Félix, Yves
[UCL]
Halperin, Steve
Let X be a connected topological spaces with finite rational Betti numbers. We denote by G the radical of its fundamental group and by (∧V,d) its minimal Sullivan model. If dim Vi<∞ for each i≥2 , then the dimension of the rationalization of G is less than or equal to the Lusternik-Schnirelmann category of X.
- Félix Yves, Halperin Stephen, Thomas Jean-Claude, Sur certaines algèbres de Lie de dérivations, 10.5802/aif.897
- Felix Yves, Halperin Stephen, Jacobsson Carl, Lofwall Clas, Thomas Jean-Claude, The Radical of the Homotopy Lie Algebra, 10.2307/2374504
- Félix Yves, Halperin Stephen, Thomas Jean-Claude, Rational Homotopy Theory, ISBN:9781461265160, 10.1007/978-1-4613-0105-9
- Félix Yves, Halperin Steve, Thomas Jean-Claude, Rational Homotopy Theory II, ISBN:9789814651424, 10.1142/9473
- Hilton, P., Mislin, G., Roitberg, J.: Localization of Nilpotent Groups and Spaces. North-Holland, Amsterdam (1975)
- Serre, J.P.: Lie Algebras and Lie Groups. Benjamin Inc., Reading (1965)
- Sullivan Dennis, Infinitesimal computations in topology, 10.1007/bf02684341
- Quillen Daniel, Rational Homotopy Theory, 10.2307/1970725
Référence bibliographique |
Félix, Yves ; Halperin, Steve. Malcev completions, LS category, and depth. In: Boletín de la Sociedad Matemática Mexicana, Vol. 23, no.1, p. 267-288 (2016) |
Permalien |
http://hdl.handle.net/2078.1/196129 |