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Abstract

The method of least squares Monte-Carlo (LSMC) has become a standard in the
insurance and �nancial sectors for computing the exposure of a company to market
risk. The sensitive point of this procedure is the non-linear regression of simulated
responses on risk factors. This article proposes a novel approach for this step, based
on an a-priori segmentation of responses. Using a K-means algorithm, we identify
clusters of responses that are next locally regressed on corresponding risk factors. A
global function of regression is obtained by combining local models and a logistic re-
gression. The e�ciency of the Local Least squares Monte-Carlo (LLSMC) is checked
in two illustrations. The �rst one focuses on butter�y and bull trap options in a Hes-
ton stochastic volatility model. The second illustration analyzes the exposure to risks
of a participating life insurance.

Keywords: Least square Monte-Carlo, risk management, option valuation
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1 Introduction

The least squares Monte-Carlo method (LSMC) of Longsta� and Schwartz (2001) is a
powerful and simple simulation method for pricing path dependent options. By its nature,
simulation is an alternative to traditional �nite di�erence and binomial techniques in par-
ticular when the value of the option depends on multiple factors. The LSMC method is
based on the property that the conditional expectation of a random process minimizes the
mean squared distance between a simulated sample of this process and an adapted Borel
measurable function. This function is approximated by a regression in a subspace of basis
functions.

Clement and al. (2002) prove under fairly general conditions, the almost sure conver-
gence of LSMC. Glasserman and Yu (2004) investigate the behavior of this algorithm with
the simultaneous grows of the number of the basis functions and the number of the Monte-
Carlo simulations. Moreno and Navas (2003) and Stentoft (2004) consider the LSMC for
di�erent basis functions and deduce that the algorithm converges at least for American put
options. This technique is also used for the valuation of insurance liabilities. For instance,
Bacinello et al. (2009, 2010) price a unit linked contracts embedding American options.
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The LSMC is not only useful for pricing but also for managing risk. Bauer et al. (2012)
adapt the LSMC method for computing the required risk capital in the Solvency II frame-
work. Pelsser and Schweizer (2016) compare LSMC and portfolio replication for the mod-
eling of life insurance liabilities. Floryszczak et al. (2016) con�rm that using the LSMC
method is relevant for Solvency 2 computations at the level of a company. In the insurance
sector, the LSMC has become a standard. For instance, case studies from the industry are
proposed in Hörig and Leitschkis (2012) or Hörig and al. (2014).

More recently, the standard least-squares regression has been replaced by a neural net-
work approximation. Becker et al. (2020) use this for pricing and hedging American-style
option with deep learning. Lapeyre and Lelong (2021) develop a similar approach for
Bermudan option pricing. In insurance, Hejazi and Jackson (2017) propose a neural net-
work approach to evaluate the capital requirement of a portfolio of variable annuities.
Cheridito et al. (2020) benchmark this approach to results of Bauer (2012).

The LSMC requires a global regression model predicting the responses as a function of
risk factors. In its classical version, the regression function is approximated either by a
polynomial or by a combination of basis functions. In case of a non-linear relation between
responses and factors, the order of the polynomial or the number of basis functions is high
and this increases the risk of over�tting. An e�cient alternative consists to work with a
neural regression. Nevertheless, determining the optimal network architecture is a chal-
lenging task and the model lacks of interpretability. The main contribution of this article
is to propose an alternative based on local regressions. The �rst stage consists to allocate
responses to a few clusters with the K-means algorithm and next to locally regress them
on corresponding risk factors. In a second stage, we �t a logistic regression model that a
priori estimates the probability that a combination of risk factors belongs to each cluster.
A global regression function is obtained by weighting local models by these probabilities.
We show in two case studies that this local least squares Monte-Carlo (LLSMC) outper-
forms the LSMC and present a high level of interpretability. The �rst case study focuses
on the risk analysis of butter�y and bull trap options in a Heston stochastic volatility
model. In the second case study, we consider a participating life insurance and compare
risk measures computed with local and non local LSMC.

The outline of the article is as follows. Section 2 reviews the least squares Monte-Carlo
method applied to risk management. The next Section introduces the LLSMC method
and motivates the reasons for segmenting the data-set based on responses instead of risk
factors. Section 4 compares the capacity of LLSMC and LSMC to replicate butter�y and
bull trap options in a stochastic volatility model. In Section 5, we compare risk measures
computed by local and non-local LSMC for a participating life insurance.

2 Risk management with the LSMC method

This section brie�y reviews the least squares Monte-Carlo method. We consider a proba-
bility space Ω, endowed with a probability measure P, in which are de�ned m processes,

noted Xt =
(
X

(1)
t , ..., X

(m)
t

)
t≥0

. These processes are the risk factors driving the value of

�nancial assets and derivatives, managed by a �nancial institution. Their natural �ltration
is denoted by F = (Ft)t≥0. If risk factors are Markov, the total asset value is a function of
time and risk factors denoted by A(t,Xt). Under the assumption of absence of arbitrage,
there exists at least one equivalent risk neutral measure, denoted by Q, using the cash
account (Bt)t≥0 as numeraire. Random asset cash-�ows are paid at time (tk)k=0,...,d and
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denoted by CA
k . Therefore at time t ≤ td, A(t,Xt) can be developped as follows

A(t,Xt) = a (Xt) + EQ

(
d∑

k=0

Bt

Btk

CA
k 1{tk≥t}|Xt

)
, (1)

where a (Xt) is directly determined by the value of underlying risk factors. Let us consider
a risk measure denoted by ρ(.). For risk management, we aim to calculate ρ(A(t,Xt)). In
applications, we mainly consider the value at risk (VaR) and the expected shortfall (ES)
as risk measures. For a con�dence level α ∈ (0, 1), the VaR and ES are de�ned as

V aRα = max {x ∈ R : P (A(t,Xt) ≤ x) ≤ α} , (2)

ESα =
1

α

∫ α

0
V aRγ dγ . (3)

The ES also admits an equivalent representation that is used later for estimation:

ESα = EP (A(t,Xt) |A(t,Xt) ≤ V aRα) (4)

=
1

α
EP (A(t,Xt)1{A(t,Xt)≤V aRα}

)
+V aRα

1

α
(1− P (A(t,Xt) ≤ V aRα)) .

We draw the attention of the reader on the fact that VaR and ES are valued under the
real measure.

Figure 1: Simulations in simulations versus Least squares Monte-Carlo.

Computing the risk-neutral expectation (1) is a challenging task because closed-form
expressions are usually not available. A solution consists to evaluate A(t,Xt) by simula-
tions in simulations. This framework is illustrated in the left plot of Figure 1. For each
primary simulated sample path of risk factors (under P), we perform secondary simulations
(under Q). The value of A(t,Xt) is next obtained by averaging the sums of discounted
cash-�ows of secondary scenarios. This approach is nevertheless too computing intensive
for being carried out with success. In practice, we rely on the method of Least squares
Monte-Carlo (LSMC) to keep the computational time under control. We brie�y recall what
it consists in. For this purpose, let us denote by

Y (t) =

d∑
k=0

Bt

Btk

CA
k 1{tk≥t} ,

the random variable that is Ftd-adapted and such that A(t,Xt) = a (Xt)+EQ (Y (t) |Xt).
This variable is called the �response� for a given set of risk factors et time t. The LSMC
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method is based on property that the conditional expectation of a random variable Y (t)
given a random vector Xt minimizes the mean squared distance between Y (t) and h(Xt)
where h(.) is a Borel measurable function. In practice, it means that we only need a single
(or a few) secondary simulations under Q, as illustrated on the right plot of Figure 1. The
theoretical foundation of the LSMC approach is brie�y recalled in the next proposition
which uses the fact that Xt is also Ftd-adapted since Ft ⊂ Ftd .

Proposition 2.1. Let Y (t) be a square-integrable random variable on R and Xt a m-

dimensional random vector, both Ftd-adapted. The conditional expectation EQ (Y (t) |Xt)
is equal to a Borel measurable function h(Xt) such that

h (Xt) = arg min
h∈B(,R,Rm)

EQ
(
(h (Xt)− Y (t))2

)
. (5)

Proof Let us denote by νX,Y (x, y) the joint probability density function (pdf) of (Xt, Y (t))
and by νX(x) , νY (y) the marginal pdf's. According to the Bayes rule, the conditional
density of Y (t)|Xt is such that

νX,Y (x, y) = νY |X(y|x)νX(x)

and the expectation in (5) may be rewritten as

EQ
(
(h(Xt)− Y (t))2

)
=∫

dom(X)

∫
dom(Y )

(h(x)− y)2 νY |X(y|x)dy νX(x) dx .

The function h(Xt) minimizes (5) if and only if

h(x) = argmin

∫
dom(Y )

(h(x)− y)2 νY |X(y|x)dy ,

which is achieved for h(x) = EQ (Y (t)|Xt = x).

end

In many real-world applications, there is no closed form expression for the function h(Xt)
but risks factors can be simulated under the P measure. Longsta� and Schwartz (2001)
assume that the unknown function h(.) belongs to the L2-space of square-integrable func-
tions. Since L2 is a Hilbert space, it admits a countable orthornormal basis. The function
h(.) may then be represented as a combination of basis functions. If m = 1, one common
choice is the set of weighted Laguerre polynomials. In higher dimension, basis functions are
usually replaced by polynomials of risk factors. In practice, the LSMC algorithm consists
in simulating a sample denoted by

S = {(x1, y1), ..., (xn, yn)} , (6)

of n realizations of (Xt, Y (t)) and in regressing responses on risk factors. We recall that
Xt is simulated up to time t under the real measure P while the response Y (t) is obtained
by simulations from t up to td, under the risk neutral measure Q. Let us denote by Ph the
set of polynomials ĥ(x) of degree dh approximating h(x). It is estimated by least squares
minimization:

ĥ(.) = arg min
ĥ∈Ph

 ∑
(xi,yi)∈S

(
yi − ĥ(xi)

)2 . (7)
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Let us denote by

z =

((
xj1i1x

j2
i2
...xjhih

)j1,...,jh∈N,j1+...+jh≤dh

i1,...,ih∈{1,...,m}

)
, (8)

the vector of powers of risk factors up to order dh ∈ N. We de�ne ĥ(x) = z⊤β as a
polynomial of order dh where βk is a real vector of same dimension as z. The sample of
powers of risk factors is {z1, ...,zn}. Let us respectively denote by Z and y, the matrix

Z =
(
z⊤
j

)
j∈S

and the vector y = (yj)j∈S . Using standard arguments, the polynomial

coe�cients minimizing (7) are β̂ =
(
Z⊤Z

)−1
Z⊤y.

Let us next denote by âi = a(xi) + ĥ(xi) ≈ A(t,xi), the approximation of the value of
total assets for a given vector of risk factors Xt = x . The ordered samples of (âi)i=1,...,n

, (xi)i=1,...,n are denoted by
(
â(i)
)
i=1,...,n

and
(
x(i)

)
i=1,...,n

. They are such that

â(1) ≤ â(2) ≤ .... ≤ â(n).

We de�ne j(α) as the indice of the α-quantile of
(
â(i)
)
i=1,...,n

:

j(α) = max

{
k ∈ {1, ..., n} :

k

n
≤ α

}
. (9)

The estimate of V aRα is the α- quantile of
(
â(i)
)
i=1,...,n

:

V̂ aRα = ê(j(α)) .

From Equation (4), the ESα estimator is computed as follows:

ÊSα =
1

α

j(α)−1∑
i=1

ê(i)

n
+ ê(j(α))

(
1− j(α)− 1

αn

)
.

A critical step in the LSMC procedure is the choice of the function ĥ(Xt) that approximates
the unknown conditional expectation, h(Xt). This requires to test multiple candidate
regressors and to carefully monitor potential over�t of the dataset. In the next section, we
propose a new approach based on local regressions.

3 The local least squares Monte-Carlo (LLSMC)

As previously detailed, a common approach in LSMC consists to �t a global polynomial
regression predicting responses (yi)i=1,...,n as a function of risk factors (xi)i=1,...n. The best
model is selected by testing di�erent sets of covariates. As alternative, we can consider
machine learning regressions. The main advantage is their ability to capture non-linear
dependencies between EQ (Y (t) |Xt) and risk factors Xt. Nevertheless, these methods are
subject to over�tting and needs a careful tuning. On the other hand, risk management
tools are audited by the regulator and must for this reason be easily explainable to au-
thorities. Machine learning models being complex, this step requires to develop additional
interpretability tools to understand the in�uence of risk factors on assets. In this article,
we opt for an alternative approach based on local regressions. The method is based on a
�nite partitioning (Yk)k=1,...,K of the domain of Y (here dom(Y ) = R). Let us de�ne

hk(x) = EQ (Y (t) |Xt = x , Y (t) ∈ Yk) , k = 1, ...,K, (10)
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the conditional expectation of responses, knowing that Xt = x and Y (t) ∈ Yk. Using
standard properties of the conditional expectation, we can rewrite the function h(x) as a
weighted sum of hk(.):

h(x) = EQ (Y (t) |Xt = x)

=
K∑
k=1

Q (Y (t) ∈ Yk |Xt = x)hk(x) .

Based on this decomposition, we approximate the K unknown functions hk(.) by poly-
nomial regressions of Y (t) ∈ Yk on risk factors. In a second step, we use a multinomial
logistic regression to estimate the probabilities Q (Y (t) ∈ Yk |Xt) for k = 1, ...,K.

0 10 20 30 40 50 60 70

1
0

1
5

2
0

Simpson’s paradox

x

y

Figure 2: Illustration of the Simpson's paradox.

It may appear counterintuitive to partition the dataset using responses, Y, instead
of risk factors, X . Two reasons motivate this choice. Firstly, local regressions based on
hard clusters of risk factors generate discontinuities in predicted EQ (Y (t) |Xt) on bor-
ders of clusters, even in a market in which all processes are continuous. This is clearly
an undesirable feature for a model designed for risk management. Secondly, this prevents
to observe the Simpson's paradox. This is a phenomenon in probability and statistics in
which a trend appears in several groups of data but disappears or reverses when the groups
are combined. This paradox is illustrated in Figure 2 which compares local versus global
linear regressions. Regressions on clusters of x detect misleading local increasing trends
whereas the slope of the global model is negative. We provide a �nancial illustration of
the Simpson's paradox in the �rst case study.

In practice, the simulated sample, S de�ned in Equation (6), is the union of sampled
risk factors, noted X , and of corresponding responses Y. In a �rst stage, we partition the
sample dataset S = (X ,Y) into K << n subsets, denoted by (Sk)k=1,...K :

Sk = (Xk,Yk) , k = 1, ...,K ,

where (Yk)k=1,...,k is a partition of Y and (Xk)k=1,...,K is the sample set of corresponding
simulated risk factors. In this article, we use the K-means for partitioning Y in K clus-
ters (Yk)k=1,...,K . This heuristic algorithm computes a partition which reduces the within
groups sum of squared errors (WGSS) or intraclass inertia. The K-means algorithm is
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based on the concept of centroids that are the center of gravity of a cluster of objects. The
coordinates of the uth centroid is denoted cu ∈ R, u = 1, ...,K. If d(., .) is the Euclidian
distance, we de�ne the clusters Yk for k = 1, ...,K as follows:

Yk = {yi : d(yi, ck) ≤ d(yi, cj) ∀j ∈ {1, ...,K}} k = 1, ...,K . (11)

By extension, the joint cluster Sk of risk factors and responses is:

Sk = {(xi, yi) : d(yi, ck) ≤ d(yi, cj) ∀j ∈ {1, ...,K}} k = 1, ...,K . (12)

The center of gravity of Yk, is denoted by gk = 1
|Yk|

∑
yi∈Yk

yi and the center of gravity

of all responses is g = 1
n

∑n
i=1 gi. The global inertia is IY = 1

n

∑n
i=1 d (yi, g)

2 and the
interclass inertia Ic is the inertia of the cloud of centers of gravity:

Ic =

K∑
k=1

|Yk|
n

d (gk, g)
2 .

The intraclass inertia Ia is the sum of clusters inertiae, weighted by their size:

Ia =
1

n

K∑
k=1

∑
yi∈Yk

d (yi, gk)
2 .

According to the König-Huyghens theorem, the global inertia is the sum of the intraclass
and interclass inertiae: IY = Ic+Ia. We seek for a partition of Y minimizing the intraclass
inertia Ia in order to have homogeneous clusters on average. This is equivalent to determine
the partition maximizing the interclass inertia, Ic. Finding the partition that minimizes
the intraclass inertia is computationally di�cult (NP-hard) but e�cient heuristic proce-
dures exists. The most common method uses an iterative re�nement technique called the
K-means which is detailed in Algorithm 1, provided in appendix A. Given an initial set
of K random centroids y1(0),...,yK(0), we construct a partition {Y1(0), . . . ,YK(0)} of the
response dataset. Next, we replace the K random centroids by the K centers of gravity
(cu(1))u=1:K = (cu(0))u=1:K of these classes and we iterate till convergence. At each itera-
tion, we can prove that the intraclass inertia is reduced. Nevertheless, we do not have any
warranty that the partition found by this way is a global solution. In practice, this proce-
dure is repeated several times and we keep the partition with the lowest intraclass inertia.
Notice that any other partitioning procedure may be substituted to the K-means algorithm.

After having found a partition of S in Sk = (Xk,Yk) , k = 1, ...,K ,we estimate func-

tions (hk)k=1,...,K by K polynomials of order dh, denoted by
(
ĥk(.)

)
k=1,...,K

. Let us recall

that z as de�ned in Equation (8), is the vector of powers of risk factors up to dh ∈ N.
We assume that ĥk(x) = z⊤βk is a polynomial of order dh where βk is a real vector of

dimension equal to the one of z. In a similar manner to LSMC, the
(
ĥk(.)

)
k=1,...,K

are

estimated by least squares minimization over the set Ph of polynomials of degree dh:

βk = arg min
ĥk∈Ph

 ∑
(xi,yi)∈Sk

(
yi − ĥk(xi)

)2 . (13)

The sample of powers of risk factors is again {z1, ...,zn} and we denote by Zk and yk,

the matrix Zk =
(
z⊤
j

)
j∈Sk

and the vector yk = (yj)j∈Sk
for k = 1, ...,K. Using standard

arguments, the polynomial coe�cients minimizing (13) are β̂k =
(
Z⊤
k Zk

)−1
Z⊤
k yk.
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Nevertheless, this model is useless for predicting the response for a vector x that is not in
the training dataset. For x /∈ S, the expected response should be

ĥ(x) =
K∑
k=1

Q (Y (t) ∈ Yk |Xt = x) ĥk(x) , (14)

where Q (Y (t) ∈ Yk |Xt = x) is the unknown probability that the response for x is in the
kth cluster. A solution consists to estimate these probabilities with a multinomial logistic
regression. In this framework, we assume that conditional probabilities are the following
functions

Q (Y (t) ∈ Yk |Xt = x) =


e−γ̂k(x)

1+
∑K

j=2 e
−γ̂j(x) k = 2, ...,K ,

1

1+
∑K

j=2 e
−γ̂j(x) k = 1 ,

(15)

where γ̂k(x) is a polynomial of risk factors. If Pγ is the set of admissible polynomial
functions of order dγ ∈ N, the (γ̂k(.))k=2,...,K are estimated by log-likelihood maximization.
We denote by

w =

((
xj1i1x

j2
i2
...xjhih

)j1,...,jh∈N,j1+...+jh≤dγ

i1,...,ih∈{1,...,m}

)
the vector of powers of risk factors up to dγ ∈ N. We assume that γ̂k(x) = w⊤ζk is a
polynomial of order dγ where ζk is a real vector of same dimension as w. The log-likelihood
is de�ned by

L
(
(γk)k=2,...,K

)
=

n∑
i=1

log

(
K∑
k=2

1{yi∈Yk}e
−γk(xi)

1 +
∑K

j=2 e
−γj(xi)

+
1{yi∈Y1}

1 +
∑K

j=2 e
−γj(x)

)
,

and (ζk)k=2,...,K = argmaxγk∈Pγ L
(
(γk)k=2,...,K

)
.

We haven't discussed yet how to optimize the number of clusters K and the polynomial
orders, dh, dγ . In practice, we check four indicators of goodness of �t. We �rst compare
the R2 for di�erent settings. The R2 is the percentage of variance of responses explained
by the model:

R2 = 1−

∑n
i=1

(
yi − ĥ(xi)

)2
∑n

i=1 (yi − ȳ)2
, (16)

where ȳ = 1
n

∑n
i=1 yi. In LSMC regression, responses y, are by construction very noised

estimates of EQ (Y (t) |x) and therefore the R2 is by nature small. We assess the �t of local
regressions by

R2
loc = 1−

∑K
k=1

∑
(xi,yi)∈Sk

(
yi − ĥk(xi)

)2
∑n

i=1 (yi − ȳ)2
. (17)

Contrary to R2, we may expect a R2
loc close to 1 and should exclude any models with a low

R2
loc. The R2 and R2

loc both increase with the complexity of the model, measured by the
number of its parameters. For this reason, we also compute a second indicator of goodness
of �t which is the mean squared error of residuals:

MSE =

∑n
i=1

(
yi − ĥ(x)

)2
n− p

, (18)
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where p is the number of regression parameters. This criterion tends to penalize models
with a large number of parameters. To detect abnormal prices, we also calculate the
sum of squared errors between exact values of A(t,x) and their LLSMC estimates, h(x)
over a small sample of risk factors. We call this sample the validation set and denote it
by V. Depending upon the nature of assets, the exact values of A(t,xt) is computed by
performing a su�cient number of secondary simulations or by any other suitable numerical
method. This step being computationally intensive, the size of the validation set, must be
limited but should contain su�ciently diversi�ed combinations of risk factors. A simple
approach consists to combine quantiles of risk factors. Let us detail this approach. We

denote by
(
x
(k)
(i)

)
i=1,...,n

, the ordered sample
(
x
(k)
i

)
i=1,...,n

, of the kth risk factor:

x
(k)
(1) ≤ x

(k)
(2) ≤ ... ≤ x

(k)
(n) .

We select a small number of q ∈ N quantiles
(
x
(k)
j(α1)

, ..., x
(k)
j(αq)

)
where (αi)i=1,...,q are

probabilities and j(αi) is the quantile index such as de�ned in Equation (9). We repeat
this operation for each k = 1, ...,m. The validation set V contains all the combination of
quantiles and its total size is |V| = qm. The MSE on the validation sample is

MSE(V) = 1

|V|
∑
x∈V

(
A(t,x)− ĥ(x)

)2
. (19)

If the dimension of |V| is too large, we can select randomly a subset of V of appropriate
size. Besides the analysis of these indicators of goodness of �t, it is recommanded to plot
the function ĥ(x) in order to detect unexpected tail behaviour. This point is illustrated in
the following sections.

4 Application to options management in the Heston model

In order to compare the LSMC method to its local version, we �rst consider a �nancial
market made up of one stock with stochastic volatility and a cash account. We choose this
market model, proposed by Heston (1993), because we can benchmark LSMC and LLSMC
predictions to accurate option prices. computed by discrete Fourier transform, as brie�y
reviewed in the next subsection.

4.1 Heston model in a nutshell

We consider a �nancial market made up of two assets. The account earns a constant risk
free rate r. The stock price, noted (St)t≥0, is ruled by a geometric Brownian di�usion with
a stochastic variance, (Vt)t≥0:{

dSt = µSt dt+ St

√
Vt

(
ρdW v

t +
√
1− ρ2dW s

t

)
,

dVt = κ (γ − Vt) dt+ σ
√
VtdW

v
t .

(20)

where (W s
t )t≥0 and (W v

t )t≥0 are independent Brownian motion de�ned on the real proba-
bility space (Ω,F ,P). µ ∈ R is the expected instantaneous stock return and ρ ∈ (−1, 1) is
the correlation between the price and volatility. The variance reverts with a speed κ > 0
to a mean reversion level γ > 0. The volatility of the variance is a multiple σ ∈ R+ of the
square root of variance.

For the sake of simplicity, we assume that the variance has the same dynamics under
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P and Q (this assumption may be relaxed without any impact on our analysis) whereas
the drift of the stock price is replaced by the risk free rate under Q. As stated in the next
proposition, the characteristic function of the log-return admits a closed-form expression.

Proposition 4.1. The characteristic function of ln (Ss/S0) |Ft under the risk neutral Q,

for s ≥ t with ω ∈ C, is given by the following expression

EQ
(
eω ln(Ss/S0) | Ft

)
=

(
St

S0

)ω

exp (A(ω, t, s) +B(ω, t, s)Vt) . (21)

Let us de�ne the following constants:d =
√
(ρσω − κ)2 + σ2 (ω − ω2) ,

g = κ−ρσω+d
κ−ρσω−d .

The functions A(ω, t, s) and B(ω, t, s) in Equation (21) are given by

A(ω, t, s) = r ω (s− t) +

κγ

σ2

(
(κ− ρσω + d) (s− t)− 2 ln

(
1− ged(s−t)

1− g

))
, (22)

and

B(ω, t, s) =
κ− ρσω + d

σ2

1− ed (s−t)

1− g ed (s−t)
. (23)

For a proof, the reader can refer for instance, to Hainaut (2022), chapter 3, p. 65.
European call or put options do not have analytical expressions. In order to evaluate
these options, we can calculate numerically the probability density function of the log-
return, ln (ST /S0) |Ft, by a discrete Fourier transform (DFT). The characteristic function
of a random variable, here Υt,T (iω) = EQ (ei ω ln(ST /S0) | Ft

)
, is also the inverse Fourier

transform of its probability density function (pdf):

ft,T (u) =
1

2π

∫ +∞

−∞
Υt,T (iω) e

−i u ωdω (24)

=
1

π
Re

(∫ +∞

0
Υt,T (iω)e

−i u ωdω

)
Therefore, we can retrieve the pdf by computing numerically its Fourier transform as stated
in the next proposition.

Proposition 4.2. Let M be the number of steps used in the Discrete Fourier Transform

(DFT) and ∆u = 2umax
M−1 be this step of discretization. Let us denote ∆ω = 2π

M ∆u
and

ωm = (m− 1)∆ω,

for m = 1...M . Let Υt,T (ω) = EQ (eω ln(ST /S0) | Ft

)
be mgf of ln (ST /S0). The values of

ft,T (.) the pdf of ln (ST /S0) |Ft at points uk = −M
2 ∆u + (k − 1)∆u are approached by the

sum:

f (uk) ≈ 2

M ∆u
Re

(
M∑

m=1

ϱmΥt,T (i ωm) (−1)m−1e−i 2π
M

(m−1)(k−1)

)
. (25)

where ϱm = 1
21{m=1} + 1{m̸=1}.
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This result is proven by discretizing the integral (24). The value of a European option
of maturity T and payo� H(ST ) is then approached by the following sum

EQ
(
e−r(T−t)H(ST )|Ft

)
=

M∑
k=1

f (uk)H(S0e
uk) . (26)

Prices obtained by this method are compared to LSMC and LLSMC prices in the next
subsection.

4.2 LLSMC applied to butter�y options

In order to apply the LSMC to the Heston model, we consider as risk factors, the normed
stock price and volatility:

Xt :=

St − EP
0 (St)√

VP
0 (St)

,

√
Vt − EP

0

(√
Vt

)√
VP
0

(√
Vt

)
 .

In practice, expectations and variances of St and
√
Vt are estimated by empirical aver-

ages and variances of the simulated sample. We consider a European butter�y option of
maturity T and strikes E1, E2 and E3. The payo� of this option is

H(ST ) = (ST − E1)+ − 2 (ST − E2)+ + (ST − E3)+ ,

and its price A(t,Xt), at time t ≤ T , is equal to the Q−expected discounted payo�,
A(t,Xt) = EQ (e−r(T−t)H(ST ) | Ft

)
. We choose this derivative because its payo� presents

three in�ection points and is not an invertible function with respect to stock prices. As
we will see, the price of such an option is di�cult to replicate by LSMC. We will next
consider a bull trap option that has a increasing payo�. Table 1 reports model and payo�
parameters. The Heston model is �tted to the time series of the S&P 500 from 31/1/2001
to 31/1/2020 by Bayesian log-likelihood maximization (for details on the estimation pro-
cedure, see Hainaut 2022, p. 75). In a �rst stage, we perform 10000 primary simulations
under P of responses Y (t) = e−r(T−t)H(ST ), with 350 steps of time per year. For each
primary simulation, we simulate a single secondary sample path under Q.

Parameters

µ 0.1232 r 0.02

κ 0.7171 ρ -0.5390

γ 0.1016 σ 0.4234

S0 100 E1 100

E2 108 E3 116

t 1 year T 2 years

Table 1: Parameters of the Heston stochastic volatility model and of the payo�.
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Figure 3: Simulated responses Y (t) = e−r(T−t)H(ST ) versus stock prices St, and volatili-
ties,

√
Vt. The red curves are the predictions h(Xt) from the LSMC with a second order

polynomials regression.

The upper and lower plots of Figure 3 show simulated responses versus stock prices
and volatilities. The red curves correspond to LSMC estimates of butter�y option prices
in one year with a second order polynomial of risk factors. These graphs reveal a weakness
of the classical LSMC approach: it fails to predict a positive option price for extreme high
and low values of stock prices. This point is particularly critical when LSMC is used for
computing risk measures.

Table 2 reports the R2, the MSE and MSE(V) of the LSMC, such as de�ned by Equations
(16), (18) and (19). The validation set counts 100 pairs of risk factors. We consider q = 10
empirical quantiles of stock prices and volatilities for probabilities from 1% to 5% and from
95% to 99% by step of 1%. This choice is motivated by the fact that extreme values of
risk factors are likely to generate extreme high and low option prices. The (nearly) exact
prices of butter�y options in these 100 scenarios are computed by discrete Fourier trans-
form (DFT) that provides the density ft,T (u) of ln (ST /S0) |Ft on a grid {u1, ..., uM} of
size M for given risk factors at time t. The value of the butter�y option is next computed
by formula (26).

dh R2
√
MSE(V)

√
MSE d.f.

2 0.0397 0.36 2.10 6
3 0.0451 0.57 2.10 10
4 0.0499 1.07 2.09 15
5 0.0522 2.39 2.09 21
6 0.0536 1.93 2.09 28

Table 2: R2, MSE and MSE(V) of regressions of Yt on Xt in the LSMC model. d.f. is the
number of parameters.

12



K dγ dh R2
√
MSE(V)

√
MSE d.f. R2

loc

3 2 3 0.0526 0.19 2.09 42 0.9513

5 2 3 0.0527 0.2 2.1 74 0.9850

6 2 4 0.0523 0.2 2.1 120 0.9900

2 2 3 0.0525 0.2 2.09 26 0.8693

5 2 4 0.0527 0.21 2.1 99 0.9851

5 2 2 0.0525 0.21 2.1 54 0.9849

3 2 1 0.0523 0.21 2.09 21 0.9511

4 2 2 0.0525 0.21 2.09 42 0.9755

4 2 1 0.0525 0.21 2.09 30 0.9754

2 2 2 0.0521 0.21 2.09 18 0.8691

Table 3: R2, MSE, MSE(V) and R2
loc for the LLSMC model. d.f. is the number of

parameters.

In Table 2, butter�y prices are approached by polynomial regressions of order dh from
2 to 6. As expected, R2's are tiny since responses are noised estimates of EQ (Y (t) |x).
The R2's also increase with the complexity of the model. The MSE on the training set is
inversely proportional to the polynomial order whereas the lowest MSE(V) on the valida-
tion set is achieved with an order 2 polynomial. A next step consists in analyzing the tail
behaviour of these approximations. This is done by plotting the function ĥ(x). We will
come back on this point later and before focus on the LLSMC.

Table 3 presents the statistics of goodness of �t for the LLSMC model. The number
of clusters, K, varies from 2 to 6. We test polynomials of degrees dh from 2 to 6 and dγ
equal to 1 and 2. Models are sorted by increasing MSE(V)'s and we report statistics of
the 10 �rst best models according to this criterion. The best goodness of �t is achieved
with 2 or 3 clusters, a cubic regression on each cluster and second order polynomial for
the multinomial logistic regression. A comparison with LSMC �gures of Table 2, reveals
that the LLSMC reduces by half the MSE(V) on the validation dataset whereas MSE on
the training set are comparable. This is a good indicator that the LLSMC model better
replicates extremely high and low prices. We also notice that the LLSMC- and LSMC-R2

are comparable.

We compare now the LSMC and the LLSMC with hyperparameters K = 3, dγ = 2,
dh = 3 (denoted by LLSMC 3-2-3) as this setting leads to a low MSE(V) and a high R2

loc.
The upper plot of Figure 4 shows the segmentation of responses in 3 clusters with the
K-means algorithm. The mid and lower plots shows the responses and local predictions
ĥk(Xt) (red lines) on clusters, with respect to stock prices and volatilities. Contrary to
the LSMC, the local regressions do not yield large negative responses.
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Figure 4: Upper plot: a-priori segmentation of responses in 3 clusters. Mid and lower plots:
responses (blue points) and local regressions (red points) with respect to stock prices and
volatilities.

Figure 5 compares LSMC and LLSMC butter�y options for stock prices St ranging from
68 to 139, the 1% and 99% percentiles of simulated stock prices and

√
Vt ∈ {7%, 14%, 23%},

the 1%, 50% and 99% quantiles of simulated volatilities. Exact option prices are computed
by DFT with umax = 2 and M = 28 steps of discretization. The mid plot displays prices
in standard market conditions. The right and left plots correspond to extreme volatility
conditions. We observe that LSMC models of order 2 or 4 generates negative prices in the
tails. To measure the overall accuracy of methods in these three scenarios of volatility, we
report in Table 4 the average pricing errors. This table con�rms that the LLSMC globally
outperforms LSMC. Tables 5 and 6 present the VaR's and TVaR's of the butter�y option
for various quantiles. The LSMC models yield negative values for the lowest percentiles
whereas the LLSMC provides slightly lower VaR's and TVaR's than the LSMC of orders
3 to 6, for the highest percentiles. This would be interesting to compare these results to
VaR's and TVaR's based on exact prices computed by DFT. Unfortunately, the valuation
by DFT of 10000 butter�y options is computationally too intensive. This comparison is
nevertheless possible in the second case study (Section 5).
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Figure 5: Butter�y option for St ranging from 40 to 180 and volatilities
√
Vt ∈

{7%, 14%, 23%}.

√
Vt = 7%

√
Vt = 14%

√
Vt = 23%

LLSMC, 3-2-3 0.32 0.11 0.18
LSMC, order 2 0.54 0.23 0.22
LSMC, order 3 0.61 0.32 0.33
LSMC, order 4 0.75 0.21 0.93
LSMC, order 5 2.34 0.1 1.32
LSMC, order 6 1.09 0.07 1.87

Table 4: Average pricing errors for the three cases presented in Figure 5.

0.05% 0.1% 1% 5% 95% 99% 99.9% 99.95%

LLSMC, 3-2-3 -0.08 -0.06 0.01 0.16 1.66 1.71 1.76 1.76
LSMC, dh =2 -2.20 -1.92 -0.58 0.22 1.47 1.54 1.60 1.61
LSMC, dh =3 -2.00 -1.51 -0.57 0.10 1.56 1.70 1.86 1.90
LSMC, dh =4 -0.85 -0.78 -0.33 0.01 1.61 1.75 1.93 2.01
LSMC, dh =5 -0.60 -0.53 -0.24 0.00 1.66 1.83 2.02 2.07
LSMC, dh =6 -0.15 -0.11 -0.02 0.17 1.71 1.87 2.07 2.13

Table 5: VaR 1 year, LSMC model and LLSMC.

0.05% 0.1% 1% 5% 95% 99% 99.9% 99.95%

LLSMC, 3-2-3 -0.10 -0.09 -0.03 0.06 1.69 1.73 1.77 1.77
LSMC, dh =2 -2.87 -2.51 -1.18 -0.29 1.51 1.57 1.62 1.64
LSMC, dh =3 -2.60 -2.18 -1.05 -0.35 1.64 1.78 1.95 2.02
LSMC, dh =4 -1.08 -0.95 -0.5 -0.23 1.7 1.85 2.17 2.37
LSMC, dh =5 -0.71 -0.64 -0.35 -0.16 1.76 1.92 2.1 2.17
LSMC, dh =6 -0.77 -0.45 -0.08 0.05 1.81 1.97 2.22 2.33

Table 6: Expected shortfall, 1 year, LSMC model and LLSMC.
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We now detail how the LLSMC 3-2-3 operates with the help of Figure 6. The left plot
shows the local regression functions ĥk(x), for various stock prices St and a volatility of
14%. The mid plot displays the probabilities that a pair of risk factors leads to a response
belonging to the kth cluster. We clearly see that the �rst cluster explains left and right
tails of butter�y option prices. If St is below 80 or above 130, the response is in cluster 1
with a probability higher than 90% and the correspond function ĥ3(x) is nearly �at and
null. The probabilities of belonging to clusters 2 and 3 are quite similar and higher than
5% for St ∈ [80, 130]. The right plot shows the products of regression and probabilities
functions. According to Equation (14), the estimated option price is the sum of these three
terms.
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Figure 6: Plots of regression functions hk(x) for k = 1, ...,K, probabilities
Q (Y (t) ∈ Yk |Xt = x) and their products, for

√
Vt = 14%.

Cluster, k std. errors
1 2 3 1 2 3

Intercept 0.0765 3.2602 6.3226 0.0042 0.0408 0.038

x(1) -0.0015 0.0371 0.1091 0.0059 0.0688 0.0729

x(2) -0.0135 -0.0579 0.1003 0.0062 0.0633 0.0581(
x(1)

)2
-0.0163 -0.0465 -0.0997 0.0032 0.0634 0.0584(

x(2)
)2

-0.0007 -0.0287 -0.0063 0.0034 0.0364 0.0362

x(1)x(2) -0.0009 -0.0871 -0.0629 0.0054 0.0732 0.0681(
x(1)

)3
0.0026 0.0063 0.0192 0.0019 0.0424 0.0408(

x(2)
)3

0.0006 0.0145 -0.0275 0.0025 0.0291 0.0269(
x(1)

)2
x(2) 0.0057 0.0874 -0.0897 0.0047 0.0604 0.0721

x(1)
(
x(2)

)2
0.0008 0.048 -0.0808 0.0052 0.0603 0.0655

Table 7: LLSMC, 3-2-3 : parameters of cubic regressions, hk(x) per cluster and standard
errors (std. err.)
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Cluster, k std. errors
2 3 2 3

Intercept -1.4843 -1.4643 0.0467 0.0471

x(1) 0.2552 0.2226 0.0525 0.0547

x(2) -0.0882 -0.1144 0.0428 0.043(
x(1)

)2
-0.5778 -0.6956 0.0565 0.0622(

x(2)
)2

-0.0197 -0.0128 0.039 0.0392

x(1)x(2) 0.0409 -0.0338 0.0717 0.076

Table 8: LLSMC, 3-2-3 : Parameters of logistic regressions, γk(x) per cluster and standard
errors (std. err.)

Tables 7 and 8 report the estimated coe�cients of polynomials ĥk(.) and γ̂k(.) of the
LLSMC, 3-2-3. Some standard errors seem too high at a �rst sight. As for low R2,
this is explained by the fact that responses are by construction very noised estimates of
EQ (Y (t) |x). Therefore, these statistics should be analyzed with a certain care.
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Figure 7: Bull trap option for St ranging from 40 to 180 and volatilities
√
Vt ∈

{7%, 14%, 23%}.

Till now, we have focused on a butter�y option because its payo� and therefore its price
is not strictly increasing or decreasing function of ST . We now show that the LLSMC still
outperforms the LSMC for increasing payo�s. We consider a long and a short position in
call options of maturity T and strikes E1, E2. The total payo� of this bull trap option is
equal to

H(ST ) = (ST − E1)+ − (ST − E2)+ .

We use again the Heston model with parameters of Table 1, except that we set strikes
to E1 = 100, E2 = 110. We compare the LSMC and the LLSMC with hyperparameters
K = 3,dγ = 2, dh = 1. Figure 7 compares LSMC and LLSMC bull trap option for stock
prices St ranging from 68 to 139, and

√
Vt ∈ {7%, 14%, 23%}. Table 9 reports the average

pricing errors in these 3 scenarios. These results con�rm that LLSMC achieves a better
overall accuracy than the LSMC.
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√
Vt = 7%

√
Vt = 14%

√
Vt = 23%

LLSMC, 3-2-1 0.21 0.13 0.58
LSMC, order 2 1.59 0.94 0.53
LSMC, order 3 1.59 0.53 1.40
LSMC, order 4 2.24 0.32 0.98
LSMC, order 5 2.54 0.18 3.38
LSMC, order 6 1.16 0.25 3.00

Table 9: Average pricing errors, bull trap portfolio.

To conclude this section, we illustrate the Simpson's paradox when we price a butter�y
option with parameters of Table 1. For this purpose, we divide the sample S into K << n
subsets (Sk)k=1,...K :

Sk = (Xk,Yk) , k = 1, ...,K ,

where partition is this time, based on a partitioning of risk factors. Each cluster is de�ned
by a centroid ck ∈ Rm of dimension m such that

Sk = {(xi, yi) : d(xi, ck) ≤ d(xi, cj) ∀j ∈ {1, ...,K}} k = 1, ...,K .

We use the K-means algorithm to �nd the partition of S in Sk = (Xk,Yk) , k = 1, ...,K.
The conditional expectation of responses is approached by a piecewise function

ĥ(x) =

K∑
k=1

1{x∈Sk}ĥk(x) ,

where ĥk ∈ Ph, the set of polynomials of order dh. As for a LLSMC regression, the ĥk are
estimated by least squares minimization, as in Equation (7). This variant of local model
is denoted by X -LLSMC.

K dh R2
√
MSE(V)

√
MSE d.f.

4 1 0.0501 0.27 2.09 12

5 1 0.0523 0.39 2.09 15

6 1 0.052 0.46 2.09 18

4 2 0.0524 0.55 2.09 24

5 2 0.0549 0.63 2.09 30

4 3 0.0546 0.64 2.09 40

2 2 0.0479 0.73 2.1 12

3 1 0.0429 0.75 2.1 9

6 2 0.0558 0.94 2.09 36

3 4 0.0565 0.97 2.09 45

Table 10: R2, MSE, MSE(V) and R2
loc for the X -LLSMC model. d.f. is the number of

parameters.

Table 10 reports statistics of goodness of �t for models with K from 2 to 6 and dh
from 1 to 4. Models are sorted by increasing MSE(V)'s and we only report statistics of
the 10 best models according to this criterion. In view of LLSMC �gures of Table 3,
the X -LLSMC 4-1 achieves a similar accuracy with even less parameters. If we limit our
analysis to compare statistics of goodness of �t, the X -LLSMC and LLSMC seems both
eligible for computing VaR or TVaR. Plotting the X -LLSMC regression function leads to
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another conclusion. Figure 7 compares X -LLSMC 4-1 and FFT Butter�y prices for St

ranging from 68 to 139, and
√
Vt ∈ {7%, 14%, 23%}. We observe that local regressions

based on clusters of risk factors generate discontinuities in predicted responses on borders
of clusters. Secondly, we identify local trends not relevant with the global slope of price
curves. These two elements disqualify the X -LLSMC for risk management purposes.
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Figure 8: Butter�y option for St ranging from 40 to 180 and volatilities
√
Vt ∈

{7%, 14%, 23%}.

5 Application to life insurance management

In this second example, we compare the performance of LSMC and LLSMC for assessing the
risk of a participating pure endowment. The next subsection brie�y presents the features
of this product in a market with 3 risk factors. As the contract admits a closed-form
valuation formula, we will compare approached and exact VaR's and TVaR's.

5.1 A participating pure endowment

We consider a combined life insurance and �nancial market. The stock price indice, the
interest rate and the force of mortality are respectively denoted by (St)t≥0 , (rt)t≥0 and
(µx+t)t≥0 . These processes are de�ned on a probability space (Ω,F ,P) by the following
dynamics: dSt

drt
dµx+t

 =

 µSt

κr (γr(t)− rt)
κµ (γx(t)− µx+t)

 dt+

 StσS 0 0
0 σr 0
0 0 σx(t)

Σ

 dW
(1)
t

dW
(2)
t

dW
(3)
t

 .(27)

W
(1)
t ,W

(2)
t ,W

(3)
t are independant Brownian motions. µ, κr, κµ, σS and σr belong to

R+ whereas γr(t), γx(t) and σx(t) are positive functions of time. γr(t) and γx(t) are
respectively �tted to term structures of interest and mortality rates. The initial age of the
insured is denoted by x ∈ [0, xmax). Furthermore, we assume that the standard deviation
of mortality is related to age through the relation σx(t) = αeβ(x+t). Details about γx(t) and
σx(t) are provided in Appendix D. The matrix Σ is the (upper) Choleski decomposition of
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the correlation matrix and is such that

Σ =

 ϵSS ϵSr ϵSµ
0 ϵrr ϵrµ
0 0 1

 ,

 1 ρSr ρSµ
ρSr 1 ρrµ
ρSµ ρrµ 1

 = ΣΣ⊤ ,

where ρSr, ρSµ, ρSr and ρrµ ∈ (−1, 1). This model allows for correlation between �nancial
and mortality shocks caused for instance by a pandemic such as the of one of Covid 19.
Notice that Ha and Bauer (2019) use a similar framework, excepted that in our framework
the mortality is mean reverting, with an age-dependent volatility. Another di�erence is
that we consider a participating pure endowment contract for benchmarking the LLSMC
algorithm. The main motivation being that we derive a closed-form expression for its
price. This contract subscribed by a x- years old individual promises at expiry (date T )
the maximum between a capital CT and the value of the stock indice ST , in case of survival.
The bene�t is nevertheless upper bounded by CM . If we denote by τ ∈ R+, the random
time of insured's death, the value of such a policy is equal to the expected discounted
cash-�ows under the chosen risk neutral measure:

Vt = EQ
(
e−

∫ T
t rsds1{τ≥T}

(
CT + (ST − CT )+ − (ST − CM )+

)
| Ft

)
(28)

= 1{τ≥t}CTEQ
(
e−

∫ T
t (rs+µx+s)ds | Ft

)
+1{τ≥t}EQ

(
e−

∫ T
t (rs+µx+s)ds

(
(ST − CT )+

)
| Ft

)
−1{τ≥t}EQ

(
e−

∫ T
t (rs+µx+s)ds

(
(ST − CM )+

)
| Ft

)
.

For the sake of simplicity, we assume that the dynamics of rt and µx+t are similar under P
and Q (this assumption may be relaxed without impacting our results). The instantaneous
return of the stock indice is rt under Q. The zero-coupon bond, the survival probabilities
and the pure endowent1 are respectively de�ned by the following expectations:

P (t, T ) = EQ
(
e−

∫ T
t rsds|Ft

)
,

T px+t = EQ
(
e−

∫ T
t µx+sds | Ft

)
,

TEt = 1{τ≥t}EQ
(
e−

∫ T
t (rs+µx+s)ds | Ft

)
.

The model being a�ne, we can easily derive the closed-form expressions of these products.
In the remainder of this article, we adopt following the notation

By(t, T ) =
1− e−y(T−t)

y
,

where y ∈ R+ is a positive parameter. We also need the following integrals of By(., .):{∫ T
t Bκr(u, T )du = 1

κr
((T − t)−Bκr(t, T )) ,∫ T

t σx(u)Bκµ(u, T )du = αeβ(x+T )

κu

(
Bβ(t, T )−Bβ+κµ(t, T )

)
,

and the integrals of cross-product of Bκr(., T ) and σx(.)Bµ(., T ):

∫ T
t Bκr(u, T )

2du = 1
κ2
r

(
(T − t)−Bκr(t, T )− 1

2κrBκr(t, T )
2
)
,∫ T

t

(
σx(u)Bκµ(u, T )

)2
du = α2e2β(x+T )

κ2
u

(
B2β(t, T )− 2B2β+κµ(t, T )

+B2(β+κµ)(t, T )
)
,∫ T

t σx(u)Bκµ(u, T )Bκr(u, T )du = αeβ(x+T )

κµκr

(
Bβ(t, T )−Bκµ+β(t, T )

−Bκr+β(t, T ) +Bκµ+κr+β(t, T )
)
.

1The pure endowment pays one monetary unit at time T if the individual is still alive at maturity.
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The dynamics of interest and mortality rates are a�ne and therefore zero-coupon and
survival probabilities admit closed-form expressions detailed in the next proposition.

Proposition 5.1. At time 0 ≤ t ≤ T , the value of the discount bond of maturity T is equal

to

P (t, T ) = exp

(
−rtBκr(t, T )−

∫ T

t
γr(u)

(
1− e−κr(T−u)

)
du

)
(29)

× exp

(
σ2
r

2

∫ T

t
BBκr

(u, T )2du

)
,

The survival probability up to time T , is given by

T px+t = exp

(
−µx+tBκµ(t, T )−

∫ T

t
γx(u)

(
1− e−κµ(T−u)

)
du

)
(30)

× exp

(
1

2

∫ T

t

(
σx(u)Bκµ(u, T )

)2
du

)
,

The pure endowment, TEt, admits the following expression:

TEt = 1{τ≥t} exp

(
−rtBκr(t, T )− µx+tBκµ(t, T ) +

σ2
r

2

∫ T

t
Bκr(u, T )

2du

)
× (31)

exp

(
−
∫ T

t
γr(u)

(
1− e−κr(T−u)

)
du−

∫ T

t
γx(u)

(
1− e−κµ(T−u)

)
du

)
×

exp

(
σrϵrµ

∫ T

t
σx(u)Bκµ(u, T )Bκr(u, T )du+

1

2

∫ T

t

(
σx(u)Bκµ(u, T )

)2
du

)
,

The sketch of the proof is provided in Appendix D. In order to match the initial yield
curve of zero-coupon bonds, the function γr(u) satis�es the relation∫ T

0
γr(u)

(
1− e−κr(T−u)

)
du = − lnP (0, T )− r0Bκr(0, T ) +

σ2
r

2

∫ T

0
Bκr(u, T )

2du .(32)

Deriving twice this expression leads to the following useful reformulation of γr(T ):

γr(T ) = − 1

κr
∂2
T lnP (0, T )− ∂T lnP (0, T ) (33)

+
σ2
r

2κ2r

(
1− e−2κrT

)
,

where −∂T lnP (0, T ) is the instantaneous forward rate. For a given initial mortality curve

T px, we show in a similar manner that the function γx(u) satis�es the relation

γx(T ) = − 1

κµ
∂2
T ln T px − ∂T ln T px +

1

κµ

∫ T

0
σx(u)

2
(
e−2κµ(T−u)

)
du

= − 1

κµ
∂2
T ln T px − ∂T ln T px +

α2e2βx

2κµ(κµ + β)

(
e2βT − e−2κµT

)
. (34)

Equations (33) and (34) allows us to rewrite bond prices, survival probabilities and endow-
ment as function of initial term structure of mortality and interest rates.

Corollary 5.2. The price at time t ≤ T of a discount bond of maturity T is linked to the

initial interest rate curve at time t = 0 by the relation

P (t, T ) = exp

(
−rtBκr(t, T )− (∂t lnP (0, t))Bκr(t, T ) + ln

P (0, T )

P (0, t)

)
(35)

× exp

(
− σ2

r

4κr

((
1− e−2κrt

)
Bκr(t, T )

2
))

.
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In a similar manner, we can show that, being alive at age x+ t, the survival probability up

to time T depends on the initial survival term structure as follows:

T px+t = exp

(
−µx+tBκµ(t, T )− (∂t ln tpx)Bκµ(t, T ) + ln

T px

tpx

)
× (36)

exp

(
α2e2β(x+T )

2κ2µ

(
B2β(t, T )− 2B2β+κµ(t, T ) +B2β+2κµ(t, T )

))
×

exp

(
α2e2βx

2κµ(κµ + β)

(
e2βTB2β+κµ(t, T )− e2βTB2β(t, T )

))
×

exp

(
α2e2βx

2κµ(κµ + β)

(
e−2κµtB2κµ(t, T )− e−κµ(T+t)Bκµ(t, T )

))
,

whereas the pure endowment contract becomes:

TEt = 1{τ≥t} T px+t P (t, T ) × (37)

exp

(
σrϵrµαe

β(x+T )

κµκr

(
Bβ(t, T )−Bκµ+β(t, T )−Bκr+β(t, T ) +Bκµ+κr+β(t, T )

))
.

The next result presents the dynamics of the discount bond and endowment under the
pricing measure. This is a direct consequence of the Itô's lemma applied to Proposition
5.1.

Corollary 5.3. Under the risk neutral measure Q, the dynamics of the zero-coupon bond

and of the pure endowment at time t ≤ T are given by
dP (t, T ) = rtP (t, T )dt− P (t, T )Bκr(t, T )σr

(
ϵrrdW

(2)
t + ϵrµdW

(3)
t

)
,

d TEt = TEt (rt + µx+t) dt− TEtσrϵrrBκr(t, T )dW
(2)
t

−TEt

(
Bκµ(t, T )σx(t) + σrϵrµBκr(t, T )

)
dW

(3)
t +T Et d1{τ≥t} .

(38)

As EQ (d1{τ≥t}
)
= −µx+tdt, we check that the pure endowment has a return equal to

the risk free rate: EQ (d TEt) = TEt rt dt. In order to obtain a closed form expression of the
saving contract (28), we perform a change of measure using as Radon-Nykodym derivative
:

dF
dQ

∣∣∣∣
T

= EQ
(

dF
dQ |FT

)
=

e−
∫ T
0 (rs+µx+s)ds

EQ
(
e−

∫ T
0 (rs+µx+s)ds|F0

) . (39)

From Equations (46) of Appendix D, this change of measure may be rewritten as follows:

dF
dQ

∣∣∣∣
T

= exp

(
−σ2

rϵ
2
rr

2

∫ T

0
Bκr(u, T )

2du− σrϵrr

∫ T

0
Bκr(u, T ) dW

(2)
u

)
×exp

(
−
∫ T

0

(
σrϵrµBκr(u, T ) + σx(u)Bκµ(u, T )

)
dW (3)

u

)
× exp

(
−1

2

∫ T

0

(
σrϵrµBκr(u, T ) + σx(u)Bκµ(u, T )

)2
du

)
.

We recognize a Doleans-Dade exponential and then under the measure F, W (2)F
t and W

(3)F
t

de�ned by {
dW

(2)F
t = dW

(2)
t + σrϵrrBκr(t, T )dt ,

dW
(3)F
t = dW

(3)
t + σrϵrµBκr(t, T )dt+ σx(t)Bκµ(t, T )dt ,

(40)
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are Brownian motions. The dynamic of the stock indice is modi�ed as follows under F,

dSt

St
=

(
rt − σS (ϵSrσrϵrr + ϵSµσrϵrµ)Bκr(t, T )− σSϵSµσx(t)Bκµ(t, T )

)
dt (41)

+σSϵSSdW
(1)
t + σSϵSrdW

(2)F
t + σSϵSµdW

(3)F
t .

If we remember that ϵ2SS + ϵ2Sr + ϵ2Sµ = 1, applying the Itô's lemma to lnSt leads to the
following expression for the stock indice under F:

St = S0 exp

(∫ t

0
rudu−

σ2
S

2
t− σSϵSµ

∫ t

0
σx(u)Bκµ(u, T )du

)
(42)

× exp

(
−σS (ϵSrσrϵrr + ϵSµσrϵrµ)

∫ t

0
Bκr(u, T )du

)
× exp

(
σSϵSSW

(1)
t + σSϵSrW

(2)F
t + σSϵSµW

(3)F
t

)
,

Taking advantage the log-normality of ST under the F-measure, we can deduce a closed-
form expression of call options embedded in the bene�ts, such as de�ned in Equation
(28).

Proposition 5.4. The log-return ln (ST /St) ∼ N(
(
µF(t, T ), vF(t, T )

2
)
is log-normal with

a mean and variance respectively given by

µF(t, T ) = −σ2
r
2

∫ T
t Bκr(u, T )

2du− σrϵrµ
∫ T
t σx(u)Bκr(u, T )Bκµ(u, T )du

−σ2
S(T−t)

2 − σSσr (ϵSrϵrr + ϵSµϵrµ)
∫ T
t Bκr(u, T )du

−σSϵSµ
∫ T
t σx(u)Bκµ(u, T )du ,

vF(t, T )
2 = σ2

S(T − t) + σ2
r

∫ T
t Bκr(u, T )

2du

+2σSσr (ϵSrϵrr + ϵSµϵrµ)
∫ T
t Bκr(u, T )du .

(43)

If we adopt the following notations,d2(t, T ) =
ln
(

C
St/P (t,T )

)
−µF(t,T )

vF(t,T ) ,

d1(t, T ) = d2 − vF(t, T ),

The embedded call options in the participating pure endowment contract (28) are valued by:

1{τ≥t}EQ
(
e−

∫ T
t (rs+µx+s)ds

(
(ST − C)+

)
| Ft

)
(44)

=T Et

Ste
µF(t,T )+

vF(t,T )2

2

P (t, T )
Φ (−d1(t, T ))− CT Φ (−d2(t, T ))

 .

The sketch of the proof is provided in Appendix B. The exact value of the pure endow-
ment is obtained by combining Equations (37) and (44). This allow us to compare LSMC
and LLSMC approximated value to exact price of the participating pure endowment in the
next subsection..

5.2 Numerical illustration

We �t a Nelson-Siegel model to the Belgian state yield curve on the 23/11/22. Initial sur-
vival probabilities are described by a Makeham's model adjusted to male Belgian mortality
rates. Details are provided in Appendix C and D. Other market parameters are estimated
from time series of the Belgian stock index BEL 20 and of the 1 year Belgian state yield
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from the 26/11/10 to the 23/11/22. As we do not have enough data, the correlations ρS µ

and ρr µ are set to -5% and 0%. Parameter estimates are reported in Table 1.

Parameters

µ 0.04642 σS 0.18470

κr 0.20482 σr 0.00774

ρSr -0.03957 r0 0.0235

α 8.5277e-7 β 0.11094

κµ 0.83925 µ0 3.325e-03

ρS µ -0.05000 ρrµ 0.00000

t 5 years T 10 years

S0 100 CT 100

x 50 CM 100(1 + 3%)10

Table 11: Model parameters and features of the contract.

The three risk factors are the normed stock price, normed short rate and normed
mortality rate at the end of the time horizon of primary simulations, noted t:

Xt :=

St − EP
0 (St)√

VP
0 (St)

,

√
rt − EP

0 (rt)√
VP
0

(√
rt
) ,

√
µx+t − EP

0 (µx+t)√
VP
0

(√
µx+t

)
 .

Expectations and variances are approached by empirical averages and variances of the
simulated sample. The features of the contract are reported in Table 1. We simulate 10000
primary scenarios and a single secondary response per scenario,

Y (t) = e−
∫ T
t rs+µsds

(
CT + (ST − CT )+ − (ST − CM )+

)
.

We use 350 steps of time per year. We also calculate the exact value of the contract in
each scenario using analytical formulas of the previous section.
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Figure 9: Simulated responses Y (t) = versus stock prices St, rt and µx+ t. The red curves
are the predictions h(Xt) from the LSMC with a second order polynomials regression.
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The three plots of Figure 9 respectively show responses versus stock prices, interest
and mortality rates. The red curves correspond to LSMC estimates of the endowment in
one year with a second order polynomial of risk factors.

Table 12 reports the R2, the MSE and MSE(V) of the LSMC, such as de�ned by Equations
(16), (18) and (19). The validation set counts 1000 triplets of risk factors. We consider
combinations of q = 10 empirical quantiles of risk factors for probabilities from 1% to 5%
and from 95% to 99% by step of 1%. We also calculate the exact MSE between model and
analytical prices of the endowment, denoted by EMSE.

dh R2
√
MSE(V)

√
MSE

√
EMSE d.f.

2 0.3767 3.02 11.34 1.59 10
3 0.3855 2.47 11.27 1.04 20
4 0.3868 3.94 11.28 1.12 35
5 0.3912 4.85 11.26 1.02 56
6 0.3947 6.47 11.26 1.10 84

Table 12: R2, MSE, MSE(V) of regressions of Yt on Xt in the LSMC model.
√
EMSE is

the MSE valued with analytical prices. d.f. is the number of parameters.

Table 12 reports statistics about LSMC polynomial regressions of order dh from 2 to
6. The R2's increase with the complexity of the model. The MSE(V) on the validation set
is minimized by a polynomial of third degree. Table 3 presents the statistics of goodness
of �t for the LLSMC model. The number of clusters, K, varies from 2 to 5. We test
polynomials of degrees dh from 1 to 3 and dγ equal to 1 and 3. Models are sorted by
increasing MSE(V)'s and we report statistics of the 10 �rst best models according to this
criterion. The best goodness of �t is achieved with 2 or 3 clusters, a square regression
on each cluster and a cubic multinomial logistic regression. Compared to the LSMC, the
LLSMC clearly reduces by more than half the MSE(V) and the EMSE whereas MSE on
the training set are comparable. This is a good indicator that the LLSMC model o�ers a
better �t.

K dγ dh R2
√
MSE(V)

√
MSE

√
EMSE d.f. R2

loc

2 3 2 0.3910 0.69 11.24 0.67 40 0.8781

3 3 2 0.3912 0.79 11.27 0.55 70 0.9322

4 2 2 0.3865 0.87 11.32 0.77 70 0.9563

5 2 2 0.387 0.91 11.34 0.75 90 0.9687

3 2 2 0.3869 0.93 11.29 0.76 50 0.9322

2 2 2 0.3881 0.95 11.26 0.65 30 0.8781

4 3 2 0.3918 0.97 11.3 0.58 100 0.9563

4 2 3 0.3843 0.98 11.38 1.08 110 0.9568

2 2 3 0.3592 1.01 11.54 2.60 50 0.8789

2 3 3 0.3915 1.03 11.26 0.63 60 0.8789

Table 13: R2, MSE, MSE(V) and R2
loc for the LLSMC model.

√
MSE, exact is the MSE

valued with analytical prices. d.f. is the number of parameters.

We next compare the LSMC of order 3 and the LLSMC with hyperparameters K = 3,
dγ = 3, dh = 2 as this setting leads to a low MSE(V) and a high R2

loc. Figure 5
compares LSMC and LLSMC endowment values for stock prices St ranging from 43
to 302, the 1% and 99% percentiles of simulated stock prices over 5 years and rt ∈
{−0.16%, 2.47%, 5.13%}, the 1%, 50% and 99% quantiles of simulated interest rates. The
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mortality rate is set to its average µx+t = 0.0017. LSMC and LLSMC both achieve a good
accuracy in these three cases. Nevertheless, pricing errors of the LLSMC, reported in Ta-
ble 14, are slightly lower on average than those of the LSMC when rt ∈ {−0.16%, 2.47%}.
In particular, the LLSMC better �ts extreme low values. This will be con�rmed by the
comparison of VaR's and TVaR's.
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Figure 10: Endowment price for St ranging from 43 to 302, rt ∈ {−0.16%, 2.47%, 5.13%}
and µx+t = 0.0017.

rt =-0.16% rt =2.47% rt =5.13%

LLSMC, 3-3-2 0.8459 0.3496 0.8198
LSMC, order 3 1.2602 0.8872 0.7606

Table 14: Average pricing errors for the three cases presented in Figure 10.
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Figure 11: Lower/upper VaR's and TVaR's, LLSMC 3-3-2, LSMC of order 3.

Upper parts of Tables 15 and 16 respectively present VaR's and TVaR's computed with
the LLSMC and LSMC models and with analytical prices. Figure 11 displays these statis-
tics for the LLSMC 3-3-2 and for the LSMC of order 3. The lower Upper parts of Tables
15 and 16 report the relative spread between VaR/TVaR's computed with approximated
and exact analytical prices. These results emphasizes that LLSMC yields a more accurate
estimate of VaR/TVaR's. In particular, the failure of the LSMC to closely replicate ex-
treme values leads to a signi�cant divergence of TVaR's for very low or high con�dence
levels.

VaR 0.1% 1% 2% 3% 97% 98% 99% 99.9%

Exact prices 80.79 83.76 85.11 86.03 117.5 118.44 120.09 124.01
LLSMC 2-3-2 80.95 83.84 85.01 86 116.99 118.07 119.55 124.01
LLSMC 3-3-2 80.85 83.98 85.2 86.1 117.09 117.91 119.58 123.54
LLSMC 4-2-2 82.14 84.83 85.9 86.71 117.49 118.45 120.16 123.74
LSMC dh =2 80 83.51 85.31 86.53 118.6 119.87 121.27 126.04
LSMC, dh =3 78.16 81.39 84.02 85.16 117.49 118.41 120.06 123.46

Relative errors in %

LLSMC 2-3-2 0.19 0.1 -0.11 -0.03 -0.43 -0.31 -0.45 0.00
LLSMC 3-3-2 0.07 0.27 0.11 0.08 -0.34 -0.44 -0.43 -0.38
LLSMC 4-2-2 1.67 1.28 0.93 0.79 -0.01 0.01 0.06 -0.22
LSMC dh =2 -0.99 -0.29 0.23 0.59 0.94 1.21 0.98 1.64
LSMC, dh =3 -3.26 -2.82 -1.28 -1.01 -0.01 -0.02 -0.03 -0.44

Table 15: VaR 5 years, LSMC model and LLSMC.
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Tail VaR 0.1% 1% 2% 3% 97% 98% 99% 99.9%

Exact prices 79.68 82.28 83.33 84.08 119.6 120.45 121.79 125.46
LLSMC 2-3-2 80.42 82.5 83.45 84.14 119.2 120.06 121.42 126.11
LLSMC 3-3-2 80.40 82.68 83.62 84.3 119.2 120.04 121.37 125.33
LLSMC 4-2-2 81.59 83.63 84.50 85.12 119.63 120.45 121.71 125.04
LSMC dh =2 72.97 81.33 82.84 83.9 121.02 121.91 123.3 127.49
LSMC, dh =3 76.86 79.91 81.31 82.43 119.66 120.51 121.93 125.53

Relative errors in %

LLSMC 2-3-2 0.93 0.26 0.15 0.08 -0.33 -0.33 -0.31 0.52
LLSMC 3-3-2 0.91 0.48 0.34 0.26 -0.34 -0.34 -0.35 -0.10
LLSMC 4-2-2 2.40 1.63 1.40 1.24 0.02 0.00 -0.07 -0.33
LSMC dh =2 -8.41 -1.16 -0.60 -0.21 1.19 1.21 1.23 1.62
LSMC, dh =3 -3.54 -2.88 -2.42 -1.96 0.05 0.05 0.11 0.06

Table 16: Expected shortfall, 5 years, LSMC model and LLSMC.

Cluster, k std. errors
1 2 1 2

Intercept 113.6213 88.9504 0.1533 0.1747

x(1) 1.3713 1.7745 0.1523 0.1835(
x(1)

)2
-0.2007 -0.2551 0.0452 0.1697

x(2) -2.951 -1.7939 0.1116 0.1326

x(1)x(2) -0.4279 0.8160 0.0973 0.1560(
x(2)

)2
-0.0175 0.1425 0.0733 0.0696

x(3) 0.0639 0.1082 0.1123 0.1368

x(1)x(3) -0.0894 0.2613 0.0999 0.1643

x(2)x(3) -0.0260 0.0329 0.1016 0.1001(
x(3)

)2
0.0114 -0.0497 0.0710 0.0699

Table 17: Parameters of cubic regressions, hk(x) per cluster and standard errors (std. err.)

Tables 7 and 8 report estimated coe�cients of polynomials ĥk(.) and γ̂k(.) of the
LLSMC, 3-2-2. As already mentioned, standard errors are high because responses are
by construction very noised estimates of EQ (Y (t) |x).
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Cluster, k std. errors Cluster, k std. errors
2 2 2 2

Intercept -0.558 0.0573 x(3) -0.0048 0.0685

x(1) -1.6895 0.1037 x(1)x(3) 0.0230 0.0597(
x(1)

)2
0.6223 0.0772

(
x(1)

)2
x(3) -0.0451 0.0639(

x(1)
)3

-0.2098 0.0562 x(2)x(3) 0.0141 0.0370

x(2) 0.01 0.0666 x(1)x(2)x(3) -0.0587 0.0568

x(1)x(2) 0.026 0.0551
(
x(2)

)2
x(3) 0.0108 0.0251(

x(1)
)2

x(2) -0.0069 0.0574
(
x(3)

)2
-0.0330 0.0264(

x(2)
)2

-0.0244 0.0255 x(1)
(
x(3)

)2
-0.0435 0.0428

x(1)
(
x(2)

)2
0.0619 0.0369 x(2)

(
x(3)

)2
-0.0484 0.0265(

x(2)
)3

0.0105 0.0152
(
x(3)

)3
-0.0007 0.0150

Table 18: Parameters of logistic regressions, γk(x) per cluster and standard errors (std.
err.)

6 Conclusions

This article proposes a powerful and simple extension of the least squares Monte-Carlo
method for risk management. This combines local and logistic regressions. The novelty
of our approach consists to segment the data set into clusters obtained by applying the
K-means algorithm to responses instead of risk factors. We next �t polynomial regressions
for each cluster. They are combined with probabilities of cluster membership estimated
by a multinomial logistic regression.

We validate the LLSMC in two case studies. In both cases, numerical experiments em-
phasize that the LLMSC achieves a better accuracy than the LSMC in a wider range of
scenarios. We also observe that the LLMSC yields fewer erratic prices for lower and upper
quantiles of risk factors. This con�rms that the LLMSC is better suited for computing risk
measures such as the VaR and TailVaR, than the LSMC. Furthermore, the LLMSC has
a high level of interpretability. We also compare the LLSMC to a local method based on
a partition of risk factors (X -LLSMC). We show that such an approach su�ers from the
Simpson's paradox, i.e. X -LLSMC prices display local trends not relevant with global ones.

This work paves the way for further research. Firstly, the LLSMC algorithm is proba-
bly more e�cient than the LSMC for estimating the solvency capital requirement in the
Solvency II framework. Secondly, we can think to replace local polynomial approxima-
tions by local machine learning regressions. This hybrid procedure would probably be best
suited for managing a high number of risk factors.
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Appendix A

Algorithm 1 Algorithm for K-means clustering.

Initialization:

Randomly set up initial positions of centroids c1(0),...,cK(0).
Main procedure:

For e = 0 to maximum epoch, emax

Assignment step:

For i = 1 to n
1) Assign (xi, yi) to a cluster Sk(e) and yi to Yk(e) where k ∈ {1, ...,K}

Sk(e) = {(xi, yi) : d(yi, ck(e)) ≤ d(yi, cj(e)) ∀j ∈ {1, ...,K}} ,
Yk(e) = {yi : d(yi, ck(e)) ≤ d(yi, cj(e)) ∀j ∈ {1, ...,K}} ,

End loop on data set, i.
Update step:

For k = 1 to K
2) set the new centroids ck(e+ 1) to the center of gravity of Yk(e)

ck(e+ 1) =
1

|Yk(e)|
∑

yi∈Yk(e)

yi .

End loop on centroids, k.
3) Update the intraclass inertia :

Ia(e+ 1) =
1

n

K∑
k=1

∑
yi∈Yk(e)

d(xi, ck(e+ 1)) .

End loop on epochs e

Appendix B

Proposition 5.1, sketch of the proof. We can show by direct di�erentation that(
rs

µx+s

)
=

(
e−κr(s−t)rt

e−κµ(s−t)µx+t

)
+

(
κr
∫ s
t γr(u)e

−κr(s−u)du

κµ
∫ s
t γx(u)e

−κµ(s−u)du

)
(45)

+

( ∫ s
t σre

−κr(s−u)ϵrrdW
(2)
u +

∫ s
t σre

−κr(s−u)ϵrµdW
(3)
u∫ s

t e−κµ(s−u)σx(u)dW
(3)
u

)

The integrals are( ∫ T
t rsds∫ T

t µx+sds

)
=

(
rtBκr(t, T )

µx+tBκµ(t, T )

)
+

( ∫ T
t γr(u)

(
1− e−κr(T−u)

)
du∫ T

t γx(u)
(
1− e−κµ(T−u)

)
du

)
(46)

+

(
σrϵrr

∫ T
t Bκr(u, T ) dW

(2)
u + σrϵrµ

∫ T
t Bκr(u, T )dW

(3)
u∫ T

t σx(u)Bκµ(u, T ) dW
(3)
u

)

The results follows from the log-normality of e−
∫ T
t rsds or e−

∫ T
t rs+µx+sds and of ϵ2rr+ϵ2rµ = 1.

end
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Corollary 5.2, sketch of the proof. By direct integration of Equations (33) and (34),
we obtain∫ T

t
γr(u)

(
1− e−κr(T−u)

)
du = (∂t lnP (0, t))Bκr(t, T )− ln

P (0, T )

P (0, t)
+

σ2
r

2κ2r
(T − t)

− σ2
r

2κ2r
Bκr(t, T )−

σ2
r

4κr
e−2κrtBκr(t, T )

2 ,

and ∫ T

t
γx(u)

(
1− e−κµ(T−u)

)
du = (∂t ln tpx)Bκµ(t, T )− ln

T px

tpx
+

α2e2βx

2κµ(κµ + β)

×
(
e2βTB2β(t, T )− e−2κµtB2κµ(t, T )− e2βTB2β+κµ(t, T ) + e−κµ(T+t)Bκµ(t, T )

)
end

Proposition 5.4, sketch of the proof.

As ST = ST
P (T,T ) , we focus on on the dynamics of d St

P (t,T ) . As

d
1

P (t, T )
= − rt

P (t, T )
dt+

Bκr(t, T )
2σ2

r

P (t, T )
dt+

Bκr(t, T )

P (t, T )
σr

(
ϵrrdW

(2)
u + ϵrµdW

(3)
u

)
We infer that

d

(
St

P (t, T )

)
=

St

P (t, T )

[
Bκr(t, T )

2σ2
r +Bκr(t, T ) (σrσSϵrrϵSr + σrσSϵrµϵSµ)

]
dt

+
St

P (t, T )
σSϵSSdW

(1)
t +

St

P (t, T )
(σSϵSr + ϵrrσrBκr(t, T )) dW

(2)
t

+
St

P (t, T )
(σSϵSµ + ϵrµσrBκr(t, T )) dW

(3)
t

Using Itô's lemma we can �nd the dynamics of d ln
(

St
P (t,T )

)
under Qand from Equation

(40), retrieve that

d ln

(
St

P (t, T )

)
= −

[
σ2
r

2
Bκr(t, T )

2 + σrϵrµσx(t)Bκr(t, T )Bκµ(t, T )

]
dt

−
[
1

2
σ2
S + σSσr (ϵrrϵSr + ϵSµϵrµ)Bκr(t, T ) + σSϵSµσx(t)Bκµ(t, T )

]
dt

+σSϵSSdW
(1)
t + (σSϵSr + σrϵrrBκr(t, T )) dW

(2)F
t

+(σSϵSµ + σrϵrµBκr(t, T )) dW
(3)F
t .

By direct integration, we reformulate ST as follows:

ST =
St

P (t, T )
exp

(
−σ2

r

2

∫ T

t
Bκr(u, T )

2du− σrϵrµ

∫ T

t
σx(u)Bκr(u, T )Bκµ(u, T )du

)
× exp

(
−
σ2
S(T − t)

2
− σSσr (ϵSrϵrr + ϵSµϵrµ)

∫ T

t
Bκr(u, T )du

)
× exp

(
−σSϵSµ

∫ T

t
σx(u)Bκµ(u, T )du+

∫ T

t
σSϵSSdW

(1)
u

)
(47)

× exp

(∫ T

t
(σSϵSr + σrϵrrBκr(u, T )) dW

(2)F
u

)
× exp

(∫ T

t
(σSϵSµ + σrϵrµBκr(u, T )) dW

(3)F
u

)
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Equation (47) emphasizes that ln ST /P (T,T )
St/P (t,T ) ∼ N (µF, vF) is log-normal with a mean and

variance given by equations (43). Using standard calculations, we can show that if Φ(.) is
the cdf of a N(0, 1) and

d2 =
ln
(

CT
St/P (t,T )

)
− µF

vF
,

d1 = d2 − vF,

then the expected postive di�ence between ST and CT under the forward measure is given
by

EF ((ST − CT )+ |Ft

)
=

St

P (t, T )
eµF+

v2F
2 Φ (−d1)− CTΦ (−d2) . (48)

This last result allows us to infer Equation (44).

end

Appendix C, interest rate assumptions

We model the initial yield curve with the Nelson-Siegel (NS) model. In this framework,
initial instantaneous forward rates are provided by the following function:

f(0, t) := −∂t lnP (0, t) = b
(r)
0 +

(
b
(r)
10 + b

(r)
11 t
)
exp

(
−c

(r)
1 t
)
.

Parameters {b0, b10, b11, c1} are estimated by minimizing the quadratic spread between
market and model zero-coupon yields:

P (0, t) = exp

b
(r)
0 +

1

t

b
(r)
10

c
(r)
1

(
1− e−c

(r)
1 t
)
+

1

t

b
(r)
11(

c
(r)
1

)2 (1− (c(r)1 t+ 1
)
e−c

(r)
1 t
) .

We �t the NS model to the yield curve of Belgian state bonds observed on the 23th of
November 22 and obtain estimates reported in Table 19.

Parameter Value

b
(r)
0 0.0308

b
(r)
10 -0.0008

b
(r)
11 -0.0212

c
(r)
1 0.6594

Table 19: Nelson-Siegel parameters, Belgian state bonds, 23/11/22.

Appendix D, mortality rate assumptions

The volatility of mortality rates is �tted by least square minimization of spreads between
σx(.) and empirical deviations of variations of mortality rates by cohort (ages between 20

and 90 years from 1950 to 2020). If µ
(y)
x is the observed mortality rates at age x during

the calendar year y, we denote by ∆µ
(y)
x = µ

(y)
x −µ

(y−1)
x−1 and by Sx the standard deviation

of ∆µ
(y)
x for y=1950 to 2020. The α and β are obtained by minimizing the sum

α, β = argmin

90∑
x=20

(
Sx − αeβx

)2
.
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On the other hand, the initial curve of survival probabilities is described by a Makeham's
model, i.e.

tpx = exp−
∫ x+t

x

(
a(µ) + b(µ)

(
c(µ)
)s)

ds

= exp(−a(µ)t) exp

(
− b(µ)

ln c(µ)

((
c(µ)
)x+t

−
(
c(µ)
)x))

.

where a(µ), b(µ), c(µ) ∈ R+. These parameters and the reversion speed κu are obtained by
least square minimization of spreads between prospective and model survival probabilities.
Prospective survival probabilities are computed with a Lee-Carter model �tted to Belgian
mortality rates from 1950 to 2020 for 0 to 105 years, male population. Model tpx are
computed with Equation (36) for x = 20 years old. Estimated parameters are provided in
Table 20.

Parameters

a(µ) 1.006349e-03 κµ 0.83925

b(µ) 2.790903e-07 α 8.5277e-7

κµ 0.83925 β 0.11094

Table 20: Mortality parameters, Belgian male mortality rates, year 2020.
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