Chapter 1

CONSTRAINT-BASED PATTERN MINING

Siegfried Nijssen
KU Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium
Universiteit Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
siegfried.nijssen@cs.kuleuven.be

Albrecht Zimmermann
KU Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium
albrecht.zimmermann@cs.kuleuven.be

Abstract
Many pattern mining systems are designed to solve one specific problem, such as frequent, closed or maximal frequent itemset mining, efficiently. Even though efficient, their specialized nature can make these systems difficult to apply in different situations than the one they were designed for. This chapter provides an overview of generic constraint-based mining systems. Constraint-based pattern mining systems are systems that with minimal effort can be programmed to find different types of patterns satisfying constraints. They achieve this genericity by providing (1) high-level languages in which programmers can easily specify constraints; (2) generic search algorithms that find patterns for any task expressed in the specification language. The development of generic systems requires an understanding of different classes of constraints. This chapter will first provide an overview of such classes constraints, followed by a discussion of search algorithms and specification languages.

Keywords: Constraints, languages, inductive databases, search algorithms
1. Introduction

A key component of a pattern mining system is the constraint that is used by the system. A frequent itemset mining system, for instance, is characterized by the use of a minimum support constraint; an association rule mining system, similarly, is defined by a minimum confidence constraint. Constraints define to a large degree which task a pattern mining system is performing.

However, the focus of many pattern mining systems on one type of constraint can make their use cumbersome. As an example, consider a frequent itemset mining system that one wishes to apply in a context where the utility of the items is important as well. As a basic frequent itemset mining system does not support utilities, we cannot use it directly; we either have to:

- understand the code of the frequent itemset mining algorithm to add an additional constraint to it;
- or, write a second algorithm for processing the results of the frequent itemset mining system to evaluate the additional constraint for each of the itemsets found.

Both options are cumbersome. The second option is likely to be computationally inefficient if the number of frequent itemsets is large. The first option can be efficient, provided that the programmer has a deep understanding of the code that is being modified.

These disadvantages have led researchers to develop more general systems that provide easy-to-use interfaces for specifying the constraints that the pattern mining systems need to use during the search. The development of these systems has involved several challenges:

- the identification of general classes of constraints, all of which can be processed in a generic and similar way;
- the development of languages in which constraints can be expressed, such that all expressions in the language correspond to constraints in a class of constraints supported by a system;
- the development of search algorithms that can deal with constraints in a certain class.

This chapter will provide an overview of the state-of-the-art for each of these challenges. We will first formalize the problem of constraint-based pattern mining, including a discussion of different classes of constraints. Subsequently, we will discuss the most common search algorithms for these classes of constraints. Finally, we will discuss the languages that allow for the expression of constraints in pattern mining.
2. Problem Definition

Constraint-based mining starts from the observation that many pattern mining problems can be seen as instances of the following generic problem statement:

Given
- a database \mathcal{D} with transactions
- a pattern language \mathcal{L}_π
- a constraint $\varphi : \mathcal{L}_\pi \times 2^{\mathcal{L}_\pi} \rightarrow \{0, 1\}$

Find all patterns $\pi \in \mathcal{L}_\pi$ for which $\varphi(\pi, \mathcal{D}) = 1$.

The pattern language typically describes the syntax of the patterns we wish to find in the data. Constraints typically describe the statistical requirements that we wish these patterns to satisfy on the data.

Frequent itemset mining (see chapter ...), for example, is an instance of this generic setting, with the following choices:

- the database has transactions that are subsets of a given set of items \mathcal{I};
- the pattern language is the set of all subsets of \mathcal{I}: $\mathcal{L}_\pi = 2^\mathcal{I}$;
- the minimum support constraint $\varphi_{\text{minsup}}(\pi, \mathcal{D})$ is true if and only if the number of transactions of \mathcal{D} that contain π is large enough, in other words, it is true if and only if:
 $$|\text{cover}(\pi)| = |\{d \in \mathcal{D} | \pi \subseteq d\}| \geq \theta,$$
 where θ is a user-defined threshold.

By modifying the pattern language, the data language and the constraints different data mining problems can be formalized. The main aim of constraint-based pattern mining is to build generic languages in which programmers can express pattern mining problems in terms of constraints, and to develop systems that can process statements in these languages.

Constraints

Constraints can be categorized along several dimensions:

- which information is used when evaluating the constraint? Possibilities include that the constraint only evaluates the syntax of the pattern, that the constraint requires a database of transactions, or that the constraint requires a database with labeled transactions.
which properties do the constraints have? The most well-known property is that of (anti-)monotonicity, but other properties have been identified as well.

These constraint categories are elaborated on below.

Anti-monotonicity. Most pattern mining algorithms assume the existence of a *coverage relation* between patterns and transactions in the data. In the case of frequent itemset mining, for example, an itemset π covers a transaction $d \in D$ iff $\pi \subseteq d$; hence, the subset relation is used as coverage relation. In graph mining the subgraph isomorphism relation may be used; in sequence mining, the subsequence relation.

A second important relation is the *generality relation*. A generality relation is essentially a partial order on the set of patterns in L_π. We will denote this relationship with the symbol \succeq: if pattern π_1 is more general than pattern π_2, we will write $\pi_1 \succeq \pi_2$.

A generality relation \succeq is *compatible* with a coverage relation if it satisfies the following property for all possible transactions d: if $\pi_1 \succeq \pi_2$ and π_2 covers example d, then π_1 covers example d.

A good generality relation is usually not difficult to choose. If the coverage relation is transitive, one can always use the coverage relation as generality relation as well. For instance, in itemset mining, the subset relation is usually used as generality relation as well: an itemset π_1 is more general than an itemset π_2 iff $\pi_1 \subseteq \pi_2$.

Based on the generality relationship, we can define the *anti-monotonicity* property of constraints1. A constraint $\varphi(\pi, D)$ is called anti-monotonic iff it holds for all patterns π_1, π_2 that

$$\text{if } \pi_1 \succeq \pi_2 \text{ and } \varphi(\pi_2, D) \text{ is true, then } \varphi(\pi_1, D) \text{ is true.}$$

Minimum support is the most well-known constraint that is anti-monotonic, but also several other constraints are anti-monotonic [20, 11]. Assuming that we use the subset relation to determine the generality relation, the following constraints on itemsets are anti-monotonic:

- the maximum length constraint $|\pi| \leq \theta$ for a fixed θ;

- the maximum sum of costs constraint $c(\pi) \leq \theta$ is anti-monotonic, where $c(\pi)$ sums up the costs of the items in the itemset, $c(\pi) = \sum_{i \in \pi} c(i)$, and $c(i)$ is a cost that is associated to each item;

- a generalization constraint, which for a given set I requires that all itemsets found satisfy $\pi \subseteq I$;

- conjunctions or disjunctions of other anti-monotonic constraints.

These constraints can be generalized to other types of patterns as well.
Monotonocity. Closely related to anti-monotonicity is monotonicity. A constraint is called monotonic iff for all patterns π_1, π_2:

$$ \text{if } \pi_1 \succeq \pi_2 \text{ and } \varphi(\pi_1, D) \text{ is true, then } \varphi(\pi_2, D) \text{ is true.} $$

In other words, monotonicity is the “reverse” of anti-monotonicity; if a constraint $\varphi(\pi)$ is anti-monotonic, its negation $\neg \varphi(\pi)$ is monotonic. This includes constraints such as:

- the maximum support constraint $|\{d \in D | \pi \subseteq d \}| \leq \theta$;
- the minimum size constraint $|\pi| \geq \theta$;
- the minimum sum of costs constraint $c(\pi) \geq \theta$;
- a negated generalization constraint $\pi \not\subseteq I$;
- a specialization constraint $\pi \supseteq I$.

Convertible (anti)-monotonicity. Whether a constraint is (anti)-monotonic depends on the generality relation chosen. One of the most well-known examples is that of the maximum average cost of an itemset, $c(\pi) = \sum_{i \in \pi} c(i)/|\pi| \geq \theta$. If we use the subset relation to define the generality, this constraint is not anti-monotonic. Consider the following two items with their corresponding costs: $c(1) = 1$ and $c(2) = 3$. If our cost threshold is 2, the average cost of $\{1, 2\}$ is 2 and satisfies the requirement; however, itemset $\{2\}$, while a subset, does not satisfy the constraint.

However, assume that we would use the following generality order:

$$ \pi_1 \succeq \pi_2 \text{ if we can obtain } \pi_1 \text{ from } \pi_2 \text{ by repeatedly removing from } \pi_2 \text{ the item with the highest cost.} $$

Then under this order the constraint is anti-monotonic: after all, by removing the most costly items from an itemset, the average cost of the items in the itemset can only go down and it hence also must satisfy the constraint.

Note that this order is compatible with the use of the subset relation as coverage relation; hence, this constraint can be combined with a minimum support constraint.

Constraints which have this property, i.e., that a different generality relation needs to be used than the coverage relation to obtain (anti-)monotonicity, are called convertible (anti-)monotonic in the literature [27].
Succinctness. Succinctness was originally defined for itemsets [24], but we will use a slightly different definition here which is applicable to other pattern languages as well: any constraint that can be enforced by manipulating the data we will call succinct. Consider the following two examples:

- we want to find frequent itemsets without item i: if we remove item i from the database, we will no longer find such itemsets;
- we want to find frequent itemsets that include item i: if we remove all transactions without item i from the database, and then remove item i from the remaining transactions, we can add item i to every itemset we find in the resulting database to obtain the desired set of itemsets.

These examples can easily be generalized to require the inclusion or exclusion of an itemset $\pi \subseteq I$.

Condensed representations. The set of patterns satisfying the above constraints may still be large. Condensed representations constitute an additional approach for reducing a set of patterns. The main idea is to determine a small set of patterns that still is sufficiently large to determine a full set of patterns. The property that a pattern is part of condensed representation can also be seen as a constraint.

We will discuss two of the most well-known cases here.

Given a generality relation \succeq, A pattern π is called closed if there is no more specific pattern π' with $\pi \succ \pi'$ such that $\text{cover}(\pi) = \text{cover}(\pi')$.

Intuitively, closed frequent patterns [26] allow one to recover a set of frequent itemsets together with their supports.

A subtle issue is the combination of the closedness constraint with other constraints. As an example, consider the maximum size constraint. One can distinguish two settings:

- a setting in which one searches for patterns satisfying the size constraint among those patterns that are closed;
- a setting in which one searches for patterns that are closed, restricting the set of patterns that are considered in the closedness definition only to those that satisfy the constraint.

As an example, assume that $\{1\}$ is not closed and that $\{1, 2\}$ is closed, while we have a maximum size constraint of 1. Then itemset $\{1\}$ would not be in the output in the first setting, but would be in the output of the second. Constraint-based pattern mining system can differ in their approach for dealing with this issue.
Another condensed representation is that of maximal frequent patterns.

Given a generality relation \succeq and constraint φ, a pattern π that satisfies constraint φ is called maximal with respect to constraint φ if there is no more specific pattern π' with $\pi \succ \pi'$ such that π' satisfies the constraint.

Compared to closed itemsets, maximal itemsets [1, 20] no longer allow one to recover the supports of a set of patterns.

If the constraint φ is a minimum support constraint, one typically refers to maximally frequent patterns. Whereas maximal frequent patterns are the most popular, it can also be useful to study maximality with respect to other constraints. Essentially, any anti-monotonic constraint defines a border in the space of patterns where all patterns that satisfy the constraints are on one side of the border, while all other patterns that do not satisfy it are on the other side [20, 11].

Similarly, also a monotonic constraint defines a border: in this case, the border one is looking for is that of minimal patterns that satisfy the constraints.

Different borders can be combined. Probably the most well-known example of this is found in the analysis of supervised data. If the database consists of two classes of examples, one can ask for all patterns that are frequent in the one, but infrequent in the other; the resulting set of patterns has two borders: one of the most specialized patterns in this set, the other of the most general ones.

Boundable Constraints. The minimum support constraint is one example of a constraint of the kind $f(\pi) \geq \theta$. Over the years, more complex functions have been studied. One example is that of accuracy (see the Chapter on supervised patterns), which calculates the accuracy of a pattern when used as a classification rule on supervised data. Many such functions no longer have the (anti-)monotonicity property. In some cases, however, one can identify an alternative function f' such that:

- it is feasible to mine all patterns with $f'(\pi) \geq \theta$;
- $f'(\pi) \geq f(\pi)$.

In this case, all patterns satisfying $f(\pi) \geq \theta$ could be determined by first mining all patterns with $f'(\pi) \geq \theta$ and then calculating $f(\pi)$ for all patterns found. Function f' can be considered a relaxation of function f [30].

In Chapter ?? it was discussed for supervised data, such bounds often exist.

Note that in the above definition we do not make it very precise what it means for a mining task to be feasible. Arguably, the highest possible
score any pattern could possibly have is also a valid bound on the quality of a pattern. Despite this lack of formality, however, the idea of bounds is very common, and experiments have demonstrated that good bounds exist for several mining tasks [17, 23].

3. Level-Wise Algorithm

Most constraint-based mining algorithms can be seen as generalized versions of frequent pattern mining algorithms. Similar to frequent itemset mining algorithms, consequently, there are both depth-first and breadth-first or level-wise search algorithms.

Generic Algorithm

The setting which is closest to frequent pattern mining is that of constraint-based mining under anti-monotonic constraints. In this case, we can perform a level-wise search that is mostly equal to that of the Apriori algorithm [20]. The search starts from the empty pattern, and proceeds by specializing this pattern in a breadth-first fashion.

In Algorithm 1 a description is given of this algorithm. In this pseudocode, we use two operators: a downward refinement operator ρ to specialize patterns and an upward refinement operator δ to generalize patterns. A downward refinement operator is an operator which for any pattern π returns a set of more specialized patterns (i.e. for all patterns $\pi' \in \rho(\pi)$ it holds that $\pi \succ \pi'$). Typically, we assume that this operator is globally complete, i.e. its repeated application starting from the empty pattern will produce the complete pattern language2. Furthermore, this operator works in “small steps”, it tries to create new patterns which are minimally more specific.

An example of a downward refinement operator for itemset mining is $\rho(\pi) = \{\pi \cup \{i\} | i \succ \max(\pi)\}$, assuming a total order $>$ on the items; e.g., if our language is $2^{\{1,2,3,4\}}$, with the natural order of integers over the items, $\rho(\{2\}) = \{\{2,3\}, \{2,4\}\}$.

Similarly, the upward refinement operator δ returns generalizations. For a given pattern π, it is assumed to only generate patterns that should have been seen before pattern π by the level-wise algorithm.

The key property on which the algorithm relies is the anti-monotonicity of constraint φ under the chosen generality relation: by refining only patterns that satisfy the constraint in line 6 and by checking generalizations in line 7, patterns are removed from consideration that are known to specialize patterns that do not satisfy φ.

Note that this algorithm can also be applied to convertible and boundable constraints [29]: in this case, a modified generality relation or con-
Algorithm 1 Level-Wise Search (Constraint: φ)

1: $\mathcal{C} := \{\emptyset\}$
2: $\mathcal{S} := \emptyset$
3: while $\mathcal{C} \neq \emptyset$ do
4: $\mathcal{S} := \{\pi \in \mathcal{C} \mid \varphi(\pi) \text{ is true}\}$
5: $\mathcal{S} := \mathcal{S} \cup \mathcal{S}$
6: $\mathcal{C}' := \bigcup_{\pi \in \mathcal{S}} \rho(\pi)$
7: $\mathcal{C} := \{\pi \in \mathcal{C}' \mid \delta(\pi) \setminus \mathcal{S} = \emptyset\}$
8: end while
9: return \mathcal{F}

A constraint is used. It can also be applied in a straightforward manner if there are both anti-monotonic constraint and non anti-monotonic constraints: in principle, we can then ignore the non anti-monotonic constraints during the search, and evaluate the remaining constraints for all patterns found in a post-processing phase.

A slightly better solution is possible in the presence of monotonic constraints. The main idea is here to traverse the patterns in a level-wise fashion in reverse order by starting with the most specialized patterns. As for a monotonic constraint generalizations of a pattern that does not satisfy the constraint, will not satisfy the constraint either, we can stop this reverse traversal at the point at which we no longer have patterns that satisfy the constraint.

The level-wise algorithm is easily changed to deal with border representations. Assume that upward refinement operator δ generates all least general generalizations of a pattern π (a pattern π' is a least general generalization for a pattern π if there is no pattern π'' with $\pi' \supsetneq \pi'' \supsetneq \pi$), then essentially we can check for each pattern π that satisfies an anti-monotonic constraint which immediate generalizations are apparently not maximal, and remove them from the solution set.

For instance, in the case of itemset mining such an operator is $\delta(\pi) = \{\pi \setminus \{i\} \mid i \in \pi\}$. It would remove all immediate subsets of an itemset from the output. As it is assumed that the upward refinement operator will always generate patterns that must have been seen already, we do not need to explicitly remove other generalizations from the output: they will have been removed at an earlier stage.

With similar ideas, also the minimal patterns on the border of a monotonic constraint can be found.

Note, however, that even though the output of these modified algorithms for finding borders is correct, the running time will not be much better than that of an algorithm that generates all patterns satisfying the
constraint. Most algorithms that are able to obtain dramatically better run times in practice are depth-first algorithms and will be discussed next.

4. Depth-First Algorithm

Basic Algorithm

The most basic depth-first constraint-based mining algorithm is given in Figure 2 and only supports anti-monotonic constraints.

Algorithm 2 Depth-First Search(Constraint: φ, pattern π)

1: $\mathcal{F} := \emptyset$
2: if $\varphi(\pi)$ is true then
3: for $\pi' \in \rho(\pi)$ do
4: $\mathcal{F} := \mathcal{F} \cup$ Depth-First Search (φ, π')
5: end for
6: end if
7: return \mathcal{F}

Essentially, compared to the earlier level-wise algorithm, this algorithm traverses the search space in a different order in which some long patterns are already considered before some shorter patterns are evaluated. As a result, optimizations based on the fact that short patterns have been seen before long patterns are not used. In practice, however, these algorithms can be more efficient. The reason for this is that most implementations take care to maintain datastructures which allow for incremental constraint evaluation: for instance, to calculate the support of a pattern, they do not traverse the whole dataset, but only consider those transactions covered by the pattern’s parent in the search tree. As depth-first algorithms do not need to maintain a large number of candidates, maintaining such additional data structures is feasible. A well-known datastructure in this context is the FP-Tree (see the chapter on pattern growth for more details) [28].

Note that the above algorithm works for any pattern language, including graphs, strings and trees, as long as we know that the constraint φ is anti-monotonic.

When some constraints are not anti-monotonic, a basic approach for dealing with them is to ignore them during the search and post-process the output of the above algorithm. A similar trick can be used for boundable constraints. In this case, the anti-monotonic bound is used during the depth-first search, and each pattern found is finally evaluated using the original constraint in a post-processing step.
Many studies have explored the possibilities for deriving more efficient algorithms for more complex constraints than anti-monotonic constraints. Most of these studies have focused on the pattern language of itemsets, as it appears additional pruning is most easily derived for itemsets. We will discuss these approaches in a generic way in the next paragraph, inspired by work of Bucila et al. and Guns et al. [8, 14].

Constraint-based Itemset Mining

The key idea in efficient depth-first constraint-based itemset mining algorithms is to maintain four sets in each node of the search tree, which are upper- and lower-bounds on the itemsets and transaction sets that can still be found:

- I_U, the largest itemset we believe we can still find;
- I_L, the smallest itemset we believe we can still find;
- T_U, the largest transaction set we believe we can still find;
- T_L, the smallest transaction set we believe we can still find.

For some constraints, not all these 4 sets need to be maintained, but in the most generic setting all 4 sets are maintained.

During the search, any modification of any of these 4 sets may be a reason to modify another of these 4 sets as well. This process of modifying one set based on the modification of another set we will refer to as propagation. Most algorithms differ in the algorithms and data structures used to do propagation.

An overview of the generic algorithm is given in Algorithm 3, in which $I_L = T_L = \emptyset$, $I_U = \mathcal{I}$ and $T_U = \mathcal{D}$. Line 1 performs the propagation for the constraints. Propagation may signal that no solution can be found in the current branch of the search tree by setting $stop$ to true. If the lower- and upper-bound for the itemset are identical, a pattern has been found and is added to the output. Otherwise, in line 6 an item is selected, which is recursively added to the itemset (line 7), or removed from consideration (line 8).

Note that the same itemset can never be found twice: an item which is added in line 7, will never be added to an itemset that is considered in the search tree explored in the call of line 8.

We will now consider how this algorithm can be instantiated for different types of mining settings.

Frequent Itemset Mining. This is the most simple setting. Essentially, in this case, the following propagation steps are executed:
Algorithm 3 Depth-First Search(Constraint: φ, I_L, I_U, T_L, T_U)

2: if not stop then
3: if $I'_L = I'_H$ then
4: return $\{I'_L\}$
5: else
6: Pick an item $i \in I'_U \setminus I'_L$
7: return Depth-First Search(φ, $I'_L \cup \{i\}$, I'_U, T'_L, T'_U) ∪
8: Depth-First Search(φ, I'_L, $I'_U \setminus \{i\}$, T'_L, T'_U)
9: end if
10: else
11: return \emptyset
12: end if

1 T'_U is restricted to cover(I_L);

2 I'_U is restricted to those items in I_U that are frequent in the database containing only the transactions of T'_U (in other words, the items that are frequent in the projected database for itemset I_L, see chapter ??);

T'_L and I'_L are not modified by propagation.

For these choices, the search is highly similar to that of Eclat or FP-Growth; essentially, at every point in the search tree, we maintain a list of candidate items that can be added to the current itemset; the set of candidate items is reduced based on the minimum support threshold.

Attentive readers may have noticed that the search tree for the generic algorithm presented here is binary, whereas for most itemset mining algorithms the tree is not binary. This is however only a minor conceptual difference: the recursive calls in line 8 of our generic algorithm essentially correspond to a traversal of the candidate list in traditional frequent itemset mining algorithms, where we remember which items we may no longer consider.

The clear benefit of this perspective is however that other constraints can be added with minor effort.

Minimum Sum of Cost and Minimum Support. A first approach for dealing with a monotonic minimum-sum-of-cost constraint is to add the following propagation [27]:

3 if the sum of costs of itemset I'_U is lower than the desired threshold, set stop to true.
The main argument for this propagation step is that we can stop a branch of the search if the most expensive itemset we can still reach is not expensive enough.

The benefit of this approach is that this propagation step is relatively easy to calculate, while for high thresholds it will already prune effectively.

A more elaborate approach was proposed by Bonchi et al. [6, 5, 7]. Its essential observation is that if an itemset needs to be both frequent and expensive, this means that a certain number of transactions in the data needs to be expensive as well. This leads to the following propagation steps:

1. T'_U is set to $T_U \cap \text{cover}(I_L)$;
2. I'_U is set to those items in I_U that are frequent in the database restricted to the transactions in T'_U;
3. from T'_U all transactions d are removed for which $c(d \cap I'_U) < \theta$, where θ is the cost threshold;
4. if T'_U was changed, go back to step 2;
5. if $I'_U \subseteq I'_L$, set stop to true.

The interesting idea in this approach is the presence of a feedback loop: the removal of items can make some transactions too cheap; when a transaction is too cheap, it will not be in the cover of an itemset, and we can remove it from consideration; this however will reduce the support of items further, potentially making them infrequent in the projected database.

The advantage of this approach is that it can reduce the size of the search tree even further. The disadvantage is that the propagation is more complex too calculate, as it involves a traversal of the data. To remedy this, Bonchi et al. [6] studied settings in which the above loop is not executed in all nodes of the seach tree.

Minimum and Maximum Support. A similar idea can be used when we have a minimum support threshold on some transactions (D^+), and a maximum support threshold on the other transactions (D^-) [9, 18].

1. T'_U is set to $\text{cover}(I_L)$;
2. I'_U is set to those items in I_U that are frequent in the database restricted to the transactions in $T'_U \cap D^+$;
3. T'_L is set to $\text{cover}(I_U)$;
4 if $|T'_L \cap D^-| > \theta$, where θ is the maximum support threshold for the negative examples, then set $stop$ to true.

In this approach, the main idea is that if the lowest support we can still reach on the negative transactions is not low enough, we can stop the search.

Maximal Frequent Itemsets. Of particular interest in the constraint-based mining literature is the discovery of border (or boundary) representations. The simplest such setting is the discovery of maximal frequent itemsets, which can be obtained by means of the following propagations:

1. T'_U is set to $cover(I_L)$;
2. I'_U is set to those items in I_U that are frequent in the database restricted to the transactions in T'_U;
3. T'_L is set to $cover(I'_U)$;
4. if some item not in I'_U is frequent in the database restricted to the transactions in T'_L, set $stop$ to true.
5. if $|T'_L| \geq \theta$, I'_L is set to I'_U.

The arguments for these steps are the following: the set T'_L represents those transactions that will be covered by any itemset we will find in the future; if there is an item that covers a sufficiently large number of these transactions, but we cannot add this item in the current branch of the search tree, we stop traversing this branch in line 4, as elsewhere we will find itemsets that include this item.

On the other hand, if the itemset consisting of all remaining items is frequent, clearly this itemset must be maximal; we can directly include all items in the itemset.

This search strategy is embodied in the MaxMiner algorithm [1]. It was generalized to the case of finding border representations under arbitrary monotonic and anti-monotonic constraints by Bucila et al. [8].

Closed Frequent Itemsets. Closed itemset mining can be achieved by another modification of the propagation for frequent itemset mining:

1. T'_U is set to $cover(I_L)$;
2. I'_U is set to those items in I_U that are frequent in the database restricted to the transactions in T'_U;
3 let \(I'' \) contain those items in \(I \) which are present in all transactions in \(T' \);

4 if \(I'' \) contains items not in \(I' \), set \(stop \) to true; otherwise, let \(I_L' \) be \(I'' \).

Remember that in closed itemset mining the task is to find itemsets such that no superset has the same coverage. This propagation ensures this: in line 4, if an item can be added to the current itemset without changing the coverage, it will be added immediately if this is allowed; however, if this item may not be added, as we branched over it earlier, we stop the search, as we can no longer find closed itemsets in the current part of the search space.

This search strategy is embodied in the LCM closed itemset mining algorithm [31]. The combination of closed itemset mining with constraints was studied in more detail in the D-Miner system by Besson et al. [2, 3].

Generic Frameworks

The similarity between these depth-first search algorithms indicates that it may be possible to combine different constraints and condensed representations. Indeed, this is the key idea underlying most generic frameworks for constraint-based mining.

The DualMiner algorithm [8] essentially represents a generic depth-first algorithm for finding border representations that extends the ideas found in the MaxMiner algorithm. The D-Miner system combines closed itemset mining (formal concept analysis) with constraints [2, 3].

The Constraint Programming for Itemset Mining framework [14] is built on the observation that constraint-based search has been studied extensively in the artificial intelligence literature in general and constraint programming in particular. It shows that the mining tasks discussed earlier can be reformalized in terms of constraints present in generic constraint programming systems; furthermore, such systems provide a generic framework for constraint propagation which makes it easy to combine different constraints.

Implementation Considerations

In the above description, we intentionally left unaddressed how the indicated propagation is performed in detail. In principle, all different data structures that have been studied in the frequent itemset mining literature can be used in this context as well. For instance, the MaxMiner and DualMiner algorithms use vertical representations of the data most
similar to that of Eclat; the FP-Bonsai algorithm, on the other hand, uses FP-Trees [7]. The impact of data structures in a Constraint Programming framework was studied by Nijssen et al [25]. These studies confirm that for good run times the choice of data structure is important; however, many of the above propagation procedures can be adapted to different data representations, and hence the two aspects can be considered orthogonal.

5. Languages

Most of the systems studied earlier require a language for the specification of constraints. Roughly speaking, three categories can be distinguished within these languages: special purpose languages, SQL inspired languages, and constraint programming based languages.

Special purpose languages. Many constraint-based mining systems implement a small special purpose language. As an example, this is an expression in the language underlying the SeqLog system [19]:

```plaintext
database ca = smiles_file("molecules.ca");
database ci = smiles_file("molecules.ci");

predicate ca = minimum_frequency(ca, 10);
predicate ci = maximum_frequency(ci, 500);

mine ca and ci;
```

Essentially, this language provides a small set of built-in primitives such as `smiles_file` for reading a data file, `minimum_frequency` for specifying a minimum support constraint and `maximum_frequency` for specifying a maximum support constraint. For each of these primitives, the system is aware of the properties such as (anti-)monotonicity, which ensures that any conjunction or disjunction of constraints that is written is down can be processed by the system.

Similar special purpose languages were proposed by several other authors [30, 22]; they differ in the constraints that are supported and the type of patterns that can be found (itemsets [30, 22], strings [12, 19], ...).

Languages built on SQL. A clear disadvantage of special purpose languages is that they are yet other languages that the programmer has to learn. Given that many datasets are stored in databases, several projects have studied the integration of constraint-based pattern mining in database systems.
The first class such methods aims to extend SQL with additional syntax for the formalization of data mining tasks. One early example is the MINE RULE operator [21]:

```
MINE RULE Associations AS
SELECT DISTINCT 1..n item as BODY, 1..n item AS HEAD,
    SUPPORT, CONFIDENCE
FROM Purchase
WHERE price <= 150
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2
```

This example mines association rules with minimum support 0.1, confidence 0.2, limiting the search to items with a price lower than $150.

Another example the DMQL language [15]:

```
FIND association rules
RELATED TO beer, wine, diapers
FROM products
WHERE value >= 100
WITH support threshold = 0.1
WITH confidence threshold = 0.2
```

In this example we search for association rules related to three specific products, in those transactions that have a value higher than 100; the parameters of the association rule discovery process are similar as in the previous example.

Another example is SPQL [5].

The advantage of these languages is that well-known syntax can be used for the expression for constraints. Furthermore, common SQL syntax can be used to specify the input of the mining task or to process its output further.

At the same time, the programmer still has to learn the additional primitives, such as the FIND or MINE RULE keywords. An alternative perspective is to avoid extending the language, but to add mining views to a database [4]. There are virtual tables, which, once queried, will trigger the execution of mining algorithms. This is an example:

```
SELECT R.rid, C1.*, C2.*, R.conf
FROM Sets S, Rules R, Concepts C1, Concepts C2,
WHERE R.cid = S.cid AND C1.cid = R.cida AND C2.cid = R.cidc AND
    S.supp >= 30 AND R.conf >=80
```

Here, Sets, Rules and Concepts are virtual mining views.

A limitation of most SQL-based approaches is however that they are limited to itemset patterns or association rules. How to specify graph mining or sequence mining tasks in this context is still an open question. Most constraint-based graph mining or sequence mining systems currently use special purpose languages.
The general idea of linking constraint-based mining to database querying has been studied in the area of *inductive databases* and *inductive querying* [16, 10].

Constraint programming. Constraint-based mining has many similarities to generic constraint satisfaction problem (CSP) solving as studied in the Artificial Intelligence (AI) community. Both areas essentially require the discovery of solutions in a space of possible solutions satisfying constraints. To deal with generic CSPs the AI community has developed generic systems known as *constraint programming systems*. These systems provide languages in which programmers can specify constraint satisfaction problems; statements in these languages can be solved by various types of solvers, including generic propagation-based solvers. As we have seen earlier, many depth-first constraint-based itemset mining systems are also based on propagation, and hence it is not surprising that generic constraint-based itemset mining fits naturally in a constraint programming context as well.

This observation was used by Guns et al. to formalize constraint-based itemset mining tasks in generic constraint programming languages [14, 13]. This is an example in the most recent version of the MiniZinc constraint programming language:

```plaintext
int: Nr I; int: NrT; int: Freq;
array[1..NrT] of set of 1..NrI: TDB;
var set of 1..Nr I: Items;
constraint card ( cover ( Items, TDB ) ) >= Freq;
solve satisfy;
```

It specifies the task of frequent itemset mining; `cover` is a function available in a MiniZinc library, implemented in the MiniZinc language itself as well.

Statements in the MiniZinc language can be executed by a generic constraint programming system, or by a specialized data mining system, if one exists [13]. However, it was shown that generic constraint programming systems implement many types of propagation automatically, and hence that specialized systems are often not needed if a task can be modelled in the MiniZinc language.

Similar to the SQL-based languages, it is at this moment not understood how to integrate graph mining or sequence mining tasks in an elegant matter in the CP setting.
6. Conclusions

In this chapter we provided an overview of classes of constraints, algorithms for solving constraint-based mining problems and languages for specifying constraint-based mining tasks.

The trend in constraint-based mining has been to build increasingly generic systems. While initially constraint-based mining systems provided special purpose languages that only supported slightly more constraints than specialized frequent itemset mining algorithms did, in recent years the range of constraints has expanded, as well as the genericity of the languages supporting constraint-based mining, culminating in the integration with generic constraint satisfaction systems and languages.

Several open challenges remain. These include a closer integration of constraint-based mining with pattern set mining, getting a better understanding of how to integrate statistical requirements in constraint-based mining systems, and mining structured databases such as graph or sequence databases using sufficiently generic languages.
Bibliography

constraints. In Proceedings of The Eight ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada.

[15] Han, Jiawei, Fu, Yongjian, Koperski, Krzysztof, Wang, Wei, and Zaiane, Osmar (1996). Dmql: A data mining query language for relational databases. In SIGMOD’96 Workshop. on Research Issues on Data Mining and Knowledge Discovery (DMKD’96).

[27] Pei, Jian and Han, Jiawei (2000). Can we push more constraints into frequent pattern mining? In KDD, pages 350–354.

