE

ωijy ¥ 2� pn� 1q @pi, jq P E , y P Y (7.8)

fijy ¤ ωijy � n @y P Y, pi, jq P E (7.9)¸
pi,jqPE

f1jy � n� 1 @i P V, y P Y (7.10)

¸
pi,jqPE

fjiy � 1�
¸

pi,jqPE

fijy @pi, jq P E , y P Y (7.11)

(7.12)

γig,y ¥ γig,y�1 @i P V, y P Y : y ¡ 2 (7.13)
ρig,y ¥ ρig,y�1 @i P V, y P Y : y ¡ 2 (7.14)
λijl,y ¥ γijl,y�1 @pi, jq P E , y P Y : y ¡ 2 (7.15)

0 ¤ pGigt ¤ ρigy @i P V, g P G, t P T , y P Y : y � t div H � 1 (7.16)

γigypg
R ¤ ρigy ¤ γigypg

R @i P V, g P G, y P Y (7.17)

|qGigt| ¤ pGigt tanpcos�1pPF gqq @i P V, g P G, t P T (7.18)

4.6.2 Taylor-Hoover models

The following model is based on the Taylor-Hoover model for power flows (THM)
. It is constructed by adding constraints from this formulation to the feasible set
of (NF-JPM) . As it already contains (7.2) and (7.3), we only have to add the valid
equalities (8.3) and (8.4) and to bind voltages at every node to be within the admis-
sible range (8.5). Note that (8.3) corresponds to (6.3) rewritten in a disjunctive way.
Indeed, as mentioned in section 4.1, the power flow on a conductor l between nodes
i and j should be non-zero only if λijly � 1. If it is equal to zero, the equality con-
straint describing this power flow (here, (6.3)) should be inactive as it would induce
non physical constraints. For example, if there is no conductor between nodes i and
j, i.e. λijly � 0 @l P L, then pijlt and qijlt would be null (7.6) and letting (6.3) active
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would result in imposing wit � wjt which is unwanted.

The disjunctive formulation allows to activate this constraint when it is necessary
to do so. Lower and upper bounds are thus selected as the smallest values such that
the constraint is inactive for λijly � 0. As a matter of fact, we want to tighten the
feasible space as much as possible.
Note that (8.4) doesn’t include voltage variables and is valid even when there is no
conductor between i and j, hence it is written in its initial form.
Lastly, (7.4) and (7.5) have been included in this formulation while they do not be-
long to Taylor-Hoover model (THM) . As a matter of fact, we observed that without
these constraints, (THM) allowed power losses on line to take non-physical negative
values, which was also highlighted in [25].

It is important here to put the emphasis on the fact that this formulation uses
the admittance of the line rather than the impedance. Zl � rl � jxl rΩ{kms
is the impedance of a 1 km-long type l line. It is multiplied by Dijrkms to get
the total impedance in Ω of the line between i and j with the type l conductor.
Yl � pgl � jblqrΩ�1s is the admittance of the same 1 km-long type l line but we
avoid writing rΩ�1{kms as it suggests to multiply Yl by Dij to get the total admit-
tance of the whole line between i and j with the type l conductor. Yet, the opposite
should be done: if a 1-km long line has an admittance of Yl, then a 2-km long line
with the same conductor will have a twice as small admittance! This is what is writ-
ten in (8.3) and (8.4).
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Model 8 Taylor-Hoover-based Joint Planning Model(TH-JPM)

Minimize:

(7.1)

Subject to:

(7.2)-(7.18)

pijt �
¸
lPL

pijlt @pi, jq P E , t P T (8.1)

qijt �
¸
lPL

qijlt @pi, jq P E , t P T (8.2)

p1� λijlyqg
2
l � b2l
D2
ij

pv2 � v2q ¤ gl
Dij

ppijlt � pjiltq � bl
Dij

pqijlt � qjiltq � g2
l � b2l
D2
ij

pwit � wjtq

¤ p1� λijlyqg
2
l � b2l
D2
ij

pv2 � v2q @pi, jq P E , l P L, t P T , y P Y : y � t div H � 1

(8.3)

bl
Dij

ppijlt � pjiltq � gl
Dij

pqijlt � qjiltq � 0 @pi, jq P E , l P L, t P T , y P Y : y � t div H � 1

(8.4)

v2 ¤ wit ¤ v2 @i P V, t P T , (8.5)

The (TH-JPM) model is a lossless model. Indeed, none of its equations imposes
non-zero losses. In the absence of (7.4) and (7.5), the (THM) formulation of power
flows even allows non-physical negative losses as discussed previously.
We thus introduce an alternative model (TH-JPM-L) in which the objective is slightly
adapted to penalize losses. Losses are typically quadratic functions of currents or
voltages and we want to keep the model linear. We penalize in the objective func-
tion the distribution of power over long and resistive lines, i.e. pijt � rij � Dij .
Nevertheless, as pijt � pjit in this formulation, the terms corresponding to both
directions pi, jq and pj, iqwould cancel each other and sum of this term over all lines
in both directions would be zero. Hence, we only consider select the direction for
which the active power flow is positive.

A new variable p�ijlt is introduced which is equal to pijlt when it is positive and
zero otherwise. This is expressed by constraint (9.1). Note that this constraint alone
doesn’t ensure that p�ijlt � 0 if pijlt ¤ 0 nor p�ijlt � pijlt if pijlt ¥ 0. However, as
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it is the only constraint including p�ijlt, the minimization objective will always tend
to make p�ijlt as small as allowed by (9.1).
It should also be mentioned that for the sake of convenience, the penalty coefficient
for this term has been arbitrarily chosen to be equal to the variable cost of produc-
tion for the first considered generation technology (g � 1), another choice could be
made.

Model 9 Taylor-Hoover-based Joint Planning Model with losses approximation(TH-
JPM-L)

Minimize:

(7.1) �CP1v
°

pi,jqPE,lPL,tPT
Dijp

�
ijlt{gl

Subject to:

(7.2)-(7.18),(8.1)-(8.5)

� Slp1� λijlyq ¤ p�ijlt � pijlt ¤ Sl @pi, jq P E , l P L, t P T , y P Y : y � t div H � 1

(9.1)

4.6.3 Convex DistFlow model

As mentioned above, the (C-DFM) formulation is exact for numerous practical cases
of radial networks. We thus formulate a planning problem based on it that will be
considered as our reference planning model.

For this planning model, we have to model line investments in a slightly different
way. As a matter of fact, the impedance of a line depends linearly on the different
λijly. Hence, equation (4.6) will depend quadratically on λijly values, which brings
another source of non-convexity. We thus model all the different combinations of
conductors offline and each l P L now represents one of these combinations instead
of representing the presence of this conductor in parallel of the other ones on a par-
ticular section. Hence, all λijly are mutually exclusive as imposed by (10.1).

Eq. (10.2) is taken from (C-DFM) . Eqs. (10.3)-(10.7) are reformulated from (C-
DFM) in a disjunctive way. As before, lower and upper bounds are determined as the
smallest value such that the constraint is not active if λijly � 0, in order to tighten
the feasible space as much as possible. Note that maxlprlS2

l q and maxlpxlS2

l q in
right-hand terms of (10.3) and (10.4) respectively, are computed offline, they do not
represent another optimization objective within the problem.
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We also add constraints (10.5) and (10.6) to the model. These are redundant with
(10.3) and (10.4). However, it is observed that they significantly reduce the solver
runtime.
Then, we introduce the auxiliary variable τijy in (10.8) to formulate the thermal rat-
ing constraint with the canonical three dimensional form (10.9).
The last constraint (10.10) ensures that the squared line current amplitude is the same
in both directions (from i to j and j to i)
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Model 10 Convex DistFlow-based Joint Planning Model (CDF-JPM)

Minimize:

(7.1)

Subject to:

(7.2)-(7.5),(7.8)-(7.18)

¸
lPL

λijly � ωijy @pi, jq P E , l P L, y P Y (10.1)

p2
ijt � q2

ijt ¤ witlijt @pi, jq P E , t P T (10.2)

�p1� λijlyqrlDij
S

2

Λ

v2
¤ pijt � pjit � rlDij lijt ¤ Dij max

l
prlS2

l q
1

v2
p1� λijlyq

@pi, jq P E , l P L, y P Y (10.3)

�p1� λijlyqxlDij
S

2

Λ

v2
¤ qijt � qjit � xlDij lijt ¤ Dij max

l
pxlS2

l q
1

v2
p1� λijlyq

@pi, jq P E , l P L, y P Y (10.4)

pijt � pjit ¥ 0 @pi, jq P E , t P T (10.5)
qijt � qjit ¥ 0 @pi, jq P E , t P T (10.6)

p1� λijlyqrv2 � v2 � 2DijSΛprl � xlq �D2
ijpr2

l � x2
l q
S

2

Λ

v2
s

¤ wjt � wit � 2Dijprlpijt � xlqijtq �D2
ijpr2

l � x2
l qlijt

¤ p1�λijlyqrv2 � v2 � 2DijSΛprl � xlqs
@pi, jq P E , t PT , y P Y : y � t div H � 1 (10.7)

τijy �
¸
lPL

λijlySl @pi, jq P E , y P Y (10.8)

p2
ijt � q2

ijt ¤ τ2
ijy @pi, jq P E , t P T , y P Y : y � t div H � 1 (10.9)

lijt � ljit @pi, jq P E , t P T (10.10)
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The last model we introduce in this section is an outer approximation relaxation
of (CDF-JPM) in order to make it linear.

Model 11 Outer Approximation of Convex DistFlow-based Joint Planning
Model(CDF-JPM-OA)

Minimize:

(7.1)

Subject to:

(7.2)-(7.5),(7.8)-(7.18),(10.1),(10.3)-(10.7)B
p2
ijt � q2

ijt ¤ witlijt

FOA
@pi, jq P E , t P T

(11.1)B
p2
ijt � q2

ijt ¤ p
¸
lPL

λijlySlq2
FOA

@pi, jq P E , t P T , y P Y : y � t div H � 1

(11.2)

4.6.4 Hierarchy of convex models for the joint planning problem

From here, the ’JPM’ is omitted in the models acronyms for the sake of clarity. Thus
far, eight models have been presented for the joint planning problem. Three of them,
i.e. NF-IA, TH-IA and TH-L-IA, are approximations of NC (NC-JPM) as they do
not contain its whole non-convex feasible set. As a matter of fact, in these models,
constraint (1.6) that defines a cone is approximated with the more restrictive con-
straint (23) that defines a square pyramid inscribed in the cone, which removes some
parts of NC original feasibility space.
The TH-L-OA model is also considered as an approximation of NC. Indeed, TH-L-
IA and TH-L-OA models define the same feasible set as TH-IA and TH-OA respec-
tively but they minimize a slightly different objective than the original problem.
Other models NF-OA, TH-OA, CDF-OA and CDF form a growing accuracy hier-
archy of relaxations of NC , i.e.

NC � CDF � CDF-OA � TH-OA � NF-OA (24)

This is illustrated on Fig. 4.5.
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Fig. 4.5: Illustration of the hierarchy of convex relaxations

First, as mentioned in section 4.3 ,(NC-DFM) is a relaxation of NC. This implies
that CDF, being a relaxation of (NC-DFM) (section 4.4.2), is also a relaxation of
NC. Furthermore, CDF-OA is by construction a relaxation of CDF as it relaxes
SOC constraints with outer tangent cutting planes (cf. section 4.6.3).
It is then straightforward to see that NF-OA is a relaxation of TH-OA as the latter
is constructed by adding a set of constraints to those defining NF-OA feasible set
(cf. section 4.6.2) which necessarily implies that TH-OA feasible set is contained in
NF-OA feasible set.
Finally, it remains to be demonstrated that CDF-OA � TH-OA. For that, it is
necessary and sufficient to show that the power flow representation included in TH-
OA is a relaxation of that of CDF-OA, which is stated in the following lemma:

Lemma 1. A solution tp�ij , p�ji, q�ij , q�ji, w�i , w�j ,l�iju of (C-DFM) automatically satisfies
(THM) constraints.

Proof. Eqs. (4.1) and (6.1) are identical as well as (4.2) and (6.2).
Considering that Zij � Rij � jXij � 1{Yij � 1{pgij � jbijq, we have Rij �
gij{pg2

ij�b2ijq andXij � �bij{pg2
ij�b2ijq respectively. Substituting these expressions

of Rij and Xij in (4.4) and (4.5), we get:

p�ij � p�ji �
gij

g2
ij � b2ij

l�ij

q�ij � q�ji �
�bij

g2
ij � b2ij

l�ij (25)

Introducing these expressions in the left hand term(6.4) makes it identically zero,
hence (6.4) is automatically satisfied by any (C-DFM) solution.
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We may now rewrite lij with (25) :

l�ij �
g2
ij � b2ij
gij

pp�ij � p�jiq � �g
2
ij � b2ij
bij

pq�ij � q�jiq (26)

Finally, by replacing Rij and Xij by their expression in function of gij and bij and
l�ij by (26) in (4.6), we get

pw�i � w�j qpg2
ij � b2ijq � gijpp�ij � p�jiq � bijpq�ij � q�jiq (27)

which is exactly constraint (6.3) from model (THM) . �

We summarize and compare the different models features in table 4.1 that lists
constraints and their mathematical form for all models presented in chapter 4.

Acronym NF-IA NF-OA TH-IA TH-OA TH-L-IA TH-L-OA CDF-OA CDF

Model Network Flow Taylor- Hoover Taylor-Hoover
w/ losses approx. Convex DistFlow

Connectivity The network is connected, i.e. no islands

Investments No disinvestment

Generators Maximum generator rating (sizing) and capability curve (operation)

Flow
conservation Flow conservation at every node

Power flow
constitutive

equation
None Linear lift-and-project

relaxation
Linear OA of

SOC relaxation
SOC

relaxation

Voltage
bounds No Yes

Line
thermal
rating

Linear
IA

Linear
OA

Linear
IA

Linear
OA

Linear
IA

Linear
OA

Linear
OA SOC

Losses None Penalization
in objective

Exact
formulation

Table 4.1: Summarizing comparison of the different planning models presented in
chapter 4 in terms of constraints and mathematical forms. The accuracy of the mod-
els is increasing from left to right.
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4.7 E�icient MILP solving with Benders decompo-
sition

As mentioned in chapter 3, the classical way to deal with Mixed-Integer problems
is to use branch-and-bound algorithms. We began testing the different convex relax-
ations presented in this chapter on a problem of a similar size to the test case intro-
duced in the following section: 20 nodes, two conductor sizes and a single generator
size.
For the CDF-OA model, the B&B algorithm had not yet converged after four days.
Hence, we used an alternative approach to handle the complexity introduced by inte-
ger variable: the Benders decomposition. The complete description of this method
being beyond the scope of this text, we shortly introduce it based on the detailed
explanation in [79].
The main idea of this method is to transform the problem into easier master/slave
problems that are solved iteratively until convergence to a solution. More precisely,
the basic premise is that the problem contains complicating variables that appear in
numerous constraints. Hence, they do not allow to separate the problem into inde-
pendent subproblems with independent variables and sets of constraints, that would
be easier to solve independently. To mitigate this issue, all variables but complicat-
ing ones are treated in a separate subproblem called the slave problem. We repro-
duce hereunder an example drawn from [79], using the exact same notation. Let us
consider the problem (28) in which x1 is the vector of complicating variables (they
appear in all constraints) and x2 represents the rest of variables.

min
x1,x2

fpx1,x2q � cT1 x1 � cT2 x2

s.t.

Ax1 ¥ b

Ex1 � Fx2 ¥ h

x1 ¥ 0,x2 ¥ 0 (28)

Problem (28) may be exactly reformulated as (29). We observe that the master prob-
lem (left) only contains complicating variables while the slave problem (right) is deal-
ing with non-complicating variables, complicating variables only appearing in the
constraints and not in the objective. The contribution of non-complicating variables
to the objective is approximated by αpx1q in the master problem. More precisely,
αpx1q is a lower bound on this contribution. The principle of Benders decomposi-
tion is to progressively increase the value of this lower bound by solving the slave
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problem.

minx1
fpx1q � cT1 x1 � αpx1q αpx1q � minx2

cT2 x2

s.t. s.t.

Ax1 ¥ b Fx2 ¥ h� Ex1

αpx1q ¥ αmin x2 ¥ 0

x1 ¥ 0 (29)

In order to do this, the dual of the slave problem is formulated (30). Indeed, dual
variables define a series of supporting hyperplanes (tangent lines for one-dimensional
problems) of αpx1q. These hyperplanes thus constitute a lower approximation of
αpx1q. The approximation accuracy increases with the number of hyperplanes,
hence with the different values of dual variables.

αpx1q � max
λ
ph� Fx1qTλ

s.t.

ETλ ¤ c2

λ ¥ 0 (30)

The Benders decomposition is an iterative approach that can be summarized as fol-
lows:

1. Solve master problem with a lower bound for αpx1q (default, 0)

2. Inject the value found for x1 in the slave problem and get the dual variables λ

3. Add a Benders cut αpx1q ¥ λiph � Fx1q to the master problem and solve it
again

4. Repeat steps 2) and 3) until convergence.

We illustrate the kth iteration of the method in (31).

min cT1 x1 � αpx1q Trial value xk1ÝÝÝÝÝÝÝÑ maxph� Fxk1qTλ
s.t. s.t.

Ax1 ¥ b ETλ ¤ c2

αpx1q ¥ λiph� Fx1q i � 1, ..., k � 1 λ ¥ 0

x1 ¥ 0 ÐÝÝÝÝÝÝÝÝÝ
Dual variable λk
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(31)

Benders decomposition is applied for all test cases presented in the rest of this doc-
ument. We use an automatic implementation of this algorithm included in CPLEX
12.7.0. We select the default settings of this implementation: the master problem
deals with integer variables while all continuous variables are handled in the slave
problem.

4.8 Numerical results

4.8.1 The Michiquillay test case

As stated in section 4.6, we want to compare the different convex models for the Joint
Planning Problem on the feasibility of the solution, the investment solution and the
computation time in order to identify a trade-off between accuracy and computa-
tional burden. Furthermore, we also want to assess the accuracy of the different
models regarding the physics of power flows.
As mentioned in the previous section, we apply the Benders decomposition algo-
rithm to all models in order to speed up the mixed-integer optimization process.
The models are tested on a real dataset corresponding to the district of Michiquillay,
located in the Cajamarca department, North-West of Peru (Fig. 4.6). This hilly dis-
trict is located in the part of the country with the lowest electrification rate. There
are almost 6700 households in this district, most of them not being electrified [42].
The district has been identified as a Rural Electrification System by the government
in the National Plan for Rural Electrification, by which a 11-kV supply network has
been projected for the district on the period 2008-2017[42].
The Michiquillay district has been studied in the framework of the Low-cost energy
technologies for Universal Access, a research project jointly led by the Massachusetts
Institute of Technology (MIT, USA) and the IIT Comillas University (Spain) that
resulted in the REM/RNM planning tool presented in section 1.2.2. In the particu-
lar Michiquillay test case, the result of the REM/RNM planning tool consists of 81
isolated microgrids and 8 grid extensions.
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Fig. 4.6: Peru, Cajamarca department (blue) in which the Michiquillay district is
located. Adapted from [42]

4.8.2 Modelling hypotheses

For the purpose of testing the different relaxed models presented earlier in this chap-
ter in various configurations, 4 small-size microgrids are selected among the 81 cover-
ing the region in the solution from the REM/RNM planning tool. They respectively
supply 18, 16, 20 and 21 households. These are single-phase microgrids including two
conductor types, described in table 4.2: Mole and Gopher. The goal of this section
is to compare the different models performances on the same cases. However, as
shown further (Figs. 4.16a-4.16d) the CDF-OA model runtime is three to four order
of magnitudes larger than other models runtimes and it proves to be computationally
challenging even for small instances of the problem. For the purpose of comparing
like with like, we need to choose a limited system size when running tests, hence
only 12 nodes are selected in the aforementioned microgrids and the planning hori-
zon is limited to one year. In order to further alleviate the computational burden for
determining the optimal network graph, the set of allowed lines locations is heuris-
tically reduced. First, the complete graph of the network is formed, connecting all
nodes. Then, for each node, the three shortest edges connecting this node to another
one are selected, forming a subset of the complete graph edges on which lines can be
built. For a 10-node network, this may reduce the possible number of lines from 90
to 15.
We solve the different relaxed models on the groups of nodes corresponding to these
4 microgrids, i.e. we only consider the node locations and consumptions, the lines
and generator data and solve the different relaxations of the Joint Planning Model
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(JPM). The REM/RNM planning tool can choose among a large catalogue of gener-
ation technologies, including photovoltaïc (PV) generators and diesel generators. For
this comparison, we only consider diesel generators options, while the REM/RNM
planning solution only includes PV generators. The data for diesel generators can
be found in table 4.3. It has to be noted that the cost function of diesel generator is
based on a 2 [${l] fuel cost, a high value which reflects the remoteness and the lack
of road infrastructure in the Michiquillay district[42] .
The consumption profile of a household is built using the reference profile shown
in Fig. 4.7 to which a random noise is added to create load diversity among the dif-
ferent consumption points. Finally, for all outer approximations (OA) models, i.e.
NF-OA, TH-OA, TH-L-OA and CDF-OA, the κ parameter is set to 3. This value
is chosen such that problems remain computationally tractable. Indeed, we want to
compare all models on a common basis. Yet, as shown below, the CDF-OA model is
already very long to solve for this small κ value, hence we could not make it higher
if we wanted to keep the problem tractable. For this reason, we do not analyse the
CDF formulation (in)exactness in this chapter. This topic is discussed in more detail
in chapter 5 in the context of a purely operational problem, i.e. without considering
investments.

Conductor Mole Gopher

Resistance [Ω{km] 20.37 8.41
Reactance [Ω{km] 1.58 1.41
Rating [kV A] 15.24 26.56
Structure cost [${km] 0 0
Conductor cost [${km] 1174 2019
Yearly O&M cost [${pkm.yrq] 56.8 56.8

Table 4.2: Technical and cost parameters of different types of lines

Rated power [kV A] 3
Max. power factor (capacitive/inductive) [/] 0.8
Fixed investment cost [$] 2200
Variable investment cost [${kW ] 200
Fixed hourly generation cost [${h] 0.85
Variable hourly generation cost [${kW ] 0.7
Fixed annual O&M cost [$] 109.8
Variable annual O&M cost [${kW ] 11.6

Table 4.3: Technical and cost parameters of diesel generators
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Planning horizon [Y ear] 1
Min. voltage [pu] 0.9
Max. voltage [pu] 1.1
Base voltage [V ] 230
Base power [kV A] 1
Optimality gap [%] 1
Outer approximation (OA) parameter κ [/] 3

Table 4.4: General problem data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

20

40

60

80

100

120

140

A
ct
iv
e
p
o
w
er

co
n
su
m
p
ti
o
n
[W

]

Hours

Fig. 4.7: Residential consumption profile for the Michiquillay region

4.8.3 Computational setup

The relaxed models presented in the previous sections are written in the specialized
algebraic modelling language AMPL [36] and solved with CPLEX 12.7.1 using the
embedded Benders decomposition tool for handling integer variables. The models
are run on a 3.4Ghz Intel Core i7 processor with 8Go memory. The nonlinear AC-
OPF problems are solved with Matpower 6.0 [104], a Matlab-based tool for solving
the original non-linear AC Power Plow (PF) and Optimal Power Flow (OPF) prob-
lems. The solver being used is MIPS (Matlab Interior-Point Solver).

4.8.4 Feasibility of relaxed models solutions

To assess the quality of a relaxed model, the first step is to determine whether it pro-
duces feasible solutions to the original problem. As a matter of fact, relaxing some
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of the original problem’s constraints allows the solver to find an optimal solution to
the relaxed problem that does not belong to the original feasible space.
It is necessary here to re-emphasize the difference between investment and opera-
tional decision variables. Investments are to be made accordingly to optimisation
results, while operational decisions are likely to be recomputed closer to real-time
with an operational dispatch tool.
In this section, we will define the feasibility of a solution in a slightly different man-
ner from the usual mathematical definition. As a matter of fact, this would require all
variables from the relaxed model solution to belong to the original feasible space. Yet,
we mentioned above that this would likely not be the case for operational variables.
Hence, a relaxed solution will considered to be feasible for the original problem if:

(i) Investment variables from the relaxed model solution belong to the original
feasible space.

(ii) A feasible operational dispatch can be found by solving an exact, non-linear
load-flow problem for every timestep of the problem

To find a feasible operational dispatch using an exact, non-convex representation
of power flows, we use Matpower with the following procedure:

(i) Distribution and generation assets location and size originating from the re-
laxed models solutions are given to Matpower as an input, along with relevant
technical parameters (impedance, rating,...) and generator cost functions

(ii) The exact, non-convex AC power flow representation (BIM) is chosen
(iii) An AC-OPF is solved for every timestep
(iv) The constraints of the AC-OPF are the following: generator capability curves,

line thermal rating and voltage bounds. These are the same equipment limits
that are used in the different relaxations presented above

(v) The objective is to minimize the generation cost over the different generators
(vi) The MIPS (Matlab Interior Point Solver) is used to handle the non-convex

power flow equations

If a feasible solution exists for the non-linear problem, then conditions (i) and (ii) are
both satisfied and the investment solution is considered feasible.
The feasibility of the different models is illustrated in Fig. 4.8 for the 4 considered
microgrids in the form of the percentage of the 24 timesteps when Matpower is able
to find a feasible operational dispatch. The first result is that the CDF-OA model de-
livers fully feasible solutions for all considered microgrids, despite the relatively low
κ � 3 parameter. Then, it can be seen that NF-IA/OA and TH-IA/OA models have
the same feasibility rate of 83% and 88% for microgrids 1-3 and 4 respectively. Fi-
nally, TH-L-IA/OA models perform similarly to these models except for microgrid
2 where they slightly outperform them, with a 88% feasibility rate. These feasibil-
ity rates are considered unacceptable. Indeed, an infeasible situation would translate
into load shedding. Furthermore, in all test cases, it is observed that the problematic
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timesteps are found between 20h and 23h. This is due to the fact that this timeframe
corresponds to the evening peak consumption (Fig. 4.7). At this moment, the net-
work loading is at its highest level as well as the constraints severity. The unserved
energy in these cases would thus be very high.
When a feasible solution can be found, we notice that the binding constraints are al-
ways related to the voltage level, as it usually the case in rural distribution networks.
This result can be expected as the lines are long and have a high impedance per unit
length (see Tab. 4.2).
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Fig. 4.8: Proportion of timesteps with a feasible solution for the 4 studied microgrids
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4.8.5 Comparison of relaxed models investment solutions

In this section, the different models investment solutions are compared for each mi-
crogrid,. These are illustrated on Fig. 4.9 - 4.12. On this figure, generators locations
are marked with red dots, black dots represent load points and thin and thick blue
lines represent Mole and Gopher line sections respectively. It has to be noted that
generators are located at load points, hence a generator node also has a load.
It can be observed that the lines are undersized in models NF-IA/OA,TH-IA/OA
and TH-L-IA/OA with respect to the CDF-OA solution. As a matter of fact, for
every considered microgrid, the CDF-OA solution is the only one including Gopher
line sections (Figs. 4.9c, 4.10c, 4.11b and 4.12b ). Regarding lines location, all mod-
els deliver the same network graphs for microgrids 2 and 3 while they only differ in
the position of one line for microgrids 1 and 4. It is mentioned above that models
other than CDF-OA exhibit a 12 % to 17 % infeasibility rate and that binding con-
straints are systematically related to the voltage level. Yet, for microgrids 2 and 3, the
principal difference between CDF-OA solutions and other models solutions lies in
the lines sizes as generator and lines locations change only slightly. It can therefore
be deduced that line undersizing is the major factor for the operational infeasibility
of solutions from models NF-IA/OA,TH-IA/OA and TH-L-IA/OA during heavy
loading conditions. On the contrary, CDF-OA solutions including lower impedance
Gopher line sections allow for lower voltage drops and thus satisfying voltage levels
at every node.
As regards with power production, we see on Figs. 4.9, 4.10, 4.11 and 4.12 that a
single generator is sufficient for all microgrids, irrespective of the considered model.
As a matter of fact, the evening peak consumption for the whole network is a bit un-
der 2 kW and the rated power of a generator is 3 kW. The location however differs
between the different models. CDF-OA model tends to place the generator at the
center of the network (Figs. 4.9c, 4.10c, 4.11b and 4.12b ), which logically reduces
network losses by diminishing the average distance between loads and the genera-
tor. Models NF-IA/OA neither account for losses nor voltage which is reflected in
the generator location. Indeed, in these conditions, the location doesn’t impact the
objective (via additional losses) nor constraints (voltage not considered). A similar
reasoning holds for TH-IA/OA as they are also lossless models, but approximated
voltage variables are considered in these models, hence the generator location could
affect the satisfaction of voltage level constraints. In practice, it is observed that all
these 4 models place the generator at the same node for a given microgrid, which
is close to the center (Figs. 4.9a and 4.11a) or not (Figs. 4.10a and 4.12a) . Finally,
models TH-L-IA/OA should perform better regarding generator location as they
penalize a proxy of the losses in the objective function. This is observed for micro-
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grid 2 (4.11b) where the generator location is the same as in the CDF-OA solution.
However, they place the generator at the same location as less accurate models for mi-
crogrids 3 and 4 and TH-L-OA even places it at a more outlying node for microgrid
1 (Fig. 4.9b).
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(a) Investment solution for models NF-IA/OA, TH-
IA/OA and TH-L-IA
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(b) Investment solution for model TH-L-OA
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(c) Investment solution for model CDF-OA

Fig. 4.9: Investment solutions for Microgrid 1
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(a) Investment solution for models NF-IA/OA and TH-
IA/OA
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(b) Investment solution for model TH-L-IA/OA
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(c) Investment solution for model CDF-OA

Fig. 4.10: Investment solutions for Microgrid 2
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(a) Investment solution for models NF-IA/OA, TH-IA/OA and TH-
L-IA/OA
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(b) Investment solution for model CDF-OA

Fig. 4.11: Investment solutions for Microgrid 3
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(b) Investment solution for model CDF-OA

Fig. 4.12: Investment solutions for Microgrid 4
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4.8.6 Comparison of relaxed models solution costs

Total cost

The total solution cost is plotted on Fig. 4.13 for each model and microgrid. It
includes lines CAPEX, generators CAPEX, fuel cost and operation and mainte-
nance (O&M) cost for a period of 20 years. The first three cost components are
detailed in section 4.2 and correspond to the generic model objective (1.1). For the
present Michiquillay test case, the O&M component is added to comply with the
REM/RNM results. It is expressed as a yearly cost per line length unit for distri-
bution assets. For generation assets, it is composed of a yearly cost per generator
rated power unit and a fixed yearly cost per installed generator. When computing
fuel costs, we only considered timesteps when a feasible operational dispatch could
be found for every model in order to compare like with like. This means that the
period between 20h and 23h was not taken into account for fuel costs. We could also
consider to put a price on the unserved energy in order to extend the operational
cost comparison to all timesteps.
We can first observe on Fig. 4.13 that the different models solutions costs are very
similar, the lines investments costs being the main observable difference between
CDF-OA solutions and other models solutions. These graphs also show that the
system cost is largely composed of fuel costs, which represent roughly 90% of the
total. These fuel costs are very similar for all models, which will be further devel-
oped hereunder. O&M costs are the second most important cost component (5 to
6% of the total). Investment costs in generation and distribution assets each repre-
sent around 2% of the total cost, which is marginal compared with fuel costs. This
is due to the fact that the power levels at stake are relatively low (the maximal power
consumption at the scale of the microgrid is around 2 kW). Low capacity and rel-
atively inexpensive components (lines and generators) are thus sufficient for these
microgrids. In addition to that, as mentioned above, the fuel cost is high (2 [${l])
in this geographical remoteness context. Investment costs in generators are the same
for every model in the 4 considered microgrids. Indeed, as shown above, there is a
single 3 kW generator in all models solutions.

Lines cost

It is shown above that network graphs are very similar if not the same in the dif-
ferent solutions while the main difference between solutions is lines sizing. For all
microgrids, CDF-OA solutions are the only ones to include higher capacity, more
expensive, Gopher line sections. This is reflected on Figs. 4.14a - 4.14d where all
model solutions share the same line investment cost except for CDF-OA solutions.
This implies an extra line investment cost of 15 to 50 %.
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Fuel cost

We finally compare the fuel costs for the different model solutions on Fig. 4.15,
where the relative difference in these costs between any model solution and the cor-
responding CDF-OA solution is plotted. This difference is maximal for microgrid 2
where it reaches 0.4% for models NF-IA/OA and TH-IA/OA (Fig. 4.15b), as com-
pared to a value around 0.1% for other microgrids.
We can observe for microgrid 1 and 2 that fuel costs from TH-L-IA/OA are slightly
closer to those obtained with CDF-OA than other models, due to the approximation
of losses in the objective that allows to find a better location for the generator, hence
diminishing losses. Depending on the timestep, it is found that losses in less accurate
models solutions may be almost twice as large as losses in the CDF-OA solution.
Nonetheless, this does not impact the total fuel cost significantly (less than 1%) due
to the fixed cost component in the generator cost function.
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Fig. 4.13: Comparison of total costs for the 4 studied microgrids
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Fig. 4.14: Comparison of line costs for the 4 studied microgrids
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Fig. 4.15: Relative fuel cost difference with CDF-OA model for the 4 studied micro-
grids
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4.8.7 Comparison of relaxed models runtimes and scalability

The NF-IA solution is used as an initial value for others models in order to acceler-
ate the computation (warm start). Hence, the total runtime for a particular model
is composed of its own runtime after initialization to which the NF-IA model run-
time is added. It is important to notice that only runtimes after initialization are
displayed in the subsequent results. The stopping criterion for the solver is to have
an optimality gap inferior to 1%.
First, it can be observed that models NF-IA/OA and TH-IA/OA have similar run-
times in the second range for all microgrids (Fig. 4.16). Then, models TH-L-IA/OA
have one to two orders of magnitudes larger runtimes that range from about 10 up to
50 s. This is explained by the additional disjunctive constraints (9.1) including binary
variables λijly. Finally, CDF-OA runtimes are much larger to other models ones as
they range between 104 (Fig. 4.16a) and 105 s (Fig. 4.16b). This can be explained by
various factors. First, there are more disjunctive constraints including binary vari-
ables ((10.3), (10.4) and (10.7)) than in other models ( none for NF-IA/OA, (8.3) for
TH-IA/OA and (8.3) and (9.1) for TH-L-IA/OA). Then, as opposed to other Outer
Approximation (OA) models NF-OA, TH-OA and TH-L-OA there is another lin-
early approximated SOC constraint (10.2) besides the thermal rating constraint (7.6)
that increases the computational burden. Finally, as explained above, the CDF-OA
model is based on an exhaustive enumeration of all line investment configurations
in order to remain convex. Practically, in the present testcases, two different con-
ductors may be in parallel on each line section (Gopher and Mole). This means that
there may be (i) a Mole conductor, (ii) a Gopher conductor, (iii) a Mole and a Gopher
conductor in parallel or (iv) no conductor at all (hence no line). In other models,
two binary variables are sufficient for that: λij1y and λij2y that model the presence
of a Mole and a Gopher conductor respectively between nodes i and j at year y. Here,
three mutually exclusive binary variables are needed: λij1y equals 1 in case (i), λij2y
equals 1 in case (ii), λij3y equals 1 in case (iii) and λij1y � λij2y � λij3y � 0 in case
(iv). Hence, more binary variables are needed in the CDF-OA model than in other
ones, making it computationally more challenging.
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(d) Microgrid 4

Fig. 4.16: Runtimes of the different models for the 4 studied microgrids

We now want to see how the different models scale. Hence, the models are run
on the ’full’ set of 18 nodes for microgrid 1. Furthermore, the planning horizon
is now five years long instead of one. The other parameters (lines, generators, etc)
remain unchanged. The results are displayed on Fig. 4.17 and are to be compared
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to those of Fig. 4.16a which are obtained with a 12-nodes subset of the full dataset
and a one year-long planning horizon. It can be observed that runtimes for models
NF-IA/OA, TH-IA/OA and TH-L-OA are around an order of magnitude larger for
the full dataset. Then, the runtime for the TH-L-IA model is around three orders of
magnitude larger in the full dataset. Finally, the CDF-OA model was stopped after
70300 s (� 19.5 hours) with a 84.61 % optimality gap.
While runtimes of less accurate models remain reasonable for the larger testcase, the
CDF-OA is unable to converge in a reasonable time in this context.
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Fig. 4.17: Runtimes of the different models for the full microgrid 1 test case. The dots
illustrate that the indicated runtime did not allow to converge with an optimality gap
inferior to 1 %

4.8.8 Accuracy of the relaxed model regarding operational variables

In this section we compare the accuracy of the models regarding operational vari-
ables: voltages, active and reactive power flows, active and reactive power generation
and currents. This is based on the results obtained when an OPF is solved with Mat-
power on the microgrid corresponding to the optimal investment solution of a given
model. We compare the optimal values of operational variables we obtain from the
relaxed models with those obtained with Matpower .
This comparison is meaningful as all solutions presented for the Michiquillay test
case include a single generator. Indeed, we aim at assessing the accuracy of each
model regarding power flows modelling It is therefore about determining the dif-
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ferences between (re)active power flows and voltages as computed by relaxed models
and Matpower at equal nodal power injections/withdrawals. Yet, the optimal gen-
eration dispatch could be different in relaxed models and Matpower with more than
one generator. Nodal power injections/withdrawals would thus be potentially dif-
ferent between both, which would make the comparison irrelevant.
In all the following figures, the errorE on a quantityQ is computed as follows,RM
standing for ’Relaxed model’ and MAT for Matpower :

E � |QRM �QMAT |
QMAT

Active and reactive power flows

It can be observed on Fig. 4.18 and 4.19 that CDF-OA performs better than other
models, with relative errors not larger than 10�1 and 10�2 for active and reactive
power flows respectively. Other models include much larger relative errors, up to
102 and 104 for active and reactive power flows respectively on microgrid 4 (cf. Figs
4.18d and 4.19d).

Active and reactive power production

The different models achieve a better accuracy for power injections than for power
flows, with maximal relative errors in the order of 10�1 . This can be explained by
the fact that the only difference between relaxed models and the exact one is the mod-
elling of losses. Hence, the relative error for power production must correspond to
the ratio of losses to total production. This is confirmed in the results with a max-
imal relative error of 20% observed for microgrid 2 (Fig.4.18b) that corresponds to
a 20 % ratio of losses to total production observed during the evening peak demand
for models NF-IA/OA and TH-IA/OA.
The relative error on the generated reactive power is lower than its active counter-
part. This can be explained with a reasoning similar to that developed above, know-
ing that reactive losses are lower than active ones in the present case given the resistive
character of low-voltage networks.
We can finally note that CDF-OA performs better again than other models, with
maximal relative errors in the order of 10�2 and 10�3 for active and reactive power
production respectively.

Voltages

Models NF-IA/OA do not represent voltages, hence they are not included in the
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comparison with Matpower . It can be seen that TH-IA/OA and TH-L-IA/OA mod-
els have very similar relative error distribution which is normal as they include the
same power flow relaxation. For these models, the largest observed relative error is
around 15% (Fig. 4.22). The maximal observed relative error on CDF-OA voltages
is also around 15%, but the error distribution much more expands towards smaller
values.
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Fig. 4.18: Relative error on active power flows for the 4 studied microgrids
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Fig. 4.19: Relative error on reactive power flows for the 4 studied microgrids
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Fig. 4.20: Relative error on generated active power for the 4 studied microgrids
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Fig. 4.21: Relative error on generated reactive power for the 4 studied microgrids
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Fig. 4.22: Relative error on voltages for the 4 studied microgrids
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4.9 Discussion and perspectives

In the previous sections, we compared the various models developed for the joint
planning problem based on their solutions feasibility, cost and accuracy regarding
power flow modelling. The observations can be summarized as follows:

(i) NF-IA/OA, TH-IA/OA and TH-L-IA/OA models do not deliver solutions
feasible for all considered operational conditions and the infeasibility rate of
the solutions delivered by these models is considered as unacceptable. Further-
more, they can suffer from non-negligible inaccuracy regarding operational
variables, notably active and reactive power flows. However, they have been
proven to be computationally tractable for small problems (one year planning,
twelve nodes) and scale well for moderate size problems (five years planning,
18 nodes).

(ii) Among the above-mentioned models, voltages (TH-IA/OA) and losses (TH-
L-IA/OA) approximations do not bring significant improvements in compar-
ison with simple network flow (NF-IA/OA) models whether in terms of ac-
curacy, feasibility or costs. Furthermore, TH-L-IA/OA models have signifi-
cantly higher runtimes than NF-IA/OA and TH-IA/OA. Hence, the simplest
Network Flow Models (NF-IA/OA) should be preferred over the TH-IA/OA
and TH-L-IA/OA models as they offer very similar performances with a re-
duced computing budget. This is particularly true when we compare them to
TH-L-IA/OA models for which the runtimes are up to two orders of magni-
tude larger.

(iii) The CDF-OA model delivers solutions that are always feasible for the consid-
ered operational conditions. It outperforms other models regarding the accu-
racy of power flows modelling, even though it could produce more accurate
solutions with larger κ values for the outer approximation. Nevertheless, the
model is shown to be already challenging from a computational point of view
even for small size problems and κ � 3. In addition to that, it does not scale
well as it did not converge in a reasonable time for a moderate size problem.

Thus far, there is a trade-off between a computationally tractable model offering
limited quality results (NF-IA/OA) and another model delivering good and accurate
solutions while being computationally intractable for real-world problems (CDF-
OA). Hence, we conclude this chapter by investigating improvement perspectives
for the purpose of targeting both satisfactory solutions and scalability to real-world
problems.

To begin with, we implemented a lazy cuts approach to try and reduce the com-
putational burden. It consists in an iterative procedure where a reduced problem is
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first solved only considering a subset of the constraints. We then check whether the
remaining constraints are satisfied or not. Those that are not are added to the model
and the problem is solved again. At each iteration, constraints are added in a lazy
fashion, i.e. as soon as they are violated. The procedure is stopped when all remain-
ing constraints (i.e. not yet included in the model) are satisfied. This allows to solve
the problem with fewer constraints, hence reducing the computational burden and
from there the runtime. In the present case, the CDF-OA model was initially solved
without constraints corresponding to outer approximations of SOC constraints, i.e.
relaxed power flows constitutive equations (11.1) and line thermal rating constraints
(11.2). A similar approach has been implemented in [77] for SOC constraints in-
cluded in a resilient transmission expansion planning problem.
In the current work, the lazy cuts approach did not improve CDF-OA computa-
tional tractability. Indeed, after a few iterations, the amount of added constraints
already made the reduced problem computationally intractable.

A second approach could be to solve less accurate models with more restrictive
operational margins than the actual ones in order to get solutions feasible for more
challenging conditions. However, as shown in the results section, problematic con-
straints observed in the rural setup of the Michiquillay test case were always related
to the voltage level. Hence, Network Flow (NF-IA/OA) models would not be suited
for the proposed approach as voltages are not represented in these models. This ap-
proach should thus be tested using TH-IA/OA or TH-L-IA/OA models.

Finally, decomposition approaches could offer interesting perspectives in this
context. In [40], such approaches are studied in the context of the operational
co-optimization of transmission and distribution grids in presence of renewables,
which is also a computationally challenging problem. Among these algorithms,
a Lagrangian relaxation scheme is proposed. It consists of removing complicating
constraints that link transmission and distribution-related variables from the prob-
lem and penalize them in the objective function. This is done by formulating the
Lagrangian of the problem, which is composed of the initial objective function to
which a weighted sum of complicating constraints is added. This allows to separate
the initially large problem into several smaller independent subproblems (i.e. with
independent sets of variables) where the link between the subproblems is entirely
located in their respective objective functions. A suitable iterative approach has then
to be devised in order to update each subproblem objective in function of other sub-
problems.
As an illustration, the fastest decomposition algorithm used in [40]manages to solve
a 24-timesteps unit commitment problem on a 24-node network within 400[s], while
CPLEX takes about 8000[s] for the same problem.





5Accuracy of the Convex
DistFlow relaxation

This chapter is an adaptation of: B.Martin, P.De Rua, E.De Jaeger, and F.Glineur.
Loss reduction in a windfarm participating in primary voltage control using an
extension of the Convex DistFlow OPF (Forthcoming). In 20th Power Systems
Computation Conference, Dublin, 2018.

In this chapter, the goal is to study the accuracy of the outer approximation of the
(C-DFM) model that has been presented in chapter 4. We examine it in the context
of an OPF problem, i.e. the optimal operation of an existing power system. This
means that we do not make any investment decisions.
We consider one of the largest French onshore wind farms that is requested by the
transmission system operator (TSO) to participate in primary voltage control. This
implies exchanging reactive power with the grid, by using both the wind turbines
and static switchable capacitor and inductor banks installed in the windfarm. The
reactive power setpoint dispatch between the wind turbines and the static units is
currently suboptimal, leading to additional energy losses inside the collector grid
of the wind farm. The goal is thus to formulate the problem as an Optimal Power
Flow (OPF) to optimally determine the tap at the on-load tap changer (OLTC) and
the reactive power dispatch among the WTs and the static units. The objective is to
reduce the active power losses in the transformers and cables of the wind farm while
performing the primary voltage control.
We base our approach upon the extended Convex DistFlow (CDF) model developed
in [26]. This model is an extension of the (C-DFM) model presented in chapter 4
in which both the π model of lines and variable ratio transformers are considered.
We further extend it by including discrete models of OLTC and static unit banks
switching. The resulting model can be cast as MISOCP and we relax it with the
linear Outer Approximation (OA) detailed in section 4.5, in the same way as we did
for the (CDF-JPM) joint planning model. We then assess the accuracy of this model
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in function of the degree of the OA, and we compare its performances to a non linear
implementation of the problem using Matpower [104].
The chapter is organised as follows: section 5.1 describes the problem at hand and
the windfarm under study, section 5.2 describes the augmented model we propose for
solving the problem, numerical results and comparison with Matpower are presented
in section 5.3 and discussed in section 5.4.

5.1 Problem description

The 78 MW-wind farm considered in this chapter participates in primary voltage
control by injecting or absorbing reactive power at the point of common coupling
(PCC), proportionally to the difference between the voltage at PCC and a voltage
setpoint. For such a voltage static law, the reactive setpoint is limited by maximum
capacitive and inductive values (Fig. 5.1).
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Fig. 5.1: Example of voltage static law

The reactive power is produced or consumed by the WTs and by switchable static
units installed at the MV busbar of the substation. Currently, the WTs are used first
and the static units are only used in case of large reactive setpoints. In addition, the
WTs receive equal reactive power setpoints, which might be suboptimal.
The wind farm comprises 39 DFIG-based WTs grouped in 7 subparks. Transformers
of 2.5 MVA connect the WTs to a 31 kV radial collector grid composed of buried
cables. At the substation, a 120 MVA transformer equipped with an OLTC connects



5.2. Extended formulation of the Convex DistFlow Optimal Power Flow 111

the 31 kV collector grid to the 235 kV transmission network.

Currently, the purpose of the OLTC is to maintain the voltage on the medium
voltage (MV) side of the substation as close as possible to its rated value. The static
units comprise three capacitor banks of �5 MVAR and three inductor banks of
�5 MVAR. The reactive power capability of the WTs is defined by a capability curve
in the PQ plane. Although the WTs can behave as loads in stand-by mode (i.e. con-
suming active power), they cannot produce nor consume reactive power for negative
active power outputs, as displayed in Fig. 5.2. This is imposed beforehand by setting
the maximum capacitive and inductive capabilities to zero for all the WTs with a
negative active power output.
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Fig. 5.2: Example of capability curve in the PQ space

5.2 Extended formulation of the Convex DistFlow
Optimal Power Flow

5.2.1 Symbol Definitions

We define the sets, parameters and variables used in the proposed model as follows.

A. Sets

N The set of nodes in the network
E The set of directed arcs representing the lines in the network
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ER The set of lines in E taken in the opposite direction

B. Parameters

ntaps Amount of taps for the OLTC
nbanks Amount of poss. states for the static unit banks
rks,OLTC , x

k
s,OLTC Series elements of the OLTC at kth tap

tkOLTC Turns ratio of the OLTC for the kth tap
pig Measured active power produced by the wind turbine at node i
vPCC Voltage at the point of common coupling
qsetPCC � fpvPCCq Reactive power exchange at PCC, fixed by the droop character-

istic of the plant
ysi � gsi � jbsi Shunt admittance at node i
bkbank Equivalent shunt susceptance of the static unit banks for the kth

state
bcij Line charging susceptance of the π model of the line between

nodes i and j
zij � rij � jxij Impedance of the line between i and j
tij � tRij � jtIij Turns ratio of the transformer located between i and j, in rect-

angular form
tz�Rij � rijt

R
ij � xijt

I
ij

tz�Iij � rijt
I
ij � xijt

R
ij

θ∆ Max. phase angle diff. between 2 nodes
sij Line thermal limit
vi, vi Lower and upper voltage bounds at i
q, q, q�sl, q

�
sl, q

0 Constants for the WTS capability curve
ν Weight for the reactive mismatch in the objective

C. Variables

pPCC Active power exchange at PCC, ¤ 0 (resp. ¥ 0) if injected on
(resp. drawn from) the grid

qPCC Idem for reactive power
q�mis, q

�
mis ¥ 0 Mismatch with the reactive setpoint if qPCC ¥ 0 (q�mis) or

qPCC ¤ 0 (q�mis)
µ Binary representing whether the reactive mismatch is positive or

negative
.
�

Vector quantity notation.
iij Current @pi, jq P E
vi Voltage @i P N
lij � |iij |2 @pi, jq P E
wi � |vi|2 @i P N
pij Active power flow @pi, jq P E Y ER

qij Reactive power flow @pi, jq P E Y ER

qgi Reactive power generation/consumption @i P N
τk Binary, = 1 if tap k is chosen k P t1, ..., ntapsu
σk Binary,= 1 if static unit bank state k is chosen k P t1, ..., nbanksu
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5.2.2 Original formulation

The model we present hereunder is an extension of the one developed in [26]. The
block of constraints A corresponds to the original formulation while blocks B and
C are original contributions of the present work. The original formulation has
been developed in order to tackle transmission network-related problems including
transformers and for which line charging capacitances may not be neglected. In this
model, branches are modelled in the same way as in Matpower (Fig. 5.3). More pre-
cisely, each branch is composed of an ideal transformer followed by a π-section line.
This branch model, in combination with bus shunt admittances, allows to model
non-ideal transformers (bcij � 0) as well as simple line sections (tij � 1). The com-
plete derivation of this model being beyond the scope of this chapter, the interested
reader is referred to [26] for more details.

zij � rij � jxij

vi
tij

vi vjj
bcij
2 j

bcij
2

iij
tij : 1

Fig. 5.3: Matpower-like line model

The objective to be minimized in this problem is composed of three terms. The
first corresponds to the losses on the collector grid. Minimizing this term is equiv-
alent to minimizing pPCC (as pPCC is negative if it is injected on the transmission
network). The two other terms in the objective are penalty terms to be explained in
subsection 5.2.3.

The first set of constraints in the model (Block A) originates from [26]. As men-
tioned above, this block of constraints is an extension of the (C-DFM) model that
we analysed in section 4.4.2. Eqs. (12.1) and (12.2) represent the active and reac-
tive power balance at every node of the network. Eqs. (12.3) and (12.4) model the
active and reactive losses in the branches (lines and transformers) of the system and
Eq. (12.5) represents the voltage drop on these branches. Eq. (12.6) represents the
thermal rating limit for each branch. It is a second order cone (SOC) constraint,
i.e. it defines a convex cone in R3 whose vertex is at the origin. Constraints (12.7)
and (12.8) are linear inequalities describing the capability curve of WTs displayed
in Fig. 5.2. Note that no limit is imposed on active power output of WTs as it is
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considered as a parameter of the present problem. Eq. (12.9) is a relaxation of the
constitutive equation p2

ij � q2
ij � wi

t2ij
lij linking power flows to voltage and current

variables. It is a rotated SOC constraint that can be equivalently represented by two
three-dimensional SOC constraints (see chapter 4). Eq. (12.10) represents the volt-
age bounds at every node. Finally, constraints (12.11) and (12.13) model the limit
on the voltage angle difference between two nodes.
It should be noted that two relaxations steps are made in this model: the SOC relax-
ation (12.9) and the convexification of the voltage drop equation that leads to (12.5).
This convexification implies that voltage angles are not considered in the model any-
more. However, in a radial setup (which is the case for the wind farm), angles can be
recovered in a unique way from the solution as there are no cycles in the network,
which would not be the case anymore in meshed networks. Hence, in this radial
context, the relaxation is exact if and only if the right-hand term of (12.9) is equal to
its left-hand term.

5.2.3 Point of common coupling

As mentioned above, the main transformer of the wind farm connects the collec-
tor grid to the PCC. Eqs. (12.14) and (12.15) model the power balance at the PCC
while Eq. (12.16) models the transmission network voltage at the PCC. Eq. (12.17)
models the fact that there might be a positive or negative mismatch between the
reactive setpoint imposed to the wind farm and what the wind farm can actually
produce/consume. Eqs. (12.18) and (12.19) impose that this mismatch is either pos-
itive or negative in a disjunctive way (big-M constraint, M being a suitable positive
constant). The wind farm should follow the reactive setpoint if it is able to do so.
Hence, we penalize ν pq�mis� q�misq in the minimization objective to avoid any reac-
tive mismatch if there is no need for it. Finally, Eqs. (12.20) and (12.21) represent the
activation of the static unit banks. Eq. (12.20) states that only a single state can be
chosen for these units. Eq. (12.21) is a big-M constraint that represents the reactive
power exchange with the static units in function of their state in a disjunctive way.

5.2.4 On-load tap changer

The main transformer of the wind farm, connecting the collector grid to the trans-
mission network, is equipped with an OLTC that allows to modify the turns ratio
of this transformer by discrete increments/decrements in a certain range around its
nominal value. Eq. (12.22) models the fact that only one tap may be chosen at a
given time. Eqs. (12.23) and (12.24) are the equivalent of eqs. (12.3) and (12.4) for
the OLTC, written as a big-M constraint to account for the discrete nature of the tap
changer while keeping convexity. Similarly, Eqs. (12.25) and (12.26) are the big-M
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equivalents of (12.5) and (12.9) respectively for the OLTC. For sake of brevity, the
computation ofM values in big-M constraints is not detailed . However, the underly-
ing rationale is to choose the lowest possible value ofM such that the corresponding
constraint is not binding when the considered binary variable (σ, τ ) is equal to 0, in
order to keep the model as tight as possible.

Model 12 Extended CDF-OPF for wind farm loss reduction

Minimize: pPCC � ν pq�mis � q�misq
Subject to:

A. Lines, transformers and nodes of the collector grid

pgi � gsiwi �
¸

pi,jqPEYER

pij (12.1)
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¸
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B. Point of Common Coupling

pPCC � gs1w1 �
¸

p1,jqPEYER

p1j (12.14)

qPCC � bs1w1 �
¸

p1,jqPEYER

q1j (12.15)

w1 � v2
PCC (12.16)

qPCC � q�mis � q�mis � qsetPCC (12.17)

q�mis ¤ µM (12.18)

q�mis ¤ p1� µqM (12.19)¸
kPt1,...,nbanksu

σk � 1 (12.20)

� p1� σkqM ¤ qg2 � bkbankwi �
¸

p2,jqPEYER

q2j ¤ p1� σkqM (12.21)

C. On Load Tap Changer

¸
kPt1,...,ntapsu
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5.2.5 Accuracy of the SOC relaxation under multi-objective opti-
mization

The relaxation of p2
ij � q2

ij � wi
t2ij
lij to an inequality means that lij could be higher

than it should be in reality. However, as the losses increase with lij , the solver should
not find it advantageous to have artificially larger currents and the right-hand term
of Eq. (12.9) should reach its lower bound, i.e. the value of the left-hand term.
Nonetheless, as the objective also includes the minimization of the reactive power
mismatch, it could be conflicting with the loss minimization objective and currents
might take artificially larger values than they should, hence making the relaxation in-
exact. In practice, this is observed in some cases that will be illustrated in the follow-
ing section. Artificially large currents impacts the reactive production/consumption
of the wind farm. On one side, they artificially increase reactive losses on the series
reactance of the lines, hence helping the wind farm to absorb reactive power. On the
other side, when WTs are consuming active power (no wind, auxiliary consump-
tion), the voltage profile decreases towards the WTs and higher currents will cause
larger voltage drops towards the WTs, hence lower voltages on line charging capac-
itances and reduced reactive power production from these elements. This analysis
is valid when the voltage at the secondary of the collector transformer is constant.
However, the OLTC can adapt this voltage hence the observed behaviour might dif-
fer from what has been described here.

5.2.6 Linear outer approximation of second order cone constraints

The model presented above is a mixed-integer second order cone program. We fur-
ther relax it with the linear outer approximation of conic constraints presented in
chapter 4. As a matter of fact, a large amount of instances of the problem have to
be solved in order to cover the range of different operating conditions encountered
throughout a year in the windfarm. Yet, the state-of-the-art Mixed-Integer Quadrat-
ically Constrained (MIQCP) solvers are not as mature as the mixed-integer linear
programming solvers (MILP) [72], which is reflected on the computation time.

The OA is an εOA-approximation of SOC constraints in the sense that ||px, yq|| ¤
p1 � εM qz with εM � cospπ{2κ�1q�1 the largest possible error of the relaxation as
shown in [10]. As εOA decreases exponentially with the relaxation degreeκ, a reason-
ably small degree should be sufficient in order to reach a satisfying level of accuracy.
In the particular case of the OA of (12.9), the observed εwill imply that the product
of squared voltage and current amplitudes could be underestimated, in turn causing
an underestimation of losses.
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5.3 Numerical results

5.3.1 Accuracy of the relaxation

The solution s to the relaxed problem presented in the previous section is considered
to be the combination of setpoints for the OLTC, bus voltages and reactive power
production/consumption of WTs and static units, i.e. s � pqg

�
,
?
w
�
, σ
�
, τ
�
q. As ex-

plained in the previous section, the SOC relaxation is exact in this radial case if and
only if (12.9) is satisfied with equality. Let us define the relative relaxation error
εij P R @ pi, jq P E Y ER as follows:

||ppij , qijq|| �
b
p2
ij � q2

ij � p1� εijq
c
wi
t2ij
lij

It has been shown that the additional OA allowed the right-hand term of (12.9) to
be underestimated, i.e. εi,j ¡ 0. Furthermore, as explained in the previous sec-
tion, with potentially conflicting objectives, the right-hand term of (12.9) might be
overestimated as well, i.e. εij   0. This is illustrated on Fig. 5.4.

Fig. 5.4: Error introduced by the linear outer approximation and the multi-objective
character

Let us further define the maximal error ε as

ε � tεij with pi, jq s.t. |εij | � max
pi,jq

|εij |u

A solution obtained with the presented model will be considered accurate under
the following conditions:

(i) The observed ε is sufficiently small

(ii) The solution is feasible. This is determined by running a Power Flow problem
(PF) with Matpower using s as an input.
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Note that this is not the mathematical definition of feasibility. For the relax-
ation solution to be mathematically feasible, qg

�
, σ
�
, τ
�
, pij
�
, qij
�

should satisfy power

flow equations exactly which will obviously not be the case because power flows
are affected by the relaxation inaccuracies. This is compensated by the fact that the
PCC is the slack bus in the PF problem. Active and reactive power injections at
this bus thus serve as adjustment variables that compensate for those inaccuracies.
Hence, the PF gives the exact value of pPCC that would be obtained if the solution
s � pqg

�
,
?
w
�
, σ
�
, τ
�
q of the relaxed problem was implemented in the wind farm.

For the purpose of testing the accuracy of the relaxations, 6 test-cases are defined
according to the active power production (P ) of the wind farm, whether it should
absorb or inject reactive power (Q) from/to the transmission network and whether
or not a mismatch is foreseen between the wind farm reactive setpoint and its effec-
tive reactive power output. The latter element determines whether there are two
conflicting objectives or not, which has to be investigated regarding the accuracy of
the SOC relaxation, as mentioned in the previous section. Those are considered to
be limit cases representing the various extreme configurations that could be encoun-
tered in the operation of this wind farm:

Case 1 P : high Q: consumption no expected mismatch

Case 2 P : high Q: consumption expected mismatch

Case 3 P : low Q: consumption expected mismatch

Case 4 P : high Q: injection no expected mismatch

Case 5 P : high Q: injection expected mismatch

Case 6 P : low Q: injection expected mismatch

Table 5.1: 6 extreme test-cases

The results for theses 6 cases are shown in table 5.2. First, it can be observed
that for cases 1 and 4, when no reactive mismatch is foreseen, the relaxed problem
gets more and more accurate as κ grows. A value of 10 for this relaxation parameter
allows to reach a satisfying precision of 3.3 � 10�3 and 2 � 10�4 for cases 1 and 4
respectively. Hence, in these cases, the relaxation can be made to arbitrary accuracy
by increasing κ at the cost of a higher computational burden. For cases 2 and 3, the
accuracy of the relaxation does not improve with κ and ε is even negative. This is
due to the fact that the wind farm is supposed to absorb a higher amount of reactive
power than it is capable of and there is a reactive mismatch which is penalized in the
objective function. To reduce this mismatch and the objective value, the solver finds
it advantageous to give larger values to currents in order to cause artificial reactive
losses on the collector grid of the wind farm as explained in the previous section,



120 Chapter 5 Accuracy of the Convex DistFlow relaxation

even though active losses are also increased.
A mismatch is also expected in case 6. However, since the wind farm is absorbing
active power, artificially large currents cannot help to reach the reactive injection
setpoint, hence the relaxation is observed to be increasingly accurate with κ. Finally,
the relaxed problem may not be considered accurate in case 5 as the relaxation error is
not decreasing at it should. Indeed, currents were expected to be as small as possible
to decrease line reactive losses, hence better following the reactive injection setpoint.
This is not what is observed as the relaxation error does not decrease with κ. We may
thus conclude that the relaxed problem delivers accurate solutions when there is no
foreseen reactive mismatch and might give poorer results when there is a reactive
mismatch.

Table 5.2: Accuracy and feasibility of the relaxation for 6 test cases

Case Total Reactive κ ε Feasible
production setpoint
[MW] [MVar]

1 -80 12

6 8.7� 10�2 yes
8 1.8� 10�2 yes
10 3.5� 10�3 yes
12 3.3� 10�5 yes

2 -80 100

6 �8.2� 10�1 yes
8 �7.3� 10�1 yes
10 �9.7� 10�1 yes
12 �9.8� 10�1 yes

3 0.2 100

6 8 yes
8 �6.1� 10�1 yes
10 �6.1� 10�1 yes
12 �6.1� 10�1 yes

4 -80 -12

6 1.1� 10�1 yes
8 3.4� 10�2 yes
10 2� 10�4 yes
12 2.8� 10�4 yes

5 -80 -100

6 1.9� 10�1 yes
8 8.1� 10�2 yes
10 �9.9� 101 yes
12 �9.9� 101 yes

6 0.2 -100

6 8 yes
8 1.5� 10�1 yes
10 5.5� 10�3 yes
12 1� 10�4 yes
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5.3.2 Comparison with a Matpower-based approach

In this section, the goal is to compare the results obtained with the relaxed model to
those obtained on the exact, nonlinear model with Matpower using MIPS (Matpower
Interior Point Solver). Matpower does not provide tools to include elements such as
the static units and the OLTC that are characterized by binary variables. For this
reason, external loops are used to solve the OPF in each of the 147 configurations
corresponding to the 21 taps of the OLTC and the 7 states of the static units. Real
data originating from the wind farm covers the whole year 2014 on a 10 min ba-
sis. This represents 52560 timesteps. In order to alleviate the computational burden,
these data have been clustered into 100 fictitious timesteps with the k-means algo-
rithm. The goal of the comparison is to see if the solution of the relaxed problem
might be better than that of the exact one, i.e. if pPCC is smaller in the former case
(recall that pPCC   0 if injected on the grid).
As mentioned in the previous section, a solution s of the relaxed model is injected in
a Matpower PF to check its feasibility and the exact power output of the wind farm.
To assess the accuracy of the relaxed model in terms of results, we also compute the
difference between active and reactive power injections at the PCC in the solution
of the exact problem and in the solution of the relaxed one. A smaller difference
means a lesser slack compensation, hence lesser inaccuracies on power flows in the
relaxed model. The performance of the relaxed model compared to the exact one
is presented in Fig. 5.5 where the objective value improvement of the non-convex
OPF in comparison with the relaxed OPF is plotted against the accuracy of the re-
laxed model for several degrees κ of the OA. Negative ordinates represent situations
where the solution of the relaxed problem gives a better objective than the one from
the exact non-convex problem. In these cases, the non-linear solver thus falls in local
minima and the convex optimization is able to find a better solution. Positive ordi-
nates, on the other side, represent situations where the non-linear solver is able to
find a better solution than the relaxed convex model.
Several observations can be made about this graph. First, it can be seen that a higher
accuracy is obtained by increasing κ, which was already shown on extreme cases
from the previous section. Indeed, the cloud of points progressively shifts towards
the left as κ is increased, which means that the slack compensation gets smaller, hence
the relaxed model is more accurate. Then, it can be observed that the relaxed model
outperforms the Matpower-based approach on a significant fraction of cases, roughly
ranging from 10% to 25% when κ goes from 8 to 12. Finally, we can see that the
points where the relaxed model performs significantly worse or better than the ex-
act one are the ones with the lowest accuracy @κ. This result seems counterintuitive
and needs further investigation to be explained.
It can be concluded from these results that Matpower sometimes falls in local min-
ima, as it is expected from nonconvex problems, since the relaxed model is able to
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find better solutions in some cases. We also compare the results based on the compu-
tation time for the different models. As it can be seen on Fig. 5.6, the relaxed model
is faster to solve than the exact one for most cases for κ � 8. However, this is not
the case anymore for κ � 10 and 12 as the computation time increases by up to one
and two orders of magnitude respectively.

Fig. 5.5: Comparison of performances of the exact model and the relaxed mod-
els. X-axis: |∆PslackBus,PF | � |∆QslackBus,PF |rMVAs Y-axis: |PPCC,exact| �
|PPCC,rel|rMW s

5.4 Discussion

In this chapter, we presented an extended convex DistFlow relaxation of the OPF
problem able to cope with real-world network elements such as OLTC and capacitive
cables. This relaxation is first formulated as a MISOCP and then further relaxed into
a more tractable MILP, using an efficient outer approximation that can be made arbi-
trarily accurate (at the price of an increase in size of the model). This relaxed model is
exact or close to exact in many situations. However, when the two components in its
objective function are conflicting with each other, i.e. active loss minimization and
compliance with a reactive setpoint, the relaxed model’s performance is degraded.
Nonetheless, this model already outperforms the Matpower-based approach on a sig-
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Fig. 5.6: Computation time rss for the different fictitious points and models

nificant fraction of test cases, in terms of objective value and computation time, and
it is expected that the relaxed model becomes more advantageous for instances in-
cluding more discrete variables. Finally, it has been observed that the performance
of our model is either significantly worse or better than Matpower when the accuracy
of the relaxed problem is lower. This counterintuitive result has not been explained
yet and requires further testing for a better understanding of such a behavior.





6Accounting for uncertainty
in autonomous microgrid
planning

The models presented in chapter 4 are all based on the implicit hypothesis that vari-
ables and parameters of the autonomous planning problem are deterministic, which
is obviously not the case in reality. In particular, three sources of uncertainty can be
identified in this problem:

(i) Load consumption forecast errors
(ii) Generation forecast errors when intermittent renewable energy based genera-

tion is considered
(iii) Outages of generation and distribution assets

This chapter deals with the uncertainty in the autonomous microgrid planning prob-
lem. First, it will review how uncertainty can be incorporated in general power
systems modelling and optimization. Then, a non-convex chance constrained for-
mulation of the autonomous microgrid planning problem is described. Finally, a
computationally tractable robust optimization model of the problem is formulated
and implemented to include load consumption-related forecast errors. It is shown
that it can be seen as a conservative approximation of the non-convex chance con-
strained problem.
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6.1 Uncertainty in power systems modelling and
optimization: state-of-the-art

6.1.1 Probabilistic and possibilistic frameworks

There are two main ways of modelling uncertainty:probabilistic and possibilistic ap-
proaches. As stated in [29], uncertainty may either arise from the variability, e.g.
the wind speed forecast is uncertain, or from the incompleteness of the available
information, e.g. A says to B there is a dozen wind turbines in a particular wind
farm. While the former case is uncertain because there exists no perfect forecast
method, in the latter case, the true information might be available, e.g. by going to
the windfarm and counting the number of wind turbines. However, with the sole
information given by A to B, the number of wind turbines in the wind farm remains
an uncertain quantity for B. More generally, the possibilistic framework models the
possibility of an event rather than its probability, the latter representing the likeli-
hood of occurrence of the event based on empirical measures [37]. For example, an
adult might be able to eat 5 apples a day, hence the proposition ’an adult eats 5 ap-
ples a day’ might be considered to have a high possibility. However, statistics on a
certain group of adults might show it is very unlikely for an adult to eat 5 apples a
day (example inspired by [99]).
The possibilistic framework can be based on fuzzy sets [29]. In [37] and [91], the
authors use a fuzzy representation to account for load-related uncertainty. The relia-
bility of network components is also modelled using fuzzy numbers in[82]. In [53],
the authors not only model load uncertainty but also network parameters uncer-
tainty (i.e. impedance of the lines) with fuzzy numbers. In [39], it is stated that the
fuzzy representation can represent the risk of constraint violation, making it well
suited for risk-based optimization.
It should be noted that the majority of this literature is either from the late 1990s
or from the early 2000s, which shows a decreasing interest in possibilistic modelling
for power systems. This is the reason why the rest of this section is focused on the
probabilistic framework.

6.1.2 Probabilistic modelling: analytical and scenario approaches

Random variables corresponding to uncertain phenomena, e.g. household power
consumption in this context, affect other variables such as power flows or voltages,
which in turn makes these variables random. The former variables, as the cause of
uncertainty, are independent variables while the latter are considered as dependent
variables [97].
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In the probabilistic framework, the goal is to determine the probability distribution
of dependent variables based on the probability distribution of independent vari-
ables. Here, a distinction can be made between approaches where the distribution of
dependent variables is analytically computed from the model equations (e.g. power
flow equations) and independent variables distributions, and approaches where the
the distribution of dependent variables is estimated on a finite set of scenarios .
In the former case, a single problem has to be solved while in the latter case, a finite
set of scenarios are determined by sampling independent variable distributions and
the problem has to be solved once for each such scenario.

Analytical approaches

In the analytical approaches category, references [92] and [95] both deal with the
probabilistic load flow problem. In [92], load uncertainty is modelled with stochas-
tic processes and the power flow computation is performed a first time around the
expected operating point. Then, the load flow equations are linearized around the
solution obtained for the expected operating point so that dependent variables (line
flows, voltages) are expressed as linear combinations of random variables. In [95],
typical distribution system features (short lines, limited voltage drop) are exploited
to get linearised power flow equations using a constant current load model. Further-
more, random processes are assumed to be normally distributed in order to be able
to determine dependent variables distributions analytically. Then, references [11]
and [85] deal with uncertainty in the context of the OPF problem by using chance
constraints (CC). The principle of a chance constraint is to allow this constraint to
be violated with a certain probability (usually small) to avoid having to cope with
some extreme and rare cases that would otherwise incur additional costs if they were
considered. This concept is refined in the following section.
In [11], the classical OPF problem is formulated as a chance-constrained OPF to ac-
count for renewable generation uncertain fluctuations. More precisely, generation
capacity constraints and line thermal rating constraints are formulated as chance con-
straints. Conventional generators follow an affine control policy to counter the RES
fluctuations that are considered to be independent and normally distributed. These
assumptions allow to reformulate the problem as a convex conic problem. How-
ever, due to the heavy computational burden of second order cone constraints, this
problem quickly becomes intractable on realistic test-cases. Hence, the authors pro-
pose an iterative cutting plane algorithm where the conic constraints correspond-
ing to reformulated chance constraints are initially relaxed. A linear relaxation of
the problem is solved and after each iteration, the satisfaction of conic constraints
is checked. A linear outer inequality cut corresponding to the most violated conic
constraint is added to the problem, which is solved again. This process is repeated
until all conic constraints are satisfied up to a predefined tolerance. In [85], wind



128 Chapter 6 Accounting for uncertainty in autonomous microgrid planning

turbines are asked to participate in the provision of reserve as their uncertain active
power output creates a growing need for additional reserves. Weighted chance con-
straints are used that allow to account for both the frequency and the amplitude of
constraint violation to implement a true risk-based approach. Even though the re-
sulting reformulated constraints are still convex, they give rise to impractically hard
problems. Hence, an algorithm similar to the one proposed in [11] is used.

Scenario approaches

Numerous authors resort to scenario sampling to deal with uncertainty in power
system related optimization problems as it does not affect the model form. The
problem of losses reduction through network reconfiguration is studied in [86] un-
der load growth uncertainty uncertain, using a Monte-Carlo approach to generate
scenarios. In [20], a network expansion planning is performed considering load and
electricity tariff uncertainty. First, a pool of near-optimal solutions are computed
with an Immune System Inspired algorithm. Then, a Monte-Carlo (MC) approach
is implemented where different scenarios are extracted from known probability dis-
tributions. The expected cost of failures as well as the expected cost of capital and
operational expenditures are then computed on this scenario set for every solution
from the pool. An expert judgement is then applied based on the following crite-
ria: feasibility rate of a solution, expected operation cost and expected failure cost.
In [88], uncertainty affects load demand and gas prices in an integrated generation
and transmission planning problem. A scenario set is built from known probability
distributions and a stochastic mixed integer linear program is formulated where the
objective function aggregates the investment costs for generation and transmission
assets, the expected cost of generation and the expected cost ofCO2 emissions on the
whole set of scenarios. A similar approach is implemented in [102]where a distribu-
tion system expansion planning is formulated that integrates distributed generation
(DG) investment and aims at minimizing both financial costs and CO2 emissions.
Both load consumption and DG output are considered uncertain, which is repre-
sented through the use of a scenario set on which the expected costs of production
and losses are computed. A genetic algorithm is then used to find the Pareto front, i.e.
the set of non-dominated solutions to this bi-objective problem. The problem of the
security constrained optimal power flow (SCOPF) is implemented with a scenario-
approach in [19]. This paper aims at performing a day-ahead security planning, i.e.
find an optimal combination of preventive and corrective actions such that, in every
possible load and renewable generation scenario, there exists a feasible solution for
every postulated contingency.
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6.1.3 Risk handling policy

Regardless of the way uncertainty is modelled, there exist different ways to handle
the risk associated with uncertainty, either in the constraints or in the objective func-
tion.

Constraints

The most conservative way of handling the risk of constraint violation is to adopt
a robust approach where the solution of the problem should be feasible for every
possible event and for every possible scenario (in the limits of the model). Bearing
this in mind, the N-1 criterion, very common in power systems planning and op-
eration, may be seen as particular case of a robust approach: it forces the solution
to be feasible in the case of an outage of any one system asset (generator, line, trans-
former,...). However, it does not ensure a safe operating point in the case of two or
more simultaneous outages. The N-1 criterion is widely used when considering the
security planning of power systems, i.e. their ability to face contingencies.
Another way of dealing with constraint violation is to adopt a chance-constrained
approach, as explained above. By setting a tolerance on the constraints violation
probabilities, it generally allows to reduce the solution costs that would otherwise
be higher in order to cope with rare or extreme events. This policy is common in
the field of power quality for example, where the standards read "X should be in the
interval rX,Xs with a probability larger than or equal to p1� pq".

Objective function

The risk handling policy is also illustrated by the objective function [44]. In par-
ticular, three different policies can be distinguished. Let x be the vector of decision
variables, Ω and ω P Ω the uncertainty space and the vector of random variables
respectively and Cpy, ωq the total cost of the solution as a function of decision vari-
ables and random variables. The following descriptions are largely based on [44].
First, we could aim at minimizing the expectation of the total cost on the consid-
ered uncertainty set (either scenario based or analytically determined), which can be
considered as a neutral policy in terms of risk handling.

min
y

EωPΩrCpy, ωqs

Then, a more optimistic policy would be to minimize the total cost in the most
favorable scenario, i.e.

min
y

min
ωPΩ

Cpy, ωq
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The opposite, risk-averse policy consists in minimizing the cost of the solution under
every possible scenario.

min
y

max
ωPΩ

Cpy, ωq

Finally, the objective might be to choose a solution that minimizes the additional
cost with respect to the risk-averse policy solution y�RA in every possible scenario.

min
y

max
ωPΩ

pCpy, ωq � Cpy�RA, ωqq

The choice of a risk policy depends on the type of problem. As stated in [44], the
’risk neutral policy’ does not actually account for risk and may imply decisions that
represent a high risk should the worst case scenario happen. If the anticipated conse-
quence of the worst-case scenario is critical, then a risk-averse policy might be more
adapted. In the present case, we are dealing with a long term planning problem. The
main risk at this time scale would be to have a structural lack of capacity (distribu-
tion or generation) if the loading conditions are more severe than forecast. However,
this type of problem may be mitigated closer to real-time operation by monitoring
the evolution of loading conditions and taking adequate actions. Furthermore, a
risk-averse approach at this time scale might imply significantly larger investment
costs that would be justified only for a small fraction of time. Hence, we choose a
’risk-neutral’ policy in the present context.

6.1.4 Illustration of uncertainty in power systems problems

As mentioned in the introduction to this chapter, various sources of uncertainty af-
fect power systems: load an intermittent generation forecast errors and distribution
and generation assets outages. Another source of uncertainty lies in the values of
network parameters as well. For example, the real impedance value of a particular
cable might differ from the datasheet value.
We list hereunder various power systems related problem types depending on the
network type (Medium Voltage (MV), Low Voltage (LV) or Microgrid (MG)), the
type of uncertainty that affects them and the available tools to deal with these un-
certainty sources. These problems may be divided into three broad categories: eco-
nomic problems, technical problems and security/reliability problems.
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Problem type Network type Uncertainty type Method
Economic MV,LV,MG Load & generation forecast Stochastic Optimization
UC, OPF, Investment Planning CC Optimization

RO
Security MV,MG Load & generation forecast Scenario approach
Security Planning, SCOPF outages RO

CC Optimization
Technical MV,LV,MG Load & generation forecast Probabilistic load flow
Operational planning outages Scenario approach

parameter errors

Table 6.1: Uncertainty in power systems related problems

6.2 Load related uncertainty consideration in the
autonomous microgrid planning

Thus far, the different formulations of the autonomous microgrid planning pre-
sented in chapter 4 considered deterministic load consumption values pCit and qCit .
We now want to consider the intrinsic uncertainty related to load forecast. Hence-
forth, we thus denote load consumption by random variables �pCit and �qCit . A random
variable x is expressed as the sum of an expected value (x) and a zero-mean random
variable (∆x). At this point, we make no assumption yet on the probability distri-
bution of these random variables.

�pCit � pCit �∆pCit
(32)�qCit � qCit �∆qCit
(33)

As explained in the previous section, these are independent variables of the prob-
lem.
In the deterministic formulations of the problem, generator’s active and reactive out-
put pGigt and qGigt were deterministic decision variables. However, in the stochastic
case, the active nodal power balance equations should hold for every possible real-
ization of random variables, i.e. (idem for reactive power):

¸
gPG

�pGig � �pCi � ¸
pi,jqPE

�pijt (34)

In (34), generation output and line flow variables are written with the tilde symbol
( r ) to emphasize that they become random variables too. More precisely, they are
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dependent variables of the problem as they must vary accordingly to independent
variables variations, i.e. load consumption variations, for (34) to hold. This equation
can be separated in average terms and variational terms:

¸
gPG

pGig � pCi �
¸

pi,jqPE

pijt (35)¸
gPG

∆pGig
�∆pCi

�
¸

pi,jqPE

∆pijt (36)

6.3 Chance-constrained formulation of the autonomous
microgrid planning problem

In section 6.1.2, we mentioned that analytical approaches could be more interest-
ing in terms of computational burden and representation of a realistic risk-handling
policy. In particular, the chance-constrained optimization framework offers the ad-
vantage of explicitly modelling operational margins on physical quantities such as
currents and voltages while avoiding a costly scenario sampling.
As stated in [85], a chance constraint may be generically expressed as

»
Ω

fpypωqqPpωqdω ¤ ε (37)

In this expression, Ω P Rm is the uncertainty space where the vector of m ran-
dom variables ω takes values. The function ypωq represents the amplitude of the
constraint violation in function of the realization of random variables, f is a risk
weighting function that can be used to penalize different constraint violation ampli-
tudes differently, P is a multivariate probability distribution of (possibly correlated)
random variables ω .
The choice of the weighting function reflects the risk policy. In the simplest form,
it is a Heaviside function ( i.e. null for the negative orthant and equal to one for the
positive orthant), which means that all violations (y ¥ 0) are penalized the same way.
Using a linear weighting function corresponds to limiting the expected violation of
constraints to a certain threshold ε [85].

Let us now consider the first planning model proposed in chapter 4, i.e. (NC-
JPM) . In this model, constraints (1.2)-(1.5) are the power flow equations, represent-
ing Kirchhoff’s laws. Hence, they must apply at any time, regardless of the variation
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in load consumption. Constraints (1.9)-(1.13) and (1.17)-(1.19) ensure that the net-
work is radial and that there is no asset divesting. They do not include any opera-
tional variable, which is why they remain deterministic constraints, as well as (1.14).
Remaining constraints relate to equipment limits: (1.6) for the maximal thermal rat-
ing of the lines, (1.15) and (1.16) for the active and reactive power capability of gen-
erators and (1.7)-(1.8) for the voltage limits. These constraints do not reflect the
physical nature of AC power flows, they are engineering constraints that seek to en-
sure a safe operation of all system parts and maximize their lifetime, whether they be
distribution and generation equipment or customer electrical appliances. As men-
tioned above, the system operator is willing to accept some violations up to a certain
threshold in order to avoid additional system upgrade costs to cope with rare events.
Violations of line thermal ratings and voltage levels does not necessarily impede the
continuity of the power supply, but a generation capacity shortage will require a par-
tial load shedding to reach a balance between power consumption and production.
The formulation of (1.6),(1.15),(1.7) as chance constraints is done as follows (this can
be done similarly for (1.16) and(1.8)) :

Pp�pijt2 ��qijt2 �¸
lPL
pλijlySlq2 ¥ 0q ¤ εline (38)

Pp�pGigt � ρigy ¥ 0q ¤ εgen (39)

Pp�vit � v ¥ 0 || �vit � v ¥ 0q ¤ εv (40)

Chance constraints (38), (39) and (40) correspond to the generic expression(37)
where the weighting function fp.q is the Heaviside function. Left-hand terms

�
p2
ijt�

q2
ijt�

°
lPLpλijlySlq2

�
, (pGigt� ρigy), pvit� vq and pvit� vq represent constraint vi-

olations, i.e. the y term in (38). To find a closed-form expression of these chance
constraints , we need an analytical formulation for ypωq to determine its probability
distribution as a function of random variables ω distribution.
First, we need to express the generator control policy. In power systems, frequency
control is implemented such that an imbalance between production and consump-
tion is compensated by a subset of generators committed to this task in exchange for
remuneration. The control law is affine in the total unbalance observed in the sys-
tem [11], with αigt the participation factor of the technology g generator located at
node i at timestep t. It is considered as a decision variable for what follows.�pGigt � pGigt � αigt

¸
iPV

∆pCit
(41)
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Using (41), (39) may be rewritten

PppGigt � αigt
¸
iPV

∆pCit
� ρigy ¥ 0q ¤ εgen (42)

Let us now assume that random variables ∆pCjt
are normally distributed and uncor-

related, i.e. ∆pCjt
� N p0, σCjtq@j P V . Then, (42) is equivalent to PpX ¥ 0q ¤ εgen

with X � N pµX , σXq a normally distributed random variable, µX being equal to
pGigt � ρigy and σX being equal to αigt

b°
jPVpσCjtq2. It follows from the above that

PpX ¥ 0q � PpX � µX
σX

¥ �µX
σX

q � 1� PpX � µX
σX

¤ �µX
σX

q � 1� Φp�µX
σX

q

In this expression, Φ stands for the cumulative distribution function of a standard
normal variable. Then, (42) may be further developed into

PpX ¥ 0q ¤ εgen ô �µX
σX

¥ Φ�1p1� εgenq ô σXΦ�1p1� εgenq ¤ �µX

In this expression, Φ�1 denotes the inverse function of CDF . We replace now
σX and µX by their expression to get the final expression of the generator capac-
ity chance constraint

αigt Φ�1p1� εgenq
d¸
jPV

pσCjtq2 � pGigt ¤ ρigt (12.12)

In a chance-constrained version of the planning problem, constraint (12.12)
would replace constraint (1.15). It has to be noted that (12.12) remains linear in the
decision variablesαigt, pGigt and ρigt which is desirable for computational tractability.

We now want to find similar suitable expressions for (38) and (40). When de-
veloping (39) into the closed-form expression (12.12), we used the affine generator
control policy (41) to obtain a relationship between uncertainty sources, i.e. ran-
dom load fluctuations and generator output fluctuations. Similarly, we should find a
relationship between these random load fluctuations and line flow and voltage fluc-
tuations respectively.

For line flows, (3.1) gives a relationship between line flows and bus injections.
However, if we want to isolate the flow on a particular line as a function of different
bus injections, we have to reverse the equation, which is neither necessarily feasible
nor unique given that the bus injection vector and the branch flow vector do not
have the same dimension, hence this system matrix is generally non-square (which is
the case for radial networks with n nodes and n� 1 branches).
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We can overcome this difficulty by using the DC approximation as in [6],[85]
and [11]. This allows to write (43). In this expression, we have p̂ij rcardpEq � 1s the
vector of all line flows, P̂ rpn� 1q� 1s the vector of all bus power injections (except
bus 1),Bf rcardpEq�ns the branch admittance matrix andBbus rn� 1�n� 1s the
nodal admittance matrix.

p̂ij � Bf

�
B�1
busP̂

0

�
(43)

B
pi,jq
bus �

$'&'%
°
j�i

°
lPL

λijlbl i � j, i P t1, ..., n� 1u

� °
lPL

λijlbl i � j, i, j P t1, ..., n� 1u
(44)

Bf pe, iq �

$'&'%
°
lPL

λijlbl i is the sending node of branch e, i P t1, ..., nu, e P E

� °
lPL

λijlbl i is the sending node of branch e, i P t1, ..., nu, e P E
(45)

Equation (43) is used in [6],[85] and [11] asBf andBbus are constant matrices given
as an input to the OPF problem. In the present planning problem, they are no longer
constant but depend on line investment decision variables λijl as it can be seen from
definitions (44) and (45). Furthermore, (43) implies the inversion of Bbus, now a
function of λijl, which cannot be done in a standard form mathematical program.

These observations preclude the choice of chance-constrained programming for
the inclusion of uncertainty in the planning problem.
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6.4 Robust formulation of the autonomous micro-
grid planning problem

Parts of this section are based on: B. Martin, E. De Jaeger, and F. Glineur. A
robust convex optimization framework for autonomous network planning under
load uncertainty. In 2017 IEEE Manchester PowerTech, pages 1–6, 2017

6.4.1 Notations

A. Sets

PP Set of problematic load power consumption patterns regarding
engineering constraints

S Set of scenarios

V C Set of violated constraints

PS Set of patterns to be added to the scenario set at the current iter-
ation

B. Parameters

nS � cardpSq Number of considered scenarios

pC,minit , pC,maxit Lower and upper bounds for active power consumption at node
i at timestep t

pG,refit , qG,refit Reference active and reactive power production values obtained
from the joint planning problem on the average consumption
scenario t

qC,minit , qC,maxit Lower and upper bounds for reactive power consumption at
node i at timestep t

AGit Indicates which constraints the generation capacity adversarial
problem is trying to violate.

ATHijt Indicates which constraints the line thermal rating adversarial
problem is trying to violate.

ei Integer between 1 and n attributed to a node to represent its ec-
centricity in the complete graph of vertices V , from the maxi-
mum eccentricity node (value 1) to the least eccentricity node
(value n)
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LF Loss factor (>1), upper bound on the ratio of total produced
power over total consumed power

nmaxscen Maximal number of scenarios added at each iteration of the ro-
bust optimization

CENS Cost of Energy Not Supplied in case of load shedding

C. Variables

pC,varit , qC,varit Active and reactive power consumption at node i at timestep t

pshedit , qshedit Active and reactive load shedding at node i at timestep t

presit , q
res
it Active and reactive power generated by the fictitious reserve gen-

erator

RESiy Binary variable indicating the presence of a fictitious reserve gen-
erator at node i during year y

NFRt Binary variable indicating the Need For Reserve at timestep t

6.4.2 State of the art

A robust optimization (RO) approach to a problem including random variables
should deliver a solution that is feasible for every possible realization of these ran-
dom variables. Such problems are difficult to solve and are generally NP-hard . In-
deed, considering continuous random variables leads to a continuous uncertainty
space which in turn leads to an infinite number of constraints to consider in the
RO problem [17]. In [17], the authors propose a finite constraint sampling scheme
to overcome this problem. They show that the probability of constraint violations
rapidly decreases with the number of samples. They also provide an upper bound on
the number of samples needed to obtain a predefined level of confidence concerning
constraint enforcement, which allows to efficiently solve the problem to arbitrary
accuracy. In [64] and [96], the authors propose another method to reduce the set
of constraints to a finite size. They show that for a problem with a polytopic un-
certainty set Ω and convex constraints of the form gpxq ¤ 0 , the body of these
constraints will always be maximal on the vertices of Ω. To enforce such constraints
for all ω P Ω, it is thus sufficient to enforce them on every vertex of Ω. Nonetheless,
even in the simple case where Ω is an hyper-rectangular set, the number of vertices is
equal to 2n

Ω

which rapidly becomes intractable with a growing number of random
variables nΩ.
Consequently, we adopt the approach developed in [19] which has been used for
security planning under uncertainty in transmission networks [18]. This approach
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consists in computing a subset of the vertices of Ω, i.e. a set of scenarios to incorpo-
rate in the RO problem, sufficient to guarantee constraint enforcement on the whole
uncertainty set Ω. The approach is adversarial, as defined in [43], i.e. based on the
successive and iterative computation of an adversarial problem where the infeasibil-
ity ( i.e. violation) of the constraints is maximized in order to find problematic sce-
narios to add to the RO problem and a corrective problem where we try to remove
these infeasibilities thanks to remedial actions.

6.4.3 Modelling hypotheses

In this chapter, we consider that the load uncertainty set is rectangular. This means
that all load power consumption values are uncorrelated and no hypotheses are made
on their probability distribution. This is formally expressed as follows:

Ω � tω P Rn
Ω

: ωi P rωLi ;ωUi s @i P 1, ..., nΩu (46)

In the above expression, ωLi and ωUi represent the lowest and highest values respec-
tively that can be taken by the i-th random variable ωi.
This simple uncertainty space formulation is chosen as the main focus is on the ro-
bust optimization procedure rather than the uncertainty modelling. However, it is
not restrictive. As a matter of fact, it is shown in section 6.4.7 that this may easily
extended to any multivariate and correlated probability distribution.

6.4.4 General working principle

As explained in section 6.3, constraints representing the physics of power flows
should hold for every microgrid operating point in order to guarantee a physical
solution. However, engineering constraints related to the limits of the various as-
sets are dictated by safety considerations rather than physical laws. For example,
the thermal rating of a line represents the maximal admissible power that may flow
through that line without damaging it. A larger power could flow through that line
at the expense of a premature ageing or an excessive sag due to an excessive thermal
heating.
In the adversarial robust approach developed hereafter, a distinction is made between
physical and engineering constraints. While the former should always be satisfied,
we are looking for the values of the loads random power consumption such that the
latter are violated. The general working principle is illustrated in 1. In this algo-
rithm, S represents the set of scenarios on which the planning problem is solved,
PP the set of problematic patterns and k the iteration counter. Solving the problem
on a set of power consumption scenarios instead of a single operating point implies
that physical and engineering constraints are replicated for every consumption sce-
nario which makes the problem more computationally challenging.
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The working principle is the following: for a given microgrid investment solution,
we are looking for the load consumption patterns that violate engineering con-
straints. For every such pattern, if it not possible to find a suitable generation redis-
patch that allows engineering constraints to be satisfied, then the pattern is consid-
ered as problematic and added to PP . These problematic patterns are added as load
consumption scenarios and the planning problem is solved again on this augmented
set of load consumption scenarios. This procedure is repeated until no additional
problematic consumption pattern is found.

Algorithm 1: Robust planning procedure - schematic representation

1 Initialize S
2 while First iteration OR problematic patterns found at previous iteration do

3 Unfix investment variables

4 Solve the joint planning problem on S
5 Fix investment variables

6 for every engineering constraint do

7 Solve adversarial problem and find current worst consumption

pattern Pcur
8 if Constraint violation > 0

9 Fix power consumption pattern

10 Solve corrective problem

11 end if

12 if constraint violation >0 & Pcur R PP
13 PP Ð PP Y Pcur

14 end if

15 end for

16 S Ð S Y PP
17 end while

In this work, the only engineering constraints that have been considered to com-
pute problematic consumption patterns are the generation capacity and line thermal
rating constraints. Voltage limits have not been taken into account for this proce-
dure, however the approach presented in this chapter may easily be extended to in-
clude them.
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6.4.5 Planning model adaptation for robust optimization

The robust planning procedure presented in the previous section relies on solving
five different problems:

(i) The robust joint planning problem
(ii) Generation capacity adversarial problems

(iii) Generation capacity corrective problems
(iv) Line thermal rating adversarial problems
(v) Line thermal rating corrective problems

This section details the models corresponding to these different problems.

Robust joint planning problem

This problem is very similar to the deterministic joint planning model (CDF-JPM-
OA) , with the following exceptions:

(i) Operational variables and parameters are now indexed over the scenario set S
as well with the subscript s P S: pijts, qijts, lijts, wits, pGigts, q

G
igts, p

C
its and

qCits
(ii) Constraints including the aforementioned variables and parameters are thus

also indexed over S. As mentioned above, this multiplies the number of such
constraints by nS � |S| which makes the problem more computationally
intensive.

(iii) The objective of the deterministic planning problem (7.1) is slightly modified
into (47) . As a matter of fact, the energy production cost is not computed on
a single operating point anymore but is expressed as an expected fuel cost com-
puted over S. The different scenarios are considered as equiprobable for the
expected value computation, which is coherent with the uniform distribution
of random variables that we consider.

¸
iPV,gPG

�
γig1C

B
gf � ρig1C

B
gv �

¸
y¥2

1

p1� dqy�1
rpγig,y � γig,y�1qCBgf � pρig,y � ρig,y�1qCBgvs

�

�
¸

pi,jqPE

Dij

�
ωij1C

BL
f �

¸
lPL

λijl1C
BL
lv �

¸
y¥2

1

p1� dqy�1
rpωig,y � ωig,y�1qCBLlf

�pλijl,y � λijl,y�1qCBLlv s
�
� 1

nS

¸
iPV,gPG,tPT ,sPS

1

p1� dqt div H

8760

H

�
γigyC

P
gf � pgitsC

P
gv

�
(47)
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Generation adversarial problem

The generation adversarial problem consists in finding the consumption patterns
pC,varit , qC,varit that maximize the violation of the selected generation capacity con-
straints for the current investment solution. Hence, investment variables are fixed
in this problem.
Rather than dropping the generation capacity constraints and maximizing their vio-
lation, load shedding term are introduced in active and reactive power balance equa-
tions (13.2) and (13.3). The objective of (G-AP) is then formulated as the maximiza-
tion of the sum of active and reactive load shedding for the selected constraints (these
are determined by the parameterAGit). In this problem, generators active and reactive
power production values are fixed to their optimal value obtained from the previous
planning problem solved on the average consumption scenario. Otherwise, other
things being equal, the solver would find it advantageous to artificially put power
production variables to 0 so that (13.2) and (13.2) enforce larger values of shedding
terms which in turn would improve the objective value. The resulting consumption
pattern might thus not be a really problematic one.
New constraints are also added in the model. Eqs. (13.4) and (13.5) represent the
bounds on random load consumption variables while eqs. (13.6) and (13.7) limit the
load shedding at a node to the power consumption of this node to avoid artificially
large values of load shedding not related to truly problematic consumption patterns.
The remainder of the constraints are the same as those presented in the (CDF-JPM-
OA) model, i.e. losses constraints (13.9)-(13.12), voltage constraints (13.13)-(13.14),
line thermal rating constraints (13.15) and current constraints (13.16).

Model 13 Generation adversarial problem (G-AP)

Fixed: ωijy, λijly, γigy, ρigy, pGigt, q
G
igt

Variable: pshedit , qshedit , pC,varit , qC,varit , pijt, qijt, lijt, wit

Maximize: ¸
iPV,tPT

AGitppshedit � qshedit q (13.1)

Subject to:

¸
gPG

pGigt � pshedit � pC,varit �
¸

pi,jqPE

pijt @i P V, t P T (13.2)

¸
gPG

qGigt � qshedit � qC,varit �
¸

pi,jqPE

qijt @i P V, t P T (13.3)
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pC,minit ¤ pC,varit ¤ pC,maxit @i P V, t P T (13.4)

qC,minit ¤ qC,varit ¤ qC,maxit @i P V, t P T (13.5)

0 ¤ pshedit ¤ pC,varit @i P V, t P T (13.6)

0 ¤ qshedit ¤ qC,varit @i P V, t P T (13.7)B
p2
ijt � q2

ijt ¤ witlijt

FOA
@pi, jq P E , t P T (13.8)

�p1� λijlyqrlDij
S

2

Λ

v2
¤ pijt � pjit � rlDij lijt ¤ Dij max

l
prlS2

l q
1

v2
p1� λijlyq

@pi, jq P E , l P L, y P Y (13.9)

�p1� λijlyqxlDij
S

2

Λ

v2
¤ qijt � qjit � xlDij lijt ¤ Dij max

l
pxlS2

l q
1

v2
p1� λijlyq

@pi, jq P E , l P L, y P Y (13.10)

pijt � pjit ¥ 0 @pi, jq P E , t P T (13.11)
qijt � qjit ¥ 0 @pi, jq P E , t P T (13.12)

p1� λijlyqrv2 � v2 � 2DijSΛprl � xlq �D2
ijpr2

l � x2
l q
S

2

Λ

v2
s

¤ wjt � wit � 2Dijprlpijt � xlqijtq �D2
ijpr2

l � x2
l qlijt

¤ p1� λijlyqrv2 � v2 � 2DijSΛprl � xlqs

@pi, jq P E , t PT , y P Y : y � t div H � 1 (13.13)

v2 ¤ wit ¤ v2 @i P V, t P T , (13.14)

B
p2
ijt � q2

ijt ¤
�¸
lPL

λijlySl


2FOA
@pi, jq P E , t P T , y P Y : y � t div H � 1

(13.15)

lijt � ljit @pi, jq P E , t P T (13.16)
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Generation corrective problem

If the (G-AP) objective value is positive, a corrective problem is solved to see if a suit-
able generation redispatch is able to alleviate the constraints violation. Hence, the
consumption pattern is now fixed and the generator active and reactive production
variables are unfixed. The objective is now to minimize the violation of the gener-
ation capacity constraints (hence the sum of load shedding terms). The constraints
are the same as in (G-AP) to the sole exception of constraints (13.4) and (13.5) that
are not considered here because pC,varit and qC,varit are fixed.

Model 14 Generation corrective problem (G-CP)

Fixed: ωijy, λijly, γigy, ρigy, pC,varit , qC,varit

Variable: pshedit , qshedit , pGigt, q
G
igt, pijt, qijt, lijt, wit

Minimize: ¸
iPV,tPT

pshedit � qshedit (14.1)

Subject to: (13.2)-(13.3), (13.6)-(13.16)

Line thermal rating adversarial problem

The objective of this problem is to find problematic patterns regarding line thermal
rating constraints, i.e. consumption profiles that lead to violations of these con-
straints. To express this violation, we might work with the currents or the power
flows. In the former case, the objective of apparent power maximization could be
expressed equivalently by the maximization of the sum of line currents squared am-
plitudes

°
pi,jq:i j lijt. In the latter case, it could be expressed with the sum of ap-

parent powers or squared apparent powers on the different lines, i.e.
b
p2
ijt � q2

ijt

(non-linear objective function) or p2
ijt � q2

ijt (quadratic objective function). The lin-
ear current-based formulation should be preferred over the flow-based formulations
that are either quadratic or non-linear. However, we do not use this current-based
formulation either in the present case as the OA is quite inaccurate regarding cur-
rent amplitude computation. As a matter of fact, lots of adversarial problems are
to be solved during the robust optimization procedure. Hence, a relatively low OA
relaxation degree is chosen (κ � 3) in order to ease the computational burden of the
individual adversarial problems.
The objective is thus expressed as the maximization of the sum of active and reac-
tive losses on the selected lines (15.1). It has the advantage of remaining linear while
being proportional to the squared current amplitude and consequently the squared
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apparent power amplitude. A salient feature of this choice is that the solver tries to
maximize the losses on the selected lines by artificially injecting too much power pijt
on the sending end of the line (if i is the sending node, pijt ¥ 0) for a given amount
of power pjit at the receiving end (if j is the receiving node, pjit ¤ 0) , hence creating
artificially larger losses pijt�pjit and thus a better objective value. This non-physical
feature is due to the fact that the losses are proportional to the squared current am-
plitude (15.7)-(15.8), and larger losses implie larger current amplitudes as well on
the lines. Yet, the relaxed SOC constraint (15.6) only gives a lower bound on lijt
but no upper bound. The solver is thus allowed to choose artificially large current
amplitudes (i.e. that do not match the constitutive equation p2

ijt � q2
ijt � wilijt at

the receiving end) in order to get higher objective values. This differs from what
is presented in section 4.4.2 where the losses minimization objective makes it more
profitable to put lijt at its lower bound value.

In the present adversarial problem, active and reactive power consumptions are al-
lowed to vary within their lower and upper bounds (15.4) and (15.5). Eqs. (15.15) -
(15.16) limit the power production levels to their reference optimal value obtained
from the average scenario in the planning problem and eqs. (15.17)- (15.18) limit
the sum of generators power outputs with the sum of loads power consumptions,
multiplied by a loss factor representing the losses on the network. Since the load
consumption might be higher than in the average scenario, the generator produc-
tion level might be insufficient due to (15.15) - (15.16). Hence, a single fictitious
reserve generator (15.19) is introduced in the network for this adversarial problem
in order to supply additional power if need be.

Eq.(15.20) ensures the fictitious reserve generator is located on a node where a real
generator exists and (15.21) places it on the node with the least possible eccentricity.
In the same way as for real generators, the fictitious reserve generator output is lim-
ited by eqs. (15.22)-(15.27) in order to avoid an artificially larger power production
that would create fictitious losses on lines. Firstly, eqs. (15.22)-(15.23) ensures that
the fictitious reserve power is produced at the node where the reserve generator is
located and does not produce more than the total maximal consumption of the mi-
crogrid.

Then, constraints (15.24)-(15.25) model both situations where reserve active power
generation is needed or not. If the total difference between consumption and pro-
duction, affected by a loss factor, is negative, then NFR should be equal to 0 for
(15.25) to be satisfied, M being a large enough constant. This forces the reserve
active power generation to be zero in constraint (15.24). If the random consump-
tions exceed the reference production level, then NFR must be equal to 1 in order
to allow non-zero reserve active power generation in (15.24). In this situation, the
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reserve production should not exceed the difference between the total consumption
and production weighed by the loss factor. Eqs. (15.26)- (15.27) represent the same
constraints for reserve reactive power generation.
The remaining constraints of (TH-AP) correspond to the regular constraints of the
planning problem (CDF-JPM-OA) .

Model 15 Line thermal rating adversarial problem (TH-AP)
Fixed: ωijy, λijly, γigy, ρigy

Variable: pGigt, q
G
igt, p

C,var
it , qC,varit , pijt, qijt, lijt, wit, presit , qresit , RESi, NFR

Maximize: ¸
iPV,tPT

ATHijt ppijt � pjit � qijt � qjitq (15.1)

Subject to:¸
gPG

pGigt � presit � pC,varit �
¸

pi,jqPE

pijt @i P V, t P T (15.2)

¸
gPG

qGigt � qresit � qC,varit �
¸

pi,jqPE

qijt @i P V, t P T (15.3)

pC,minit ¤ pC,varit ¤ pC,maxit @i P V, t P T (15.4)

qC,minit ¤ qC,varit ¤ qC,maxit @i P V, t P T (15.5)B
p2
ijt � q2

ijt ¤ witlijt

FOA
@pi, jq P E , t P T (15.6)

�p1� λijlyqrlDij
S

2

Λ

v2
¤ pijt � pjit � rlDij lijt ¤ Dij max

l
prlS2

l q
1

v2
p1� λijlyq

@pi, jq P E , l P L, y P Y (15.7)

�p1� λijlyqxlDij
S

2

Λ

v2
¤ qijt � qjit � xlDij lijt ¤ Dij max

l
pxlS2

l q
1

v2
p1� λijlyq

@pi, jq P E , l P L, y P Y (15.8)

pijt � pjit ¥ 0 @pi, jq P E , t P T (15.9)
qijt � qjit ¥ 0 @pi, jq P E , t P T (15.10)

p1� λijlyqrv2 � v2 � 2DijSΛprl � xlq �D2
ijpr2

l � x2
l q
S

2

Λ

v2
s

¤ wjt � wit � 2Dijprlpijt � xlqijtq �D2
ijpr2

l � x2
l qlijt

¤ p1� λijlyqrv2 � v2 � 2DijSΛprl � xlqs
@pi, jq P E , t PT , y P Y : y � t div H � 1 (15.11)
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v2 ¤ wit ¤ v2 @i P V, t P T , (15.12)

pijt � 0, qijt � 0 @pi, jq P E , t P T , y P Y : ωijy � 0, y � t div H � 1 (15.13)

lijt � ljit @pi, jq P E , t P T (15.14)

0 ¤ pGigt ¤ pG,refigt @i P V, g P G, t P T , y P Y : y � t div H � 1 (15.15)

|qGigt| ¤ |qG,refigt | @i P V, g P G, t P T (15.16)¸
iPV,gPG

pGigt ¤ LF
¸
iPV

pC,varit @t P T (15.17)¸
iPV,gPG

qGigt ¤ LF
¸
iPV

qC,varit @t P T (15.18)

¸
iPV

RESiy � 1 @y P Y (15.19)

RESiy ¤
¸
gPG

γigy @i P V, y P Y (15.20)°
gPG γigyei

|G| ¤
¸
jPV

RESjyej @i P V, y P Y (15.21)

0 ¤ presit ¤ RESiy
¸
jPV

pC,maxjt i P V, t P T , y P Y : y � t div H � 1 (15.22)

0 ¤ qresit ¤ RESiy
¸
jPV

qC,maxjt i P V, t P T , y P Y : y � t div H � 1 (15.23)

¸
iPV

presit ¤M �NFR @t P T (15.24)¸
iPV

presit ¤
¸

iPV,gPG
LF ppC,varit � pG,refigt q �Mp1�NFRq @t P T (15.25)

¸
iPV

qresit ¤M �NFR @t P T (15.26)¸
iPV

qresit ¤
¸

iPV,gPG
LF pqC,varit � qG,refigt q �Mp1�NFRq @t P T (15.27)

Line thermal rating corrective problem

As for generation capacity constraints, a corrective problem is solved in the case
where the line thermal rating constraints are violated. In this corrective problem,
the random load consumptions are fixed to their values from the adversarial prob-
lem and the generator outputs may be redispatched within their allowed operating
range (16.2)-(16.3) in order to try to relieve the line thermal rating violations. Line
thermal rating constraints are reintroduced in the problem, with an additional term
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δijt that allows the violation of these constraints. This term is limited to non-zero
values only for existing lines in the current planning solution to avoid power flows
on non-existing lines (16.5), M being a large enough constant. The objective is to
minimize the sum of these δ terms. Hence, for this fixed consumption pattern, if
there exists a solution satisfying engineering constraints, the δ terms do not need
to be non-zero and the solver will put them at 0 in order to minimize the objective
value. If no generation redispatch exists such that

°
pi,jqPE,tPT δijt � 0, then the line

thermal rating violation in the current consumption pattern cannot be relieved.
A penalty term is introduced in the objective to discourage the use of the fictitious
reserve generator (Cpenalty being a large penalty cost parameter). As a matter of
fact, the solver might use reserve power generation to relieve line thermal rating vio-
lation but this is not a desirable output of the corrective problem as we want to check
whether the current planning solution (lines and real generators) are able to handle
the current consumption pattern in a way that satisfies all engineering constraints.
If the objective of the problem is larger than zero, it means that the current planning
solution is not able to deal with the current consumption pattern, hence this pattern
is considered as problematic.

Model 16 Line thermal rating corrective problem (TH-CP)

Fixed: ωijy, λijly, γigy, ρigy, pC,varit , qC,varit

Variable: pGigt, q
G
igt, pijt, qijt, lijt, wit, p

res
it , qresit , RESi, NFR

Minimize: ¸
pi,jqPE,tPT

δijt �
¸

iPV,tPT
Cpenaltyppresit � qresit q (16.1)

Subject to: (15.2)-(15.3), (15.6)-(15.12), (15.14), (15.19)-(15.27)

0 ¤ pGigt ¤ ρigy @i P V, g P G, t P T , y P Y : y � t div H � 1 (16.2)

|qGigt| ¤ pGigt tanpcos�1pPF gqq @i P V, g P G, t P T (16.3)

B
p2
ijt � q2

ijt ¤ p
¸
lPL

λijlySl � δijtq2
FOA

@pi, jq P E , t P T , y P Y : y � t div H � 1

(16.4)

0 ¤ δijt ¤ ωijyM @pi, jq P E , t P T , y P Y : y � t div H � 1 (16.5)
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Detailed algorithm for the robust microgrid planning

The detailed flowchart for the robust planning algorithm is presented on Fig. 6.1.
For brevity’s sake, we only present the procedure for the generation capacity con-
straints. To account for both types of constraints in the robust optimization, the
steps of the algorithms enclosed in the dashed rectangle have to be transposed for
thermal rating constraints and must be executed just after them.
The procedure begins with the initialization of the scenario set with the sole average
consumption pattern. Then, the planning problem is solved a first time and the Ro-
bust binary variable is set to 1. Then the adversarial problem is successively solved
for every single generation capacity constraint by setting all entries of theAGit matrix
to 0 except the one corresponding to the considered constraints, which can result in
three different outcomes in function of the set of violated constraints VC in the opti-
mal solution of the adversarial problem. First, if there is no violated constraint, then,
the algorithm directly goes to the next constraint. Then, if the current considered
constraint is the only one to be violated, the algorithm fixes the load consumption
pattern to its current optimal value and solves the corrective problem. If several con-
straints are violated by the adversarial problem, all the entries of AGit corresponding
to these constraints are set to 1 and the adversarial problem is solved again before
solving the corrective problem.
If the objective of this corrective problem is 0, then the current microgrid solution
is able to relieve the constraint violation and the current consumption pattern is not
considered as problematic. Otherwise, the Robust variable is set to 0 as there exists
at least one consumption pattern such that the current microgrid solution does not
satisfy all engineering constraints. Then, we add this pattern to PP if it does not
belong to it yet. When all generation capacity constraints have been considered, if
no problematic consumption pattern has been found at the current iteration (hence,
Robust = 1) , the algorithm terminates and the current microgrid solution is con-
sidered as robust for the load consumption uncertainty range. Otherwise ( Robust
= 0), the problematic consumption patterns that were not yet added to the scenario
set are sorted by decreasing order of constraint violation amplitude and the nmaxscen

first patterns are added to the scenario set, which terminates the iteration. The next
iteration begins by solving the planning problem again on the augmented scenario
set.
The reason for which only a subset of the most problematic patterns are added at
each iteration is that we want to keep the size of the planning problem as small as
possible. By adding only the worst patterns, we expect to hedge against the con-
straints violations of less problematic patterns as well. Hence, there is a trade-off
between the number of scenarios added per iteration and the number of planning
problems that need to be solved. If the former is too small, the number of scenarios
accounted for is low and it is likely that problematic patterns will be found at the
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next iteration, which will lead to another iteration, hence a new planning problem
to solve. However, if too many scenarios are added at once, the size of the planning
problem to be solved at the next iteration might become too large and the problem
might be computationally intractable.
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S � tppCit , qCit q@i P V, t P T u
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Fig. 6.1: Flowchart of the robust planning algorithm for the case of generation in-
feasibility
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6.4.6 Results

Parameters

The robust approach presented above is applied to the first of the four microgrids
presented in chapter 4 with the same parameters (see tables 4.2, 4.3 and 4.4). Specific
robust optimization parameter values chosen for this test case are detailed in table
6.2

pC,minit , pC,maxit [pu] 0.5 pCit , 2 pCit
qC,minit , qC,maxit [pu] 0.5 qCit , 2 qCit
nmaxscen [/] 4
LF [/] 1.1
CENS [MU/kWh] 1.5

Table 6.2: Robust optimization parameters values

Comparison of the deterministic and robust solutions

The robust solution is compared to the deterministic solution presented in chapter
4 on Fig. 6.2. As before, generators locations are marked with red dots and thin and
thick blue lines represent Mole and Gopher line sections respectively.
The first observation is that there are three generators in the robust investment so-
lution while there is only one in the deterministic solution. Furthermore, there are
fewer Gopher line sections in the robust solution than in the deterministic one. This
can be explained by the presence of a larger number of decentralized generators that
allow to generate power nearer from consumption points, hence achieving a better
balance of power flows on the different line sections of the microgrid. Voltage drops
and power flows are thus reduced on critical sections, allowing for smaller conduc-
tors.

Comparison of system costs

The deterministic solution is not able to cope with all consumption scenarios
determined in the robust approach. Yet, we want to compare total system costs (in-
vestment and operational expenses) of both deterministic and robust solutions on
an equal basis. Hence, we have to simulate the operation of the microgrid obtained
from the deterministic solution on the set of scenarios obtained in the robust ap-
proach. We introduce load shedding in power flow equations similarly to eqs. (13.2)
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and (13.3) to determine the amount of load shedding needed to find a feasible oper-
ating points in every scenario. The cost of Energy Not Served (ENS) due to load
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(a) Investment solution for the deterministic approach on Microgrid 1
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(b) Investment solution for the robust approach on Microgrid 1

Fig. 6.2: Comparison of investment solutions from deterministic and robust ap-
proaches
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shedding is fixed at r1.5MU{kWhs [42].
An OPF is solved for every scenario by fixing investment variables to their values
from the deterministic solutions. The objective function to minimize in this OPF
is the sum of generation costs and load shedding costs (48). Note that active and
reactive load shedding are penalized in the same way.

1

nS

¸
iPV,gPG,tPT ,sPS

1

p1� dqt div H

8760

H

�
γigyC

P
gf � pgitsC

P
gv � CENSppshedits � qshedits q�

(48)

Finally, contrary to what is presented in chapter 4, all 24 hourly timesteps of the
day are considered.

Costs are broken down into the different categories for the robust and the deter-
ministic solutions respectively on Fig. 6.3. A logarithmic scale is used as the costs
cover several different orders of magnitude. First, it can be seen that the line in-
vestment costs are nearly the same for both solutions with a difference of about one
percent. As a matter of fact, both network have the same layout and only differ in
the size of some line sections. Then, the generation investment cost is three times
larger in the robust solution than in the deterministic one as there are three genera-
tors in the former and only one in the latter. This implies that the O& M costs are
50 % larger for the robust solution as there are more assets to maintain.
The main difference between both solutions costs lies in the fuel costs. Indeed, these
are 2.5 times larger in the robust solution than in the deterministic one. This is due
to the fact that generator start-up and stop is not modelled in this work as it would
require additional binary variables that would make the problem even more com-
putationally challenging .In the current test case, this simplified generator operation
modelling is not problematic for the deterministic solution that includes a single gen-
erator as it has to be continuously in operation. However, when several generators
are present, as in the robust solution, it is not necessarily needed to operate all units
simultaneously and some of them can be turned off to avoid no-load costs. In the
present case, units are considered to be permanently online which means that this
no load-cost has to be paid for each generator at every timestep irrespective of its
power production. This is illustrated on Fig. 6.4. On this graph, the red dotted line
represents the generator hourly cost in function of the output power (considered
constant over an hour), with a no load cost of about 0.5 [MU/h]. The superim-
posed histogram represents the distribution of generator setpoints over time. The
first three blue bars represent the three generators of the robust solution while the
orange bar represents the single generator of the deterministic solution. We can ob-
serve that the three generators of the robust solution are more often operated at low
setpoints than the generator from the deterministic solution. This means that the
cost of a generated kilowatt hour is proportionally higher than in the determinis-
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tic solution, which explains the higher fuel costs of the robust solution on Fig. 6.3.
With a proper modelling of generator start-up and stop, this fuel cost difference be-
tween robust and deterministic solutions should vanish.
The last cost category concerns the Energy Not Supplied (ENS). By definition of the
robust solution, it should not allow any load shedding, hence the ENS cost is zero
for this solution. The deterministic solution requires to shed load during peak power
conditions for the critical consumption scenarios as the single generator is not able
to cover the whole consumption in these conditions. However, the load shedding is
very low in this test case and the cost of ENS is low as well, around 103rMU s.
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Fig. 6.3: Comparison of the different cost categories for the deterministic and robust
solutions on a logarithmic scale

Computational analysis

The computational features of the robust approach applied to the current test case
are summarized in Table 6.3. The runtime is about 1.5 � 104[s], which is three
times more than in the deterministic case. The problem is solved within 2 iterations,
which means that the planning problem has to be solved twice, with a larger set of
constraints on the second iteration as new scenarios are added to the problem. On
one side, a total of 1056 line thermal rating adversarial problems are solved, none of
them giving rise to a problematic consumption pattern. On the other side, genera-
tion capacity constraints adversarial problems highlight 191 problematic consump-
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Fig. 6.4: Red dotted line : hourly generation cost (right y-axis) - Blue bars: histogram
of the three generators setpoints for the robust solution (left y-axis) - Orange bars:
histogram of the generator setpoints for the deterministic solution (left y-axis)

tion patterns by solving 2302 problems (including adversarial and corrective prob-
lems). It is observed in the current test case that adding only the 4 most problematic
consumption patterns as scenarios of the planning problem is enough to ensure a
feasible microgrid operating point for the considered load consumption uncertainty
range. This is a really interesting feature as including all 191 patterns would make
the problem more computationally challenging if not intractable.

Runtime [s] 1.5� 104

Iterations 2

Thermal rating 1056
adv. problems

Generation capacity 2302
adv. and corr. problems

Problematic patterns 191

Added scenarios 4

Table 6.3: Computational features of the robust test case
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6.4.7 Extension to chance constrained programming and general
probability distributions

As mentioned in the beginning of this section, the proposed method can also be used
with probabilistic modelling, i.e. when we consider that the joint distribution func-
tion of random variables is known (variables may be correlated in general). Indeed,
let us consider the vector of random variables ω P Ω and the joint density function
ppωq. If we define the two vectors of parameters ωL and ωU , the probability that
ωL ¤ ω ¤ ωU is then expressed as the following integral:

PpωL ¤ ω ¤ ωU q �
» ωU
ωL

ppωqdω (49)

As mentioned in [64], this allows to formulate chance-constrained optimization
as robust optimization. Indeed, the chance-constrained paradigm consists of finding
the extremum of an objective function fpxq while allowing constraints hpxq ¤ 0 to
be violated with a small probability ε:

sup
x
fpxq

s.t. P
�
hpx, ωq ¤ 0

� ¥ 1� ε @ω P Ω (50)

This can be reformulated in a robust way on a subspace of Ω such that the prob-
ability that random variables belong to this subspace is equal to 1 � ε . Note that
the rectangular uncertainty interval defined by constraint (51) can be computed of-
fline.

sup
x
fpxq

s.t. hpx, ωq ¤ 0

ωL ¤ ω ¤ ωU» ωU
ωL

ppωqdω � 1� ε (51)

6.5 Discussion and perspectives

In this chapter, a robust optimization procedure has been developed for the au-
tonomous microgrid planning problem. We showed that the increase in compu-
tational complexity was controlled. As a matter of fact, the runtime of the robust
approach is only three times larger than in the deterministic case, considering that
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two planning problems and thousands of adversarial and corrective problems have to
be solved during this period. This is made possible by the scenario selection scheme.
Indeed, it allows to only include a small subset of the problematic consumption pat-
terns in the planning problem. The inclusion of these patterns implicitly ensures
that a feasible operating point exists for other problematic patterns as well and avoids
adding too many constraints to the planning problem.
A first axis of improvement would be to only add constraints modelling problem-
atic timesteps instead of problematic patterns to reduce the computational burden.
Indeed, at the moment, we identify a whole consumption pattern (i.e. the values of
random load consumption variables for every considered timestep) that maximizes
the constraints violation for a given microgrid. Yet, constraint violations only occur
on a small susbset of these timesteps. We could thus reduce the number of constraints
added to the planning problem by considering only this subset of the timesteps.
Another desirable feature for a robust microgrid planning would be to consider re-
liability issues. Indeed, we did not consider any microgrid component failure in the
presented approach. This would require to include additional scenarios represent-
ing the various components conditions (available or subject to an outage) and their
frequency of occurrence, depending on the reliability policy, e.g. planning under
N-1 criterion. It has to be further investigated whether or not the additional sce-
narios could increase the computational burden to a point where it would become
intractable.
Renewable energy sources are not considered in this chapter as we focused on load
uncertainty. However, the presented robust approach is directly transposable to gen-
eration related uncertainty if the uncertainty range of RES generation is known. Bi-
nary generator investment variables still represent the fact that a generator is located
at a certain node or not and the output of a RES generator is not a decision variable
anymore but a random variable. The adversarial problem then consists in looking
within the RES uncertainty range for the production patterns that are the most prob-
lematic regarding engineering constraints.
Finally, we showed that the robust procedure could be seen as a reformulation
of a chance constrained optimization and allowed to account for correlated and
multivariate probability distributions. Using the described procedure in a chance-
constrained way, with a given ε tolerance, consists in solving a robust planning prob-
lem on a subset of the total uncertainty set such that the probability that random
variables take values within this subset is larger than or equal to p1� εq.





7Conclusion

This thesis addressed the problem of autonomous microgrid investment planning
in a rural electrification context. In a first phase, we presented a dynamic program-
ming approach to the network planning. However, this approach proved to be al-
ready computationally challenging for the sole network planning problem. We thus
chose to tackle the problem through convex optimization. First, we formulated it as
a non-convex and mixed-integer optimization problem. Due to the inherent compu-
tational complexity of this problem class, we developed a hierarchy of deterministic
convex relaxations and we studied their respective performances in terms of run-
time, power flow modelling accuracy and solution adequacy. Then, we investigated
in more depth the power flow modelling accuracy of the tightest relaxation among
the proposed hierarchy, i.e. the Convex DistFlow relaxation. We finally extended
the deterministic models by proposing a robust approach in order to integrate load-
related uncertainty in the planning process.
In this concluding chapter, we highlight the contributions of the present work, we
identify some of its shortcomings and we propose areas of improvement for further
research as well as potential applications.
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7.1 Contributions

We begin this section by summarizing the main contributions of the thesis.

Summary of contributions

1. To our knowledge, this work is the first to tackle the joint planning of gener-
ation and distribution in autonomous microgrids from a mathematical opti-
mization perspective.

2. We presented a hierarchy of convex formulations for this problem that leverage
the recent advances in power flows modelling

3. We built this hierarchy in a modular way, from the simplest formulations to
the richest ones. We clearly identified the successive steps in formulating a set
of planning problems including growing accuracy relaxations of power flow
equations.

4. We investigated in depth how these models performed in terms of runtime,
modelling accuracy and feasibility of the solutions. We could highlight the
direct relation between the latter two, and the cost of modelling accuracy in
terms of runtime.

5. We proposed a robust planning approach allowing to account for the uncer-
tainty related to load and intermittent renewable power production. The
increase in computational burden was shown to be controlled.

We now provide elements of a response to the open questions exposed in the
introduction to this document by making use of the results we obtained.

How does the accuracy of power flow modelling, and more precisely the use
of convex relaxations of power flow equations , impact the quality of planning
solutions?

We observed that the power flow modelling accuracy was of paramount importance
regarding the adequacy of solutions. As a matter of fact, the CDF-OA model was
the only one to deliver solutions that were feasible for all loading conditions. On
the other hand, solutions of other, less accurate models, were found to be infeasible
for up to 20% of considered timesteps in the test cases. We also observed that the
most binding constraints were related to the voltage level, which was expected in a
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rural context with long lines and sparse population. Yet, weaker formulations either
omit voltages (NF-IA/OA) or compute them with significant inaccuracy as 75% of
node voltages presented relative errors larger than 10% in the different test cases for
models TH-IA/OA and TH-L-IA/OA. In contrast, we showed that the CDF-OA
relaxation could be made as accurate as wanted, at the expense of a larger computa-
tional burden. For these two reasons, it can be strongly argued that the adequacy
of a planning solution largely depends on the underlying optimization model accu-
racy in this rural electrification context. Hence, when considering a mathematical
optimization framework, CDF relaxation-based or comparable accuracy approaches
should be retained for microgrid investment planning problems.

Is it possible to devise scalable and accurate joint planning methods that lever-
age the strength of mathematical optimization?

In the present work, we identified a clear trade-off between scalable and less accurate
methods (NF-IA/OA, TH-IA/OA, TH-L-IA/OA) and an accurate but less scalable
model (CDF-OA). The latter has been found difficult to solve for real-world size
problems. As this question needs further investigation, we formulate improvement
suggestions related to this matter in the following section. They offer real perspec-
tives for the improvement of the problem’s computational tractability.

How to account for the uncertainty inherent to the planning of autonomous
microgrids in a scalable way?

We could show that a robust optimization approach integrating load-related uncer-
tainty represented a reasonable increase in computational burden with respect to the
deterministic version. We also showed how the proposed approach could easily be
extended to account for the RES generation intermittency or to formulate the satis-
faction of engineering constraints in a chance-constrained way, which is in line with
the usual power system operation practice. Nonetheless, we neither investigated
how reliability issues could be integrated in this approach nor determined how it
would affect the computational tractability. Yet, reliability issues are important in
power systems, particularly in microgrids where they determine the technical and fi-
nancial viability of the system. This last point thus needs to be the object of further
investigations.
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7.2 Research perspectives

Scalability

As mentioned in the previous section, accurate power flow representations are nec-
essary to deliver adequate planning solutions. Yet, we showed that the Convex Dis-
tFlow relaxation - the only considered formulation to exhibit sufficient accuracy -
could not scale for moderate size problems. Hence, the following paragraph sets out
suggestions for future research, with a view to extending the scope of application of
the proposed planning model to larger size cases.
In this work, we put the emphasis on the trade-off between the accuracy and the
feasibility of planning solutions. Nonetheless, these planning solutions may also be
classified along a third axis: optimality. Indeed, we stated in the introduction to
this work that distribution and generation planning should be performed simultane-
ously as the opposite would be suboptimal. However, the combinatorial nature of
the problem - due to integer investment variables - implies that the size of the discrete
solution space grows exponentially with the size of the problem. This combinato-
rial explosion inherent to discrete problems is known as the curse of dimensionality.
This is true regardless of the power flow representation. Yet, the CDF formulation
has three times more constraints involving integer variables than other formulations,
which greatly complicates the problem. To counter the curse of dimensionality, we
could give up a bit of optimality for tractability by considering two separate and con-
secutive subproblems: feeder routing and sizing on one side, and generation siting
and sizing on the other side. Considering a set of n nodes, the number of spanning
trees is nn�2 and the number of generator siting options is 2n (each node may or may
not host a generator). Considering both decision types simultaneously amounts to
a total number of possible configurations of nn�2� 2n while setting those two deci-
sion types apart amounts to two consecutive problems with a respective number of
nn�2 and 2n possible combinations. For a 20 node network, this represents around
2.7 � 1029 and p2.6 � 1023 � 1 � 106q combinations respectively. The separate
consideration of distribution and generation planning problems thus offers really
interesting perspectives regarding the reduction of the solution space size. The joint
planning problem could then be tackled in an iterative way with the following steps:

1. Perform network planning considering a single generator located at its centre
that is able to cover the whole load

2. Solve generation planning problem on the network found at step 1)
3. Solve a new network planning problem considering the generator siting and

sizing determined at step 2)
4. Iterate through steps 2) and 3) until convergence of the global distribution and

generation planning solution
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This type of method should be compared to the simultaneous planning method
to quantify the loss in optimality (i.e. solution cost increase) and the impact on the
runtime. Whether the latter justifies the former remains an open question.
The results we obtained in the present work with the simultaneous approach show
that the optimal network layout either corresponds to the Minimum Spanning Tree
(MST) or is close to it. Yet, without considering line sizing aspects, the MST layout
is likely to be the optimal solution to the sole network planning problem as it min-
imizes the total length of lines. Hence, it does not seem unreasonable to think that
solving network and generation planning separately might not drastically change the
global planning solution compared to the simultaneous planning approach.

In a similar vein, decomposition approaches mentioned in chapter 4 also offer
interesting improvement perspectives in terms of computational tractability. In the
present work, we already implemented such an approach by using the Benders de-
composition, which allowed us to find solutions to the CDF-OA model for the con-
sidered test cases. As a matter of fact, the classical branch-and-bound algorithm did
not converge when using the CDF-OA model, even for these small test-cases. We did
not fine-tune the Benders decomposition algorithm, letting all integer variables in the
master problem and continuous ones in the subproblems. There may be potential
for improvement regarding the parametrisation of this method. Other decomposi-
tion approaches based on duality exist, such as lagrangian decomposition methods.
It remains to be seen whether such methods can offer significant improvements in
computational tractability in the present context. However it has been shown that
these methods notably outperformed conventional B&B algorithms of commercial
solvers in the context of unit commitment [40]. They could thus be successfully
applied to the joint planning problem to make it more scalable.

Reliability

Reliability aspects were not considered in this work. However, a planning tool
should incorporate them in order to deliver a solution adequate for forecast condi-
tions as well as contingency conditions. Incorporating distribution and generation
assets failures in the planning is computationally challenging as it adds complexity to
an already difficult problem. For example, planning according to theN�1 criterion
requires to build a system able to cope with the failure of every single system com-
ponent (line, generator). The Security-constrained Optimal Power Flow (SCOPF)
integrates this criterion by replicating the problem constraints for every system com-
ponent failure. In [19], the adversarial procedure - on which the robust planning
method proposed in chapter 6 is based - is reproduced for every contingency., In
these two examples, theN � 1 criterion represents a huge increase in computational
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complexity. Furthermore, such approaches deliver solutions with high redundancy
which makes them more expensive. In a rural electrification context where capital
scarcity is likely to occur, it might not be possible to implement such solutions. In
this case, less conservative reliability criteria may be more adapted to find a trade-off
between cost and security of supply.

7.3 Applications

Distribution systems expansion planning

The tools developed in this work can be directly applied to the expansion planning
of distribution systems in central grids. As a matter of fact, a distribution network
may be modelled in the exact same way as a microgrid. The transmission or sub-
transmission network is then represented by its Thé venin equivalent at the connec-
tion point between both networks.
Using the tools developed in this work for distribution system planning is particu-
larly relevant in the current context. As a matter of fact, a strong will to increase
the renewables share in the energy mix and incentivising policies from governments
have led to a dramatic increase in the amount of Decentralized Generation (DG)
units connected at the distribution level. These distribution grids historically trans-
ferred energy from the transmission grid to the final user in a unidirectional way,
which was achieved through a top-down, tree-like architecture. Yet, when they in-
ject their power on the grid, DG units can significantly change, if not reverse, the
PF patterns. Distribution grid planning must thus now account for decentralized
generation as it is the case for microgrids.
Hence, a DSO could use a joint planning approach as developed in this work to
simultaneously determine needed line reinforcements or expansion and decide on
optimal DG locations within the existing network.

Large-scale rural electrification

The Michiquillay district (Peru) presented in chapter 4 has been the object of a large-
scale study that aimed at determining the best way to electrify 6700 households. The
REM/RNM tool used in this study is able to choose between the three following
modes of electrification: grid expansion, microgrid or standalone systems. In a sec-
ond phase, it can be used to design the individual microgrids or the grid extensions.
The planning method developed in this work is neither intended nor able to identify
the optimal modes of electrification on such a large scale. However, it has shown to
be able to deliver adequate solutions for the planning of moderate-size microgrids.
Hence, it should rather be seen as a detailed design tool.
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Simplified approaches such as REM/RNM or the NF-IA/OA planning models pre-
sented in chapter 4 thus remain necessary to make decisions on a larger scale. They
should be used in complementarity with more detailed tools, such as the planning
method developed in this work, to address the problem of rural electrification in all
its aspects.
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