
I N S T I T U T  D E  S T A T I S T I Q U E

B I O S T A T I S T I Q U E  E T

S C I E N C E S  A C T U A R I E L L E S

( I S B A )

DISCUSSION PAPER

 2016/31 

Goodness-of-fit tests in semiparametric
transformation models using the integrated

regression function

Colling, B. and I. Van Keilegom



Goodness-of-fit tests in semiparametric
transformation models using the integrated

regression function

Benjamin Colling ∗ Ingrid Van Keilegom ∗,§

July 22, 2016

Abstract

Consider the following semiparametric transformation model Λθ(Y ) = m(X) + ε,
where X is a d-dimensional covariate, Y is a univariate dependent variable and ε is an
error term with zero mean and which is independent of X. We assume that m is an
unknown regression function and that {Λθ : θ ∈ Θ} is a parametric family of strictly
increasing functions. We use a profile likelihood estimator for the parameter θ and a
local polynomial estimator for m. Our goal is to develop a new test for the parametric
form of the regression function m, which has power against all local alternatives that
converge to the null model at parametric rate, and to compare its performance to
that of the test proposed by Colling and Van Keilegom (2016). The idea of the new
test is to compare the integrated regression function estimated in a semiparametric
way to the integrated regression function estimated under the null hypothesis. We
consider two different test statistics, a Kolmogorov-Smirnov and a Cramér-von Mises
type statistic, and establish the limiting distributions of these two test statistics under
the null hypothesis and under a local alternative. We use a bootstrap procedure to
approximate the critical values of the test statistics under the null hypothesis. Finally,
a simulation study is carried out to illustrate the performance of our testing procedure,
to compare this new test to the previous one and to see under which model conditions
which test behaves the best. We also apply both methods on a real data set.
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1 Introduction

The simple linear regression model is the most commonly used model in statistics when we

want to explain the relationship between a dependent variable Y and a vector of explanatory

variables denoted X. However, this model relies on heavy assumptions that are not always

satisfied in practice, namely the structure of this model is additive and linear, the variance

of the error term ε is constant and ε is normally distributed. As a possible solution to this

problem, Box and Cox (1964) introduced a parametric family of power transformations and

suggested that this power transformation, when it is applied to the response variable Y ,

might induce additivity of the effects, homoscedasticity and normality of the new error term

and reduce skewness. Note that the Box and Cox (1964) transformation also includes as

special cases the logarithm and the identity.

This class of transformation has been generalized, see for example the Yeo and Johnson

(2000) transform. Other types of transformations have also been introduced in the literature,

e.g. the Zellner and Revankar (1969), the John and Draper (1980), the Bickel and Doksum

(1981) and the MacKinnon and Magee (1990) transforms among others. We also refer to

the book of Carroll and Ruppert (1988).

All the above mentioned papers consider a model where both the transformation and

the regression function are parametric. In the literature, we can also find papers where

both the transformation and the regression function are nonparametric, e.g. Breiman and

Friedman (1985), Horowitz (2001) and Jacho-Chavez, Lewbel and Linton (2008), and papers

where the transformation is nonparametric and the regression function is parametric, e.g.

Horowitz (1996).

In this paper, we will focus on a model where the transformation is parametric and the

regression function is nonparametric, i.e. we will consider a semiparametric transformation

model of the following form :

Λθ(Y ) = m(X) + ε , (1.1)

where m(·) is an unknown regression function, Λθ(·) is some parametric transformation of

the response variable Y and θ ∈ Θ where Θ is a finite dimensional compact subset of Rk.

We will denote by θ0 and m0(·) the true but unknown values of θ and m(·). Moreover, we

assume that X is a d-dimensional covariate, Y is a univariate response variable and the error

term ε has zero mean and is independent of X.

Linton, Sperlich and Van Keilegom (2008) have extensively studied the semiparametric
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transformation model (1.1). Their main objective was to propose different estimators of the

transformation parameter θ and to establish the asymptotic properties of these estimators.

Vanhems and Van Keilegom (2016) have also studied the estimation of this model supposing

that some of the regressors are endogenous as a result of e.g. omitted variables, measurement

error or simultaneous equations. We also like to mention the works of Colling, Heuchenne,

Samb and Van Keilegom (2015) and Heuchenne, Samb and Van Keilegom (2015) who in-

troduced and studied respectively nonparametric estimators for the error density function

and the error distribution function. Moreover, Colling and Van Keilegom (2016) developed

a test for the following null hypothesis :

H0 : m ∈M , (1.2)

whereM = {mβ : β ∈ B} is some parametric class of regression functions and B ⊂ Rq. The

main idea of their test was to compare the distribution function of the error term estimated

in a semiparametric way to the distribution function of the error term estimated under H0.

We also like to mention the work of Neumeyer, Noh and Van Keilegom (2016). Recently,

they introduced estimators for the different components of a heteroscedastic transformation

model and proved the asymptotic normality of these estimators. They also proposed a test

for the validity of this model.

The main objective of this paper is to develop a second test for the null hypothesis

(1.2), which has power against all local alternatives that converge to the null model at

parametric rate, and to compare this new test to the previous one developed by Colling and

Van Keilegom (2016). The basic idea of the new test is to compare the integrated regression

function estimated in a semiparametric way to the integrated regression function estimated

under H0. The idea of testing the form of the regression function using the integrated

regression function has been studied among others by Bierens (1982), Stute (1997) and

Escanciano (2006a). These three articles worked in a context of a nonparametric regression

model without transformation of the response variable. The first consistent integrated test

was proposed by Bierens (1982). He defined the following Cramér-von Mises test statistic :∫
[n−1/2

n∑
j=1

eix
tXj(Yj −mβ̂(Xj))]

2Φ(x) dx ,

where i is the imaginary unit, β̂ is the least squares estimator of β and Φ is a positive

integrating function, for example a d-variate normal density. The test of Stute (1997) was
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based on the following residual process :

n−1/2

n∑
j=1

1{Xj≤x}(Yj −mβ̂(Xj)) ,

where 1{X≤x} is a component by component indicator. Finally, the test of Escanciano (2006a)

was based on the following residual process :

n−1/2

n∑
j=1

1{γtXj≤x}(Yj −mβ̂(Xj)) ,

where γ is a d-dimensional vector. The main difference between these three approaches is the

weigthing function that each author uses to construct his residual process. More generally,

this class of tests is based on the equivalence

E(ε|X) = 0 a.s.⇐⇒ E(εw(X, x, γ)) = 0 ∀(x, γ) ∈ Π , (1.3)

where Π is a properly chosen space and w(·, x, γ) is a parametric family such that the

equivalence (1.3) holds. Bierens and Ploberger (1997), Stinchcombe and White (1998) and

Escanciano (2006b) among others propose some primitive conditions on the family of weight-

ing functions w(·, x, γ) so that the equivalence (1.3) is satisfied, including w(X, x, γ) =

exp(ixtX), w(X, x, γ) = 1{X≤x} and w(X, x, γ) = 1{γtX≤x}, the weighting functions used by

Bierens (1992), Stute (1997) and Escanciano (2006a) respectively. Other possibilities are

for example w(X, x, γ) = exp(xtX), w(X, x, γ) = (1 + exp(c− xtX))−1 for some constant c,

w(X, x, γ) = sin(xtX) and w(X, x, γ) = sin(xtX)+cos(xtX). In the context of nonparamet-

ric regression without transformation of the response, this class of tests, which is called “the

integrated approach”, avoids the use of smoothing methods which is an important advan-

tage. In this paper, our goal is to extend this class of tests to the context of semiparametric

transformation models.

Many papers in the literature use this integrated approach in other contexts, in time series

for example. The most frequently used weighting functions are w(X, x, γ) = exp(ixtX), see

Bierens (1984) and Bierens (1990) for example, and w(X, x, γ) = 1{X≤x}, see Koul and Stute

(1999) and Whang (2000) for example. We also like to mention the work of Stute and Zhu

(2002) who use a similar approach as Escanciano (2006a) except that Stute and Zhu (2002)

estimate the parameter γ.

There are other ways to construct tests for (1.2) instead of using the idea based on the

integrated regression function. We could for example define a test using the approach of
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Härdle and Mammen (1993) among others. A recent overview on goodness-of-fit tests for

regression models was given by González-Manteiga and Crujeiras (2013).

The paper is organized as follows. In Section 2, we explain in detail how we can estimate

a semiparametric transformation model and we define our testing procedure. In Section 3,

we present the main results of the asymptotic theory and in particular the limiting distribu-

tions of the proposed test statistics. Section 4 contains a simulation study that shows the

performance of the proposed test and compares this new test to the previous test of Colling

and Van Keilegom (2016). In Section 5, we apply our method to a real data set and Section

6 contains the conclusions. Finally, the Appendix contains the proofs of the main results.

2 The proposed test

2.1 Notations and definitions

We suppose that X has compact support χ ⊂ Rd. For i = 1, . . . , n, let Xi = (Xi1, . . . , Xid)

and assume that we have randomly drawn an iid sample (X1, Y1), . . . , (Xn, Yn) from the

semiparametric transformation model (1.1). We denote by FX , fX , Fε and fε the distribution

and the probability density functions of X and ε respectively. Moreover, let σ2 = V (ε) <∞
and define the function

m(x, θ) = E[Λθ(Y )|X = x] .

Note that m(x, θ0) = m(x). We also denote

∂

∂x
fX(x) =

(
∂

∂x1

fX(x), . . . ,
∂

∂xd
fX(x)

)t
,

which is a (d× 1)-vector where x = (x1, . . . , xd)
t, and let

Λ̇θ(y) =

(
∂

∂θ1

Λθ(y), . . . ,
∂

∂θk
Λθ(y)

)t
be a (k×1)-vector where θ = (θ1, . . . , θk)

t. Similar notations will be used for other functions.

For any function ϕ, we define ϕ′(u) = ∂ϕ/∂u. Finally, let ε(θ) = Λθ(Y ) −m(X, θ) and let

Fε(θ) and fε(θ) be the distribution and the density function of ε(θ), respectively.
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2.2 Estimation of the model

In this section, we will introduce the estimators of the transformation parameter θ and of

the regression function m(x, θ) that we will use throughout this paper. We will proceed in

exactly the same way as in Colling and Van Keilegom (2016). We will estimate θ by the

profile likelihood estimator developed by Linton, Sperlich and Van Keilegom (2008).

The basic idea of the profile likelihood method is to calculate the log-likelihood function

of Y given X and to replace unknown expressions by nonparametric estimators, which gives

us the following estimator of θ :

θ̂ = arg max
θ∈Θ

n∑
i=1

{
log f̂ε(θ)(Λθ(Yi)− m̂(Xi, θ)) + log Λ′θ(Yi)

}
, (2.1)

where m̂(x, θ) and f̂ε(θ)(y) are respectively nonparametric estimators of the unknown regres-

sion function m(x, θ) and of the error density function fε(θ)(y). More precisely, here we will

estimate the unknown regression function by a local polynomial estimator of degree p (like in

Neumeyer and Van Keilegom (2010)), i.e. let h = (h1, . . . , hd)
t be a d-dimensional bandwidth

vector and let K1(u) be a d-dimensional product kernel of the form K1(u) =
∏d

j=1 k1(uj)

where k1 is a univariate kernel. Then, for an arbitrary point x = (x1, . . . , xd)
t in the support

χ of X, m̂(x, θ) = b̂0(θ) where b̂0(θ) is the first component of the vector b̂(θ), which is the

solution of the following local minimization problem :

min
b

n∑
i=1

(Λθ(Yi)− Pi(b, x, p))2K1

(
Xi − x
h

)
,

where Pi(b, x, p) is a polynomial of order p built up with all products of 0 ≤ l ≤ p factors of

the form Xij−xj for j = 1, . . . , d. We will use the notation m̂(x) = m̂(x, θ̂) when there is no

ambiguity. Moreover, f̂ε(θ)(y) is the following kernel estimator of the error density function :

f̂ε(θ)(y) =
1

ng

n∑
i=1

k2

(
y − ε̂i(θ)

g

)
,

where ε̂i(θ) = Λθ(Yi)− m̂(Xi, θ), k2 is a kernel and g is a bandwidth.

It is important to remark that we assume a completely unspecified regression function

m(·) which is slightly different from what Linton, Sperlich and Van Keilegom (2008) assume,

since they assume an additive or multiplicative structure on m(·). Moreover, we have esti-

mated this regression function by a local polynomial estimator whereas Linton, Sperlich and

Van Keilegom (2008) used a higher order kernel estimator.
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Finally, Colling and Van Keilegom (2016) proved that the following asymptotic represen-

tation for θ̂ − θ0 and the following limiting distribution of n1/2(θ̂ − θ0) obtained by Linton,

Sperlich and Van Keilegom (1998) stay valid when m(·) is completely unspecified and is

estimated by a local polynomial estimator :

θ̂ − θ0 = −n−1

n∑
i=1

g(Xi, Yi) + oP (n−1/2) ,

and

n1/2(θ̂ − θ0)
d−→ N(0, V (g(X, Y ))) ,

where g(X, Y ) = Γ−1ξ(θ0, X, Y ),

ξ(θ,X, Y ) =
1

fε(θ)(ε(θ))
[f ′ε(θ)(ε(θ))(Λ̇θ(Y )− ṁ(X, θ)) + ḟε(θ)(ε(θ))] +

Λ̇′θ(Y )

Λ′θ(Y )
,

and

Γ =
∂

∂θ
E[ξ(θ,X, Y )]

∣∣∣∣
θ=θ0

.

The assumptions under which these results are valid are given in Colling and Van Keilegom

(2016).

2.3 The test statistics

We will introduce two new test statistics where the basic idea is to compare the integrated

regression function estimated in a semiparametric way to the integrated regression function

estimated under H0. We consider the following integrated regression function :

M(x, γ, θ) =

∫
w(t, x, γ)m(t, θ) dFX(t) = E[w(X, x, γ)Λθ(Y )] ,

where w is some weighting function that depends on some parameter γ ∈ Rdγ and that

satisfies the equivalence (1.3). We assume that γ has compact support χγ ⊂ Rdγ . The

empirical analog of M(x, γ, θ) is given by

M̂(x, γ, θ) = n−1

n∑
i=1

w(Xi, x, γ)Λθ(Yi) .

Next, under H0, m ≡ mβ0 where β0 is the true value of β under H0. Then, the integrated

regression function becomes

Mβ0(x, γ, θ0) =

∫
w(t, x, γ)mβ0(t) dFX(t) ,
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and its empirical analog is given by

M̂β0(x, γ, θ0) = n−1

n∑
i=1

w(Xi, x, γ)mβ0(Xi) .

Hence, our test will be constructed on the basis of the following residual process :

Rn(x, γ, θ0, β0) =
√
n(M̂(x, γ, θ0)−M̂β0(x, γ, θ0)) = n−1/2

n∑
i=1

w(Xi, x, γ)(Λθ0(Yi)−mβ0(Xi)) .

Finally, as the parameters θ and β are unknown, we will estimate θ by the profile likelihood

estimator defined in (2.1) and we will estimate β by a least squares estimator, i.e. we consider

β̂ which is a minimizer over β ∈ B of the expression

Sn(β) = n−1

n∑
i=1

(Λθ̂(Yi)−mβ(Xi))
2 . (2.2)

This gives the following residual process :

Rn(x, γ, θ̂, β̂) =
√
n(M̂(x, γ, θ̂)− M̂β̂(x, γ, θ̂)) = n−1/2

n∑
i=1

w(Xi, x, γ)(Λθ̂(Yi)−mβ̂(Xi, θ̂)) .

For an easier readability, we will use the notations mβ̂(Xi) = mβ̂(Xi, θ̂), Rn(x, γ) =

Rn(x, γ, θ0, β0) and R1
n(x, γ) = Rn(x, γ, θ̂, β̂) when there is no ambiguity. It is important

to remark that we will follow the idea of Escanciano (2006a) and we will not estimate the

parameter γ unlike Stute and Zhu (2002) for example. We consider a process that depends

both on x and γ. The test statistics that we will use are Kolmogorov-Smirnov and Cramér-

von Mises type statistics defined by

Dn = sup
(x,γ)∈Π

|R1
n(x, γ)| and W 2

n =

∫
Π

[R1
n(x, γ)]2 dΨn(x, γ) ,

where Π is a properly chosen compact space and Ψn(x, γ) is a certain estimator of an arbi-

trary integrating function Ψ(x, γ) that is absolutely continuous and that satisfies regularity

condition (A10) given in the Appendix. The main advantage of putting a general weighting

function w and an arbitrary integrating function Ψn in the definition of the Cramér-von

Mises test statistic is that we can use the three main approaches in the literature based

on the integrated regression function but in a context of a semiparametric transformation

model :
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1. Bierens (1982) : take Π = χ, w(X, x, γ) = exp(ixtX) where i is the imaginary unit,

Ψn(x, γ) = Ψ(x, γ) and dΨ(x, γ) = Φ(x)dx. Here, the function Φ(x) will be the

standard d-variate normal density function, so that the imaginary part of the Cramér-

von Mises test statistic is equal to 0. Using this particular function Φ(x) and doing

similar calculations as in Bierens (1982), we find that :

W 2
expi

= n−1

n∑
j=1

n∑
k=1

ej(θ̂, β̂)ek(θ̂, β̂) exp

(
− 1

2

d∑
l=1

(Xjl +Xkl)
2

)
,

where ej(θ̂, β̂) = Λθ̂(Yj) −mβ̂(Xj). We will use this particular expression of W 2
expi

in

our simulation study when the complex exponential weight will be used.

2. Stute (1997) : take Π = χ, w(X, x, γ) = 1{X≤x} where 1{X≤x} is a component by

component indicator and Ψn(x, γ) = F̂X(x) where F̂X(x) is the empirical distribution

function of the data {Xi}i=1,...,n. Moreover, Ψ(x, γ) = FX(x) is the true distribution

function of X. Hence, the two test statistics take the following form :

D1 = max
1≤k≤n

∣∣∣∣n−1/2

n∑
j=1

ej(θ̂, β̂)1{Xj≤Xk}

∣∣∣∣ ,
and

W 2
1 = n−2

n∑
k=1

( n∑
j=1

ej(θ̂, β̂)1{Xj≤Xk}

)2

.

3. Escanciano (2006a) : take dγ = d, w(X, x, γ) = 1{γtX≤x} and dΨn(x, γ) = dF̂n,γ(x)dγ

where F̂n,γ(x) is the empirical distribution function of the projected regressor {γtXi}i=1,...,n

and dγ is the uniform density on Sd which is the unit ball of dimension d and en-

sures that all directions are equally important. Then, Π = [−∆,∆] × Sd where

∆ = dmax1≤i≤n supt∈χ |ti| and ti is the i-th component of the vector t ∈ χ. More-

over, Ψ(x, γ) = Fγ(x) is the true cumulative distribution function of γtX. In that

case, the two test statistics take the following form :

Dγ = sup
1≤k≤n,γ∈Sd

∣∣∣∣n−1/2

n∑
j=1

ej(θ̂, β̂)1{γtXj≤γtXk}

∣∣∣∣ ,
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and

W 2
γ =

∫
Π

(
n−1/2

n∑
j=1

ej(θ̂, β̂)1{γtXj≤u}

)2

dF̂n,γ(u)dγ

= n−1

n∑
j=1

n∑
k=1

ej(θ̂, β̂)ek(θ̂, β̂)

∫
Π

1{γtXj≤u}1{γtXk≤u}dF̂n,γ(u)dγ

= n−2

n∑
j=1

n∑
k=1

n∑
l=1

ej(θ̂, β̂)ek(θ̂, β̂)

∫
Sd

1{γtXj≤γtXl}1{γtXk≤γtXl}dγ .

In practice, to compute these test statistics, we will consider a random sample γ1, . . . , γnγ

from Sd. Hence, we can approximate both test statistics respectively by

D̃γ = sup
1≤k≤n,1≤m≤nγ

∣∣∣∣n−1/2

n∑
j=1

ej(θ̂, β̂)1{γtmXj≤γtmXk}

∣∣∣∣ ,
and

W̃ 2
γ = n−2n−1

γ

n∑
j=1

n∑
k=1

n∑
l=1

nγ∑
m=1

ej(θ̂, β̂)ek(θ̂, β̂)1{γtmXj≤γtmXl}1{γtmXk≤γtmXl} .

In the context of nonparametric regression without transformation of the response, the ad-

vantage of taking the indicator weight over the exponential weight is that it avoids the

choice of an arbitrary function Ψ and the advantage of taking the exponential weight over

the indicator weight of Stute (1997) is that the test is less sensitive to the dimension d.

Moreover, note that the tests proposed by Stute (1997) and Escanciano (2006a) are equiv-

alent when d = 1. However, in the context of goodness-of-fit in nonparametric regression

without transformation, the method of Escanciano (2006a) is known to avoid the curse of

dimensionality.

Note that our test can also be applied with several other weigthing functions we can find

in the literature, see Stinchcombe and White (1998) and Escanciano (2007) among others. In

this paper, we will also consider the three additional following approaches in our simulation

study : w(X, x, γ) = exp(xtX), w(X, x, γ) = (1 + exp(−xtX))−1 and w(X, x, γ) = sin(xtX)

with Π = χ, Ψn(x, γ) = F̂X(x) and Ψ(x, γ) = FX(x) in the three cases. The corresponding

test statistics are given by :

Dn = max
1≤k≤n

∣∣∣∣n−1/2

n∑
j=1

ej(θ̂, β̂)w(Xj, Xk, γ)

∣∣∣∣ ,
10



and

W 2
n = n−2

n∑
k=1

( n∑
j=1

ej(θ̂, β̂)w(Xj, Xk, γ)

)2

.

We will denote the three Kolmogorov-Smirnov test statistics respectively by Dexp, D1/ exp

and Dsin and the three Cramér-von Mises test statistics respectively by W 2
exp, W 2

1/ exp and

W 2
sin.

3 Asymptotic results

We first need to introduce the following notations :

Ω =

{
E

[
∂mβ0(X)

∂βr

(
∂mβ0(X)

∂βs

)t]}
r,s=1,...,q

,

ηβ(x, y) = Ω−1∂mβ(x)

∂β
(Λθ0(y)−mβ(x)),

where
∂mβ(x)

∂β
=

(
∂mβ(x)

∂β1

, . . . ,
∂mβ(x)

∂βq

)t
is a (q × 1)-vector and β = (β1, . . . , βq)

t. Finally, we consider h(x, β) =
∂mβ(x)

∂β
and

H(x, γ, β) = E[w(X, x, γ)h(X, β)].

3.1 Results under H0

To start, we introduce three theorems. The first one establishes the limiting process of Rn,

the second one states that the process R1
n can be expressed in terms of the process Rn and

a sum of iid terms up to a negligeable term, and the last one states that we can “replace”

Ψn(x, γ) by Ψ(x, γ) in the definition of W 2
n plus a negligible term. Combining these three

results, we will next easily obtain the limiting process of R1
n and the limiting distributions

of the test statistics. The assumptions under which these results are valid, as well as the

proofs of these results, are given in the Appendix.

Theorem 3.1. Assume (A1)-(A11). Then, under H0, the process Rn converges weakly to

R∞, where R∞ is a centered Gaussian process with covariance function given by

C(x1, γ1, x2, γ2) = σ2E[w(X, x1, γ1)w(X, x2, γ2)] ,
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for (x1, γ1), (x2, γ2) ∈ Π.

Theorem 3.2. Assume (A1)-(A11). Then, under H0,

R1
n(x, γ) = Rn(x, γ)− n−1/2

n∑
i=1

G(x, γ,Xi, Yi, θ0, β0) + oP (1) ,

where

G(x, γ,X, Y, θ, β) = H t(x, γ, β)ηβ(X, Y ) + E[w(X, x, γ)(Λ̇θ(Y ))t]g(X, Y )

−H t(x, γ, β)Ω−1E

[
∂mβ(X)

∂β
(Λ̇θ(Y ))t

]
g(X, Y ) . (3.1)

Theorem 3.3. Assume (A1)-(A11). Then, under H0,

W 2
n =

∫
Π

[R1
n(x, γ)]2 dΨn(x, γ) =

∫
Π

[R1
n(x, γ)]2 dΨ(x, γ) + oP (1) .

As a consequence of the previous theorems, we obtain successively the limiting process of

R1
n and the limiting distributions of the Kolmogorov-Smirnov and Cramér-von Mises test

statistics under the null hypothesis in the two following corollaries.

Corollary 3.1. Assume (A1)-(A11). Then, under H0, the process R1
n converges weakly to

R1
∞, where R1

∞ is a centered Gaussian process with covariance function given by

C1(x1, γ1, x2, γ2) = C(x1, γ1, x2, γ2)− E[G(x2, γ2, X, Y, θ0, β0)w(X, x1, γ1)ε]

−E[G(x1, γ1, X, Y, θ0, β0)w(X, x2, γ2)ε]

+E[G(x1, γ1, X, Y, θ0, β0)G(x2, γ2, X, Y, θ0, β0)] ,

for (x1, γ1), (x2, γ2) ∈ Π.

Corollary 3.2. Assume (A1)-(A11). Then, under H0,

Dn
d−→ sup

(x,γ)∈Π

|R1
∞(x, γ)| and W 2

n
d−→
∫

Π

[R1
∞(x, γ)]2 dΨ(x, γ) .
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3.2 Results under H1n

We consider the following local alternative hypothesis in order to study the power of the test

statistics :

H1n : m(x) = mβ0(x) + n−1/2r(x) for all x (3.2)

for some fixed function r 6= 0. First, we obtain the analog of Theorem 3.2 under H1n.

Theorem 3.4. Assume (A1)-(A12). Then, under H1n,

R1
n(x, γ) = Rn(x, γ)− n−1/2

n∑
i=1

G(x, γ,Xi, Yi, θ0, β̃0n) + b(x, γ) + oP (1) ,

where β̃0n is a minimizer over β ∈ B of E[(mβ(X)−m(X))2] and

b(x, γ) = −H t(x, γ, β0)Ω−1

∫
r(u)

∂mβ0(u)

∂β
dFX(u) + E[w(X, x, γ)r(X)] .

We remark the presence of an additional bias term b that depends on the deviation

function r in comparison with Theorem 3.2. Note that this bias term is exactly the same

as in the case where the transformation of the response would be known (see formula (3.3)

in Stute, 1997, for the case where w(t, x, γ) = 1{t≤x}). In other words, the estimation of

the transformation parameter θ has no impact on the asymptotic bias under H1n. This is

because θ is estimated based on a nonparametric estimator of m(·) (see formula (2.1)).

Finally, the following corollaries give respectively the limiting process of R1
n and the

limiting distributions of the two test statistics under the local alternative.

Corollary 3.3. Assume (A1)-(A12). Then, under H1n, the process R1
n converges weakly to

R1
∞ + b, where R1

∞ is the same centered Gaussian process as in Corollary 3.1.

Corollary 3.4. Assume (A1)-(A12). Then, under H1n,

Dn
d−→ sup

(x,γ)∈Π

|R1
∞(x, γ) + b(x, γ)| and W 2

n
d−→
∫

Π

[R1
∞(x, γ) + b(x, γ)]2 dΨ(x, γ) .

Since the bias term b(x, γ) is the same as in the case without transformation of the

response, we can directly use the results that have been obtained in Stute (1997) and Es-

canciano (2006a), who studied the bias term when the response is not transformed and
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when w(t, x, γ) = 1{t≤x} and w(t, x, γ) = 1{γtt≤x}, respectively. They showed that the

tests have power against all alternatives r that are such that the projection of r onto the

orthogonal complement of the functions
∫ · ∂mβ0

∂βl
(x)dFX(x), l = 1, . . . , q stays away from

span{∂mβ0
∂β1

, . . . ,
∂mβ0
∂βq
}, which is a natural condition that can basically not be avoided. This

is an important advantage of our new tests in comparison with those developed in Colling and

Van Keilegom (2016). Indeed, in the latter paper an example is given of a local alternative

that has no power.

In practice, we need to estimate the limiting distributions of Dn and W 2
n obtained in

Corollaries 3.2 and 3.4. However, this implies the estimation of fε, ḟε, f
′
ε, ṁ and fX and

consequently the introduction of new bandwidths which is possible but not easy. Therefore,

we prefer to use a bootstrap procedure in order to approximate the limiting distributions of

Dn and W 2
n under H0 in practice. This bootstrap procedure is described in the next section.

4 Simulations

In this section, we perform some simulations in order to evaluate the performance of our

test statistics for small samples and also to compare the results given by these tests to those

given by the tests based on the error distribution function developed by Colling and Van

Keilegom (2016).

The basic idea of the test developed by Colling and Van Keilegom (2016) was to compare

the error distribution function estimated in a semiparametric way to the error distribution

function estimated under H0. This gave the following test statistics :

TKS = n1/2 sup
y∈R
|F̂ε(y)− F̂ε0(y)|

and

TCM = n

∫
(F̂ε(y)− F̂ε0(y))2 dF̂ε(y) ,

where F̂ε(y) = n−1
∑n

i=1 I(ε̂i ≤ y), ε̂i = Λθ̂(Yi) − m̂(Xi) are the semiparametric residuals,

F̂ε0(y) = n−1
∑n

i=1 I(ε̂i0 ≤ y) and ε̂i0 = Λθ̂(Yi) − m̂β̂(Xi) are the estimated residuals under

H0 where m̂β̂(Xi) is the local polynomial estimator of degree p of mβ̂(Xi).

As the different Cramér-von Mises test statistics give in most cases similar or better

results than the corresponding Kolmogorov-Smirnov test statistics, we decide in this section

14



to compare only the results given by the Cramér-von Mises test statistics, i.e. TCM , W 2
1 ,

W 2
expi

, W̃ 2
γ , W 2

exp, W 2
1/ exp and W 2

sin.

We will explain briefly now how we will estimate θ, β, h and g in practice. It is done

similarly as in Colling and Van Keilegom (2016). For each value of θ, we obtain h∗(θ) the

cross validation bandwidth estimator :

h∗(θ) = arg min
h

n∑
i=1

(Λθ(Yi)− m̂−i(Xi, θ, h))2 ,

where

m̂−i(Xi, θ, h) =

∑n
j=1,j 6=i Λθ(Yj)k1

(
Xj−Xi

h

)
∑n

j=1,j 6=i k1

(
Xj−Xi

h

) ,

and k1(x) = k2(x) = 3
4

(1− x2) 1{|x|≤1} are the Epanechnikov kernel if we work in di-

mension d = 1. More generally, for d > 1, we use the product of d Epanechnikov ker-

nels for the estimator of the regression function. Moreover, we estimate g by ĝ(θ) =

(40
√
π)1/5n−1/5σ̂ε̂(θ,h∗(θ)), where σ̂ε̂(θ,h∗(θ)) is the classical estimator of the standard devia-

tion of the error term ε̂(θ, h∗(θ)) = Λθ(Y )− m̂(X, θ, h∗(θ)), where m̂(x, θ, h) denotes m̂(x, θ)

constructed with a bandwidth h. Note that we have estimated g by the classical normal

reference rule for kernel density estimation. Then, the optimal value of θ is given by

θ̂ = arg max
θ
lθ(h

∗(θ), ĝ(θ)) ,

where

lθ(h, g) =
n∑
i=1

{
log f̂ε(θ),g(Λθ(Yi)− m̂(Xi, θ, h)) + log Λ′θ(Yi)

}
,

where f̂ε(θ),g(y) denotes the estimator f̂ε(θ)(y) constructed with a bandwidth g. The estimator

of θ is obtained iteratively with the function optimize in R over the interval [θ0 − 2, θ0 + 2].

Finally, to estimate β, we minimize the following expression over the interval [−20, 20] :

β̂ = arg min
β

n∑
i=1

(Λθ̂(Yi)−mβ(Xi))
2 .

The critical values of the different test statistics are obtained with the same residual

bootstrap procedure as in Colling and Van Keilegom (2016). For fixed B and for b =

1, . . . , B, we define the bootstrap sample (X∗ib, Y
∗
ib), i = 1, . . . , n where X∗ib = Xi, Y

∗
ib =

Λ−1

θ̂
(mβ̂(X∗ib) + ε∗ib) are the new responses and ε∗ib = ζ∗ib + anξib are independent random
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errors where ζ∗1b, . . . , ζ
∗
nb are bootstrap samples of the errors drawn with replacement from the

empirical distribution of the zero mean residuals, an is some small bandwidth and ξ1b, . . . , ξnb

are independent normally distributed random variables and independent from the original

sample {(X1, Y1), . . . , (Xn, Yn)}. We choose here an = 0.1.

Hence, we can compute the different test statistics using the bootstrap sample (X∗ib, Y
∗
ib),

i = 1, . . . , n and the (1−α)-th quantile of the distribution of each test statistic is estimated

by the [(1 − α)B]-th order statistic of the corresponding test statistic obtained from these

bootstrap samples. In our simulations, we take B = 250. We refer to Neumeyer (2009) for the

consistency of this bootstrap procedure in the case where one is interested in the distribution

of the estimator of the error distribution in a nonparametric location-scale model without

transformation of the response.

First, we perform simulations in dimension d = 1. The simulated model is Λθ(Yi) =

β1 + β2Xi + c(Xi) + εi, where Λθ(Y ) is the Yeo and Johnson (2000) transformation :

Λθ(Y ) =


(Y+1)θ−1

θ
if Y ≥ 0, θ 6= 0

log(Y + 1) if Y ≥ 0, θ = 0
−[(−Y+1)2−θ−1]

2−θ if Y < 0, θ 6= 2

− log(−Y + 1) if Y < 0, θ = 2

.

Note that the Yeo and Johnson (2000) transformation is an extension of the Box and Cox

(1964) transformation that allows the response variable Y to be negative. We will consider

three different values of the parameter transformation θ : θ0 = 0 which corresponds to a

logarithmic transformation, θ0 = 0.5 which corresponds to a square root transformation

and θ0 = 1 which corresponds to the identity. The true value of the parameter β is β0 =

(β10, β20) = (3, 5). Moreover, X1, . . . , Xn are independent uniform random variables on [0,1]

and ε1, . . . , εn are independent standard normal random variables truncated on [-3,3]. We will

also consider the cases where ε1, . . . , εn are independent normal random variables with zero

mean and standard deviation 0.5 truncated on [-3,3] and where ε1, . . . , εn are independent

student-t random variables with degrees of freedom equal to 10. We consider the following

null hypothesis :

H0 : m(x) = β1 + β2x for all x and for some (β1, β2) ∈ R2 .

We consider different deviation functions c(x) from the null hypothesis : c(x) = 2x2, c(x) =

3x2, c(x) = 4x2, c(x) = 5x2, c(x) = 2 exp(x), c(x) = 3 exp(x), c(x) = 4 exp(x), c(x) =

5 exp(x), c(x) = 0.25 sin(2πx), c(x) = 0.5 sin(2πx), c(x) = 0.75 sin(2πx), c(x) = sin(2πx).
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Tables 1 to 6 show respectively the percentages of rejection obtained with the test statis-

tics TCM , W 2
1 , W 2

expi
, W 2

exp, W 2
1/ exp and W 2

sin for 500 samples of size n = 200 under the null

hypothesis and under the different deviations c(x) we have introduced above. The nominal

level is 10%. We also remind that the test statistics W 2
1 and W̃ 2

γ are equivalent when d = 1,

hence Tables 1 to 6 only include the results obtained with W 2
1 and not with W̃ 2

γ .

First, under H0, we observe that the different estimations of the nominal level are globally

good for all test statistics, choices of θ0 and distributions of ε except if we use the test statistic

W 2
1 when θ0 is increasing. In that case, the estimation of the nominal level is increasingly

small.

Next, under the alternative, the power is largest when ε ∼ N(0, 0.52), followed by ε ∼
N(0, 1) and finally by ε ∼ t10. This seems logical because we increase consequently the

variance of ε when we change from one situation to another. In a similar way, we observe

generally that the power is largest for θ0 = 0, followed by θ0 = 0.5 and finally by θ0 = 1. This

conclusion is the same as in Colling and Van Keilegom (2016) and is logical with respect to

the results obtained by Linton, Sperlich and Van Keilegom (2008).

Moreover, again under H1, when the deviation from the null hypothesis is monotone,

for example c(x) = cx2 and c(x) = c exp(x), the highest power is generally obtained with

the test statistics W 2
exp, W 2

1/ exp and W 2
sin. This last conclusion is valid for all tested values

of θ0. On the other hand, if the deviation from the null hypothesis is non monotone, for

example c(x) = c sin(2πx), the highest power is obtained with the test statistic W 2
expi

when

the deviation is close to the null hypothesis (c = 0.25 and sometimes c = 0.5) and is obtained

either with the test statistic TCM or with the test statistic W 2
1 when the deviation is less

close to the null hypothesis (c = 0.75 and c = 1). This depends on the value of θ0. If θ0 = 0,

we will prefer W 2
1 and when θ0 increases, we will prefer TCM which is in line with what

happens under H0. Finally, note that the test statistics W 2
exp, W 2

1/ exp and W 2
sin give very

small power when the deviation from H0 is non monotone.
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θ0 = 0 θ0 = 0.5

c(x) TCM W 2
1 W 2

expi
W 2

exp W 2
1/ exp W 2

sin TCM W 2
1 W 2

expi
W 2

exp W 2
1/ exp W 2

sin

0 10.2 10.2 13.4 12.2 11.4 12.4 10.4 7.2 12.4 12.8 11.4 12.4

2x2 27.2 46.6 37.6 50.0 50.6 51.2 27.2 41.2 34.6 50.4 48.8 49.2

3x2 48.8 75.4 68.0 78.8 79.0 78.6 49.2 72.0 62.6 78.8 78.2 78.8

4x2 66.2 89.2 86.4 91.6 91.0 91.0 66.0 88.2 82.8 91.4 90.8 91.0

5x2 78.2 94.4 91.8 94.4 94.4 94.6 77.4 95.2 91.2 97.0 96.4 96.4

2 exp(x) 23.6 33.2 26.4 38.2 39.2 38.8 22.8 22.8 19.8 32.2 33.0 31.6

3 exp(x) 34.2 55.0 42.0 60.8 60.2 60.0 34.6 36.2 27.4 52.8 53.6 53.0

4 exp(x) 49.0 69.6 60.0 71.6 73.2 72.2 47.0 52.4 36.4 64.8 67.6 66.0

5 exp(x) 62.8 78.2 72.2 81.0 81.2 80.8 61.2 63.4 46.6 72.6 74.4 73.2

0.25sin(2πx) 21.4 21.0 29.4 12.4 13.8 13.4 24.8 13.8 28.2 12.0 13.2 12.4

0.5sin(2πx) 56.2 59.0 56.4 13.4 16.8 15.6 54.8 45.0 56.6 12.8 14.8 13.6

0.75sin(2πx) 86.0 92.4 70.0 16.0 20.4 20.6 84.4 82.8 69.8 12.8 16.4 17.8

sin(2πx) 98.4 99.8 76.8 17.8 26.0 27.6 98.0 94.0 76.2 13.8 21.2 23.4

Table 1: Percentage of rejection for θ0 = 0, 0.5 and for ε ∼ N(0, 1).

θ0 = 1

c(x) TCM W 2
1 W 2

expi
W 2

exp W 2
1/ exp W 2

sin

0 9.8 5.0 10.8 10.6 9.6 10.4

2x2 29.2 38.6 32.0 49.2 47.8 48.2

3x2 47.6 67.8 57.8 77.4 78.8 78.4

4x2 65.8 86.8 82.0 90.4 89.8 89.8

5x2 76.8 93.2 87.8 96.4 96.2 95.8

2 exp(x) 22.0 17.8 16.4 29.4 30.0 29.4

3 exp(x) 34.4 30.8 20.8 47.0 47.6 45.6

4 exp(x) 47.6 44.6 30.0 61.8 62.4 61.6

5 exp(x) 61.6 56.0 36.4 67.6 69.2 68.8

0.25sin(2πx) 22.8 10.6 27.8 10.4 10.6 11.2

0.5sin(2πx) 55.4 34.0 55.4 10.6 12.8 11.8

0.75sin(2πx) 84.0 69.2 68.8 11.2 14.0 14.8

sin(2πx) 98.2 87.8 75.6 11.6 15.8 18.0

Table 2: Percentage of rejection for θ0 = 1 and for ε ∼ N(0, 1).
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θ0 = 0 θ0 = 0.5

c(x) TCM W 2
1 W 2

expi
W 2

exp W 2
1/ exp W 2

sin TCM W 2
1 W 2

expi
W 2

exp W 2
1/ exp W 2

sin

0 11.0 10.8 11.8 12.4 12.0 12.6 12.2 6.4 10.4 11.2 10.2 10.4

2x2 42.4 63.6 52.2 66.4 66.8 66.6 43.0 55.4 44.8 64.0 64.4 64.2

3x2 65.0 85.4 79.4 87.8 87.4 87.0 63.2 80.0 72.6 86.0 86.0 86.0

4x2 83.4 95.6 91.2 96.2 95.4 95.4 82.4 92.8 87.2 94.8 94.2 94.4

5x2 92.4 98.2 96.2 98.2 98.2 98.2 91.8 96.8 93.2 97.4 97.2 97.2

2 exp(x) 32.4 46.6 35.2 51.2 51.2 51.0 32.8 30.8 23.2 40.4 40.4 40.8

3 exp(x) 47.6 63.2 52.0 67.6 68.2 67.8 47.4 48.2 31.6 57.8 58.8 58.2

4 exp(x) 64.8 76.4 65.2 78.6 79.0 78.8 62.2 57.8 39.0 66.2 68.0 67.0

5 exp(x) 74.4 83.2 73.6 85.0 85.4 85.0 73.6 67.8 46.0 74.4 74.8 74.8

0.25sin(2πx) 36.0 32.8 42.2 14.0 14.2 13.8 35.4 20.4 38.0 13.0 14.2 14.2

0.5sin(2πx) 81.8 88.8 65.6 16.2 24.4 22.8 83.4 75.6 62.4 14.8 18.0 18.0

0.75sin(2πx) 98.2 99.8 78.2 21.0 29.6 29.4 98.6 96.2 76.4 17.0 23.4 23.4

sin(2πx) 99.8 99.8 83.4 24.4 34.6 36.6 100.0 99.4 80.2 19.0 27.0 29.4

Table 3: Percentage of rejection for θ0 = 0, 0.5 and for ε ∼ N(0, 0.52).

θ0 = 1

c(x) TCM W 2
1 W 2

expi
W 2

exp W 2
1/ exp W 2

sin

0 12.2 4.4 8.6 8.8 8.2 9.0

2x2 41.2 49.2 39.0 62.2 61.4 60.8

3x2 63.8 80.8 68.2 85.6 86.2 86.2

4x2 82.0 92.4 84.8 93.8 93.2 93.8

5x2 91.6 96.8 92.8 97.2 96.6 96.6

2 exp(x) 31.2 27.4 17.6 37.6 38.6 37.8

3 exp(x) 47.2 38.2 24.0 51.6 53.0 52.2

4 exp(x) 62.8 51.0 35.0 60.2 61.4 60.6

5 exp(x) 73.4 61.4 36.4 69.2 69.8 69.0

0.25sin(2πx) 34.4 12.0 38.8 9.8 11.4 11.6

0.5sin(2πx) 82.0 57.4 61.2 12.0 15.6 16.0

0.75sin(2πx) 98.6 90.6 75.0 14.4 20.4 20.6

sin(2πx) 100.0 96.8 78.6 15.2 22.0 23.6

Table 4: Percentage of rejection for θ0 = 1 and for ε ∼ N(0, 0.52).
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θ0 = 0 θ0 = 0.5

c(x) TCM W 2
1 W 2

expi
W 2

exp W 2
1/ exp W 2

sin TCM W 2
1 W 2

expi
W 2

exp W 2
1/ exp W 2

sin

0 11.0 10.6 11.4 12.6 12.2 12.8 11.2 7.4 10.4 13.0 12.2 12.8

2x2 24.4 34.4 24.4 38.0 37.4 37.0 28.8 38.2 29.2 46.8 45.8 45.2

3x2 36.2 54.8 44.8 61.2 59.0 58.8 42.4 60.8 48.8 69.2 68.6 68.8

4x2 54.8 75.0 65.4 79.4 78.4 78.6 59.8 78.4 70.2 84.8 84.8 84.8

5x2 71.0 87.4 80.4 90.2 89.6 90.0 74.2 88.8 81.4 91.2 91.4 91.4

2 exp(x) 21.4 30.6 22.2 34.0 35.0 34.8 23.0 18.6 16.0 28.6 30.4 29.6

3 exp(x) 31.2 46.4 34.0 50.4 51.4 50.4 31.4 30.2 22.4 41.8 42.6 42.0

4 exp(x) 44.6 60.0 49.4 63.0 64.4 63.4 43.6 40.6 27.8 51.8 52.0 50.8

5 exp(x) 54.4 66.8 55.0 68.4 68.8 68.6 54.6 49.4 31.8 58.4 59.2 58.4

0.25sin(2πx) 18.6 17.8 25.2 13.2 12.6 12.6 18.6 12.8 24.6 12.6 12.2 12.8

0.5sin(2πx) 46.6 47.2 52.0 13.4 15.0 15.0 47.6 32.4 51.2 13.0 15.2 15.6

0.75sin(2πx) 81.6 85.6 67.4 16.2 18.4 18.8 81.0 64.2 64.8 15.2 17.4 15.4

sin(2πx) 96.2 97.4 75.0 17.8 23.4 24.4 95.8 83.4 71.4 13.4 19.0 20.4

Table 5: Percentage of rejection for θ0 = 0, 0.5 and for ε ∼ t10.

θ0 = 1

c(x) TCM W 2
1 W 2

expi
W 2

exp W 2
1/ exp W 2

sin

0 11.0 5.6 9.0 11.6 10.6 11.2

2x2 26.0 34.6 30.0 43.4 42.8 43.6

3x2 40.8 55.4 47.6 64.8 64.6 65.0

4x2 55.0 74.8 65.4 81.8 81.6 82.0

5x2 74.6 86.6 80.2 90.6 89.8 90.2

2 exp(x) 22.4 13.4 14.4 27.2 27.4 26.8

3 exp(x) 32.0 23.0 17.8 37.6 38.6 37.8

4 exp(x) 43.0 32.0 23.0 45.2 46.6 45.8

5 exp(x) 55.0 41.8 27.0 54.2 55.6 54.2

0.25sin(2πx) 19.0 9.4 25.2 12.6 10.8 11.4

0.5sin(2πx) 47.2 24.2 51.6 11.8 13.0 12.6

0.75sin(2πx) 80.8 52.8 66.0 11.0 14.2 13.8

sin(2πx) 95.4 68.6 70.4 11.6 16.6 17.2

Table 6: Percentage of rejection for θ0 = 1 and for ε ∼ t10.
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Finally, we perform simulations in dimension d = 2. The simulated model is Λθ(Yi) =

β1 + β2X1i + β3X2i + c(X1i, X2i) + εi, where Λθ(Y ) is again the Yeo and Johnson (2000)

transformation. We will consider the same three different values of the parameter trans-

formation θ : θ0 = 0, θ0 = 0.5 and θ0 = 1. The true value of the parameter β is

β0 = (β10, β20, β30) = (3, 2, 1). Moreover, X11, . . . , X1n and X21, . . . , X2n are independent

and uniformly distributed on the unit square and ε1, . . . , εn are independent normal random

variables with zero mean and standard deviation 0.5 truncated on [-3,3]. We consider the

following null hypothesis :

H0 : m(x) = β1 + β2x1 + β3x2 for all x and for some (β1, β2, β3) ∈ R3 .

We consider different deviations c(x1, x2) from the null hypothesis : c(x1, x2) = 2x1x2,

c(x1, x2) = 3x1x2, c(x1, x2) = 4x1x2, c(x1, x2) = 5x1x2, c(x1, x2) = 0.5x1 sin(2πx2), c(x1, x2) =

x1 sin(2πx2), c(x1, x2) = 1.5x1 sin(2πx2), c(x1, x2) = 2x1 sin(2πx2), for 300 samples of size

n = 300. For the estimation of θ, β, h and g and the bootstrap procedure, we proceed

exactly as described before. Table 7 shows the percentage of rejection obtained with the test

statistics TCM , W 2
1 , W 2

expi
, W̃ 2

γ , W 2
exp, W 2

1/ exp and W 2
sin under the null hypothesis and under

the different deviations c(x1, x2) we have introduced above. Note that the results given by

W 2
1 and W̃ 2

γ will be different here since d 6= 1.

Table 7 shows that the estimations of the nominal level are generally too low, especially

for θ0 = 0 when we consider the different new test statistics developed in this paper. This

problem was already encountered in Colling and Van Keilegom (2016) and is due to the

poor nonparametric 2-dimensional estimation of the function m(·). This suggests that the

method suffers from curse-of-dimensionality problems, implying that samples of size n = 300

are not always large enough.

Next, under the alternative, the highest power is obtained with the test statistic W 2
expi

when the deviation from the null hypothesis is monotone, for example c(x1, x2) = cx1x2,

and is obtained with the test statistic TCM when the deviation from the null hypothesis is

non monotone, for example c(x1, x2) = cx1 sin(2πx2). We can also observe that the test

statistics W 2
1 and W̃ 2

γ give very poor power, even if it is a little bit better when the deviation

is non monotone. This suggests that it is not a good idea to use indicator weights when

the dimension d of X is increasing. Finally, the test statistics W 2
exp, W 2

1/ exp and W 2
sin give

a higher power than the one obtained with the indicator weight, but smaller than the one

obtained with TCM and W 2
expi

with a monotone deviation.
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θ0 = 0

c(x1, x2) TCM W 2
1 W 2

expi
W̃ 2
γ W 2

exp W 2
1/ exp W 2

sin

0 10.0 2.3 3.7 2.0 2.3 2.3 2.3

2x1x2 9.7 2.0 16.7 1.3 9.3 8.3 9.3

3x1x2 17.3 2.3 33.3 2.0 13.7 13.7 14.0

4x1x2 28.3 3.0 55.3 1.7 17.7 18.0 18.3

5x1x2 31.0 4.0 69.7 3.0 26.3 26.3 26.3

0.5x1 sin(2πx2) 33.0 5.0 8.7 6.3 7.3 7.3 7.7

x1 sin(2πx2) 68.0 14.3 17.3 19.7 26.0 25.3 26.0

1.5x1 sin(2πx2) 88.3 16.0 16.7 24.0 38.3 37.0 39.0

2x1 sin(2πx2) 90.0 17.3 17.7 27.7 44.0 41.3 45.3

θ0 = 0.5

c(x1, x2) TCM W 2
1 W 2

expi
W̃ 2
γ W 2

exp W 2
1/ exp W 2

sin

0 7.0 7.7 10.7 9.0 9.0 9.3 9.0

2x1x2 6.3 6.7 21.7 6.3 15.3 15.7 16.0

3x1x2 13.0 4.7 38.3 5.0 16.7 16.7 16.7

4x1x2 18.7 8.7 59.0 6.7 21.3 21.0 21.0

5x1x2 23.0 9.7 73.7 7.0 20.7 22.0 20.3

0.5x1 sin(2πx2) 19.0 14.3 19.3 16.7 18.0 18.7 18.3

x1 sin(2πx2) 51.7 23.3 26.3 28.0 37.3 38.0 37.3

1.5x1 sin(2πx2) 82.3 22.0 26.3 26.7 46.3 47.3 47.3

2x1 sin(2πx2) 91.0 25.0 23.3 32.3 52.3 50.7 53.7

θ0 = 1

c(x1, x2) TCM W 2
1 W 2

expi
W̃ 2
γ W 2

exp W 2
1/ exp W 2

sin

0 8.7 8.7 8.7 10.3 7.3 7.0 7.7

2x1x2 5.3 5.0 20.0 4.0 15.0 15.0 15.3

3x1x2 10.3 4.3 30.7 4.0 18.3 19.7 19.0

4x1x2 19.3 9.7 51.0 8.3 22.3 23.3 23.0

5x1x2 22.0 10.3 67.7 9.0 23.0 24.0 24.0

0.5x1 sin(2πx2) 30.0 12.0 14.3 15.0 16.0 16.0 16.7

x1 sin(2πx2) 65.7 19.3 24.0 22.3 32.7 34.3 33.3

1.5x1 sin(2πx2) 86.3 20.7 22.3 24.3 41.7 41.0 42.7

2x1 sin(2πx2) 92.3 19.3 18.7 25.3 42.7 42.3 44.3

Table 7: Percentage of rejection for θ0 = 0, 0.5, 1 and for ε ∼ N(0, 0.52).
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5 Application

We apply our testing procedure to a ultrasonic calibration data set composed of 214 observa-

tions. The data can be found on the website http://www.itl.nist.gov/div898/handbook/pmd

/section6/pmd631.htm and comes from the NIST/SEMATECH e-Handbook of Statistical

Methods. The response Y is ultrasonic response and the covariate X is metal distance.

This data set has already been analyzed in the e-Handbook and in Neumeyer, Noh and

Van Keilegom (2016). In the e-Handbook, we can find that the data satisfy the model
√
Yi = m(Xi) + εi, i = 1, . . . , n. The goal of Neumeyer, Noh and Van Keilegom (2016) was

to verify such validity with their own procedure and without using the square root transfor-

mation. They estimated the transformation and they concluded that this data set satisfies

the assumption of a homoscedastic transformation model using a Box-Cox transformation.

In the e-Handbook, we can find that
√̂
Y = exp(−0.015X)

0.0807+0.0639X
is the fitted transformed model.

In this paper, we consider a Box-Cox transformation of the response variable. The estimated

transformation parameter is equal to θ̂ = 0.43. Note that this transformation is very similar

to the square root transformation of the e-Handbook. We will check the following natural

goodness-of-fit :

H0 : m(x) =
exp(β1x)

β2 + β3x
for all x (test 1) .

We will also check the following exponential, inverse linear, linear and quadratic goodness-

of-fits :

- H0 : m(x) = β1 + β2 exp(β3x) for all x (test 2) ,

- H0 : m(x) = β1
β2+β3x

for all x (test 3) ,

- H0 : m(x) = β1 + β2x for all x (test 4) ,

- H0 : m(x) = β1 + β2x+ β3x
2 for all x (test 5) .

We use the Cramér-von Mises test statistic defined in Colling and Van Keilegom (2016) and

the ones in this paper. The distributions and p-values of these test statistics are approx-

imated by the bootstrap on the basis of 1000 replicates. The results are given in Table

8.

Table 8 indicates that there is no evidence against the fitted transformed model in-

troduced in the e-Handbook when α = 0.01 whereas only the test statistic W 2
exp rejects
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test 1 test 2 test 3 test 4 test 5

TCM 0.375 0.525 0.090 0 0

W 2
1 0.271 0.093 0.017 0.001 0.004

W 2
expi

0.130 0.103 0.033 0 0.004

W 2
exp 0.024 0.835 0.291 0.002 0.011

W 2
1/ exp 0.176 0.085 0.028 0 0.004

W 2
sin 0.379 0.067 0.036 0 0.004

Table 8: p-values of the different goodness-of-fit tests for the ultrasonic calibration data.

this model when α = 0.05. Note that, in this case, our estimations of βi, i = 1, 2, 3 are

β̂1 = −0.0569, β̂2 = 0.0568 and β̂3 = 0.0367, the small differences with respect to the e-

Handbook are due to the use of a Box-Cox transformation with θ̂ = 0.43 instead of the

square root transformation. Next, we observe that there is also no evidence against the

exponential model introduced in test 2 when α = 0.05. Finally, for most test statistics, the

model introduced in test 3 is rejected as well as the linear and the quadratic fits of tests 4

and 5.

6 Conclusions

In this paper, we used the integrated approach to construct a new test for the parametric

form of the regression function in a semiparametric transformation model. The main idea

of our test was to compare the integrated regression function estimated in a semiparametric

way to the one estimated under H0. We defined a Kolmogorov-Smirnov and a Cramér-von

Mises test statistic, both based on an empirical residual process depending on a general

weighting function that allowed us to apply several approaches we found in the literature.

We established the limiting distribution of these two test statistics under the null hypothesis

and under a local alternative and we noticed that our tests have power against all local alter-

natives that converge to the null model at parametric rate. We compared the performance of

this new test to the previous test developed by Colling and Van Keilegom (2016) by means

of a large simulation study. Finally, we applied our test on a real data set.
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7 Appendix: Proofs

The Appendix is structured as follows. In Subsection 7.1, we introduce a number of notations

and we state the different assumptions under which the main results of this paper are valid.

Note that these assumptions are in majority the same as in Colling and Van Keilegom (2016).

Then, in Subsections 7.2, 7.3, we prove the main results of the asymptotic theory under the

null hypothesis and under the local alternative respectively.

7.1 Notations and technical assumptions

For 0 < α < δ/2 < 1, where δ is defined as in assumption (A2) (see below), let Cd+α
1 (χ) be

the set of d-times differentiable functions f : χ→ R such that :

||f ||d+α := max
j.≤d

sup
x∈χ
|Djf(x)|+ max

j.=d
sup
x,x′∈χ

|Djf(x)−Djf(x′)|
||x− x′||α

≤ 1 ,

where j = (j1, . . . , jd), j. =
∑d

i=1 ji, D
j = ∂j.

∂x
j1
1 ...∂x

jd
d

and ||.|| is the Euclidean norm on Rd.

The main results of the asymptotic theory require the following regularity conditions

on the kernels, the bandwidths, the distributions of X and ε, the transformation Λθ, the

weihting function w, the integrating functions Ψn and Ψ and the functions mβ(x), m(x) and

r(x) :

(A1) The functions kj (j = 1, 2) are symmetric, have support [-1,1],
∫
k1(u) du = 1,∫

ukk2(u) du = 0 for k = 1, . . . , q2−1 and
∫
uq2k2(u) du 6= 0 for some q2 ≥ 4. Moreover,

k1 is d-times continuously differentiable, k
(l)
1 (±1) = 0 for l = 0, . . . , d − 1 and k2 is

twice continuously differentiable.

(A2) hl (for l = 1, . . . , d) satisfies hl/h→ cl for some 0 < cl <∞ and the bandwidths h and

g satisfy nh2p+2 → 0 for some p ≥ 3, nh3d+δ →∞ for some δ > 0, ng6(ln g−1)−2 →∞
and ng2q2 → 0 when n→∞, where q2 is defined in condition (A1).

(A3) (i) The support χ of the covariate X is a compact subset of Rd.

(ii) The distribution function FX is 2d+ 1-times continuously differentiable.

(iii) infx∈χ fX(x) > 0.

25



(A4) The distribution function Fε(θ)|X(y|x) is three times continuously differentiable with

respect to y and θ, and

sup
θ,y,x

∣∣∣∣ ∂i+j

∂yi∂θj11 . . . ∂θjkk
Fε(θ)|X(y|x)

∣∣∣∣ <∞
for all i and j such that 0 ≤ i+ j ≤ 2 where j =

∑k
l=1 jl.

(A5) (i) The transformation Λθ(y) is three times continuously differentiable with respect

to both y and θ, and there exists α > 0 such that :

E

[
sup

θ′:||θ′−θ||≤α

∣∣∣∣∣∣∣∣ ∂i+j∂yi∂θj
Λθ′(Y )

∣∣∣∣∣∣∣∣] <∞
for all θ ∈ Θ and all i and j such that 0 ≤ i+ j ≤ 3.

(ii) supx∈χE[(Λ̇θ0(Y ))2
l |X = x] <∞.

(A6) (i) B is a compact subset of Rq and β0 is an interior point of B.

(ii) All partial derivatives of mβ(x) with respect to the components of x and β of

order 0, 1, 2 and 3 exist and are continuous in (x, β) for all x and β.

(iii) For all ε > 0 :

inf
||β−β0||>ε

E[(mβ(X)−mβ0(X))2] > 0 .

(iv) Ω is non singular.

(A7) The functions m(x) and ∂
∂θ
m(x, θ) := ṁ(x) are p+ 2 times continuously differentiable

with respect to the components of x on χ×N(θ0), where N(θ0) is a neighbourhood of

θ0 and all derivatives up to order p+ 2 are bounded, uniformly in (x, θ) in χ×N(θ0).

(A8) (i) For all η > 0, there exists ε(η) > 0 such that

inf
||θ−θ0||>η

||E(ξ(θ,X, Y ))|| ≥ ε(η) > 0 .

(ii) The matrix Γ is of full rank.

(A9) (i) The class of functions W = {u→ w(u, x, γ), (x, γ) ∈ Π} is Donsker.

(ii) The weighting function w satisfies sup(x,γ)∈Π,t∈χ |w(t, x, γ)| <∞.
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(iii) The weighting function w satisfies supt∈χ V [w(t, ·, ·)] < ∞, where V [w(t, ·, ·)] is

the total variation of w(t, ·, ·) defined on the compact set Π.

(A10) The integrating functions Ψn(x, γ) and Ψ(x, γ) satisfy the two following regularity

conditions : there exists a random function Ψ̃ such that

sup
(x,γ)∈Π

∣∣∣∣Ψn(x, γ)− Ψ̃(x, γ)

∣∣∣∣ = oP (n−1/2) ,

and such that

sup
(x,γ)∈Π

∣∣∣∣Φ̃(x, γ)− Φ(x, γ)

∣∣∣∣ = oP (1) ,

where Φ(x, γ) = ∂d+dγ

∂x1...∂xd∂γ1...∂γdγ
Ψ(x, γ) and Φ̃(x, γ) = ∂d+dγ

∂x1...∂xd∂γ1...∂γdγ
Ψ̃(x, γ) if dγ 6= 0

and Φ(x, γ) = ∂d

∂x1...∂xd
Ψ(x, γ) and Φ̃(x, γ) = ∂d

∂x1...∂xd
Ψ̃(x, γ) if dγ = 0.

(A11) Λθ0(α) = a and Λθ0(β) = b for some α < β and a < b, and the set {x ∈ χ : ∂
∂x
m(x) 6= 0}

has nonempty interior.

(A12) E(r2(X)) <∞ and r(x) is twice continuously differentiable for all x.

Note that conditions (A1) and (A2), which are assumptions on the different kernels and

bandwidths and condition (A7) come partially from Linton, Sperlich and Van Keilegom

(2008), partially from Neumeyer and Van Keilegom (2010) and partially from Colling and

Van Keilegom (2016). Moreover, condition (A3)(ii) comes from Neumeyer and Van Keile-

gom (2010), conditions (A4), (A5) and (A8) come from Linton, Sperlich and Van Keilegom

(2008) and conditions (A6) and (A12) come from Van Keilegom, González-Manteiga and

Sánchez Sellero (2008) and Colling and Van Keilegom (2016). Condition (A11) is needed for

identifying the model, see Vanhems and Van Keilegom (2016) and Colling and Van Keilegom

(2016). Finally, conditions (A9) and (A10) are new conditions on the weighting function w

and the integrating functions Ψn and Ψ respectively.

We will prove now that conditions (A9)(i) and (A10) are satisfied for the different weight-

ing functions w and the corresponding integrating functions Ψn and Ψ that we have used in

the simulations and in the application.

Proposition 7.1. Condition (A9)(i) is satisfied for the weighting functions w(X, x, γ) =

1{X≤x}, w(X, x, γ) = 1{γtX≤x}, w(X, x, γ) = exp(ixtX), w(X, x, γ) = sin(xtX), w(X, x, γ) =

exp(xtX) and w(X, x, γ) = (1 + exp(−xtX))−1.
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Proof. Consider first w(X, x, γ) = sin(xtX), w(X, x, γ) = exp(xtX) and w(X, x, γ) =

(1 + exp(−xtX))−1. These three weighting functions are infinitely differentiable and all

derivatives are uniformly bounded on the compact set χ. Hence, applying Corollary 2.7.2 in

Van der Vaart and Wellner (1996), we get that logN[ ](ε̃,W , L2(P )) ≤ Cε̃−d/κ, where C is

some positive constant, κ is the smoothness of the class which can be taken arbitrarily large,

N[ ](ε̃,W , L2(P )) is the ε̃-bracketing number of the class W , P is the probability measure

corresponding to the distribution of X, and L2(P ) is the L2-norm. This gives∫ +∞

0

√
logN[ ](ε̃,W , L2(P )) dε̃ =

∫ 2T

0

√
logN[ ](ε̃,W , L2(P )) dε̃

≤
∫ 2T

0

√
Cε̃−d/κ dε̃

=

√
C(2T )

−d
2κ

+1

−d
2κ

+ 1
< ∞ ,

provided κ > d/2, and where T is a uniform upper bound for the above three w-functions.

We obtained the first equality since only one ε̃-bracket suffices to coverW if ε̃ > 2T . Finally,

it suffices to apply Theorem 2.5.6 in Van der Vaart and Wellner (1996) to get that W is

Donsker. Next, if w(X, x, γ) = exp(ixtX), the proof is exactly the same, taking into account

that exp(ixtX) = cos(xtX) + i sin(xtX).

Second, consider w(X, x, γ) = 1{X≤x}. This function is not differentiable, so we can not

apply the same proof as above. However, in this case, we can apply Example 2.5.4 in Van

der Vaart and Wellner (1996), which states that the set of all indicator functions of type

1{X≤x} in Rd is Donsker for any dimension d.

Finally, the proof for w(X, x, γ) = 1{γtX≤x} is similar to the proof of Lemma 1 in Akritas

and Van Keilegom (2001). We refer to their paper for more details. �

Proposition 7.2. Condition (A10) is satisfied for the three following cases :

(a) Ψn(x, γ) = Ψ(x, γ), when the weighting function used in Bierens (1982) is considered.

(b) Ψn(x, γ) = F̂X(x) and Ψ(x, γ) = FX(x), when the weighting function used in Stute

(1997) is considered and also used when w(X, x, γ) = sin(xtX), w(X, x, γ) = exp(xtX)

and w(X, x, γ) = (1 + exp(−xtX))−1.
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(c) dΨn(x, γ) = dF̂n,γ(x)dγ and Ψ(x, γ) = Fγ(x), when the weighting function used in

Escanciano (2006a) is considered .

Proof. First, the result is trivial in case (a), since we can take Ψ̃ = Ψn = Ψ. Second,

consider case (b). In that case, we define

Ψ̃(x) = F̃X(x) = b−dn

∫
F̂X(t)L

(
x− t
bn

)
dt ,

where t = (t1, . . . , td), dt = (dt1, . . . , dtd),
x−t
bn

= (x1−t1
bn

, . . . , xd−td
bn

), L is a kernel of order

τ > d
2

and bn is a bandwidth such that nbdn(log n)−1 →∞ and nb2τ
n → 0. By definition of the

kernel L, we know that b−dn
∫
L(x−t

bn
) dt = 1. Consequently F̂X(x) = b−dn

∫
F̂X(x)L(x−t

bn
) dt

and

F̃X(x)− FX(x) = b−dn

∫
F̂X(t)L

(
x− t
bn

)
dt− FX(x)

= b−dn

∫
(F̂X(t)− FX(t)− F̂X(x))L

(
x− t
bn

)
dt− FX(x)

+F̂X(x) + b−dn

∫
FX(t)L

(
x− t
bn

)
dt .

Next, using a Taylor expansion, we have FX(t) = FX(x) +
∑d

j=1
∂FX(x)
∂xj

(xj− tj) + . . .+O(bτn)

and also

b−dn

∫
FX(t)L

(
x− t
bn

)
dt = b−dn

∫
FX(x)L

(
x− t
bn

)
dt+O(bτn) ,

since FX is τ times continuously differentiable by condition (A3)(ii) (if we take τ ≤ 2d+ 1),

and since L is a kernel of order τ . We get

F̃X(x)−FX(x) = F̂X(x)−FX(x)+b−dn

∫
(F̂X(t)−FX(t)−F̂X(x)+FX(x))L

(
x− t
bn

)
dt+O(bτn) .

We know that

b−dn

∫
(F̂X(t)− FX(t)− F̂X(x) + FX(x))L

(
x− t
bn

)
dt = OP (n−1/2b1/2

n ) = oP (n−1/2) ,

uniformly in x ∈ χ. Note also that O(bτn) is o(n−1/2) since nb2τ
n → 0. This implies that

F̃X(x)− FX(x) = F̂X(x)− FX(x) + oP (n−1/2) ,
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uniformly in x ∈ χ, i.e. supx∈χ |F̂X(x)− F̃X(x)| = oP (n−1/2). We will now check the second

condition defined in (A10) in case (b). The function Φ̃(x, γ) = f̃X(x) is here given by

f̃X(x) =
∂d

∂x1 . . . ∂xd
F̃X(x) = (nbn)−d

n∑
i=1

L

(
Xi − x
bn

)
,

and Φ(x, γ) = fX(x). Using the asymptotic properties of the classical kernel estimator of a

density function, we obtain

sup
x∈χ
|f̃X(x)− fX(x)| = OP ((nbdn)−1/2(log n)1/2) +O(b2τ

n ).

The last expression is oP (1) since nbdn(log n)−1 →∞. This concludes the proof for case (b).

Finally, the proof of case (c) follows the same way as the proof of case (b). �

7.2 Proofs of the results under H0

Proof of Theorem 3.1. First, we will prove that the class

F1 = {(u, v)→ w(u, x, γ)(Λθ0(v)−mβ0(u)), (x, γ) ∈ Π} , (7.1)

is Donsker. Using assumption (A9)(i), we know that there exists a finite number of ε̃−brackets,

say M , to coverW . Let wL1 ≤ wU1 , . . ., wLM ≤ wUM be the functions defining the M ε̃−brackets

to cover W .

Next, the functions yL1 ≤ yU1 , . . ., yLM ≤ yUM , where yLj (u, v) = min(wLj (u)(Λθ0(v) −
mβ0(u)), wUj (u)(Λθ0(v)−mβ0(u))), and yUj (u, v) = max(wLj (u)(Λθ0(v)−mβ0(u)), wUj (u)(Λθ0(v)−
mβ0(u))) for j = 1, . . . ,M , define the M ε̃−brackets to cover F1. Indeed, for j = 1, . . . ,M ,

we have ∣∣∣∣∣∣∣∣yUj (X, Y )− yLj (X, Y )

∣∣∣∣∣∣∣∣2
2

= E

[
(wUj (X)− wLj (X))2(Λθ0(Y )−mβ0(X))2

]
= E

[
(wUj (X)− wLj (X))2

]
E(ε2) ,

where the last equality is obtained by independence between X and ε. The last expression

is O(ε̃2) since E(ε2) = σ2 <∞ and E[(wUj (X)−wLj (X))2] ≤ ε̃2 by definition of the brackets

wLj ≤ wUj for j = 1, . . . ,M . Hence, N[ ](ε̃,F1, L2(P )) <∞.
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Consequently, if f ∈ F1, then f(u, v) is bounded by K|Λθ0(v) − mβ0(u)| uniformly in

(x, γ) ∈ Π, for some constantK <∞, since the function w is uniformly bounded in (x, γ) ∈ Π

by condition (A9)(ii). This implies that∫ +∞

0

√
logN[ ](ε̃,F1, L2(P )) dε̃

=

∫ 2Kσ

0

√
logN[ ](ε̃,F1, L2(P )) dε̃+

∫ +∞

2Kσ

√
logN[ ](ε̃,F1, L2(P )) dε̃

<∞ ,

as the first term is finite and the second term is equal to 0. Indeed, if ε̃ > 2Kσ, only one

bracket suffices to cover the class F1. Next, applying Theorem 2.5.6 in Van der Vaart and

Wellner (1996), we get that the class F1 is Donsker. Hence, the process Rn converges weakly

to a limiting Gaussian process.

Finally, by independence between X and ε, we have

E[w(X, x, γ)(Λθ0(Y )−m(X))] = E[w(X, x, γ)]E(ε) = 0 ,

as sup(x,γ)∈Π,t∈χ |w(t, x, γ)| <∞ by assumption (A9)(ii). Finally,

Cov[w(X, x1, γ1)(Λθ0(Y )−m(X)), w(X, x2, γ2)(Λθ0(Y )−m(X))]

= E[w(X, x1, γ1)w(X, x2, γ2)ε2] .

By independence between X and ε and since E(ε2) = σ2, this last expression is equal to

σ2E[w(X, x1, γ1)w(X, x2, γ2)]. �

Proof of Theorem 3.2. First, note that

R1
n(x, γ) = I +Rn(x, γ)− II , (7.2)

where

I = n−1/2

n∑
i=1

w(Xi, x, γ)(Λθ̂(Yi)− Λθ0(Yi)) , (7.3)

and

II = n−1/2

n∑
i=1

w(Xi, x, γ)(mβ̂(Xi)−m(Xi)) . (7.4)
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Using successively a Taylor expansion with some ξ between θ̂ and θ0 and Proposition 1 in

the supplementary material in Colling and Van Keilegom (2016), the expression I is equal

to

I = n−1

n∑
i=1

w(Xi, x, γ)(Λ̇ξ(Yi))
tn1/2(θ̂ − θ0)

= n−1

n∑
i=1

w(Xi, x, γ)(Λ̇θ0(Yi))
t

(
− n1/2

n∑
j=1

g(Xj, Yj) + oP (1)

)

= −n−1/2

n∑
j=1

[g(Xj, Yj)]
t

(
n−1

n∑
i=1

w(Xi, x, γ)(Λ̇θ0(Yi))− E[w(X, x, γ)(Λ̇θ0(Y ))]

)

−n−1/2

n∑
j=1

E[w(X, x, γ)(Λ̇θ0(Y ))t]g(Xj, Yj) + oP (1)

= −n−1/2

n∑
j=1

E[w(X, x, γ)(Λ̇θ0(Y ))t]g(Xj, Yj) + oP (1) . (7.5)

We have obtained the last two equalities because n−1
∑n

i=1w(Xi, x, γ)(Λ̇θ0(Yi))
t = OP (1) and

n−1
∑n

i=1w(Xi, x, γ)(Λ̇θ0(Yi))−E[w(X, x, γ)(Λ̇θ0(Y ))] = OP (n−1/2) uniformly in (x, γ) ∈ Π,

and because n−1/2
∑n

j=1 g(Xj, Yj) = OP (1) by Proposition 1 in the supplementary material

in Colling and Van Keilegom (2016). Indeed, for l = 1, . . . , k, we define the classes

Gl = {(u, v)→ w(u, x, γ)(Λ̇θ0(v))l, (x, γ) ∈ Π} ,

where (Λ̇θ0(v))l is the l−th component of the vector Λ̇θ0(v). Define zLlj(u, v) =

min(wLj (u)(Λ̇θ0(v))l, w
U
j (u)(Λ̇θ0(v))l) and zUlj (u, v) = max(wLj (u)(Λ̇θ0(v))l, w

U
j (u)(Λ̇θ0(v))l) for

j = 1, . . . ,M , where wL1 ≤ wU1 , . . ., wLM ≤ wUM are the M functions defining the ε̃−brackets

to cover W that have been introduced in the proof of Theorem 3.1. Consequently, for

l = 1, . . . , k and j = 1, . . . ,M , we have∣∣∣∣∣∣∣∣zUlj (X, Y )− zLlj(X, Y )

∣∣∣∣∣∣∣∣2
2

= E

[(
wUj (X)− wLj (X)

)2(
Λ̇θ0(Y )

)2

l

]
= E

[(
wUj (X)− wLj (X)

)2

E

[(
Λ̇θ0(Y )

)2

l

∣∣∣∣X]]
≤ sup

x∈χ
E

[(
Λ̇θ0(Y )

)2

l

∣∣∣∣X = x

]
E

[(
wUj (X)− wLj (X)

)2]
.

The last expression is O(ε̃2) since supx∈χE[(Λ̇θ0(Y ))2
l |X = x] <∞ by condition (A5)(ii) and

E(wUj (X) − wLj (X))2 ≤ ε̃2 by definition of the brackets wLj ≤ wUj for j = 1, . . . ,M . Hence,
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in a similar way as in the proof of Theorem 3.1, we conclude that Gl, for l = 1, . . . , k, is

Donsker using Theorem 2.5.6 in Van der Vaart and Wellner (1996), and then (7.5) follows.

Next, as we are under H0, m(x) = mβ0(x) and using a Taylor expansion for some value

ζ between β̂ and β0, expression II is equal to

II = n−1/2

n∑
i=1

w(Xi, x, γ)(β̂ − β0)t
∂

∂β
mζ(Xi)

= n1/2(β̂ − β0)tn−1

n∑
i=1

w(Xi, x, γ)h(Xi, ζ)

= n1/2(β̂ − β0)tn−1

n∑
i=1

w(Xi, x, γ)(h(Xi, ζ)− h(Xi, β0))

+n1/2(β̂ − β0)tn−1

n∑
i=1

[
w(Xi, x, γ)h(Xi, β0)−H(x, γ, β0)

]
+n1/2(β̂ − β0)tH(x, γ, β0) . (7.6)

Note that n1/2(β̂ − β0) = OP (1) by Lemma 4 in the supplementary material in Colling

and Van Keilegom (2016). Moreover, as h(X, β) is a differentiable function in β with a

uniformly bounded derivative (see condition (A6)(ii)), and as β̂−β0 = oP (1) by Lemma 2 in

the supplementary material in Colling and Van Keilegom (2016), we have supx∈χ |h(x, ζ)−
h(x, β0)| = oP (1). Consequently,∣∣∣∣n−1

n∑
i=1

w(Xi, x, γ)(h(Xi, ζ)− h(Xi, β0))

∣∣∣∣ ≤ n−1

n∑
i=1

∣∣∣∣w(Xi, x, γ)

∣∣∣∣∣∣∣∣h(Xi, ζ)− h(Xi, β0)

∣∣∣∣
= oP (1) ,

since sup(x,γ)∈Π,t∈χ |w(t, x, γ)| <∞ by condition (A9)(ii). Hence, the first term on the right

hand side of (7.6) is oP (1). Next, for l = 1, . . . , q, we define the classes

Hl = {u→ w(u, x, γ)hl(u, β0), (x, γ) ∈ Π} ,

where hl(u, β0) is the l−th component of the vector h(u, β0), i.e. hl(u, β0) =
∂mβ0 (X)

∂βl
, and

vLlj(u) = min(wLj (u)hl(u, β0), wUj (u)hl(u, β0)) and vUlj (u) = max(wLj (u)hl(u, β0), wUj (u)hl(u, β0))
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for j = 1, . . . ,M . Consequently, for l = 1, . . . , q and j = 1, . . . ,M , we have∣∣∣∣∣∣∣∣vUlj (X)− vLlj(X)

∣∣∣∣∣∣∣∣
1

= E

[∣∣∣∣wUj (X)− wLj (X)

∣∣∣∣∣∣∣∣hl(X, β0)

∣∣∣∣]
≤

(
E[h2

l (X, β0)]

)1/2(
E

[
(wUj (X)− wLj (X))2

])1/2

≤ sup
x∈χ

∣∣∣∣hl(x, β0)

∣∣∣∣(E[(wUj (X)− wLj (X))2

])1/2

.

This last expression is finite by condition (A6)(ii) and since E[(wUj (X) − wLj (X))2] ≤ ε̃2.

Hence, for l = 1, . . . , q, N[ ](ε̃,Hl, L1(P )) < ∞, which implies that Hl is Glivenko-Cantelli

by Theorem 2.4.1 in Van der Vaart and Wellner (1996), i.e.

sup
f∈Hl

∣∣∣∣n−1

n∑
i=1

f(Xi)− E(f(X))

∣∣∣∣ = oP (1) .

Then, the second term on the right hand side of (7.6) is oP (1). In conclusion, combining

(7.2), (7.5) and (7.6), we get

R1
n(x, γ) = Rn(x, γ)−n−1/2

n∑
i=1

E[w(X, x, γ)(Λ̇θ0(Y ))t]g(Xi, Yi)−n1/2(β̂−β0)tH(x, γ, β0)+oP (1) ,

uniformly in (x, γ) ∈ Π. Finally, we conlude the proof using Lemma 4 in the supplementary

material in Colling and Van Keilegom (2016) (with r ≡ 0) :

R1
n(x, γ) = Rn(x, γ)− n−1/2

n∑
i=1

E[w(X, x, γ)(Λ̇θ0(Y ))t]g(Xi, Yi)

−n−1/2

n∑
i=1

H t(x, γ, β0)

{
ηβ0(Xi, Yi)− Ω−1E

[
∂mβ0(X)

∂β
(Λ̇θ0(Y ))t

]
g(Xi, Yi)

}
+oP (1) .

The last equality was obtained using the fact thatH(x, γ, β0) is bounded uniformly in (x, γ) ∈
Π. Indeed, for each l = 1, . . . , q, if we denote by Hl(x, γ, β) the l−th component of the vector

H(x, γ, β), i.e. Hl(x, γ, β) = E[w(X, x, γ)
∂mβ(X)

∂βl
], we have that

sup
(x,γ)∈Π

∣∣∣∣Hl(x, γ, β0)

∣∣∣∣ ≤ sup
(x,γ)∈Π,t∈χ

∣∣∣∣w(t, x, γ)

∣∣∣∣ sup
t∈χ

∣∣∣∣∂mβ0(t)

∂βl

∣∣∣∣ .
Using conditions (A9)(ii) and (A6)(ii), we conclude that the last expression is finite. �
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Proof of Theorem 3.3. First, note that∣∣∣∣ ∫
Π

[R1
n(x, γ)]2 d(Ψn(x, γ)−Ψ(x, γ))

∣∣∣∣ ≤ A+B ,

where

A =

∣∣∣∣ ∫
Π

[R1
n(x, γ)]2 d(Ψn(x, γ)− Ψ̃(x, γ))

∣∣∣∣ ,
and

B =

∣∣∣∣ ∫
Π

[R1
n(x, γ)]2 d(Ψ̃(x, γ)−Ψ(x, γ))

∣∣∣∣ .
We will first prove that the term A is oP (1) uniformly in (x, γ) ∈ Π. Using integration by

parts, the term A is equal to

A =

∣∣∣∣[(Ψn(x, γ)− Ψ̃(x, γ))R1
n(x, γ)

]
Π

− 2

∫
Π

(Ψn(x, γ)− Ψ̃(x, γ))R1
n(x, γ) dR1

n(x, γ)

∣∣∣∣.
Note that the first term on the right hand side is oP (1), since sup(x,γ)∈Π |R1

n(x, γ)| = OP (1)

by Corollary 3.1 and since sup(x,γ)∈Π |Ψn(x, γ)− Ψ̃(x, γ)| = oP (n−1/2) = oP (1) by condition

(A10). Consequently,

A = 2

∣∣∣∣ ∫
Π

(Ψn(x, γ)− Ψ̃(x, γ))R1
n(x, γ) dR1

n(x, γ)

∣∣∣∣
≤ 2 sup

(x,γ)∈Π

∣∣∣∣Ψn(x, γ)− Ψ̃(x, γ)

∣∣∣∣ sup
(x,γ)∈Π

∣∣∣∣R1
n(x, γ)

∣∣∣∣
× sup

t∈χ
V
[
w(t, ·, ·)

]
n−1/2

n∑
i=1

∣∣∣∣Λθ̂(Yi)−mβ̂(Xi)

∣∣∣∣ . (7.7)

Next, the first factor on the right hand side of (7.7) is oP (n−1/2) using condition (A10), the

second factor is OP (1) as explained just above and supt∈χ V [w(t, ·, ·)] < ∞ using condition

(A9)(iii). Moreover, it follows easily from the proofs of Theorem 3.2 and Corollary 3.1 that

n−1/2

n∑
i=1

∣∣∣∣Λθ̂(Yi)−mβ̂(Xi)

∣∣∣∣ = OP (n1/2) ,

which implies that A is oP (1) uniformly in (x, γ) ∈ Π. Finally, we will prove that the term

B is oP (1) uniformly in (x, γ) ∈ Π. As Ψ̃(x, γ) − Ψ(x, γ) is a differentiable function with

respect to (x, γ), we have that

B =

∣∣∣∣ ∫
Π

[R1
n(x, γ)]2(Φ̃(x, γ)− Φ(x, γ)) dxdγ

∣∣∣∣
≤ K sup

(x,γ)∈Π

∣∣∣∣R1
n(x, γ)

∣∣∣∣2 sup
(x,γ)∈Π

∣∣∣∣Φ̃(x, γ)− Φ(x, γ)

∣∣∣∣ , (7.8)
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for some K < ∞. We conclude the proof using the facts that the first factor on the right

hand side of (7.8) is OP (1) as explained just above and that the second factor is oP (1) using

condition (A10). �

Proof of Corollary 3.1. First, we prove that R1
n(x, γ) converges to a limiting Gaussian

process. In the proof of Theorem 3.1 we have shown that the class F1 (corresponding to the

process Rn(x, γ)) is Donsker. Hence, using Theorem 3.2, it suffices to show that the class

F2 =
{

(u, v)→ G(x, γ, u, v, θ0, β0), (x, γ) ∈ Π
}

is Donsker. Recall that

G(x, γ, u, v, θ0, β0) = H t(x, γ, β0)ηβ0(u, v) + E[w(X, x, γ)(Λ̇θ0(Y ))t]g(u, v)

−H t(x, γ, β0)Ω−1E

[
∂mβ0(X)

∂β
(Λ̇θ0(Y ))t

]
g(u, v) .

Hence, each term of G(x, γ, u, v, θ0, β0) can be decomposed in a factor that depends on (x, γ)

but not on (u, v), and another factor that depends on (u, v) but not on (x, y). Hence, it can

be easily seen using similar arguments as before that the class F2 is Donsker. In fact, we only

need to prove that sup(x,γ)∈Π |H(x, γ, β0)| <∞ and that sup(x,γ)∈Π |E[w(X, x, γ)(Λ̇θ0(Y ))l]| <
∞ for l = 1, . . . , k. The former property has been shown at the end of the proof of Theorem

3.2, whereas for the latter note that for l = 1, . . . , k, we have

sup
(x,γ)∈Π

∣∣∣∣E[w(X, x, γ)(Λ̇θ0(Y ))l

]∣∣∣∣ = sup
(x,γ)∈Π

∣∣∣∣E[w(X, x, γ)E

[
(Λ̇θ0(Y ))l

∣∣∣∣X]]∣∣∣∣
≤ sup

(x,γ)∈Π,t∈χ

∣∣∣∣w(t, x, γ)

∣∣∣∣ sup
x∈χ

E

[∣∣∣∣(Λ̇θ0(Y ))l

∣∣∣∣∣∣∣∣X = x

]
.

This last expression is finite by conditions (A9)(ii) and (A5)(ii). It now follows that R1
n(x, γ)

converges to a Gaussian process R1
∞. We can easily see that R1

∞ has zero mean, be-

cause Rn converges to a centered Gaussian process by Theorem 3.1, E(ηβ0(X, Y )) = 0

and E(g(X, Y )) = 0 since g(X, Y ) = Γ−1ξ(θ0, X, Y ) and ξ(θ0, X, Y ) is the derivative of the
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likelihood. Moreover,

Cov[w(X, x1, γ1)(Λθ0(Y )−m(X))−G(x1, γ1, X, Y, θ0, β0),

w(X, x2, γ2)(Λθ0(Y )−m(X))−G(x2, γ2, X, Y, θ0, β0)]

= E[{w(X, x1, γ1)(Λθ0(Y )−m(X))−G(x1, γ1, X, Y, θ0, β0)}

×{w(X, x2, γ2)(Λθ0(Y )−m(X))−G(x2, γ2, X, Y, θ0, β0)}]

= E[w(X, x1, γ1)w(X, x2, γ2)ε2]− E[G(x2, γ2, X, Y, θ0, β0)w(X, x1, γ1)ε]

−E[G(x1, γ1, X, Y, θ0, β0)w(X, x2, γ2)ε]

+E[G(x1, γ1, X, Y, θ0, β0)G(x2, γ2, X, Y, θ0, β0)].

Note that the first term on the right hand side of the last expression is C(x1, γ1, x2, γ2). �

Proof of Corollary 3.2. First, to obtain the limiting distribution of Dn, it suffices to

apply Corollary 3.1 and the continuous mapping theorem. Next, for W 2
n , we use Theorem

3.3, which states that we can replace dΨn(x, γ) by dΨ(x, γ) up to a negligible term. Hence,

we obtain the limiting distribution of W 2
n applying Corollary 3.1 and the continuous mapping

theorem. �

7.3 Proofs of the results under H1n

Proof of Theorem 3.4. First, we remind that

R1
n(x, γ) = I +Rn(x, γ)− II , (7.9)

where I and II are given in (7.3) and (7.4) respectively. Exactly in the same way as in the

proof of Theorem 3.2, expression I is equal to

I = −n−1/2

n∑
i=1

E[w(X, x, γ)(Λ̇θ0(Y ))t]g(Xi, Yi) + oP (1) . (7.10)

Next, as we are under H1n, m(x) = mβ0(x) + n−1/2r(x) and using a Taylor expansion for
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some value ζ between β̂ and β0, expression II is equal to

II = n−1/2

n∑
i=1

w(Xi, x, γ)(β̂ − β0)t
∂

∂β
mζ(Xi)− n−1

n∑
i=1

w(Xi, x, γ)r(Xi)

= n1/2(β̂ − β0)tn−1

n∑
i=1

w(Xi, x, γ)h(Xi, ζ)− n−1

n∑
i=1

w(Xi, x, γ)r(Xi)

= n1/2(β̂ − β0)tn−1

n∑
i=1

w(Xi, x, γ)(h(Xi, ζ)− h(Xi, β̃0n))

+n1/2(β̂ − β0)tn−1

n∑
i=1

[
w(Xi, x, γ)h(Xi, β̃0n)−H(x, γ, β̃0n)

]
+n1/2(β̂ − β0)tH(x, γ, β̃0n)− n−1

n∑
i=1

w(Xi, x, γ)r(Xi) . (7.11)

Note that n1/2(β̂ − β0) = OP (1) by Lemma 4 in the supplementary material in Colling and

Van Keilegom (2016). Moreover, as the function h is a differentiable function in β with a

uniformly bounded derivative (see condition (A6)(ii)) and β̃0n − β0 = oP (1) using Lemma 3

in the supplementary material in Colling and Van Keilegom (2016), we can prove in exactly

the same way as in the proof of Theorem 3.2 that expressions

n−1

n∑
i=1

w(Xi, x, γ)(h(Xi, ζ)− h(Xi, β̃0n)) ,

and

n−1

n∑
i=1

[
w(Xi, x, γ)h(Xi, β̃0n)−H(x, γ, β̃0n)

]
,

are oP (1) uniformly in (x, γ) ∈ Π, which implies that the first and the second terms on the

right hand side of (7.11) are also oP (1) uniformly in (x, γ) ∈ Π. Then, combining (7.9),

(7.10) and (7.11), we get

R1
n(x, γ) = Rn(x, γ)− n−1/2

n∑
i=1

E[w(X, x, γ)(Λ̇θ0(Y ))t]g(Xi, Yi)

−n1/2(β̂ − β0)tH(x, γ, β̃0n) + n−1

n∑
i=1

w(Xi, x, γ)r(Xi) + oP (1) .

Finally, we define the class

F3 = {u→ w(u, x, γ)r(u), (x, γ) ∈ Π} ,
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and we let rLj (u) = min(wLj (u)r(u), wUj (u)r(u)) and rUj (u) = max(wLj (u)r(u), wUj (u)r(u)) for

j = 1, . . . ,M , where wL1 ≤ wU1 , . . ., wLM ≤ wUM are the M functions defining the ε̃−brackets

to cover W that have been introduced in the proof of Theorem 3.1. Consequently, for

j = 1, . . . ,M , we have∣∣∣∣∣∣∣∣rUj (X)− rLj (X)

∣∣∣∣∣∣∣∣
1

= E

[∣∣∣∣wUj (X)− wLj (X)

∣∣∣∣∣∣∣∣r(X)

∣∣∣∣]
≤

(
E[r2(X)]

)1/2(
E

[
(wUj (X)− wLj (X))2

])1/2

.

This last expression is finite by condition (A12) and since E[(wUj (X)−wLj (X))2] ≤ ε̃2. Hence,

N[ ](ε̃,F3, L1(P )) <∞, which implies that F3 is Glivenko-Cantelli by Theorem 2.4.1 in Van

der Vaart and Wellner (1996), i.e.

sup
f∈F3

∣∣∣∣n−1

n∑
i=1

f(Xi)− E(f(X))

∣∣∣∣ = oP (1) .

This means that n−1
∑n

i=1w(Xi, x, γ)r(Xi) = E[w(X, x, γ)r(X)]+oP (1) uniformly in (x, γ) ∈
Π. We conlude the proof using Lemma 4 in the supplementary material in Colling and Van

Keilegom (2016) :

R1
n(x, γ) = Rn(x, γ)− n−1/2

n∑
i=1

E[w(X, x, γ)(Λ̇θ0(Y ))t]g(Xi, Yi)

−n−1/2

n∑
i=1

H t(x, γ, β̃0n)

{
ηβ̃0n(Xi, Yi)− Ω−1E

[
∂mβ̃0n

(X)

∂β
(Λ̇θ0(Y ))t

]
g(Xi, Yi)

}
−H t(x, γ, β̃0n)Ω−1

∫
r(u)

∂mβ̃0n
(u)

∂β
dFX(u) + E[w(X, x, γ)r(X)] + oP (1).

The last equality was obtained using the fact that H(x, γ, β̃0n) is bounded uniformly in

(x, γ) ∈ Π, the proof is exactly the same as in Theorem 3.2. �

Proof of Corollary 3.3. To prove this result, we will show that expressions Rn(x, γ) −
n−1/2

∑n
i=1G(x, γ,Xi, Yi, θ0, β0) under H0 and Rn(x, γ) − n−1/2

∑n
i=1G(x, γ,Xi, Yi, θ0, β̃0n)

under H1n have the same limiting Gaussian process R1
∞. Since the bias term b(x, γ) was

already obtained in Theorem 3.4, this will conclude the proof.

Recall the definition of G(x, γ,X, Y, θ0, β0) given in (3.1). First note that Theorem

3.2 in Colling and Van Keilegom (2016) shows that n−1/2
∑n

i=1 ηβ0(Xi, Yi) under H0 and

n−1/2
∑n

i=1 ηβ̃0n(Xi, Yi) under H1n have the same limiting distribution.
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Moreover, combining assumption (A6)(ii) and the fact that β̃0n−β0 = oP (1) by Lemma 3

in the supplementary material in Colling and Van Keilegom (2016), we have that

supt∈χ

∣∣∣∂mβ̃0n (t)

∂β
− ∂mβ0 (t)

∂β

∣∣∣ = o(1).

Next, for l = 1, . . . , q, we denote by Hl(x, γ, β) the l−th component of the vector

H(x, γ, β), i.e. Hl(x, γ, β) = E[w(X, x, γ)
∂mβ(X)

∂βl
]. For l = 1, . . . , q, we have

sup
(x,γ)∈Π

∣∣∣∣Hl(x, γ, β̃0n)−Hl(x, γ, β0)

∣∣∣∣ = sup
(x,γ)∈Π

∣∣∣∣E[w(X, x, γ)

(
∂mβ̃0n

(X)

∂βl
− ∂mβ0(X)

∂βl

)]∣∣∣∣
≤ sup

(x,γ)∈Π,t∈χ

∣∣∣∣w(t, x, γ)

∣∣∣∣ sup
t∈χ

∣∣∣∣∂mβ̃0n
(t)

∂βl
− ∂mβ0(t)

∂βl

∣∣∣∣ .
The last expression is oP (1) using condition (A9)(ii). Hence, sup(x,γ)∈Π |Hl(x, γ, β̃0n) −
Hl(x, γ, β0)| = o(1) for l = 1, . . . , q.

This shows the above statement, and hence finishes the proof. �

Proof of Corollary 3.4. First, note that we can prove by very similar arguments the same

result as in Theorem 3.3 but under H1n. The proof of this Corollary is similar to the proof

of Corollary 3.2. It suffices to apply Corollary 3.3 and the continuous mapping theorem. �
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