Menu utilisateur

A Global Design Approach for Large-Scale Thermoelectric Energy Harvesting Systems

  1. D.M. Rowe, Int J. Innov. Energy Syst. Power 1, 1 (2006).
  2. Ono K., Suzuki R. O., Thermoelectric power generation: Converting low-grade heat into electricity, 10.1007/s11837-998-0308-4
  3. Reay Professor David, Editorial, 10.1016/1359-4311(96)90011-3
  4. L.I. Anatychuk, O.K. Luste, and R.V. Kuz, J. Electron. Mater. 40, 5 (2011).
  5. Narducci Dario, Do we really need high thermoelectric figures of merit? A critical appraisal to the power conversion efficiency of thermoelectric materials, 10.1063/1.3634018
  6. G. Min, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 2006), pp. 11--1.
  7. Suzuki Ryosuke O., Tanaka Daisuke, Mathematical simulation of thermoelectric power generation with the multi-panels, 10.1016/s0378-7753(03)00396-3
  8. Suzuki Ryosuke O., Tanaka Daisuke, Mathematic simulation on thermoelectric power generation with cylindrical multi-tubes, 10.1016/s0378-7753(03)00626-8
  9. Mikami M., Matsumoto A., Kobayashi K., Synthesis and thermoelectric properties of microstructural Heusler Fe2VAl alloy, 10.1016/j.jallcom.2007.07.004
  10. Mikami M., Kobayashi K., Kawada T., Kubo K., Uchiyama N., Development of a Thermoelectric Module Using the Heusler Alloy Fe2VAl, 10.1007/s11664-009-0724-4
  11. Freunek Michael, Müller Monika, Ungan Tolgay, Walker William, Reindl Leonhard M., New Physical Model for Thermoelectric Generators, 10.1007/s11664-009-0665-y
  12. M. Jaegle, Proc. European COMSOL Conference 2008, Hannover, Germany, .
  13. Ebling D., Bartholomé K., Bartel M., Jägle M., Module Geometry and Contact Resistance of Thermoelectric Generators Analyzed by Multiphysics Simulation, 10.1007/s11664-010-1331-0
  14. Chan T.F., Lai L.L., Shuming Xie, Field Computation for an Axial Flux Permanent-Magnet Synchronous Generator, 10.1109/tec.2008.2011830
  15. A. Rodríguez, J.G. Vián, D. Astrain, and A. Martínez, Energy Convers. Manage. 50, 1236 (2009).
  16. T.A. Lipo, Introduction to AC Machine Design, 3rd ed. (University of Wisconsin: Wisconsin Power Electronics Research Center, 2004), pp. 383–452.
  17. G. Min, in Energy Harvesting for Autonomous Systems, ed. S. Beeby and N. White (Norwood, MA: Artech House, 2010), p. 135.
  18. Deb Kalyanmoy, Multi-Objective Optimization, Search Methodologies ISBN:9780387234601 p.273-316, 10.1007/0-387-28356-0_10
  19. Belguerras L., Hadjout L., Multi-objective Design Optimization of Slotless PM Motors Using Genetic Algorithms Based on Analytical Field Calculation, Computational Methods for the Innovative Design of Electrical Devices (2010) ISBN:9783642162244 p.19-37, 10.1007/978-3-642-16225-1_2
  20. Deb Kalyanmoy, Agrawal Samir, Pratap Amrit, Meyarivan T, A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II, Parallel Problem Solving from Nature PPSN VI (2000) ISBN:9783540410560 p.849-858, 10.1007/3-540-45356-3_83
Référence bibliographique Roy, Geoffrey ; Matagne, Ernest ; Jacques, Pascal. A Global Design Approach for Large-Scale Thermoelectric Energy Harvesting Systems. In: Journal of Electronic Materials, Vol. 42, no.7, p. 1781-1788 (2013)