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Abstract

Consider the following semiparametric transformation model Ayg(Y) = m(X) + ¢,
where X is a d-dimensional covariate, Y is a univariate dependent variable and ¢ is an
error term with zero mean and which is independent of X. We assume that m is an
unknown regression function and that {Ay : € O} is a parametric family of strictly
increasing functions. We use a profile likelihood estimator for the parameter 6 and a
local polynomial estimator for m. Our goal is to develop a new test for the parametric
form of the regression function m, which has power against all local alternatives that
converge to the null model at parametric rate, and to compare its performance to
that of the test proposed by Colling and Van Keilegom (2016). The idea of the new
test is to compare the integrated regression function estimated in a semiparametric
way to the integrated regression function estimated under the null hypothesis. We
consider two different test statistics, a Kolmogorov-Smirnov and a Cramér-von Mises
type statistic, and establish the limiting distributions of these two test statistics under
the null hypothesis and under a local alternative. We use a bootstrap procedure to
approximate the critical values of the test statistics under the null hypothesis. Finally,
a simulation study is carried out to illustrate the performance of our testing procedure,
to compare this new test to the previous one and to see under which model conditions
which test behaves the best. We also apply both methods on a real data set.
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1 Introduction

The simple linear regression model is the most commonly used model in statistics when we
want to explain the relationship between a dependent variable Y and a vector of explanatory
variables denoted X. However, this model relies on heavy assumptions that are not always
satisfied in practice, namely the structure of this model is additive and linear, the variance
of the error term ¢ is constant and ¢ is normally distributed. As a possible solution to this
problem, Box and Cox (1964) introduced a parametric family of power transformations and
suggested that this power transformation, when it is applied to the response variable Y,
might induce additivity of the effects, homoscedasticity and normality of the new error term
and reduce skewness. Note that the Box and Cox (1964) transformation also includes as
special cases the logarithm and the identity.

This class of transformation has been generalized, see for example the Yeo and Johnson
(2000) transform. Other types of transformations have also been introduced in the literature,
e.g. the Zellner and Revankar (1969), the John and Draper (1980), the Bickel and Doksum
(1981) and the MacKinnon and Magee (1990) transforms among others. We also refer to
the book of Carroll and Ruppert (1988).

All the above mentioned papers consider a model where both the transformation and
the regression function are parametric. In the literature, we can also find papers where
both the transformation and the regression function are nonparametric, e.g. Breiman and
Friedman (1985), Horowitz (2001) and Jacho-Chavez, Lewbel and Linton (2008), and papers
where the transformation is nonparametric and the regression function is parametric, e.g.
Horowitz (1996).

In this paper, we will focus on a model where the transformation is parametric and the
regression function is nonparametric, i.e. we will consider a semiparametric transformation

model of the following form :

Ag(Y) =m(X) + e, (1.1)

where m(-) is an unknown regression function, Ay(-) is some parametric transformation of
the response variable Y and # € © where O is a finite dimensional compact subset of R*.
We will denote by 6y and mg(-) the true but unknown values of § and m(-). Moreover, we
assume that X is a d-dimensional covariate, Y is a univariate response variable and the error
term ¢ has zero mean and is independent of X.

Linton, Sperlich and Van Keilegom (2008) have extensively studied the semiparametric



transformation model (1.1). Their main objective was to propose different estimators of the
transformation parameter 6 and to establish the asymptotic properties of these estimators.
Vanhems and Van Keilegom (2016) have also studied the estimation of this model supposing
that some of the regressors are endogenous as a result of e.g. omitted variables, measurement
error or simultaneous equations. We also like to mention the works of Colling, Heuchenne,
Samb and Van Keilegom (2015) and Heuchenne, Samb and Van Keilegom (2015) who in-
troduced and studied respectively nonparametric estimators for the error density function
and the error distribution function. Moreover, Colling and Van Keilegom (2016) developed

a test for the following null hypothesis :
H() :m e M y (12)

where M = {mg : § € B} is some parametric class of regression functions and B C R?. The
main idea of their test was to compare the distribution function of the error term estimated
in a semiparametric way to the distribution function of the error term estimated under Hj.

We also like to mention the work of Neumeyer, Noh and Van Keilegom (2016). Recently,
they introduced estimators for the different components of a heteroscedastic transformation
model and proved the asymptotic normality of these estimators. They also proposed a test
for the validity of this model.

The main objective of this paper is to develop a second test for the null hypothesis
(1.2), which has power against all local alternatives that converge to the null model at
parametric rate, and to compare this new test to the previous one developed by Colling and
Van Keilegom (2016). The basic idea of the new test is to compare the integrated regression
function estimated in a semiparametric way to the integrated regression function estimated
under Hy. The idea of testing the form of the regression function using the integrated
regression function has been studied among others by Bierens (1982), Stute (1997) and
Escanciano (2006a). These three articles worked in a context of a nonparametric regression
model without transformation of the response variable. The first consistent integrated test

was proposed by Bierens (1982). He defined the following Cramér-von Mises test statistic :
[l S0 e = ) P de
j=1

where ¢ is the imaginary unit, 3 is the least squares estimator of § and ® is a positive

integrating function, for example a d-variate normal density. The test of Stute (1997) was
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based on the following residual process :
n 1<y (Vi — ma(X))
j=1

where 1{x<,} is a component by component indicator. Finally, the test of Escanciano (2006a)

was based on the following residual process :
n2Y < (Y —ma(X5))
j=1

where 7 is a d-dimensional vector. The main difference between these three approaches is the
weigthing function that each author uses to construct his residual process. More generally,

this class of tests is based on the equivalence
E(|lX)=0as. < E(cw(X,z,7)) =0 Y(z,7)ell, (1.3)

where II is a properly chosen space and w(-,z,7) is a parametric family such that the
equivalence (1.3) holds. Bierens and Ploberger (1997), Stinchcombe and White (1998) and
Escanciano (2006b) among others propose some primitive conditions on the family of weight-
ing functions w(-,z,7) so that the equivalence (1.3) is satisfied, including w(X,z,v) =
exp(iz' X)), w(X, z,7) = lix<sy and w(X, z,7) = 1{ytx<a}, the weighting functions used by
Bierens (1992), Stute (1997) and Escanciano (2006a) respectively. Other possibilities are
for example w(X, z,7) = exp(z'X), w(X,z,v) = (1 + exp(c — 2' X))~! for some constant c,
w(X, x,v) = sin(2'X) and w(X, z,v) = sin(z'X) 4 cos(z' X ). In the context of nonparamet-
ric regression without transformation of the response, this class of tests, which is called “the
integrated approach”, avoids the use of smoothing methods which is an important advan-
tage. In this paper, our goal is to extend this class of tests to the context of semiparametric
transformation models.

Many papers in the literature use this integrated approach in other contexts, in time series
for example. The most frequently used weighting functions are w(X, z,v) = exp(iz'X), see
Bierens (1984) and Bierens (1990) for example, and w(X, z,v) = l{x<s}, see Koul and Stute
(1999) and Whang (2000) for example. We also like to mention the work of Stute and Zhu
(2002) who use a similar approach as Escanciano (2006a) except that Stute and Zhu (2002)
estimate the parameter ~.

There are other ways to construct tests for (1.2) instead of using the idea based on the

integrated regression function. We could for example define a test using the approach of
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Hérdle and Mammen (1993) among others. A recent overview on goodness-of-fit tests for
regression models was given by Gonzélez-Manteiga and Crujeiras (2013).

The paper is organized as follows. In Section 2, we explain in detail how we can estimate
a semiparametric transformation model and we define our testing procedure. In Section 3,
we present the main results of the asymptotic theory and in particular the limiting distribu-
tions of the proposed test statistics. Section 4 contains a simulation study that shows the
performance of the proposed test and compares this new test to the previous test of Colling
and Van Keilegom (2016). In Section 5, we apply our method to a real data set and Section

6 contains the conclusions. Finally, the Appendix contains the proofs of the main results.

2 The proposed test

2.1 Notations and definitions

We suppose that X has compact support y C R% Fori = 1,...,n, let X; = (X;1,..., Xiq)
and assume that we have randomly drawn an iid sample (X1,Y7),...,(X,,Y,) from the
semiparametric transformation model (1.1). We denote by Fy, fx, F: and f. the distribution
and the probability density functions of X and ¢ respectively. Moreover, let 0% = V (g) < 0o

and define the function
m(x,0) = E[Ag(Y)|X = z] .

Note that m(z,6y) = m(x). We also denote

o 9 0 t
afx(ﬂf) = (a_q;le@)"”’E)_LifX(x)) ’

which is a (d x 1)-vector where x = (z1,...,x4)", and let

Roly) = (a%mw, . a%kmw)

be a (k x 1)-vector where 6 = (6y,...,0;). Similar notations will be used for other functions.
For any function ¢, we define ¢'(u) = dp/du. Finally, let £(0) = Ag(Y) — m(X,0) and let
Fpy and f.(p) be the distribution and the density function of £(6), respectively.



2.2 Estimation of the model

In this section, we will introduce the estimators of the transformation parameter # and of
the regression function m(z, ) that we will use throughout this paper. We will proceed in
exactly the same way as in Colling and Van Keilegom (2016). We will estimate 6 by the
profile likelihood estimator developed by Linton, Sperlich and Van Keilegom (2008).

The basic idea of the profile likelihood method is to calculate the log-likelihood function
of Y given X and to replace unknown expressions by nonparametric estimators, which gives

us the following estimator of 6 :
= { log oo (Ao(Y:) — (X, 6)) + log Agm)} , 21)

where m(z, ) and ﬁ(g) (y) are respectively nonparametric estimators of the unknown regres-
sion function m(x,6) and of the error density function f.()(y). More precisely, here we will
estimate the unknown regression function by a local polynomial estimator of degree p (like in
Neumeyer and Van Keilegom (2010)), i.e. let b = (hq, ..., hq)" be a d-dimensional bandwidth
vector and let Kj(u) be a d-dimensional product kernel of the form Kj(u) = H?Zl k1 (u;)
where k; is a univariate kernel. Then, for an arbitrary point x = (21, ..., 24)" in the support
x of X, m(z,0) = 60(8) where 50(9) is the first component of the vector 3(9), which is the

solution of the following local minimization problem :

msngme(m - R (S5

where P;(b, x,p) is a polynomial of order p built up with all products of 0 <[ < p factors of

the form X;; —z; for j = 1,...,d. We will use the notation m(z) = m(x, ) when there is no

ambiguity. Moreover, ﬁ(g)(y) is the following kernel estimator of the error density function :

~ ] — — (0
feo)(y) = . >k (yTg()> :
=1

where £;(0) = Ag(Y;) — m(X;,0), ko is a kernel and g is a bandwidth.

It is important to remark that we assume a completely unspecified regression function
m(-) which is slightly different from what Linton, Sperlich and Van Keilegom (2008) assume,
since they assume an additive or multiplicative structure on m(-). Moreover, we have esti-
mated this regression function by a local polynomial estimator whereas Linton, Sperlich and

Van Keilegom (2008) used a higher order kernel estimator.
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Finally, Colling and Van Keilegom (2016) proved that the following asymptotic represen-
tation for § — 6, and the following limiting distribution of n'/ 2(5— ) obtained by Linton,
Sperlich and Van Keilegom (1998) stay valid when m(-) is completely unspecified and is

estimated by a local polynomial estimator :
0—0o=—n" ZQ(Xi, Yi) +op(n'?)
i=1

and
n1/2(§_ 0) N N0, V(g(X,Y))),

where g(X,Y) =T71¢(6y, X, Y),

1 , : . : Ap(Y)
§(0,X,Y) = ENEG) [fL0)((0))(Ag(Y) — 1 (X,0)) + fe0)(e(0))] + ALY
and p
I'= %E[f(e, X, Y)]

=60
The assumptions under which these results are valid are given in Colling and Van Keilegom

(2016).

2.3 The test statistics

We will introduce two new test statistics where the basic idea is to compare the integrated
regression function estimated in a semiparametric way to the integrated regression function

estimated under Hy. We consider the following integrated regression function :
M(.7.0) = [ wlt,o,2)m(t,) dFx () = Elw(X,2.7)Ma(Y)].

where w is some weighting function that depends on some parameter v € R% and that
satisfies the equivalence (1.3). We assume that v has compact support x, C R%. The
empirical analog of M (z,,0) is given by

n

]\/4\(1',7, 0) =n"" Zw(Xi,:c,fy)Ag(Y;) :

i=1
Next, under Hy, m = mg, where [, is the true value of 3 under Hy. Then, the integrated

regression function becomes
My a7,60) = [ wit.z,7)ma (8) dFx(0)
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and its empirical analog is given by

n

Mg, (7,7,00) =n"" Zw(Xi, x,y)mga, (X;) .

=1
Hence, our test will be constructed on the basis of the following residual process :

n

Rn($a Y5 907 BO) = \/E(M(ZE, s 90)_M50(I> s 90)) = n_1/2 Z w(XZa xz, ’Y)(AGU(Y;)_mﬁO(Xz)) :
i=1

Finally, as the parameters # and g are unknown, we will estimate 6 by the profile likelihood

estimator defined in (2.1) and we will estimate ( by a least squares estimator, i.e. we consider

f which is a minimizer over S € B of the expression

Su(B) =071 Y (Ap(Yi) — ms(X))* . (2:2)

i=1

This gives the following residual process :

Ra(w,7,0,5) = v/n(M(x,7,0) = My(w,7,0) = ™2 3 Jw(Xi 2,7) (A5(¥:) = m5(Xe,9))

o~

For an easier readability, we will use the notations mgz(X;) = mg(X;,0), Ru(z,7) =
R.(z,7,00, 3) and R!(z,v) = R,(x,7,0,3) when there is no ambiguity. It is important
to remark that we will follow the idea of Escanciano (2006a) and we will not estimate the
parameter v unlike Stute and Zhu (2002) for example. We consider a process that depends
both on x and 7. The test statistics that we will use are Kolmogorov-Smirnov and Cramér-

von Mises type statistics defined by

Dy= sup |R(z,y)| and W2 = / (R (2, )] AW, (1, 7) |
11

(z,y)€ell

where II is a properly chosen compact space and ¥, (x,) is a certain estimator of an arbi-
trary integrating function W(x,~) that is absolutely continuous and that satisfies regularity
condition (A10) given in the Appendix. The main advantage of putting a general weighting
function w and an arbitrary integrating function ¥, in the definition of the Cramér-von
Mises test statistic is that we can use the three main approaches in the literature based
on the integrated regression function but in a context of a semiparametric transformation

model :



1. Bierens (1982) : take IT = x, w(X,x,7) = exp(iz’X) where i is the imaginary unit,

U, (z,y) = ¥(x,v) and d¥(x,v) = ®(x)dx. Here, the function ®(z) will be the
standard d-variate normal density function, so that the imaginary part of the Cramér-
von Mises test statistic is equal to 0. Using this particular function ®(z) and doing

similar calculations as in Bierens (1982), we find that :

Wop, =1 Z Z e (0. 0,5) exp ( - %zd:(Xﬂ + sz)2> :

7j=1 k=1 =1

where ej(é\, B) = A5(Y;) — mz(X;). We will use this particular expression of W2 in

exp;

our simulation study when the complex exponential weight will be used.

. Stute (1997) : take II = x, w(X,2,7) = l{x<s} Where l{x<,} is a component by
component indicator and ¥, (z,v) = Fy () where Fy (x) is the empirical distribution
function of the data {X;};—1. . .. Moreover, ¥U(x,v) = Fx(x) is the true distribution

function of X. Hence, the two test statistics take the following form :

1/226 1{X <Xi}

and

n n 2
W2 =n"? (Zej(97/8)1{Xj<Xk}) :
P

J=1

. Escanciano (2006a) : take d, = d, w(X,z,7) = l{y1x<q and d¥,(x,7) = dﬁnﬂ(a:)dfy

where ﬁnﬁ(a:) is the empirical distribution function of the projected regressor {v*X;}i—1 .

and dv is the uniform density on S; which is the unit ball of dimension d and en-
sures that all directions are equally important. Then, II = [-A A] x S; where
A = dmaxj<i<p SUPye, |t;] and t; is the i-th component of the vector ¢ € x. More-
over, ¥(z,v) = F,(x) is the true cumulative distribution function of v*X. In that

case, the two test statistics take the following form :

n

n 2N " ei(0, B)liyix, <ix,y

i=1

D,= sup
1<k<n,y€Sq




and

n 2
W? _ /(n_1/2zej(975)1{7txj<u}) dF, (u)dy
H .

7j=1
= 7D €0 B0, B) / L, <up L (e <y @B (u)dy
j=1 k=1 il
— n*Q Z Z Z ej((g, ﬁ)ek(é, 5) / 1{,Yth§,thl}1{,Yth§,thl}d”}/ .
j=1 k=1 I=1 Sa
In practice, to compute these test statistics, we will consider a random sample 71, ..., Vn,

from Sy. Hence, we can approximate both test statistics respectively by

D, = sup

1<k<n,1<m<n,

n~!? Z €j (0.5) Lt X<t X0} |
j=1

and

— ~ o~ ~ o~

W2 =n"*n;! e;i(0, B)er(0, B) 11yt x;<vt, X3 Lot Xpnty X1 -

In the context of nonparametric regression without transformation of the response, the ad-
vantage of taking the indicator weight over the exponential weight is that it avoids the
choice of an arbitrary function ¥ and the advantage of taking the exponential weight over
the indicator weight of Stute (1997) is that the test is less sensitive to the dimension d.
Moreover, note that the tests proposed by Stute (1997) and Escanciano (2006a) are equiv-
alent when d = 1. However, in the context of goodness-of-fit in nonparametric regression
without transformation, the method of Escanciano (2006a) is known to avoid the curse of
dimensionality.

Note that our test can also be applied with several other weigthing functions we can find
in the literature, see Stinchcombe and White (1998) and Escanciano (2007) among others. In
this paper, we will also consider the three additional following approaches in our simulation
study : w(X,z,v) = exp(x'X), w(X,z,7) = (1 + exp(—2'X))~! and w(X,z,v) = sin(z* X)
with IT = x, ¥, (z,v) = ﬁx(a:) and U(z,v) = Fx(x) in the three cases. The corresponding

test statistics are given by :

n_1/2 Z ej(é\a B\)’U}(X], Xk:a '7) )




and n n 2
W=y (Zej@ B>w<Xj,Xk,v>) -
k=1 Jj=1

We will denote the three Kolmogorov-Smirnov test statistics respectively by Deyy, Di)exp

and Dy, and the three Cramér-von Mises test statistics respectively by ngp, Wf/ exp and
W2..
3 Asymptotic results
We first need to introduce the following notations :
0_ {Elamﬁo(X) <5mﬁo(X))t} }
867’ aﬁs r,s=1,..., q7
_,0mg(x)
ns(2,y) = 1%(/\90@) —ms(x)),
where .
Omg(r) (Gmg(x) amg(x))
p opr T 0B,
is a (¢ X 1)-vector and 8 = (f4,...,0,)". Finally, we consider h(z,) = 87%55(” and

H($v7>5) = E[w(va77)h<Xa 6)]

3.1 Results under H,

To start, we introduce three theorems. The first one establishes the limiting process of R,
the second one states that the process R} can be expressed in terms of the process R, and
a sum of iid terms up to a negligeable term, and the last one states that we can “replace”
W, (z,v) by ¥U(z,~) in the definition of W? plus a negligible term. Combining these three
results, we will next easily obtain the limiting process of R} and the limiting distributions
of the test statistics. The assumptions under which these results are valid, as well as the

proofs of these results, are given in the Appendix.

Theorem 3.1. Assume (A1)-(A11). Then, under Hy, the process R, converges weakly to

Ry, where Ry, 1s a centered Gaussian process with covariance function given by
Cla1,m,22,72) = 0” Elw(X, 21, 7)w(X, 22,%)] ,
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fOT (1'1,’71% (:C27’}/2) e I
Theorem 3.2. Assume (A1)-(A11). Then, under Hy,

Ry(z,7) = Ru(,7) —n~'/? zn: G(z,7, X, Y:, 00, Bo) + 0p(1)
where
Glay X.V,0.8) = H'(e (ns(X,Y) + (X, 2,9) (Ao(¥))Jg(X, V)
a0 | A Gy s y) . B
Theorem 3.3. Assume (A1)-(A11). Then, under Ho,

w2 = / (R (2,72 W, (2, ) = / (R (2, 7)? AU (2, 1) + op(1)

As a consequence of the previous theorems, we obtain successively the limiting process of
R! and the limiting distributions of the Kolmogorov-Smirnov and Cramér-von Mises test

statistics under the null hypothesis in the two following corollaries.

Corollary 3.1. Assume (A1)-(A11). Then, under Hy, the process R, converges weakly to

RY_, where RL_ is a centered Gaussian process with covariance function given by

01($1;717$2772) = C($1>71,$2772)—E[G($2,72,X7K90750)10()(,%7%)8]
—E[G(x1,7m, X, Y, 0y, Bo)w(X, x2,72)€]
+E[G<$1,"}/1,X7 Y7 907ﬁ0)G(x2>ﬁ)/27X7 Y7 00760)} ;

fO’l” (xlu’yl)u (1]2,72) e II.

Corollary 3.2. Assume (A1)-(A11). Then, under Hy,

D= sup [R(e)  and W2 [ [RL(n)F d¥(an)
(z,y)ell I
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3.2 Results under Hy,

We consider the following local alternative hypothesis in order to study the power of the test

statistics :
Hy, - m(z) = mg,(z) +n~Y?r(z) for all z (3.2)
for some fixed function r # 0. First, we obtain the analog of Theorem 3.2 under Hy,.

Theorem 3.4. Assume (A1)-(A12). Then, under Hy,,
erz(‘r’ 7) = Rn($, 7) - n_1/2 Z G($, s Xia }/;'7 907 gOn) + b(l‘, ’7) + OP(l) )
i=1

where Bon is a minimizer over B € B of E[(ms(X) —m(X))? and

b(x,y) = —H" (2,7, Bo)2" /r(u)amg—oﬁ(u) dFx(u) + Flw(X, z,v)r(X)] .

We remark the presence of an additional bias term b that depends on the deviation
function r in comparison with Theorem 3.2. Note that this bias term is exactly the same
as in the case where the transformation of the response would be known (see formula (3.3)
in Stute, 1997, for the case where w(t,z,7) = ly<z)). In other words, the estimation of
the transformation parameter § has no impact on the asymptotic bias under H,,. This is
because 6 is estimated based on a nonparametric estimator of m(-) (see formula (2.1)).

Finally, the following corollaries give respectively the limiting process of R! and the

limiting distributions of the two test statistics under the local alternative.

Corollary 3.3. Assume (A1)-(A12). Then, under Hi,, the process R} converges weakly to

R + b, where RL is the same centered Gaussian process as in Corollary 3.1.

Corollary 3.4. Assume (A1)-(A12). Then, under Hi,,

D=t sup [RL(e) + b and W2 [ R (e + b V(e )
(zyy)ell I

Since the bias term b(x,7) is the same as in the case without transformation of the
response, we can directly use the results that have been obtained in Stute (1997) and Es-

canciano (2006a), who studied the bias term when the response is not transformed and
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when w(t,z,7) = ly<yy and w(t,z,7) = lgyu<qy, respectively. They showed that the

tests have power against all alternatives r that are such that the projection of r onto the

orthogonal complement of the functions [ ag;f 0(x)dFx(x), l = 1,...,q stays away from
span{ag%, cee 88%}, which is a natural condition that can basically not be avoided. This
q

is an important advantage of our new tests in comparison with those developed in Colling and
Van Keilegom (2016). Indeed, in the latter paper an example is given of a local alternative
that has no power.

In practice, we need to estimate the limiting distributions of D,, and W? obtained in

/
I3

consequently the introduction of new bandwidths which is possible but not easy. Therefore,

Corollaries 3.2 and 3.4. However, this implies the estimation of f., f, m and fy and
we prefer to use a bootstrap procedure in order to approximate the limiting distributions of

D,, and W?2 under H, in practice. This bootstrap procedure is described in the next section.

4 Simulations

In this section, we perform some simulations in order to evaluate the performance of our
test statistics for small samples and also to compare the results given by these tests to those
given by the tests based on the error distribution function developed by Colling and Van
Keilegom (2016).

The basic idea of the test developed by Colling and Van Keilegom (2016) was to compare
the error distribution function estimated in a semiparametric way to the error distribution

function estimated under Hy. This gave the following test statistics :

Trs = n?sup |F.(y) — Fr,(y)]
yeR

and
Tons = n / (F(y) — Fuy(y))? dE-(y) |

where F.(y) = n~! Yo, 1(E <), & = Ag(Yi) — m(X;) are the semiparametric residuals,
Fo(y) =n! > iz L(Eio < y) and &g = Ag(Yi) — mz(X;) are the estimated residuals under
Hy where mz(X;) is the local polynomial estimator of degree p of mz(X;).

As the different Cramér-von Mises test statistics give in most cases similar or better

results than the corresponding Kolmogorov-Smirnov test statistics, we decide in this section
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to compare only the results given by the Cramér-von Mises test statistics, i.e. Tgoar, W2,
2 2 2 2 2
W W3 Wepr Wi ey and W,
We will explain briefly now how we will estimate 6, 8, h and ¢ in practice. It is done
similarly as in Colling and Van Keilegom (2016). For each value of 6, we obtain h*(6) the

cross validation bandwidth estimator :

h*(0) = arg min Z(Ag(m) — m_i(X:,0,h))? ,

=1

where
S oY) (2520)
T/ﬁ—i(Xi?e?h) = i - X'_X‘h )
Zj:l,j;éikl( 7 2)
and ky(z) = ka(z) = 3 (1 —2?) 1<y are the Epanechnikov kernel if we work in di-

mension d = 1. More generally, for d > 1, we use the product of d Epanechnikov ker-
nels for the estimator of the regression function. Moreover, we estimate g by g(0) =
(40/T) /505G 5.1+ (s)), Where Gz () i the classical estimator of the standard devia-
tion of the error term £(0, h*(0)) = Ag(Y) —m(X, 0, h*(0)), where m(z, 0, h) denotes m(x,0)
constructed with a bandwidth h. Note that we have estimated g by the classical normal

reference rule for kernel density estimation. Then, the optimal value of 6 is given by
6 = argmaxIly(h*(6),5(0)) ,

where
n

() = 3 { 10w FaAalY0) = (X, 0.1) +Tog 25030 }

i=1
where ﬁ(9)7g(y) denotes the estimator ]?5(9) (y) constructed with a bandwidth g. The estimator
of 0 is obtained iteratively with the function optimize in R over the interval [0y — 2,60, + 2].

Finally, to estimate 8, we minimize the following expression over the interval [—20, 20] :
f = arg mﬁin Z(Ag(Yi) — mg(X;))?
i=1

The critical values of the different test statistics are obtained with the same residual
bootstrap procedure as in Colling and Van Keilegom (2016). For fixed B and for b =
1,...,B, we define the bootstrap sample (X},Y;), i = 1,...,n where X = X;, Vi =

Ag’l(mg(be) + ¢},) are the new responses and €}, = (}, + a,&; are independent random
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errors where (},, . . ., ¢, are bootstrap samples of the errors drawn with replacement from the
empirical distribution of the zero mean residuals, a,, is some small bandwidth and &y, ..., &
are independent normally distributed random variables and independent from the original
sample {(X1,Y1),...,(Xn, Y,)}. We choose here a, = 0.1.

Hence, we can compute the different test statistics using the bootstrap sample (X}, Y;),
i=1,...,n and the (1 — a)-th quantile of the distribution of each test statistic is estimated
by the [(1 — «) B]-th order statistic of the corresponding test statistic obtained from these
bootstrap samples. In our simulations, we take B = 250. We refer to Neumeyer (2009) for the
consistency of this bootstrap procedure in the case where one is interested in the distribution
of the estimator of the error distribution in a nonparametric location-scale model without
transformation of the response.

First, we perform simulations in dimension d = 1. The simulated model is Ay(Y;) =
P14 B2 X + c(X;) + &;, where Ayg(Y') is the Yeo and Johnson (2000) transformation :

oot it Y >0,0#0

log(Y +1) if ¥>0,0=0
DT i Y < 0,0 £2

—log(=Y +1) if Y <0,06=2

Ap(Y) =

Note that the Yeo and Johnson (2000) transformation is an extension of the Box and Cox
(1964) transformation that allows the response variable Y to be negative. We will consider
three different values of the parameter transformation € : 6, = 0 which corresponds to a
logarithmic transformation, 6, = 0.5 which corresponds to a square root transformation
and 0y = 1 which corresponds to the identity. The true value of the parameter [ is [y =
(510, B20) = (3,5). Moreover, X, ..., X, are independent uniform random variables on [0,1]
and e1, ..., &, are independent standard normal random variables truncated on [-3,3]. We will
also consider the cases where €1, ..., ¢, are independent normal random variables with zero
mean and standard deviation 0.5 truncated on [-3,3] and where ¢4, ..., ¢, are independent
student-t random variables with degrees of freedom equal to 10. We consider the following

null hypothesis :
Hy: m(x) = By + Boxr for all x and for some (31, B2) € R? .

We consider different deviation functions ¢(z) from the null hypothesis : ¢(z) = 222, ¢(x) =
322, c(z) = 42°, c(x) = 522, c(x) = 2exp(z), c(z) = 3exp(x), c(z) = dexp(z), c(x) =
Sexp(z), c(x) = 0.25sin(27x), c¢(x) = 0.5sin(27z), c(x) = 0.75s8in(27x), c(x) = sin(27x).
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Tables 1 to 6 show respectively the percentages of rejection obtained with the test statis-
tics Tear, Wi, Wi, Weg, Wiy and W3,
hypothesis and under the different deviations ¢(x) we have introduced above. The nominal
level is 10%. We also remind that the test statistics W2 and Wf are equivalent when d = 1,
hence Tables 1 to 6 only include the results obtained with W7 and not with W2.

First, under Hy, we observe that the different estimations of the nominal level are globally

for 500 samples of size n = 200 under the null

good for all test statistics, choices of 8y and distributions of € except if we use the test statistic
W2 when 6, is increasing. In that case, the estimation of the nominal level is increasingly
small.

Next, under the alternative, the power is largest when & ~ N(0,0.5?), followed by & ~
N(0,1) and finally by € ~ t19. This seems logical because we increase consequently the
variance of ¢ when we change from one situation to another. In a similar way, we observe
generally that the power is largest for 6y = 0, followed by 6y = 0.5 and finally by 8y = 1. This
conclusion is the same as in Colling and Van Keilegom (2016) and is logical with respect to
the results obtained by Linton, Sperlich and Van Keilegom (2008).

Moreover, again under H;, when the deviation from the null hypothesis is monotone,
for example c(x) = cx? and c(z) = cexp(z), the highest power is generally obtained with
the test statistics W2

o Wi oo, and W2 . This last conclusion is valid for all tested values

1/ ex sin’

of #y. On the other hand, /if ’Ehe deviation from the null hypothesis is non monotone, for
example ¢(z) = csin(27z), the highest power is obtained with the test statistic W2, when
the deviation is close to the null hypothesis (¢ = 0.25 and sometimes ¢ = 0.5) and is obtained
either with the test statistic Ty or with the test statistic W2 when the deviation is less
close to the null hypothesis (¢ = 0.75 and ¢ = 1). This depends on the value of . If §y = 0,
we will prefer W2 and when 6, increases, we will prefer Ty, which is in line with what

Ww?2 and W2

happens under Hy. Finally, note that the test statistics W2 1/ exp n

oxps give very

small power when the deviation from H{ is non monotone.
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Oy = 0y = 0.5
@) [ Tow WP Wy W2, Wioo Wi |Tow WP Wiy Wi, Wi Wi
0 10.2  10.2 13.4 12.2 114 12.4 10.4 7.2 12.4 12.8 11.4 12.4
22 27.2  46.6 37.6 50.0 50.6 51.2 | 27.2 41.2 34.6 50.4 48.8 49.2
3z2 48.8 75.4 68.0 78.8 79.0 78.6 | 49.2 72.0 62.6 78.8 78.2 78.8
472 66.2 89.2 86.4 91.6 91.0 91.0 | 66.0 &88.2 82.8 91.4 90.8 91.0
52 78.2 944 91.8 94.4 94.4 94.6 | 77.4 95.2 91.2 97.0 96.4 96.4
2exp(a;) 23.6  33.2 26.4 38.2 39.2 38.8 | 22.8° 22.8 19.8 32.2 33.0 31.6
3exp(x) 34.2 55.0 42.0 60.8 60.2 60.0 | 34.6 36.2 27.4 52.8 53.6 53.0
4exp(x) 49.0 69.6 60.0 71.6 73.2 72.2 | 47.0 524 36.4 64.8 67.6 66.0
Sexp(a?) 62.8 78.2 72.2 81.0 81.2 80.8 61.2 634 46.6 72.6 74.4 73.2
0.25sin(27r:c) 21.4  21.0 29.4 12.4 13.8 134 | 24.8 13.8 28.2 12.0 13.2 12.4
O.E)Sin(27rx) 56.2  59.0 56.4 13.4 16.8 15.6 | 54.8 45.0 56.6 12.8 14.8 13.6
0.75sin(27m;) 86.0 924 70.0 16.0 20.4 20.6 | 84.4 82.8 69.8 12.8 16.4 17.8
sin(27rx) 98.4 99.8 76.8 17.8 26.0 276 | 98.0 94.0 76.2 13.8 21.2 23.4

Table 1: Percentage of rejection for 6y = 0, 0.5 and for € ~ N(0,1).

0p=1
c(z) Ten Wi Wi, Wo, WP .., Wi,
0 9.8 5.0 10.8 10.6 9.6 104
222 29.2 38.6 32.0 49.2 47.8 48.2
3z 476 67.8 578 77.4 78.8 78.4
422 65.8 86.8 82.0 90.4 89.8 89.8
52 76.8 93.2 87.8 96.4 96.2 95.8
2exp(x) 220 178 16.4 29.4 30.0 29.4
3exp(z) | 344 30.8 208 470 476  45.6
4 exp(x) 476 44.6 30.0 61.8 62.4 61.6
5exp(x) 61.6 56.0 36.4 67.6 69.2 68.8
0.25sin(27zx) | 22.8 10.6 27.8 10.4 10.6 11.2
0.55in(27m’) 55.4  34.0 55.4 10.6 12.8 11.8
0.75sin(27x) | 84.0 69.2 68.8 11.2 14.0 14.8
sin(27x) 98.2 87.8 75.6 11.6 15.8 18.0

Table 2: Percentage of rejection for §y = 1 and for e ~ N(0, 1).
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0y = 0o =0.5
c(z) Tem WP Wio, Wop Wi Wi | Tom WP WS, Wo, Wi, Wi
0 11.0 10.8 11.8 12.4 12.0 12.6 | 12.2 6.4 10.4 11.2 10.2 10.4
212 42.4 63.6 52.2 66.4 66.8 66.6 | 43.0 554 448 64.0 64.4 64.2
32 65.0 854 794 87.8 87.4 87.0 | 63.2 80.0 72.6 86.0 86.0 86.0
422 83.4 956 91.2 96.2 95.4 954 | 824 928 87.2 94.8 94.2 94.4
5x2 924 982 96.2 98.2 98.2 98.2 | 91.8 96.8 93.2 97.4 97.2 97.2
2 exp(x) 32.4 46.6  35.2 51.2 51.2 51.0 | 32.8 30.8 23.2 40.4 40.4 40.8
3exp(x) 47.6 632 520 67.6 68.2 67.8 | 474 482 31.6 57.8 58.8 58.2
4exp(x) 64.8 764  65.2 78.6 79.0 788 | 62.2 57.8 39.0 66.2 68.0 67.0
5 exp(z) 744 832 73.6 85.0 85.4 85.0 | 73.6 67.8 46.0 74.4 74.8 74.8
0.25sin(27x) | 36.0 32.8 42.2 14.0 14.2 13.8 | 354 204 38.0 13.0 14.2 14.2
0.5sin(27x) 81.8 88.8 65.6 16.2 24.4 22.8 | 834 756 624 14.8 18.0 18.0
0.75sin(27z) | 98.2 99.8  78.2 21.0 29.6 29.4 | 986 96.2 76.4 17.0 23.4 23.4
sin(27x) 99.8 99.8 834 24.4 34.6 36.6 | 100.0 99.4  80.2 19.0 27.0 294
Table 3: Percentage of rejection for 6y = 0, 0.5 and for e ~ N(0,0.5%).
b = 1

c(z) Ten WP Wo,, Wo, WP, Wi,

0 12.2 4.4 8.6 8.8 8.2 9.0

212 41.2  49.2  39.0 62.2 61.4 60.8

322 63.8 80.8 68.2 85.6 86.2 86.2

42 82.0 924 84.8 93.8 93.2 93.8

52 91.6 96.8 928 97.2 96.6 96.6

2 exp(z) 31.2 274 17.6 37.6 38.6 37.8

3exp(z) 47.2  38.2 24.0 51.6 53.0 52.2

dexp(z) | 62.8 510 350 602 614  60.6

Sexp(r) | 734 614 364 692 698  69.0

0.25sin(27z) | 344 120 388 9.8 114 116

0.5sin(27x) 82.0 574 61.2 12.0 15.6 16.0

0.75sin(27z) | 98.6 90.6 75.0 14.4 20.4 20.6

sin(2ma) 100.0 96.8  78.6 15.2 22.0 23.6

Table 4: Percentage of rejection for 6y = 1 and for € ~ N(0,0.5%).
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Oy = 0y = 0.5
) [ Tew WE WE, WE, WRoo Wi | Tew WP W&, WZ, Wi W
0 11.0 10.6 11.4 12.6 12.2 12.8 | 11.2 7.4 10.4 13.0 12.2 12.8
22 24.4 344 24.4 38.0 37.4 37.0 | 28.8 38.2 29.2 46.8 45.8 45.2
3z 36.2 54.8 44.8 61.2 59.0 58.8 | 42.4 60.8 48.8 69.2 68.6 68.8
422 54.8 T75.0 654 79.4 78.4 78.6 | 59.8 784 70.2 84.8 84.8 84.8
52 71.0 874 80.4 90.2 89.6 90.0 | 74.2 88.8 81.4 91.2 91.4 91.4
2 exp(x) 21.4  30.6 22.2 34.0 35.0 34.8 | 23.0 18.6 16.0 28.6 30.4 29.6
3exp(x) 31.2 46.4 34.0 50.4 51.4 50.4 | 31.4 30.2 22.4 41.8 42.6 42.0
4exp(x) 44.6  60.0 49.4 63.0 64.4 63.4 | 43.6 40.6 27.8 51.8 52.0 50.8
Sexp(a?) 54.4 66.8 55.0 68.4 68.8 68.6 | b4.6 49.4 31.8 58.4 59.2 58.4
0.25sin(27x) | 18.6 17.8 25.2 13.2 12.6 12.6 | 186 12.8 24.6 12.6 12.2 12.8
0.5sin(27x) 46.6 47.2 52.0 13.4 15.0 15.0 | 476 324 51.2 13.0 15.2 15.6
0.75Sin(27m:) 81.6 85.6 67.4 16.2 18.4 18.8 | 81.0 64.2 64.8 15.2 17.4 15.4
sin(27x) 96.2 974 75.0 17.8 23.4 24.4 | 95.8 83.4 71.4 13.4 19.0 20.4

Table 5: Percentage of rejection for 6y, = 0, 0.5 and for € ~ 4.

Table 6: Percentage of rejection for #y = 1 and for € ~ tq,.

=1
c(z) Ten WP Wi, Wo, Wi, Wi
0 11.0 5.6 9.0 11.6 10.6 11.2
222 26.0 34.6 30.0 43.4 42.8 43.6
3z 40.8 554 47.6 64.8 64.6 65.0
422 55.0 T74.8 65.4 81.8 81.6 82.0
5a? 74.6 86.6 80.2 90.6 89.8 90.2
2exp(x) 22.4 134 14.4 27.2 27.4 26.8
3exp(z) | 320 23.0 178 37.6 386  37.8
4eXp(.%‘) 43.0 32.0 23.0 45.2 46.6 45.8
Sexp(z) | 550 418 27.0 542 556  54.2
0.25sin(27x) | 19.0 9.4 25.2 12.6 10.8 11.4
0.5Sin(27‘r.r) 472 24.2 51.6 11.8 13.0 12.6
0.75sin(27x) | 80.8 52.8 66.0 11.0 14.2 13.8
sin(27x) 95.4 68.6 70.4 11.6 16.6 17.2
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Finally, we perform simulations in dimension d = 2. The simulated model is Ay(Y;) =
B1 + BoXii + B3 Xoi + (X1, Xoi) + €4, where Ayg(Y') is again the Yeo and Johnson (2000)
transformation. We will consider the same three different values of the parameter trans-
formation 6 : 6, = 0, 8 = 0.5 and 0§y = 1. The true value of the parameter [ is
Bo = (510, 520, 830) = (3,2,1). Moreover, Xii,..., X, and Xo,..., X, are independent
and uniformly distributed on the unit square and ¢4, ..., ¢, are independent normal random
variables with zero mean and standard deviation 0.5 truncated on [-3,3]. We consider the

following null hypothesis :
Hy :m(z) = By + Boxy + P3wy  for all 2 and for some (B, 52, B3) € R? .

We consider different deviations c¢(z1,z5) from the null hypothesis : c¢(z1,x2) = 2x129,
c(xy, x2) = w129, c(x1, T2) = dx129, c(21,T2) = D129, ¢(21, 22) = 0.5z sin(27xs), c(z1, x2) =
xy8in(2mxs), c(xy,x2) = 1.5z sin(2masy), c(xy, x2) = 2y sin(27x,), for 300 samples of size
n = 300. For the estimation of 6, 5, h and ¢g and the bootstrap procedure, we proceed
exactly as described before. Table 7 shows the percentage of rejection obtained with the test
statistics Toa, Wi, W2, WVZ, W WE) oy and W3, under the null hypothesis and under
the different deviations c¢(z1, z5) we have introduced above. Note that the results given by
W2 and fWVVZ will be different here since d # 1.

Table 7 shows that the estimations of the nominal level are generally too low, especially
for 8y = 0 when we consider the different new test statistics developed in this paper. This
problem was already encountered in Colling and Van Keilegom (2016) and is due to the
poor nonparametric 2-dimensional estimation of the function m(-). This suggests that the
method suffers from curse-of-dimensionality problems, implying that samples of size n = 300
are not always large enough.

Next, under the alternative, the highest power is obtained with the test statistic fopi
when the deviation from the null hypothesis is monotone, for example ¢(zq,x2) = cxixs,
and is obtained with the test statistic Ty, when the deviation from the null hypothesis is
non monotone, for example ¢(z1,z9) = cxysin(2mxe). We can also observe that the test
statistics W2 and Wf give very poor power, even if it is a little bit better when the deviation
is non monotone. This suggests that it is not a good idea to use indicator weights when
W) exp and WG,
a higher power than the one obtained with the indicator weight, but smaller than the one

the dimension d of X is increasing. Finally, the test statistics W2

xp give

obtained with T, and W2 with a monotone deviation.

exp;

21



0p=0

cxq, T2) Ten WP W2, W2 W2, W2 . W2,
0 100 23 37 20 23 23 23
22172 97 20 167 13 93 83 9.3
3r1x2 17.3 2.3 33.3 2.0 13.7 13.7 14.0
Az o 983 3.0 553 17 177 180 183
512 31.0 40 697 3.0 263 263 263

0.5z1 sin(27zs) | 33.0 5.0 8.7 6.3 7.3 7.3 7.7

x1 sin(27x2) 68.0 143 173 19.7 26.0 25.3 26.0
1.5z1 sin(2wz2) | 88.3 16.0 16.7 24.0 38.3 37.0 39.0
2x1 sin(27xs) 90.0 173 177 27.7 440 41.3 45.3

o = 0.5
c(x1, 2) Ten WP W2, W2 W2, W2 . W2,
0 70 7.7 107 9.0 9.0 9.3 9.0
20175 63 67 217 63 153 157  16.0
32125 130 47 383 50 167 167  16.7
Az 2 187 87 590 6.7 213 210 210
Ba1 s 23.0 9.7 737 70 207 220 203

0.5z, sin(2r2,) | 19.0 143 193 167 180 187 183
zysin(2rxs) | 517 233 263 280 37.3 380 373
1521 sin(2ras) | 823 220 263 267 463 473 473
221 sin(2m2,) | 91.0 25.0 233 323 523 50.7  53.7

b = 1

c(z1, 22) Ty WP OWZE, W2 WA, OWE. W3
0 87 87 87 103 7.3 70 77
221 o 53 50 200 40 150 150 153
32120 103 43 307 40 183 197  19.0
Azy 2y 193 97 510 83 223 233 230
Ba1ao 220 103 677 9.0 230 240 240

0.5z1 sin(27z2) | 30.0 12.0 14.3 150 16.0 16.0 16.7

x1 sin(27xs) 65.7 193 240 223 327 34.3 33.3
1.5z sin(27zs) | 86.3 20.7 223 243 41.7 41.0 42.7
2x1 sin(27mx2) 92.3 193 187 253 427 42.3 44.3

Table 7: Percentage of rejection for 6y = 0, 0.5, 1 and for € ~ N (0, 0.5%).

22



5 Application

We apply our testing procedure to a ultrasonic calibration data set composed of 214 observa-
tions. The data can be found on the website http://www.itl.nist.gov/div898 /handbook/pmd
/section6/pmd631.htm and comes from the NIST/SEMATECH e-Handbook of Statistical
Methods. The response Y is ultrasonic response and the covariate X is metal distance.
This data set has already been analyzed in the e-Handbook and in Neumeyer, Noh and
Van Keilegom (2016). In the e-Handbook, we can find that the data satisfy the model
VY; =m(X;) +&;,i=1,...,n. The goal of Neumeyer, Noh and Van Keilegom (2016) was
to verify such validity with their own procedure and without using the square root transfor-
mation. They estimated the transformation and they concluded that this data set satisfies

the assumption of a homoscedastic transformation model using a Box-Cox transformation.

In the e-Handbook, we can find that VY = W% is the fitted transformed model.

In this paper, we consider a Box-Cox transformation of the response variable. The estimated
transformation parameter is equal to 0 = 0.43. Note that this transformation is very similar
to the square root transformation of the e-Handbook. We will check the following natural

goodness-of-fit :

exp(fix)
)= ———
(@) B2+ Bax

We will also check the following exponential, inverse linear, linear and quadratic goodness-

of-fits :

Hy:m for all z  (test 1) .

- Hy:m(x) = py + Brexp(Psz) for all = (test 2)

- Hy:m(z) = 62516306 for all = (test 3) ,

- Hy:m(z) = By + Pox for all = (test 4)
- Hy :m(z) = By + Bax + B32? for all z (test 5) .

We use the Cramér-von Mises test statistic defined in Colling and Van Keilegom (2016) and
the ones in this paper. The distributions and p-values of these test statistics are approx-
imated by the bootstrap on the basis of 1000 replicates. The results are given in Table
8.

Table 8 indicates that there is no evidence against the fitted transformed model in-

troduced in the e-Handbook when a = 0.01 whereas only the test statistic WeQXp rejects
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test 1 test 2 test 3 test4 test )
Toy | 0375 0.525  0.090 0 0
W2 0.271 0.093 0.017 0.001 0.004
W2_ 10.130 0.103 0.033 0 0.004
W2 0.024 0.835 0.291 0.002 0.011
w2 0.176  0.085 0.028 0 0.004
w2 0.379 0.067 0.036 0 0.004

Table 8: p-values of the different goodness-of-fit tests for the ultrasonic calibration data.

this model when o = 0.05. Note that, in this case, our estimations of f;, ¢ = 1,2,3 are
51 = —0.0569, Bg = 0.0568 and 33 = 0.0367, the small differences with respect to the e-
Handbook are due to the use of a Box-Cox transformation with # = 0.43 instead of the
square root transformation. Next, we observe that there is also no evidence against the
exponential model introduced in test 2 when o = 0.05. Finally, for most test statistics, the
model introduced in test 3 is rejected as well as the linear and the quadratic fits of tests 4
and 5.

6 Conclusions

In this paper, we used the integrated approach to construct a new test for the parametric
form of the regression function in a semiparametric transformation model. The main idea
of our test was to compare the integrated regression function estimated in a semiparametric
way to the one estimated under Hy. We defined a Kolmogorov-Smirnov and a Cramér-von
Mises test statistic, both based on an empirical residual process depending on a general
weighting function that allowed us to apply several approaches we found in the literature.
We established the limiting distribution of these two test statistics under the null hypothesis
and under a local alternative and we noticed that our tests have power against all local alter-
natives that converge to the null model at parametric rate. We compared the performance of
this new test to the previous test developed by Colling and Van Keilegom (2016) by means

of a large simulation study. Finally, we applied our test on a real data set.
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7 Appendix: Proofs

The Appendix is structured as follows. In Subsection 7.1, we introduce a number of notations
and we state the different assumptions under which the main results of this paper are valid.
Note that these assumptions are in majority the same as in Colling and Van Keilegom (2016).
Then, in Subsections 7.2, 7.3, we prove the main results of the asymptotic theory under the

null hypothesis and under the local alternative respectively.

7.1 Notations and technical assumptions

For 0 < o < §/2 < 1, where § is defined as in assumption (A2) (see below), let C4t(x) be
the set of d-times differentiable functions f : x — R such that :

| D7 f () — D7 f(a')]

o = maxsup | D’ f(z)| + max su <1,
Hf”d'i‘ j<d xegl f( )l = xﬂ;/gx Ha:_x/Ha >~
where j = (ji,...,7a), j. = Sob, js, DI = —2— and ||.|| is the Euclidean norm on R<.

821 ...927d
The main results of the asymptotic theé)ry rdequire the following regularity conditions

on the kernels, the bandwidths, the distributions of X and e, the transformation Ay, the

weihting function w, the integrating functions ¥,, and ¥ and the functions mg(x), m(x) and

r(z) :

(A1) The functions k; (j = 1,2) are symmetric, have support [-1,1], [ki(u)du = 1,
fukkrg(u) du=0fork=1,...,¢o—1and [u®ky(u)du # 0 for some go > 4. Moreover,
ki is d-times continuously differentiable, ky)(il) =0forl =0,...,d —1 and ky is

twice continuously differentiable.

(A2) hy (for il =1,...,d) satisfies h;/h — ¢, for some 0 < ¢; < oo and the bandwidths h and
g satisfy nh?*2 — 0 for some p > 3, nh3+° — oo for some § > 0, ng%(Ing=1)~2 — oo
and ng*®? — 0 when n — oo, where ¢ is defined in condition (Al).

(A3) (i) The support x of the covariate X is a compact subset of R

(ii) The distribution function Fx is 2d + 1-times continuously differentiable.

(ifi) infyey fx(z) > 0.
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(A4) The distribution function F.()x(y|z) is three times continuously differentiable with
respect to y and #, and
giti
Oyioolt ... 00

< 00

sup Feo)x (y|x)

0,y,x

for all 4 and j such that 0 <4+ j < 2 where j = Y/, ji.
(A5) (i) The transformation Ay(y) is three times continuously differentiable with respect
to both y and 6, and there exists a > 0 such that :
giti
0yt06

E[ sup AQ/(Y)‘H < 0

6:[|0" 0| <cx
for all # € © and all ¢+ and j such that 0 <i+4 5 < 3.
(ii) sup,e, E[(Ag,(Y))PX = 2] < oc.

(A6) (i) B is a compact subset of R? and 3, is an interior point of 5.

(ii) All partial derivatives of mg(x) with respect to the components of x and  of

order 0, 1, 2 and 3 exist and are continuous in (z, 8) for all x and S.
(iii) For all e > 0 :

||5—i?oﬁ\>5E[(mﬁ<X) —mg,(X))?] >0 .

(iv) €2 is non singular.

(A7) The functions m(z) and Zm(xz,6) := mm(z) are p + 2 times continuously differentiable
with respect to the components of x on x x N(6p), where N(f) is a neighbourhood of

0y and all derivatives up to order p + 2 are bounded, uniformly in (z,6) in x x N(6p).
(A8) (i) For all n > 0, there exists e(n) > 0 such that

inf [|E(E(0, X, Y))|| = e(n) >0

10—00l1>n
(ii) The matrix I" is of full rank.

(A9) (i) The class of functions W = {u — w(u, z,7v), (x,7v) € II} is Donsker.

(ii) The weighting function w satisfies sup , . em ey [W(E; 2, 7)| < 00.
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(iii) The weighting function w satisfies sup,, V[w(t,-,-)] < oo, where Viw(t,-,-)] is

the total variation of w(t, -, -) defined on the compact set II.

(A10) The integrating functions W, (z,v) and W(x,~) satisfy the two following regularity

conditions : there exists a random function ¥ such that

sup W (z,7) \If(x,w‘ —op(n”1?) |
(z,y)ell
and such that
sup [B(5,7) ~ #(2.)| = op(1)
(z,y)ell
where ®(z,7) = o U(z,~) and ®(z,7) = o U(x,7) if d, # 0

- 071...02q071...0Y4,, - 071...02q071...0Yd,,

and @((1,’7’)/) = a—daxdql(xa’Y) and EI/)(ZE,’Y)

~ Oz1..

U(z,) if d,=0.

— ok
- 8x1...8xd

(A11) Ag,(a) = a and Ag,(8) = b for some o < 3 and a < b, and the set {z € x : Zm(z) # 0}

has nonempty interior.

(A12) E(r*(X)) < oo and () is twice continuously differentiable for all .

Note that conditions (A1) and (A2), which are assumptions on the different kernels and
bandwidths and condition (A7) come partially from Linton, Sperlich and Van Keilegom
(2008), partially from Neumeyer and Van Keilegom (2010) and partially from Colling and
Van Keilegom (2016). Moreover, condition (A3)(ii) comes from Neumeyer and Van Keile-
gom (2010), conditions (A4), (A5) and (A8) come from Linton, Sperlich and Van Keilegom
(2008) and conditions (A6) and (A12) come from Van Keilegom, Gonzélez-Manteiga and
Sanchez Sellero (2008) and Colling and Van Keilegom (2016). Condition (A11) is needed for
identifying the model, see Vanhems and Van Keilegom (2016) and Colling and Van Keilegom
(2016). Finally, conditions (A9) and (A10) are new conditions on the weighting function w
and the integrating functions ¥,, and ¥ respectively.

We will prove now that conditions (A9)(i) and (A10) are satisfied for the different weight-
ing functions w and the corresponding integrating functions ¥, and ¥ that we have used in

the simulations and in the application.

Proposition 7.1. Condition (A9)(i) is satisfied for the weighting functions w(X,z,v) =
]-{XSZ}; U)(X,JI,’Y) = 1{7’5X§x}; w(vaa/Y) = eXp(iItX)7 U)(X,Jf,’)/) - Sil’l(l’tX), w(vaa/Y) =
exp(z'X) and w(X,x,7) = (1 + exp(—2'X))~".

27



Proof. Consider first w(X,z,v) = sin(2'X), w(X,z,7) = exp(z'X) and w(X,z,v) =
(1 + exp(—2'X))~'. These three weighting functions are infinitely differentiable and all
derivatives are uniformly bounded on the compact set y. Hence, applying Corollary 2.7.2 in
Van der Vaart and Wellner (1996), we get that log Njj(g, W, Ly(P)) < Ce~¥*, where C' is
some positive constant,  is the smoothness of the class which can be taken arbitrarily large,
Nj(E,W, Ly(P)) is the e-bracketing number of the class W, P is the probability measure
corresponding to the distribution of X, and Ly(P) is the Ly-norm. This gives

+o0 2T
/ Vg Ny (E W, Ly(P)) dE = / V1og NY(E W, Ly(P)) &
0 0

2T
< VCOe-d/sdg

0
VC(2T) !
AACCLY i

441
< o0,

provided k > d/2, and where T' is a uniform upper bound for the above three w-functions.
We obtained the first equality since only one e-bracket suffices to cover W if £ > 2T. Finally,
it suffices to apply Theorem 2.5.6 in Van der Vaart and Wellner (1996) to get that W is
Donsker. Next, if w(X,z,7) = exp(iz' X), the proof is exactly the same, taking into account
that exp(iz'X) = cos(2'X) + i sin(z' X).

Second, consider w(X,x,7) = l{x<,3. This function is not differentiable, so we can not
apply the same proof as above. However, in this case, we can apply Example 2.5.4 in Van
der Vaart and Wellner (1996), which states that the set of all indicator functions of type
lix<z) in R? is Donsker for any dimension d.

Finally, the proof for w(X, z,v) = 1{ytx<z is similar to the proof of Lemma 1 in Akritas
and Van Keilegom (2001). We refer to their paper for more details. U

Proposition 7.2. Condition (A10) is satisfied for the three following cases :
(a) V,(x,v) = ¥(x,v), when the weighting function used in Bierens (1982) is considered.

(b) ¥, (x,v) = F\X(x) and V(z,v) = Fx(z), when the weighting function used in Stute
(1997) is considered and also used when w(X, z,v) = sin(z'X), w(X, z,v) = exp(2'X)
and w(X, z,v) = (1 + exp(—z' X))~
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(c) AV, (z,y) = dﬁnﬁ(:c)dfy and VY (z,v) = F,(z), when the weighting function used in

FEscanciano (20006a) is considered .

Proof. First, the result is trivial in case (a), since we can take U =W, = ¥. Second,

consider case (b). In that case, we define
~ ~ a [ = r—t
U(z) = Fx(z) =b," | Fx(t)L 5 dt
x1—1t1 Tg—1tg

where t = (f,... ta), dt = (dby, ... dta), 54 = (8=t 2=
7> £ and b, is a bandwidth such that nb? (logn) ™' — oo and nb?™ — 0. By definition of the
kernel L, we know that b,¢ [ L(%)dt = 1. Consequently Fx(z) = b;dfﬁx(x)L(xb—;t)dt

and

), L is a kernel of order

Fe(o)— Fx() = b [ ﬁX@)L(‘”bj) dt - Fx ()

o - r—t
bnd/(Fx@) — Fx(t) - FX(x))L( ; ) dt — Fx(z)
- —d r—t
+Fx(z)+b," | Fx(t)L 7 dt .
Next, using a Taylor expansion, we have Fx(t) = Fx(z) + Zj 1 BF);(‘T (xj—t;)+...+0(b])

and also

b;d/FX(t)L(‘”l;t> dt:b;d/FX(x)L(xb;t) dt +0@7) |

since Fx is 7 times continuously differentiable by condition (A3)(ii) (if we take 7 < 2d+ 1),

and since L is a kernel of order 7. We get

Fx(z)—Fx(x) = Fx(z)—Fx(2)+b," / (ﬁx(t)—FX(t)—ﬁX<x)+FX(x>)L<9’ -

n

t) d+O (7).

We know that

b;d/(ﬁx(t) — Fx(t) — Fx(z) + FX(:E))L(wb; t) dt = Op(n~2bY2) = op(n~1/2) |

uniformly in € y. Note also that O(b7) is o(n~'/?) since nb?" — 0. This implies that

Fx(x) — Fx(z) = Fx(z) — Fx(z) + op(n™"?) ,

29



uniformly in = € x, i.e. sup,c, |Fy(z) — Fy(z)| = op(n=/2). We will now check the second
condition defined in (A10) in case (b). The function ®(z,~) = fx(z) is here given by

fx(ﬂf):%ﬁ dZL( )

and ®(x,v) = fx(x). Using the asymptotic properties of the classical kernel estimator of a

density function, we obtain

sup | fx (z) = fx(z)] = Op((nb})~/*(logn)"/*) + O(®;).

TEX

The last expression is op(1) since nbé(logn)~! — oco. This concludes the proof for case (b).

Finally, the proof of case (c) follows the same way as the proof of case (b). O

7.2 Proofs of the results under H,

Proof of Theorem 3.1. First, we will prove that the class

Fi = {(w,0) = wlu, z,7) (Mg (v) = mg, (), (z,7) € I}, (7.1)

is Donsker. Using assumption (A9)(i), we know that there exists a finite number of e—brackets,
say M, to cover W. Let wr < wV, ... wh, < wY, be the functions defining the M —brackets
to cover W.

Next, the functions y{ < o', ..., yi; < y§;, where yF(u,v) = min(w}(u)(Ag,(v) —
i (4)), 0V (1) (Agy (v) =25, (1)), and 5V (1, 0) = max(w () (Mg, (0) g, (1)), Y () (Agy (0) —
mg,(uw))) for j =1,..., M, define the M e—brackets to cover F;. Indeed, for j =1,..., M,

we have

where the last equality is obtained by independence between X and €. The last expression
is O(E%) since E(e%) = 0 < 0o and E[(w{ (X) —w}(X))?] < & by definition of the brackets

j
wi <wy for j=1,..., M. Hence, Njj(, Fy, Ly(P)) < oc.

2

_ E[(wju(X)—wj( D2(Aay (V) — migy (X))?

2

J

= E[(MU(X)—ij(X))2 E(e?)
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Consequently, if f € Fy, then f(u,v) is bounded by K|Ag,(v) — mg,(uw)| uniformly in

(x,7) € I, for some constant K < oo, since the function w is uniformly bounded in (z,~) € II

by condition (A9)(ii). This implies that

+o0
| Vs NG R LaP)
0

2Ko +oco
= / Vo8 Ny (B Fir, La(P)) dE + / V108 N (B, Fi, Lo(P)) dE
0 2Ko

< 00,

as the first term is finite and the second term is equal to 0. Indeed, if £ > 2K o, only one

bracket suffices to cover the class F;. Next, applying Theorem 2.5.6 in Van der Vaart and

Wellner (1996), we get that the class F; is Donsker. Hence, the process R,, converges weakly

to a limiting Gaussian process.

Finally, by independence between X and e, we have
Elw(X,z,7)(Ag, (V) = m(X))] = Elw(X,2,7)]E() =0,
as SUP(, )eriey [W(E T, 7)| < oo by assumption (A9)(ii). Finally,

Cov[w(X, z1,71) (Mg, (V) — m(X), w(X, z2,72)(Ag, (V) — m(X))]
= E[w(X, 21, 7)w(X, 19,72)e%] .

By independence between X and e and since E(g?) = o2, this last expression is
o Elw(X, z1, )w(X, z2,72)].

Proof of Theorem 3.2. First, note that

where
n

= 3 (XK ) (A5(Y5) — A (4D

=1

and
n

IT=n""2Y " w(X;, 2, 9)(mg(X;) — m(X;)) .

i=1
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Using successively a Taylor expansion with some & between 0 and 0y and Proposition 1 in
the supplementary material in Colling and Van Keilegom (2016), the expression I is equal
to

I = "y w(X ) (Ae(Y:)'n' (0 — 6o)

=1

= n Z (Xi,x,7) A90 ( 1/2Zg Y +op(1))
i=1

n

— _nfl/ZZ[ LY)) < IZWX“I’” AQO(Y))—E[w(X,x,v)(Aeo(Y))])

J=1

_1/2ZE (X, 2,9) (Mg, (Y))']9(X;,Y;) + 0p(1)

= —WZE (5,2, 7) (R, (V) 193, Y7) + 0p(1) (7.5)

We have obtained the last two equalities because n=' S°7  w(X;, x,7)(Ag, (Vi))! = Op(1) and
nt Y w(Xa, @) (A, (Y3) — Blw(X, 2,7) (Mg, (Y))] = Op(n~"/?) uniformly in (z,7) € 11,
and because n™'/2 37" | g(X;,Y;) = Op(1) by Proposition 1 in the supplementary material
in Colling and Van Keilegom (2016). Indeed, for [ = 1,... &, we define the classes

g = {(uav) - w(u7$a’7)(A90(v))lv <x77> < H} )
where (Ag,(v)); is the [—th component of the vector Ag,(v). Define 2l (u,v) =

min(wy (u)(Ag, (v))i, U( )(Agy (v))1) and 2f; (u, v) = max(w} (u) (Ag, (v))1, Wl () (Agy (v))1) for
j=1,...,M, where wf < wV, ... wl <wy are the M functlons defining the e—brackets

to cover W that have been introduced in the proof of Theorem 3.1. Consequently, for
[=1,...,kand 5 =1,..., M, we have

"o (w0 w0 (o)
_ E[(ij(X)_ij(X))2EKA9°(Y>>2

|
I
. 2 2
< SUpE[(Ag&Y)) X = x]E[(w]U(X) — wf(X)) } :
xex l
The last expression is O(£?) since sup,, E[(Ag,(Y))?|X = z] < 0o by condition (A5)(ii) and
E(wY(X) —wf(X))* < & by definition of the brackets wf < w{ for j =1,..., M. Hence,

J

32



in a similar way as in the proof of Theorem 3.1, we conclude that G;, for [ = 1,...,k, is
Donsker using Theorem 2.5.6 in Van der Vaart and Wellner (1996), and then (7.5) follows.
Next, as we are under Hy, m(x) = mg,(x) and using a Taylor expansion for some value

¢ between B and [y, expression 11 is equal to

I = n—1/22w<Xi,x,v>(§—6o)%
=1

_ n1/2(g_ Bo)tn! Zw(Xi,x,’y)h(Xiao
=1

—E gt S (X2 A C) — KX )

(Xi)

i=1
+n' (3 — By)n~! Z [w(Xi, x,v)h(X;, Bo) — H(x, 7, bo)
i=1
+n1/2<g_ Bo) H(x,, Bo) - (7.6)

Note that n1/2(3 — fo) = Op(1) by Lemma 4 in the supplementary material in Colling
and Van Keilegom (2016). Moreover, as h(X, ) is a differentiable function in § with a
uniformly bounded derivative (see condition (A6)(ii)), and as B—By = op(1) by Lemma 2 in
the supplementary material in Colling and Van Keilegom (2016), we have sup,., |h(z,() —
h(z, By)| = op(1). Consequently,

n

n! Zw(Xi; z,7)(h(Xi, ¢) — h(X5, 50))‘ <

=1

szrv’Y H X’HC (X’H/BU)
= 0P(1),

since sup(, e ey [W(t ,7)| < 0o by condition (A9)(ii). Hence, the first term on the right
hand side of (7.6) is op(1). Next, for [ = 1,...,q, we define the classes

= {u — w(u, x,v)h(u, po), (z,v) € 11} ,

where hy(u, 5y) is the [—th component of the vector h(u, 5o), i.e. hi(u, 5y) = Mg—%l(X), and

viy (u) = min(wj (w)hu(u, fo), wy (w)hi(u, So)) and vjj (u) = max(wy (w)hi(u, fo), wy (w)h(u, Bo))
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for j=1,..., M. Consequently, for [ =1,...,qand j=1,..., M, we have

= |

< (Bwiex, ﬁo)])m (£ - wf<X>>2D1/2

(£|wr oo - wf<X>>2])l/2 .

This last expression is finite by condition (A6)(ii) and since E[(wY(X) — w}(X))?] < &2
Hence, for [ = 1,...,q, Nyj(€,Hi, L1(P)) < oo, which implies that H; is Glivenko-Cantelli
by Theorem 2.4.1 in Van der Vaart and Wellner (1996), i.e

w3 10) - (X)) = orl1)

Then, the second term on the right hand side of (7.6) is op(1). In conclusion, combining
(7.2), (7.5) and (7.6), we get

v (X) = v (X) hi(X, Bo)

J

W ()~ uf (1)

hy(x, Bo)

< sup
TEX

sup
feH,

Ry (z,7) = I/QZE (X, 2,7) (Mg, (V)] g (X5, Yi) —n/2(B—Bo) H (7, Bo)+op(1)

uniformly in (x,7) € II. Finally, we conlude the proof using Lemma 4 in the supplementary
material in Colling and Van Keilegom (2016) (with r =0) :

Riw) = Rl WZE (X, 2,) (ha (V)X V)
‘”@Ht o7 ) (679 - 0 B[ 22y, g0, v}

+Op(1) .

The last equality was obtained using the fact that H(x,~, fy) is bounded uniformly in (z,v) €
I1. Indeed, for each l =1, ..., q, if we denote by H;(x,~, ) the [—th component of the vector
H(z,~,B),ie. H(x,v,p)=FElwX, v)amB(X)] we have that

sup
(z,v)€lL

< sup
(z,y)€lltex

sup
tex

Hl(x77750)

om0
b

Using conditions (A9)(ii) and (A6)(ii), we conclude that the last expression is finite. O

w(t, z,7)
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Proof of Theorem 3.3. First, note that

‘/H[Rﬂx,v)Pd(qfn(x,w _\1,@7))‘ <A+B.

where

A:

[P v - fﬁ(ac,w)] ,

and
B =

[ B - ‘If(ﬂw))‘ |

We will first prove that the term A is op(1) uniformly in (x,v) € II. Using integration by

parts, the term A is equal to

A= [wm,v) - \Tfm))R;(x,w] -2 [ @) = B Ry i)

Note that the first term on the right hand side is 0p(1), since sup, ,)en | Ry (2,7)| = Op(1)
by Corollary 3.1 and since sup, et |[Wn(,7) — U(z,7)| = op(n~1/2) = 0p(1) by condition
(A10). Consequently,

A = 2

[ ()~ B Rie) dR}L(x,w\

< 2 sup |W,(z,7) — U(z,7)

(z,y)ell

x sup V' [w(t, ° )] n~1/? i
i=1

tex

sup
(z,y)€ll

sz,w\

A5(5) — m5(Xa)| (77)

Next, the first factor on the right hand side of (7.7) is op(n~'/2) using condition (A10), the
second factor is Op(1) as explained just above and sup,., V[w(t, -, )] < 0o using condition

(A9)(iii). Moreover, it follows easily from the proofs of Theorem 3.2 and Corollary 3.1 that

n

n1/2 Z

i=1

— Op(ﬂl/g) ’

Ag(Yi) = mz(Xi)

which implies that A is op(1) uniformly in (x,~) € II. Finally, we will prove that the term
B is op(1) uniformly in (z,7) € II. As U(z,7) — U(z,7) is a differentiable function with

respect to (z,7), we have that

B = \ / [Ri(x,v)P@(xm)—‘P(ﬂcm))dfvdv‘
II
2
S K sup R;(%’W sup (I)(l"ﬁ)_q)(ff,w ) (78)
(z,y)ell (z,y)ell
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for some K < oco. We conclude the proof using the facts that the first factor on the right
hand side of (7.8) is Op(1) as explained just above and that the second factor is op(1) using
condition (A10). O

Proof of Corollary 3.1. First, we prove that R!(z,v) converges to a limiting Gaussian
process. In the proof of Theorem 3.1 we have shown that the class F; (corresponding to the

process R, (z,7)) is Donsker. Hence, using Theorem 3.2, it suffices to show that the class

‘FQ = {(U,U) — G(x777u70760750)7(x77) € H}

is Donsker. Recall that

G<x777u71}790750> = Ht<x77750)nﬁo(uvv>+E[w(X7x77)(A90(Y))t]g(uvU)

N omg,(X) , .
(o o B | P ) gt
Hence, each term of G(x,, u, v, 6y, fy) can be decomposed in a factor that depends on (x,~)
but not on (u,v), and another factor that depends on (u,v) but not on (z,y). Hence, it can
be easily seen using similar arguments as before that the class F5 is Donsker. In fact, we only
need to prove that sup, .yer [H (2,7, fo)| < oo and that sup, e [Elw (X, z, V(Mg (Y]] <

oo for [ =1,..., k. The former property has been shown at the end of the proof of Theorem

lll

3.2, whereas for the latter note that for [ = 1,..., k, we have

B[22 a1

B |wlX,2.0)E | (ha (1)

sup = Sup
(z,y)€ell (z,y)€ell
< swJulto)|swE| |0 [x =]
(z,y)elltex TEX

This last expression is finite by conditions (A9)(ii) and (A5)(ii). It now follows that R.(x,7)
converges to a Gaussian process R.. We can easily see that R. has zero mean, be-

cause R, converges to a centered Gaussian process by Theorem 3.1, E(nz(X,Y)) = 0
and E(g(X,Y)) = 0 since g(X,Y) = T71¢(y, X,Y) and £(y, X,Y) is the derivative of the
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likelihood. Moreover,

Coviw(X, z1,71)(Ng, (V) — m(X)) — G(x1,m, X, Y, 0o, 5o),
w(X, 2, 72) (N, (V) — m(X)) — G(x2,72, X, Y, 00, 5o)]
= El{w(X, z1,7)(Ag (V) = m(X)) = G(z1, 7, X, Y, 00, 50)}
x{w(X, x2,72)(Ag, (V) — m(X)) — G(z2,72, X, Y, b, Bo) }]
= Blw(X, 1, )w(X, 2,72)e%] — B[G (22,72, X, Y, 00, Bo)w(X, 21,71 )e]
—FE[G(x1,7,X,Y, 00, Bo)w(X, xe,V2)e]
+E[G(x1,71, X, Y, 00, B0) G (22,72, X, Y, 6o, Bo)].

Note that the first term on the right hand side of the last expression is C(z1,7y1, Z2,72). O

Proof of Corollary 3.2. First, to obtain the limiting distribution of D,,, it suffices to
apply Corollary 3.1 and the continuous mapping theorem. Next, for W2, we use Theorem
3.3, which states that we can replace d¥,,(z,~) by d¥(x,v) up to a negligible term. Hence,
we obtain the limiting distribution of W2 applying Corollary 3.1 and the continuous mapping

theorem. O

7.3 Proofs of the results under Hy,

Proof of Theorem 3.4. First, we remind that
Ry (x,7) = I+ Ry(w,y) — 11 , (7.9)

where I and IT are given in (7.3) and (7.4) respectively. Exactly in the same way as in the

proof of Theorem 3.2, expression [ is equal to
= —n_1/2ZE (X, 2,7) (Mg, (Y)]9(X:,Y:) + 0p(1) . (7.10)

Next, as we are under Hy,, m(z) = mg,(x) +n~Y?r(r) and using a Taylor expansion for
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some value ¢ between B\ and [y, expression 11 is equal to

I = n'? zn:w(Xivx’V)(g_ BO) 2 (Xl) —n!

£ 85 w(Xth’Y)T(Xi)

M+ 11

= n'2(B = po)'n”" Z w(Xs, @, )X, () =07t

1=1 i=1

_ n1/2(3_ ﬁo)tn71 Z w(XZ-, T, 7)(h(Xi, C) — h(Xi7 5%))

w( X, x,y)r(X;)

i=1
+7”L1/2(B - 50)tn71 Z |:w(Xla Z, V)h(Xla EOn) - H(.Z', e B/On):|
i=1
+n'2(B = Bo) H(x,7, Bon) — 0" Zw(Xi,:B,'y)r(Xi) . (7.11)
i=1

Note that n'/2(8 — By) = Op(1) by Lemma 4 in the supplementary material in Colling and
Van Keilegom (2016). Moreover, as the function A is a differentiable function in 5 with a
uniformly bounded derivative (see condition (A6)(ii)) and By, — fo = op(1) using Lemma 3
in the supplementary material in Colling and Van Keilegom (2016), we can prove in exactly
the same way as in the proof of Theorem 3.2 that expressions

n

n™ > w(Xi, ) (h(X, €)= h(Xi, Bon))

i=1
and

et [w<Xi,x,v>h<Xi,§on>—H(x,%Eom ,
=1

are op(1) uniformly in (z,7) € II, which implies that the first and the second terms on the
right hand side of (7.11) are also op(1) uniformly in (x,v) € II. Then, combining (7.9),
(7.10) and (7.11), we get

R}I(I,'Y) = R UQZE Xx 7 AGO(Y))t}g(XhY;)

n

_”1/2(3 — o) H(x,, gOn) +nt Z w(X;, x,7)r(X;) + op(1) .

=1

Finally, we define the class
Fs ={u = w(u, z,7)r(u), (z,7) € I},
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and we let 7 (u) = min(w} (u)r(u), wY (w)r(w)) and r¥ (u) = max(wf (u)r(u), w§ (u)r(u)) for
j=1,...,M, where wF <wV ... wk <wY are the M functions defining the £—brackets
to cover W that have been introduced in the proof of Theorem 3.1. Consequently, for
jg=1,..., M, we have

ri (X) —rf(X)

J J

-

< (E[TQ(XH)W (o - wf(X))?Dm -

This last expression is finite by condition (A12) and since E[(w? (X)—w}(X))?] < &2 Hence,

Ny (€, F3, Li(P)) < oo, which implies that F3 is Glivenko-Cantelli by Theorem 2.4.1 in Van
der Vaart and Wellner (1996), i.e

sup
fe€Fs

WYX - E(f(X))] o).

This means that n ™' Y7 | w(X;, z,7)r(X;) = Elw(X, z,7)r(X)]4+0p(1) uniformly in (z,7) €
IT. We conlude the proof using Lemma 4 in the supplementary material in Colling and Van
Keilegom (2016) :

Ri(,7) = Rul WZE (X, 2,7) (Ao, (Y)) g (Xi, V5)

- omz (X)

—1/2 -1 Bon
-n / ;:1 Ht(x, v, BOH){HEM (Xi, Y;) — QO F —8ﬁ
8m§0n(u)

op
The last equality was obtained using the fact that H(z,~, EOR) is bounded uniformly in

(B ) o510}

—H'(x,, Bon) 2" /r(u) dFx(u) + Elw(X, z,v)r(X)] + op(1).

(x,7v) € 11, the proof is exactly the same as in Theorem 3.2. O

Proof of Corollary 3.3. To prove this result, we will show that expressions R, (z,7) —
n Y23 G(z,v, Xy, Yi, 00, Bo) under Hy and R, (z,v) — n~ 23" G(z,v, X;, Y, 0o, EOn)
under Hy, have the same limiting Gaussian process R. . Since the bias term b(z,v) was
already obtained in Theorem 3.4, this will conclude the proof.
Recall the definition of G(z,v,X,Y, 00, By) given in (3.1). First note that Theorem
3.2 in Colling and Van Keilegom (2016) shows that n=Y/23"" 15 (X;,Y;) under Hy and
n~V2 3 g, (X, Y:) under Hy, have the same limiting distribution.
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Moreover, combining assumption (A6)(ii) and the fact that o, — fo = op(1) by Lemma 3

in the supplementary material in Colling and Van Keilegom (2016), we have that
Omg (1) Omg,(t)
SUD;e, - =o(1).

a8 9B
Next, for [ = 1,...,q, we denote by H;(x,v,[) the [—th component of the vector

H(z,~,0),ie. Hj(x,v,p)= E[w(X,x,’y)ang%(lX)]. Forl=1,...,q, we have

3 omz (X)) 9Omg (X
sup |Hi(z,7, Bon) — Hi(z,7,B80)| = sup E{w(X,x,y)( go" _ g‘)( >>H
(@,y)€Tl ()€l B By

Omg, (t)  Om (t)‘
Bon Bo
< su w(t, z, su —
B (m)errl),tEX (t,2.7) teg 96, By

The last expression is op(1) using condition (A9)(ii). Hence, sup, .jen |Hl(x,7,§0n) -
Hl(xufyaﬁ())‘ = 0(1) fOI' [ = 17 - q.
This shows the above statement, and hence finishes the proof. U

Proof of Corollary 3.4. First, note that we can prove by very similar arguments the same
result as in Theorem 3.3 but under Hy,. The proof of this Corollary is similar to the proof

of Corollary 3.2. It suffices to apply Corollary 3.3 and the continuous mapping theorem. [
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