
Chapter 2

Groundwater Vulnerability and

Pesticide Leaching Modelling: A

Literature Review

This chapter presents the main concepts associated with groundwater vul-

nerability and pesticide leaching modelling. The objective is to introduce

a number of notions useful to the reader of this thesis and to identify the

important methodological issues associated with the assessment of pesticide

leaching at the regional scale. First, a section is devoted to groundwater

vulnerability. The processes governing the environmental fate of pesticides

are then described, before a number of methodological issues related to the

implementation of a spatially distributed assessment of pesticide leaching.

2.1 Groundwater vulnerability

2.1.1 Definition

Vulnerability in a broad sense is defined as the quality or state of being

vulnerable, i.e. capable of being wounded, liable to injury, assailable. This

work deals with groundwater contamination by pesticides, and hence vul-

nerability is tackled through the vulnerability of ecosystems.

In climate change studies for instance, vulnerability is commonly defined

in terms of sensitivity (i.e. the degree to which a system will respond to

a given change), adaptive capacity (i.e. the degree to which spontaneous

or planned adjustments are possible in practices, processes, or structures of
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systems), and the degree of exposure of the system to climate change (IPCC,

2001).

Both qualitative and quantitative issues are concerned by groundwater

vulnerability (De Smedt et al., 2001). The quantitative aspect deals with the

balance between groundwater discharge and extraction, and groundwater

recharge. The next paragraph examines how groundwater vulnerability is

defined for quality issues.

Groundwater vulnerability

In hydrogeology, Foster et al. (2002) dated the origin of the use of the

term ‘vulnerability’ to the early 1970s in France (Albinet and Margat, 1970).

Many different definitions of groundwater vulnerability are now available in

the literature, but all agree in the sense that vulnerability is a relative prop-

erty (NRC, 1993). The National Research Council (1993) defined ground-

water vulnerability to contamination, in the case of non-point sources or

distributed point sources of pollution, as:

The tendency or likelihood for contaminants to reach a spec-

ified position in the groundwater system after introduction at

some location above the uppermost aquifer (p.16).

The ideas of sensitivity and exposure are present, but the concept of adap-

tive capacity is not relevant for groundwater. It should also be noted that

groundwater vulnerability appears as a probabilistic notion.

The reference location mentioned in the above definition is most often the

water table (NRC, 1993; Connell and van den Daele, 2003). However, some

authors argue that assessments of vulnerability of groundwater resources

require analysis of not only the vadose zone, but also of the groundwater

system itself (Fogg et al., 1999). Indeed, the choice of the reference location

(e.g. the water table, well intakes, recharge or discharge zones) can depend

on the purpose of the study.

It should be noted here that definitions of vulnerability differ across re-

search disciplines. Kelly and Adger (2000) noted that some analysts regard

assessment of vulnerability as the end point of any impact appraisal, oth-

ers as the focal point, and yet others as the starting point. Depending on
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the field of study (e.g. natural hazards, food security, etc.), definitions of

vulnerability may intrisically include a social dimension. In this case, vul-

nerability is ‘human’ in nature and is defined as the ‘capacity to anticipate,

cope with, resist, and recover from the impact of a natural hazard’ (Blaikie

et al., 1994, cited by Kelly and Adger, 2000).

In this thesis, vulnerability is limited to the NRC’s definition presented

above, and does not consider the human aspects (e.g. water consumption

and exposure) that could be associated with groundwater contamination.

Intrinsic vs. specific vulnerability

A question intensely debated about the definition of groundwater vulner-

ability is whether or not vulnerability depends on the nature and properties

of the contaminant, and on land use management. Some studies consid-

ered that vulnerability is an intrinsic characteristic of the hydrogeological

system (Foster, 1987; Palmer and Lewis, 1998). Others find that vulnera-

bility depends on the properties of individual contaminants or contaminant

groups, but is independent of land management practices (e.g. the amount

of pesticide applied) (NRC, 1993). A distinction is then sometimes made be-

tween intrinsic and specific vulnerability (NRC, 1993; Burkart et al., 1999a).

The latter is used when vulnerability is related to a specific contaminant,

contaminant class, and/or human activity.

It is now widely recognized that the degree of contaminant attenuation

can vary significantly with the type of pollutant in any given situation (Fos-

ter et al., 2002). Moreover, Worrall et al. (2002) showed in an analysis of

variance that, in order to explain groundwater contamination, the interac-

tions between the pollutant and in-situ properties are statistically even more

important than chemical vs. land-use, soil and aquifer properties. The scien-

tific justification of intrinsic vulnerability assessments and maps is therefore

highly questionable (Foster et al., 2002; Lobo-Ferreira, 2003).

The use of intrinsic vulnerability is thus often motivated by the eas-

ier implementation of intrinsic vulnerability assessment methods or by the

scarcity of data and information about the interactions between contam-

inants and the environment (Burkart et al., 1999a; Lobo-Ferreira, 2003).

Intrinsic vulnerability also allows the production of a unique vulnerability

map for a given area and is therefore often perceived as appropriate to land
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use planning proposals (Robins et al., 1994).

Vulnerability assessments with a sound scientific basis tend to turn to

methods considering the specificity of vulnerability to a single compound or

to a class of contaminants (e.g.; Burkart et al., 1999a; Worrall and Kolpin,

2004; Posen et al., 2006). By considering a number of different pesticides,

Worrall and Kolpin (2004) were able to evaluate the influence of pesticide

properties upon groundwater vulnerability. A recent assessment of ground-

water vulnerability in the Scheldt catchment also implemented a method

specific to pesticides (Pinte et al., 2005).

2.1.2 Factors affecting groundwater vulnerability to contam-

ination by pesticides

Various physical, chemical, and biological processes determine the environ-

mental fate of pesticides (see section 2.2). The rates and importance of

each of these processes are, in turn, affected by different factors (Soutter

and Pannatier, 1996). Table 2.1 presents the influence of these factors on

groundwater specific vulnerability to pesticides. The following paragraphs

discuss the different points in more details.

Table 2.1: Factors affecting groundwater vulnerability to contamination by
pesticides.

Factor Examples

Land use/management Pesticide application rate and timing, tillage
Soil and crop properties Organic matter content, texture, structure,

plant uptake
Climate Timing of first rainfall, temperature, potential

evapotranspiration
Subsoil, vadose zone Thickness, degradation sites
Groundwater Groundwater flow, dilution
Pesticide properties Sorption, degradation
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Land use and land management

Land use (including the crop rotation scheme) is an important factor

affecting groundwater vulnerability, as it is directly linked with the type

and amount of pesticide applied (Addiscott and Mirza, 1998). Obviously,

leaching cannot be expected if no pesticide input is attributed to a given land

use. The concept of risk is perhaps more appropriate to take the influence of

land use into account. Risk is often defined as the combination of hazard and

vulnerability: risk = hazard × vulnerability (Passarella et al., 2002). Thus

defined, risk includes the quantification of the probability that a pesticide

will be applied at a given space/time location (i.e. hazard); this probability

is further combined with the vulnerability of that location to the pesticide

applied.

However, management practices also affect groundwater vulnerability.

Indeed, by influencing crop and soil properties, land management can play

a non-negligible role. For example, conventional tillage has the potential to

limit preferential flow1 and to subsequently affect the rate and amount of

pesticide transport (Isensee et al., 1990; Elliott et al., 2000). However, the

overall effect of tillage (no-till, conservation tillage or conventional tillage)

on macroporosity and pesticide leaching remains unclear because of con-

trasted results obtained by different experimental studies (Flury, 1996; Mal-

one et al., 2003).

The pesticide application rate, formulation and timing are also key pa-

rameters to estimate pesticide leaching (NRC, 1993; Flury, 1996). For ex-

ample, it is known that the apparent adsorption of pesticides in the field

increases with time. It can therefore be expected that the mass of pesticides

leached to groundwater is inversely proportional to the time elapsed between

pesticide application and the first infiltration event (Flury, 1996).

Soil and crop properties

Most of the processes causing degradation and/or attenuation of pollu-

tants concentration in the unsaturated zone occur at much higher rates in

1Preferential flow phenomena are defined in the sense that water and solutes move only
through a portion of the available pore space (Flury, 1996). An important characteristic
of preferential flow is its non-equilibrium nature. Even for uniform flow conditions, most
of the water and solutes generally move through the largest continuous pores that are
filled with water at a particular tension (Šimunek et al., 2003).
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the biologically active soil zone (Robins et al., 1994). For example, pesticide

sorption on organic matter and clay minerals is of paramount importance

for the attenuation of pesticide leaching (Hutson, 1993; Robins et al., 1994).

Using a multivariate analysis, Burkart et al. (1999b) determined for a

regional data set that soil characteristics explained 33% of the variability in

concentrations of atrazine in groundwater. Organic matter content plays a

dominant role in the sorption of pesticides and transformation products (e.g.

Ahmad et al., 2001). Soil organic matter has a great number of binding sites,

because it has a very large surface area and is chemically reactive. Thus,

the sorption capacity of a pesticide influences considerably its mobility in

soils.

Textural and structural characteristics determine the hydrological be-

haviour of soils and hence the percolation rate of contaminants. Soil struc-

ture and the occurrence of preferential flow may significantly affect ground-

water vulnerability. Soil macroporosity is an important factor affecting pes-

ticide movement to drains or surface water, but also to shallow groundwater

in some cases (Shipitalo et al., 2000; Haria et al., 2003).

There is evidence that the effects of the initial water content on pesticide

leaching depend on soil texture: under dry conditions, sandy soils tend to

show less leaching, whereas loamy and clayey soils show more leaching when

exposed to a strong rainfall shortly after pesticide application (Flury, 1996).

Finally, crop properties such as root distribution, root depth, and pesti-

cide uptake rates, may also significantly influence groundwater vulnerability

(NRC, 1993).

Climate

The impact of both the precipitation regime and the timing of the first

rainfall after pesticide application on pesticide leaching has been abundantly

investigated (e.g. Jury and Gruber, 1989; Hutson, 1993; Van Alphen and

Stoorvogel, 2002). Timing of the first rainfall is particularly important

because it determines the initial soil moisture conditions and thus water

percolation rate (Flury, 1996; Shipitalo and Edwards, 1996).

However, pesticide leaching is generally found to be much less sensitive to

climatic variability than to soil variability (Jury and Gruber, 1989; Bleecker
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et al., 1995). Besides, it has been suggested that these two factors act

independently on pesticide leaching (Van Alphen and Stoorvogel, 2002), but

this implies that the study is not conducted at a scale reflecting pedogenic

influence of climate.

Temperature, radiation, wind and humidity are also climatic factors af-

fecting groundwater vulnerability, e.g. by determining potential evapotran-

spiration and hence affecting the water balance. Finally, soil temperature

acts upon pesticide degradation (i.e. pesticide degradation is temperature-

dependent) and hydrological processes, and thus affects groundwater vul-

nerability under different climatic conditions (Paráıba et al., 2003).

Subsoil, vadose zone

For aquifers with the water table deeper than the soil layer, the thickness

and nature of the vadose zone may be important to evaluate groundwater

vulnerability. In general, pesticide attenuation and degradation are slower

below the soil layer (Robins et al., 1994), although in some cases small sites

or horizons with a high degradation potential may occur in the vadose zone

(Vanderheyden, 1997).

However, it is recognized that vadose zone transport processes are very

complex, and data on vadose zone parameters (e.g. retention curve and un-

saturated hydraulic conductivity) are seldom available (Fogg et al., 1999).

Therefore, vadose zone influence on groundwater vulnerability has often

been estimated using weighting factors or vulnerability classes in index meth-

ods (see section 2.1.3; Gogu and Dassargues, 2000).

Groundwater

If the vulnerability analysis is not restricted to contaminants reaching the

water table, then the saturated zone properties can influence groundwater

vulnerability estimates e.g. at pumping wells. Fogg et al. (1999) argued

that it is highly relevant to consider groundwater flow in the vulnerability

assessment, particularly for groundwater resources at important depths, be-

cause of the significant time lag existing between the solute arrival at the

water table and its presence in water supply wells.
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Pesticide properties

Consideration of pesticide pollution purely in chemical terms has largely

been developed as part of methods to identify priority pollutants for mon-

itoring or to pre-screen new compounds for their environmental behaviour.

Most of these approaches have been based on the use of sorption and degra-

dation parameters (e.g. KOC and half-life), which are dependent on soil

properties (Worrall and Kolpin, 2004). This illustrates the key role played

by pesticide properties in pesticide leaching assessments.

However, it is worth to note here that the best approach to discriminate

between leachers and non-leachers on the basis of molecular parameters is

rarely in terms of sorption and degradation (Gustafson, 1989). Alternatively,

molecular descriptors derived from the compounds structure (e.g. connec-

tivity parameters) have been successfully used to discriminate between pes-

ticides found to leach to groundwater and those not found in groundwater

(Worrall, 2001). Aqueous solubility, Henry’s constant, and saturated vapour

density among others complete the pesticide parameters that determine the

environmental fate of compounds in interaction with site properties (NRC,

1993).

2.1.3 Vulnerability assessment methods

Overlay and index methods

These methods are based on combining maps of various physiographic

attributes by assigning an index or score to each attribute (NRC, 1993).

Qualitative or quantitative indices are derived, that bring together the key

factors believed to determine pesticide transport processes (Connell and

van den Daele, 2003). Early examples of this type of assessment are the

DRASTIC index (Aller et al., 1985) and the GOD index (Foster, 1987).

A number of similar index-based systems have been developed, sometimes

extending the range of parameters included in the vulnerability assessment

(e.g. Secunda et al., 1998). Vulnerability maps based on these methods

have proved popular tools and are a common feature of groundwater quality

management throughout the world, as documented for example by Worrall

and Kolpin (2004).

However, this category of methods in general does not differentiate be-

tween contaminants and hence they are applicable to the assessment of in-
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trinsic vulnerability only (Connell and van den Daele, 2003). Moreover,

overlay and index methods have a number of conceptual flaws. Firstly,

weightings are chosen arbitrarily and solely based on expert opinion (NRC,

1993; Worrall, 2002; Connell and van den Daele, 2003). Secondly, systems

based on indices do not capture the probabilistic nature or the uncertainty

of groundwater vulnerability (Worrall, 2002). Thirdly, uncertainties in the

data themselves and in the actual relevance of each weighted factor ques-

tion the reliability of the vulnerability maps (Merchant, 1994; Fogg et al.,

1999). Fourthly, the use of indices makes validation difficult. Merchant

(1994) noticed that, apart from the use of ‘visual validation’, very few at-

tempts have been made to validate the numerous DRASTIC applications.

Worrall (2002) stressed that validation may be inherently impossible for

this category of methods that assess vulnerability outside of a probabilistic

framework. Finally, these methods have a greater focus on the distribution

of environmental attributes rather than on processes directly controlling

groundwater contamination by pesticides (Fogg et al., 1999; Connell and

van den Daele, 2003).

These numerous limitations suggest that overlay and index methods will

receive decreasing support in the future, although Gogu and Dassargues

(2000) argued that they could still be useful in combination with methods

using process-based models.

Methods employing process-based simulation models

Groundwater vulnerability can be assessed through the use of process-

based simulation models. Assessment methods in this category are usually

more elaborated than simple overlay or index methods, and include different

degrees of complexity from process-based indices to complex 3-D simulation

models.

Simple models such as the Behavior Assessment Model (BAM; Jury and

Ghodrati, 1989) or the Attenuation Factor (AF; Rao et al., 1985) can be used

to map groundwater vulnerability, but they can also serve for screening pur-

poses (i.e. to compare the environmental fate of a new compound with other

pesticides). The AF is an analytical solution of the convection-dispersion

equations. Indices can also be based on numerical solutions of the transport

equations. For example, Meeks and Dean (1990) used a one-dimensional

advection-dispersion transport model to develop a leaching potential index,
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which simulates vertical movement through a soil to the water table. Sout-

ter and Pannatier (1996) expressed groundwater vulnerability as the ratio

between the cumulative pesticide flux reaching mean water table depth and

the total quantity of pesticide applied.

The derivation of such indices is not necessarily a common feature of

vulnerability assessments using process-based models. The selection of a

single relevant variable can serve the purpose of estimating groundwater

vulnerability. For example, using the results of Monte Carlo simulations,

Morgan (2002) selected the pesticide mass loading at the 90% probability

of non-exceedence as a means to map aquifer vulnerability. Connell and

van den Daele (2003) chose the maximum contaminant concentration at the

water table as a proxy for groundwater vulnerability.

Vulnerability assessments can also be based on metamodels. A meta-

model is basically a ‘model of a model’. It is a statistical significant response

function that approximates outcomes of a complex simulation model (Wu

and Babcock, 1999; Piñeros Garcet et al., 2006). In environmental sciences,

metamodels are usually based on multiple regression analyses, artificial neu-

ral networks, transfer functions, multidimensional kriging, etc. For example,

Holman et al. (2004) used a meta-version of the leaching model MACRO

(Jarvis, 1991) coupled with AF to assess the risk of groundwater contamina-

tion by pesticides. Tiktak et al. (2006) mapped groundwater vulnerability

at the pan-European scale using a combination of AF and a metamodel of

GeoPEARL.

Monitoring based statistical inference methods

Statistical methods use response variables such as the frequency of con-

taminant occurrence, contaminant concentration, or contamination proba-

bility. These methods are based on the concept of uncertainty, which is

described in terms of probability distributions for the variable of interest

(NRC, 1993). One possible goal in applying statistical methods to vul-

nerability assessment is to identify variables that can be used to define the

probability of groundwater contamination (Burkart et al., 1999a). Typically,

one seeks to describe in mathematical terms (function or model) a relation-

ship between water quality and natural and/or human-induced variables in

a discrete area.
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For example, Teso et al. (1996) developed a logistic regression model

containing independent variables related to the soil texture. The dependant

variable was defined as the contamination status of soil sections (uncontam-

inated vs. contaminated) and groundwater vulnerability was thus assessed

through the estimation of a section’s likelihood of its containing a contam-

inated well. Other statistical approaches, such as principal components

analysis, discriminant analysis and cluster analysis, have been used to de-

scribe relationships between soil attributes and groundwater vulnerability

(e.g. Teso et al., 1988; Troiano et al., 1999).

These methods may also be used to discriminate between different sour-

ces of pesticide leaching. Lapworth and Gooddy (2006) examined the re-

lationships between land use and pesticide concentrations in monitoring

wells and concluded that observed diuron contamination resulted from non-

agricultural applications.

Worrall (2002) and Worrall and Kolpin (2003) used Bayesian statistics to

measure the vulnerability of the catchment of a borehole to groundwater pol-

lution, based on observation of contaminant occurrence in the borehole and

the region. This vulnerability assessment is thus based solely on monitoring

data and does not need explanatory variables. However, the application

of this method requires extensive data sets (and hence is limited to large,

intensively monitored areas) and appears to be less sensitive for boreholes

with a low relative vulnerability (Worrall, 2002). Moreover, for regulation

purposes, this approach implies that borehole catchments can actually be

delineated.

Worrall and Kolpin (2004) developed a logistic regression model of ground-

water pollution that brings together variation in chemical properties with

land-use, soil and aquifer properties. They found that vulnerability, as ex-

plained by the independent factors that produced the best regression fit,

could be viewed as having two parts: an intrinsic vulnerability factor (con-

sisting of variables related to the depth to groundwater, the organic matter

and the sand content) and a molecular factor (consisting of variables re-

lated to molecular connectivity). However, the regression output is limited

to the presence/absence of a compound, and hence limits the discrimina-

tion to vulnerable vs. invulnerable wells. Although the mapping of such

a vulnerability assessment might prove to be problematic, this study is—to

our knowledge—the first application of a statistical vulnerability assessment
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which explicitly accounts for the variability of both chemical and site prop-

erties.

2.2 Process-based models of pesticide leaching

2.2.1 Modelling approaches

Addiscott and Wagenet (1985) and Vanclooster et al. (2000a) reviewed the

different modelling approaches of solute leaching in soils. A key distinction

is made between deterministic models, which presume that a system or

process operates such that the occurrence of a given set of events leads to a

unique outcome, and stochastic models, which presuppose the output to be

uncertain and are structured to account for this uncertainty.

Other modelling classification keys include numerical vs. analytical, and

mechanistic vs. functional models (Addiscott and Wagenet, 1985). Alter-

native classification keys are sometimes based on considerations of spatial

or temporal scale (pore vs. global scale; instantaneous vs. decades), level

of complexity (scientific vs. decision making models) or level of integrity

(holistic vs. reductionistic approach) (Vanclooster et al., 2000a).

Index models integrate the effect of the different fate and transport pro-

cesses into lumped-parameters, and are inherently subject to simplifications,

which limit their predictions (Hantush et al., 2000). Examples of such mod-

els include LEACH (Laskowski et al., 1982) and LPI (Meeks and Dean,

1990). They are widely used for relative ranking of chemicals, but are also

potential tools for the assessment of groundwater vulnerability (Hantush

et al., 2000).

A number of process-based, deterministic models have been developed,

for example LEACHP (Wagenet and Hutson, 1989), MACRO (Jarvis, 1991;

Larsbo and Jarvis, 2003), PEARL (Tiktak et al., 2000), PRZM (Carsel et al.,

1998), WAVE (Vanclooster et al., 1994), among others. The AF model

(Rao et al., 1985) is also process based, but is used as a screening model

unless combined with metamodelling. These models are all one-dimensional.

HYDRUS-2D (Šimunek et al., 1999) is an example of a two-dimensional

model of water and solute transport.
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2.2.2 Processes governing the environmental fate of pesti-

cides

As pesticide leaching models aim at predicting the fraction of pesticide per-

colating the soil and subsoil, it is important to know what are the other

environmental pathways through which pesticides are transported. Some of

the processes presented here are closely related to those developed in section

2.1.2 dedicated to groundwater vulnerability.

Figure 2.1: Overview of the main processes governing the environmental
fate of pesticides.

In the following paragraphs, the equations used for modelling pesticide

fate (e.g. Richards convection-dispersion equation) will not be presented.

The objective is rather to review the key processes governing the environ-

mental fate of pesticides. For an introduction to the equations governing

water and solute movement, the reader is referred to e.g. Addiscott and Wa-

genet (1985) or van Genuchten et al. (1999). Figure 2.1 represents the main

processes governing pesticides fate in the atmosphere-plant-soil-groundwater

system, which will be described below.

Volatilisation

The presence of pesticides in the atmosphere can occur as a result of drift
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during application or, subsequently, volatilisation from soil, plants or surface

water (Bedos et al., 2002). Volatilisation is a major source of pesticide

residues in air, and thus may lead to a long-range transport of residues

remote from their application. This can for instance lead to subsequent

deposition of pesticides in rainwater (Dubus et al., 2000). Volatilisation is

therefore likely to have a major impact on the environmental balance of

pesticides (Vanclooster et al., 2003).

Volatilisation can occur from both the bare soil and the crop canopy (if

pesticide is applied in post-emergence), and has been shown to occur within

the first days or weeks after application (Bedos et al., 2002). It results from

a series of dynamic processes occurring in the soil-crop canopy-atmosphere

continuum, which can be seen as a diffusive vapour flux across a thin air-

boundary layer (Vanclooster et al., 2003; Hantush et al., 2000).

The most important factors affecting volatilisation are the physico-chem-

ical properties of a pesticide (vapour pressure being a key parameter), atmo-

spheric conditions (air temperature, humidity, wind), soil conditions (mois-

ture, temperature, soil density, clay and organic matter content), and agri-

cultural practices (application dose and date, tillage) (Bedos et al., 2002;

Kubiak, 2006).

Runoff

Runoff and leaching are mutually dependent processes (Flury, 1996). Dur-

ing runoff, a portion of the water is removed laterally from the surface,

and does not contribute to pesticide leaching anymore. Increased runoff is

therefore related to decreased leaching. This might not be generally true

for preferential flow processes through drainage wells (Troiano et al., 1999)

or macropores, but certainly for the leaching of contaminants through bulk

soil (Flury, 1996).

Plant uptake

Although this process has limited relevance for autumn-applied com-

pounds, plant uptake of pesticides may be important in some cases. Uptake

is often simulated using a factor to describe the relative uptake of the com-

pound into the plant roots compared to the removal of water (Vanclooster
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et al., 2000b). The capacity of plants to uptake chemicals is frequently used

for the remediation of contaminated soils (e.g. Sun et al., 2004).

Water and solute flow

Water flow in the soil and subsoil is usually described by two processes:

flow through the matrix pore-space and preferential flow. Flow in porous

media is usually described by a capacity type or by an advection-dispersion

model (Flury, 1996; Vanclooster et al., 2000b). In their classification of

modelling approaches for soil matrix flow, Addiscott and Wagenet (1985)

explained the difference between rate and capacity models:

A rate model for solute movement combines the description

of several transport processes. It first defines the instantaneous

rate of change of water content in terms of the product of a

hydraulic gradient and a rate parameter, the hydraulic conduc-

tivity, and then defines the rate of change of solute concentration

in terms of convection and diffusion processes. A capacity model

defines changes (rather than rates of change) in amounts of solute

and water content, using capacity factors such as the volumetric

water content at field capacity. Rate models are by definition

driven by time, while capacity models are usually driven by the

amounts of rainfall, evaporation, or irrigation (p.412).

The importance of preferential flow has already been underlined. This pro-

cess can act as a by-pass of the upper soil layers, thus strongly preventing

the attenuation and retardation of pesticide leaching (Robins et al., 1994).

Preferential flow may take place in macropores, or in the form of unstable

flow (‘fingering’) induced by soil textural layering, water repellency and air

entrapment. It may also be caused by funnelling of water through high-

conductivity layers, or as being redirected by sloping less-permeable layers

(van Genuchten et al., 1999; Jarvis, 1999).

Šimunek et al. (2003) reviewed modelling approaches for the description

of preferential and non-equilibrium flow and transport. Existing approaches

range from relatively simplistic models to more complex physically based

dual-porosity, dual-permeability, and multi-region type models. It is gen-

erally assumed that the porous medium consists of two interacting regions,
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one associated with the macropore system, and one comprising micropores

inside soil aggregates (Šimunek et al., 2003). A different approach was in-

troduced by Deurer et al. (2003) who determined drainage networks in the

field using hydraulic properties of the soil, and described preferential flow

as a piston flow through the network.

Sorption and degradation

Once in the soil, pesticide molecules partition between the aqueous and

solid phases of the soil. The degree to which a pesticide molecule prefers one

phase to the other will affect every other aspect of its fate: sorption will de-

termine whether the pesticide will persist or not, be transported to ground-

water or not (Wauchope et al., 2002). Soil sorption is usually characterized

by a partition constant, Kd, which is a ratio of solid phase to solute con-

centrations. High values of Kd indicate that a pesticide is strongly sorbed

and will be immobile in soil, and also resistant to microbial degradation

(Wauchope et al., 2002).

The thousands of Kd measurements made in a variety of soils have

showed that there is generally a high correlation between the organic mat-

ter content of the soils and Kd (Ahmad et al., 2001). This observation

leads to the assumption that it is soil organic matter, acting as a non-polar

phase, that is the main sorbent in soils, attracting pesticides because they

are typically non-polar organic molecules (Wauchope et al., 2002). Binding

of pesticides to organic matter can occur by sorption (Van der Waal’s forces,

hydrogen bonding, hydrophobic bonding), but also by electrostatic interac-

tions (charge transfer, ion exchange or ligand exchange), covalent bonding

or combinations of these reactions (Bollag et al., 1992).

The experimental observation of a gradual decrease in the sorption co-

efficient Kd with increasing pesticide equilibrium concentration has lead to

the definition of the Freundlich sorption isotherm. In this case, equilibrium

sorption is described by:

Xeq = Kf,eq × CL
N (2.1)

where Xeq is pesticide content in the equilibrium sorption phase, Kf,eq is

the Freundlich coefficient for the equilibrium-sorption phase, CL is the con-

centration in the liquid phase, and N is the Freundlich exponent (Jacques
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et al., 1999). N indicates the extent to which adsorption depends on the

concentration. If N = 1, the sorption isotherm is linear and Kd is used.

Degradation is a fundamental attenuation process for pesticides and is

generally described using the substance half-life (i.e. the time needed to

transform half of the pesticide mass). This process is affected by many bi-

otic and abiotic factors involved in the interactions among microorganisms,

chemical and soil constituents (Guo et al., 2000; Vanclooster et al., 2000a).

It is generally accepted that sorption limits the degradation of pesticides

by reducing their partitioning into the soil liquid phase. It is assumed that

sorbed pesticides are less accessible to microorganisms that utilize exclu-

sively or preferentially chemicals in solution. Guo et al. (2000) listed the

studies providing evidence of the negative dependence of degradation on

sorption for a variety of compounds.

When adsorption is assumed to be instantaneous, and equilibrium condi-

tions exist at all times between liquid and solid phases, overall degradation is

determined directly by the kinetics of degradation of the individual phases

(Guo et al., 2000). However, equilibrium is typically only apparent, and

sorption and desorption involve a complex system of processes with fast and

slow kinetics (Wauchope et al., 2002). Under non-equilibrium assumptions,

where adsorption is time-dependent, the dependence of degradation on sorp-

tion is more complex even if degradation of each phase is first order (Guo

et al., 2000).

Degradation parameters obtained for soils are not directly transferable

to saturated-zone materials, because of different microbial populations, pes-

ticide concentrations, and anaeroby conditions (Hoyle and Arthur, 2000).

In the case of atrazine, degradation in saturated conditions has most often

been found to be null or very low (see the review of Hoyle and Arthur, 2000).

Groundwater flow

Pesticide leaching through the soil and vadose zone can eventually cause

residues to reach the saturated zone. From there, pesticide fate is mainly

driven by groundwater flow and degradation. Retardation and dispersion

of pesticides in groundwater may be estimated in situ using an appropriate

network design of monitoring wells (e.g. at the field scale; Springer and Bair,

1998).
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Groundwater flow may be simulated using analytical models, such as the

mass balance equation (steady flow, no dispersion) presented in Beltman

et al. (1995). Another example is given by Hantush et al. (2000), who

developed an analytical solution for a two-dimensional advective-dispersive

transport (flushing) of the solute in the aquifer.

In analytical element models, analytical solutions for different processes

(such as groundwater pumping, recharge, seepage boundaries) are combined

spatially and superimposed (e.g. Moorman, 1999).

Solute transport in groundwater may also be simulated with numerical

techniques, such as the widely used MODFLOW (Harbaugh et al., 2000)

3-D finite-difference groundwater flow model. In this case, the saturated

zone is represented as a collection of cells (blocks and layers) filling a three-

dimensional space. These types of models generally have heavy input data

requirements (hydraulic parameters, boundary conditions, and stresses).

2.2.3 Validation of pesticide leaching models

The FOCUS (FOrum for the Coordination of pesticide fate models and their

USe) group defined the validation process as a

comparison of model output with data independently derived

from experiments or observations of the environment; this im-

plies that none of the input parameters is obtained via calibration

to those data (FOCUS, 1995). Vanclooster et al. (2000b) gave a selection

of indicators useful for testing of pesticide leaching models (e.g. root mean

square error, modelling efficiency, Nash-Sutcliffe coefficient, etc.). These

indicators basically measure the goodness of fit between simulations and ob-

servations. More generally, performance criteria are not restricted to residual

error analysis, but also include statistical criteria, hypothesis testing, linear

regression and graphical comparisons (Mulla and Addiscott, 1999).

Ideally, a pesticide leaching model should be validated (or evaluated;

Beck, 2002) against a range of different environmental conditions (weather

conditions, irrigation practices, soil types, positions of groundwater table,

tillage system, types of pesticides) so that a model user could be confident
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enough before a new application. However, in environmental systems, com-

plete validation of a model is a priori an impossible task (Konikow and

Bredehoeft, 1992; Oreskes et al., 1994), but acceptable modelling results

in different conditions and with different substances enhance the reliability

of a pesticide leaching model and its probability of success at a new site

(Vanclooster et al., 2003). In this sense, model validation is never totally

achieved, but the validation status can be qualified via the model perfor-

mance in different case studies (increasing confirmation; Beven, 1995).

2.2.4 Uncertainty in pesticide leaching modelling

The importance of assessing and communicating uncertainties in scientific

research is now well established (Brown, 2004). Recently the European

Water Framework Directive required scientific uncertainty to be addressed

within the development of integrated water management plans (EU, 2000).

2.2.4.1 Sources of uncertainty

Dubus et al. (2002b) reported the different sources of uncertainty in pesti-

cide fate modelling. They provided a comprehensive review of uncertainty

sources, which will be summarized here. In the following section, only ref-

erences other than Dubus et al. (2002b) are specified.

Uncertainty in the primary data

The primary data are defined as the basic physical, chemical and environ-

mental properties, which are either directly fed into a model or used to derive

input parameters for the model. Primary data include both parameters and

variables : site characteristics, soil properties, weather conditions, pesti-

cide properties or results of field experiments. Uncertainty in the primary

data will arise from the spatial and temporal variability of environmental

variables, from sampling procedures in the field, and from analyses in the

laboratory.

The spatial and temporal variability of environmental properties influ-

ences predictions of pesticide leaching models. In particular, the spatial

variability of pesticide sorption has received a lot of attention (see section
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2.3.2). Variability in the sorption distribution coefficient Kd can generally be

reduced by normalising it to the organic carbon content, but the variability

of the resulting KOC often remains considerable. Geostatistics can be used

for example when soil or pesticide properties show some spatial dependency.

However, describing uncertainty using geostatistics is not a method exempt

from uncertainty itself as variogram uncertainty may be large and spatial

interpolation may be undertaken using different techniques.

There is definitively some uncertainty originating from the sampling in

the field and the determination of physical or chemical properties of samples.

Measurement errors, but also differences in sampling and laboratory proce-

dures are likely to introduce considerable bias in laboratory measurements

of e.g. sorption and degradation properties of pesticides.

Uncertainty in the derivation of model input parameters

Some uncertainty may originate from the derivation of parameters from

primary data. For example, different decay equations and curve fitting pro-

grams may introduce significant differences in the derivation of degradation

parameters. However, a considerable reduction of this latter source of un-

certainty can be obtained by implementing identical or similar boundary

conditions and settings (FOCUS, 2006).

Uncertainty is also introduced by the non-linearity of pesticide fate mod-

els. For example, if different sorption coefficient values are available, the

modelling results are known to be strongly affected by the choice of either

(i) deriving a single sorption input parameter and then running the model,

or (ii) performing several simulations for the different input parameters and

then averaging the results.

Procedures to derive input parameters using limited information also in-

troduce some uncertainty. A typical example is the use of pedotransfer func-

tions (PTFs) to derive input parameters. For soil hydrological properties,

PTFs express relationships between basic soil properties and parameters

that are difficult to measure or not available. However, these functions in-

troduce some uncertainty and have a defined domain of validity that cannot

be neglected (e.g. Espino et al., 1995). Pachepsky et al. (1999) and Cornelis

et al. (2001) reviewed the accuracy and reliability of the main types of PTFs

currently available.
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For spatially distributed applications of pesticide fate models, the deriva-

tion of distributed input parameters is an important source of uncertainty,

e.g. via the interpolation of spatially referenced variables (Brown and Heu-

velink, 2005). This issue is further discussed in section 2.3.2.

Other sources of uncertainty in the derivation of input parameters in-

clude the treatment of outliers and replicates in a data set, the selection of a

representative variable (e.g. arithmetic mean, geometric mean or median),

the use of inadequate units or the rounding of values.

Uncertainty in the modelling procedure

Selecting an appropriate model is not an easy task and may have con-

siderable consequences on pesticide fate modelling. Mathematical models

necessarily need to simplify the complex processes found in nature for their

simulations. As the various models sometimes contain different process de-

scriptions, the way in which processes are conceived in the models will also

influence model output (FOCUS, 1995). This variability between predic-

tions obtained by different leaching models indicates that the choice of the

model to be used is a significant source of uncertainty.

The fact that a model is unable to simulate experimental observations

even when the most appropriate model and parameters are used has been

referred to as structural or conceptual error(s) in the model. Excellent

fit for simulations of field leaching data have rarely been reported in the

literature. These uncertainties most often originate from the non-inclusion

or inappropriate representation of processes in the model. This type of error

may be exposed in a sensitivity analysis or through a validation exercise,

but no specific test can be defined for the model error (Addiscott and Tuck,

2001).

Modeller subjectivity may introduce a significant uncertainty in the

modelling process. Brown et al. (1996) noted that user-dependency of the

results could be attributed to the existence of key input parameters which

could not be derived from the information provided to the user. Boesten

(2000) reported an exercise in which different modellers received raw data

from laboratory degradation studies and were asked to derive model input

parameters of degradation and sorption distribution coefficients. The results

suggested that the subjective influence of the model user was even greater
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than the variability introduced by the use of different models. Beulke et al.

(2006) found that user subjectivity biased also the treatment of uncertainty

in Monte Carlo analysis (truncation, type and parameterisation of the dis-

tributions, correlation between parameters, methods for sampling and size

of random samples).

Model calibration can help reduce the modelling uncertainty through

the derivation of values for input parameters that help to improve the sim-

ulation of experimental data, but this might not always be the case. The

calibration may be ill-posed and uncertainty will arise from the issue of

equifinality (Beven and Freer, 2001). The equifinality concept states that in

complex environmental systems, there are many different model structures

and many different parameter sets within a chosen model structure that may

be behavioural or acceptable in reproducing the observed behaviour of that

system. Equifinality is in fact, as far as modelling is concerned, the equiv-

alent of the functional similarity observed in the real environment (Beven

et al., 1999), i.e. different parts of the landscape exhibit similar functional

responses although they are characterised by different physical, biological

and chemical attributes.

Due to the presence of equifinality in modelling, the concept of an opti-

mal model and parameter set should be rejected in favour of multiple pos-

sibilities for producing simulations that are acceptable simulators in some

sense (Beven and Freer, 2001). If different combinations of input param-

eters provide similar fit to the experimental data, the uncertainty on the

input parameters is not reduced, even though it is quantified. However, the

uncertainty estimates provided are dependent on subjective choices, such as

the selection of an objective function or the limit from which it is considered

that the model is not calibrated anymore (Beven, 2001b).

Another reason that may prevent a decrease in uncertainty resulting from

calibration is ‘parameter lumping’ (Dubus et al., 2002a). Parameter lumping

results from the flexibility of the modelling system, which allows for changes

in specific parameters to compensate for uncertainties and errors associated

with other input data and modelling procedures. The curve-fitting nature

of calibration may thus result in an increase in the parameter uncertainty,

although maybe not perceptible by the modeller.
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Contribution of the individual sources of uncertainty to the over-

all uncertainty

The above list of sources of uncertainty definitively shows that significant

uncertainties are inherently associated with pesticide fate modelling. How-

ever, most of the uncertainties are difficult or impossible to quantify. Also,

parameter uncertainty may be transferred differently through the modelling,

from suppression to large exaggeration, depending on the sensitivity of the

model. Dubus et al. (2002b) noted that very few attempts to differentiate

between the contributions of the various sources of uncertainty to the overall

uncertainty in pesticide fate modelling have been reported.

A sensitivity analysis can help to identify those parameters the uncer-

tainty of which is likely to have the strongest influence on the overall model-

ling uncertainty. The primary concern of a sensitivity analysis is to assess

the propagation of error between model components (Corwin et al., 1997).

It is usually accepted that predictions of pesticide fate models for leaching

will mainly be influenced by sorption and degradation parameters, and by

hydrological parameters.

However, the contribution of sources of uncertainty other than those in

model input parameters is in general largely unknown. Most often, Dubus

et al. (2002b) found that uncertainty analyses reported in the literature have

investigated the effects of input uncertainty on model predictions, implic-

itly assuming that (i) the major sources of uncertainty are those associated

with input parameters; (ii) error in the model structure and modeller sub-

jectivity are negligible; and, (iii) an adequate parameterisation of the model

is possible. Beven (2006) argued that it is generally not possible to sepa-

rate the different sources of uncertainty, because certain parameter sets may

compensate for the different types of error.

2.2.4.2 Methods for propagating uncertainty

To tackle the equifinality issue, Beven and Binley (1992) proposed the GLUE

(generalised likelihood uncertainty estimation) methodology, in which prior

distributions of parameter sets are assessed in terms of some likelihood mea-

sure relative to the observations. A posterior distribution is then calculated

in a Bayesian framework and can be used in prediction. GLUE is thus able

to account for the predictive uncertainty arising from the lack of a unique
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solution to the calibration problem (Dubus et al., 2002b). This may also be

achieved using multi-objective optimization techniques such as the Pareto

Optimal Set procedure (Yapo et al., 1998).

Dubus et al. (2002b) reviewed the studies investigating the propagation

of uncertainty in pesticide fate modelling. It is important to distinguish

between sensitivity and uncertainty analysis. The two approaches can de-

termine the impact of parameter imprecision on the model results, but only

the uncertainty analysis actually estimates the imprecision of input param-

eters (Freissinet et al., 1998). Sensitivity analysis can be particularly useful

to study the system non-linearity and the propagation of parameter error

through the model (Addiscott and Tuck, 2001). Uncertainty analyses have

been performed using three main techniques, which will be briefly presented

here: differential analysis, Monte Carlo analysis and fuzzy logic. However,

it must first be specified that these uncertainty analyses have only consid-

ered the effects of input uncertainty on model predictions. Dubus et al.

(2002b) noted that many of the sources of uncertainty described above are

not accounted for by current approaches.

Differential analysis

Differential analysis (of which first-order uncertainty analysis is part) is

based on developing a Taylor-series approximation to the model under con-

sideration (Helton and Davis, 2003) and allows the uncertainty to be ex-

pressed analytically (Dubus et al., 2002b). The first-order approximation

of functionally related variables is obtained by truncating the Taylor-series

expansion (about the mean) for the function after the first two terms and

thus corresponds to a linearisation of the function (Loague et al., 1996).

In regional assessments of groundwater vulnerability, Loague et al. (1996)

and Diaz-Diaz and Loague (2000) used first-order uncertainty analysis to

characterize data uncertainty with the AF and RF (Retardation Factor)

indices. Loague et al. (1996) found that the distinction between mobile and

immobile classes was substantially blurred when the uncertainties on the

AF and RF parameters were included (coefficient of variation greater than

unity for AF). In the same way, Diaz-Diaz and Loague (2000) found that

levels of uncertainty (standard deviations) in the AF and RF estimates were

of similar magnitude to the estimates themselves. Diaz-Diaz et al. (1999)

found comparable results with the Leaching Index. Due to the non-linearity
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of the equations, Diaz-Diaz and Loague (2000) also showed that reducing

uncertainties in estimates of the input variables had an uneven effect on the

overall uncertainty.

The main drawback of differential analysis is its inherently local nature.

Other drawbacks, but also the main desirable properties of differential anal-

ysis can be found in Helton and Davis (2003).

Monte Carlo analysis

Monte Carlo analysis is a stochastic technique of characterizing the uncer-

tainty in complex response model simulations (Loague and Corwin, 1996).

Monte Carlo simulations are based upon a large number of realizations,

from every input parameter distribution, created through sampling of the

different probability density functions. The resulting output distribution

provides a representation of the uncertainty associated with the model re-

sponse. Three main sampling procedures are possible: random, stratified

and Latin hypercube sampling (Helton and Davis, 2003).

Numerous applications of the Monte Carlo technique have been made

in contaminant transport modelling. For example, Soutter and Pannatier

(1996) used Monte Carlo simulations at different soil profiles to produce local

distributions of a groundwater vulnerability index. Soutter and Musy (1998)

performed Monte Carlo simulations using three different deterministic pes-

ticide leaching models, along with geostatistical interpolation techniques, to

analyse the differences between the models and to map both groundwater

vulnerability and levels of uncertainties. Thorsen et al. (2001) analysed how

uncertainty in input data propagates to model output for nitrate leaching.

Dubus and Brown (2002) used the Monte Carlo approach to perform a sen-

sitivity analysis, and then used the results as a first step assessment of the

uncertainty associated with the modelling.

Dubus and Brown (2003) tested the robustness of the Monte Carlo tech-

nique on a pesticide leaching model. Monte Carlo results were found to

be inherently unstable even with a relatively large number of model runs.

Results were also found to be affected by slight changes in the parameteri-

sation of probability density functions and in the assignment of correlation

between parameters. More discussion on Monte Carlo sampling strategies

is provided by Helton and Davis (2003).



34 Chapter 2. Literature Review

Fuzzy logic

Freissinet et al. (1998) presented a framework in which uncertainty around

the mean response of the model is evaluated through fuzzy logic application.

The mathematical formulation of the process under study is split into in-

dependent elementary processes from which closed mathematical solutions

can be obtained. For each process, using fuzzy numbers, a fuzzy result is

obtained. The combination of all fuzzy results yields the relative imprecision

of the mean result. Freissinet et al. (1998, 1999) applied a fuzzy approach

to the uncertainty analysis of respectively an advective flow calculation, and

AF and RF indices.

Dou et al. (1997) applied fuzzy sets theory and fuzzy arithmetic to the

transport modelling of solute material in groundwater flow, in both one- and

two-dimensional uniform flow fields. One of the main advantages of fuzzy

arithmetic is to allow the inclusion of imprecise data and expert knowledge

through the use of membership functions that can be defined in a variety

of shapes. However, the accuracy of fuzzy numerical models for solving the

transport equations is debatable when compared to the analytical solutions.

2.3 Pesticide leaching models at the catchment/

regional scale

2.3.1 Problems of scale

Beven et al. (1999) identified two problems of scale in hydrological modelling:

the scale problem and the scaling problem. These are defined as follows

(Beven et al., 1999):

The scale problem denotes the expectation that different pro-

cesses may dominate hydrological processes at different scales so

that different theories and models may be appropriate at differ-

ent scales. The scaling problem denotes the development of a

consistent theory that would allow a process description at one

scale to be formally transformed to represent the hydrological

response at a different scale (p.725).
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These two issues evoke the same concepts and are closely related, as dis-

cussed in the next two paragraphs.

The scale problem

An issue of significant importance is to know how pesticide fate models

developed for small areas of land can be used at the catchment or regional

scales, and indeed, whether it is appropriate to use them in this way (Cor-

win et al., 1999b). The problem of scale is inherently linked to that of

non-linearity, because there are no measurement techniques that give infor-

mation directly at the element grid scales (Beven, 2001a). Heuvelink (1998)

reported two other reasons why models are scale-specific. First, the relative

importance of different processes is variable at different scales. As spatial

scale increases, the complex local patterns of solute transport are attenuated

and dominated by macroscale characteristics (Corwin et al., 1999b). Sec-

ondly, the aggregation level of model inputs and outputs is also a function

of the modelling scale and this may affect the relationship between them.

Broadly, three different approaches have been used in hydrology to model

transport processes at coarse (e.g. catchment) scales (Baveye and Boast,

1999). At one extreme are the so-called ‘lumped conceptual’ models. At the

other end are the ‘physically-based, spatially distributed’ models that ex-

plicitly account for spatial variability in inputs, processes, and parameters.

Between these two extremes, one finds ‘semi-distributed, semi-physically-

based’ models, which combine some degree of lumping with a partial con-

sideration of the spatial variability of processes. A complementary point of

view is expressed by Corwin et al. (1999b), who perceived the scale debate as

a conflict between deterministic and stochastic approaches. Fully determin-

istic models, solving the 3-D flow equations are nearly impossible to apply

at coarse scales (Corwin et al., 1997). Moving towards larger scales would

therefore require more stochastic approaches (Vanclooster et al., 2000a; Cor-

win et al., 2006). However, stochastic modelling at the catchment scale will

in general provide information only on catchment-aggregated values of fluxes

and thus prevent the location of sensitive areas in terms of pollution risk

(Vachaud and Chen, 2002).

To date, the vast majority of models of non-point source pesticides in the

vadose zone have used one-dimensional deterministic models of contaminant

transport (regression models, overlay and index models, and process-based



36 Chapter 2. Literature Review

models) coupled to a geographic information system (GIS) (Corwin et al.,

1999a). In comparison to deterministic models, the coupling of a stochas-

tic solute transport model to a GIS is relatively unexplored (Corwin et al.,

1997). Wilson (1999) examined the role and advantages of GIS for assessing

the environmental impacts of non-point source pollutants. The use of de-

terministic transport models with GIS at coarse scales has been justified on

practical grounds based upon availability, usability, widespread acceptance,

and the assumption that a heterogeneous medium macroscopically behaves

like a homogeneous medium with properly determined parameters (Corwin

et al., 1999a), although this assumption is hardly questioned (e.g. Beven

et al., 1999). In general, assessments of groundwater vulnerability at the

regional scale rest upon soil, climate, and chemical data that are extremely

sparse and contain considerable uncertainty (Loague et al., 1999). Some

authors have used one-dimensional deterministic models and uncertainty

propagation methods (usually Monte Carlo simulations) coupled with a GIS

to account for the variability at the regional scale (e.g. Petach et al., 1991;

Soutter and Pannatier, 1996; Soutter and Musy, 1998).

A number of studies have looked at the impact of the spatial resolution of

input data. Wilson et al. (1996) simulated pesticide movement in the vadose

zone by coupling a leaching model with a GIS. They investigated the effects

of soil and weather input data at two different scales and found that the

mean leaching depths were significantly affected by the spatial resolution of

input data. Wagenet and Hutson (1996) found that modelling results at the

regional scale are significantly dependent on available database. Bleecker

et al. (1995) integrated a capacity-type model and environmental databases

(soil, crop and weather data) to map leaching potential at the regional scale.

They concluded that translation from the local to regional scale was possi-

ble, although scientifically tenuous because results were subject to a lot of

uncertainties due to database quality, and spatial and temporal variability

of environmental variables. Therefore, it is recognized that regional scale

estimates of pesticide transport are limited to the resolution and the quality

of input data.

At coarse scales, comparisons between model predictions and observa-

tions may become more difficult for a number of reasons (Wagenet, 1998;

Mulla and Addiscott, 1999). First, the model outputs at coarse scales are

less likely to involve measurable properties such as pesticide concentration
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depth profiles. Experimental observations may not be available at coarse

scales to test model predictions. Second, the effects of spatial and temporal

variability on model predictions may be much greater at coarser scales than

at finer scales (Mulla and Addiscott, 1999). For example, if observations

of pesticide concentrations are available at a pumping well, they somehow

represent the average response from a relatively large surface capture zone

and a relatively long-time scale. Indeed, Corwin et al. (1999a) noted that

very few attempts towards validation of leaching models have been made at

field or larger scales.

The scaling problem

Refsgaard and Butts (1999) summarized the different scaling approaches

available to determine grid scale parameters from local scale parameters.

Three main cases were retained: (i) the finer scale equations are assumed

valid without change; (ii) the finer scale equations are extended in a the-

oretical/stochastic framework to account for the spatial variability of finer

scale parameters; and, (iii) new equations are developed specifically for the

coarser scale. Aggregation is considered apart from upscaling, as the pro-

cess equations are applied at the finer scale and the coarse-scale results are

obtained by aggregating the fine-scale results at the coarser scale. Addiscott

and Mirza (1998) proposed to use variogram analysis to investigate whether

the non-linearity effect will intensify as the modelling area increases. By

knowing how parameter variance changes with increasing scale, one could

assess the effect of models non-linearity at a coarser scale. A critical assump-

tion of some regional scale studies is the existence of effective soil properties.

Scaling problems are sometimes overcome through scale-specific calibration

(Refsgaard and Butts, 1999).

Baveye and Boast (1999) argued that there is at this stage no theoret-

ical framework in vadose zone transport to guide upscaling efforts toward

field or catchment scales. Processes showing fractal properties are found in

many areas of hydrology (e.g. Pachepsky and Timlin, 1998; Kirchner et al.,

2001; Caniego et al., 2005), but they do not really provide an upscaling the-

ory. In general, scaling is performed via empirical approaches based on a

combination of aggregation and model simplification (e.g. Vereecken et al.,

2003; Van Bodegom et al., 2002a). Blöschl (2001) recognised that ad hoc

upscaling relationships with little theoretical justification will probably re-
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main the rule in the near future. Beven et al. (1999) even asserted that

the scaling problem will prove to be impossible to apply at the catchment

or regional scale in hydrology, mainly because of the ‘uniqueness of place’.

They evoked the apparent impossibility to measure all of the parameters

that are necessary for landscape scale modelling. Thus spatial heterogene-

ity and temporal variability would prevent the application of scaling theory.

On the contrary, Blöschl (2001) believes that scaling has the potential to

become a unifying theory of hydrology, by providing a connection between

all hydrologic subdisciplines.

Applying physically-based transport models at the catchment scale does

not ensure that these models will effectively simulate the processes occurring

at that scale. Baveye and Boast (1999) suggested that lumped, conceptual

models may be relevant for studying catchment scale processes, but only if

the description of transport processes is adapted to the dynamics occurring

at that scale (case (iii) above).

2.3.2 Spatial variability of pesticide and soil properties

Independently of scale, the variability of soil and pesticide properties has

strong effects on pesticide leaching, and hence on groundwater vulnerability

to pesticides (Di and Aylmore, 1997).

Some of the input variables and parameters needed for transport models

are dominated by the bulk characteristics of the soil matrix; consequently,

the spatial variability of these properties (porosity, bulk density, water con-

tent at field capacity) is relatively small, which reflects the uniformity of

soil genesis processes (Corwin et al., 1997). In contrast, water transport pa-

rameters including saturated hydraulic conductivity, infiltration rate, and

hydraulic conductivity - water content relationships are characterized by a

high variability (Corwin et al., 1997). Soil physical and chemical proper-

ties vary considerably across the field, but substantial local scale variability

(within a few meters or less) may also be found (Corwin et al., 2006). Local

scale variability occurs because of the variation in structural properties, tex-

tural composition, and the human activity influence (i.e. soil management

practices).

Field analyses have shown the importance of spatial variability of soil and
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pesticide properties, although the variability of soil properties often varies

with measurement scale (Corwin et al., 1999b). In a study at the pedon

scale, Jacques et al. (1999) analysed the 3-D spatial variability of atrazine

sorption isotherm parameters (Kf and N ; see section 2.2.2) and their cor-

relation with soil textural variables, cation exchange capacity (CEC) and

organic carbon content. After removing the vertical and horizontal trends,

the authors found that organic carbon content, CEC and N revealed spa-

tial structure, while the variograms of textural variables and Kf exhibited

pure nugget effect. Besides, the correlation between the variables differed

for different spatial increments (Jacques et al., 1999). In a study at the

field scale, Novak et al. (1997) found that for atrazine, Kd and KOC showed

strong spatial dependence (with a correlation range of 87 and 71 m). Using

geostatistics, the authors were then able to produce Kd and KOC maps at

the field scale. Finally, Coquet (2002) explored the variability of pesticide

sorption parameters at the catchment scale. He found that more than 97%

of the Kf catchment-scale variations could be explained by the variations

of soil organic carbon content.

Simulation studies have also emphasized the impact of soil and pesticide

properties variability on pesticide leaching. Van Alphen and Stoorvogel

(2002), performing simulations for 19 different pesticides, found that leach-

ing was strongly affected by soil heterogeneity at the within-field, field, and

farm levels. Jury and Gruber (1989) used a stochastic approach to study

the influence of soil variability on the leaching of 10 pesticides. The effect of

soil variability was found to be significant on the distribution of the residual

mass under all conditions. They also showed that soil (and climatic) vari-

ability can introduce a small probability that some mass of even relatively

immobile compound will migrate below the soil surface even when the pro-

jected mass is negligible as determined from models neglecting variability

by using average values. Van der Zee and Boesten (1991) presented similar

findings, using both a stochastic approach and Monte Carlo simulations to

incorporate variability.

An important issue in pesticide fate modelling at coarse scales is there-

fore to capture and represent the spatial variability of soil properties in an

appropriate way. For transport models based on non-linear equations such

as the Richards equation, there is a risk of inaccurate results when the model

is used with a single-valued parameter based on a soil property known to be
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spatially variable (Addiscott and Mirza, 1998). Di and Aylmore (1997) de-

veloped a simple leaching model incorporating the variations in soil and pes-

ticide parameters. For each input parameter, random data were generated

from normal input distributions. The predicted pesticide residue fractions at

different depths were described by beta-distributions, and the corresponding

travel times by normal distributions. Foussereau et al. (1993) assessed the

uncertainty of soils input by generating pseudo-profiles of soils from pedon

characterization data within a given map unit. These pseudo-profiles were

then used in Monte Carlo simulations that captured the variance of selected

soil parameters. Yost et al. (1999) proposed several methods to incorpo-

rate spatial variability and uncertainty into existing soil databases. Three

sources of input soil data are usually considered: measurement methods,

estimation methods (e.g. PTFs), and existing soil databases (Corwin et al.,

1997). The first source should be preferred, but is limited by the current

inability of remote measurement techniques and instrumentation to meet

input data requirements. Estimation methods are the next best alternative,

while coarse-scale soil databases (such as STATSGO in the USA or SPADE

in Europe) do not meet minimum data requirements for many parameters

(Corwin et al., 1997).

McBratney et al. (2003) carried out an extensive review of the different

methods used for fitting quantitative relationships between soil properties

or classes and their environment. These include linear models, classification

and regression trees, neural networks, fuzzy systems and geostatistics. A

few examples are given below, but the reader is referred to McBratney et al.

(2003) for a detailed overview of soil mapping.

Geostatistics have been abundantly used to study the spatial variability

of soil properties. Goovaerts (2001) discussed the opportunities offered by

kriging-based and simulation-based techniques. The two approaches are

found to yield similar models of local uncertainty, although the simulation-

based approach has several advantages over kriging (see details in Goovaerts,

2001). However, the correlation range of certain soil or pesticide properties

(e.g. about 80 m for atrazine Kd and KOC ; Novak et al., 1997) hampers the

application of geostatistics to interpolate these properties at coarse scales

with limited data sets.

To represent detailed soil spatial information, Zhu (1999) used a fuzzy

inference scheme consisting of a fuzzy logic-based model and a set of infer-



2.3. Pesticide leaching models at the catchment/ regional scale 41

ence techniques. This allowed the realistic characterization of the spatial

covariation of landscape parameters at the catchment scale. Another exam-

ple of the use of fuzzy logic for mapping soil variability and uncertainty is

given by Lark and Bolam (1997).

Haskett et al. (1995) aggregated the values of individual soils within a soil

association to account for the variability of soil properties. This variability

was parameterised using a beta-function distribution. In multiple simulation

runs, this method allows the inclusion of the soil variability found within

the soil association.

Remote sensing techniques also have the potential to incorporate soil

variability in spatially distributed studies. For example, Ben-Dor et al.

(2002) processed data acquired from a hyperspectral airborne sensor to

yield quantitative maps of soil properties, including organic matter content.

Barnes et al. (2003) discussed how remote and ground-based sensor tech-

niques may be used to map a variety of soil properties, while Odeh et al.

(2001) showed how these techniques can be combined with geostatistical

methods.

Even if appropriate techniques have allowed to take into account the

spatial variability of soil properties, a question remains as to whether pedo-

transfer functions applied afterwards are able to quantify spatial variability.

Romano and Santini (1997) suggested that PTFs are able to describe the

structure of spatial variability of soil water retention properties.

Finally, an interesting comment was made by Baveye (2002), who noted

that little attention is devoted to the questions of when, where and why,

from a practical standpoint, one should be concerned with soil variability,

and what the appropriate scale is at which to observe soil variation in given

circumstances. In the field of groundwater contamination by pesticides, Bav-

eye (2002) cited the study of Worrall (2001), who showed that the molecular

topology of the pesticide molecules is a good basis to discriminate between

polluting and non-polluting pesticide compounds. Although Worrall (2001)

and Worrall and Thomsen (2004) used this approach for screening purposes,

their results indicate that groundwater vulnerability may be assessed to some

extent without a complete description of soil spatial variability.
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2.3.3 Second-order Monte Carlo analysis

Second-order Monte Carlo analysis has been developed to put a clear dis-

tinction between variability and uncertainty in risk assessment (EUFRAM,

2005). The objective is to characterize both the variability of the output

variable and the uncertainty we have about what that true distribution of

variability really is (Vose, 2000).

The variability of a quantity (also named stochastic uncertainty, or ale-

atory uncertainty) is defined as the inherent heterogeneity of this quantity

over time, space, or some population of individuals (McKone, 1996; Cullen

and Frey, 1999; Counil et al., 2005). Additional effort may yield a better

estimate of the magnitude of variability, but it will not tend to reduce it

(Ferson and Ginzburg, 1996). On the other hand, uncertainty (also called

epistemic uncertainty) is caused by our incomplete knowledge of the system

(Apel et al., 2004).

In this context, variability and uncertainty may both be quantified using

probability distributions but their interpretation somehow differs: variability

may be viewed in terms of frequency, while the uncertainty distribution may

be considered as a degree of belief (Cullen and Frey, 1999).

A second-order Monte Carlo analysis works as follows. Each variable is

classified as a source of either uncertainty or variability. First, a single value

from each variable that is classified as a source of uncertainty is sampled

at random. Using the values from this single sample, a complete first-order

Monte Carlo analysis is then performed for all variables that are classified

as a source of variability. The process is repeated many times and has the

effect of separating uncertainty from variability (EUFRAM, 2005).

Although the suitability of probability theory for dealing with epistemic

uncertainty has been challenged (Hall and Anderson, 2002) and alternative

methods have been proposed (e.g. a combination of probability and interval

analysis; Ferson and Ginzburg, 1996), second-order Monte Carlo analysis is

now widely used in risk assessments. An important number of applications

were made in ecotoxicology (exposure) assessments (e.g. Wu and Tsang,

2004; Counil et al., 2005; Delignette-Muller et al., 2006). In this case, uncer-

tainty usually concerns the distribution of input parameters in the exposure

model and variability is applied to the individuals of a population (Counil
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et al., 2005).

McKone (1996) applied a second-order Monte Carlo analysis to the

modelling of contaminant fate in soils and compared the results of two dif-

ferent models. Soil and pesticide properties were classified as ‘variable’ and

‘uncertain’, respectively. In surface hydrology, Apel et al. (2004) developed

a second-order Monte Carlo framework for a flood risk assessment.

2.4 Conclusions from the literature cited

In this thesis, groundwater vulnerability will be considered to be dependent

on both land use and pesticide properties (i.e. vulnerability is specific to a

pollutant or a class of substances). Overlay and index methods have been

popular tools to assess groundwater vulnerability (mainly due to facility and

lower data requirements), but monitoring based statistical inference methods

or approaches using process-based models seem now to be preferred. In

this thesis, we use the GeoPEARL model to assess the vulnerability of the

Brusselian aquifer. However, this type of models are generally based on

equations developed on point support. Although the literature indicates

that no scaling theory–if ever possible–is available at the moment, a scale

issue exists in the application of GeoPEARL at the catchment or regional

scale.

For example, the version of GeoPEARL used in this thesis does not

account for preferential flow, which has repeatedly been shown to be an im-

portant process in pesticide leaching studies. Although the available data

would have hardly allowed the parameterisation of preferential flow at the

catchment scale, particular attention is needed in the interpretation of Geo-

PEARL results.

We therefore conclude that GeoPEARL predictions at the catchment

scale should not be expected to compare exactly with monitoring data. How-

ever, if distributed predictions are required, one can accept that accuracy

in local predictions is necessarily limited, but predictions of ‘where’ rather

than ‘how much’ may become acceptable. Indeed, as Beven (2001a) sug-

gested, a relative assessment of the spatial distribution of risk, including an

assessment of uncertainty, might be sufficient for risk-based decision making

in some cases.
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Simpler, analytical models could be used, but there is a risk of under-

estimating the leaching fraction if vertical heterogeneity is not taken into

account (van der Zee and Boesten, 1991). This difference could be overcome

by introducing effective model parameters, but these parameters are site-

specific, and can only be obtained by calibration (Tiktak et al., 2003). In

this study, no calibration (leaching) data were available at the regional scale,

but a detailed database of soil profiles was available that allowed a relatively

comprehensive parameterisation of soil properties in GeoPEARL. Moreover,

several chapters of this thesis deal with the implications of modelling issues

for pesticides management. In this context, the advantage of GeoPEARL

is also its capacity to predict leaching fractions in a detailed way, in order

to derive absolute values of leaching for registration procedures in which

clear-cut thresholds are defined (e.g. 0.1 µg/L).

To summarize, the choice of GeoPEARL was motivated by the following

points: spatially distributed model, access to the model code, value given to

available soil profile data, and good validation status notably in registration

procedures (one of the four models selected in FOCUS).

Monte Carlo simulations are frequently used for the analysis of uncer-

tainty propagation. The literature review provided numerous applications

of Monte Carlo analysis to pesticide leaching modelling. However, it should

be noted that in this framework it is generally impossible to separate the

different sources of uncertainty (Dubus et al., 2002b).

In the case of spatially distributed models, probabilistic risk assessment

may inspire the distinction between variability and uncertainty. Only one

application of this concept to pesticide fate modelling has been found, but

we propose to adapt the methodology and test it for the case study presented

in this work.

Finally, an important point for our research is that we can make the

reasonable assumption—derived from the literature review—that virtually

no atrazine degradation occurs in saturated conditions.


