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Abstract

The method of least squares Monte-Carlo (LSMC) has become a standard in the
insurance and financial sectors for computing the exposure of a company to market
risk. The sensitive point of this procedure is the non-linear regression of simulated
responses on risk factors. This article proposes a novel approach for this step, based
on an a-priori segmentation of responses. Using a K-means algorithm, we identify
clusters of responses that are next locally regressed on corresponding risk factors. A
global function of regression is obtained by combining local models and a logistic re-
gression. The efficiency of the Local Least squares Monte-Carlo (LLSMC) is checked
in two illustrations. The first one focuses on butterfly and bull trap options in a Hes-
ton stochastic volatility model. The second illustration analyzes the exposure to risks
of a participating life insurance.
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1 Introduction

The least squares Monte-Carlo method (LSMC) of Longstaff and Schwartz (2001) is a
powerful and simple simulation method for pricing path dependent options. By its nature,
simulation is an alternative to traditional finite difference and binomial techniques in par-
ticular when the value of the option depends on multiple factors. The LSMC method is
based on the property that the conditional expectation of a random process minimizes the
mean squared distance between a simulated sample of this process and an adapted Borel
measurable function. This function is approximated by a regression in a subspace of basis
functions.

Clement and al. (2002) prove under fairly general conditions, the almost sure conver-
gence of LSMC. Glasserman and Yu (2004) investigate the behavior of this algorithm with
the simultaneous grows of the number of the basis functions and the number of the Monte-
Carlo simulations. Moreno and Navas (2003) and Stentoft (2004) consider the LSMC for
different basis functions and deduce that the algorithm converges at least for American put
options. This technique is also used for the valuation of insurance liabilities. For instance,
Bacinello et al. (2009, 2010) price a unit linked contracts embedding American options.
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The LSMC is not only useful for pricing but also for managing risk. Bauer et al. (2012)
adapt the LSMC method for computing the required risk capital in the Solvency II frame-
work. Pelsser and Schweizer (2016) compare LSMC and portfolio replication for the mod-
eling of life insurance liabilities. Floryszczak et al. (2016) confirm that using the LSMC
method is relevant for Solvency 2 computations at the level of a company. In the insurance
sector, the LSMC has become a standard. For instance, case studies from the industry are
proposed in Horig and Leitschkis (2012) or Horig and al. (2014).

More recently, the standard least-squares regression has been replaced by a neural net-
work approximation. Becker et al. (2020) use this for pricing and hedging American-style
option with deep learning. Lapeyre and Lelong (2021) develop a similar approach for
Bermudan option pricing. In insurance, Hejazi and Jackson (2017) propose a neural net-
work approach to evaluate the capital requirement of a portfolio of variable annuities.
Cheridito et al. (2020) benchmark this approach to results of Bauer (2012).

The LSMC requires a global regression model predicting the responses as a function of
risk factors. In its classical version, the regression function is approximated either by a
polynomial or by a combination of basis functions. In case of a non-linear relation between
responses and factors, the order of the polynomial or the number of basis functions is high
and this increases the risk of overfitting. An efficient alternative consists to work with a
neural regression. Nevertheless, determining the optimal network architecture is a chal-
lenging task and the model lacks of interpretability. The main contribution of this article
is to propose an alternative based on local regressions. The first stage consists to allocate
responses to a few clusters with the K-means algorithm and next to locally regress them
on corresponding risk factors. In a second stage, we fit a logistic regression model that a
priori estimates the probability that a combination of risk factors belongs to each cluster.
A global regression function is obtained by weighting local models by these probabilities.
We show in two case studies that this local least squares Monte-Carlo (LLSMC) outper-
forms the LSMC and present a high level of interpretability. The first case study focuses
on the risk analysis of butterfly and bull trap options in a Heston stochastic volatility
model. In the second case study, we consider a participating life insurance and compare
risk measures computed with local and non local LSMC.

The outline of the article is as follows. Section 2 reviews the least squares Monte-Carlo
method applied to risk management. The next Section introduces the LLSMC method
and motivates the reasons for segmenting the data-set based on responses instead of risk
factors. Section 4 compares the capacity of LLSMC and LSMC to replicate butterfly and
bull trap options in a stochastic volatility model. In Section 5, we compare risk measures
computed by local and non-local LSMC for a participating life insurance.

2 Risk management with the LSMC method

This section briefly reviews the least squares Monte-Carlo method. We consider a proba-
bility space €2, endowed with a probability measure P, in which are defined m processes,

noted X; = (Xt(l), s Xt(m)> o These processes are the risk factors driving the value of
t

financial assets and derivatives, managed by a financial institution. Their natural filtration
is denoted by F = (F),~- If risk factors are Markov, the total asset value is a function of
time and risk factors denoted by A(t, X;). Under the assumption of absence of arbitrage,
there exists at least one equivalent risk neutral measure, denoted by Q, using the cash
account (By);, as numeraire. Random asset cash-flows are paid at time (t),_, 4 and



denoted by C’;:‘. Therefore at time ¢ < t4, A(t, X;) can be developped as follows

d

B
At,X;) = a(Xy)+EC® (Z ﬁCif 1{tk2t}|Xt> ; (1)
k=0 """

where a (X¢) is directly determined by the value of underlying risk factors. Let us consider
a risk measure denoted by p(.). For risk management, we aim to calculate p(A(¢, X¢)). In
applications, we mainly consider the value at risk (VaR) and the expected shortfall (ES)
as risk measures. For a confidence level o € (0, 1), the VaR and ES are defined as

VaR, = max{zx e R : P(A(t,X;) <z) <a}, (2)
ES, = 1/ VaR, dy. (3)
@ Jo

The ES also admits an equivalent representation that is used later for estimation:
ES, = EF(A(t,X)|A(t,X;) < VaRy,) (4)
= éEP (A(t, X1) 1pawx)<VaRa})
+VaRaé (1 =P (A(t, X;) < VaRy)) .

We draw the attention of the reader on the fact that VaR and ES are valued under the
real measure.

Simulations in simulations Least square Monte-Carlo
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Figure 1: Simulations in simulations versus Least squares Monte-Carlo.

Computing the risk-neutral expectation (1) is a challenging task because closed-form
expressions are usually not available. A solution consists to evaluate A(t, X¢) by simula-
tions in simulations. This framework is illustrated in the left plot of Figure 1. For each
primary simulated sample path of risk factors (under P), we perform secondary simulations
(under Q). The value of A(t, X}) is next obtained by averaging the sums of discounted
cash-flows of secondary scenarios. This approach is nevertheless too computing intensive
for being carried out with success. In practice, we rely on the method of Least squares
Monte-Carlo (LSMC) to keep the computational time under control. We briefly recall what
it consists in. For this purpose, let us denote by

the random variable that is F;,-adapted and such that A(t, X;) = a (X;) +EQ (Y (¢) | X,).
This variable is called the “response” for a given set of risk factors et time ¢. The LSMC



method is based on property that the conditional expectation of a random variable Y (¢)
given a random vector X; minimizes the mean squared distance between Y (¢) and h(X)
where h(.) is a Borel measurable function. In practice, it means that we only need a single
(or a few) secondary simulations under Q, as illustrated on the right plot of Figure 1. The
theoretical foundation of the LSMC approach is briefly recalled in the next proposition
which uses the fact that X is also F;,-adapted since F; C Fy,.

Proposition 2.1. Let Y (t) be a square-integrable random variable on R and X; a m-
dimensional random vector, both F;,-adapted. The conditional expectation E2 (Y (t)| X,)
is equal to a Borel measurable function h(X,) such that

nX) = ez, min B2 ((h(X) -V (0)?) (5)

Proof Let us denote by vx y (x, y) the joint probability density function (pdf) of (X4, Y (¢))
and by vx(x) , vy(y) the marginal pdf’s. According to the Bayes rule, the conditional
density of Y (¢)| X is such that

vxy(x,y) = VY|X(?J’5L')VX(CC)

and the expectation in (5) may be rewritten as
B(X0) =Y (1)) )
/ fy)2 vy x (ylx)dy vx (x) dz .
dom(X) Jdom
The function h(X;) minimizes (5) if and only if

h(x) = arg min / (h(@) — 1) vyix (Wlz)dy
dom(Y)

which is achieved for h(x) = E2 (Y ()| X; = ).
end

In many real-world applications, there is no closed form expression for the function h(Xy)
but risks factors can be simulated under the P measure. Longstaff and Schwartz (2001)
assume that the unknown function h(.) belongs to the L?-space of square-integrable func-
tions. Since L? is a Hilbert space, it admits a countable orthornormal basis. The function
h(.) may then be represented as a combination of basis functions. If m = 1, one common
choice is the set of weighted Laguerre polynomials. In higher dimension, basis functions are
usually replaced by polynomials of risk factors. In practice, the LSMC algorithm consists
in simulating a sample denoted by

§= {(mhyl)a ) (mn,yn)} ) (6)

of n realizations of (X, Y (t)) and in regressing responses on risk factors. We recall that
X is simulated up to time ¢ under the real measure [P while the response Y (¢) is obtained
by simulations frorr}\ t up to tg, under the risk neutral measure Q. Let us denote by Py, the
set of polynomials h(x) of degree dj, approximating h(x). It is estimated by least squares
minimization:

) = agoin (Y (s h) ) 7)

hePn (xi,y:)€S
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Let us denote by

)j17---,jhEN7j1+...+jh§dh>
)

il,...,ihG{l,...,m}

(8)

_ J1,,.J2 Jh
z = <<xi1xi2...xih

the vector of powers of risk factors up to order dp, € N. We define ﬁ(w) =2z2"B as a
polynomial of order d;, where 3, is a real vector of same dimension as z. The sample of
powers of risk factors is {z1,..., 2, }. Let us respectively denote by Z and y, the matrix

Z = (z-T) s and the vector y = (y;) Using standard arguments, the polynomial
j€

J JES

coefficients minimizing (7) are 8 = (ZTZ)f1 ZTy.

Let us next denote by a; = a(x;) + ﬁ(a:l) ~ A(t,x;), the approximation of the value of
total assets for a given vector of risk factors X; = @ . The ordered samples of (d;);_; _,

; (®i);=1, n are denoted by (@) and (w .- They are such that

i=1,...,n

(i))izl
.<a

We define j(a) as the indice of the a-quantile of (a;)

i=1,....,n°

i(a) = max{k: €{l,..n) % < a} . (9)

The estimate of VaR,, is the a- quantile of (a(i))

i=1,..n
VaRa = é\(j(a)) .

From Equation (4), the ES, estimator is computed as follows:

i1 :
(), ~ jla) —1
‘ + ) (1 - ) :

an

A critical step in the LSMC procedure is the choice of the function E(X +) that approximates
the unknown conditional expectation, h(Xg). This requires to test multiple candidate
regressors and to carefully monitor potential overfit of the dataset. In the next section, we
propose a new approach based on local regressions.

3 The local least squares Monte-Carlo (LLSMC)

As previously detailed, a common approach in LSMC consists to fit a global polynomial
regression predicting responses (y;);—; _, as a function of risk factors (z;),_; _,,. The best
model is selected by testing different sets of covariates. As alternative, we can consider
machine learning regressions. The main advantage is their ability to capture non-linear
dependencies between E? (Y (¢) | X;) and risk factors X;. Nevertheless, these methods are
subject to overfitting and needs a careful tuning. On the other hand, risk management
tools are audited by the regulator and must for this reason be easily explainable to au-
thorities. Machine learning models being complex, this step requires to develop additional
interpretability tools to understand the influence of risk factors on assets. In this article,
we opt for an alternative approach based on local regressions. The method is based on a
finite partitioning (V)y_; _ of the domain of Y (here dom(Y’) = R). Let us define

hp(x) = EQ(Y(t)|Xy=2,Y({t)€p) k=1,.., K, (10)



the conditional expectation of responses, knowing that X; = x and Y (t) € V. Using
standard properties of the conditional expectation, we can rewrite the function h(x) as a
weighted sum of hg(.):

W) =E%(Y(t)| X, = @)

K
=> QY (t) € V| X¢ =) hy(x).
k=1

Based on this decomposition, we approximate the K unknown functions hg(.) by poly-
nomial regressions of Y (t) € ) on risk factors. In a second step, we use a multinomial
logistic regression to estimate the probabilities Q (Y (t) € Vi | X¢) for k=1, ..., K.

Simpson’s paradox

Figure 2: Illustration of the Simpson’s paradox.

It may appear counterintuitive to partition the dataset using responses, ), instead
of risk factors, X. Two reasons motivate this choice. Firstly, local regressions based on
hard clusters of risk factors generate discontinuities in predicted E2 (Y (¢)| X) on bor-
ders of clusters, even in a market in which all processes are continuous. This is clearly
an undesirable feature for a model designed for risk management. Secondly, this prevents
to observe the Simpson’s paradox. This is a phenomenon in probability and statistics in
which a trend appears in several groups of data but disappears or reverses when the groups
are combined. This paradox is illustrated in Figure 2 which compares local versus global
linear regressions. Regressions on clusters of & detect misleading local increasing trends
whereas the slope of the global model is negative. We provide a financial illustration of
the Simpson’s paradox in the first case study.

In practice, the simulated sample, S defined in Equation (6), is the union of sampled
risk factors, noted X', and of corresponding responses ). In a first stage, we partition the
sample dataset S = (X,)) into K << n subsets, denoted by (Sk)kzl,..‘K :

Sk = (Xkyyk)v kzla"'aKa

where (Vg)p—1 _ is a partition of Y and (Xy),—; f is the sample set of corresponding
simulated risk factors. In this article, we use the K-means for partitioning ) in K clus-
ters (yk)k:L“_’K. This heuristic algorithm computes a partition which reduces the within
groups sum of squared errors (WGSS) or intraclass inertia. The K-means algorithm is



based on the concept of centroids that are the center of gravity of a cluster of objects. The
coordinates of the u'® centroid is denoted ¢, € R, u = 1,..., K. If d(.,.) is the Euclidian
distance, we define the clusters V. for k =1, ..., K as follows:

yk = {yi : d(yi,ck) < d(yi,cj) V] S {1, ,K}} k= 1, ...,K. (11)
By extension, the joint cluster Sy of risk factors and responses is:
Sk ={(xi,yi) + d(yi,cn) < d(ys, ) Vie{l,...K}} k=1,.. K. (12)

The center of gravity of ), is denoted by g = ﬁ Zyieyk y; and the center of gravity

of all responses is ¢ = 23" | g;. The global inertia is Iy = %Z?:ld(yi,gf and the
interclass inertia I. is the inertia of the cloud of centers of gravity:

A
I. = Ea 2
k§:1 - (9K, 9)

The intraclass inertia I, is the sum of clusters inertiae, weighted by their size:

| K
I, = EZ > dyign)” -

k=1y; VL

According to the Kénig-Huyghens theorem, the global inertia is the sum of the intraclass
and interclass inertiae: Iy = I.+1,. We seek for a partition of ) minimizing the intraclass
inertia I, in order to have homogeneous clusters on average. This is equivalent to determine
the partition maximizing the interclass inertia, I.. Finding the partition that minimizes
the intraclass inertia is computationally difficult (NP-hard) but efficient heuristic proce-
dures exists. The most common method uses an iterative refinement technique called the
K-means which is detailed in Algorithm 1, provided in appendix A. Given an initial set
of K random centroids y;(0),...,yx(0), we construct a partition {)1(0),...,Vk(0)} of the
response dataset. Next, we replace the K random centroids by the K centers of gravity
(cu(1)),—1.x = (cu(0)),_1.x of these classes and we iterate till convergence. At each itera-
tion, we can prove that the intraclass inertia is reduced. Nevertheless, we do not have any
warranty that the partition found by this way is a global solution. In practice, this proce-
dure is repeated several times and we keep the partition with the lowest intraclass inertia.
Notice that any other partitioning procedure may be substituted to the K-means algorithm.

After having found a partition of S in S = (X, Vi), k = 1,..., K ,we estimate func-
tions (hy)x_; g by K polynomials of order dj, denoted by (ﬁk()) o Let us recall

=1,...

that z as defined in Equation (8), is the vector of powers of risk factors up to d, € N.

We assume that hi(x) = z' B is a polynomial of order dj, where 3, is a real vector of
dimension equal to the one of z. In a similar manner to LSMC, the (ﬁk()>k L e
estimated by least squares minimization over the set Py of polynomials of degree dh

By = arg min Z (yi*/ﬁk(xi))Z . (13)

h €P (:,y:) €Sk

The sample of powers of risk factors is again {z1,...,2z,} and we denote by Z; and vy,

the matrix Zj = (zT> s and the vector y;, = (y;) for k =1, ..., K. Using standard
JESK

J jESk

arguments, the polynomial coefficients minimizing (13) are Bk = (Z;—Zk)_l Z gy



Nevertheless, this model is useless for predicting the response for a vector @ that is not in
the training dataset. For @ ¢ S, the expected response should be

Z@ t) € V| Xy = a) hi (), (14)

where Q (Y (t) € Vi | X+ = x) is the unknown probability that the response for « is in the
k' cluster. A solution consists to estimate these probabilities with a multinomial logistic
regression. In this framework, we assume that conditional probabilities are the following
functions

e~ Vk(x) —9 K
K —7 (=) It A )
QY eI Xi=a) = § T )

1+ZJK:2 e Vi@

where 4, (x) is a polynomial of risk factors. If P, is the set of admissible polynomial
functions of order d, € N, the (Vx(.)),_y ) are estimated by log-likelihood maximization.
We denote by

N\ J15e-dREN1 4 A Jn <dy
w= ( (el al)
7417~"71/h€{17"'7m}

the vector of powers of risk factors up to d, € N. We assume that J(z) = w'(, is a

polynomial of order d., where ¢, is a real vector of same dimension as w. The log-likelihood
is defined by

n K — )
Liemye Vi () 1 ey}
E — 10 Yi k 4 Yi 1 7
(Wiex) = & g(éuzﬁew(wi) T4y, e

and (Cp)ics,..xc = argmaxy,ep, £ (Wics,...x)-

We haven’t discussed yet how to optimize the number of clusters K and the polynomial
orders, d,, d. In practice, we check four indicators of goodness of fit. We first compare
the R? for different settings. The R? is the percentage of variance of responses explained
by the model:

~ 2
S (v = =)
2
> (Yi = 9)
where § = %Z’;:l y;- In LSMC regression, responses y, are by construction very noised

estimates of EQ (Y (¢) | ) and therefore the R? is by nature small. We assess the fit of local
regressions by

R*=1-

; (16)

~ 2
9 Zszl Z(mi,yi)esk <yz - hk@i))
R, =1- - — . (17)
i1 Wi —Y)

Contrary to R?, we may expect a R%OC close to 1 and should exclude any models with a low
Rl?oc. The R? and RIQOC both increase with the complexity of the model, measured by the
number of its parameters. For this reason, we also compute a second indicator of goodness
of fit which is the mean squared error of residuals:

, (18)



where p is the number of regression parameters. This criterion tends to penalize models
with a large number of parameters. To detect abnormal prices, we also calculate the
sum of squared errors between exact values of A(¢,x) and their LLSMC estimates, h(x)
over a small sample of risk factors. We call this sample the validation set and denote it
by V. Depending upon the nature of assets, the exact values of A(t,x;) is computed by
performing a sufficient number of secondary simulations or by any other suitable numerical
method. This step being computationally intensive, the size of the validation set, must be
limited but should contain sufficiently diversified combinations of risk factors. A simple
approach consists to combine quantiles of risk factors. Let us detail this approach. We

denote by (:UES)) , the ordered sample <x§k)> B , of the k" risk factor:

i=1,...,n yeuny

(k) (k) (k)
(1) < x( 2) <..< x(n).

(k)
VICTOL
probabilities and j(«;) is the quantile index such as defined in Equation (9). We repeat
this operation for each kK = 1,...,m. The validation set V contains all the combination of
quantiles and its total size is [V| = ¢*. The MSE on the validation sample is

MSE(V = Z ( (w))2 . (19)

We select a small number of ¢ € N quantiles (ac .,x%iqﬂ where (O‘i)z‘:l,...,q are

If the dimension of |V| is too large, we can select randomly a subset of V of appropriate
size. Besides the analysis of these indicators of goodness of fit, it is recommanded to plot
the function h(x) in order to detect unexpected tail behaviour. This point is illustrated in
the following sections.

4 Application to options management in the Heston model

In order to compare the LSMC method to its local version, we first consider a financial
market made up of one stock with stochastic volatility and a cash account. We choose this
market model, proposed by Heston (1993), because we can benchmark LSMC and LLSMC
predictions to accurate option prices. computed by discrete Fourier transform, as briefly
reviewed in the next subsection.

4.1 Heston model in a nutshell

We consider a financial market made up of two assets. The account earns a constant risk
free rate r. The stock price, noted (S),>, is ruled by a geometric Brownian diffusion with
a stochastic variance, (V)

{dSt = uSpdt + SV, (detv + /1o p2de) , 20)

dVy =k(y—=Vy)dt + o/ VidWp .

where (W), and (W), are independent Brownian motion defined on the real proba-
bility space (€2, F,P). u € R is the expected instantaneous stock return and p € (—1,1) is
the correlation between the price and volatility. The variance reverts with a speed k£ > 0
to a mean reversion level v > 0. The volatility of the variance is a multiple o € R™ of the
square root of variance.

For the sake of simplicity, we assume that the variance has the same dynamics under



P and Q (this assumption may be relaxed without any impact on our analysis) whereas
the drift of the stock price is replaced by the rigk free rate under Q. As stated in the next
proposition, the characteristic function of the log-return admits a closed-form expression.

Proposition 4.1. The characteristic function of In (Ss/So) |Ft under the risk neutral Q,
for s >t with w € C, is given by the following expression

EQ (e“ln(SS/SO)]]-}> - (?) exp (A(w,, 5) + Blw, t,)Vi) . (21)
0

Let us define the following constants:

d= \/(paw—ﬁ)z—i-UQ(w—wz),
-t
The functions A(w,t,s) and B(w,t,s) in Equation (21) are given by

Alw,t,s)=rw (s —1t)+

il ((/{—paw—kd) (s—1t)—2In (1_9611(8—t)>> ; (22)

o2 1—g
and

k= pow+d 1—ed(s—1)
B(w,t,s) = 2 [ el (23)

For a proof, the reader can refer for instance, to Hainaut (2022), chapter 3, p. 65.
European call or put options do not have analytical expressions. In order to evaluate
these options, we can calculate numerically the probability density function of the log-
return, In (S7/So) | Fi, by a discrete Fourier transform (DFT). The characteristic function
of a random variable, here Y; r(iw) = E2 (e“’ln(ST/SO) | F¢), is also the inverse Fourier
transform of its probability density function (pdf):

1 [t

fer(u) = o . Tt,T(iw)e_mwdw (24)

1 oo )
= —Re </ Tt,T(iw)e_Wwdw>
Q 0

Therefore, we can retrieve the pdf by computing numerically its Fourier transform as stated
in the next proposition.

Proposition 4.2. Let M be the number of steps used in the Discrete Fourier Transform

(DFT) and A, = 24mez be this step of discretization. Let us denote A, = MQZu and

wm = (m—1)A,,

for m = 1..M. Let Tir(w) = EQ (ew!n(51/5) | 7)) be mgf of In(S7/So). The values of
fer(.) the pdf of In (S1/So) | Ft at points uy, = —%Au + (k. — 1)Ay are approached by the
sum;:

M
flug) = 2 Re omYLir (Twp) (—1 m—1,=if(m-1)(k-1) | 25
M A '
u m=1

where g, = %l{mzl} + Loty

10



This result is proven by discretizing the integral (24). The value of a European option
of maturity T" and payoff H(Sr) is then approached by the following sum

M
EQ (e’T(T’t)H(ST)U}) - ; f (ug) H(Soe™). (26)

Prices obtained by this method are compared to LSMC and LLSMC prices in the next
subsection.
4.2 LLSMC applied to butterfly options

In order to apply the LSMC to the Heston model, we consider as risk factors, the normed
stock price and volatility:

S —Ef (8) vVi —Ej (Vi)
VVs(s) V5 (VW)

In practice, expectations and variances of S; and /V; are estimated by empirical aver-
ages and variances of the simulated sample. We consider a European butterfly option of
maturity T and strikes 1, Fo and E3. The payoff of this option is

Xt =

H(St) = (S7 — E1)y —2(Sr — E2) . + (S — E3) 4,

and its price A(t, X;), at time ¢t < T, is equal to the Q—expected discounted payoff,
A(t, X ;) = EQ (e_”"(T_t)H(ST) | F¢). We choose this derivative because its payoff presents
three inflection points and is not an invertible function with respect to stock prices. As
we will see, the price of such an option is difficult to replicate by LSMC. We will next
consider a bull trap option that has a increasing payoff. Table 1 reports model and payoff
parameters. The Heston model is fitted to the time series of the S&P 500 from 31/1/2001
to 31/1/2020 by Bayesian log-likelihood maximization (for details on the estimation pro-
cedure, see Hainaut 2022, p. 75). In a first stage, we perform 10000 primary simulations
under P of responses Y (t) = e "T=YH(S7), with 350 steps of time per year. For each
primary simulation, we simulate a single secondary sample path under Q.

Parameters
wo| 01232 | r 0.02
Kk | 0.7171 | p | -0.5390
v | 0.1016 | o | 0.4234
So 100 FEq 100
Es 108 FEs 116
t | 1year | T | 2 years

Table 1: Parameters of the Heston stochastic volatility model and of the payoff.
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Figure 3: Simulated responses Y (t) = e """ H(Sy) versus stock prices S;, and volatili-
ties, v/V;. The red curves are the predictions h(X;) from the LSMC with a second order
polynomials regression.

The upper and lower plots of Figure 3 show simulated responses versus stock prices
and volatilities. The red curves correspond to LSMC estimates of butterfly option prices
in one year with a second order polynomial of risk factors. These graphs reveal a weakness
of the classical LSMC approach: it fails to predict a positive option price for extreme high
and low values of stock prices. This point is particularly critical when LSMC is used for
computing risk measures.

Table 2 reports the R2?, the MSE and MSE(V) of the LSMC, such as defined by Equations
(16), (18) and (19). The validation set counts 100 pairs of risk factors. We consider ¢ = 10
empirical quantiles of stock prices and volatilities for probabilities from 1% to 5% and from
95% to 99% by step of 1%. This choice is motivated by the fact that extreme values of
risk factors are likely to generate extreme high and low option prices. The (nearly) exact
prices of butterfly options in these 100 scenarios are computed by discrete Fourier trans-
form (DFT) that provides the density f;7(u) of In(S7/So)|F: on a grid {uy,...,upr} of
size M for given rigk factors at time t. The value of the butterfly option is next computed
by formula (26).

[ dy| R* [ \/MSE(V) | VMSE | df. ]
2 [0.0397 0.36 2.10 | 6
3 | 0.0451 0.57 2.10 | 10
4 |0.0499 1.07 2.09 | 15
5 | 0.0522 2.39 2.09 | 21
6 | 0.0536 1.93 2.09 | 28

Table 2: R%, MSE and MSE(V) of regressions of ¥; on X; in the LSMC model. d.f. is the

number of parameters.
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K|d,|d,| R* | \/MSE(V) | VMSE |df | R,

312 3]0.052 0.19 2.09 | 42 | 0.9513
5 2] 300527 0.2 21 | 74 |0.9850
6|2 ] 41]0.0523 0.2 2.1 | 120 | 0.9900
212 ] 300525 0.2 2.09 | 26 | 0.8693
512 ] 4100527 0.21 21 | 99 | 0.9851
512 ] 200525 0.21 2.1 | 54 | 0.9849
3121 1]0.0523 0.21 2.09 | 21 | 0.9511
412 1] 27100525 0.21 2.09 | 42 | 0.9755
412 1] 1700525 0.21 2.0 | 30 | 0.9754
2|2 ]2[0.051 0.21 2.09 | 18 | 0.8691

Table 3: R%* MSE, MSE(V) and R?, for the LLSMC model. d.f. is the number of

parameters.

In Table 2, butterfly prices are approached by polynomial regressions of order d;, from
2 to 6. As expected, R?’s are tiny since responses are noised estimates of EQ (Y (¢)|x).
The R%’s also increase with the complexity of the model. The MSE on the training set is
inversely proportional to the polynomial order whereas the lowest MSE(V) on the valida-
tion set is achieved with an order 2 polynomial. A next step consists in analyzing the tail
behaviour of these approximations. This is done by plotting the function ﬁ(m) We will
come back on this point later and before focus on the LLSMC.

Table 3 presents the statistics of goodness of fit for the LLSMC model. The number
of clusters, K, varies from 2 to 6. We test polynomials of degrees d;, from 2 to 6 and d,
equal to 1 and 2. Models are sorted by increasing MSE(V)’s and we report statistics of
the 10 first best models according to this criterion. The best goodness of fit is achieved
with 2 or 3 clusters, a cubic regression on each cluster and second order polynomial for
the multinomial logistic regression. A comparison with LSMC figures of Table 2, reveals
that the LLSMC reduces by half the MSE(V) on the validation dataset whereas MSE on
the training set are comparable. This is a good indicator that the LLSMC model better
replicates extremely high and low prices. We also notice that the LLSMC- and LSMC- R?
are comparable.

We compare now the LSMC and the LLSMC with hyperparameters K = 3, d, = 2,
dn, = 3 (denoted by LLSMC 3-2-3) as this setting leads to a low MSE()V) and a high R .
The upper plot of Figure 4 shows the segmentation of responses in 3 clusters with the
K-means algorithm. The mid and lower plots shows the responses and local predictions
Ek(Xt) (red lines) on clusters, with respect to stock prices and volatilities. Contrary to

the LSMC, the local regressions do not yield large negative responses.
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K-means

Figure 4: Upper plot: a-priori segmentation of responses in 3 clusters. Mid and lower plots:
responses (blue points) and local regressions (red points) with respect to stock prices and
volatilities.

Figure 5 compares LSMC and LLSMC butterfly options for stock prices S ranging from
68 to 139, the 1% and 99% percentiles of simulated stock prices and /V; € {7%, 14%, 23%},
the 1%, 50% and 99% quantiles of simulated volatilities. Exact option prices are computed
by DFT with tne, = 2 and M = 28 steps of discretization. The mid plot displays prices
in standard market conditions. The right and left plots correspond to extreme volatility
conditions. We observe that LSMC models of order 2 or 4 generates negative prices in the
tails. To measure the overall accuracy of methods in these three scenarios of volatility, we
report in Table 4 the average pricing errors. This table confirms that the LLSMC globally
outperforms LSMC. Tables 5 and 6 present the VaR’s and TVaR’s of the butterfly option
for various quantiles. The LSMC models yield negative values for the lowest percentiles
whereas the LLSMC provides slightly lower VaR’s and TVaR’s than the LSMC of orders
3 to 6, for the highest percentiles. This would be interesting to compare these results to
VaR’s and TVaR’s based on exact prices computed by DFT. Unfortunately, the valuation
by DFT of 10000 butterfly options is computationally too intensive. This comparison is
nevertheless possible in the second case study (Section 5).
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Figure 5: Butterfly option for S; ranging from 40 to 180 and volatilities /V; €
{7%,14%,23%}.

VVi=1% VVi=14% V;=23%
LLSMC, 3-2-3 0.32 0.11 0.18
LSMC, order 2 0.54 0.23 0.22
LSMC, order 3 0.61 0.32 0.33
LSMC, order 4 0.75 0.21 0.93
LSMC, order 5 2.34 0.1 1.32
LSMC, order 6 1.09 0.07 1.87

Table 4: Average pricing errors for the three cases presented in Figure 5.

0.05% 01% 1% 5% 95% 99% 99.9% 99.95%
LLSMC, 3-2-3 | -0.08 -0.06 0.01 0.16 1.66 1.71 1.76 1.76
LSMC, dp =2 | -2.20 -1.92 -0.58 0.22 147 154 1.60 1.61
LSMC, dp, =3 | -2.00 -1.51 -0.57 0.10 1.56 1.70 1.86 1.90
LSMC, dp, =4 | -0.85 -0.78 -0.33 0.01 1.61 1.75 193 2.01
LSMC, dp, =5 | -0.60 -0.53 -0.24 0.00 1.66 183 2.02 2.07
LSMC, d, =6 | -0.15 -0.11 -0.02 0.17 1.71 187 2.07 2.13

Table 5: VaR 1 year, LSMC model and LLSMC.

0.05% 01% 1% 5% 95% 99% 99.9% 99.95%
LLSMC, 3-2-3 | -0.10 -0.09 -0.03 0.06 1.69 1.73 1.77 1.77
LSMC, dp, =2 | -2.87 -2.51 -1.18 -0.29 1.51 1.57 1.62 1.64
LSMC, dp, =3 | -2.60 -2.18 -1.05 -0.35 1.64 1.78 1.95 2.02
LSMC, dp, =4 | -1.08 -0.95 -0.5 -0.23 1.7 185 217 2.37
LSMC, dp, =5 | -0.71  -0.64 -0.35 -0.16 1.76 1.92 2.1 2.17
LSMC, dp, =6 | -0.77 -0.45 -0.08 0.05 1.81 1.97 2.22 2.33

Table 6: Expected shortfall, 1 year, LSMC model and LLSMC.
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We now detail how the LLSMC 3-2-3 operates with the help of Figure 6. The left plot
shows the local regression functions ﬁk(x), for various stock prices S; and a volatility of
14%. The mid plot displays the probabilities that a pair of risk factors leads to a response
belonging to the k* cluster. We clearly see that the first cluster explains left and right
tails of butterfly option prices. If Sy is below 80 or above 130, the response is in cluster 1
with a probability higher than 90% and the correspond function ﬁg(ac) is nearly flat and
null. The probabilities of belonging to clusters 2 and 3 are quite similar and higher than
5% for S; € [80,130]. The right plot shows the products of regression and probabilities
functions. According to Equation (14), the estimated option price is the sum of these three
terms.

Regression function Probabilities Prob. x Reg. Func.

1.0

1.0

5
0.8
0.8

0.6
0.6

he)
\
POOh(X)

N =
o S ‘ -2 ‘\
- <1 I, I .3 ‘\,_
7‘0 8‘0 Qb 160 liO léO 1:‘%0 - 7b Sb Qb 160 110 120 150 7b Sb dO 160 1i0 léO léO
Figure 6: Plots of regression functions hg(x) for & = 1,...,K, probabilities
QY (t) € Vx| X¢ = ) and their products, for \/V; = 14%.
Cluster, k std. errors
1 2 3 1 2 3
Intercept | 0.0765 3.2602 6.3226 | 0.0042 0.0408 0.038
W -0.0015 0.0371 0.1091 | 0.0059 0.0688 0.0729
(2 -0.0135 -0.0579 0.1003 || 0.0062 0.0633 0.0581

(«®)® | -0.0163 -0.0465  -0.0997 | 0.0032  0.0634  0.0584

(a:(2))2 -0.0007  -0.0287  -0.0063 || 0.0034  0.0364  0.0362
W22 1 0.00090 -0.0871  -0.0629 | 0.0054  0.0732 0.0681

@) | 00026 00063 00192 | 0.0019  0.0424  0.0408
@@)® | 00006 00145  -0.0275 | 0.0025  0.0291  0.0269
(zW)?2® | 00057  0.0874  -0.0897 | 0.0047  0.0604  0.0721
¢ (@) | 0.0008 0048  -0.0808 | 0.0052  0.0603  0.0655

Table 7: LLSMC, 3-2-3 : parameters of cubic regressions, hy(x) per cluster and standard
errors (std. err.)
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Cluster, k std. errors

2 3 2 3

Intercept | -1.4843 -1.4643 || 0.0467 0.0471
() 0.2552  0.2226 || 0.0525 0.0547
2 -0.0882 -0.1144 || 0.0428  0.043

+M)% | 05778 -0.6956 | 0.0565 0.0622
2

(z®)” | -0.0197 -0.0128 | 0.039  0.0392
zMWz@ | 0.0409 -0.0338 | 0.0717 0.076

Table 8: LLSMC, 3-2-3 : Parameters of logistic regressions, () per cluster and standard
errors (std. err.)

Tables 7 and 8 report the estimated coefficients of polynomials ﬁk() and 7 (.) of the
LLSMC, 3-2-3. Some standard errors seem too high at a first sight. As for low R?,
this is explained by the fact that responses are by construction very noised estimates of
EQ (Y (t)|x). Therefore, these statistics should be analyzed with a certain care.
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Figure 7: Bull trap option for S; ranging from 40 to 180 and volatilities +/V; €
{7%,14%, 23%}.

Till now, we have focused on a butterfly option because its payoff and therefore its price
is not strictly increasing or decreasing function of Sp. We now show that the LLSMC still
outperforms the LSMC for increasing payoffs. We consider a long and a short position in
call options of maturity 7" and strikes Fy, F5. The total payoff of this bull trap option is
equal to

H(ST):(ST—E1)+—(ST—E2)+ .

We use again the Heston model with parameters of Table 1, except that we set strikes
to By = 100, E5 = 110. We compare the LSMC and the LLSMC with hyperparameters
K =3,d, =2, d, = 1. Figure 7 compares LSMC and LLSMC bull trap option for stock
prices S; ranging from 68 to 139, and /V; € {7%, 14%, 23%}. Table 9 reports the average
pricing errors in these 3 scenarios. These results confirm that LLSMC achieves a better
overall accuracy than the LSMC.
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VVi=™% VVi=14% V; =23%
LLSMC, 3-2-1 0.21 0.13 0.58
LSMC, order 2 1.59 0.94 0.53
LSMC, order 3 1.59 0.53 1.40
LSMC, order 4 2.24 0.32 0.98
LSMC, order 5 2.54 0.18 3.38
LSMC, order 6 1.16 0.25 3.00

Table 9: Average pricing errors, bull trap portfolio.

To conclude this section, we illustrate the Simpson’s paradox when we price a butterfly
option with parameters of Table 1. For this purpose, we divide the sample S into K << n
subsets (Sk)p_1  x :

Sk - (Xkyyk)v k:]-u'"qu

where partition is this time, based on a partitioning of risk factors. Each cluster is defined
by a centroid ¢ € R™ of dimension m such that

Sk = {(wi,yi) : d(mi,ck) < d(CCZ',Cj) V] c {1,...,K}} k= 1, ...,K.

We use the K-means algorithm to find the partition of S in Sy = (X, Vi), k=1,..., K.
The conditional expectation of responses is approached by a piecewise function

K
h(m) =Y 1iges, (),
=1

where Ek € Py, the set of polynomials of order dj,. As for a LLSMC regression, the iALk are
estimated by least squares minimization, as in Equation (7). This variant of local model
is denoted by X-LLSMC.

K |d,| R* | /MSE(V) | VMSE |df.
4 11 ]0.0501 0.27 2.09 | 12
5] 1 0.0523 0.39 2.09 | 15
6 | 1| 0.052 0.46 2.09 | 18
4| 2 [0.0524 0.55 2.09 | 24
5] 2 |0.0549 0.63 2.09 | 30
4 [ 3 10.0546 0.64 2.09 | 40
2 | 2 0.0479 0.73 2.1 | 12
311 0.0429 0.75 2.1 9

6 | 2 |0.0558 0.94 2.09 | 36
3] 4 ]0.0565 0.97 2.09 | 45

Table 10: R?, MSE, MSE(V) and R?, for the X-LLSMC model. d.f. is the number of

parameters.

Table 10 reports statistics of goodness of fit for models with K from 2 to 6 and dj,
from 1 to 4. Models are sorted by increasing MSE(V)’s and we only report statistics of
the 10 best models according to this criterion. In view of LLSMC figures of Table 3,
the X-LLSMC 4-1 achieves a similar accuracy with even less parameters. If we limit our
analysis to compare statistics of goodness of fit, the X-LLSMC and LLSMC seems both
eligible for computing VaR or TVaR. Plotting the X-LLSMC regression function leads to
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another conclusion. Figure 7 compares X-LLSMC 4-1 and FFT Butterfly prices for 5;
ranging from 68 to 139, and /V; € {7%,14%,23%}. We observe that local regressions
based on clusters of risk factors generate discontinuities in predicted responses on borders
of clusters. Secondly, we identify local trends not relevant with the global slope of price
curves. These two elements disqualify the X-LLSMC for risk management purposes.
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Figure 8: Butterfly option for S; ranging from 40 to 180 and volatilities /V; €
{7%,14%,23%}.

5 Application to life insurance management

In this second example, we compare the performance of LSMC and LLSMC for assessing the
risk of a participating pure endowment. The next subsection briefly presents the features
of this product in a market with 3 risk factors. As the contract admits a closed-form
valuation formula, we will compare approached and exact VaR’s and TVaR’s.

5.1 A participating pure endowment

We consider a combined life insurance and financial market. The stock price indice, the
interest rate and the force of mortality are respectively denoted by (S¢),~ ; (7t);>o and
(tz+t);>o - These processes are defined on a probability space (€, F,P) by the following
dynamics:

a5, 0S: Swos 00 aw,"
dry = K (Yr(t) — 1) dt + 0 Or 0 b th(2) (27)
dpiz+t Kp (Vo (t) — Hat) 0 0 ox(t) dW(g)

t

Wt(l),Wt(Q),Wt(?’) are independant Brownian motions. pu, k., k,, os and o, belong to
R* whereas 7,(t), 7.(t) and o.(t) are positive functions of time. ~,(t) and ~,(t) are
respectively fitted to term structures of interest and mortality rates. The initial age of the
insured is denoted by z € [0, Zyq,). Furthermore, we assume that the standard deviation
of mortality is related to age through the relation o, () = ae®®@+t) Details about 7, (t) and
0. (t) are provided in Appendix D. The matrix ¥ is the (upper) Choleski decomposition of
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the correlation matrix and is such that

€55 €Sr €Sy 1 psr psu
Y = 0 €& €y , psr 1 pry =% ,
0 0 1 PSu  Pru 1

where ps,, psu, psr and pp, € (—=1,1). This model allows for correlation between financial
and mortality shocks caused for instance by a pandemic such as the of one of Covid 19.
Notice that Ha and Bauer (2019) use a similar framework, excepted that in our framework
the mortality is mean reverting, with an age-dependent volatility. Another difference is
that we consider a participating pure endowment contract for benchmarking the LLSMC
algorithm. The main motivation being that we derive a closed-form expression for its
price. This contract subscribed by a z- years old individual promises at expiry (date T)
the maximum between a capital C7 and the value of the stock indice St, in case of survival.
The benefit is nevertheless upper bounded by Cj;. If we denote by 7 € R, the random
time of insured’s death, the value of such a policy is equal to the expected discounted
cash-flows under the chosen risk neutral measure:

Vi =B (e o1y (Cr o+ (Sr— Or), — (Sr—Cu),) |F) - (29)
= 1,2 CrEC <e— ST rotpats)ds |}~t>
Pl B (e K et (50— 0n), ) | )
1S (e* JF (et prats)ds ((Sr = Cw).) \ﬂ) _

For the sake of simplicity, we assume that the dynamics of r; and p,+ are similar under P
and Q (this assumption may be relaxed without impacting our results). The instantaneous
return of the stock indice is r; under Q. The zero-coupon bond, the survival probabilities
and the pure endowent' are respectively defined by the following expectations:

P(t’ T) = EQ e~ ftT rst’ft) ,
TP+t = EQ e ftT Hat+sds | ]:t ’
TEt = l{TZt}EQ <€7 ftT(r5+Mz+s)dS |‘Ft> )

The model being affine, we can easily derive the closed-form expressions of these products.
In the remainder of this article, we adopt following the notation

1 — e~ ¥(T—1)
By(t,T) = ~————
Yy
where y € RT is a positive parameter. We also need the following integrals of By(.,.):
ft . (u, T)du =+ (T —1t) = B, (t,T))
(z+T)
! 04(u) By, (u, T)du aeﬁi* (Bs(t, T) — Bgn, (t,T))

and the integrals of cross—product of By, (.,T) and 0,(.)B,(.,T):

[ B, (u, T)?du = % ((T =) = By, (t,T) = §#, B, (1, T)?)

S (2(u) B, (u, 7)) du = 2% (Bog(t,T) — 2Bagy, (1, T)
+BQ(5+I€#)(t7T)) ;

S} 00(u) B, (u, T) By, (u. T)du - = 5222 (By(t,T) = Byt T)
~Bio15(t,T) + By 5t T)) -

!The pure endowment pays one monetary unit at time 7" if the individual is still alive at maturity.
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The dynamics of interest and mortality rates are affine and therefore zero-coupon and
survival probabilities admit closed-form expressions detailed in the next proposition.

Proposition 5.1. At time 0 <t < T, the value of the discount bond of maturity T is equal
to

P(t,T) = exp (—rtBK,,(t,T) - /t ' e () (1 - e*“r@*u)) du) (29)

2 T
X exp <C;’“/ Bg,, (u, T)2du> ,
t

The survival probability up to time T, is given by

T
TPzt = €Xp (,u:v+tBnu (t,T) / Ve (1) (1 - 6_“”(T_“)> du> (30)
¢

X exp (; /t ' (am(u)Bw(u,T))zdu> ,

The pure endowment, 7 Ey, admits the following expression:

0_2 T
TEt = 1{7’215} exXp (—T’tB,.;T (t,T) — M$+tBHH (t,T) + 2T/ B,W (U,T)Qdu) X (31)
t

exp <— /tT r(u) (1 = e*”T(T*“)> du — /tT V(1) (1 - e*”“(T*“)) du> X

exp (ww /t ' 04(u) By, (u, T) By, (u, T)du + % /t ' (02 (1) By, (u, T))* du> :

The sketch of the proof is provided in Appendix D. In order to match the initial yield
curve of zero-coupon bonds, the function 7, (u) satisfies the relation

T 2 T
/ v (u) (1 — e—mT—“)) du = —InP(0,T)—roB. (0,T)+ % / B, (u, T)?d432)
0 0
Deriving twice this expression leads to the following useful reformulation of ~,(T'):
1
%(T) = ——0%InP(0,T) - drInP(0,T) (33)
T
2
gy —2k,T
1 _ T
+2/€2 ( e ) ,

where —97In P(0,T) is the instantaneous forward rate. For a given initial mortality curve
TPz, we show in a similar manner that the function ~y,(u) satisfies the relation

1 1 T
’Y:L‘(T) = *78% In TPz — 8T In TPz + — / UI(U)Q <6_2’4;L(T—“)> du
i Ku Jo
1 04262533
= ——921 — ol 7( 28T _ —2@T> ' 24
K T 1 TPy THsz+2K“(HN+6) e e (34)

Equations (33) and (34) allows us to rewrite bond prices, survival probabilities and endow-
ment as function of initial term structure of mortality and interest rates.

Corollary 5.2. The price at time t <T of a discount bond of maturity T is linked to the
wnitial interest rate curve at time t = 0 by the relation

P(t,T) = exp <—TtBNT (t,T) — (OyIn P(0,t)) B, (t,T) + In P;((% 1;))) (35)

4K,

< exp <_ T (1 - =2ty Bﬁr(t,T)2)> .
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In a similar manner, we can show that, being alive at age x +t, the survival probability up
to time T depends on the initial survival term structure as follows:

TPz+t = €XP <_/1:I:+thw (t, T) - (815 In tp:r:) Bmu (t, T) +In 7;1};90> X (36)

a2e28(z+T)
exp (252 (B2s(t.T) = 2Bogsr, (t.T) + Bapron, (1, 1)) | X
m

exp <a262/596 (eZBTBg (t,T) — e*PT Byy(t T))) X
2k, (K + ) AR e

exp ﬂ <6—2HutB2 (t,T) — e~ T+ B (t T))
QKM(HM‘f’ﬂ) K \Ys K \Ys )

whereas the pure endowment contract becomes:

TE = 1754 mport P, T) X (37)
(z+T)

aremaeﬁ
exp | ————

Kuk (Bﬁ(t> T) - Bnu-i-ﬁ(t? T) - Bm-‘rﬁ(tv T)+ Bmu-‘rnr-‘rﬂ(tv T))) :
phor

The next result presents the dynamics of the discount bond and endowment under the
pricing measure. This is a direct consequence of the Itd’s lemma applied to Proposition
5.1.

Corollary 5.3. Under the risk neutral measure Q, the dynamics of the zero-coupon bond
and of the pure endowment at time t < T are given by

dP(t,T) = r,P(t,T)dt — P(t,T)By, (t,T)o, (errth(z) +ede§3)) :
drE, = 1By (ry + piass) dt — 1 Ey0rene By, (t, T)AW®) (38)
— 1By (B, (8, T)04(t) + 0rery B, (,T)) AW o By d1(rsyy .
As EQ (dl{th}) = —z+¢dt, we check that the pure endowment has a return equal to

the risk free rate: E? (d 7E;) = 7 FE;r; dt. In order to obtain a closed form expression of the
saving contract (28), we perform a change of measure using as Radon-Nykodym derivative

e~ f()T (rs+hadts)ds

EQ (67 fOT(rs+ux+S)ds‘]__o> .

dF
dQ |,

= £ (& |Fr) = (39)

From Equations (46) of Appendix D, this change of measure may be rewritten as follows:

oe?

dF rErr g 2 g (2)
=exp | ——F By, (u, T)*du — o€y By, (u,T) dW,
T 2 Jo 0

dQ

xexp (- /0 " (Orern B (0, T) + 0 () B, (0, ) qu(?’))
X exp <—; /0 " (v B (w,T) + ax(u)B,w(u,T))Qdu> |

We recognize a Doleans-Dade exponential and then under the measure [, Wt(Z)F and Wt(g)F
defined by

{th(Z)]F = th(2) + UTETTBKT (t7 T)dt ’ (40)

dWE = AW 4 060, B, (t, T)dt + 0, (£) By, (£, T)dt,
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are Brownian motions. The dynamic of the stock indice is modified as follows under F,

ds,

g = (rt — 05 (esr0r€rr + €50v€ry) By, (8, T) — 05€5,0:(t) B, (1, T)) dt  (41)
t

+US€SSth<1) + USESrth(2)F + USGSuth(g)]F :

If we remember that e%s + E%T + 6§# = 1, applying the Itd’s lemma to In.S; leads to the
following expression for the stock indice under F:

t 2 t
S; = Spexp (/ rydu — %t — USESN/ 02 (u) By, (u, )du) (42)
0 0

t
X exp (—05 (€5rOr€rr + €5,0r€ry) / By, (u, T)du>
0
X exp (Usesswt(l) + Usengt(Q)F + JsesMWt(g)]F> ,

Taking advantage the log-normality of Sy under the F-measure, we can deduce a closed-
form expression of call options embedded in the benefits, such as defined in Equation

(28).

Proposition 5.4. The log-return In (St/Sy) ~ N((ur(t,T), ve(t, T)?) is log-normal with
a mean and variance respectively given by

(pp(t,T) = ft (0, T)2du — orépy ftT 0(u) By, (u, T) By, (u, T)du
—w — 050, (€sr€rr + €5p€rp) ftT By, (u, T)du
—05€Esy ftT Oy u)B,{u(u T)du, (43)
vp(t,T)? =o%(T —t) +U2ft v (u, T)2du
+2050, (€sr€rr + €Sp€rp j; v, (u, T)du .

If we adopt the following notations,

In( S ) —pr(t,T)
do(t,T) = <S”Pf§£;) —,

dl(t, T) = d2 — U[E‘(t, T)

The embedded call options in the participating pure endowment contract (28) are valued by:

1{721‘/}]}3@ (67 ftT(Ts+Mz+s)ds ((ST o C)+) ’-Ft> (44)

o (t,T 2
Stew(th)Jr%

P(t,T)

=1 E; ® (—di(t,T)) — Cr @ (—da(t,T))

The sketch of the proof is provided in Appendix B. The exact value of the pure endow-
ment is obtained by combining Equations (37) and (44). This allow us to compare LSMC
and LLSMC approximated value to exact price of the participating pure endowment in the
next subsection..

5.2 Numerical illustration

We fit a Nelson-Siegel model to the Belgian state yield curve on the 23/11/22. Initial sur-
vival probabilities are described by a Makeham’s model adjusted to male Belgian mortality
rates. Details are provided in Appendix C and D. Other market parameters are estimated
from time series of the Belgian stock index BEL 20 and of the 1 year Belgian state yield
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from the 26/11/10 to the 23/11/22. As we do not have enough data, the correlations pg
and p,, are set to -5% and 0%. Parameter estimates are reported in Table 1.

Parameters

W 0.04642 | og 0.18470

Ky 0.20482 | o, 0.00774
psr | -0.03957 | ro 0.0235

o | 8.5277e-7| [ 0.11094

Ky | 0.83925 | po 3.325e-03
psu | -0.05000 | pry 0.00000

t 5 years T 10 years
So 100 Cr 100

T 50 Cyn | 100(1 + 3%)*0

Table 11: Model parameters and features of the contract.

The three risk factors are the normed stock price, normed short rate and normed
mortality rate at the end of the time horizon of primary simulations, noted ¢:

Xt =

Sy —EF (St) v/t —Eb (re) ot — Eg (pae)

VB VBV (Vi)

Expectations and variances are approached by empirical averages and variances of the
simulated sample. The features of the contract are reported in Table 1. We simulate 10000
primary scenarios and a single secondary response per scenario,

Y(t) = e Jretuds (Cp 4 (Sp— Cr), — (Sp—Cu),) -

We use 350 steps of time per year. We also calculate the exact value of the contract in
each scenario using analytical formulas of the previous section.

Y
L

100 200 300 400

2 oo

o

o o

0o ‘o,

8.8 6 & S
) 'ﬁﬁ%%'mo )

0® —Y
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T
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T
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()
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Figure 9: Simulated responses Y (¢) = versus stock prices Sy, 4 and p; +t. The red curves
are the predictions h(X;) from the LSMC with a second order polynomials regression.
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The three plots of Figure 9 respectively show responses versus stock prices, interest
and mortality rates. The red curves correspond to LSMC estimates of the endowment in
one year with a second order polynomial of risk factors.

Table 12 reports the R?, the MSE and MSE(V) of the LSMC, such as defined by Equations
(16), (18) and (19). The validation set counts 1000 triplets of risk factors. We consider
combinations of ¢ = 10 empirical quantiles of risk factors for probabilities from 1% to 5%
and from 95% to 99% by step of 1%. We also calculate the exact MSE between model and
analytical prices of the endowment, denoted by EMSE.

ldv| R* | J/MSE(V) | VMSE | VEMSE | df. |
2 103767 | 3.02 1134 [ 159 [ 10
3103855 | 247 1127 | 1.04 | 20
403868 | 3.94 1128 | 112 | 35
503912 | 485 1126 | 1.02 | 56
6 | 03947 | 647 1126 | 110 | 84

Table 12: R%, MSE, MSE(V) of regressions of Y; on X in the LSMC model. vVEMSE is
the MSE valued with analytical prices. d.f. is the number of parameters.

Table 12 reports statistics about LSMC polynomial regressions of order dj from 2 to
6. The R?’s increase with the complexity of the model. The MSE(V) on the validation set
is minimized by a polynomial of third degree. Table 3 presents the statistics of goodness
of fit for the LLSMC model. The number of clusters, K, varies from 2 to 5. We test
polynomials of degrees dj from 1 to 3 and d, equal to 1 and 3. Models are sorted by
increasing MSE(V)’s and we report statistics of the 10 first best models according to this
criterion. The best goodness of fit is achieved with 2 or 3 clusters, a square regression
on each cluster and a cubic multinomial logistic regression. Compared to the LSMC, the
LLSMC clearly reduces by more than half the MSE(V) and the EMSE whereas MSE on
the training set are comparable. This is a good indicator that the LLSMC model offers a
better fit.

K|d,|d,| R* |\/MSE(V) | VMSE | VEMSE | df | R},
23] 2103910 0.69 1124 | 0.67 | 40 | 0.8781
33203912 0.79 1127 | 055 | 70 | 0.9322
41212103865 0.87 1132 | 077 | 70 | 0.9563
50227 0387 0.91 11.34 [ 075 | 90 | 0.9687
32203869 0.93 1129 [ 076 | 50 | 0.9322
22203881 0.95 1126 | 0.65 | 30 | 0.8781
4132103918 0.97 11.3 0.58 | 100 | 0.9563
41213103843 0.98 11.38 1.08 | 110 | 0.9568
2 2] 303592 1.01 1154 | 260 | 50 | 0.8789
2 [ 3] 303915 1.03 1126 | 0.63 | 60 | 0.8789

Table 13: R?, MSE, MSE(V) and R} for the LLSMC model. v'MSE, exact is the MSE

valued with analytical prices. d.f. is the number of parameters.

We next compare the LSMC of order 3 and the LLSMC with hyperparameters K = 3,
dy = 3, d, = 2 as this setting leads to a low MSE(V) and a high R? . Figure 5
compares LSMC and LLSMC endowment values for stock prices S; ranging from 43
to 302, the 1% and 99% percentiles of simulated stock prices over 5 years and r; €
{-0.16%,2.47%,5.13%}, the 1%, 50% and 99% quantiles of simulated interest rates. The
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mortality rate is set to its average py+¢ = 0.0017. LSMC and LLSMC both achieve a good
accuracy in these three cases. Nevertheless, pricing errors of the LLSMC, reported in Ta-
ble 14, are slightly lower on average than those of the LSMC when r; € {—0.16%, 2.47%}.
In particular, the LLSMC better fits extreme low values. This will be confirmed by the
comparison of VaR’s and TVaR’s.

r(t1)= -0.0016

r(t1)= 0.0247

r(t1)= 0.0513

120
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!

—— Clustering K: 3
- - Formula
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Figure 10: Endowment price for S; ranging from 43 to 302, r; € {—0.16%, 2.47%, 5.13%}

and pgz4+¢ = 0.0017.

Tt :—016% Tt :247% Tt :513%
LLSMC, 3-3-2 0.8459 0.3496 0.8198
LSMC, order 3 1.2602 0.8872 0.7606

Table 14: Average pricing errors for the three cases presented in Figure 10.
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Figure 11: Lower/upper VaR’s and TVaR’s, LLSMC 3-3-2, LSMC of order 3.

Upper parts of Tables 15 and 16 respectively present VaR’s and TVaR’s computed with
the LLSMC and LSMC models and with analytical prices. Figure 11 displays these statis-
tics for the LLSMC 3-3-2 and for the LSMC of order 3. The lower Upper parts of Tables
15 and 16 report the relative spread between VaR/TVaR’s computed with approximated
and exact analytical prices. These results emphasizes that LLSMC yields a more accurate
estimate of VaR/TVaR’s. In particular, the failure of the LSMC to closely replicate ex-
treme values leads to a significant divergence of TVaR’s for very low or high confidence

levels.

VaR 01% 1% 2% 3% 97% 98% 99%  99.9%
Exact prices  80.79 83.76 85.11 86.03 117.5 118.44 120.09 124.01
LLSMC 2-3-2 80.95 83.84 85.01 86 116.99 118.07 119.55 124.01
LLSMC 3-3-2 80.85 83.98 852 86.1 117.09 117.91 119.58 123.54
LLSMC 4-2-2 82.14 84.83 85.9 86.71 117.49 11845 120.16 123.74
LSMC d;, =2 80 83.501 85.31 86.53 118.6 119.87 121.27 126.04
LSMC, dp, =3 78.16 81.39 84.02 &85.16 117.49 11841 120.06 123.46

Relative errors in %
LLSMC 2-3-2  0.19 0.1 -0.11  -0.03 -0.43 -0.31 -0.45 0.00
LLSMC 3-3-2 0.07 0.27 0.11 0.08 -0.34 -0.44 -043 -0.38
LLSMC 4-2-2  1.67 1.28 0.93 0.79 -0.01 0.01 0.06 -0.22
LSMC d, =2 -0.99 -0.29 0.23 0.59 0.94 1.21 0.98 1.64
LSMC, dp, =3 -3.26 -2.82 -1.28 -1.01 -0.01 -0.02 -0.03 -0.44

Table 15: VaR 5 years, LSMC model and LLSMC.
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Tail VaR 0.1% 1% 2% 3% 97% 98% 99% 99.9%
Exact prices  79.68 82.28 83.33 84.08 119.6 120.45 121.79 125.46
LLSMC 2-3-2 80.42 82.5 83.45 84.14 119.2 120.06 12142 126.11
LLSMC 3-3-2 80.40 82.68 83.62 84.3 119.2  120.04 121.37 125.33
LLSMC 4-2-2 81.59 83.63 84.50 &5.12 119.63 120.45 121.71 125.04
LSMC d;, =2 72,97 &81.33 82.84 83.9 121.02 121.91 123.3 127.49
LSMC, dp, =3 76.86 79.91 81.31 8243 119.66 120.51 121.93 125.53

Relative errors in %
LLSMC 2-3-2 0.93 0.26 0.15 0.08 -0.33 -0.33 -0.31 0.52
LLSMC 3-3-2 0.91 048 034 0.26 -0.34 -0.34 -0.35 -0.10
LLSMC 4-2-2  2.40 1.63 1.40 1.24 0.02 0.00 -0.07 -0.33
LSMC d;, =2 -8.41 -1.16 -0.60 -0.21 1.19 1.21 1.23 1.62
LSMC, dp, =3 -3.54 -2.88 -242 -1.96 0.05 0.05 0.11 0.06

Table 16: Expected shortfall, 5 years, LSMC model and LLSMC.

Table 17: Parameters of cubic regressions, hy(x) per cluster and standard errors (std. err.)

Tables 7 and 8 report estimated coefficients of polynomials Ek() and A (.) of the
LLSMC, 3-2-2. As already mentioned, standard errors are high because responses are

Cluster, k std. errors

1 2 1 2
Intercept | 113.6213 88.9504 | 0.1533 0.1747
zW 1.3713  1.7745 | 0.1523 0.1835
(@) | -0.2007 -0.2551 | 0.0452 0.1697
z®? -2.951  -1.7939 | 0.1116 0.1326
+Mz@ | 04279  0.8160 | 0.0973 0.1560
(®)? | -0.0175  0.1425 | 0.0733 0.0696
) 0.0639  0.1082 | 0.1123 0.1368
Mg -0.0894  0.2613 | 0.0999 0.1643
g -0.0260  0.0329 | 0.1016 0.1001
(2® 0.0114  -0.0497 | 0.0710 0.0699

by construction very noised estimates of EQ (Y (¢) | z).
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Cluster, k | std. errors Cluster, k | std. errors
2 2 2 2

Intercept -0.558 0.0573 e -0.0048 0.0685
z -1.6895 0.1037 WM z®) 0.0230 0.0597
@) | 06223 | 00772 | (2W)%®) | -0.0451 | 0.0639
(D)’ -0.2098 0.0562 2Pz 0.0141 0.0370
2 0.01 0.0666 | zMz@z® | 0.0587 0.0568
Mz 0.026 0.0551 | (®)%2® | 0.0108 0.0251
(@) 2® | -0.0069 | 0.0574 (®)? | -0.0330 | 0.0264
@®)* | -0.0244 | 00255 | W (@®)” | -0.0435 | 0.0428
M (@) | 00619 | 00369 | 2 (x(3;)2 -0.0484 | 0.0265

(@)’ 0.0105 0.0152 (z®) -0.0007 0.0150
(

Table 18: Parameters of logistic regressions, vi(x) per cluster and standard errors (std.

err.)

6 Conclusions

This article proposes a powerful and simple extension of the least squares Monte-Carlo
method for risk management. This combines local and logistic regressions. The novelty
of our approach consists to segment the data set into clusters obtained by applying the
K-means algorithm to responses instead of risk factors. We next fit polynomial regressions
for each cluster. They are combined with probabilities of cluster membership estimated
by a multinomial logistic regression.

We validate the LLSMC in two case studies. In both cases, numerical experiments em-
phasize that the LLMSC achieves a better accuracy than the LSMC in a wider range of
scenarios. We also observe that the LLMSC yields fewer erratic prices for lower and upper
quantiles of risk factors. This confirms that the LLMSC is better suited for computing risk
measures such as the VaR and TailVaR, than the LSMC. Furthermore, the LLMSC has
a high level of interpretability. We also compare the LLSMC to a local method based on
a partition of risk factors (X-LLSMC). We show that such an approach suffers from the
Simpson’s paradox, i.e. X-LLSMC prices display local trends not relevant with global ones.

This work paves the way for further research. Firstly, the LLSMC algorithm is proba-
bly more efficient than the LSMC for estimating the solvency capital requirement in the
Solvency II framework. Secondly, we can think to replace local polynomial approxima-
tions by local machine learning regressions. This hybrid procedure would probably be best
suited for managing a high number of risk factors.
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Appendix A

Algorithm 1 Algorithm for K-means clustering.
Initialization:
Randomly set up initial positions of centroids ¢;(0),...,cx (0).
Main procedure:
For ¢ = 0 to maximum epoch, €,,4:
Assignment step:
Fori=1ton
1) Assign (x;, i) to a cluster Sk(e) and y; to Vi(e) where k € {1,..., K}

Sk(e) = {(zi,vi) + d(yi,c(e)) < d(yi,ci(e)) Vi€ {1,..., K}},
Yi(e) =A{yi = d(yi,cele)) < d(yi,ci(e)) Vi € {1,..., K}},

End loop on data set, 7.
Update step:
For k=1to K

2) set the new centroids ci(e + 1) to the center of gravity of Vy(e)

ckle+1) =

End loop on centroids, k.
3) Update the intraclass inertia :

K

Lt ) ==3 S d(ascrle +1)).

k=1y;eVi(e)

3

End loop on epochs e

Appendix B
Proposition 5.1, sketch of the proof. We can show by direct differentation that
—Kr(s—t) fs —kr(s—u) g
Ts e T Ky %(u)e u )
= + ts e fu(s—u 45
() - (50 )-(REE) e
ft ore e—tr(s— u)E qu +L o, e—nr(s u)Er qu£3)
f —Ru(s—u) ( )dWéB)

The integrals are
T T _ —kr(T—u)
Jp rsds _ < 1By, (t,T) >+ j;%wml e ) du (46)
f;g Nm—i—st Nx—i—tBnM (t,T) ftT ’ch U (1 — e*“u(T*“)) du

T 2 3
(o ], M(Tmm9+wwﬁ o (u, T)AWS
[i 02(u)Byg, (u,T) dw
The results follows from the log-normality of e~ S rsds op e= S reterads and of €2, +€2 . =1L

end
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Corollary 5.2, sketch of the proof. By direct integration of Equations (33) and (34),
we obtain

T P(0,T) o2
(w) (1 - _”"(T_“)>d — (8, P(0,1)) By (t,T) — In —— T (T —t
| et (1= W= OP.0) By (T) ~In e + (T =)
0'2 O'2
——"B. (t,T) — e 2B, (t,T)?
2,%% 7‘( Y ) 4/{;7‘6 'r( Y ) Y
an
T 2 2Bz
- 1—6_““(T “)) du = (0¢In ¢p,) Bi (t,T) —In Tpx—i— ac
/t 7 ( t tp ) u( ) 2”#(’%M+ﬁ)
( 2P Bog(t,T) — €4 Boy,, (t, T) — €*" Bogy, (t,T) + ‘““T*”B@(t, T))
end

Proposition 5.4, sketch of the proof.

As Sp = (5% 7)) We focus on on the dynamics of dp(t R As
1 T By, (t,T)%c? B, (t,T) 9
d = - dt Ir 4t + oy (e dWP + €, dWD)
P(t,T) P, T PwT) P, T) (6 W™+ €rpd Wy )
We infer that
d St = St [B.., (t,T)%02 + By, (t,T) (0:05€rr€5r + 0705665, ] dt
P(t,T) P(t,T) Kr\Uy r Kr\Uy rOS€rr€Sr rOS€ru€sSy
t W, S ()
d T rr ’I"BK t’T d
+P(t,T)JSESS Wt + P(t,T) (0565 + €00 T( )) Wt
t 3
+P(t,T) (0s€sy + €rpor B, (t,T)) th( )

Using [t6’s lemma we can find the dynamics of dln (%) under Qand from Equation
(40), retrieve that

Si o? )
dln <P(t7 T)> == |:2Blir (t, T) + O’rEr'u‘Ux(t)BHT (t, T)BRH (t7 T) dt
1
_ [2@% + 050y (€rr€sr + €su€rp) Br, (8, T) 4+ 05€5,0.(t) B, (1, T)] dt

—1—05655th(1) + (0s€sy + or€rp By, (8, T)) th(Q)F
+ (0sesy + orerpy B, (8, T)) th(g)F .
By direct integration, we reformulate St as follows:

St 0.2 T T
St = BT exp (—; t By, (u, T)*du — a,,ew/t 04(u) By, (u, T) By, (u,T)du)

2 T — ¢t T
X exp (—05(2) — o050y (€5r€rr + ESMETM)/ By, (u, T)du)

t

T T
X exp (USESH/ 0 (u) By, (u, T)du + / JSeSSdI/ngl)) (47)

t t
T
X exp </ (USEST + O'TEMBRT (uv T)) dW152)F)
t

T
X exp </ (0s€sy + orery By, (u, T)) de’)F)
t
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Equation (47) emphasizes that In % ~ N (pup,vr) is log-normal with a mean and

variance given by equations (43). Using standard calculations, we can show that if ®(.) is
the cdf of a N(0,1) and

c
In (st /Pft,T)) ~ HF
d2 - vp )

di = dy—vp

then the expected postive diffence between St and C'r under the forward measure is given
by

St
P(t,T)

EF (57— Cr), |Fi) = e g (—dy) — Cr® (—ds) . (48)

This last result allows us to infer Equation (44).

end

Appendix C, interest rate assumptions

We model the initial yield curve with the Nelson-Siegel (NS) model. In this framework,
initial instantaneous forward rates are provided by the following function:

£0,8) := =0, m P(0,2) = b+ (bg’g} + bg’?t) exp (—cg’”)t) .

Parameters {bg, b1o,b11,c1} are estimated by minimizing the quadratic spread between
market and model zero-coupon yields:

ron = o bé’”iﬁg(lecY)t)*i(Cl)g%))Q (1= (1))

We fit the NS model to the yield curve of Belgian state bonds observed on the 23" of
November 22 and obtain estimates reported in Table 19.

Parameter | Value
b 0.0308
) | -0.0008
o) ]-0.0212
EQ 0.6594

Table 19: Nelson-Siegel parameters, Belgian state bonds, 23/11/22.

Appendix D, mortality rate assumptions

The volatility of mortality rates is fitted by least square minimization of spreads between

0,(.) and empirical deviations of variations of mortality rates by cohort (ages between 20
and 90 years from 1950 to 2020). If ug(gy) is the observed mortality rates at age x during
the calendar year y, we denote by Apéy) = ug(ny) — u:(vy__ll) and by S, the standard deviation

of Aﬂgy) for y=1950 to 2020. The « and S are obtained by minimizing the sum

90
2
a, 3 = arg min Z (Sm — ae’Bm) .

=20
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On the other hand, the initial curve of survival probabilities is described by a Makeham’s

model, i.e.
Pr = exp-— /Ht (a(ﬂ) + pm (C(u)>s) ds

= exp(—a™t)exp <_EEZZ” <<cuo)x+t__(600>x>> |

where a(® b ) ¢ Rt These parameters and the reversion speed k, are obtained by
least square minimization of spreads between prospective and model survival probabilities.
Prospective survival probabilities are computed with a Lee-Carter model fitted to Belgian
mortality rates from 1950 to 2020 for 0 to 105 years, male population. Model ;p, are
computed with Equation (36) for 2z = 20 years old. Estimated parameters are provided in
Table 20.

Parameters
a | 1.006349¢-03 | 5, | 0.83925
b | 2.790903e-07 | o | 8.5277e-7
Ko 0.83925 B | 0.11094

Table 20: Mortality parameters, Belgian male mortality rates, year 2020.
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