
AMERICAN OPTION PRICING WITH
MODEL CONSTRAINED GAUSSIAN
PROCESS REGRESSIONS

Donatien Hainaut

LIDAM Discussion Paper ISBA
2024 / 23



ISBA
Voie du Roman Pays 20 - L1.04.01 

B-1348 Louvain-la-Neuve

Email : lidam-library@uclouvain.be 

https://uclouvain.be/en/research-institutes/lidam/isba/publication.html

https://uclouvain.be/en/research-institutes/lidam/lfin/publications.html


American option pricing with model
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Donatien Hainaut*
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December 11, 2024

This article introduces a novel method based on Gaussian process regression for
pricing American options. The variational partial di�erential equation (PDE) gov-
erning option prices is converted into a non-linear penalized Feynman-Kac equation
(PFK). We propose an iterative algorithm to manage the non-linearity of the PFK
operator. We sample state variables in the PDE's inner domain and on the terminal
boundary. At each step, we �t a constrained regression function approximating the
option price. This function matches the option payo�s on the boundary sample while
satisfying the PFK PDE on the inner sample. The non-linear term in this PDE is
frozen and valued with the price estimate from the previous iteration. We adopt a
Bayesian framework in which payo�s and the value of the FK PDE in the bound-
ary and inner samples are noised. Assuming the regression function is a Gaussian
process, we �nd a closed-form approximation of option prices. In the numerical illus-
tration, we evaluate American put options in the Heston model and in the two-factor
Hull-White model.

Keywords: Gaussian process regression, American option pricing, Feynman-Kac
equation, Heston model

1 Introduction

This work introduces a novel iterative algorithm that relies on constrained Gaussian process
regressions (CGPR) for pricing American options. We demonstrate that this method is an accu-
rate and numerically e�cient alternative to existing approaches, such as the least squares Monte
Carlo method. Its methodological foundation is Gaussian process regression.

Gaussian processes are used for regressing a response y, on a vector of covariates x, in various
scienti�c �elds. The reader may, for instance refer to Rasmussen and Williams (2006, chapter
6) or to (2012, chapter 15) for an introduction. The Gaussian process regression is a Bayesian
method in which we encode our belief that responses y are drawn from a Gaussian process (GP),
with zero mean and covariance function k(x,x′), called kernel, prior to taking into account ob-
servations. The regression function is the a-posteriori expectation of this GP, conditioned by
observations.

In �nancial econometrics, Gaussian process regressions are used for time-series forecasting, as
*Corresponding author. Postal address: Voie du Roman Pays 20, 1348 Louvain-la-Neuve (Belgium). E-mail to:
donatien.hainaut(at)uclouvain.be
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in Wu et al. (2014), Han et al. (2016), or Petelin et al. (2019). In quantitative �nance, GPs
serve to regress derivative or asset prices on market state variables, as in De Spiegeleer et al.
(2018), Goudenège et al. (2021). Crépey and Dixon (2019) use a Gaussian process regression for
computing credit valuation adjustement (CVA) in a similar manner to Andersson and Oosterlee
(2021) who instead use a neural network regression.

In a similar manner to Physics-Inspired Neural Networks (PINNs), a Gaussian process regres-
sion can be constrained by a partial di�erential equation (PDE). This PDE usually represents
the physical law governing the experiment for which responses are measured. The literature on
constrained Gaussian process regression (CGPR) is vast, and we refer the reader to Swiler et
al. (2020) for a survey. Among the useful references therein, Graepel (2003) uses a CGPR and
sampling to solve PDEs with noisy responses. Calderhead et al. (2009) propose a method for
accelerating the sampling to solve nonlinear ordinary di�erential equations. Nguyen and Peraire
(2015) develop procedures for handling responses of the PDE solution, given in the form of lin-
ear functions of state variables. Raissi et al. (2017) adapt the CGPR for discovering governing
equations with parametric linear operators. Pförtner et al. (2022) use a CGPR for solving weak
and strong formulations of linear PDEs.

The CGPR is a powerful tool that is underexploited in economics and �nance. In a recent
article, Hainaut and Vrins (2024) adapt it for pricing European options. In an arbitrage-free
market, derivative prices are governed by the Feynman-Kac (FK) equation, which is a PDE of
the form Lxg = z(x) where g, Lx and x are, respectively, the value, a linear di�erential operator
and a vector of risk processes. The boundary constraint is g(x) = h(x), where h(x) is the deriva-
tive payo� at expiry. To solve this, Hainaut and Vrins (2024) �t a constrained regression on two
samples of points, X̊ and X̄, respectively in the inner and boundary domains of the PDE. In
this setting, the price is a regression function g(x) with g(x) = h(x) for all x ∈ X̄,and a PDE
constraint, Lxĝ = z(x) for all x ∈ X̊. Hainaut and Vrins (2024) propose a regression function
based on a GP regression and illustrate its e�ciency for pricing options in the Heston model and
basket options in a Black-Scholes market. There is a clear parallel with pricing based on PINNs,
in which the CGPR is replaced by a neural network. For examples of pricing with PINNs, we
refer e.g. to Sirignano and Spiliopoulos (2018), Al-Aradi et al. (2022), Glau and Wunderlich
(2022), Hainaut (2024) and Hainaut and Casas (2024). The main drawback of PINNs compared
to CGPR is that they rely on numerical di�erentiation for solving the FK equation.

This article extends the method of Hainaut and Vrins (2024) for pricing American options.
These derivatives satisfy a variational inequality that is converted into a penalized Feynman-Kac
(PFK) equation, as suggested in Zvan et al. (1998) or Forsyth and Vetzal (2002). The di�erential
operator involved in the PFK equation is non-linear, and therefore we cannot directly apply the
CGPR. To remedy this issue, we propose an iterative algorithm using a local linear version of
the PFK equation. At each epoch, the option price is approximated by a CGPR. We show that
the algorithm converges under mild conditions.

The paper is organized as follows. The next section presents the general valuation framework and
the conversion of the variational equation into a penalized FK equation. We prove that under
mild conditions, the solution of this equation can be found by iteratively solving intermediate
linear PDEs. Section 3 explains how these intermediate PDEs are solved with a constrained
Gaussian process regression. In Section 4, we apply our approach to pricing American put op-
tions in the Heston model. As a benchmark, we use the least squares Monte Carlo method. In
the next section, we evaluate American puts on zero-coupon bonds in the two-factor Hull-White
model.
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2 Valuation by iterative approach

We consider a �nancial market ruled by p − 1 risk processes, stored in a vector (yt)t≥0 =((
y
(1)
t , ..., y

(p−1)
t

))
t≥0

. These processes are for instance, stock prices, an interest rate or a

stochastic variance. They are de�ned on a complete probability space, Ω, endowed with a
�ltration F = (Ft)t≥0 and a risk neutral measure, Q. The risk-free rate, denoted by rt = r(t,yt),
is a function of state variables and time. We assume that risk processes are ruled by a system of
stochastic di�erential equation (SDE):

dyt = µy(t,yt)dt+Σy(t,yt)dBt , (1)

where B = (Bt)t≥0 is a (p − 1)-vector of independent Brownian motions, µy(.) is a vector of
dimension and Σy(.) is a (p− 1)× (p− 1) matrix such that

E
(∫ t

0
µy(s,ys) ds

)
≤ ∞ , ∀ t < ∞ ,

E
(∫ t

0
Σy(s,ys)Σy(s,ys)

⊤ ds

)
≤ ∞ , ∀ t < ∞

where E is the expectation under Q. We aim to evaluate an American option expiring at time
T with a payo� h(t,yt), for t ∈ [0, T ]. We denote the risk-free rate by r(t,yt).

The price of this derivative at any time t ≤ T is a function of risk processes, i.e., f (t,yt)
where f is referred to as the pricing function, f(t,yt). If the market is arbitrage-free, f (t,yt) is
equal to the expected discounted payo�:

f (t,yt) = E
(
e−

∫ τ∧T
t r(u,yu)du h(τ ∧ T,yτ∧T ) | Ft

)
, (2)

where τ is a Ft-adapted stopping time de�ned by:

τ = inf{s ≥ 0 |h(s,ys) ≥ f (s,ys)} .

We denote by X = [0, T ]×Rp−1, the domain on which is de�ned the pricing function f . The inner
and terminal boundary domains are respectively X̊ = [0, T ) × Rp−1 , X̄ = {(T,y) |y ∈ Rp−1}
and are such X = X̊ ∪ X̄ . The gradient and the Hessian of f(.) with respect to y are noted ∇yf
and Hy(f). To lighten further developments, we adopt the notation x = (t,y) for the p−vector
of time and risk factors. In absence of arbitrage, the price of an American option is solution of
a variational equation involving the following linear1 di�erential operator

Lx· = ∂t · −r(x) ·+µy(x)
⊤∇y ·+1

2
tr
(
Σy(x)Σy(x)

⊤Hy·
)
. (3)

Using standard arguments, we can prove that f(x), the derivative value, is solution of the
variational equation: 

Lxf(x) (h(x)− f(x)) = 0 x ∈ X̊ ,

h(x) ≤ f(x) x ∈ X̊ ,

Lxf(x) ≤ 0 x ∈ X̊ ,

f(x) = h(x) x ∈ X̄ .

(4)

Instead of solving this variational inequality, we propose a penalty approximation as described
in Paragraphs 4.5.4 and 7.2 of Seydel (2017). We also refer the reader to Zvan et al. (1998) or

1Lx is linear if Lx(g
(1)(x) + g(2)(x)) = Lxg

(1)(x) + Lxg
(2)(x).
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Forsyth and Vetzal (2002) for a detailed analysis of this method. We set a penalty weight ξ > 0
and consider a non-linear PDE of the form:{

Lxfξ(x) + ξ (h(x)− fξ(x))+ = 0 x ∈ X̊
fξ(x) = h(x) x ∈ X̄

. (5)

We call this equation the penalized Feynman-Kac (PFK) equation. If h(x) ≥ fξ(x) for x ∈ X ,
from Eq. (5), we infer that Lxfξ(x) ≤ 0. If h(x) < fξ(x) then (h(x)− fξ(x))+ = 0 and from
Eq. (5), Lxfξ(x) = 0.

The left side of Eq. (5) is a non-linear operator and therefore we cannot directly apply the
constrained Gaussian process regression (CGPR) proposed by Hainaut and Vrins (2024) for
solving the PFK equation. Instead, we develop an iterative procedure based on intermediate
linear problems and show the convergence. Let us denote by f

(u−1)
ξ (x), the approximated Amer-

ican option price after u − 1 iterations, with u ∈ N. At the uth step, f (u−1)
ξ (x) is obtained by

solving the following intermediate PFK (IPFK) equation:{
Lxf

(u)
ξ (x) = z(u−1)(x) x ∈ X̊

f
(u)
ξ (x) = h(x) x ∈ X̄

, (6)

where z(u)(x) are updated as follows:

z(u)(x) = z(u−1)(x) + θ

[
−ξ
(
h(x)− f

(u)
ξ (x)

)
+
− z(u−1)(x)

]
. (7)

We initialize the loop with z(0)(x) = 0. The parameter θ ∈ (0, 1) is a learning rate tuning
the convergence of the process. When θ = 1, we retrieve the classical penalty approach. The
next proposition states that f (u)

ξ converges toward the solution of the PFK equation under mild
conditions.

Proposition 1. If f
(u)
ξ (x) admits a lower bound, f

(u)
ξ (x) converges toward fξ(x).

Proof. By induction and as z(0) = 0, we �nd that z(u)(x) is a negative weighted sum of positive
di�erences between the payo� and the approximated price computed at previous iterations:

z(u)(x) = −θξ

u−1∑
l=0

(1− θ)l
(
h(x)− f

(u−l)
ξ (x)

)
+
.

By construction, the di�erence between Lxf
(u+1)
ξ (x) and Lxf

(u)
ξ (x) is equal to

Lx

(
f
(u+1)
ξ (x)− f

(u)
ξ (x)

)
= z(u)(x)− z(u−1)(x)

= θξ

(
u−2∑
l=0

(1− θ)l
(
h(x)− f

(u−l−1)
ξ (x)

)
+
−

u−1∑
l=0

(1− θ)l
(
h(x)− f

(u−l)
ξ (x)

)
+

)
.

Under the assumption that f (u)
ξ (x) is lower bounded, ∃ b ∈ R+ such that

(
h(x)− f

(u−l−1)
ξ (x)

)
+
<

b . ∣∣∣Lx

(
f
(u+1)
ξ (x)− f

(u)
ξ (x)

)∣∣∣ ≤ θξ

(
u−2∑
l=0

(1− θ)l −
u−1∑
l=0

(1− θ)l
)
b

= θξ (1− θ)u−1 b .
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Therefore, the limit when u → ∞ is null:

lim
u→∞

∣∣∣Lx

(
f
(u+1)
ξ (x)− f

(u)
ξ (x)

)∣∣∣ = 0 .

Since f
(u+1)
ξ (x) and f

(u)
ξ (x) have the same terminal conditions, we infer that limu→∞ f

(u)
ξ (x) =

f
(∞)
ξ (x). As f (u)

ξ (x) admits a limit, z(u)(x) also converges:

z(∞)(x) = lim
u→∞

z(u)(x) = −θξ lim
u→∞

(
u−1∑
l=0

(1− θ)l
(
h(x)− f

(u−l)
ξ (x)

)
+

)

= −θξ
(
h(x)− f

(∞)
ξ (x)

)
+

(
lim
u→∞

u−1∑
l=0

(1− θ)l
)

= −ξ
(
h(x)− f

(∞)
ξ (x)

)
+
.

Therefore, the limit f (∞)
ξ (x) solves the penalized FK Eq. (6) and is then equal to fξ(x).

The condition that f (u)
ξ (x) is lower bounded is in practice satis�ed (as it is a positive price).

We will apply this iterative procedure and solves the IPFK equation with a constrained Gaussian
process regression (CGPR).

3 The constrained Gaussian process regression (CGPR)

In this section, we �nd an approximated solution to the IPFK Eq. (6) by estimating a con-
strained Gaussian process regression. We start by brie�y reviewing the general principles of the
CGPR.

We consider a series of Gaussian processes {g(u)(x) , x ∈ X}, where u ∈ N. By de�nition,
a Gaussian process is a collection such that for any d ∈ N and x1, . . . ,xd ∈ X , the vector(
g(u)(x1), . . . , g

(u)(xd)
)
is a multivariate Gaussian random variable. Without loss of generality,

the mean is set to zero and the covariance function is de�ned by a kernel k(x,x′):

C
(
g(u)(x), g(u)(x′)

)
= k(x,x

′
) ∀(x,x′

) ∈ X × X .

A necessary and su�cient condition for the function k : X × X → R to be a valid covariance
kernel is that the d×dmatrix of (k(xi,xj))i,j=1,...,d is positive semide�nite for all possible samples.

The CGPR provides an approximation f̂
(u)
ξ (x), of the pricing function f

(u)
ξ (x) : X → R, af-

ter u iterations. We will see that f̂ (u)
ξ (x) is de�ned as the a posteriori conditional expectation

of g(u)(x). Let us detail this. In the CGPR framework, the functional form of f (u)
ξ (x) is un-

known, but its values are observed at certain points of X̄ and are ruled by the IPFK Eq. (6)
at other points of X̊ . For this reason, we consider two random samples. We store in a �rst set,
d combinations of risk factors at expiry T , denoted as X̄ = {x̄i}i=1,...,d, and the corresponding
noised payo�s, h = (hi)i=1,...,d. The x̄i's are randomly sampled from X̄ while hi = h(x̄i) + ϵ̄

are option payo�s, noised by ϵ̄ ∼ N (0, σ∗2). The second training set contains m combinations of
state variables before expiry, denoted as X̊ = {x̊i}i=1,...,m with x̊i ∈ X̊ . The noised values of the

IFPK PDE (6) are grouped in a m-vector, z(u−1) =
(
z
(u−1)
i

)
i=1,...,m

with z
(u−1)
i = z(u−1)(xi)+ ϵ̊

with noise ϵ̊ ∼ N(0, σ∗2).
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As detailed by Hainaut and Vrins (2024), assuming noisy observations of h(x̄i) for x̄i ∈ X̄
and Lxg

(u)(x̊i) for x̊i ∈ X̊, is a way to introduce a regularization term via a linear shrinkage of
the covariance matrix k(X,X), analogous to Ridge estimators. We will come back to this point
later. At each iteration u ∈ N, we estimate a Gaussian process g(u) approximating the price
function f

(u)
ξ over X̄ and X̊. The Gaussian process satis�es the following equalities on the two

training sets: {
Lxg

(u)(x̊i) = z
(u−1)
i = z(u−1)(x̊i) + ϵ̊ ∀x̊i ∈ X̊,

g(u)(x̄i) = hi = h(x̄i) + ϵ̄ ∀x̄i ∈ X̄.
(8)

Eq. (8) is a discrete version of the the system (6). We recognize the structure of a constrained
regression problem: we �t g(u) such that E

(
g(u)(x̄)

)
= h(x̄) for x̄ ∈ X̄, under the constraint

that E
(
Lxg

(u)(x̊)
)
= z(u−1)(x̊) for x̊ ∈ X̊. We denote by H and Z(u−1), the random d- and

m-vectors whose realizations are h and z(u−1), the right hand term in Eq. (8).

To summarize, we a priori encode our belief that instances of g(u)(x), satisfying Eq. (8), are
drawn from a Gaussian process with null mean and covariance k(x,x′), prior to taking into
account observations h and z(u−1) of payo�s and IPFK PDEs. In this Bayesian approach, the
estimator of f (u)

ξ (x) is the a posteriori expectation of g(u) (x) conditioned by realizations of Z
and H:

f̂
(u)
ξ (x) = E

(
g(u) (x) |Z = z(u−1) , H = h

)
.

To estimate g(u), we develop it as a sum a basis functions weighted by random normal weights.
This is feasible because the function g(u)(x) belongs to a reproducing kernel Hilbert space spanned
by eigenfunctions of the kernel (see e.g. Chapter 6 of Rasmussen and Williams, 2006). Without
loss of generality, we consider kernels de�ned by a �nite number of eigenfunctions. In this case,
there exist n basis functions φ(x) = (φj(x))j=1,...,n such that

k(x,x′) = φ(x)⊤φ(x′) , ∀x, x′ ∈ X .

This assumption is not restrictive as any kernel can be approximated by a �nite sum for a given

accuracy. As g(u)(x) is a-priori normal with null mean and C
(
g
(u)
ξ (x), g

(u)
ξ (x′)

)
= k(x,x

′
),

g
(u)
ξ (x) is a sum of functions φj(.) weighted by a vector w ∼ N(0, In):

g
(u)
ξ (x) =

n∑
j=1

wjφj(x) = w⊤φ(x) . (9)

We de�ne the function φL(x) = (Lxφj(x))j=1,...,n from X → Rn. Using the linearity of the

di�erential operator (3), Lxg
(u)
ξ (x) is the scalar product:

Lxg
(u)(x) =

n∑
j=1

wj (Lxφj(x)) = w⊤φL(x) ,

Next, we denote by φ̊L the m × n matrix of (φ̊L)i,j = Lx̊i
φj(x̊i) where x̊i ∈ X̊ and by φ̄, the

d × n matrix of (φ̄)i,j = φj(x̄i) with x̄i ∈ X̄ . Conditionally to w, the joint distribution of

(Z(u−1),H), the random vectors of right-hand terms in Eq. (8) is a multivariate normal:(
Z(u−1)

H

)∣∣∣∣w ∼ N
((

φ̊Lw
φ̄w

)
,

(
σ∗2Im 0

0 σ∗2Id

))
. (10)
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From the properties of the multivariate normal distribution, the regression weights, conditionally
to z(u−1) and h, have a normal distribution:

W |z(u−1),h ∼ N
(
µ
(u−1)
z,h ; Σz,h

)
,

where µ
(u−1)
z,h , and Σz,h are respectively equal toΣz,h =

(
In + σ∗−2φ̊⊤

L φ̊L + σ∗−2φ̄⊤φ̄
)−1

,

µ
(u−1)
z,h = σ∗−2Σz,h

(
φ̊⊤

Lz
(u−1) + φ̄⊤h

)
.

(11)

In later developments, we adopt the following notations:

kL

(
X̊,x

)
= φ̊Lφ(x) = (Lx̊i

k(x, x̊i))i=1,...,m ,

k
(
X̄,x

)
= (k (x̄j ,x))j=1,...,d ,

kL

(
X̊, X̄

)
= φ̊Lφ̄

⊤ = (Lx̊i
k(x̄j , x̊i))i=1,...,m,j=1,....,d ,

kL2

(
X̊, X̊

)
=
(
Lx̊i

Lx̊j
k(x̊i, x̊j)

)
i,j=1,...,m

,

k
(
X̄, X̄

)
= (k(x̄i, x̄j))i,j=1,...,d .

The next propositions are directly adapted from Hainaut and Vrins (2024) (Propositions 4 and
5), and we refer the reader to this article for the proofs.

Proposition 2. Let us de�ne β(x), the (m+ d)-vector:

β(x) =

(
kL

(
X̊,x

)
k
(
X̄,x

) )
, (12)

and the Gram matrix

C
(
X̊, X̄

)
= σ∗2Im+d +

 kL2

(
X̊, X̊

)
kL

(
X̊, X̄

)
kL

(
X̊, X̄

)⊤
k
(
X̄, X̄

)
 . (13)

The estimator f̂
(u)
ξ (x) = EW |z(u−1),h

(
g(u)(x)

)
of f

(u)
ξ (x) solving Eq. (6) is given by

f̂
(u)
ξ (x) = β(x)⊤C

(
X̊, X̄

)−1
(

z(u−1)

h

)
. (14)

As previously mentioned, the Gaussian noises added to hi's and z′is introduce a regularization
term, that is the diagonal matrix σ∗2Im+d, in the Gram matrix (13). This term stabilizes a
possibly ill-conditioned matrix. The standard deviation σ∗ may then be viewed as a parameter
tuning the numerical robustness of the CGPR. Of course, this a�ects the accuracy of the solution
but we will see in the numerical illustrations that its impact is limited. The next proposition
provides the conditional variance of the estimator. For a proof, we refer the reader to Proposition
5 of Hainaut and Vrins (2024).

Proposition 3. Let β(x) be the (m + d) vector de�ned in Eq. (12). The conditional variance

of g(u)(x) is equal to

VW |,z(u−1),h

(
g(u)(x)

)
= k(x,x)− β(x)⊤C

(
X̊, X̄

)−1
β(x) . (15)
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Frame 1 presents the iterative algorithm for computing American option prices. This algorithm
converges if g(u)(x) is lower bounded. This condition may in theory be breached but is satis�ed
in practice if the learning rate is small enough.

Algorithm 1 Computation of the approximated price f̂
(n)
ξ (x) of a derivative with payo� h(x).

1. Sample m points x̊i = (̊ti, ẙi) ∈ X̊

2. Sample d points x̄i = (T, ȳi) ∈ X̄ and set (hi = h(x̄i) + ϵ)i=1...d where ϵ ∼ N(0, σ∗).

3. Draw a sample z
(0)
i ∼ N(0, σ∗) for i = 1, ...,m.

4. Compute the Gram matrix, and its inverse:

C
(
X̊, X̄

)
= σ∗2Im+d +

 kL2

(
X̊, X̊

)
kL

(
X̊, X̄

)
kL

(
X̊, X̄

)⊤
k
(
X̄, X̄

)


Calculate vectors β(xi) =

(
kL

(
X̊,x

)
k
(
X̄,x

) )
for i = 1, ...,m.

5. Loop on u ∈ N until convergence

a) ∀ x̊i ∈ X̊ evaluate f̂
(u)
ξ (x̊i) = β(x̊i)

⊤C
(
X̊, X̄

)−1
(

z(u−1)

h

)
and h(x̊i) and store

them in vectors f̂ (u)

ξ,X̊
and hX̊ .

b) Update the vector z(u) as follows:

z(u) =z(u−1) + θ

[
−ξ

(
hX̊ − f̂

(u)

ξ,X̊

)
+

− z(u−1)

]
.

6. If convergence after n iterations, return f̂
(n)
ξ (x) and z(n−1).

Fitting the CGPR requires applying the di�erential operator Lx twice to the kernel function.
Although many variants exist (see e.g. Beckers, 2021), we chose a Gaussian kernel in the nu-
merical illustrations. The main motivation being that it is easy to di�erentiate and yields good
results. Let us denote x = (t,y), y = (y1, ..., yp−1) , x̃ = (t̃, ỹ) and ỹ = (ỹ1, ..., ỹp−1). The
Gaussian kernel has the general form:

k (x, x̃) = exp

(
−
(
t− t̃

)2
2 η2t

−
p−1∑
k=1

(yk − ỹk)
2

2 η2k

)
∀x, x̃ ∈ X , (16)

where η = (ηt, η1, ..., ηp−1)
⊤is a p-vector in Rp,+

0 of hyper-parameters. The coe�cients β(x) of
the CGPR have, in this case, a closed-form expression. The last d elements of β(x) are indeed
equal to (k(x̄i,x))i=1,...,d . The �rst m items of β(x) require the calculation of Lx̃k(x, x̃). For
this purpose, we introduce the following p-vector:

dx̃(x, x̃) =


(
t− t̃

)
/η2t

(y1 − ỹ1) /η
2
1

...
(yp−1 − ỹp−1) /η

2
p−1

 ,
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and the (p− 1)× (p− 1) matrix:

H ỹ(x, x̃) =



(y1−ỹ1)
2−η21

η41

(y1−ỹ1)(y2−ỹ2)
η21η

2
2

. . .
(y1−ỹ1)(yp−1−ỹp−1)

η21η
2
p−1

(y1−ỹ1)(y2−ỹ2)
η21η

2
2

. . . . . . (y2−ỹ2)(yp−1−ỹp−1)

η22η
2
p−1

...
. . . . . .

...
(y1−ỹ1)(yp−1−ỹp−1)

η21η
2
p−1

(y2−ỹ2)(yp−1−ỹp−1)

η22η
2
p−1

. . .
(yp−1−ỹp−1)

2−η2p−1

η4p−1


.

By direct di�erentiation, we obtain the gradient and Hessian of the kernel:{
∇x̃k(x, x̃) = dx̃(x, x̃) k(x, x̃) ,

Hỹk(x, x̃) = H ỹ(x, x̃) k(x, x̃) .

We infer from these expressions, that Lx̃k(x, x̃) can be rewritten in terms of dx̃(x, x̃) and
H ỹ(x, x̃):

Lx̃k(x, x̃) =

(
1

2
tr
(
Σy(x̃)Σy(x̃)

⊤H ỹ(x, x̃)
)
+
(
1 , µy(x̃)

⊤
)
dx̃(x, x̃)− r

)
k(x, x̃) , (17)

which allows us to evaluate the �rstm elements of β(x). To conclude this section, we remark that
Eq. (14) and (15) correspond to the conditional expectation and variance of g(u)(x) | z(u−1),h.

All variables being Gaussian, the triplet
(
g(n)(x),Z(n−1),H

)
where n is the last iteration of

Algorithm 1, has a multivariate normal distribution: g(n)(x)

Z(n−1)

H

 ∼ N

 0
0
0

 ,

[
k(x,x) β(x)⊤

β(x) C
(
X̊, X̄

) ] .

This observation allows us to eventually optimize hyper-parameters η by maximizing the marginal
log-likelihood of (Z(n−1),H):

log l(z(n−1),h) =
m

2
log 2π − 1

2
log
∣∣∣C (X̊, X̄

)∣∣∣ (18)

− 1

2

(
z(n−1)

h

)⊤
C
(
X̊, X̄

)−1
(

z(n−1)

h

)
.

This step is nevertheless computationally intensive and subject to numerical instability. An al-
ternative consists in selecting η such hat CGPR prices are close to prices obtained with another
method, such as the least square Monte-Carlo method.

We will compare option prices obtained by the CGPR and by the Least-Square Monte-Carlo
(LSMC) method of Longsta�, and Schwartz (2001). This method uses a sample of N paths of
risk factors, simulated by an Euler discretization of Eq. (1). At each time step, the option price
is approximated by a polynomial regression of cash-�ows on state variables. This procedure is
described in Algorithm 2. An alternative method consists of numerically solving the variational
pricing equation. For an illustration of this approach, we refer the reader, e.g., to Madi et al.
(2018), who use a �nite element method and implicit time steps to determine the price of an
American option.
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Algorithm 2 Least-Square Monte-Carlo algorithm for the valuation of an American option.
1. Initialization:

a) Set ∆t =
T
M and simulate N paths of y(1)t , ..., y

(p−1)
t stored in N × M matrix Y1 ,...,

Yp−1.

b) Initialize the payo� at maturity: P = h (T, Y1[:,M ], ..., Yp−1[:,M ])

c) Set initial cash-�ows: CF = P

2. Iterate backwards in time from t = M − 1 to t = 0:

a) Calculate the N vector of discount factors, D = exp (−r (t, (Y1[:, t], ..., Yp−1[:, t]))∆t)

b) Update cash-�ows by discounting: CF = DCF .

c) Identify in-the-money paths:

ITM = {i : h (t, (Y1[i, t], ..., Yp−1[i, t])) > 0}

If no paths are in-the-money, continue to the next time step.

d) For in-the-money paths:

i. SetX1 = Y1[ITM, t], ... , Xp−1 = Yp−1[ITM, t] ) and Z = CF [ITM], in-the-money
CF's.

ii. Construct the regression matrix A =
[
1 X1 X2

1 X2 X2
2 X1X2, . . .

]
iii. Solve for regression coe�cients using least squares: α∗ = argminα ∥Aα− Z∥2
iv. Estimate the continuation value: CV = Aα∗

e) Calculate the exercise value: EV = h (t, (X1, ..., Xp−1))

f) Determine whether to exercise: E = (EV > CV )

g) Update cash-�ows: CF [E] = EV [E]

3. Final Step: return the discounted average of cash-�ows:

Option Price =
1

N

N∑
i=1

CF [i] .

4 American options valuation in the Heston model

In this section, we evaluate American options in the Heston model with the Algorithm 1. The
stock price, (St)t≥0, is a geometric Brownian di�usion with a stochastic variance process, (Vt)t≥0.
These processes are de�ned on a probability space (Ω,F ,Q) generated by two independent

Brownian motions Bt =
(
B

(1)
t , B

(2)
t

)⊤
t≥0

. The risk-free rate is assumed constant, r ∈ R. Risk
factors yt = (St, Vt), are ruled by the stochastic di�erential equation (1) where µy(.) is a vector
of dimension 2 and Σy(.) is a 2× 2 matrix:

µy(t,yt) =

(
r St

κ (γ − Vt)

)
, Σy(t,yt) =

(
St

√
VtΣ

⊤
S

σ
√
VtΣ

⊤
V

)
.

Parameters κ, γ ∈ R+ are the speed of reversion, and mean-reversion level of the variance.
σ ∈ R+ is the volatility of the stock variance. ΣS and ΣV are 2-dimensional vectors such that
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the matrix

Σ =

(
Σ⊤
S

Σ⊤
V

)
=

( √
1− ρ2SV ρSV

0 1

)
, ΣΣ⊤ =

(
1 ρSV

ρSV 1

)
.

Σ is the upper Choleski decomposition of the correlation matrix between the price and its variance
(coe�cient of correlation ρSV ). We refer the reader to the Chapter 3 of Hainaut (2023) for other
features of this model. We note x = (t, s, v), the vector of time t, and yt = (St, Vt), the vector
of risk processes. We focus on an American Put option of maturity T and strike price, K. The
payo� function is de�ned by:

h (x) := (K − s)+ ∀x ∈ X̊ ∪ X̄ ,

where the inner and boundary domains are respectively X̊ = [0, T ) × R+,2 and X̄ = T × R+,2.
The value of the derivative is the expected discounted payo� under the risk neutral measure,
such as de�ned in Eq. (2). The approximated prices after u iterations of Algorithm 1, g(u), solve
the IPFK Eq. (6), where the gradient and the Hessian of g(u)(.) with respect to y by ∇yg

(u)

and Hy(g
(u)) are equal to:

∇yg
(u) =

(
∂sg

(u)

∂vg
(u)

)
, Hy(g

(u)) =

(
∂ssg

(u) ∂svg
(u)

∂svg
(u) ∂vvg

(u)

)
.

We consider a Gaussian kernel de�ned by a positive vector of bandwidth parameters η =
(ηt, ηs, ηv) ∈ R+,3:

k (x, x̃) = exp

(
−
(
t− t̃

)2
2 η2t

− (s− s̃)2

2 η2s
− (v − ṽ)2

2 η2v

)
∀x, x̃ ∈ X . (19)

In order to compute kL

(
X̊,x

)
, kL

(
X̄,x

)
and kL

(
X̊, X̄

)
involved in the de�nition of β(x)

and C
(
X̊, X̄

)
, we develop the expression of the FK operator applied to the kernel:

Lx̃k (x, x̃) =

(
∂t̃ − r + rs̃∂s̃ + κ (γ − ṽ) ∂ṽ +

1

2
s̃2ṽ ∂s̃s̃ (20)

+
1

2
σ2ṽ ∂ṽṽ + s̃ ṽ σ ρSV ∂s̃ṽ

)
k (x, x̃)

= lx̃ (x, x̃) k (x, x̃) ,

where lx̃ (x, x̃) is the following function

lx̃(x, x̃) =

[(
t− t̃

)
η2t

− r + rs̃
(s− s̃)

η2s
+ κ (γ − ṽ)

(v − ṽ)

η2v
(21)

+
1

2
s̃2ṽ

(
(s− s̃)2

η4s
− 1

η2s

)
+

1

2
σ2ṽ

(
(v − ṽ)2

η4v
− 1

η2v

)

+s̃ ṽ σρSV
(s− s̃) (v − ṽ)

η2sη
2
v

]
.
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To calculate kL2

(
X̊,x

)
and kL2

(
X̊, X̊

)
, we apply a second time the FK operator to Lx̃k (x, x̃).

A relatively long but simple calculation leads to the following expression:

LxLx̃k (x, x̃) = k (x, x̃) ∂tlx̃(x, x̃) + lx̃(x, x̃)∂t k (x, x̃) (22)

−r lx̃(x, x̃) k (x, x̃) + r s (k (x, x̃) ∂slx̃(x, x̃) + lx̃(x, x̃)∂sk (x, x̃))

+κ (γ − v) (k (x, x̃) ∂vlx̃(x, x̃) + lx̃(x, x̃)∂vk (x, x̃))

+
1

2
s2v (k (x, x̃) ∂sslx̃(x, x̃) + 2∂slx̃(x, x̃)∂sk (x, x̃) + lx̃(x, x̃)∂ssk (x, x̃))

+
1

2
σ2v (k (x, x̃) ∂vvlx̃(x, x̃) + 2∂vlx̃(x, x̃)∂vk (x, x̃) + lx̃(x, x̃)∂vvk (x, x̃))

+s v σ ρSV (∂slx̃(x, x̃)∂vk (x, x̃) + ∂vlx̃(x, x̃)∂sk (x, x̃))

+s v σ ρSV (k (x, x̃) ∂svlx̃(x, x̃) + lx̃(x, x̃)∂svk (x, x̃)) ,

where the partial derivatives are given in Tables 1 and 2.

∂slx̃(x, x̃) =
1
η2s

(
rs̃+ s̃2ṽ (s−s̃)

η2s

+s̃ ṽ σρSV
(v−ṽ)
η2v

)
∂sslx̃(x, x̃) =

s̃2ṽ
η4s

∂vlx̃(x, x̃) =
1
η2v

(
κ (γ − ṽ) + σ2ṽ (v−ṽ)

η2v

+s̃ ṽ σρSV
(s−s̃)
η2s

)
∂vvlx̃(x, x̃) =

σ2ṽ
η4v

∂tlx̃(x, x̃) =
1
η2t

∂svlx̃(x, x̃) = s̃ ṽ σρSV

η2sη
2
v

Table 1: Partial derivatives of lx̃(x, x̃), in Eq. (22).

∂ssk (x, x̃) =
(
(s−s̃)2

η4s
− 1

η2s

)
k (x, x̃) ∂tk (x, x̃) = −(t−t̃)

η2t
k (x, x̃)

∂vvk (x, x̃) =
(
(v−ṽ)2

η4v
− 1

η2v

)
k (x, x̃) ∂sk (x, x̃) = − (s−s̃)

η2s
k (x, x̃)

∂svk (x, x̃) =
(s−s̃)(v−ṽ)

η2sη
2
v

k (x, x̃) ∂vk (x, x̃) = − (v−ṽ)
η2v

k (x, x̃)

Table 2: Partial derivatives of k(x, x̃), in Eq. (22).

Table 3 provides the market, kernel, and algorithm parameters used in the numerical illus-
tration. The points in X̊ and X̄ are randomly drawn according to a uniform law on intervals
reported in Table 3. The values chosen for kernel parameters η and σ∗, o�er a good trade-o�
between accuracy and robustness. We discuss at the end of this section the in�uence of the
shrinkage parameter σ∗ on the accuracy.
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Market parameters
r 0.05 σ 0.30
γ 0.152 si ∈ [0, 300], uniform law
κ 0.95 ti ∈ [0, T ], uniform law

ρSV -0.30 vi ∈ [0 , 8γ], uniform law
Kernel parameters

ηt 2.00 ηS 20.00
ηv 0.40 σ∗ 0.025

Algorithm 1 parameters
ξ 20 θ 0.03

Stopping criterion:

∣∣∣∣f̂ (u)
ξ (x)− f̂

(u−1)
ξ (x)

∣∣∣∣ ≤ 0.01

Table 3: Market, kernel, algorithm parameters and boundaries for sampling xi = (ti, si, vi) in X̊
and X̄ .

t 0
T 0.5 , 1 , 1.5 , 2 , 2.5 , 3
K 100
S0 20 equispaced values from 50 to 150
V0 20 equispaced values from γ

5 to 5γ.

Table 4: Features of 2400 options in the test set.

Table 5 reports computation times and spreads between 2400 American puts (with features in
Table 4), priced with the CGPR and LSMC algorithms. Notice that for a single maturity, the

inverted Gram matrix C
(
X̊, X̄

)
only needs to be computed once. This considerably reduces

the valuation time, compared to the LSMC.

The LSMC is run with M = 2000 simulations and hundred time steps per year, N = 100T .
We use a second order regression for determining the continuation region. For the GP method,
the size m of the sample X̊ varies from 300 to 500 points. The boundary sample, X̄, has the
same size, d = m.

The spreads in absolute values between CGPR and LSMC prices are small and seem inversely
proportional to m. The average relative spread for in-the-Money (ITM) options2 varies from
1.90% to 3.36% and is acceptable given that both LSMC and CGPR yield numerical approxi-
mated prices.

The left plot of Figure 1 compares LSMC and CGPR prices of 1-year American puts with
m = 500 and

√
V0 = 24.76%. This emphasizes the accuracy of the CGPR approach compared

to a standard LSMC. The right plot of the same �gure, shows the heatmap of average absolute
spreads between LSMC and CGPR call prices with respect to S0 and

√
V0. Figure 2 presents

similar heatmaps with respect to T , S0 and to T ,
√
V 0. Whatever the combination of T , S0 and√

V 0, the spreads between LSMC and CGPR prices remain very small.

2We limit the calculation of relative spreads to in-the-Money options to avoid interpretability and numerical
issues caused by out of the money options, whose prices are nearly null.
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Figure 2: Right: heatmap of average absolute spreads between LSMC and CGPR (m=500) put
prices with respect to T and S0. Left: same heatmap but with respect to T and

√
V0.

Spread CGPR - LSMC prices Times (seconds)
m Absolute Relative (ITM) CGPR LSMC
300 0.3719 0.0315 1.61 232.26
350 0.2346 0.0214 1.44 234.64
400 0.2239 0.0180 1.78 240.00
450 0.2321 0.0192 2.11 233.76
500 0.1904 0.0147 2.15 237.42

Table 5: Absolute: average absolute values of the spread between put prices. Relative : average
relative spreads for in-the-Money (ITM) options (S0 < K). CGPR and LSMC pricing
times of 2400 options with CGPR and LSMC methods.

Figure 1: Left: LSMC and CGPR (GP) 1-year put prices computed with m = 500 and
√
V0 =

24.76%. Right: heatmap of average absolute spreads between LSMC and CGPR put
prices with respect to S0 and

√
V0.

Table 6 reports the average absolute and relative (ITM) spreads between CGPR and LSMC
prices, per maturity. The average absolute and relative (ITM) spreads remain relatively stable
regardless the time horizon. We also see that the pricing algorithm needs on average around 30
iterations to converge.
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Spread CGPR - LSMC prices Number of
T Absolute Relative (ITM) iterations
0.5 0.1377 0.0147 17.0
1.0 0.1932 0.0145 26.0
1.5 0.2417 0.0176 26.0
2.0 0.2103 0.0153 30.0
2.5 0.1804 0.0142 31.0
3.0 0.1790 0.0119 30.0

Table 6: . Average absolute and relative spreads for put options and in-the-Money (ITM) options
(S0 > K) per maturity. GP prices are computed with m = 500. Number of iterations:
average number of loops in Algorithm 1.

We conclude this section by discussing the in�uence of σ∗ on the accuracy and stability of the
CGPR. In practice, σ∗ is a Tikhonov regularization parameter that prevents numerical instability

when inverting the Gram matrix, C
(
X̊, X̄

)
. If σ∗ is too small, we may fail to numerically invert

the matrix C
(
X̊, X̄

)
, while a large σ∗ generates biased prices. To better understand the impact

of σ∗, we evaluate 1-year American puts with S0 and V0 from Table 4. Table 7 reports average
absolute and relative (ITM) spreads between LSMC and CGPR prices for σ∗ ranging from 0.015
to 0.115. The kernel parameters are those of Table 3. We clearly see that spreads increase with
σ∗. Setting σ∗ to 0.015 leads to an average relative (ITM) spread of 1.41%. This spread climbs
to 1.62% with σ∗ = 0.115.

Spread CGPR - LSMC prices Number of
σ∗ Absolute Relative (ITM) iterations

0.015 0.1913 0.0141 25.0
0.040 0.181 0.0143 25.0
0.065 0.168 0.0144 23.0
0.090 0.1616 0.0151 21.0
0.115 0.1612 0.0162 19.0

Table 7: . Absolute value and relative spreads for put options and in-the-Money (ITM) options
(S0 < K) per maturity. m=500 and σ∗ ranges from 0.015 to 0.115. Number of iterations:
average number of loops in Algorithm 1.

5 American options in a 2 factors Hull & White model

In this second example, we evaluate American options on a zero-coupon bond, in the interest
rate model of Hull and White (1994), with two factors. In this setting, the risk-free rate (rt)t≥0

is a mean-reverting process driven by two independent Brownian motions, Bt =
(
B

(1)
t , B

(2)
t

)⊤
t≥0

.

We de�ne a vector Σr =
(
ρ ,
√
1− ρ2

)⊤
where ρ is the coe�cient of correlation between the two

factors ruling rt. The interest rate has the following dynamic under the risk neutral measure:

drt = κ (γ(t)− rt) dt+ σrΣ
⊤
r dBt ,

where γ(t) is a function of time. We denote by P (0, t) = E
(
e−

∫ t
0 rudu|F0

)
, the value of a discount

bond and by f(0, t) = −∂t lnP (0, t), the instantaneous forward rate. From Brigo and Mercurio
(2006), Chapter 4, the model matches the initial yield curve of interest rate if γ(t) is related to
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forward rates by:

γ(t) =
1

κ
∂tf(0, t) + f(0, t) +

σ2
r

2κ2
(
1− e−2κt

)
.

In later developments, we denote by Bκ(t, T ), the following function

Bκ(t, T ) =
1

κ

(
1− e−κ(T−t)

)
.

The price at time t ≤ S of a discount bond of maturity S is linked to the initial yield curve by
the relation

P (t, S) = exp

(
− (rt − f(0, t))Bκ(t, S) + ln

P (0, S)

P (0, t)

)
(23)

× exp

(
−σ2

r

4κ

((
1− e−2κt

)
Bκ(t, S)

2
))

.

Using the Itô's lemma, we can show that the bond price dynamic is geometric:

dP (t, S)

P (t, S)
= rt dt−Bκ(t, S)σrΣ

⊤
r dBt . (24)

As we evaluate American put options on P (t, S) , we select as risk factors, the interest rate and
the zero-coupon bond of maturity S. They are stored in a vector yt = (rt, P (t, S)), which is
ruled by the stochastic di�erential equation (1) where µy(.) is a vector of dimension 2 and Σy(.)
is a 2× 2 matrix:

µy(t,yt) =

(
κ (γ(t)− rt)
P (t, S) rt

)
, Σy(t,yt) =

(
σrΣ

⊤
r

−P (t, S)Bκr(t, S)σrΣ
⊤
r

)
.

We denote by x = (t, r, P ), the vector of time, interest rate rt = r and bond price P (t, S) = P .
For an option of maturity T and strike price P , the payo� function is de�ned by:

h (x) := (K − P (t, S))+ ∀x ∈ X̊ ∪ X̄ ,

where the inner and boundary domains are X̊ = [0, T ) × R × R+ and X̄ = T × ×R × R+. The
price of the derivative is equal to the expected discounted payo� under the risk neutral measure
such as de�ned in Equation (2). The approximated prices after u iterations of Algorithm 1, g(u),
solve the penalized FK equation (6), where the gradient and the Hessian of g(u)(.) with respect
to y by ∇yg

(u) and Hy(g
(u)) are equal to:

∇yg
(u) =

(
∂rg

(u)

∂P g
(u)

)
, Hy(g

(u)) =

(
∂rrg

(u) ∂rP g
(u)

∂Prg
(u) ∂PP g

(u)

)
.

The Gaussian kernel is de�ned by a three bandwidth parameters η = (ηt, ηr, ηP ) ∈ R+,3:

k (x, x̃) = exp

−
(
t− t̃

)2
2 η2t

− (r − r̃)2

2 η2r
−

(
P − P̃

)2
2 η2P

 ∀x, x̃ ∈ X . (25)

As in the previous example, we �rst develop the expression of the FK operator Lx̃· , applied to
the Gaussian kernel:

Lx̃k (x, x̃) =

(
∂t̃ − r̃ + r̃P̃ ∂P̃ + κ

(
γ(t̃)− r̃

)
∂r̃ +

1

2
P̃ 2σ2

rBκ(t̃, S)
2∂P̃ P̃ (26)

+
1

2
σ2
r ∂r̃r̃ − P̃ Bκ(t̃, S) ρ σ

2
r ∂P̃ r̃

)
k (x, x̃)

= lx̃ (x, x̃) k (x, x̃) ,
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where lx̃ (x, x̃) is the following function:

lx̃(x, x̃) =

(t− t̃
)

η2t
− r̃ + r̃P̃

(
P − P̃

)
η2P

+ κ
(
γ(t̃)− r̃

) (r − r̃)

η2r
(27)

+
1

2
P̃ 2σ2

rBκ(t̃, S)
2


(
P − P̃

)2
η4P

− 1

η2P

+
1

2
σ2
r

(
(r − r̃)2

η4r
− 1

η2r

)

−P̃ Bκ(t̃, S) ρ σ
2
r

(
P − P̃

)
(r − r̃)

η2rη
2
P

 .

To evaluate the matrix kL2

(
X̊, X̊

)
, we need LxLx̃k (x, x̃). A direct calculation leads to the

following expression:

LxLx̃k (x, x̃) = k (x, x̃) ∂tlx̃(x, x̃) + lx̃(x, x̃)∂t k (x, x̃) (28)

−r lx̃(x, x̃) k (x, x̃) + r P (k (x, x̃) ∂P lx̃(x, x̃) + lx̃(x, x̃)∂Pk (x, x̃))

+κ (γ(t)− r) (k (x, x̃) ∂rlx̃(x, x̃) + lx̃(x, x̃)∂rk (x, x̃)) +
1

2
P 2σ2

rBκ(t, S)
2

× (k (x, x̃) ∂PP lx̃(x, x̃) + 2∂P lx̃(x, x̃)∂Pk (x, x̃) + lx̃(x, x̃)∂PPk (x, x̃))

+
1

2
σ2
r (k (x, x̃) ∂rrlx̃(x, x̃) + 2∂rlx̃(x, x̃)∂rk (x, x̃) + lx̃(x, x̃)∂rrk (x, x̃))

−P Bκ(t, S) ρ σ
2
r (∂P lx̃(x, x̃)∂rk (x, x̃) + ∂rlx̃(x, x̃)∂Pk (x, x̃))

−P Bκ(t, S) ρ σ
2
r (k (x, x̃) ∂Prlx̃(x, x̃) + lx̃(x, x̃)∂Prk (x, x̃)) ,

where the partial derivatives are given in Tables 8 and 9. Equations (26) and (28) allows us to

calculate the Gram matrix C
(
X̊, X̄

)
and the vectors β(xi) in Algorithm 1.

∂P lx̃(x, x̃) =
1
η2P

 rP̃ + P̃ 2σ2
rBκ(t̃, S)

2 (P−P̃)
η2P

−P̃ Bκ(t̃, S) ρ σ
2
r
(r−r̃)
η2r

 ∂PP lx̃(x, x̃) =
P̃ 2σ2

rBκ(t̃,S)2

η4P

∂rlx̃(x, x̃) =
1
η2r

 κ
(
γ(t̃)− r̃

)
+ σ2

r
(r−r̃)
η2r

−P̃ Bκ(t̃, S) ρ σ
2
r
(P−P̃)

η2P

 ∂rrlx̃(x, x̃) =
σ2
r

η4r

∂tlx̃(x, x̃) =
1
η2t

∂Prlx̃(x, x̃) = − P̃ Bκ(t̃,S) ρ σ2
r

η2rη
2
P

Table 8: Partial derivatives of lx̃(x, x̃), in Equation (28).

∂PPk (x, x̃) =

(
(P−P̃)

2

η4P
− 1

η2P

)
k (x, x̃) ∂tk (x, x̃) = −(t−t̃)

η2t
k (x, x̃)

∂rrk (x, x̃) =
(
(r−r̃)2

η4r
− 1

η2r

)
k (x, x̃) ∂Pk (x, x̃) = −(P−P̃)

η2P
k (x, x̃)

∂Prk (x, x̃) =
(P−P̃)(r−r̃)

η2P η2r
k (x, x̃) ∂rk (x, x̃) = − (r−r̃)

η2r
k (x, x̃)

Table 9: Partial derivatives of k(x, x̃), in Equation (28).

In the numerical illustration, we consider a Nelson-Siegel model for modeling instantaneous
forward rates. Details and parameters of this model are provided in Appendix A. Other market,
kernel and algorithm parameters are reported in Table 10.
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Market parameters
σr 0.03 κ 0.50
ρ -0.30 Pi ∈ [0, 200], uniform law
ti ∈ [0, T ], uniform law ri ∈ [−0.05 , 0.10], uniform law

Kernel parameters
ηt 0.85 ηP 20.00
ηr 0.10 σ∗ 0.05

Algorithm 1 parameters
ξ 20 θ 0.03

Stopping criterion:

∣∣∣∣f̂ (u)
ξ (x)− f̂

(u−1)
ξ (x)

∣∣∣∣ ≤ 0.01

Table 10: Interest rate, kernel, algorithm parameters and boundaries for sampling xi = (ti, Pi, ri)

in X̊ and X̄ .

t 0
T 0.5 , 1 , 1.5 , 2 , 2.5 , 3
S 15
K 100

P (0, S) 20 equispaced values from 50 to 150
r0 20 equispaced values from −0.02 to 0.08.

Table 11: Features of 2400 options in the test set.

We price 2400 American put options with features reported in Table 11, for various initial val-
ues of r0 and P (0, S). The CGPR is benchmarked to the LSMC with M = 2000 simulations and
N = 100T . We again use a second order polynomial for determining the continuation region.
For the GP method, the size m of the sample X̊ varies from 300 to 500 points. The boundary
sample, X̄, has the same size, d = m.

Table 12 shows average absolute and relative (ITM) spreads as a function of the sample sets
size, m. Increasing m globally reduces the valuation discrepancies between the CGPR and
LSMC. With m = 500, the average relative (ITM) spread falls to 2%, which is acceptable as
both LSMC and CGPR yield numerical approximated prices.

Spread CGPR - LSMC prices Times (seconds)
m Absolute Relative (ITM) CGPR LSMC
300 0.2626 0.0256 1.69 135.37
350 0.2863 0.0335 1.91 131.21
400 0.2172 0.0320 2.04 130.87
450 0.1900 0.0278 2.38 132.93
500 0.1901 0.0199 2.47 132.02

Table 12: Absolute: absolute value of spreads between put prices. Relative : relative spreads for
in-the-Money (ITM) options (P (0, S) < K). CGPR and LSMC pricing times of 2400
options with CGPR and LSMC methods.

The left plot of Figure 3 compares LSMC to CGPR prices of 1-year American puts with
m = 500 and r0 = 3.26% for P (0, S) ranging from 50 up to 150. In this setting, the CGPR
and LSMC prices are nearly indiscernible. The heatmaps in Figure 3 and 3 emphasize that the
accuracy of the CGPR depends on the triplets (r0, P (0, S), T ). The largest gaps between CGPR
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Figure 4: Right: heatmap of average absolute spreads between LSMC and CGPR (m=500) put
prices with respect to T and P (0, S). Left: same heatmap but with respect to T and
r0.

and LSMC are obtained for options with the longest maturities, around-the-money with r0 close
to boundaries -0.02 or 0.07.

Figure 3: Left: LSMC and CGPR (GP) 1-year put prices computed with m = 500 and r0 =
3.26%. Right: heatmap of average absolute spreads between LSMC and CGPR put
prices with respect to r0 and P (0, S).

Table 13 presents the average absolute and relative spreads between CGPR and LSMC prices
for each option maturity. The absolute spreads slightly increase with T , whereas the relative
ITM spreads are smaller for 2 and 2.5-year options. We also observe that the algorithm 1 needs
more simulations to converge when T increases.
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Spread CGPR - LSMC prices Number of
T Absolute Relative (ITM) iterations
0.5 0.1215 0.0211 20.0
1.0 0.1677 0.0214 25.0
1.5 0.1849 0.0201 26.0
2.0 0.1777 0.0182 28.0
2.5 0.2014 0.0171 32.0
3.0 0.2872 0.0218 34.0

Table 13: . Average absolute and relative spreads for put options and in-the-Money (ITM) op-
tions (P (0, S) < K) per maturity. CGPR prices are computed with m = 500. Number
of iterations: number of loops in Algorithm 1.

Finally, we analyze in Table 14 the impact of the shrinkage parameter σ∗ on the discrepancies
between 1-year CGPR and LSMC put prices with r0 and P (0, S0), randomly drawn according
to Table 11. Similar to Heston American options, increasing σ∗ improves the numerical stability
of the algorithm but it also raises the bias between SGPR and LSMC prices. We also see that
σ∗ has no impact on the number of algorithm iterations.

Spread CGPR - LSMC prices Number of
σ∗ Absolute Relative (ITM) iterations
0.01 0.1473 0.0170 25.0
0.02 0.1607 0.0185 25.0
0.03 0.1654 0.0198 25.0
0.04 0.1665 0.0207 25.0
0.05 0.1677 0.0214 25.0
0.06 0.1694 0.0220 25.0
0.07 0.1716 0.0226 25.0
0.08 0.1741 0.0231 25.0

Table 14: . Absolute value and relative spreads for put options and in-the-Money (ITM) options
(P (0, S) < K) per maturity. m=500 and σ∗ ranges from 0.01 to 0.08. Number of
iterations: number of loops in Algorithm 1.

6 Conclusions

This work extends the framework of constrained Gaussian process regression (CGPR) of Hainaut
and Vrins (2024) to the valuation of American options. The variational PDE governing option
prices in the absence of arbitrage is approximated by a penalized Feynman-Kac (PFK) equation.
The di�erential operator in this equation being non-linear, we propose an iterative algorithm
using a local linear operator. At each epoch, we �t a CGPR approximating the option price.

Our method inherits the advantages of the CGPR with respect to other numerical approaches. It
only relies on the sampling of risk processes in the inner and boundary domains of the PDE and
does not require numerical di�erentiation as �nite di�erence methods do. Along with a Bayesian
framework, which adds a Tikhonov regularization factor to the numerical scheme, this ensures
good accuracy and stability in option pricing.

The numerical illustrations focus on the pricing of American put options in the Heston and
two-factor Hull-White models. The comparison with the least squares Monte Carlo method re-
veals that the CGPR achieves comparable accuracy and is much less computationally intensive.
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Nevertheless, the CGPR for American options presents a few drawbacks. It is based on ker-
nels whose hyperparameters may be di�cult to tune. The Tikhonov regularization parameter,
which stabilizes the numerical framework, introduces a small bias. Finally, when the number of
risk factors is high, the CGPR needs large training datasets, which complicates the inversion of

the Gram matrix C
(
X̊, X̄

)
.
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Appendix A

In the second numerical illustration, we model the initial yield curve with the Nelson-Siegel
(NS) model. In this framework, initial instantaneous forward rates are provided by the following
function:

f(0, t) := −∂t lnP (0, t) = b0 + (b10 + b11t) exp (−c1t) .

Parameters {b0, b10, b11, c1} are estimated by minimizing the quadratic spread between market
and model zero-coupon yields:

P (0, t) = exp

(
b0 +

1

t

b10
c1

(
1− e−c1t

)
+

1

t

b11

(c1)
2

(
1− (c1t+ 1) e−c1t

))
.

We �t the NS model to the yield curve of Belgian state bonds observed on the 1/9/2023 and
obtain estimates reported in Table 15.

Parameter Value
b0 0.040535
b10 0.003652
b11 -0.022349
c1 0.449268

Table 15: Nelson-Siegel parameters, Belgian state bonds, 1/9/23.
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