
Chapter 6

Homogenization of
elasto-viscoplastic
composites

1 In this section, another type of behavior for the constitutive phases of the
composite is examined. More precisely, in addition to the elasto-plastic nature
of the phases, the plastic regime exhibits a dependence with the loading rate.
Such phenomena appear especially at high temperatures.

6.1 Constitutive equations

The Perzyna-type elasto-viscoplastic constitutive model is used for all the sim-
ulations presented in this work. However, the proposed homogenization tech-
nique for elasto-viscoplastic composites is not restricted to this single model.
The following developments are limited to isotropic hardening in each phase.

The Perzyna-type constitutive model

The additive decomposition of the total strain gives an elastic part and an
inelastic one, so that the time derivative of the Hookean’s law can be rewritten

1Some developments of this chapter led to two publications “An enhanced affine for-
mulation and the corresponding numerical algorithms for the mean-field homogenization of
elasto-viscoplastic composites”, Pierard O. and Doghri I., International Journal of Plastic-
ity, 22 (2006), pp.131-157 [78] and “Micromechanics of particle-reinforced elasto-viscoplastic
composites: finite element simulations versus affine homogenization”, Pierard O., LLorca J.,
Segurado J. and Doghri I., International Journal of Plasticity, submitted for publication [82].
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as:
σ̇ = C : (ε̇ − ε̇in). (6.1)

As in elasto-plasticity, the inelastic strain rate is governed by a plastic flow
rule:

ε̇in = gv
∂f

∂σ
=

3
2

gv

σeq
σdev, (6.2)

where gv(σeq, p) is a viscoplastic function (see hereafter) which is equal to
the plastic multiplier γ̇ introduced for elasto-plasticity, f is the yield func-
tion (f(σeq, p) = σeq − σY −R(p)) and is positive during plastic loading in the
case of rate-dependent materials, σeq is the von Mises equivalent stress, σY is
the initial yield stress, R(p) is the hardening stress (see hereafter), σdev is the
deviatoric part of the stress tensor and p is the accumulated plasticity defined
by (5.4). Combining these two relations leads to an equation linking stress and
strain rates:

σ̇ = C :
(

ε̇ − gv(σeq, p)
∂f

∂σ

)
. (6.3)

Given this constitutive elasto-viscoplastic model, it is possible, for a ho-
mogeneous material, to predict the elasto-viscoplastic response. In order to
compute the response of that material over a time step (the problem is sup-
posed solved until the beginning of this time step) given either strain or stress
increment, an algorithm is needed (e.g., (Doghri [24])) to solve two scalar equa-
tions by a Newton-Raphson scheme.

Hardening function

As in elasto-plasticity, the only hardening function considered in the subsequent
simulations is a power-law model which is defined as:

R(p) = kpn if p > 0, 0 otherwise, (6.4)

where k [Pa] is the hardening modulus and n [−] the hardening exponent.

Viscoplastic function

The two viscoplastic functions defined hereafter require two parameters: the
viscoplastic modulus (η [Pa.s] or κ [1/s]) and the viscoplastic exponent m [-].

• Norton’s viscoplastic power law:

gv(σeq, p) =
σY

η

(
σeq − σY − R(p)

σY

)m

if f > 0, 0 otherwise. (6.5)



Homogenization of elasto-viscoplastic composites 95

• Viscoplastic power law as defined in ABAQUS [1]:
This law is obtained by a slight modification of Norton’s power law. Im-
plementation of this law is useful for validation purposes.

gv(σeq, p) = κ

(
σeq − σY − R(p)

σY + R(p)

)m

if f > 0, 0 otherwise. (6.6)

6.2 Homogenization of elasto-viscoplastic com-
posites

In elasto-viscoplasticity, there is no one-to-one correspondence between stress
and strain rates through a so-called continuum tangent operator Cep such as it
exists in elasto-plasticity. It results that the incremental formulation of elasto-
plastic composites (Hill [43]) cannot rigorously be used. However, when con-
sidering finite strain and stress increments instead of infinitesimal ones, an
algorithmic tangent operator Calg derived from a consistent linearization of
the time-discretized constitutive equations exists in elasto-viscoplasticity (Ju
[48], Doghri [24]):

σ̇ �= Cin : ε̇, Calg =
∂(∆σ)
∂(∆ε)

. (6.7)

It is thus tempting to use a Hill-type incremental formulation nevertheless, but
based on Calg. Unfortunately, as observed in various simulations, such an ap-
proach gives too stiff responses. Such as done nowadays in elasto-plasticity,
some adjustments should be done in order to get accurate predictions with
an incremental formulation (e.g.: Doghri and Ouaar [26], Doghri and Friebel
[25], Doghri and Tinel [27]). In some cases, using the latter formulation in
elasto-viscoplasticity with algorithmic tangent operators Calg gives acceptable
predictions (an example is given in section 6.4.1). Another widely used formu-
lation is the secant one. Li and Weng [58, 59, 60] performed various interesting
simulations by making use of a secant viscosity in the local constitutive laws.
However, the secant formulation cannot handle some important cases such as
unloading, cyclic loading and otherwise non-proportional loading histories. A
non-classical formulation is thus needed and the so-called affine formulation
adopted in this work transforms the problem into a fictitious linear thermo-
elastic one which can be homogenized according to classical homogenization
schemes. This approach was introduced by Molinari et al. [69] and improved
by Masson [66].

In order to predict the overall behavior, a homogenization scheme is used.
Such an approach is much faster than a purely numerical method (e.g.: finite
elements), especially when dealing with real structures for which two meshes
are needed at different scales. However, in order to validate this model, FE
simulations performed on unit cells are also carried out.
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6.3 The affine formulation

In this section, the affine homogenization introduced by Masson [66] is pre-
sented. Main steps of the linearization, predictions of the final response as
well as an algorithm are detailed. Finally, a special attention is paid to the
differences with previous implementations of this method.

The affine formulation relies on a linearization in time of the constitutive
equations of the strain rate and the rate of internal variables. For clarity of the
development, a single scalar internal variable p, not yet specified, is considered.
When dealing with hereditary behaviors (such as in elasto-viscoplasticity), a
direct prediction of the response is impossible and a discretization into time
steps is required. During all the linearization procedure described hereafter,
the problem is considered over a time step, for which the solution is supposed
already found up to the beginning of the time step (tn). For this, the constitu-
tive model has to be written under the general form:

ε̇(t) = S : σ̇(t)︸ ︷︷ ︸
ε̇el(t)

+ε̇in(σ(t), p(t)), (6.8)

ṗ(t) = ṗ(σ(t), p(t)), (6.9)

with ε̇(t) the total strain rate, σ̇(t) the Cauchy stress rate, ε̇el and ε̇in the
elastic and inelastic strain rates, respectively, and S the elastic compliance
tensor.

6.3.1 From elasto-viscoplasticity to linear thermo-
viscoelasticity

The first step in the theory is a linearization of equations (6.8-6.9) around time
tn:

ε̇in(t) = ε̇in(tn) + m(τ) : [σ(t) − σ(tn)] + n(τ)[p(t) − p(tn)], (6.10)
ṗ(t) = ṗ(tn) + l(τ) : [σ(t) − σ(tn)] + q(τ)[p(t) − p(tn)], (6.11)

in which four derivatives are introduced:

mijkl =
∂ε̇in

ij

∂σkl
, nij =

∂ε̇in
ij

∂p
, lkl =

∂ṗ

∂σkl
, q =

∂ṗ

∂p
. (6.12)

These derivatives are evaluated at time τ , which belongs to the time inter-
val [tn; t]. Analytical expressions of these derivatives are available once the
constitutive model is defined.

For the Perzyna-type constitutive model (section 6.1), these derivatives are
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nil if the yield function is negative or nil. If f > 0, they are given by:

mijkl =
∂gv

∂σeq
NklNij + gv

∂Nij

∂σkl
, nij =

∂gv

∂p
Nij ,

lkl =
∂gv

∂σeq
Nkl , q =

∂gv

∂p
, (6.13)

where:
∂Nij

∂σkl
=

1
σeq

[
3
2
Idev
ijkl − NijNkl

]
. (6.14)

Derivative q is always negative, which is logical. If p increases, R(p) in-
creases also and since the stress is considered constant in this partial derivative,
f(σeq, p) decreases. Thus, the viscoplastic function gv(σeq, p) and ṗ decrease
so that q = ∂ṗ

∂p is negative.
As shown in appendix D.1, the solution of equation (6.11) can be given

under the integral form:

p(t) − p(tn) = p̂(τ, t) +
∫ t

0

e(t−u)q(τ)l(τ) : σ(u)du, (6.15)

where:

p̂(τ, t) = q−1(τ)[e(t−tn)q(τ) − 1][ṗ(tn) − l(τ) : σ(tn)]

−
∫ tn

0

e(t−u)q(τ)l(τ) : σ(u)du. (6.16)

By inserting result (6.15) in equation (6.10) and after some mathematical ma-
nipulations (detailed proof in appendix D.2), the problem (6.10-6.11) is rewrit-
ten as:

ε̇(t) =
d

dt

[∫ t

0

Sτ (τ, t − u) : σ̇(u)du

]
+ε̇0(τ, t) = [Sτ � σ̇](τ,t)+ε̇0(τ, t), (6.17)

in which the Stieljes-type convolution product denoted by � is introduced.
Semi-analytical expressions of tensors Sτ (τ, t) and ε̇0(τ, t) are reported in ap-
pendix D.2.

Rewriting local constitutive equations as (6.17) is remarkable as they be-
come similar to linear viscoelastic ones, with an additive eigenstrain rate term.
Classically, this problem is solved with the help of the Laplace-Carson trans-
form as presented in the next section.

6.3.2 From linear thermo-viscoelasticity to linear thermo-
elasticity

Similarly to the solution method proposed for linear viscoelastic materials (sec-
tion 4.4.1), the Laplace-Carson transform (appendix B.1) is used to write equa-
tion (6.17) in a linear elastic form. Under this transformation, the Stieljes-type
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convolution product becomes a single contraction so that the linearized consti-
tutive law reads:

ε̇∗(s) = S∗
τ (τ, s) : σ̇∗(s) + ε̇0∗(τ, s), (6.18)

or equivalently σ̇∗(s) = C∗
τ (τ, s) : (ε̇∗(s) − ε̇0∗(τ, s)), (6.19)

with C∗
τ (τ, s) = [S∗

τ (τ, s)]−1
,

where an asterisk in exponent means the Laplace-Carson transform and s is
the Laplace variable. S∗

τ and ε̇0∗ are given by (proof in appendix D.3):

S∗
τ (τ, s) = S +

m(τ)
s

+
n(τ) ⊗ l(τ)
s(s − q(τ))

, (6.20)

ε̇0∗(τ, s) = ε̇in(tn)e−sτ + s

∫ tn

0

ε̇in(t)e−stdt

−sm(τ) :
∫ tn

0

σ(t)e−stdt − m(τ) : σ(tn)e−stn

−q−1(τ)ṗ(tn)
se−stn

q(τ) − s
n(τ)

+q−1(τ)
[

s

q(τ) − s
+ 1

]
l(τ) : σ(tn)e−stnn(τ)

+q−1(τ)l(τ) : σ(tn)e−stnn(τ)
−q−1(τ)ṗ(tn)e−stnn(τ)

+
s

q(τ) − s
n(τ) : l(τ)

∫ tn

0

σ(t)e−stdt

+ε̂0∗(τ, s,σ(0)), (6.21)

ε̂0∗(τ, s,σ(0)) = m(τ) : σ(0) − n(τ)q−1(τ)
(

1 − s

s − q(τ)

)
l(τ) : σ(0).

A proof of these expressions is given in appendix D.3. A special attention
is paid to the computation at a low memory cost of these integrals so that
they are always evaluated from variables at the end of the previous time step,
which requires to decompose the integrals. Some details are given in appendices
C and D. These equations are similar to those of linear thermo-elasticity.
Of course, they are fictitious constitutive equations since they are defined in
the Laplace-Carson domain. Classical homogenization schemes valid in linear
thermo-elasticity can thus apply.

6.3.3 Algorithm

Consider now a two-phase elasto-viscoplastic composite for which constitutive
equations of each phase can be linearized over a time interval as (6.19). Simi-
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Figure 6.1: Iterative procedure to find the correct strain increments in
the phases. Labels 1,. . . ,11 refer to the step numbers in the algorithm
of section 6.3.3.

larly to linear thermo-elasticity, localization equation can be written as:

< ε̇∗(s) >ω1= Aε∗(τ, s) : ˙̄ε∗(s) + aε∗(τ, s), (6.22)

Corresponding relation in the time domain writes:

< ε(t) >ω1=< ε(0) >ω1 + [Aε ⊗ ˙̄ε](τ,t) +
∫ t

0

aε(τ, u)du, (6.23)

where Aε and aε are the strain localization tensors defined for the homogeniza-
tion of two-phase linear thermo-elastic composites. In this section, an iterative
procedure to determine strain increments in each phase over a time step is
proposed. For this, consider the problem solved until the beginning of this
time step, all local variables being known at that time. Over the time step
[tn, tn+1], a macro strain increment ∆ε̄ is given. The algorithm is illustrated
schematically on figure 6.1, main steps being described hereafter.

1. Initialization of the average strain increment ∆ε1 in the inclusions with
the converged value at the previous time step weighted by a possible
variation of the time increment: ∆ε1 = tn+1−tn

tn−tn−1
(ε1(tn) − ε1(tn−1)).

2. Computation of the affine stiffness modulus C∗
1(τ, s) and the eigenstrain

tensor ε̇0∗
1 (τ, s) in (6.19) in the reference inclusions’ phase. For this, the

response of the phase has first to be computed according to the consti-
tutive model of the inclusions with ∆ε1 as input. Secondly, one has to
compute the derivatives of the evolution laws of inelastic strain rates and
rate of plasticity with respect to their parameters (6.12). These are eval-
uated at time τ = tn+1. The discretization is done implicitly so that the
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derivatives are evaluated at tn+1. Finally, the required C∗
1(τ, s) is com-

puted by taking the inverse of expression (6.20) and ε̇0∗
1 (τ, s) by using

(6.21).

3. Evaluation of the corresponding strain increment in the matrix:
∆ε0 = 1

v0
(∆ε̄ − v1∆ε1).

4. As in step 2, computation of the tensors C∗
0(τ, s) and ε̇0∗

0 (τ, s) for the
matrix phase.

5. Extraction of the special isotropic part of C∗
0(τ, s) as done for the incre-

mental formulation in elasto-plasticity (section 5.3.3) - noted C∗ IsoSpe
0 (τ, s).

6. Computation of Eshelby’s tensor E(I,C∗ IsoSpe
0 (τ, s)) with C∗ IsoSpe

0 (τ, s)
and the inclusions shape (I) (appendix A.1).

7. Computation of the strain concentration tensors Aε∗(τ, s) and aε∗(τ, s) in
the Laplace domain (equations (4.25, 4.56b), Bε is given by the adopted
homogenization scheme - see section 4.2.3).

8. Numerical Laplace inversion (see appendix B.2) of Aε∗(τ, s) and aε∗(τ, s).
To perform this operation, the strain concentration tensors of step 7 must
be evaluated at several collocation points si in the Laplace-Carson do-
main. Limit values of these functions are needed for the inversion and
are given in appendix D.4.

9. Evaluation of a new value of the average strain in the inclusions at t =
tn+1 according to relation (6.23). When using a collocation method as
advocated for the numerical Laplace inversion, the corresponding time
function is under a serial decomposition form so that the convolution
product and the integral can be evaluated analytically (not too difficult
for the integral and see appendix C for the incremental computation of
the convolution product).

10. Computation of the average strain increment in the inclusions.

11. Comparison of this new value with the one at the beginning of this itera-
tion. If it deviates too much, a new iteration is performed with this new
value. Otherwise, the estimates per phase are accepted and the overall
macroscopic response is computed as explained in section 6.3.4.

This algorithm is the core of the “Affinistan” software developed in the
context of this thesis. A short presentation is given in appendix F.
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6.3.4 Prediction of the macroscopic response

Once the average strain increments in each phase are found by the algorithm
presented in section 6.3.3, there are two different ways to compute the macro-
scopic stress response corresponding to a macro strain increment.

The first method considers that the macroscopic stress is the spatial average
of the local stresses, i.e. sum of the average stresses in the phases weighted by
the corresponding volume fraction of that phase. This is easily done at a low
computation cost.

The second method is based on a macroscopic linear viscoelastic relation.
Indeed, in the linearization procedure, linear viscoelastic constitutive relations
exist for each phase at each time step so that the macroscopic one at a given
time step is form-similar:

σ̄(tn+1) = σ̄(0) +
∫ tn+1

0

C̄τ (τ, tn+1 − u) : ( ˙̄ε(u) − ˙̄ε0(tn+1, u))du. (6.24)

At first, computation of the homogenized tensors (C̄∗(τ, s) and ˙̄ε0∗(τ, s)) in
thermo-elasticity are needed. The numerical Laplace inversion back to the
time domain (see appendix B.2) of these tensors give serial decompositions so
that the convolution product can be computed analytically, and finally, the
macroscopic stress response is computable.

This second approach is more time-consuming and requires two additional
numerical inversions of the Laplace-Carson transform. Since some numerical
errors appear in this inversion and the method is sensitive to the choice of the
collocation points (see appendix B.2), the quality of the final prediction might
be better with the first method. For example, using (6.24) introduces some
fictitious plasticity during elastic unloading or reloading. The two methods
have been implemented and with a minimum of care with the numerical Laplace
inversions, no significant differences on the predictions have been observed.
Logically, for performance reasons, the first option is the default one.

If there are constraints on the corresponding macroscopic stress tensor (e.g.:
uniaxial tension, biaxial tension, shear,. . . ), an additive iterative loop is neces-
sary and is described in appendix E. For this purpose, several components of
the macroscopic tangent operator are needed. This is done with a perturbation
method.

6.3.5 Main differences with previous implementations

The major differences in our implementation with previous ones (Brenner et
al. [15], Masson and Zaoui [68], Masson et al. [67]) are the following:

• A full treatment of the evolution laws of internal variables, e.g.: accumu-
lated plasticity for composite materials or resistances of the slip systems
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for polycrystals. This consideration adds a great deal of complexity to
the mathematical developments of the affine formulation.

• This work is focused on two-phase composites, on the contrary to Masson
[66] who studied various crystalline symmetries and especially Zirconium’s
alloys modeled as polycrystals. The fact that we consider a different mi-
crostructure does not have an impact on the development of the affine
formulation itself, but on the constitutive models of the phases and most
importantly on the numerical algorithms which have to be robust in or-
der to handle different constitutive models and contrasts between phase
materials.

• An extensive validation of the method. Up to now, very few validations
were available.

• Simulations are performed under various loading cases. To our knowl-
edge, no one has performed cyclic loading tests with an affine formulation
before.

It should be noted that two extensions of the affine formulation have been
developed by Brenner et al. [14]. First one deals with a simplified numerical
Laplace-Carson transform. Such approach enables to reduce the required com-
putation time for this operation and is especially useful for polycrystals due
to the numerous different grains. The other extension takes into account the
second order moment of the stress tensor in the definition of the reference state.
This is done for polycrystals which exhibit a power law constitutive law. In
this case, the secant and affine moduli are linked in a simple way so that the
evaluation of the second order moment of the stress tensor can be obtained in
a semi analytical fashion.

6.4 Numerical simulations

6.4.1 General simulations

In this first part of the numerical simulations of the affine formulation, a wide
range of loading paths, homogenization methods and comparisons with an-
other formulation are presented. In the description of the material properties,
subscript 0 refers to the matrix and 1 to the inclusions.

Effect of the homogenization formulation In the past, the incremental
formulation has been criticized for giving too stiff predictions. Extracting the
isotropic part of the algorithmic tangent modulus leads to much more realistic
predictions in the elasto-plastic regime (Doghri and Ouaar [26]). As mentioned
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Figure 6.2: Uniaxial tension test. Comparison of the affine and incre-
mental formulations.

in section 6.2, the incremental formulation cannot rigorously be used in the rate-
dependent case because of the absence of continuum tangent operators relating
strain and stress rates. Nevertheless, since an algorithmic tangent operator
Calg -equation (6.7b)- can be defined, the idea in this section is to run the
incremental formulation in elasto-viscoplasticity with Calg although there is
no constitutive justification for Calg. The predictions will be compared to
those of the affine formulation.

Material properties of the considered two-phase composite are the following
(Norton’s viscoplastic power law is used): E0 = 50 GPa, ν0 = 0.3, σY0 = 100
MPa, k0 = 50 GPa, n0 = 1.0, η0 = 30.0 GPa.s and m0 = 1.0 for the matrix
which is reinforced by 30% of spherical inclusions with the following properties:
E1 = 500 GPa, ν1 = 0.3, σY1 = 100 MPa, k1 = 100 GPa, n1 = 0.85, η1 = 10.0
GPa.s and m1 = 1.0. This composite undergoes a uniaxial tension test at a
constant strain rate of 10−3 s−1.

Predictions obtained with the two formulations are reported on figure 6.2, as
well as responses of individual phases alone. As expected, this test shows that
the prediction of the affine formulation is softer than that of the incremental
one, although in this example the difference is not too pronounced.

Effect of the inclusions shape A major advantage of Eshelby-based ho-
mogenization schemes is that they can predict the influence of the shape of
the inclusions. In this test, predictions of two composites made of the same
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Figure 6.3: Uniaxial tension test in the longitudinal and transverse
directions. Influence of the reinforcements shape.

materials are compared, one being reinforced with spheres, the other by long
fibers. These results are confronted to the bounds of Reuss and Voigt (which
are independent of the reinforcements shape).

In this test, the contrast between the phases is more pronounced : E0 = 100
GPa, ν0 = 0.3, σY0 = 100 MPa, E1 = 1000 GPa, ν1 = 0.3 and σY1 = 1000 MPa.
Both phases obey a power law hardening function and Norton’s viscoplastic law
(k = 10 GPa, n = 1, η = 300 GPa.s and m = 1). The uniaxial tension test
is performed at a constant strain rate of 10−3 s−1. For both composites, the
volume fraction of the inclusions is 30%.

Logically, as illustrated on figure 6.3, the composite made with fibers has,
in the longitudinal direction, a much better resistance to this traction test than
the composite reinforced by spheres. On the contrary, the response in the
transverse direction of the composite reinforced by fibers is softer than the one
of the composite made with spheres. One can note that the response of the
long fiber composite predicted with Mori-Tanaka in the direction of the fibers
is slightly stiffer than with Voigt! This is due to some small numerical errors
occurring in the Laplace inversion as explained in appendix B.2. The Reuss
and Voigt schemes avoid these problems since inversions of the constant strain
concentration tensors are obvious.
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Figure 6.4: Uniaxial relaxation test of a long fiber reinforced composite
in the longitudinal direction. Illustration of the viscous effects.

Relaxation test In this relaxation test, the influence of the viscous effects
is illustrated. Transient viscous effects of the studied composite is compared to
the rate independent response of this composite.

The properties of this composite are the following: E0 = 100 GPa, ν0 = 0.2
and σY0 = 100 MPa for the matrix, E1 = 500 GPa, ν1 = 0.3 and σY1 = 500 MPa
for the inclusions. For both phases, the power law hardening model is defined
by k = 10 GPa and n = 1. The Norton’s viscoplastic laws have different
parameters for each phase: η0 = 300 GPa.s, n0 = 1.1 for the matrix and
η1 = 500 GPa.s, n1 = 1.8 for the long fibers. The composite is reinforced
by long fibers (20% of volume fraction) aligned with the direction of uniaxial
relaxation.

On figure 6.4, initial stress response of the rate-dependent composite is the
homogenized elastic one. Furthermore, it is observed at long times that the
response of the composite tends to the instantaneous elasto-plastic one, which
is obtained by the commercial software DIGIMAT [23]. This result is also
obtained with homogenization methods but with an incremental formulation
in elasto-plasticity.

Effect of the loading strain rate This simulation illustrates the influence
of the loading strain rate in a shear test. For decreasing strain rates, responses
become softer and should tend to the rate independent one.
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Figure 6.5: Sphere-reinforced composite under a shear test. Influence
of the loading strain rate.

The two phases of this composite obey to power law hardening model and
Norton’s viscoplastic law. Mechanical properties are the following: E0 = 100
GPa, E1 = 200 GPa, ν0 = ν1 = 0.3, σY0 = 100 MPa, σY1 = 200 MPa,
k0 = k1 = 10 GPa, n0 = n1 = 1, η0 = η1 = 300 GPa.s and m0 = m1 = 1. The
volume fraction of spherical inclusions is 20 %.

Responses of the rate-dependent composite at various strain rates are plot-
ted on figure 6.5. For comparison, the rate independent response computed
with the commercial program DIGIMAT [23] is also reported. Simulation at
the lowest strain rate (10−5 s−1) is almost identical to the elasto-plastic response
since hardening introduced by the strain rate is negligible while at higher strain
rates, the response becomes logically stiffer. At low strain rates, the prediction
doesn’t drop below this rate independent limit, even if these two responses are
obtained with two completely different approaches. However, at very low strain
rates (order of 10−10 s−1), numerical instabilities arise and a lack of precision
is observed in the affine formulations.

6.4.2 Validation against 3D finite element simulations

As second part of the numerical validations of the affine formulation, confronta-
tions are made against 3D FE simulations. Per phase analysis is also performed
in order to better understand the limits of the method.

Throughout this section, only one material is considered in order to get more
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relevant interpretations. This is a two-phase elasto-viscoplastic composite with
a hardening power law (section 6.1) and the rate-dependent power law defined in
ABAQUS (section 6.1). According to the notations previously introduced, the
parameters are the following: E0 = 70 GPa, ν0 = 0.33, σY 0 = 70 MPa, k0 = 4
GPa, n0 = 0.4, κ0 = 310−4 s−1 and m0 = 1.5 for the matrix and E1 = 400
GPa, ν1 = 0.286, σY 1 = 400 MPa, k1 = 8 GPa, n1 = 0.4, κ1 = 210−4 s−1 and
m1 = 1.5 for the spherical inclusions.

Finite element simulations are performed on 3D unit cells reinforced by
several dozens of spheres. These are randomly distributed in the unit cell
and periodic boundary conditions are enforced. Isotropy of the cells and low
scattering between predictions obtained on several cells have been checked.
Computation time was much higher than for an elasto-plastic matrix reinforced
by elastic inclusions: about six hours on a HP RX-4640 with four processors
and 8 Gb of RAM instead of one and an half hour.

Effect of the volume fraction and strain rate Predictions at different
strain rates on a cell containing 15% of reinforcements are illustrated on figure
6.6a. For this, 6 FE simulations are performed at an average strain rate and
conditions (cell and tension direction) of the closest response to the average
one are used at the other strain rates. The response obtained by the incremen-
tal formulation for rate independent elasto-plastic materials is also reported.
As previously, simulation at the lowest strain rate (10−6 s−1) is almost iden-
tical to the elasto-plastic response. One can observe that at low strain rates,
predictions with the affine formulation coincide almost perfectly with the FE
simulations. At higher strain rates, the final response diverges a little bit from
the reference results, predictions with the homogenization scheme being a little
bit softer. This underestimation, which is unusual for homogenization schemes,
is partly due to the use of the isotropic extraction of the affine modulus of the
matrix (S∗−1

τ ) to compute the Eshelby’s tensor. As illustrated on figure 6.6b,
comments for cells containing twice more reinforcements (30%) are similar, the
difference at high strain rates being more pronounced while predictions at low
strain rates remain very good. Increasing the volume fraction or the strain
rate thus decreases the accuracy of the predictions by the affine formulation of
homogenization.

Effect of triaxiality In this section, the influence of the triaxiality level is
examined: shear, uniaxial tension or biaxial tension test. Since the affine ho-
mogenization scheme considers only average strain and stress fields to define
the state of each phase, these will always be isotropic under a triaxial tension
test on a cell reinforced by spheres (if the same tension is applied in the three
directions). Since the Perzyna-type constitutive model considered here is based
on the von Mises equivalent stress, no plasticity will appear. Obviously, this
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(b) Cell reinforced by 30% of stiff elasto-viscoplastic spherical inclusions.

Figure 6.6: Uniaxial tension test. Comparison between direct 3D FE analysis
(points) and affine homogenization formulation (straight lines) for various strain
rates.

is not correct. Indeed, some stress concentration will occur in the surrounding
of the inclusions which will not be under a triaxial tension, so that plasticity
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Figure 6.7: Shear test - cell reinforced by 30% of stiff elasto-viscoplastic
spherical inclusions. Comparison between direct 3D FE analysis of RVE
(points) and affine homogenization formulation (straight lines).

might develop. A good way to improve the model would be to take into account
the second-order moment of the stress tensor which gives additional informa-
tion on the heterogeneity of the stress field. For the other loading cases, it is
interesting to know the triaxiality levels at which homogenization schemes give
good predictions.

Let’s consider at first shear tests at different strain rates. Results are re-
ported on figure 6.7 for a cell reinforced by 30% of spheres. As in previous
observations, good predictions are obtained at low strain rates and the relative
difference between homogenization and reference FE results reaches about 5%
as the strain rate increases. Similar results and interpretation are obtained for
biaxial tension tests as illustrated on figure 6.8.

In order to check the accuracy of the triaxiality effect, von Mises equivalent
stress versus equivalent strain is plotted for the different loading cases. These
are computed as:

σeq =
(

3
2
σdev : σdev

)1/2

, εeq =
(

2
3
εdev : εdev

)1/2

, (6.25)

where εdev is the deviatoric strain tensor. In FE, these values are computed
from the volume average of the equivalent strain and equivalent stress fields.
The comparison is reported on figure 6.9 for the different loading cases at
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Figure 6.8: Biaxial tension test - cell reinforced by 30% of stiff
elasto-viscoplastic spherical inclusions. Comparison between direct 3D
FE analysis of RVE (points) and affine homogenization formulation
(straight lines).

the highest strain rate (10−3 s−1). Results do not have to be compared in
a quantitative way but only the relative errors at the end of the simulations,
which are at the last FE result of each curve: shear: 6.1%, uniaxial tension:
6.3% and biaxial tension: 3.9%. All these values are quite similar and by no
way a deterioration of the predictions is observed as the level of triaxiality
increases.

Effect of Cyclic loading In this section, strain rate effect is studied over
a complete cycle of uniaxial loading/unloading/compression/reloading. The
maximum macro strain at the end of loading, compression and reloading is ±
5%. On the contrary to homogenization schemes based on the secant formula-
tion, the affine one enables such a non-monotonic loading.

Figure 6.10 reports simulations at two different strain rates over a complete
cycle. The first loading path is exactly the same as the previously studied
monotonic uniaxial loading case. During unloading and reloading, results at
low strain rate of homogenization schemes and FE are almost identical, which
is a pretty impressive result for such a high volume fraction of inclusions (30%).
On the contrary, at high strain rates, the difference already observed at the end
of the first loading path continues to increase during unloading and reloading.
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Figure 6.9: Influence of triaxiality - comparison of various loading tests
(30% of inclusions).

One can observe that this difference does increase only during plastic increments
but not during the elastic transitions.

Per phase analysis Even if a very good accuracy is observed for wide range
of simulations, it has been observed that there is a systematic worsening of the
predictions at high strain rates, the response becoming too soft under these
conditions. Even if this is not a catastrophic effect, it is interesting to go
deeper and understand the reasons of such a behavior. This will be done with
the help of the numerical FE simulations. Effectively, these enable to get helpful
information of the microscopic fields within each constituent of the composite.

A first source of error could come from the adopted homogenization scheme
(Mori-Tanaka). This is known for giving good predictions at low volume frac-
tions of the reinforcement phase but is less satisfying at higher ones. Effectively,
an effect of the volume fraction of particles has been observed (figures 6.6a -
6.6b). However, differences between FE and mean-field predictions are notice-
able only at high volume fractions so that this cannot explain the strain rate
effect.

Another source of error might come from the definition of per phase refer-
ence states for homogenization schemes. In our implementation of the affine
formulation, the reference equivalent stress is evaluated from the average stress
tensor instead of the volume average of the equivalent stress field. Significative
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Figure 6.10: Cyclic uniaxial tension - compression test on a cell rein-
forced by 30% of stiff elasto-viscoplastic spherical inclusions. Compar-
ison between direct 3D FE analysis of RVE and affine homogenization
formulation. Specified strain rates are for the two loading paths while
their opposites are used for unloading.

differences between these two evaluations exist for high levels of heterogeneity
of the fields. This is illustrated on figure 6.11 for the accumulated plasticity for
a cross section of the RVE at the end of one cycle of uniaxial loading. Espe-
cially in the matrix, the non uniformity is evident and is particularly high along
the direction of traction (direction 1) where inclusions are close to each others.
With the help of the local fields obtained by FE, the volumetric cumulative
probability of accumulated plastic strain (volume fraction of a phase where the
local accumulated plastic strain is smaller than a given value) enables to give
a qualitative measure of the heterogeneity level. This is plotted at the end of
the first cycle on figure 6.12a for the matrix and 6.12b for the inclusions. In
both phases, the accumulated plastic strain is lower at high strain rates due
to the stiffer response as the strain rate increases. Also, accumulated plastic
strain is much more homogeneous at high strain rates than at lower ones. This
would suggest that deterioration of the quality of the predictions at high strain
rates is not linked to heterogeneity effects. Since precision is much better in the
matrix, extending the affine formulation by taking into account second-order
moments of the stress tensor would not increase significantly the quality of the
predictions.
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Figure 6.11: Cyclic uniaxial tension - compression test - cell reinforced
by 30% of stiff elasto-viscoplastic spherical inclusions. Contour plot of
the accumulated plastic strain field.
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Figure 6.12: Measurement of the heterogeneity of the accumulated plastic strain
field at the end of one cycle of uniaxial tension-compression.

An analysis of the per phase reference stresses is now performed. For the
affine formulation, these are given from the average stress in the phase. For the
FE simulations, relation (5.60) enables to compute the volume average of the
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ε̇ [s−1] Predictive method p [-] in matrix p [-] in incl.
10−6 FE 0.1892 0.0980

Homogenization 0.1949 0.0653
10−3 FE 0.0823 0.0508

Homogenization 0.0818 0.0394

Table 6.1: Accumulated plastic strain in the matrix and the inclusions at low
and high strain rates obtained by homogenization and FE (volume average of
the local field) at the end of one cycle.

equivalent stress in matrix. Similarly, this can be computed in the inclusions.
These are plotted on figure 6.13 for a matrix reinforced by 30% of inclusions.
This shows that the reference stress in the inclusions is underestimated while the
ones in the matrix are acceptable. This observation is even more pronounced at
high strain rates (figure 6.13b). Consequently, the accumulated plastic strain in
the spherical inclusions given by the affine model is also underestimated (table
6.1). This result is surprising because it should lead to an overestimation of the
stiffness of inclusions, which should lead to the same result for the composite.
However, the effective composite behavior given by the affine model follows
the opposite trend, so the differences between the model and the simulations
cannot be attributed to this factor.

As explained in sections 5.3.1 and 6.3.3, a general implementation of the
incremental and affine formulation gives too stiff macroscopic predictions. In
order to solve this problem, various methods to reduce the matrix stiffness have
been proposed (5.3.6). The one adopted for the affine formulation was to use an
isotropic extraction of the matrix modulus for the computation of the Eshelby’s
tensor only while all the other computations are made with the anisotropic ten-
sor. This technique is denoted EshIso in the following. Other stiffness reduc-
tion methods which gave satisfying results in elasto-plasticity (section 5.4.1)
are to use this isotropic tensor for the computation of the Hill’s tensor (PIso)
only or for all the computations (AllIso). Such isotropisation techniques might
have a considerable impact on the final prediction. Effective responses of these
three methods are reported on figure 6.14a (volume fraction: 30%, strain rate:
10−3 s−1). This shows that the adopted isotropisation (EshIso) underestimates
the macroscopic predictions (as observed on figure (6.6b)) and the two other
methods (PIso and AllIso) give slightly better results. The differences in the
predictions are closely related to the evaluation of the reference stress in each
phase as illustrated on figures 6.14b-6.14c. Very good accuracy of the pre-
dictions in the matrix are preserved whatever isotropisation technique is used
while this is strongly improved in the inclusions by using either PIso or All Iso.
Once again, this shows the crucial issue of a good choice of the affine modulus
(isotropic or not) of the matrix to obtain accurate predictions of the effective
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Figure 6.13: Evolution of the von Mises equivalent stress in both phases.

properties.
Finally, it should be noted that the collocation points needed for the numeri-

cal inversion of the Laplace transform in the simulations presented in figure 6.14
are slightly different than those used in all previous simulations in this chapter
in order to better take into account the interaction law. This numerical modifi-
cation (which only has a small influence if the isotropic part of the affine moduli
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is only used to compute Eshelby’s tensor) is necessary to obtain accurate results
when Hill’s tensor is computed with these isotropic moduli. Unfortunately, the
mixture of very large times and very low collocation points leads to numerical
problems at low strain rates and the non-linear localization tensorial equation
(6.22) cannot be solved. Thus, for practical purposes, the affine homogeniza-
tion model based on the isotropic projection of the affine modulus to compute
only Eshelby’s tensor has to be used to simulate the mechanical response of
elasto-viscoplastic composites.

6.5 Conclusions

This chapter dealt with the affine formulation in the context of elasto-visco-
plasticity. This formulation linearizes each phase’s elasto-viscoplastic con-
stitutive model into a fictitious linear thermo-elastic relation defined in the
Laplace-Carson domain. At this stage, classical homogenization schemes valid
in thermo-elasticity can be applied, from which the macroscopic response can be
computed at the end of the time step. Our implementation includes a complete
treatment of the internal variables.

The method enables to deal with various loadings, including cyclic, shear
and relaxation tests. Influence of the shape of the reinforcements, the way
to compute the macroscopic response and the influence of the homogenization
scheme were also presented. Other simulations illustrate the viscous effects and
when these become negligible, the elasto-plastic response is well retrieved.

The accuracy of the affine homogenization method was assessed by compar-
ison with results obtained by the numerical simulation of a three-dimensional
representative volume element of the composite microstructure. Macroscopic
predictions of the affine homogenization model were excellent in composites
with different volume fraction of spheres, subjected to different loading condi-
tions as well as to monotonic and cyclic deformation, particularly at low strain
rates. However, accuracy of the predictions decreased systematically as the
strain rate increased, the homogenization scheme giving a slightly softer re-
sponse than the numerical simulations. The detailed information of the stress
and strain microfields given by the finite element simulations was used to an-
alyze the source of this error, which was traced to the use of an isotropic
extraction of the matrix affine modulus to compute Eshelby’s tensor. It was
found that better predictions at high strain rates could be obtained if the same
isotropic extraction was used to determine Hill’s tensor (instead of Eshelby’s
tensor) but the numerical problems associated with the numerical inversion of
the Laplace-Carson transform did not make advisable to use this latter ap-
proach.
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Figure 6.14: Comparison of various isotropisation methods.




