User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Tree species impact the terrestrial cycle of silicon through various uptakes

  1. Ranger J (ed), Andreux F (ed), Bienaime S, Berthelin J, Bonnaud P, Boudot JP, Brechet C, Buee M, Calmet JP, Chaussod R, Gelhaye D, Gelhaye L, Gerard F, Jaffrain J, Lejon D, Le Tacon F, Leveque J, MauriceJP, Merlet D, Moukoumi J, Munier-Lamy C, Nourrisson G, Pollier B, Ranjard L, SimonssonM, Turpault MP, Vairelles D, Zeller B (2004) Effet des substitutions d’essence sur le fonctionnement organo-minéral de l’écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif experimental de Breuil – Morvan). Rapport final du contrat INRA-GIP Ecofor 2001-24, n°INRA 1502A Nancy: INRA-Champenoux, Biogéochimie des écosystèmes forestiers, p 202
  2. Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682
  3. Barré P, Berger G, Velde B (2009) How element translocation by plants may stabilize illitic clays in the surface of temperate soils. Geoderma 151:22–30
  4. Bartoli F (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Environ Biogeochem Ecol Bull 35:469–476
  5. BARTOLI F., Crystallochemistry and surface properties of biogenic opal, 10.1111/j.1365-2389.1985.tb00340.x
  6. Bartoli F, Souchier B (1978) Cycle et rôle du silicium d’origine végétale dans les écosystèmes forestiers tempérés. Ann Sci For 35:187–202
  7. Bartoli F, Wilding LP (1980) Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Sci Soc Am J 44:873–878
  8. Bartoli F, Burtin G, Herbillon AJ (1991) Disaggregation and clay dispersion of oxisols: Na resin, a recommended methodology. Geoderma 49:301–317
  9. Berner RA (1997) The rise of plants and their effect on weathering and atmospheric CO2. Science 276:544
  10. Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochem Cycles 20:GB3023
  11. Bonneau M, Brêthes A, Lacaze JF, Lelong F, Levy G, Nys C, Souchier B (1977) Modification de la fertilité des sols sous boisement artificiel de résineux purs. C.R. Fin d’Etude D.G.R.S.T., Nancy-Champenoux, p 88
  12. Breda N, Soudani K, Bergonzini JC (2002) Mesure de l’indice foliaire en forêt. Doc GIP ECOFOR Paris Laballery, Clamecy imp, p 157
  13. Brethes A, Brun JJ, Jabiol B, Ponge J, Toutain F (1995) Classification of forest humus forms: a French proposal. Ann Sci For 52:535–546
  14. Carnelli AL, Madella M, Theurillat JP (2001) Biogenic silica production in selected alpine plant species and plant communities. Ann Bot 87:425–434
  15. Chao TT, Sanzolone RF (1992) Decomposition techniques. J Geochem Explor 44:65–106
  16. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16(4):1121
  17. Conley DJ, Likens GE, Buso DC, Saccone L, Bailey SW, Johnson CE (2008) Deforestation causes increased dissolved silicate losses in the Hubbard Brook Epxerimental Forest. Global Change Biol 14:1–7
  18. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731
  19. Drees LR, Wilding LP, Smeck NE, Senkayi AL (1989) Silica in soils: quartz and disorders polymorphs. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 914–974
  20. Drénou C (2006) Les racines, face cache des arbres. IDF, Paris
  21. Drever JI (1994) The effect of land plants on weathering rates of silicates minerals. Geochim Cosmochim Acta 58:2325–2332
  22. Epstein E (1999) Silicon. Annu Rev Plant Phys 50:641–664
  23. Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Inorg Biochem 69:139–144
  24. Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127:71–79
  25. Fitzapatrick RW, Chittleborough DJ (2002) Titanium and Zirconium minerals. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Madison, pp 667–690
  26. Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951
  27. Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206
  28. Fulweiler RW, Nixon SW (2005) Terrestrial vegetation and the seasonal cycle of dissolved silica in a Southern New England coastal river. Biogeochemistry 74(1):115–130
  29. Gaillardet J, Dupre B, Allegre CJ (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63(23–24):4037–4051
  30. Garvin CJ (2006) An exploratory study of the terrestrial biogeochemical silicon cycle at a forested watershed in northern Vermon. Dissertation, Cornell University
  31. Geis JW (1973) Biogenic silica in selected species of deciduous angiosperms. Soil Sci 116(2):113–119
  32. Gérard F, François M, Ranger J (2002) Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhône, France). Geoderma 107:197–226
  33. Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72(3):741–758
  34. Giesler R, Ilvesniemi H, Nyberg L, van Hees P, Starr M, Bishop K, Kareinen T, Lundström US (2000) Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. Geoderma 94:149–263
  35. Granier A, Bréda N, Biron P, Villette S (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283
  36. Henriet C, Draye X, Dorel M, Bodarwe L, Delvaux B (2008a) Leaf silicon content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe. Plant Soil 313:71–82
  37. Henriet C, De Jaeger N, Dorel M, Opfergelt S, Delvaux B (2008b) The reserve of weatherable primary silicates impacts the accumulation of biogenic silicon in volcanic ash soils. Biogeochemistry 90:209–223
  38. Herbauts J, Dehalu FA, Gruber W (1994) Quantitative-determination of plant opal content in soils, using a combined method of heavy liquid separation and alkali dissolution. Eur J Soil Sci 45:379–385
  39. Hodson MJ, Sangster AG (1999) Aluminium/silicon interactions in conifers. J Inorg Biochem 76:89–98
  40. Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046
  41. IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edn. World soil resources reports no. 103. FAO, Rome
  42. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411
  43. Jaffrain J, Gérard F, Meyer M, Ranger J (2007) Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry. Soil Sci Soc Am J 71:1851–1855
  44. Johnson-Maynard JL, Graham RC, Shouse PJ, Quideau SA (2005) Base cation and silicon biogeochemistry under pine and scrub oak monocultures: implications for weathering rates. Geoderma 126:353–365
  45. Jones LHP, Handreck KA (1965) Studies of silica in the oat plant. III. Uptake of silica from soils by plant. Plant Soil 23(1):79–96
  46. Kelly EF (1990) Methods for extracting opal phytoliths from soil and plant material. In: Workshop on biotic indicators of global change, Seatlle, Washington
  47. Kelly EF, Chadwick OA, Hilinski TE (1998) The effect of plants on mineral weathering. Biogeochemistry 42:21–53
  48. Kleber M, Scwendenmann L, Veldkamp E, Röbner J, Jahn R (2007) Halloysite versus gibbsite: silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma 138:1–11
  49. Klein RL, Geis JW (1978) Biogenic silica in the pinaceae. Soil Sci 126(3):145–156
  50. Levrel G, Ranger J (2006) Effet des substitutions d’essences forestières sur les propriétés physiques d’un Alocrisol (site expérimental de la forêt de Breuil-Chenue/Morvan). Etude et gestion des sols 13:71–88
  51. Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428
  52. Likens Gene E., Bormann F. Herbert, Pierce Robert S., Eaton John S., Johnson Noye M., Biogeochemistry of a Forested Ecosystem, ISBN:9780387902258, 10.1007/978-1-4615-9993-7
  53. Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Planet Sci 29:135–163
  54. Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science 260:521–523
  55. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam
  56. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397
  57. Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot 96:253–260
  58. Markewitz D, Richter D (1998) The bio in aluminium and silicon geochemistry. Biogeochemistry 42:235–252
  59. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London
  60. Mehra OP, Jackson ML (1960) Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. In: Proceeding of 7th national conference clays clay minerals, Washington, pp 317–327
  61. Meunier JD, Colin F, Alarcon C (1999) Biogenic silica storage in soils. Geology 27:835–838
  62. Moulton KL, West J, Berner RA (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300:539–570
  63. Opfergelt S, Delvaux B, André L, Cardinal D (2008) Plant silicon isotopic signature might reflect soil weathering degree. Biogeochemistry 91:163–175
  64. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644
  65. Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands: a review. Forest Ecol Manag 175:253–273
  66. Rai D, Kittrick JA (1989) Mineral equilibria and the soil system. In: Dixon J, Weed S (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 161–198
  67. Ranger J, Bonneau M (1984) Effets prévisibles de l’intensification de la production et des récoltes sur la fertilité des sols de forêt. Le cycle biologique en forêt. Rev For Fr XXXVI:93–122
  68. Ranger J, Marques R, Colin-Belgrand M, Flammang N, Gelhaye D (1995) The dynamics of biomass and nutrient accumulation in a Douglas-fir (Pseudotsuga menziesii Franco) stand studied using a chronosequence approach. For Ecol Manag 72:167–183
  69. Ranger J, Marques R, Colin-Belgrand M (1997) Nutrients dynamics during the development of a Douglas fir (Pseudotsuga menziesii Mirb.) stand. Acta Oecol 18:73–91
  70. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207
  71. Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6(3):268–272
  72. Rouiller J, Burtin G, Souchier B (1972) La dispersion des sols dans l’analyse granulométrique. Méthode utilisant les résines échangeuses d’ions. ENSAIA Nancy 14:194–205
  73. Rustad LindseyE., Cronan ChristopherS., Biogeochemical controls on aluminum chemistry in the O horizon of a red spruce (Picea rubens Sarg.) stand in central Maine, USA, 10.1007/bf00000228
  74. Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459
  75. Saint-André L, Thongo M’Bou A, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte Ph, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manag 205:199–214
  76. Sicard C., Saint-Andre L., Gelhaye D., Ranger J., Effect of initial fertilisation on biomass and nutrient contentof Norway spruce and Douglas-fir plantations at the same site, 10.1007/s00468-005-0030-6
  77. Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32
  78. Smithson F (1956) Plant opal in soil. Nature 178:107
  79. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329
  80. Street-Perrott FA, Barker P (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Proc Land 33:1436–1457
  81. Tréguer P, Nelson DM, Van Bennekom AJ, De Master DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379
  82. Volk T., Feedbacks between weathering and atmospheric CO 2 over the last 100 million years, 10.2475/ajs.287.8.763
  83. Watteau F, Villemin G (2001) Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur J Soil Sci 52:385–396
  84. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232
  85. Wilding LP, Drees LR (1974) Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils. Clay Clay Miner 22:295–306
  86. Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF (2005) Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Island. Geochim Cosmochim Acta 69:4597–4610
Bibliographic reference Cornélis, Jean-Thomas ; Delvaux, Bruno ; Ranger, J. ; Iserentant, Anne. Tree species impact the terrestrial cycle of silicon through various uptakes. In: Biogeochemistry : an international journal, Vol. 97, no. 2-3, p. 231-245 (2010)
Permanent URL http://hdl.handle.net/2078.1/34207