Menu utilisateur

Accès à distance ? S'identifier sur le proxy UCLouvain

A theory of Pleistocene glacial rhythmicity

  • Open access
  • PDF
  • 4.12 M
  1. Abe-Ouchi Ayako, Saito Fuyuki, Kawamura Kenji, Raymo Maureen E., Okuno Jun’ichi, Takahashi Kunio, Blatter Heinz, Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, 10.1038/nature12374
  2. Ashkenazy Yosef, Tziperman Eli, Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing?, 10.1016/j.quascirev.2004.04.008
  3. Ashwin Peter, Ditlevsen Peter, The middle Pleistocene transition as a generic bifurcation on a slow manifold, 10.1007/s00382-015-2501-9
  4. Berger A., Loutre M.F., Insolation values for the climate of the last 10 million years, 10.1016/0277-3791(91)90033-q
  5. Berger, W. H. and Wefer, G.: On the Dynamics of the Ice Ages: Stage-11 Paradox, Mid-Brunhes Climate Shift, and 100-Ky Cycle, in: Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, Geophysical Monograph-American Geophysical Union, Washington, DC, 41–59, 2003.
  6. Chalikov D.V., Verbitsky M.Ya., Modeling the Pleistocene Ice Ages, Advances in Geophysics Volume 32 (1990) ISBN:9780120188321 p.75-131, 10.1016/s0065-2687(08)60427-6
  7. Clark Peter U., Pollard David, Origin of the Middle Pleistocene Transition by ice sheet erosion of regolith, 10.1029/97pa02660
  8. Clark Peter U., Archer David, Pollard David, Blum Joel D., Rial Jose A., Brovkin Victor, Mix Alan C., Pisias Nicklas G., Roy Martin, The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2, 10.1016/j.quascirev.2006.07.008
  9. Crucifix M., Why could ice ages be unpredictable?, 10.5194/cp-9-2253-2013
  10. Daruka István, Ditlevsen Peter D., A conceptual model for glacial cycles and the middle Pleistocene transition, 10.1007/s00382-015-2564-7
  11. DeConto Robert M., Pollard David, Contribution of Antarctica to past and future sea-level rise, 10.1038/nature17145
  12. Ellis Ralph, Palmer Michael, Modulation of ice ages via precession and dust-albedo feedbacks, 10.1016/j.gsf.2016.04.004
  13. Fretwell P., Pritchard H. D., Vaughan D. G., Bamber J. L., Barrand N. E., Bell R., Bianchi C., Bingham R. G., Blankenship D. D., Casassa G., Catania G., Callens D., Conway H., Cook A. J., Corr H. F. J., Damaske D., Damm V., Ferraccioli F., Forsberg R., Fujita S., Gim Y., Gogineni P., Griggs J. A., Hindmarsh R. C. A., Holmlund P., Holt J. W., Jacobel R. W., Jenkins A., Jokat W., Jordan T., King E. C., Kohler J., Krabill W., Riger-Kusk M., Langley K. A., Leitchenkov G., Leuschen C., Luyendyk B. P., Matsuoka K., Mouginot J., Nitsche F. O., Nogi Y., Nost O. A., Popov S. V., Rignot E., Rippin D. M., Rivera A., Roberts J., Ross N., Siegert M. J., Smith A. M., Steinhage D., Studinger M., Sun B., Tinto B. K., Welch B. C., Wilson D., Young D. A., Xiangbin C., Zirizzotti A., Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, 10.5194/tc-7-375-2013
  14. Ganopolski Andrey, Roche Didier M., On the nature of lead–lag relationships during glacial–interglacial climate transitions, 10.1016/j.quascirev.2009.09.019
  15. Ganopolski A., Calov R., Claussen M., Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, 10.5194/cp-6-229-2010
  16. Grinsted A., Moore J. C., Jevrejeva S., Application of the cross wavelet transform and wavelet coherence to geophysical time series, 10.5194/npg-11-561-2004
  17. Herbert T. D., Peterson L. C., Lawrence K. T., Liu Z., Tropical Ocean Temperatures Over the Past 3.5 Million Years, 10.1126/science.1185435
  18. Honisch B., Hemming N. G., Archer D., Siddall M., McManus J. F., Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition, 10.1126/science.1171477
  19. Huybers P., Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing, 10.1126/science.1125249
  20. Huybers P., Pleistocene glacial variability as a chaotic response to obliquity forcing, 10.5194/cp-5-481-2009
  21. Imbrie J., Imbrie J. Z., Modeling the Climatic Response to Orbital Variations, 10.1126/science.207.4434.943
  22. Imbrie John Z., Imbrie-Moore Annabel, Lisiecki Lorraine E., A phase-space model for Pleistocene ice volume, 10.1016/j.epsl.2011.04.018
  23. Le Brocq A. M., Payne A. J., Vieli A., An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1), 10.5194/essd-2-247-2010
  24. Levitus S., Antonov J. I., Boyer T. P., Baranova O. K., Garcia H. E., Locarnini R. A., Mishonov A. V., Reagan J. R., Seidov D., Yarosh E. S., Zweng M. M., World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010 : WORLD OCEAN HEAT CONTENT, 10.1029/2012gl051106
  25. Lisiecki Lorraine E., Raymo Maureen E., A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records : PLIOCENE-PLEISTOCENE BENTHIC STACK, 10.1029/2004pa001071
  26. MacAyeal D. R., Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events, 10.1029/93pa02200
  27. Marshall Shawn J., Clark Peter U., Basal temperature evolution of North American ice sheets and implications for the 100-kyr cycle : GLACIAL TERMINATIONS, 10.1029/2002gl015192
  28. Mitsui Takahito, Aihara Kazuyuki, Dynamics between order and chaos in conceptual models of glacial cycles, 10.1007/s00382-013-1793-x
  29. Omta Anne Willem, Kooi Bob W., van Voorn George A. K., Rickaby Rosalind E. M., Follows Michael J., Inherent characteristics of sawtooth cycles can explain different glacial periodicities, 10.1007/s00382-015-2598-x
  30. Paillard Didier, The timing of Pleistocene glaciations from a simple multiple-state climate model, 10.1038/34891
  31. Paillard Didier, Quaternary glaciations: from observations to theories, 10.1016/j.quascirev.2014.10.002
  32. Paillard Didier, Parrenin Frédéric, The Antarctic ice sheet and the triggering of deglaciations, 10.1016/j.epsl.2004.08.023
  33. Past Interglacial Working Group of PAGES: Interglacials of the last 800,000 years, Rev. Geophys., 54, 162–219, 2016.
  34. Paterson, W. S. B.: The physics of glaciers, Pergamon Press, Oxford, 1981.
  35. Pattyn F., Schoof C., Perichon L., Hindmarsh R. C. A., Bueler E., de Fleurian B., Durand G., Gagliardini O., Gladstone R., Goldberg D., Gudmundsson G. H., Huybrechts P., Lee V., Nick F. M., Payne A. J., Pollard D., Rybak O., Saito F., Vieli A., Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, 10.5194/tc-6-573-2012
  36. Pattyn Frank, Perichon Laura, Durand Gaël, Favier Lionel, Gagliardini Olivier, Hindmarsh Richard C.A., Zwinger Thomas, Albrecht Torsten, Cornford Stephen, Docquier David, Fürst Johannes J., Goldberg Daniel, Gudmundsson G. Hilmar, Humbert Angelika, Hütten Moritz, Huybrechts Philippe, Jouvet Guillaume, Kleiner Thomas, Larour Eric, Martin Daniel, Morlighem Mathieu, Payne Anthony J., Pollard David, Rückamp Martin, Rybak Oleg, Seroussi Hélène, Thoma Malte, Wilkens Nina, Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison, 10.3189/2013jog12j129
  37. Payne, A. J.: Limit cycles in the basal thermal regime of ice sheets, J. Geophys. Res.-Solid Ea., 100, 4249–4263, 1995.
  38. Pollard D., DeConto R. M., Description of a hybrid ice sheet-shelf model, and application to Antarctica, 10.5194/gmd-5-1273-2012
  39. Pollard D., DeConto R. M., A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica, 10.5194/tc-6-953-2012
  40. Pollard David, DeConto Robert M., Alley Richard B., Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure, 10.1016/j.epsl.2014.12.035
  41. Raymo M. E., The timing of major climate terminations, 10.1029/97pa01169
  42. Rohling E.J., Braun K., Grant K., Kucera M., Roberts A.P., Siddall M., Trommer G., Comparison between Holocene and Marine Isotope Stage-11 sea-level histories, 10.1016/j.epsl.2009.12.054
  43. Rohling E. J., Foster G. L., Grant K. M., Marino G., Roberts A. P., Tamisiea M. E., Williams F., Sea-level and deep-sea-temperature variability over the past 5.3 million years, 10.1038/nature13230
  44. Ruddiman W. F., Ice-driven CO2 feedback on ice volume, 10.5194/cp-2-43-2006
  45. Saltzman, B.: Dynamical paleoclimatology: generalized theory of global climate change, in: Vol. 80, Academic Press, San Diego, CA, 2002.
  46. Saltzman Barry, Maasch Kirk A, A first-order global model of late Cenozoic climatic change II. Further analysis based on a simplification of CO2 dynamics, 10.1007/bf00210005
  47. Saltzman Barry, Verbitsky Mikhail Ya, Asthenospheric ice-load effects in a global dynamical-system model of the Pleistocene climate, 10.1007/bf00209339
  48. Saltzman Barry, Verbitsky Mikhail Ya, Multiple instabilities and modes of glacial rhythmicity in the plio-Pleistocene: a general theory of late Cenozoic climatic change, 10.1007/bf00208010
  49. Saltzman Barry, Verbitsky Mikhail Ya., The Late Cenozoic Glacial Regimes as a Combined Response to Earth-Orbital Variations and Forced and Free CO2 Variations, Ice in the Climate System (1993) ISBN:9783642850189 p.343-361, 10.1007/978-3-642-85016-5_20
  50. Saltzman Barry, Verbitsky Mikhail, Late Pleistocene climatic trajectory in the phase space of global ice, ocean state, and CO2: Observations and theory, 10.1029/94pa02289
  51. Saltzman Barry, Verbitsky Mikhail, C02 and glacial cycles, 10.1038/367419a0
  52. Schoof Christian, Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, 10.1029/2006jf000664
  53. Shumskiy, P. A.: On the flow law for polycrystalline ice, Trudy instituta mekhaniki MGU, 42, 54–68, 1975.
  54. Tzedakis P. C., Crucifix M., Mitsui T., Wolff E. W., A simple rule to determine which insolation cycles lead to interglacials, 10.1038/nature21364
  55. Tziperman Eli, Raymo Maureen E., Huybers Peter, Wunsch Carl, Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing : HOW TO PACE AN ICE AGE, 10.1029/2005pa001241
  56. Vakulenko N. V., Ivashchenko N. N., Kotlyakov V. M., Sonechkin D. M., On periods of multiplying bifurcation of early pleistocene glacial cycles, 10.1134/s1028334x11020115
  57. Verbitsky, M. Y. and Chalikov, D. V.: Modelling of the Glaciers–Ocean–Atmosphere System, Gidrometeoizdat, Leningrad, 1986.
  58. Verbitsky, M. Y. , Crucifix, M., and Volobuev, D. M.: Supplementary to ESD paper “A Theory of Pleistocene Glacial Rhythmicity” available at: https://github.com/DmitryVolobuev1973/Model-of-Pleistocene-Glacial-Cycles/, last access: 15 August 2018.
  59. Vialov, S. S.: Regularities of glacial shields movement and the theory of plastic viscous flow, in: Physics of the movements of ice IAHS, International Association of Hydrological Sciences (IAHS), London, UK, 266–275, 1958.
  60. Zhang Y. G., Pagani M., Liu Z., Bohaty S. M., DeConto R., A 40-million-year history of atmospheric CO2, 10.1098/rsta.2013.0096
Référence bibliographique Verbitsky, Mikhail Y. ; Crucifix, Michel ; Volobuev, Dmitry M.. A theory of Pleistocene glacial rhythmicity. In: Earth System Dynamics, Vol. 9, no.3, p. 1025-1043 (2018)
Permalien http://hdl.handle.net/2078.1/204290