
LORENZ REGRESSION: AN
IMPLEMENTATION OF THE LORENZ
AND PENALIZED LORENZ
REGRESSIONS IN R

Alexandre Jacquemain, Cédric
Heuchenne

LIDAM Discussion Paper ISBA
2023 / 27

ISBA
Voie du Roman Pays 20 - L1.04.01

B-1348 Louvain-la-Neuve

Email : lidam-library@uclouvain.be

https://uclouvain.be/en/research-institutes/lidam/isba/publication.html

https://uclouvain.be/en/research-institutes/lidam/lfin/publications.html

LorenzRegression: an implementation of the
Lorenz and penalized Lorenz regressions in R

Alexandre Jacquemain
UCLouvain

Cédric Heuchenne
University of Liège

Abstract

Lorenz regressions are statistical tools for measuring the extent of in-
equality in a response variable that is attributable to a set of covariates.
These regression techniques estimate the explained Gini coefficient, a mea-
sure of inequality in the conditional expectation of the response given the
covariates, assuming a single-index model. In this paper, we describe
the LorenzRegression package, which implements the non-penalized
and penalized Lorenz regressions. The non-penalized procedure is im-
plemented via a genetic algorithm, making use of the GA package. For
the penalized case, the user can choose between using a lasso or SCAD
penalty. In the former, the estimation procedure is performed with the
FABS algorithm, while the latter is implemented with the SCAD-FABS
algorithm. Computationally intensive parts of the code are written in
C++. A mathematical description of the procedure is provided. The main
function is carefully described and its use is illustrated on income data.

1 Introduction
Lorenz regressions (Heuchenne and Jacquemain, 2022) are used in economics to
measure the extent of inequality in a response variable Y that can be attributed
to a set of covariates X. Formally, it provides inference for the explained Gini
coefficient, a measure of the inequality in the conditional expectation of Y given
X. A direct application arises when the covariates are circumstances beyond
the individual’s control. In that case, the explained Gini coefficient connects
with the literature on inequality of opportunity (Jacquemain et al., 2022b).

The proposed method possesses several advantages. It assumes a single-
index model which, due to the presence of a nonparametric link function, is
more flexible than the parametric models often used in inequality measurement.
Furthemore, an estimator for the explained Gini coefficient can be obtained
without having to estimate the link function. The penalized Lorenz regression
(Jacquemain et al., 2022a) automatically selects the relevant covariates and

1

avoids overestimation of the explained Gini coefficient. Both the non-penalized
and penalized methods come with a proper inference procedure.

The LorenzRegression package is the first and only implementation so far
of the Lorenz regression methodology in R, (R Core Team, 2021). More gen-
erally, it can be used to measure inequality, through the Gini coefficient and
concentration index, and to graphically represent it, via the Lorenz and con-
centration curves. We refer the reader to Section 2.1 for a definition of these
objects. All computations may include sample weights. Inequality measure-
ment does not benefit from a widespread implementation in R, even though a
few packages are publicly available from the Comprehensive R Archive Network
(CRAN). The laeken package (Alfons and Templ, 2012) estimates indicators of
social exclusion from complex surveys and can be used to compute Gini coeffi-
cients. The ineq package (Zeileis, 2014) estimates several inequality measures,
including the Gini coefficient and the Lorenz curve. The wINEQ package (Ma-
chowska et al., 2022) estimates inequality measures for weighted data, including
the Gini coefficient. While we are not aware of any package available on CRAN,
an open source implementation of the concentration index is proposed in the
rineq package (Devleesschauwer et al., 2017). It also comes with a parametric
decomposition method, following the procedure proposed by Speybroeck et al.
(2010).

Estimation in the Lorenz regression is based on maximizing a discrete objec-
tive function. Due to lack of differentiability, the numerical solution is obtained
through a genetic algorithm, implemented via the R package GA (Scrucca,
2013). In the penalized Lorenz regression, the issue is circumvented by replac-
ing the discrete objective function with a smooth approximation. The numerical
solution is obtained via the FABS algorithm (Shi et al., 2018) in the case of a
lasso penalty and via the SCAD-FABS algorithm (Jacquemain et al., 2022b)
if the SCAD penalty is chosen instead. In the LorenzRegression package,
the main functions are implemented in C++ and integrated in R, via the Rcpp
(Eddelbuettel and Balamuta, 2018) and RcppArmadillo (Eddelbuettel and
Sanderson, 2014) packages. To further reduce computation time, parallel com-
puting is implemented with the foreach package (Microsoft and Weston, 2022).
Finally, all plots are produced with ggplot2 (Wickham, 2016).

The paper is organized as follows. In Section 2, we introduce the model
settings, the explained Gini coefficient and the Lorenz regression procedure.
Section 3 focuses on the penalized case. Section 4 presents the main function of
the package and the associated S3 methods. Section 5 illustrates the use of the
package on a real-data example. Finally, Section 6 concludes.

2 The Lorenz regression
2.1 Model settings and the explained Gini coefficient
We consider an economic outcome Y ∈ R with 0 < E[Y] < ∞, where E[·] is the
expected value, and a vector of p covariates X = (X1, . . . , Xp)⊺ ∈ Rp. We start

2

by introducing measures of inequality. The Lorenz curve of Y evaluated at p is
defined as

LCY (p) = E[Y 1{FY (Y) ≤ p}]
E[Y] ,

where FY (·) is the cumulative distribution function (CDF) of Y and 1(·) is
the indicator function. It measures the share of total outcome held by the
proportion p of the individuals with the smallest values of Y . In case of perfect
equality, the Lorenz curve coincides with the 45◦ line. The Gini coefficient is
twice the area between the 45◦ line and the Lorenz curve. It is also equivalent
to the following definition

GiY = 2COV[Y, FY (Y)]
E[Y] ,

where COV[·, ·] is the covariance operator. When the ordering is produced by
another variable, say Xk, the inequality measure thus obtained is called the
concentration index, defined as

CIY,Xk
= 2COV[Y, FXk

(Xk)]
E[Y] .

Similarly, the Lorenz curve becomes the concentration curve.
In the context of the Lorenz regression, we assume the single-index model

E[Y |X = x] = H(x⊺θ0), (1)

where E[·|·] is the conditional expectation, H(·) is a strictly increasing link
function and θ0 is a vector of unknown parameters that satisfies ||θ0|| = 1, where
|| · || denotes the L2-norm. The latter constraint is imposed in order to ensure
the identifiability of the model. The explained Gini coefficient (Heuchenne and
Jacquemain, 2022) is defined as

GiY,X = GiH(X⊺θ0),

and satisfies GiY,X ≤ GiY . It represents the inequality of Y that survives when,
for each individual, the information contained in his or her covariates is used to
predict Y . This definition is equivalent to

GiY,X = max
θ

2COV[Y, Fθ(X⊺θ)]
E[Y] , (2)

where Fθ(·) is the CDF of X⊺θ. In other words, the explained Gini coefficient
is also the highest value that the concentration index of Y with respect to a
linear combination of the covariates X can take. Interestingly, the formulation
presented in (2) does not depend on H(·).

3

2.2 Estimation procedure and algorithm
The estimation procedure developed hereunder is based on Heuchenne and
Jacquemain (2022), and on Jacquemain et al. (2022b) for the adaptation to
sample weights. Let (X⊺

i , Yi)⊺, with i = 1, . . . , n be an i.i.d sample with the
same distribution as (X⊺, Y)⊺. Assume that we have at our disposal a vec-
tor of sample weights π = (π1, . . . , πn)⊺ satisfying πi ≥ 0 ∀i = 1, . . . , n and∑n

i=1 πi = 1. We define the relative rank of observation i in the vector X⊺θ as

F̂i(θ) =
n∑

j=1
πj

(
1{X⊺

i θ ≥ X⊺
j θ} − 1{X⊺

i θ = X⊺
j θ, Ui > Uj}

)
, (3)

where (U1, . . . , Un)⊺ are i.i.d uniform (0, 1) random variables. The second in-
dicator is an adaptation to ties and is discussed in Section 3 of Heuchenne
and Jacquemain (2022). An alternative to this random allocation would con-
sist in using the mean rank, where 1{X⊺

i θ = X⊺
j θ, Ui > Uj} is replaced by

1
21{X⊺

i θ = X⊺
j θ}.

In the Lorenz regression procedure, the vector θ0 and the explained Gini
coefficient are estimated with

θ̂LR = arg max
θ,||θ||=1

n∑
i=1

πiYiF̂i(θ) (4)

Ĝi
LR
Y,X = 2

Y

n∑
i=1

πiYiF̂i(θ̂LR) − 1, (5)

where Y =
∑n

i=1 πiYi. This estimation procedure does not entail to assume a
specific form for H(·) nor does it need to be estimated. Notice however that
θ 7→ F̂i(θ) is discrete. In the LorenzRegression package, the optimization
programme displayed in (4) is solved via a genetic algorithm, implemented in
the function Lorenz.GA(). Its usage is summarized as follows.

Lorenz.GA(YX_mat, ties.method=c("random","mean"),
ties.Gini=c("random","mean"), seed.random=NULL, weights=NULL)

The only required argument YX mat is a matrix of dimensions n × (p + 1) where
the first column is the response vector Y and the remaining ones are the co-
variates X. The arguments ties.method and ties.Gini indicate how ties are
handled in the computation of F̂i(θ). By default, both arguments are set to
‘‘random’’, meaning that Equation (3) is used. If ‘‘mean’’ is chosen, the
mean rank solution is used instead. The existence of two separate arguments
stems from the fact that ties influence first the estimation of θ0 through Equation
(4) and, second, the estimation of GiY,X through Equation (5). To ensure the
comparability with other methods, one could choose to estimate the explained
Gini coefficient with the mean rank solution, even though the random allocation
is used to estimate θ0. In that case, one would set ties.method="random" but
ties.Gini="mean". The argument seed.random imposes a fixed seed before

4

generation of the sample of uniform data when the random allocation is used.
The default is NULL, in which case no seed is imposed. Finally, a vector of sam-
ple weights can be provided using the argument weights. By default, it is set
to NULL, in which case all observations are given a weight of 1/n. We refer the
reader to the help file of Lorenz.GA() for details on additional arguments.

In a genetic algorithm, the idea is to start from a population of solution
candidates and iteratively make this population evolve such that it is composed
of solutions with an increasingly higher score. The evolution is governed by the
principles of crossover and mutation, while the score is assessed via a fitness
function. We refer the reader to Scrucca (2013) for a more complete description
and the implementation in R via the GA package. Internally, Lorenz.GA() calls
function ga() from the GA package, with the following fitness function

f(θ) =
[
1 −

∣∣∣||θ|| − 1
∣∣∣] n∑

i=1
πiYiF̂i(θ),

where the factor multiplying the sum ensures that the final solution satisfies the
norm constraint ||θ|| = 1. To speed up computations, the function is written in
C++ and integrated in R using RcppArmadillo.

3 The penalized Lorenz regression
In practice, an economist may want to determine the explained Gini coefficient
from a large set of covariates, without having to perform a pre-selection prior to
estimation. In that context, the Lorenz regression procedure detailed in the last
section suffers from two issues. First, similarly to the R2 in linear regression,
Ĝi

LR
Y,X never decreases and, in practice, slightly increases as we introduce new

covariates, even if they are actually irrelevant. On a large set of covariates, the
explained Gini coefficient is therefore prone to be overestimated. Second, the
genetic algorithm may fail to converge when the number of covariates becomes
large.

To solve these issues, Jacquemain et al. (2022a) introduce a penalized estima-
tion procedure, where the discrete empirical distribution function displayed in
(3) is replaced by a differentiable approximation. We now turn to this method.

3.1 Estimation procedure and algorithm
The penalized Lorenz regression solves

θ̂PLR = arg max
θ,||θ||=1

{ n∑
i=1

n∑
j=1

πiπjYiK

(
X⊺

i θ − X⊺
j θ

h

)
−

p∑
k=1

pλ(|θk|)
}

, (6)

where K(·) is the integral of a kernel function, h is a bandwidth, pλ(·) is a
nonconcave penalty function and λ > 0 is a regularization parameter. We

5

advocate to use the SCAD penalty, which satisfies

p′
λ(x) =

λ if x ≤ λ
aλ−x
a−1 if λ < x ≤ aλ

0 if x > aλ,
(7)

where x > 0 and a > 2 is an arbitrary constant. In what follows, we call
“active” covariates those for which θ0,k ̸= 0 and “non-active” those satisfying
θ0,k = 0, where θ0,k is the kth element of θ0. The SCAD penalty ensures that
the estimated coefficients of non-active covariates are set to 0 with a probability
tending to one. Also, the vector of estimated weights associated to the active
covariates is asymptotically normal, with a convergence rate unaffected by the
selection process. We refer the reader to Theorem 2 in Jacquemain et al. (2022a)
for more details. An alternative would consist in using the lasso penalty, where
pλ(x) = λx. An estimator Ĝi

PLR
Y,X for the explained Gini coefficient is obtained by

plugging θ̂PLR in (5). In practice, inference can be performed using bootstrap.
In the LorenzRegression package, the penalized Lorenz regression may

be implemented using either the lasso or the SCAD penalty. The former is
solved using the FABS algorithm proposed by Shi et al. (2018), adapted to
our objective function, and implemented in the function Lorenz.FABS(). The
latter is solved using the SCAD-FABS algorithm proposed by Jacquemain et al.
(2022a) and implemented in the function Lorenz.SCADFABS().

In what follows, we focus on the Lorenz.SCADFABS() function. We first
provide a brief explanation of the algorithm, then turn to the usage of the
function. For further details, we refer the reader to Section 3.2 of Jacquemain
et al. (2022a). The SCAD-FABS solves

min
θ

Q(θ) = L(θ) +
p∑

k=1
pλ(|θk|)

where Q(·) is the objective function, L(·) is the loss function and pλ(·) is the
SCAD penalty. At each iteration, the algorithm updates only one coefficient, by
a fixed amount of + or − ϵ, where ϵ > 0 is the step size of the algorithm. This
operation either reduces the size of the coefficient (backward step) or increases
it (forward step). Let θt and θt+1 denote the vectors of coefficients at iterations
t and t + 1. The update rule is then of the form

θt+1 = θt − sign(θt
k)1kϵ (backward step)

θt+1 = θt − sign
(
∇kL(θt)

)
1kϵ (forward step)

where 1k denotes the vector of size p taking value 1 at the kth component and 0
everywhere else, θt

k is the kth element of θt, ∇ is the gradient vector and ∇k its
kth element. The fact that a forward step necessarily increases the amplitude
of the coefficient is settled by Lemma 1 in Jacquemain et al. (2022a). The index

6

k corresponding to that of the updated coefficient is determined by

k = arg min
l∈At

{
−∇lQ(θt)sign(θt

l)
}

(backward step)

k = arg max
l=1,...,p

{
|∇lL(θt)| − p′

λ(|θt
l |)

}
(forward step)

where At = {k ∈ {1, . . . , p} : θt
k ̸= 0} and p′

λ(|θt
k|) is defined according to (7)

for |θt
k| > 0 and p′

λ(|θt
k|) is set to λ if θt

k = 0. The SCAD-FABS solves the
minimization problem for a path of λ values, which may be imposed by the user
or determined within the algorithm, as in the FABS algorithm. In the penalized
Lorenz regression, we incorporate the constraint ||θ|| = 1 by considering the
Lagrangian function related to our problem. Accordingly, the loss function is

L(θ) = −
n∑

i=1

n∑
j=1

πiπjYiK

(
X⊺

i θ − X⊺
j θ

h

)
+ γ

p∑
k=1

θ2
k, (8)

where γ > 0. The main arguments of the Lorenz.SCADFABS() function are
described in the following code excerpt.

Lorenz.SCADFABS(YX_mat, weights=NULL, h, eps, a = 3.7,
lambda="Shi", gamma = 0.05)

As in the function Lorenz.GA(), YX mat and weights provide the data and
optional sample weights. The remaining arguments correspond to tuning pa-
rameters of either the penalized problem or of the SCAD-FABS algorithm. The
smoothness of the objective function is determined by the kernel and the band-
width. Concerning the former, we impose K(u) = [9

8 u− 5
8 u3 + 1

2]1{−1 ≤ u ≤ 1}
to ensure good theoretical properties. The bandwidth h is determined via the
argument h. The step size ϵ of the SCAD-FABS algorithm is set by the argu-
ment eps. The SCAD penalty depends on two parameters, a and λ. The former
is ruled by the argument a, with default value of 3.7, as advised in Fan and Li
(2001). The argument lambda takes three possible values. By default, it is set
to ‘‘Shi’’, where the path of λ values is determined within the algorithm, as in
the FABS procedure of Shi et al. (2018). If set to ‘‘grid’’, the path is defined
by a grid, equidistant in the log scale. Otherwise, the user may provide a vector
of values. Finally, the argument gamma corresponds to the Lagrange multiplier
of Equation (8), with a default value of 0.05.

3.2 Choice for the bandwidth and regularization parame-
ter

The smoothness of the kernel and the extent of penalization are crucial param-
eters of the estimation procedure. A careful choice for the bandwidth h and
regularization parameter λ is therefore needed. The SCAD-FABS algorithm re-
turns vectors of estimated coefficients for a path of λ values and a fixed h. As
proposed in Jacquemain et al. (2022a), we advise to repeat this process over a

7

grid of values for the bandwidth satisfying h = Cn−1/5.5. In the LorenzRe-
gression package, three methods are available to select the pair (λ,h): BIC,
bootstrap and cross-validation.

Denote by Ĝi(λ, h) the estimated explained Gini coefficient obtained for
given values of λ and h. A first option consists in choosing the pair (λ, h) that
maximizes the following BIC criterion

BIC-score(λ,h) = log(Ĝi(λ, h)) − k(λ,h)
log(n)

2n
,

where k(λ,h) is the number of covariates selected using (λ, h). This criterion
is an adaptation of the BIC score proposed by Lin and Peng (2013). Another
possibility benefits from the bootstrap procedure used to perform inference on
the explained Gini coefficient. Let B denote the number of bootstrap resamples
and b = 1, . . . , B. At each iteration b, two samples are produced. First, a
training sample (X∗

b , Y ∗
b) is obtained by drawing with replacement from the

original data. Second, a validation sample (X̃∗
b , Ỹ ∗

b) is obtained as the out-of-
bags, i.e. the data unused in the training sample. The SCAD-FABS algorithm
is run on (X∗

b , Y ∗
b) and yields an estimated vector of coefficients θ̂∗

b (λ, h). An
out-of-bag score for iteration b, G̃i

∗
b(λ, h), is obtained by plugging θ̂∗

b (λ, h) and
(X̃∗

b , Ỹ ∗
b) in (5). The bootstrap selection procedure chooses the pair (λ, h) that

maximizes the out-of-bag score

OOB-score(λ,h) = 1
B

B∑
b=1

G̃i
∗
b(λ, h).

A final option uses K-fold cross-validation, where the data are split into
K folds of roughly equivalent sizes. For each iteration, (K − 1) folds are used
as training samples and the remaining one is used as validation sample. The
procedure is then similar to the bootstrap selection. A cross-validation score
is defined for each iteration, call it G̃i−k(λ, h). The cross-validation selection
procedure chooses the pair (λ, h) that maximizes the cross-validation score

CV-score(λ,h) = 1
K

K∑
k=1

G̃i−k(λ, h).

4 The LorenzRegression package
4.1 The Gini.coef(), Lorenz.curve() and Lorenz.graphs()

functions
The Lorenz.Regression package offers several functions to analyze the in-
equality pattern characterizing some data. We first describe the function Gini.coef(),
which computes a Gini coefficient or a concentration index. Its arguments are

• y: vector gathering the variable of interest for each observation.

8

• x: vector gathering the variable to use for the ranking of each observation.
By default, it is set to y and the function computes the Gini coefficient of
y. If the user supplies a vector x, the output becomes the concentration
index of y with respect to x.

• na.rm: should missing values be deleted. Default value is TRUE. If FALSE
is selected, missing values generate an error message.

• ties.method: determines how ties are handled. By default, the argument
is set to "mean" and the average rank is used. If set to random, the random
allocation is used instead.

• seed: fixes what seed is used if the random allocation is chosen. Default
is NULL, in which case no seed is imposed.

• weights: vector of sample weights. Default is NULL, in which case each
observation is given a weight of 1/n, where n is the number of observations.

With similar arguments, the function Lorenz.curve() can either produce the
Lorenz curve of y or the concentration curve of y with respect to x. The output
is a function, whose unique argument is a proportion between 0 and 1. The
function Lorenz.curve() admits an extra logical argument graph. If set to
TRUE, a plot of the curve is displayed. The default value is FALSE, in which
case no plot is produced.

Finally, function Lorenz.graphs() allows the user to plot simultaneously
the Lorenz curve of a variable, as well as several concentration curves. It takes
the following two main arguments:

• formula: standard formula object of the form Y X1 + X2 + ...

• data: data frame containing the variables displayed in the formula.

The output of the function is a graph of the Lorenz curve of Y and of each of
the concentration curves of Y with respect to the covariates X1, X2, ... indicated
in the formula.

4.2 The Lorenz.Reg() function
This section discusses the core function of the LorenzRegression package.
The function Lorenz.Reg() allows the user to fit a Lorenz or penalized Lorenz
regression. Its usage is similar to other regression functions and several methods
such as print(), coef(), summary(), plot() and confint() have been defined
to provide detailed information on the fitted model. It uses the following argu-
ments.

• formula: standard formula object of the form Y X1 + ... determining
the response variable and the covariates.

• data: data frame containing the variables displayed in the formula.

9

• standardize: whether covariates should be standardized prior to estima-
tion. Default value is TRUE, in which case covariates are standardized.
We advise not to set it to FALSE, especially if a penalized Lorenz re-
gression is fitted. Without standardization, covariates are not treated on
equal footing by the penalized procedure.

• weights: vector of sample weights. Default is NULL, in which case each
observation is given a weight of 1/n, where n is the number of observations.

• parallel: determines whether parallel computing should be used to dis-
tribute the computations between different CPUs. Default value is FALSE,
in which case no parallel computing is performed. If set to TRUE, the
number of core is set to detectCores()-1. The user can also supply a
numerical value determining the number of cores to use.

• penalty: determines whether a non-penalized (’’none’’, default) or a
penalized Lorenz regression should be fitted. In the latter case, the user
has the choice between the SCAD (’’SCAD’’) and the lasso (’’LASSO’’)
penalty.

The following arguments are particular to the penalized Lorenz regression.

• h.grid: grid of values for the bandwidth. The default is determined as

h.grid=c(0.1,0.2,1,2,5)*nrow(data)ˆ(-1/5.5)

• eps: step size of the algorithm. Default value is 0.005. Typically, lower
values of eps lead to longer and finer paths but require more computation
time.

• sel.choice: determines the selection method for the bandwidth and reg-
ularization parameter. As explained in Section 3, three methods are avail-
able: BIC, cross-validation and bootstrap. Possible values are any subset
of the vector c(’’BIC’’,’’CV’’,’’Boot’’). The default is ’’BIC’’.

The next three parameters are only used if sel.choice contains ’’CV’’.

• nfolds: number of folds. Default value is 10.

• seed.CV: value used as seed before the folds are formed. Default value is
NULL, in which case no seed is imposed.

• foldID: determines how the folds are formed. The default value is NULL,
in which case the folds are determined randomly. Otherwise, the user
can supply a vector of size n determining the index of the fold for each
observation.

Several parameters are particular to the bootstrap. In the case of a non-
penalized Lorenz regression, bootstrap is only used to perform inference. If a
penalized Lorenz regression is fitted instead, bootstrap is used both as selection
method and to perform inference.

10

• Boot.inference: determines whether bootstrap inference should be pro-
duced. Since bootstrap may require a lot of computation time, the default
value is FALSE. In the case of a penalized Lorenz regression, this param-
eter is automatically turned to TRUE if sel.choice contains ’’Boot’’.
Conversely, if Boot.inference is set to TRUE, ’’Boot’’ is added to
sel.choice.

• B: number of bootstrap repetitions. Default value is 500.

• alpha: significance level for the bootstrap confidence intervals. Default is
0.05.

• bootID: determines how the bootstrap resamples are formed. The default
value is NULL, in which case the samples are drawn with replacement
from the original data. Otherwise, the user can supply a matrix where
each row provides the ID of the observations selected in each bootstrap
resample.

• seed.boot: value used as seed before the bootstrap resamples are formed.
Default value is NULL, in which case no seed is imposed.

The last two arguments are mainly useful when the estimation is performed in
several steps. For example, the original estimation is fitted on a single computer
and the bootstrap iterations are distributed between different machines.

• LR: output of a call to Lorenz.GA() or to PLR.wrap(). The latter is a
wrapper of functions Lorenz.FABS() and Lorenz.SCADFABS(). We refer
the reader to the help of this function for extra information.

• LR.boot: output of a call to Lorenz.boot(), which allows the user to
perform bootstrap for the Lorenz and penalized Lorenz regressions. Again
we refer the reader to the help for further details.

Finally, additional parameters corresponding to arguments of functions Lorenz.GA(),
Lorenz.FABS() and Lorenz.SCADFABS() can be passed in the ... argument.

If the penalty argument is set to none, the function outputs an object of
class LR. Otherwise, it outputs an object of class PLR. The associated S3 methods
are illustrated in the next section.

5 Illustration
We start by loading the packages required in this example.

R> library(LorenzRegression)
R> library(ineq)

Throughout this illustration, we use the dataset Ilocos from the R package
ineq (Zeileis, 2014), which contains economic data on 632 households in the
Philippines. We use total household income (income) as response variable and
the following covariates :

11

• sex: a factor with two levels, "male" (518 observations) and "female"
(114 observations), indicating the biological sex of the household head;

• family.size: a numerical variable indicating the family size. Results
range from 1 to 13, with a mean of 5.19;

• urbanity: a factor with two levels, "rural" (301 observations) and "urban"
(331 observations);

• province: a factor with four levels: "Ilocos Norte" (65 observations),
"Ilocos Sur" (68 observations), "La Union" (116 observations) and "Pangasinan"
(383 observations).

The data are loaded with

R> data("Ilocos", package="ineq")

Descriptive analysis

The Gini coefficient of income and the concentration index of income with
respect to family.size are computed using Gini.coef().

R> Gi <- Gini.coef(Ilocos$income)
R> Gi
[1] 0.43
R> CI.mean <- Gini.coef(Ilocos$income,Ilocos$family.size)
R> CI.mean
[1] 0.089

Since family.size is a discrete covariate, ties appear in the ordering generated
by this variable. In the computation of the concentration index, the mean rank
is used by default. In what follows, we use the random allocation instead,
repeating the operation 1000 times with a different seed.

R> CI.random <- sapply(1:1000, function(i)Gini.coef(Ilocos$income,Ilocos$family.size,
+ ties.method = "random", seed = i))
R> boxplot(CI.random)
R> abline(h=CI.mean)

Figure 1 displays a boxplot of the concentration indices thus obtained. The
distribution is centered on the solution obtained with the mean rank, indicated
by the horizontal line. The size of the boxplot indicates how the concentration
index varies as we change the rule determining how ties are broken. We now
compute the Lorenz curve of income and evaluate it on a small grid of values.

R> LC <- Lorenz.curve(Ilocos$income)
R> p <- seq(0,1,length.out=5)
R> LC(p)
[1] 0.000 0.079 0.214 0.446 1.000

12

0.
08

2
0.

08
6

0.
09

0
0.

09
4

Figure 1: Concentration index of income with respect to family.size - Ran-
dom allocation

Finally, we display the Lorenz curve of income and the concentration curve of
income with respect to family.size in Figure 2. They are obtained using the
function Lorenz.graphs().

R> Lorenz.graphs(income ˜ family.size, data = Ilocos)

The Lorenz regression

We fit the Lorenz regression to the Ilocos data, with income as response vari-
able. The covariates include sex, family.size, urbanity and province. We
also include interactions between sex and family.size, and between sex and
urbanity. We use the mean rank in the estimation of the explained Gini coef-
ficient, by setting ties.Gini = "mean".

R> LR <- Lorenz.Reg(income ˜ sex*family.size + sex*urbanity + province,
+ data = Ilocos, ties.Gini = "mean", seed.random = 456,
+ Boot.inference = TRUE)

The vector of estimated coefficients is retrieved with method coef().

R> coef(LR)
sexmale family.size urbanityurban

0.318 0.126 0.845
provinceIlocos Sur provinceLa Union provincePangasinan

0.071 -0.219 -0.226

13

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Cumulative share of the population

C
um

ul
at

iv
e

sh
ar

e
of

 in
co

m
e

Ranking:

income

family.size

Figure 2: Lorenz curve of income and concentration curve of income with
respect to family.size

sexmale:family.size sexmale:urbanityurban
-0.028 -0.254

A summary of the model is provided with method summary(). The estimated ex-
plained Gini coefficient is of 15.4%, which corresponds to 36.2% of the observed
inequality. The summary also displays a table with the estimated coefficients.
Let us focus on covariate family.size. In Figure 2, we observed a positive
association between income and family.size. This is confirmed by the regres-
sion model since the estimated coefficient is positive. In the descriptive analysis,
we also computed a concentration index of 8.9%. This would be the value of
the explained Gini coefficient if we included only family.size in the regression.
Including the remaining covariates helps us rise explained inequality from 8.9%
to 15.5%.

R> summary(LR)
The explained Gini coefficient is of 0.15452

The Lorenz-R2 is of 0.36191

14

Estimated coefficients and associated p-values
	estimate	p-value
sexmale	0.32	0.21
family.size	0.13	0.01
urbanityurban	0.84	0.00
provinceIlocos Sur	0.07	0.75
provinceLa Union	-0.22	0.20
provincePangasinan	-0.23	0.12
sexmale:family.size	-0.03	0.43
sexmale:urbanityurban	-0.25	0.33

Because we set the argument Boot.inference to TRUE, p-values were com-
puted for each coefficient. At a 5%-level of significance, we see that only
family.size and urbanityurban are significant. A confidence interval for the
explained Gini coefficient is obtained with method confint().

R> confint(LR)
Lower bound Upper bound

0.12 0.19

By default, 95% confidence intervals are constructed, but the level can be
changed using the argument level. Three bootstrap methods are available
and are chosen via the argument boot.method. Parametric boostrap ("Param",
the default) uses the asymptotic normality of the estimated explained Gini coef-
ficient and estimates the variance by bootstrap. Percentile bootstrap ("Perc")
directly plugs in the quantiles of the estimated explained Gini coefficient ob-
tained on the bootstrap resamples. Finally, basic bootstrap ("Basic") is based
on bootstrapping the whole distribution of the estimator.

Confidence intervals for each individual coefficient can be obtained by changing
the parm argument to ’’theta’’. We also change the significance level and the
bootstrap method to illustrate the use of arguments level and boot.method.

R> confint(LR, parm = "theta", level = 0.9, boot.method = "Perc")
Lower bound Upper bound

sexmale -0.373 0.480
family.size 0.022 0.175
urbanityurban 0.601 0.918
provinceIlocos Sur -0.245 0.470
provinceLa Union -0.375 0.179
provincePangasinan -0.399 0.106
sexmale:family.size -0.056 0.059
sexmale:urbanityurban -0.520 0.343

We can also display explained inequality via concentration and Lorenz curves.

15

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Cumulative share of the population

C
um

ul
at

iv
e

sh
ar

e
of

 in
co

m
e

Ranking:

income

index_LR

family_size

Figure 3: Lorenz curve of income, concentration curve of income with respect
to family.size and concentration curve of income with respect to the esti-
mated index

In the following piece of code, we make use of the function Lorenz.graphs() to
produce Figure 3. The red curve is the Lorenz curve of income. The blue curve
is the concentration curve of income with respect to family.size. Finally,
the green curve is the concentration curve of income with respect to the index
estimated by the Lorenz regression. The closer the green curve to the red curve,
the greater the Lorenz-R2, i.e. the more observed inequality is explained by the
regression model.

R> data.plot <- cbind(LR$Fit,Ilocos$family.size)
R> colnames(data.plot) <- c("income","index_LR","family_size")
R> Lorenz.graphs(income ˜ ., data.plot)

The penalized Lorenz regression

We fit the penalized Lorenz regression to the Ilocos data, with the same re-

16

sponse variable and covariates as before. We use the SCAD penalty and choose
the couple (h, λ) by BIC and bootstrap. The step size of the SCAD-FABS al-
gorithm is set to ϵ = 0.01. Finally, parallel computing is used to distribute the
bootstrap iterations across the available CPUs.

R> PLR <- Lorenz.Reg(income ˜ sex*family.size + sex*urbanity + province,
+ data = Ilocos,
+ penalty = "SCAD",
+ sel.choice = c("BIC","Boot"),
+ seed.boot = 123,
+ eps = 0.01,
+ parallel = TRUE)

The coefficients estimated by the SCAD-FABS algorithm are obtained with
method coef(). The output is a list where each element corresponds to a
method of selection for the couple (λ, h).
R> coef(PLR, renormalize = FALSE)
$BIC

sexmale family.size urbanityurban
0.000 0.119 0.767

provinceIlocos Norte provinceIlocos Sur provinceLa Union
0.118 0.247 0.000

provincePangasinan sexfemale:family.size sexmale:family.size
-0.178 0.023 0.000

sexfemale:urbanityrural sexmale:urbanityrural sexfemale:urbanityurban
-0.539 0.000 0.000

sexmale:urbanityurban
0.000

$Boot
sexmale family.size urbanityurban

0.000 0.099 0.995
provinceIlocos Norte provinceIlocos Sur provinceLa Union

0.000 0.000 0.000
provincePangasinan sexfemale:family.size sexmale:family.size

0.000 0.000 0.000
sexfemale:urbanityrural sexmale:urbanityrural sexfemale:urbanityurban

0.000 0.000 0.000
sexmale:urbanityurban

0.000

In presence of categorical covariates, the fit of the penalized Lorenz regression
would depend on the chosen reference category, see Jacquemain et al. (2022b).
We avoid this issue by introducing all dummies in the regression, except for
variables with only two categories. This is the reason why the four provinces
are included in the output of coef(PLR, renormalize = FALSE). Once the
estimation is performed, the vector of coefficients can be transformed to match
a specific choice of reference categories. By setting renormalize=TRUE (the
default), the reference categories are chosen as in the non-penalized case, i.e. as
the first categories in the alphabetical order. Method summary() displays these
transformed coefficients as well as information about the model fit.

17

R> summary(PLR)
Summary of the model fit
	Explained Gini	Lorenz-R2	lambda	h	Number of variables	BIC score	Boot score
BIC	0.1541	0.3609	114.1	1.548	7	-1.906	0.1306
Boot	0.1435	0.3362	3442.9	1.548	2	-1.951	0.1346

Estimated coefficients
	BIC	Boot
sexmale	0.3462	0.0000
family.size	0.0910	0.0989
urbanityurban	0.8386	0.9951
provinceIlocos Sur	0.0832	0.0000
provinceLa Union	-0.0756	0.0000
provincePangasinan	-0.1897	0.0000
sexmale:family.size	-0.0147	0.0000
sexmale:urbanityurban	-0.3462	0.0000

The summary of the model fit includes the estimated explained Gini coefficient
and Lorenz-R2, the selected couple (λ, h), the number of included variables,
as well as the BIC and bootstrap scores. Both selection methods lead to the
same choice for the bandwidth, i.e. h = 1.548. The bootstrap selection method
favours a larger penalty: λ = 3273.96, against λ = 114.13 for the BIC criterion,
and therefore yields a sparser model. The amount of sparsity is represented by
the number of non-zero coefficients before choosing a reference category, which
are displayed in column Number of variables. With the bootstrap selection,
only 2 variables have a non-zero coefficients, against 7 variables with the BIC
procedure. The latter yields an output very similar to the non-penalized re-
gression. The estimated Gini coefficient is of 15.41%, against 15.45% in the
non-penalized case. The estimated coefficients are also of similar magnitudes.
The bootstrap procedure yields an estimated Gini coefficient of 14.38%.

R> plot(PLR)

Method plot() displays several graphs. The first plot is the Lorenz curve of
the response, along with the concentration curves of the response with respect
to the index obtained by each selection method. We do not display this graph
here because we want to compare with the fit obtained with the non-penalized
Lorenz regression. Therefore, we display instead Figure 4, obtained by running
the following piece of code.

R> data.plot$index_PLR.BIC <- PLR$Fit$Index.BIC
R> data.plot$index_PLR.Boot <- PLR$Fit$Index.Boot
R> Lorenz.graphs(income ˜ ., data.plot)

As expected, the concentration curve obtained with BIC is very close to that
obtained with the non-penalized procedure. The concentration curve obtained
with bootstrap reproduces less inequality, since it lies closer to the 45◦ line.
The second plot, given in Figure 5, displays the evolution of the estimated co-
efficients (before transformation related to the choice of reference categories)

18

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Cumulative share of the population

C
um

ul
at

iv
e

sh
ar

e
of

 in
co

m
e

Ranking:

income

index_LR

family_size

index_PLR.BIC

index_PLR.Boot

Figure 4: Lorenz curve of income, concentration curve of income with respect
to family.size and concentration curves of income with respect to each esti-
mated index

as the penalty relaxes. At the beginning, the penalty is the largest and only
one coefficient is included. This coefficient corresponds to urbanityurban and
it takes a value of 1 because of the norm constraint. As the algorithm pro-
ceeds, the penalty decreases and new variables enter the model. For example,
family.size is the second variable to enter. The third plot, provided in Figure
6, shows the evolution along the path of the scores corresponding to each se-
lection method. To ease the comparison, the scores are normalized so that the
optimum is attained at 1. The bootstrap score yields a well-defined maximum
in the beginning of the path, producing a highly sparse model. The BIC score,
however, is relatively flat along the path. Therefore, we would favour using the
former. Figures 5 and 6 indicate that the bandwidth was selected by BIC. Since
the whole path depends on the choice of h, these two plots are reproduced for
each selection method. In this illustration, the same bandwidth is selected with
both methods. The plots related to the bootstrap are exactly the same as those
obtained for BIC and are therefore not reproduced.

19

−0.5

0.0

0.5

1.0

−10.0 −7.5 −5.0 −2.5 0.0
−log(λ)

θ k
Variable

family.size

provinceIlocos Norte

provinceIlocos Sur

provinceLa Union

provincePangasinan

sexfemale:family.size

sexfemale:urbanityrural

sexfemale:urbanityurban

sexmale

sexmale:family.size

sexmale:urbanityrural

sexmale:urbanityurban

urbanityurban

Traceplot − bandwidth selected by BIC

Figure 5: Evolution of the estimated coefficients as the penalty relaxes

Finally, we obtain confidence intervals for the explained Gini coefficient using
the method confint().

R> confint(PLR)
Lower bound Upper bound

BIC 0.12 0.19
Boot 0.10 0.18

6 Summary and discussion
In this paper, we demonstrate the use of the LorenzRegression package, which
implements the non-penalized and penalized Lorenz regressions. These meth-
ods are appropriate whenever one is interested in explaining the inequality in
a response variable with a set of covariates. They provide inference for the
explained Gini coefficient, a measure of explained inequality assuming a single-
index model. The penalized procedure allows for an automatic selection of the
relevant covariates.

The illustration developed in Section 5 shows that the fitting of the model
is similar to standard regression techniques. It is performed with the func-
tion Lorenz.Reg() and it benefits from several S3 methods. Information on
the model fit is obtained numerically with summary(), or graphically with
plot(). Confidence intervals for the explained Gini coefficient are obtained
with confint(). As a side advantage, the package allows the computation and
graphical representation of Lorenz and concentration curves, as well as the com-

20

0.7

0.8

0.9

1.0

−10.0 −7.5 −5.0 −2.5 0.0
−log(λ)

va
lu

e

Score

BIC score

Boot score

Evolution of the scores − bandwidth selected by BIC

Figure 6: Evolution of the scores for each selection method as the penalty
relaxes

putation of a Gini coefficient or a concentration index. All functions allow the
user to specify sample weights.

Computational details
Computations performed in this paper use R 4.1.2 and the LorenzRegression
1.0.0 package. Both can be obtained from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/.

References
Alfons A, Templ M (2012). “Estimation of Social Exclusion Indicators from

Complex Surveys: The R Package Laeken.” doi:10.2139/ssrn.2244876.

Devleesschauwer B, Willimes S, Van Malderen C, Konings P, Speybroeck N
(2017). rineq: Statistical Analysis of Health Inequalities. R package version
0.0.1, URL https://github.com/brechtdv/rineq/.

Eddelbuettel D, Balamuta JJ (2018). “Extending R with C++: A Brief Intro-

21

https://CRAN.R-project.org/
https://github.com/brechtdv/rineq/

duction to Rcpp.” The American Statistician, 72(1), 28–36. ISSN 0003-1305.
doi:10.1080/00031305.2017.1375990.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo.” Computational Statis-
tics & Data Analysis, 71(C), 1054–1063. ISSN 0167-9473. doi:10.1016/j.csda.
2013.02.005.

Fan J, Li R (2001). “Variable Selection via Nonconcave Penalized Likelihood
and Its Oracle Properties.” Journal of the American Statistical Association,
96(456), 1348–1360. ISSN 0162-1459. doi:10.1198/016214501753382273.

Heuchenne C, Jacquemain A (2022). “Inference for Monotone Single-Index Con-
ditional Means: A Lorenz Regression Approach.” Computational Statistics &
Data Analysis, 167(C). ISSN 0167-9473. doi:10.1016/j.csda.2021.107347.

Jacquemain A, Heuchenne C, Pircalabelu E (2022a). “A Penalised Bootstrap
Estimation Procedure for the Explained Gini Coefficient.”

Jacquemain A, Heuchenne C, van Kerm P (2022b). “A Penalized Lorenz Re-
gression Analysis of Inequality of Opportunity.”

Lin H, Peng H (2013). “Smoothed Rank Correlation of the Linear Transfor-
mation Regression Model.” Computational Statistics & Data Analysis, 57,
615–630. doi:10.1016/j.csda.2012.07.012.

Machowska K, Napora J, Wójcik S (2022). wINEQ: Inequality Measures for
Weighted Data. R package version 1.0.1, URL https://CRAN.R-project.
org/package=wINEQ.

Microsoft, Weston S (2022). foreach: Provides Foreach Looping Construct.
R package version 1.5.2, URL https://CRAN.R-project.org/package=
foreach.

R Core Team (2021). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

Scrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of
Statistical Software, 53, 1–37. ISSN 1548-7660. doi:10.18637/jss.v053.i04.

Shi X, Huang Y, Huang J, Ma S (2018). “A Forward and Backward Stage-
wise Algorithm for Nonconvex Loss Functions with Adaptive Lasso.” Com-
putational Statistics & Data Analysis, 124, 235–251. ISSN 0167-9473. doi:
10.1016/j.csda.2018.03.006.

Speybroeck N, Konings P, Lynch J, Harper S, Berkvens D, Lorant V, Geckova A,
Hosseinpoor AR (2010). “Decomposing Socioeconomic Health Inequalities.”
International Journal of Public Health, 55(4), 347–351. ISSN 1661-8564. doi:
10.1007/s00038-009-0105-z.

22

https://CRAN.R-project.org/package=wINEQ
https://CRAN.R-project.org/package=wINEQ
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=foreach
https://www.R-project.org/

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. ISBN 978-3-319-24277-4. URL http://ggplot2.org.

Zeileis A (2014). ineq: Measuring Inequality, Concentration, and Poverty. R
package version 0.2-13, URL https://CRAN.R-project.org/package=ineq.

23

http://ggplot2.org
https://CRAN.R-project.org/package=ineq

	cover
	coververso
	LFIN_WP2020_9
	AdresseWPLFIN

	LorenzRegression-Package
	Introduction
	The Lorenz regression
	Model settings and the explained Gini coefficient
	Estimation procedure and algorithm

	The penalized Lorenz regression
	Estimation procedure and algorithm
	Choice for the bandwidth and regularization parameter

	The LorenzRegression package
	The Gini.coef, Lorenz.curve and Lorenz.graphs functions
	The Lorenz.Reg function

	Illustration
	Summary and discussion

