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ABSTRACT
In multiple sclerosis (MS), white matter lesion (WML) in-
stance masks are very relevant to enhance diagnosis and
disease monitoring. Yet, all existing automated WML seg-
mentation methods aim at improving a semantic segmentation
model, and postprocessing it to group voxels together into le-
sion instances. A large majority of studies use connected
components (CC) analysis for this final step. In this paper,
we show both theoretically and empirically that CC is sub-
optimal for WML instance segmentation due to the presence
of confluent lesions (CLs), i.e. lesions whose segmentation
encompasses two or more individual lesions. We address this
issue by proposing ConfLUNet - the first end-to-end instance
segmentation model designed to detect and segment WML in-
stances in MS. We evaluate ConfLUNet against two baseline
methods, and show that it improves lesion detection metrics
while maintaining similar segmentation performance. The
results shown in this paper pave the way for more in-depth
analysis of instance segmentation applied in the context of
MS. Source code is available on Github.

Index Terms— Instance segmentation, Multiple Sclero-
sis, White matter lesion segmentation, Confluent lesions

1. INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune disease, and
represents the most common cause of non-traumatic neuro-
logical disability in young adults [1]. An important charac-
teristic of MS is the presence of central nervous system de-
myelinated white matter lesions (WML), which are visible on
conventional MRI scans. The total count and cumulative vol-
ume of these lesions play a crucial role for both MS diagnosis
[2] and prognosis [3], and both can be derived from a lesion
instance mask. Lesion instance masks (LIMs, Fig. 1b-1d)
differ from lesion semantic masks (LSMs, Fig. 1a) because,
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Fig. 1: Scheme of semantic (Sem), instance masks, and in-
stantiation outputs (CC, connected components; ACLS, Au-
tomated Confluent lesion Splitting).

in addition to a class label (lesion/non-lesion), each voxel in
the LIM is also associated with a unique lesion identifier (id).

Because manually annotating any kind of 3D lesion mask
is tedious and time consuming, many methods have been pro-
posed to automate this process [4, 5]. However, these meth-
ods’ outputs often necessitate manual correction [6, 7], espe-
cially when confluent lesions are involved. Confluent lesions
(CLs) are lesions whose semantic segmentation encompasses
two or more pathologically independent lesions, which we re-
fer to as confluent lesion units (CLUs). As an illustration, the
instance 1 in Fig 1c conceptualizes a CL encompassing two
CLUs, displayed as instances 1 and 2 in Fig 1b. CLs occur
either due to pathological reasons, when two lesions merge
into one, or when the instance segmentation is unable to dis-
criminate their enclosed CLUs. In that last case, the presence
of CLs is closely related to most methods’ choice to use con-
nected components (CC) on the predicted LSM to produce
the final LIM. We argue that the presence of CLs in MS pa-
tients renders the CC step inappropriate for WML instance
segmentation, as their nature inherently disallows identifica-
tion through this method (Fig 1c). Given that CLUs make up
10 to 20% of all lesions (refer to [7] and section 3.2), any
WML segmentation method unable of detecting them will in-
evitably remain sub-optimal.



Moreover, we further identified a dissonance between 1)
the will of most methods [4, 8] and challenges [9, 10] to eval-
uate detection performance, and 2) the fact that most methods
actually aim at improving these detection metrics by produc-
ing better semantic segmentation methods. Interestingly, this
is occurring alongside the continued use of the sub-optimal
CC method. Though efforts have been made to replace CC as
a method to produce LIMs from LSMs [7, 11], surprisingly no
previous research has explored the application of end-to-end
instance segmentation models, to our knowledge. We aim to
fill this gap by proposing ConfLUNet, a simple model adapted
from a 3D U-Net architecture [12] and inspired by a state-
of-the-art panoptic segmentation model for 2D image analy-
sis [13]. We demonstrate that by adapting a state-of-the-art
WML semantic segmentation model, we achieve better de-
tection metrics while preserving a segmentation performance
that is on par with or superior to the baseline methods.

2. RELATED WORK

While there is no published end-to-end method for WML
instance segmentation, the prevailing WML semantic seg-
mentation methods often evaluate their performance using
both segmentation and detection metrics [4]. These methods
mostly follow the same two-step approach, first computing
a LSM [4, 8], then applying a post-processing technique to
produce a LIM from the predicted WML mask, a technique
we refer to as instantiation. As stated before, the go-to instan-
tiation method is the connected-components (CC) analysis,
wherein adjacent voxels are grouped together according to a
connectivity parameter. However, this method falls short in
detecting CLUs within lesions (Fig. 1c).

Another instantiation method, introduced in [7], uses an
automatic confluent lesion splitting method termed ACLS.
ACLS is divided in a lesion center detection step [11] and
a voxel clustering step. The center detection step uses the
eigenvalues of the hessian matrix calculated on the lesion
probability mask, identifying center voxels based on negative
eigenvalues in all three directions. This relies on the hypoth-
esis that predicted lesion voxel probabilities align with MS
lesion pathology, suggesting initial vein damage leads to out-
ward inflammation with less impact on the lesion periphery.
Identified center voxels are then clustered in a lesion center
using CC. ACLS’s second step clusters remaining predicted
lesion voxels by assigning them to their closest lesion cen-
ter, producing a LIM. While promising and leveraging MS
pathology insights, this method overlooks lesion size in the
clustering algorithm, potentially leading to suboptimal re-
sults. This is illustrated in Figure 1d, where voxels belonging
to larger lesions with a distant center have a higher chance
of being erroneously assigned to closer centers. Finally, a
recent study evaluating three WML segmentation tools with
CC and ACLS found that ACLS prioritized sensitivity over
specificity and worsened segmentation quality [14].

3. MATERIALS AND METHODS

ConfLUNet consists of an adapted 3D U-Net followed by an
instantiation layer. The model uses FLAIR volumes as in-
put, and has three outputs: a semantic segmentation, a center
heatmap, where the value at each voxel represents its proba-
bility to be a lesion center, and an offset map with x, y and z
components, corresponding for each voxel to an offset vector
pointing to the center of the most probable lesion it belongs
to. The three components are then combined during instanti-
ation to produce a final LIM.

Model architecture: ConfLUNet adopts a 3-leveled 3D
U-Net backbone, identical to [15]. Inspired by Panoptic
DeepLab [13], the final convolutional layer is changed to
output six channels, split among three task-specific heads,
instead of the two employed in binary semantic segmenta-
tion. As input, the model takes 3D patches of 96×96×96
voxels, randomly sampled during training and using a sliding
window algorithm with Gaussian weights for inference [16].

Semantic segmentation head: The first two channels are
for semantic segmentation. As in [17], a weighted combina-
tion of the focal loss [18] and the dice loss [19] was used as
segmentation loss: Lseg = Lfocal + 0.5 ∗ Ldice.

Center prediction head: To retrieve the ground truth
(GT) center heatmap, each lesion instance is represented by
its center of mass, computed by averaging the coordinates
of all voxel positions within that instance. During training,
GT instance centers are encoded using a 3D Gaussian with a
standard deviation of ±2mm pixels. The Mean Squared Error
(MSE) loss is used for the center heatmaps prediction, corre-
sponding to the third output channel [13].

Offsets prediction head: For every voxel (x, y, z) cate-
gorized as lesion in the GT, ConfLUNet predicts the offsets
O(x, y, z) to its respective center of mass in the −→x , −→y and −→z
directions [13], corresponding to the last three output chan-
nels. This offsets map is learned through the minimization of
a L1 loss, which is only computed at GT lesion voxels.

Training Loss: The final training loss is a weighted sum
between the semantic segmentation loss Lseg , the center
heatmap loss Lcenter and the offsets loss Loffsets :

Ltotal = Lseg + αLcenter + βLoffsets (1)

where α and β are tunable parameters.
Lesion Instantiation: First, a LSM is obtained by apply-

ing a threshold of 0.5 to the softmaxed segmentation output.
For the instantiation, the same principles as in [13] are ap-
plied: first obtain the predicted object centers P̂ = {Cp :
(xp, yp, zp)} by max pooling the predicted center heatmap
and filtering out the values that have changed before and af-
ter the pooling. Next, every voxel in the LSM is assigned to
the center lying closest to the voxel’s predicted offset vector
O(x, y, z). Specifically, ĉ(x, y, z), the predicted instance id



for a voxel at position (x, y, z), is found by computing:

ĉ(x, y, z) = argmin
k

∥Ck − ((x, y, z) +O(x, y, z))∥2 (2)

3.1. Evaluation Metrics

We evaluate ConfLUNet by computing both semantic and in-
stance segmentation metrics, relying on the Metrics Reloaded’s
recommendations [20]. All metrics are first computed patient-
wise, then averaged across patients in the partition set.

Matching strategy: To pair prediction instances to GT
instances, we calculate the Intersection over Union (IoU) of
every predicted lesion with respect to all GT lesions, select-
ing the GT instance for which the IoU is the highest above a
predetermined threshold. We set this threshold to 0.1 instead
of the standard 0.5 used in 2D imaging [13] to better align
with the reality of 3D image processing and the instances size
[20]. Consequently, we label unpaired predicted lesions as
false positives, and unpaired GT lesions as false negatives.

Confluent lesion units identification: We further iden-
tify a subset of CLU Iclu ⊂ I defined by:

Iclu = {i | 0 < IoU(i, j) < 1 ; ∀ i ∈ I, j ∈ Icc} (3)

where I is the set of all GT instances, and Icc is the set of
instances obtained through CC post-processing on the GT bi-
nary lesion mask.

Semantic segmentation, or voxel-wise metrics, include
the Dice Score (DSC), DSCTP, the dice score computed only
on correctly true positive (TP) instances and DSCTP,CLU, the
dice score computed only on TP CLUs.

Detection metrics, computed based on the matching
strategy described earlier, include Precision, Recall, F1 and
absolute difference in count (DiC) between the number of
predicted and GT instances. We also introduce the confluent
lesion unit recall (RecallCLU), designed to measure how often
CLUs have correctly been detected:

RecallCLU =
|TPCLU|
|Iclu|

(4)

where TPCLU is the number of correctly predicted CLUs.
Instance segmentation-specific metrics: Finally, we

also compute Panoptic Quality (PQ). The PQ measure com-
bines Segmentation Quality (SQ) and Recognition Quality
(RQ). Specifically, PQ is computed as follows:

SQ =

∑
(i,j)∈M

IoU(i, j)

|TP|
; RQ =

|TP|
|TP|+ 1

2 |FP|+ 1
2 |FN|

(5)
PQ = SQ × RQ (6)

where M ⊂ R2 is the set of matched instance pairs such that
|M| = |TP|, FP is the set of false positive instances and FN
the set of false negative instances.

3.2. Dataset

Our dataset includes 63 MS patients, aged 22-66 years. Brain
images of participants were acquired using a 3T Signa Pre-
mier General Electrics MRI scanner at Saint-Luc University
Hospital in Brussels, Belgium. Reference lesion instance seg-
mentation was performed by two experts (A.S & P.M.) upon
consensus, using 3D-FLAIR images. After exclusion of cor-
tical and infratentorial lesions, 1104 lesions were identified,
of which 221 were considered as CLUs according to (3).

3.3. Experimental setting

The dataset was split into 47 subjects for training, 13 for val-
idation, and 13 for dedicated testing, with randomized par-
titions to ensure comparable lesion count and volume distri-
butions. ConfLUNet was compared to a semantic 3D U-Net
baseline on the test set. This baseline generates a semantic
WML mask, further instantiated via CC and ACLS to produce
instance lesion masks termed UNet+CC and UNet+ACLS.
For all methods, connected components or instances whose
size were below 3mm in any axes or below 14mm3 in vol-
ume were removed, according to the clinical definition of a
MS lesion [21]. This setup allows to minimize variations from
semantic segmentation quality.

3.4. Experiments

In all experiments, all parameters were fixed except for α and
β, respectively the weights of center and offsets losses, and
the learning rate ({1e−4, 1e−5}). To give roughly the same
importance to every loss, a grid search was conducted with
values of α ∈ {500, 1000, 1200, 1500, 2000} and values of
β ∈ {0.1, 0.3, 0.5} totaling to 30 experiments. All models
were trained for 300 epochs. Finally, all validation metrics
were computed for the 10 models achieving the highest DSC
on the validation set, and the best-performing model (α =
2000, β = 0.5, lr=1e−4) was compared with the baselines on
the test set. A comparison of this model with the baselines on
the validation and test set is shown on Table 1.

4. RESULTS

Table 1 provides a summary of ConfLUNet and the base-
line methods’ performance, assessed on the validation and
test sets. This section only considers the results on the test
set. Regarding detection metrics first, ConfLUNet outper-
forms UNet+CC and UNet+ACLS in Precision, Recall and
F1 measures, and has mixed results concerning DiC. Regard-
ing segmentation metrics, ConfLUNet achieves higher DSC
and DSCTP,CLU , but has mixed results when it comes to
DSCTP , performing better than UNet+ACLS but worse than
UNet+CC. Finally, ConfLUNet also surpasses the baseline
methods when it comes to PQ. Figure 2 shows illustrative ex-
amples of the LIM produced by each method.



Method Precision (%) Recall (%) F1 (%) RecallCLU (%) DiC ↘ DSC (%) DSCTP (%) DSCTP, CLU (%) PQ (%)

Va
lid

at
io

n 3D U-Net + CC 76.2 ± 19.5 66.0 ± 16.0 70.7 ± 18.1 44.2 ± 12.4 2.8 ± 5.1 70.3 ± 12.0 77.0 ± 4.9 65.2 ± 13.1 45.1 ± 12.7

3D U-Net + ACLS 67.7 ± 16.2 78.8 ± 13.3 72.8 ± 13.7 82.9 ± 23.6 12.6 ± 21.1 66.4 ± 10.6 64.8 ± 6.9 68.0 ± 12.0 35.9 ± 7.9

ConfLUNet (ours) 66.8 ± 14.3 89.5 ± 10.8 76.5 ± 13.3 85.4 ± 18.6 8.2 ± 10.8 71.1 ± 6.7 76.6 ± 5.9 74.3 ± 9.5 47.7 ± 6.9

Te
st

3D U-Net + CC 61.5 ± 18.3 63.0 ± 20.6 62.2 ± 16.9 19.4 ± 20.8 4.8 ± 4.1 58.1 ± 15.7 73.6 ± 11.3 31.6 ± 34.1 36.4 ± 11.2

3D U-Net + ACLS 56.6 ± 16.8 78.5 ± 19.9 65.7 ± 20.4 54.6 ± 50.3 11.5 ± 13.0 55.0 ± 16.8 62.3 ± 9.3 36.2 ± 36.8 30.2 ± 9.2

ConfLUNet (ours) 63.1 ± 18.2 82.1 ± 22.7 71.4 ± 21.7 70.0 ± 21.2 6.6 ± 8.1 59.5 ± 14.3 71.8 ± 9.5 53.3 ± 25.3 40.0 ± 10.9

Table 1: Comparison between ConfLUNet and 3D U-Net semantic segmentation baseline model + Connected Components
(CC) or Automated Confluent Lesion Splitting (ACLS) as post-processing. Results are on the Validation and Test sets. Values
averaged over all patients in the partition set along with the standard deviation. PQ: Panoptic Quality, DSC: Dice Score, DSCTP:
Dice Score at True Positives, DSCTP, CL: Dice Score at true positive confluent lesions, DiC: Absolute Different in Count.

FLAIR GT UNet+CC UNet+ACLS ConfLUNet

Fig. 2: Examples of lesion instance masks produced by
UNet+CC, UNet+ACLS and ConfLUNet, drawn from the
test dataset. GT: Ground Truth; CC: connected components;
ACLS: Automated Confluent Lesion Splitting.

ConfLUNet clearly outperforms previous instantiation
strategies by improving detection metrics and maintaining
high segmentation performance. It surpasses UNet+CC by
tripling CLUs’ detection rate and nearly doubling their seg-
mentation metric, empirically proving this method is sub-
optimal to detect CLUs (cf sec. 1 & 2; Figs. 1c and 2). The
difference in DiC can be attributed to UNet+CC’s tendency to
predict a lower number of lesions, missing most CLUs. Re-
garding DSCTP , UNet+CC’s slight superiority is potentially
due to the fact it detected fewer lesions than ConfLUNet (116
v. 145). A paired t-test revealed no significant difference in
that metric for the two methods (p ≈ 0.3). Furthermore, Con-
fLUNet surpasses UNet+ACLS in all metrics, and achieves

1.5 times its score on the segmentation of CLUs.
Among the four subjects for which models performed the
worst in the test set, three had noisy images due to motion
artifacts, and one had only one large tumefactive lesion. This,
along with the small sizes of the different datasets, contributes
to the high variability across patients, and the poor general-
ization. Additional analysis showed that most discrepancies
between ConfLUNet and experts involved small lesions: un-
detected GT lesions had lower volumes than detected ones
(p < .05), and FP lesions had lower volumes than TP le-
sions (p < .0001). Additionally, out of the 94 FP lesions, 28
exhibited gliosis, frequently including one or multiple small
vascular lesions, 22 were correctly outlined as cortical or
infratentorial lesions, and 31 were re-evaluated as TP.

5. DISCUSSION AND CONCLUSION

The results presented in this paper provide empirical ev-
idence supporting the theoretical argument that both the
CC and ACLS instantiation methods are suboptimal for ac-
curately detecting or segmenting CLUs. CC struggles in
detecting CLUs, whereas ACLS, despite improving their de-
tection rate, lacks precision and faces challenge with their
segmentation. Contrary to the baseline methods, ConFLUnet
learns both to detect lesion centers and how to correctly as-
sign voxels to each center. However, additional refinement
through advanced hyperparameter tuning and thorough val-
idation on larger in- and out-of-domain datasets, including
annotations from multiple experts, is needed. Currently, the
major hurdle for extensive exploration of end-to-end WML
instance segmentation is the scarcity of publicly available
datasets with instance segmentation masks. Challenges like
those suggested in [9, 10] could significantly enhance the
field by promoting better model generalization across diverse
datasets, similar to the progress seen in semantic segmenta-
tion [22]. This improvement would facilitate the integration
of these methods into clinical practice. Still, ConfLUNet’s
superiority across nearly all metrics underscores the potential
of end-to-end instance segmentation approaches to address
the challenge of CLs in WML instance segmentation.
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