Spivakovskaya, Darya
Heemink, Arnold W.
Deleersnijder, Eric
[UCL]
To efficiently simulate the advection-diffusion processes along and across density surfaces, we need to deal with a diffusivity tensor containing off-diagonal elements (Redi, J Phys Oceanogr, 12:1154-1158, 1982). In the present paper, the Lagrangian model, in case of a space-varying diffusivity tensor, is developed. This random walk model is applied for two idealized test cases for which the analytical solutions are known. Results of the testing show that the Lagrangian approach provides accurate and effective solutions of advection-diffusion problems for general diffusivity tensor.
- Arnold L (1974) Stochastic differential equations. Wiley, New York
- Beckers JM, Burchard H, Campin JM, Deleersnijder E, Mathieu PP (1998) Another reason why simple discretizations of rotated diffusion operators cause problems in ocean models: comments on “Isoneutral diffusion in a z-coordinate ocean model”. J Phys Oceanogr 28:1552–1559
- Beckers JM, Burchard H, Deleersnijder E, Mathieu PP (2000) Numerical discretization of rotated diffusion operators in ocean models. Mon Weather Rev 128:2711–2733
- Bolin B, Rodhe H (1973) A note on concepts of age distribution and transit time in natural reservoirs. Tellus 25:58–62
- Burchard H (2002) Applied turbulence modelling in marine waters. Lecture notes in earth sciences, vol 100. Springer, Berlin Heidelberg New York
- Celia MA, Russell TF, Herrera I, Ewing RE (1990) An Eulerian–Lagrangian localized adjoint method for an advection-diffusion equation. Adv Water Resour 13(4):187–206
- Cox MD (1987) Isopycnal diffusion in a z-coordinate model. Ocean Model 74:1–5
- Deleersnijder E, Camin JM, Delhez EJM (2001) The concept of age in marine modelling. I. Theory and preliminary model results. J Mar Syst 28:229–267
- Deleersnijder E, Beckers JM, Delhez EJM (2006a) The residence time of settling in the surface mixed layer. Environ Fluid Mech 6(1):25–42
- Deleersnijder E, Beckers JM, Delhez EJM (2006b) On the behaviour of the residence time at bottom of the mixed layer. Environ Fluid Mech 6:541–547
- Delhez EJM, Heemink AW, Deleersnijder E (2004) Residence time in a semi-enclosed domain from the solution of an adjoint problem. Estuar Coast Shelf Sci 61:691–702
- de Haan P (1999) On the use of density kernels for concentration estimations within particles and puff dispersion models. Atmos Environ 33:2007–2021
- Dimou KN, Adams EE (1993) A random-walk, particles tracking models for well-mixed estuaries and coastal waters. Estuar Coast Shelf Sci 37:99–110
- Jazwinski AW (1970) Stochastic differential processes and filtering theory. Academic, New York
- Jones MC (1993) Simple boundary correction for kernel density estimation. Stat Comput 3:135–146
- Heemink AW (1990) Stochastic modeling of dispersion in shallow water. Stoch Hydrol Hydraul 4:161–174
- Kinzelbach Wolfgang, The Random Walk Method in Pollutant Transport Simulation, Groundwater Flow and Quality Modelling (1988) ISBN:9789401078016 p.227-245, 10.1007/978-94-009-2889-3_15
- Kloeden Peter E., Platen Eckhard, Numerical Solution of Stochastic Differential Equations, ISBN:9783642081071, 10.1007/978-3-662-12616-5
- Konikow LF, Bredehoeft JD (1978) Computer model of two-dimensional solute transport and dispersion in ground water. Techniques of water-resources investigations of the US Geological Survey, chapter C2, book 7, US Government Printing Office, Washington DC
- LaBolle EM, Fogg GE, Tompson AFB (1996) Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods. Water Resour Res 32(3):583–593
- Mathieu PP, Deleersnijder E (1998) What is wrong with isopycnal diffusion in world ocean models? Appl Math Model 22:367–378
- Mathieu PP, Deleersnijder E, Beckers JM (1999) Accuracy and stability of the discretised isopycnal-mixing equation. Appl Math Lett 12:81–88
- Milstein Grigori N., Tretyakov Michael V., Stochastic Numerics for Mathematical Physics, ISBN:9783642059308, 10.1007/978-3-662-10063-9
- MÜLLER HANS-GEORG, Smooth optimum kernel estimators near endpoints, 10.1093/biomet/78.3.521
- Proehl JA, Lynch DE, McGillicuddy Jr DJ, Ledwell JR (2005) Modelling turbulent dispersion of the North Flank of Georges Bank using Lagrangian methods. Cont Shelf Res 25:875–900
- Øksendal Bernt, Stochastic Differential Equations, ISBN:9783540152927, 10.1007/978-3-662-13050-6
- Redi MH (1982) Oceanic isopycnal mixing by coordinate rotation. J Phys Oceanogr 12:1154–1158
- Riddle AM (1998) The specification of mixing in random walk models for dispersion in the sea. Cont Shelf Res 18:441–456
- Sawford B (2001) Turbulent relative dispersion. Annu Rev Fluid Mech 33:289–317
- Schoenmakers JGM, Heemink AW (1997) Fast valuation of financial derivatives. J Comput Financ 1:47–62
- Silverman B. W., Density Estimation for Statistics and Data Analysis, ISBN:9780412246203, 10.1007/978-1-4899-3324-9
- Spivakovskaya D, Heemink AW, Milstein GN, Schoenmakers JGM (2005) Simulation of the transport of particles in coastal waters using forward and reverse time diffusion. Adv Water Resour 28:927–938
- Stijnen JW (2002) Numerical methods for stochastic environmental models. Ph.D. dissertation, Delft University of Technology, The Netherlands
- Sun NZ (1999) A finite cell method for simulating the mass transport process in porous media. Water Resour Res 35(12):3649–3662
- Talay D, Tubaro L (1991) Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch Anal Appl 8(4):485–509
- Thomson DJ (1987) Criteria for the selection of stochastic models of particles trajectories in turbulent flow. J Fluid Mech 180:529–556
- Uffink Gerard J. M., Modeling of Solute Transport with the Random Walk Method, Groundwater Flow and Quality Modelling (1988) ISBN:9789401078016 p.247-265, 10.1007/978-94-009-2889-3_16
- Umlauf L, Burchard H (2005) Second order turbulence closure models for geophysical boundary layers. A review of recent work. Cont Shelf Res 25:795–827
- van Stijn ThL, Praagman N, van Eijkeren J (1987) Positive advection schemes for environmental studies. In: Taylor C et al. (eds) Numerical methods in laminar and turbulent flow. Pineridge, Swansea, pp 1256–1267
- Wand M. P., Jones M. C., Kernel Smoothing, ISBN:9780412552700, 10.1007/978-1-4899-4493-1
- Yang Y, Wilson LT, Makela ME, Marchetti MA (1998) Accuracy of numerical methods for solving the advection-diffusion equation as applied to spore and insect dispersal. Ecol Model 109:1–24
- Yeh GT (1990) A Lagrangian–Eulerian method with zoomable hidden fine-mesh approach to solving advection-dispersion equations. Water Resour Res 26(6):1133–1144
- Zhang R, Huang K, van Geruchten MT (1993) An efficient Eulerian–Lagrangian method for solving solute transport problems in steady and transient flow fields. Water Resour Res 28(12):4131–4138
- Zheng C, Bennett GD (2002) Applied contaminant transport modeling. Wiley, New York
- Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide, contract report SERDP-99-1. US Army engineer research and development center, Vicksburg, MS
- Zimmermann S, Koumoutsakos P, Kinzelbach W (2001) Simulation of pollutant transport using a particle method. J Comput Phys 173(1):322–347
Bibliographic reference |
Spivakovskaya, Darya ; Heemink, Arnold W. ; Deleersnijder, Eric. Lagrangian modelling of multi-dimensional advection-diffusion with space-varying diffusivities: theory and idealized test cases. In: Ocean Dynamics : theoretical, computational oceanography and monitoring, Vol. 57, no. 3, p. 189-203 (2007) |
Permanent URL |
http://hdl.handle.net/2078.1/37525 |