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Abstract. Color segmentation is an essential problem in image pro-
cessing. While most of the recent works focus on the segmentation of
individual images, we propose to use the temporal color redundancy to
segment arbitrary videos. In an initial phase, a k-medoids clustering is
applied on histogram peaks observed on few frames to learn the dominant
colors composing the recorded scene. In a second phase, these dominant
colors are used as reference colors to speed up a color-based segmenta-
tion process and, are updated on-the-fly when the scene changes. Our
evaluation first shows that the proprieties of k-medoids clustering make
it well suited to learn the dominant colors. Then, the efficiency and the
effectiveness of the proposed method are demonstrated and compared
to standard segmentation benchmarks. This assessment reveals that our
approach is more than 250 times faster than the conventional mean-shift
segmentation, while preserving the segmentation accuracy.
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1 Introduction

Video segmentation has always been a major topic in computer vision and mul-
timedia. Indeed, partitioning the frames of a video into non-overlapping areas
with different semantical contents has tremendous applications in data compres-
sion, tracking, augmented reality, activity or object recognition, video annotation
and video retrieval. Although all these applications are very different from each
other, the developed segmentation methods can be categorized into two classes.

The first class of segmentation algorithms aims at partitioning each frame
of an arbitrary video, that could represent static scenes, into a complete set of
non-overlapping regions. In this case, despite the strong temporal redundancy
of video frames, most of the proposed methods still segment the frames indi-
vidually. For example, in [9], a frame-by-frame process (2D) first smoothes the
images using a variant of anisotropic diffusion and then merge the neighboring
color pixels according to their color similarity. In [19] and [5], a frame-to-frame
framework (2D+t) is used to associate independent segmentations of 2D frames
and refine the segmented regions. Because image segmentation methods are of-
ten quite costly both in memory resources and in computational power [13],



such approaches are unsuitable for real-time applications. Spatio-temporal seg-
mentation methods (segmenting directly the 3D volume of the video) have also
been recently investigated [15]. Specifically, due to its good performances on var-
ious type of images/videos, mean-shift segmentation [7] has gained considerable
attention these last years. However, because of its slow convergence [6], this al-
gorithm is also not adapted to real-time applications.

The second class of methods aims at segmenting a specific moving object in
a video sequence. In this case, it is possible to take advantage of the motion
analysis to segment the object. For example, Ellis and Zografos [10] use a semi-
supervised appearance learning method coupled with a motion segmentation
algorithm to perform on-the-fly segmentation. However, because the segmented
region is determined using motion features, their fast segmentation method is
restricted to moving objects, as it is the case in [17] and [16].
In this paper, we combine the strengths of both classes by proposing a color
segmentation algorithm that autonomously learns the dominant colors of the
recorded scene, and both propagates forward and updates this weak prior to
speed-up the segmentation. More precisely, on a few frames at the beginning
of the video sequence, the dominant colors composing the scene are recursively
determined using a k-medoids algorithm applied on the principal mode of the
images color histograms. On the next frames, these dominant colors are used as
reference colors to segment the frames into regions of approximatively uniform
color. The approach is especially relevant when dealing with video sequences
whose color distribution does not significantly change over time. In that case,
the initial training phase just needs to be run once on few frames at the beginning
of the sequence, to define the dominant colors for the whole sequence. This case
typically happens both when the camera viewpoint does not significantly change
over time, like in surveillance contexts capturing scenes with still cameras, and
when capturing a scene with low variance color distribution, as it happens in
sport scenes for example. To make our method valid for arbitrary sequences, we
however propose a simple approach to update the set of dominant colors when
required. By restarting the learning process when a certain percentage of the
pixels are not represented by the list of learnt dominant colors, we avoid regular
manual corrections of the propagated segmentation cues, as done in [2] and [20].
Moreover, as it is shown in Section 3.1, because the dominant colors are de-
termined by k-medoids clustering, the learnt colors are actually present in the
image. This enable to create artistic stylizations (e.g. cartoons and paintings)
without manual rectification of the colors, as opposed to [25].
This paper is organized as follows. The proposed algorithm is first described in
Section 2. Section 3.1 shows that the better robustness of a k-medoids cluster-
ing makes it more adapted for the learning of dominant colors than the usual
k-means clustering. Finally, in Section 3.2, we highlight the key advantage of our
approach by showing that the computation time of the proposed color segmenta-
tion is significantly smaller than the one of conventional segmentation methods
working without color prior, such as the mean-shift algorithm, while preserving
the segmentation effectiveness.



2 Color segmentation with autonomous learning of
dominant colors

This section introduces the main contribution of our work, which consists in
exploiting dominant color priors to segment the video stream in a spectaculary
efficient, whilst effective, manner. As illustrated in Algorithm 1, the proposed
approach relies on three complementary phases: the learning of dominant colors,
the fast color segmentation and the update of the learnt dominant colors. Each
phase is individually detailed in the rest of this section.

Algorithm 1 Fast color segmentation algorithm

Input: videoStream, N (amount of frames to learn a dominant color),
T1 (thresholds the color dissimilarity) and T2 (triggers the state change)

Output: {segFramei} (the segmented frames of videoStream)

Initialize: i←1; n←1; isLearning←true; isStable←false; Dc←[ ]; Dtmp←[ ];

Procedure:
while NOT(end of videoStream) do

I ← getFrame(videoStream, i);
segFramei ← [ ];
if isLearning OR NOT(isStable) then

mask ← {x | (d(I,x, Dc) > T1)};
Dtmp ← concatenate

(
Dtmp, argmax

b∈bins
hist3D(I(mask)

)
;

n← n + 1;
if n > N then

Dc ← concatenate
(
Dc, kmedoids(Dtmp, k = 1)

)
;

Dtmp ← [ ]; n← 1; isLearning ← false;
end if

end if
if NOT(isLearning) then
◦ Replace each pixel x of I with its closest (minimum
d(I,x, Dc)) dominant color of Dc and store in segFramei;
◦ Compute percentage p of pixels x with d(I,x, Dc) > T1;
if p > T2 then

if isStable then
◦ Remove from Dc the dominant color with the

largest mean dissimilarity d(I,x, Dc);
isStable← false;

end if
isLearning ← true;

else
isStable← true;

end if
end if
i← i + 1;

end while

Learning
phase

Running
phase

Update
phase



2.1 Learning phase: determination of the dominant colors

The learning phase recursively determines the dominant colors based on sets
of N consecutive frames. Each set is used to learn a new dominant color1, by
taking into account only the pixels that are not similar with the previous learnt
dominant colors. More precisely, let Dc denote the list of the first c dominant
colors identified on c previous sets of N consecutive frames. The recursive learn-
ing process starts with an empty set D0 of identified dominant colors. A pixel of
coordinate x ∈ R2 of a frame I (where I ∈ Rm×n×d is the image, m is the height
of the image, n is its width and d is its number of channels) of the (c + 1)th

set is said to be active if its distance to all colors in Dc is larger than a thresh-
old T1. The distance between a color pixel I(x) and a reference color C ∈ Rd
is computed using a variant of the robust contrast adaptive color dissimilarity
proposed in [4]:

d(I,x, C) = 1− exp

(
−‖I(x)− C‖2

2〈‖I − C‖2〉

)
where ‖I(x)− C‖ is the L2 norm of the RGB color difference and 〈.〉 is the ex-
pectation operator. To learn the jth dominant color, the color that appears the
most frequently among the active pixels of each frame of the jth set is computed.
Because this value corresponds to the highest peak in the color d-dimensional
histogram of the active pixels, we name it the first histogram mode. By assuming
that the color distribution of the recorded scene does not significantly change
over the N consecutive frames of the jth set, the vectorial center of these N ac-
cumulated first histogram modes gives a reliable representation of the jth dom-
inant color. In Section 3.1, two different definitions of vectorial centers, namely
centroid and medoid, and their associated computation methods (k-means clus-
tering and k-medoids clustering), will be compared. As it will be seen, because
of its robustness to noisy data, medoid is chosen to define the dominant color
from a set of N first histogram modes. Also, because the authors of [23] have
shown that k-medoids clustering process runs faster than k-means (complexity
of O(ikl), where i is the total number of iterations, k is the total number of clus-
ters, and l is the total number of data points) under normal distribution of the
data points, we first pre-process the N first histogram modes in order to make
them more normal distribution-like. Practically, this is done by stabilizing their
variance with a box-cox transform [3]. For a vector [x1 . . . xP ] of strictly positive
entries (xp > 0 , ∀ p ∈ [1;P ]), the box-cox transform determines a parameter
λ ∈ R such as to maximize the correlation of the transformed data distribution
with a normal distribution plot. The following transformation is then applied:

x(λ)p =


xλp−1

λ if λ 6= 0

log(xp) if λ = 0

Although the box-cox transform preserves the similarity of the orderings of the
data, the imperfect symmetry of the transformed distribution could produce a
small bias in the medoid estimation. However, in practice, as observed in [11],

1 Instead of learning multiple dominant colors per set, we propose to reduce N .



this bias has only a negligible impact on the final solution, while enabling an
important speed-up. Finally, the learning process stops if the percentage of pixels
that are correctly approximated by one of the learnt dominant colors reaches a
threshold T2, i.e. when the percentage of active pixels drops below T2.

2.2 Running phase: fast color segmentation

Once the dominant colors have been determined, they are used as color priors
in a segmentation process. First, based on the robust color distance presented
previously, all the pixels of a new frame are compared with all the learnt dom-
inant colors. For a given pixel, only the smallest distance and the index of the
associate dominant color are stored. After, despite the use of a robust metric
for labelization, it could happen that some pixels are not labelled consistently,
i.e. their label does not correspond to the label of the surrounding pixels that
belong to the same region. It mainly appears when the sensor used to record the
scene is noise sensitive or when the video is highly compressed, leading to wrong
local colors or noisy frames. For this reason, we propose to filter the result of
the labelization process by a median filter (size 3 × 3). In this way, the frames
are segmented into regions of uniform color and connected pixels.

2.3 Update phase: renewing of the list of dominant colors

In the two last sections, a color prior has been learnt and propagated tempo-
rally. However, in both static and dynamic camera setups, the color distribution
generally changes over time. For this reason, we propose to extend the list of
learnt dominant colors by learning several new dominant colors from batch of N
consecutive frames when the percentage of active pixels overshoot T2. In order
to avoid a discontinuous segmentation of the frames, these N frames are also
segmented using Dc. Also, to limit the expansion of the list of learnt dominant
colors, we delete the least representative dominant color from Dc, i.e. the one
with the highest mean color dissimilarity d(I,x, C), before adding a newly learnt
dominant color. Finally, the switch from the update phase to the running phase
is done when the percentage of active pixels drops below T2.

3 Experimental validation

In this section, we first show the necessity of determining each dominant color
in a robust way. This is done by comparing the results of two different vali-
dations. The first validation learns a dominant color by representing the set of
accumulated first histogram modes by its centroid (computed via k-means clus-
tering), while the second one represents the set by its medoid2 (computed via
k-medoids clustering). This comparison support the well-known robustness of
k-medoids over k-means clustering [23], which makes it more adapted to learn
the dominant colors. After, the efficiency and the effectiveness of the proposed
segmentation method are evaluated on three different datasets.

2 A medoid can be seen as a generalization of a median value when the dimension of
the data space is higher than 1.



3.1 Comparison between k-means and k-medoids learning

K-means [21] and k-medoids [23] are both partitions-based clustering methods.
They aim at dividing a database into groups, such that the samples that belong
to the same group are similar and those belonging to different groups are dis-
similar. More precisely, a partitioning method generates k clusters from a given
set of n data objects. Because image/video segmentation is defined as partition-
ing n pixels into separated regions, such methods are thus perfectly adapted to
the segmentation problem. However, while k-means clustering has been deeply
investigated in segmentation [24, 18], k-medoids tends to be rarely used.

K-medoids and k-means differ in the way of representing a cluster. While k-
means represents a cluster by the average value (called centroid) of its associated
data, k-medoids takes the most centrally located data (called medoid) of the
cluster to represent it. The fact that the k-medoids method defines a cluster by
its most representative point has two major consequences:

– K-medoids clustering is robust to outliers and noisy data, as opposed to k-
means clustering [23]. Indeed, while a mean is highly sensitive to extreme
values, a medoid is perfectly suited to derive a representative tendency from
its central sample, even in skewed distributions.

– By definition, a medoid belongs to the data space. In contrast, if the space is
not convex, a centroid (average) may lie outside the space. This might end
up in the definition of a reference “dominant“ color that is close to several
colors of the scene, without actually matching any of those colors.

These two fundamental differences between k-means and k-medoids are illus-
trated in Figure 1.

Frames

Color of the first histogram mode

︸ ︷︷ ︸
K-means K-medoids

Learnt dominant color

︸ ︷︷ ︸
Segmentation with k-means learning

Segmentation with k-medoids learning

Fig. 1: The dominant color (3rd row) determined on the first histogram modes
(2nd row) of a video (1st row) shows that a learning based on k-medoids clustering
(5th row) is more robust to noisy data than one based on k-means (4th row).



The first row represents different frames taken from a video. The second row
represents the first histogram mode for each frame, as defined in Section 2.1.
The third row illustrates the dominant color computed by the 1-means clustering
(left) and 1-medoids clustering (right), based on the set of first histogram modes
extracted from the frames. Because this video focuses on a panda, we expect the
first dominant color to be either black or white.
As a first observation, the first histogram mode detected on the third frame
corresponds to the bright color of the wall. It can thus be considered as an
outlier in the set of first histogram modes, where the black color of the panda
is preponderant. The grey dominant color learnt by k-means clustering (third
row of Fig. 1) shows that this outlier highly attracts the centroid in the k-means
clustering, while it does not influence the medoid of the k-medoids clustering.
The learning of dominant colors based on k-means clustering is thus strongly
biased by noisy data, while a learning based on k-medoids clustering is robust.
As a second observation, the dominant color learnt by k-means clustering (grey)
does not represent a color of the panda. Any segmentation algorithm that tries
to segment the panda based on this learnt dominant color will thus fail, as
illustrated in the fourth row of Fig. 1. At the opposite, the last row of Fig. 1 shows
that k-medoids clustering is well adapted to recursively learn the reference colors
used in a color-based segmentation. Those two observations led us to prefer k-
medoids over k-means clustering. In the proposed method, k-medoids clustering
is thus applied to determinate a dominant color from N first histogram modes.
To still decrease the sensitivity to noisy data in the determination of a dominant
color, the medoid is defined by minimizing the sum of the L1 dissimilarities to
the data, instead of the common euclidian distance.

3.2 Performances

The efficiency and the effectiveness of the proposed segmentation method are
evaluated on three different datasets. On the one hand, as the ground-truths
are not available for the first dataset, we visually compare our results with
others. On the other hand, the ground-truth of the second dataset is used to
objectively measure the efficiency of the proposed algorithm. Finally, the last
dataset validates the effectiveness of the proposed update phase.

The first dataset, proposed by [12], is composed of several video clips rep-
resenting natural scenes and is used to give a qualitative comparison between
our video segmentation method and the conventional mean-shift algorithm [8].
Figure 2 (Figure 3) illustrates the results of both algorithms when the color
range parameters (hr in the mean-shift algorithm and T1 in our method) are
high (low), in such a way to segment the video into a very small (high) amount
of regions. First of all, as shown on these figures, the proposed method preserves
the segmentation effectiveness. After, the computational complexity (in terms of
running time of a Matlab implementation on a 3GHz Intel I7 CPU, 8Gb RAM
machine) of both methods has been evaluated on all the video sequences of this
dataset. This assessment shows that while the mean-shift algorithm segments
at approximatively 0.026 fps, our algorithm is more than 250 times faster (7.24
fps).



t = 45 t = 50 t = 55 t = 60 t = 65 t = 70 t = 75

Frames

Mean-shift

Proposed

Frames

Mean-shift

Proposed

Fig. 2: For a dense segmentation (T1 = 0.35 and T2 = 1 in our method; hs = 50
and hr = 30 for the mean-shift segmentation), a learning of the dominant colors
on N = 15 frames gives similar segmentation results, while segmenting more
than 250 times faster.

Frames

Mean-shift

Proposed

Frames

Mean-shift

Proposed

Fig. 3: For an over-segmentation (T1 = 0.2 and T2 = 1 in our method; hs = 50
and hr = 10 for the mean-shift segmentation), a learning of the dominant colors
on N = 5 frames gives similar segmentation results, while segmenting more than
250 times faster.



In Figure 4, we propose a similar qualitative comparison between our method
and the one proposed in [12] (from which this first dataset has been provided).
By extracting the regions corresponding to the dominant color of the fox, we
can see that our method achieves similar effectiveness, while using only a weak
prior in the segmentation process.

Frames

Fukuchi

et al [12]

Proposed

Fig. 4: Our method achieves similar effectiveness than [12], while using only a
weak prior in the segmentation process (N = 3, T1 = 0.65 and T2 = 1).

The second evaluation is used to go one step beyond the general validations
proposed in video segmentation, by giving a complementary quantitative as-
sessment. To the best of the authors’ knowledge, no segmentation ground-truth
exists for the entire frames of a video. However, elaborated benchmarks and
ground-truths are available for individual image segmentation. For this reason,
we evaluate the accuracy of the proposed video segmentation method on videos
constituted of a repetition of these test images. This validation is thus comple-
mentary to the first one: after having shown that the learning and segmentation
of our method are effective, we objectively assess their efficiency. We follow
the segmentation evaluation methodology proposed by [1], by computing the
F-measure (harmonic mean of precision and recall [1]) on segmentation results
obtained on various complex images and multiple corresponding ground-truths.
In Table 1, the F-measure of our method is compared with several standard
methods and shows that our method outperforms them.

Algorithms F-measure

Proposed method 0.94± 0.107
Alpert et al. (CVPR’07) [1] 0.86± 0.012
Galun et al. (ICCV’03) [14] 0.83± 0.016

Shi and Malik (PAMI’00) [22] 0.72± 0.018
Comaniciu and Meer (PAMI’02) [8] 0.57± 0.023

Table 1: Our method outperforms conventional algorithms

As a last validation, we proof the effectiveness of the update of the dominant
colors. Figure 5 illustrates a video of another dataset, proposed by [15]. As a
first observation, only few frames are dedicated to learn and update the list



of dominant colors. More precisely, in this arbitrary video, less than 8% of the
frames are used either for the learning or for the update phase, explaining the
high computing speed of our algorithm. As a last observation, the effectiveness
of the update phase is demonstrated at t = 14 and t = 85. Indeed, because of the
apparition of the whale at t = 14, the list of dominant colors is automatically
updated by detecting and adding its dark color. Also, at t = 85, when the whale
falls back in the sea, the list of dominant colors is anew updated, because of the
apparition of the light color representing the scum.

t = 2 t = 4 t = 14 t = 15 t = 30

t = 39 t = 50 t = 61 t = 73 t = 85

t = 86 t = 99

Learning phase Update phase Running phase

Fig. 5: The list of dominant colors is updated on-the-fly when the colors of the
scene change (segmentation obtained with N = 1, T1 = 0.2 and T2 = 1).

4 Conclusion

In this article, a computationally efficient video segmentation method has been
presented. The proposed approach learns, on few frames at the beginning of the
video sequences, the dominant colors representing the recorded scene. We have
shown that k-medoids clustering is more adapted than k-means clustering to re-
cursively and robustly determine these dominant colors. This color prior is then
used to speed-up a fast on-the-fly color-based segmentation of the next frames
of the video sequence. To deal with videos in which the color distribution of the
scene changes over time, we have proposed and validated an approach to update
the list of learnt dominant colors. Finally, the efficiency and the effectiveness
of the proposed method have been demonstrated on three standard segmenta-
tion benchmarks. This assessment shows that our approach is more than 250
times faster than the conventional mean-shift segmentation, while overcoming
the segmentation performances of some state-of-the-art methods.
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