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Abstract. We investigate the security of the NIST Lightweight Crypto
Competition’s Finalists against side-channel attacks. We start with a
mode-level analysis that allows us to put forward three candidates (As-
con, ISAP and Romulus-T) that stand out for their leakage properties
and do not require a uniform protection of all their computations thanks
to (expensive) implementation-level countermeasures. We then imple-
ment these finalists and evaluate their respective performances. Our re-
sults confirm the interest of so-called leveled implementations (where
only the key derivation and tag generation require security against dif-
ferential power analysis). They also suggest that these algorithms differ
more by their qualitative features (e.g., two-pass designs to improve confi-
dentiality with decryption leakage vs. one-pass designs, flexible overheads
thanks to masking vs. fully mode-level, easier to implement, schemes)
than by their quantitative features, which all improve over the AES and
are quite sensitive to security margins against cryptanalysis.

1 Introduction

Security against side-channel attacks is explicitly mentioned by the NIST as a
target in the ongoing standardization process for lightweight cryptography.4 In
this paper, we analyze the leakage resistance of 9 out of the 10 finalists of the
competition. Our contributions in this respect are twofold.

First, we use a framework introduced by Bellizia et al. to evaluate the high-
level leakage properties of the candidates’ modes of operations [BBC+20]. (We
exclude Grain-128AEAD from our study, which cannot be captured with such
a mode vs. primitive granularity.) This high-level analysis allows us to observe
that 6 candidates can mostly rely on (expensive) implementation-level counter-
measures. By contrast, 3 candidates (namely Ascon [DEMS21], ISAP [DEM+20]
and Romulus-T5) have leakage-resistant features enabling so-called leveled im-
plementations, where different parts of the implementations require different
(more or less expensive) implementation-level countermeasures.

4 https://csrc.nist.gov/Projects/lightweight-cryptography.
5 https://romulusae.github.io/romulus/. Note that Romulus comes with different
modes of operation. In particular, the (single-pass) N version does not provide mode-
level leakage-resistance guarantees while the (two-pass) T version does.

https://csrc.nist.gov/Projects/lightweight-cryptography
https://romulusae.github.io/romulus/


Second, we investigate the hardware performances of these 3 leakage-resistant
modes of operation and evaluate their leveled implementation. In leveled imple-
mentations, we distinguish between Differential Power Analysis (DPA), where
the adversary is able to collect an adversarially chosen number of measurements
corresponding to fixed secret inputs to the target primitive, and Simple Power
Analysis (SPA), where the number of such traces is small and bounded by de-
sign. The goal of mode-level protections is to minimize the amount of computa-
tions that must be protected against DPA and SPA. For Ascon and Romulus-T,
we protect the Key Derivation Function (KDF) and Tag Generation Function
(TGF) against DPA with Hardware Private Circuits (HPC), a state-of-the-art
masking scheme that jointly provides resistance against physical defaults and
composability [CGLS21, CS21]. For ISAP, the KDF and TGF are based on a
leakage-resilient PRF that embeds a fresh re-keying mechanism such that they
only require security against SPA [MSGR10,BSH+14]. The latter is natively (and
efficiently) obtained thanks to parallelism in hardware. For all 3 candidates, the
bulk of the computation contains an internal re-keying mechanism. Hence, guar-
antees of confidentiality with leakage essentially require its SPA security (again
achieved with hardware parallelism). This part of the implementation can even
leak in an unbounded manner if only integrity with leakage is required.

The hardware design space of Ascon (and ISAP, that relies on the same
permutation) has already been quite investigated in the literature, both regard-
ing unprotected and masked implementations [GWDE15, GWDE17]. Our im-
plementations heavily build on this state-of-the-art. By contrast, to the best
of our knowledge such evaluations are a bit sparser for Romulus-T [Kha22] and
the Skinny block cipher it relies on [BJK+20], especially for higher-order masked
implementations. Therefore, and as an additional technical contribution, we com-
plete the study of masked Skinny implementations tailored for masking.

We conclude that more than the quantitative comparison of the finalists, the
main criteria that should help the NIST in selecting a lightweight cryptography
standard (if leakage is deemed important) are qualitative. The limited relevance
of quantitative comparisons at this stage of the competition follows from two
facts. For ciphers that rely on comparable countermeasures for their DPA secu-
rity (like Ascon and Romulus-T, both leveraging masking), the performance gap
is limited and quite sensitive to security margins against cryptanalysis. Both are
nevertheless significantly easier to protect against leakage than the AES, as wit-
nessed by simple proxies such as their number of AND gates or AND depth. For
ciphers that rely on different countermeasures for their DPA security (like ISAP,
that leverages re-keying), we currently lack (both theoretical and practical) tools
that would allow a definitive comparison (e.g., with masking). By contrast, these
three ciphers have different qualitative features, leading to at least two questions
that could (and we think, should) guide the final selection:

– Is confidentiality with decryption leakage wanted? Ascon, ISAP and Romulus-
T all reach the top of the hierarchy in [GPPS19] for integrity with leakage
(coined CIML2). The leveled implementation of Ascon only provides confi-
dentiality with encryption leakages and misuse-resilience (coined CCAmL1):



decryption queries of a ciphertext leak the underlying plaintext via a straight-
forward DPA. The leveled implementations of ISAP and Romulus-T can
additionally provide confidentiality with decryption leakages and misuse-
resilience (coined CCAmL2) at the cost of being two-pass for decryption
(they are only CCAmL1 if a single-pass decryption is performed).

– Flexibility or simplicity for the KDF and TGF? Ascon and Romulus-T re-
quire DPA countermeasures like masking to protect their KDF and TGF.
Implementing masking securely is a sensitive process that requires exper-
tise [MPG05,CGP+12]. But it comes with a lot of flexibility: countermea-
sures do not always have to be deployed, different security vs. performance
trade-offs can be considered and one can have different security levels in en-
cryption and decryption. ISAP relies on a re-keying mechanism so that only
SPA security is needed for the whole implementation, which is easy to obtain
in hardware.6 But it has no flexibility: the overheads of the leakage-resilient
PRF have to be paid even if side-channel security is not a concern.

A slightly longer-term question relates to the choice between permutations and
Tweakable Block Ciphers (TBCs). While the same leakage-resistant features
can be obtained at somewhat similar costs from permutations and sponges,
these two building blocks also come with some differences. On the one hand,
TBC-based designs seem more amenable to security analyzes in the standard
model [BGP+20, BGPS21], while permutations currently require idealized as-
sumptions [DM19, GPPS20]. On the other hand, TBC-based schemes enable
performing an inverse-based tag verification that can leak in full [BPPS17] while
permutation-based schemes require masking [BMPS21] or additional computa-
tions [DM21] for securing this part of their design against leakage.

2 Mode-level analysis

Our mode-level analysis follows the framework of Bellizia et al. [BBC+20]. Be-
cause of place constraints, we do not detail the specifications of the NIST’s
Lightweight Crypto Competition’s Finalists and refer to the webpage https:

//csrc.nist.gov/Projects/lightweight-cryptography for this purpose. We
rather focus on the features of these modes that are relevant for leakage.

The high-level decomposition of the modes we will rely on is depicted in
Figure 1. It includes a KDF that generates a fresh encryption key K∗, the bulk
of the scheme that processes the message blocks, the TGF that generates the
authentication tag T and the verification (that checks whether T is correct).
Some parts may naturally be empty for some candidates.

The goal of this decomposition is to identify the parts of the modes that must
be implemented in a DPA-resistant manner and the parts of the modes that can

6 Security in low-end embedded software implementations is unclear both for mask-
ing and re-keying, which can be the target of strong attacks in low-noise contexts:
see [BS21] for masking and [KPP20,BBC+20] for re-keying.

https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
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Fig. 1: Leakage-resistant modes of operation decomposition.

be implemented with weaker guarantees. When analyzing confidentiality, these
weaker guarantees correspond to SPA security. When analyzing integrity, it is
even possible to implement those parts without any guarantee (which is referred
to as the unbounded leakage model in formal analyzes). We next classify the
designs based on the amount of mode-level protections they embed. At high-
level (details are given in [BBC+20]), Grade-0 designs do not provide mode-
level leakage-resistance; Mode-1 designs can be leveled to preserve confidentiality
and integrity as long as only encryption leakages are given to the adversary
(i.e., CCAmL1 and CIML1); Mode-2 designs can be leveled even if integrity
with decryption leakage is required (i.e., CIML2); Mode-3 designs complete the
picture by allowing leveled implementations that preserve both confidentiality
and integrity with decryption leakages (i.e., CCAmL2 and CIML2).

Grade-0 designs (no mode-level protections). A first way to design modes
of operation for lightweight cryptography is to focus exclusively on performance
and to ignore leakage. This is the case of modes where the long-term secret key is
used by most of the underlying primitives. In the NIST lightweight crypto com-
petition, it is for example what happens for Elephant, GIFT-COFB, Romulus-N,
Romulus-M and TinyJambu. A protected implementation of Romulus-N target-
ing integrity with encryption leakage is illustrated in Figure 2, where the blue
color is used to reflect that the corresponding computations must be protected
against DPA. This requirement essentially holds for any security target (i.e., for
confidentiality and integrity, with or without nonce-misuse and leakage avail-
able in encryption or decryption). We insist that being Grade-0 does not imply
that these modes cannot be protected against leakage. It rather implies that this
protection will be expensive because uniformly applied to all the components
of the modes. The following (higher-level) designs gradually increase the mode-
level protections, leading to different trade-offs between the efficiency of their
unprotected implementations (that mildly decreases) and the efficiency of their
protected implementations (that significantly increases for long messages).
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Fig. 2: Uniformly protected implementation of Romulus-N (integrity with en-
cryption leakage). Blue blocks have to be secure against DPA.

Grade-1 designs (internal re-keying). A first step towards building modes
of operation that cope better with leakage is to embed an internal re-keying
mechanism. In this case, the mode first generates a fresh key K∗ from the long-
term key and the nonce, which is then updated after the processing of each
message block. As a result, and as long as the adversary can only observe en-
cryption leakage without nonce misuse, only the KDF needs security against
DPA (as there is a DPA using the nonce) and all the other computations must
only be protected against SPA. Such a leveled implementation is illustrated in
Figure 3 for PHOTON-Beetle. Unfortunately, this guarantee vanishes as soon as
nonce misuse or decryption leakage are granted to the adversary. In this case the
adversary can target the processing of one message block with many different
messages (while keeping the nonce and all the the other message blocks con-
stant) and perform a DPA to recover the corresponding intermediate state. In
the case of a P-sponge construction [BDPA07], it is then possible to invert the
permutation and get back to the long-term key. In the NIST lightweight crypto
competition, it is the case of PHOTON-Beetle, Sparkle and Xoodyak.
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Fig. 3: Leveled implementation of PHOTON-Beetle (integrity with encryption
leakage). Blue (resp., green) blocks have to be secure against DPA (resp., SPA).

Grade-2 (Grade-1 + strengthened KDF/TGF). The second step towards
building modes of operation that cope better with leakage is to strengthen the
KDF/TGF so that the recovery of an internal state of the mode cannot lead to
long-term secrets. This is easily (and efficiently) done by making the KDF and
the TGF non-invertible. In the case of sponges, it can be achieved by XORing
the long-term key before and after the permutation used to generate the fresh



keyK∗ and the tag T . For TBCs, it is a direct consequence of their PRP security.
In the NIST lightweight crypto competition, it is for example the case of Ascon.
For illustration, its leveled implementation is illustrated in Figure 4.
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(a) Integrity requirements (with decryption leakage).
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(b) Confidentiality requirements (without decryption leakage).

Fig. 4: Leveled implementation of Ascon. The blue blocks have to be protected
against DPA and the green blocks have to be protected against SPA, while the
white ones do not require protection against side-channel leakage.

The top of the figure depicts the integrity requirements. In this case, only
the KDF and the TGF (in blue) must be protected against DPA and the rest
of the computations (in white) can leak in full. This guarantee holds even when
nonce misuse and leakage in decryption are granted to the adversary. It in-
tuitively derives from the fact that the ephemeral secrets cannot be used to
infer long-term ones, and corresponds to the top of the hierarchy introduced
in [GPPS19]. The bottom of the figure depicts the confidentiality requirements.
In this case, it is naturally not possible to tolerate unbounded leakage. Yet, as
long as the adversary is not granted with decryption leakage, only SPA security
(in green) is required for this part of the computation. (The orange color for the
plaintexts is used to reflect that even their very manipulation may leak sensi-
tive information). The main attack vector that remains against this construction
happens with decryption leakage. Since the message is decrypted before verify-
ing the tag, an adversary can then target the processing of one message block
with many different messages (keeping the nonce and all the the other message
blocks constant) and perform a DPA to recover the corresponding intermediate



state. This reveals the ephemeral keystream, hence the message, but does not
affect the confidentiality of messages encrypted with a different nonce.

Grade-3 (Grade-2 + two passes). The natural way to get rid of the last
attack vector against Ascon is to consider 2-pass designs (such as encrypt-then-
MAC constructions). In this case, the tag can be computed from the ciphertext
blocks and tested before the decryption takes place. In the NIST lightweight
crypto competition, it is for example the case of ISAP (which is permutation-
based) and Romulus-T (which is TBC-based). Their main difference lies in the
way they secure their KDF and TGF. Like Ascon, Romulus-T (which is based
on the TEDT mode of operation [BGP+20]) relies on masking for this purpose.
By contrast, ISAP relies on a leakage-resilient PRF. As illustrated in Figure 5,
the leakage-resilient PRF can be viewed as a re-keying scheme where the nonce
bits are absorbed one by one so that each of its intermediate keys is only used to
process two permutation calls. As a result, this PRF essentially “reduces” DPA
security to SPA security, at the cost of iterating the Ascon-p1 permutation.7
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Fig. 5: Leveled implementation of ISAP (confidentiality with decryption leakage).
The green blocks have to be protected against SPA (with averaging), while the
white ones do not require any protection against side-channel leakage.

Overall, ISAP’s confidentiality with decryption leakage requires two calls to
the leakage-resilient PRF and a plaintext processing that is secure against SPA.
We provide a similar picture for the leveled implementation of Romulus-T in
Figure 6, where the KDF and TGF are directly instantiated with a masked

7 Increasing the rate to absorb more bits and get a more efficient design is possible
but it then opens a DPA attack vector (so we do not consider this option here).
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ẼN
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TBC. Note that the SPA-secure blocks of these two figures are in dark green
to reflect the possibility that the adversary repeats the same measurements to
average the noise. And as in the case of Ascon, integrity with decryption leakage
only requires the two protected calls (to the leakage-resilient PRF or masked
TBC) and can let all the other computations leak in full.

3 Hardware implementations

Given the previous analysis, it appears that Ascon, ISAP and Romulus-T are
the most promising candidates of the NIST lightweight crypto competition for
leakage-resistant implementations. In this section, we therefore investigate their
hardware implementations. For this purpose, we focus on the security guaran-
tees that they enable without a uniformly protected implementation. We first
investigate their primitives, with a special focus on Romulus-T and its underly-
ing TBC Skinny-384+ (for which, as mentioned in introduction, the literature
is a bit scarcer). We then detail the implementation of the modes and report
their performances (with ASIC synthesis). We use these results to confirm the
relevance of leveled implementations and to discuss the respective interest of the
three implemented ciphers in the context of the NIST competition.



Algorithm 1 HPC2 AND gadget with d shares (sync. registers are omitted).

Input: Sharings x, y
Output: Sharing z such that z = x · y.

1: for i = 0 to d− 1 do
2: for j = i+ 1 to d− 1 do

3: rij
$← F2; rji ← rij

4: for i = 0 to d− 1 do
5: zi ← xiyi

6: for j = 0 to d− 1, j ̸= i do
7: zi ← zi ⊕ Reg ((xi ⊕ 1) rij)⊕ Reg

(
xiReg

(
yj ⊕ rij

))

3.1 Masked implementation of the primitives

We use the HPC2 masking scheme, as it allows almost arbitrary composition
while ensuring security against both hardware glitches and transitions [CGLS21,
CS21]. The main characteristics of this masking scheme are the following. The
linear operations are very efficient, since they are made of purely combinational
logic and have a linear overhead in the masking order. On the other hand, the
non-linear operation, which is the 2-input AND gate (see Algorithm 1), has
quadratic overhead and asymmetric latency: 2 cycles with respect to one input,
and only 1 cycle with respect to the other input.

Skinny Sbox. The Skinny Sbox (depicted in Figure 7) is made of XOR gates
(that are linear, and therefore easy to implement) and of NOR gates that we
implement with a AND gate whose inputs are inverted.

We next propose two area-optimized architectures for this Sbox, that both
instantiate two masked AND and two masked XOR gates. First, the high-
throughput one is based on the observation that the Sbox can be decomposed
into 4 applications of a simpler function (as visible in Figure 7), followed by a
wire shuffling. This function has a latency of at least two cycles with our mask-
ing scheme, due to the AND gate. We therefore build the high-throughput Sbox
by looping 4 times on a two-stage pipeline. The core of this pipeline is a simple
function block B shown in Figure 8a, which is then used twice and connected
to combinational logic to form the Sbox (Figure 8b). The two-stage pipeline
can be used to perform simultaneously two Sbox operations. We finally add in-
put and output synchronization registers such that the logic performs two Sbox
evaluations in 9 clock cycles, without the need for any external synchronization
mechanism. Second, we design a low-latency architecture with an ALU-style de-
sign: the Sbox inputs are stored in a register, as well as the outputs, and the
data fed to the two AND-XOR blocks are selected from these states (and from
the input wires) when needed (see Figure 10). This flexible architecture allows
to benefit from the asymmetric latency of the HPC2 AND gadgets, leading to a
latency of 6 cycles for one Sbox evaluation (see Figure 9).
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Fig. 7: Skinny Sbox circuit representation with NOR and XOR gates.
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Fig. 8: High-throughput masked Skinny Sbox.
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Lastly, we discuss fully pipeline architectures. While such architectures can
achieve very high throughput that compensate for their large area, they are
difficult to use in our case. Indeed, we are not interested in parallel Skinny eval-
uations (since this is not useful for encrypting a single message with a Romulus-T
leveled implementation). Therefore, the latency overhead of filling the pipeline
(of at least 6 cycles) is significant when it is used for only 16 Sbox evaluations
(a Skinny round). We however note that the only other HPC Skinny implemen-
tation we know of uses that strategy, and uses a depth-12 pipeline [KB22].8

Skinny. Based on these Sbox architectures, we design three Skinny implemen-
tations with various area vs. latency trade-offs. The two first ones are sim-
ple round-based architectures, as shown in Figure 11, where either 16 low-
latency Sboxes (“low-latency Skinny”, SLL) or 8 high-throughput (“balanced
Skinny”, SB) Sboxes are used. The third implementation (“small Skinny”, SS)
targets lower area: it is a serialized architecture that instantiates only one high-
throughput Sbox (that is used 8 times per round), as shown in Figure 12.
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SBOX ARC ART
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SR MC

P LFSR
en

Tweakey Scheduling

Fig. 11: Round-based masked Skinny architecture (SLL and SB).

Let us now discuss the performance of these implementations. We consider
latency, randomness requirements and area as performance metrics, since the
critical path will be similar in all cases (it lies in the linear layer). The latency
and maximum randomness requirements per cycle of the implementations are
shown in Table 1. We can see that the SS implementation has 8 times the latency
of SB (due to 8x serialization), while SLL reduces latency by 33 % compared
to SB. Regarding randomness, the maximum randomness throughput of SS is
8 times lower than SB, and the one of SLL is twice the one of SB.

Next, we look at area requirements in Figure 13. The Sbox logic area clearly
reflects the architectural choices: 2 AND and XOR gadgets for SS, 16 of each for
SB, and 32 of each for SLL. Next, the remaining Sbox area is fairly high for SLL

due to the large number of Sbox instances and due to their large MUXes and
registers. For SB and SS, the larger number MUXes and registers in the Sboxes

8 Which can be improved to depth-6 thanks to the asymmetric latency of HPC2 ANDs.
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Latency [cycle]
Randomness [bit]

d = 2 d = 3 d = 4 d = 5 d = 6

SS 2880 2 6 12 20 30
SB 360 16 48 96 160 240
SLL 240 32 96 192 320 480

Table 1: Skinny-384+ masked implementations: total latency and maximum ran-
domness consumption for a single clock cycle (where the total randomness con-
sumption is 64 · d · (d− 1) bits for all three implementations).



of the former compensate for the more complex datapath of the latter, resulting
in a similar “routing” area for both of them. The remaining parts of Skinny are
the same for all three architectures. Overall, the difference in area between the
architectures is small for low number of shares, and increases as the latter grows.
For all considered number of shares (d ≤ 6), the Sboxes do not dominate the
area of neither SS nor SB, hence SS brings a limited area gain at a large latency
cost compared to SB. On the other hand, SLL has an area overhead of up to
39 % (for d ≤ 6), and a latency gain of 33 % over SB.

d = 2 d = 3 d = 4 d = 5 d = 6

SS SB SLL SS SB SLL SS SB SLL SS SB SLL SS SB SLL
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Fig. 13: Area requirements for the three masked Skinny hardware implementa-
tions in a 65 nm ASIC technology using the HPC2 masking scheme.

3.2 Implementation of the modes

We implemented side-channel protected hardware accelerators for Romulus-N,
Romulus-T, Ascon and ISAP, using the primitives described in Table 2. The
Romulus-N implementation is fully masked and uses one SLL instance. Next,
the implementation of Romulus-T is leveled with one masked instance of Skinny
(we also used SLL) and four non-masked Skinny instances (with a round-based
architecture). Similarly, the Ascon implementation is also leveled. The masked
Ascon-p primitive is based on the HPC2 masking scheme and is serialized with 16
Sbox instances (each Sbox is a 2-stage pipeline performing 4 Sbox evaluations per
round)9, while the non-masked permutation is round-based (1 cycle per round).
Finally, ISAP uses two instances of the non-masked Ascon-p primitive.

9 This choice is somewhat arbitrary: we took a serialization factor that gives a good
latency versus area trade-off. It also happens to lead to a latency of 6 clock cycles
per round, which is the same latency as a round of SLL.



Masked Non-masked
Latency Architecture Latency Architecture

Skinny-384+ 240 SLL 40 round-based
Ascon-p6 6 round-based
Ascon-p12 72 serialized 4x 12 round-based
ISAP RK 152 round-based

Table 2: Primitive implementations used in the AEAD cores: latency in clock
cycles and architecture for masked and non-masked versions.

Let us first discuss the latency of these implementations with Figure 14. The
encryption time of Romulus-N grows very quickly with the message size due to
the need of masking all Skinny calls, which are slow compared to non-masked
calls (as shown in Table 2). However, for very short messages, Romulus-N is fairly
competitive thanks to its low number of Skinny calls it that case. On the other
hand, Romulus-T has a larger upfront cost, due to the larger number of Skinny
calls even for short messages, however the mode-level leakage resistance allows
to use non-masked calls for the bulk processing, resulting in lower latency than
Romulus-N for long messages. Next, Ascon enjoys lower initial latency and long-
message latency than Romulus-T. This is due to the lower number of rounds in
Ascon-p6 and Ascon-p12 compared to Skinny (which has 40 rounds). Finally, the
latency of ISAP is between the one of Ascon and Romulus-T. Indeed, ISAP’s
bulk processing is very similar to Ascon’s, but uses more rounds to increase
the security margin in presence of leakage. Moreover, the leakage-resilient PRF
of ISAP uses many permutation rounds, which makes it slower than a masked
Ascon for short messages, while still being faster than Romulus-T.

Let us now discuss the area usage with Figure 15. As a general trend, for
implementations with a masked primitive, the area for that primitive dominates
the overall area, with the exception of Romulus-T with d = 2 shares (where
the area of the four non-masked Skinny instances dominates). These results
therefore confirms the interest of leveled implementations. Next, the areas for
all these modes is fairly similar, with a slight advantage to Ascon and Romulus-
N at d = 2, 3 shares thanks to their lower unmasked area, while Romulus-T and
Romulus-N are a bit better than Ascon for larger numbers of shares, thanks to
using less masked AND gadgets. Lastly, the area for ISAP is similar to the area
of the leveled implementations with d = 2 shares.

4 Conclusion

Even though the previous quantitative results should be interpreted with care,
since they explore only a few points in the design space (e.g., we considered only
round-based architectures for non-masked primitives and did not optimize the
masking randomness usage), their comparison highlights a few general trends.
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First, for long messages, leveled implementations bring large latency improve-
ments while their area overheads remain small over non-leveled implementations.
This is because unmasked primitives are small compared to the masked ones,
especially when the number of shares is large. This smaller unmasked area as
well as lower latency naturally translate into large energy savings. The candi-
dates that can be implemented in such a way for both encryption and decryption
(grade-2 and grade-3, see Table 3) will benefit most from these savings. However,
having such mode-level characteristics usually implies more complex modes of
operations, which leads to worse performance for small messages, as shown by
the comparison between Romulus-N and the grade-2/grade-3 candidates.

Grade Security Candidates

0 CCA+CI Elephant, GIFT-COFB, Romulus-M/N, TinyJambu
1 CCAL1+CIL1 PHOTON-Beetle, Sparkle, Xoodyak
2 CCAmL1+CIML2 Ascon
3 CCAmL2+CIML2 ISAP, Romulus-T

Table 3: NIST LWC finalists grouped by mode-level leakage resistance.

Second, the leakage-resilient PRF technique used by ISAP leads to low area
implementation (similar to a leveled implementations with two shares), and its
latency is comparable to leveled implementations. Such techniques therefore ap-
pear quite promising in hardware implementation setting. Yet, we note that on
the side-channel security side, the formal security guarantees of such implemen-
tations have been much less analyzed than masking and their practical security
evaluation can be more challenging as well (see, e.g., [UBS21]).

Finally, we observe that the different security margins of the algorithms we
implemented can explain some of the observed performance differences. For ex-
ample, the differences in latency between the leveled implementations of Ascon
and ISAP are explained by their number of rounds: the hashing part of ISAP
uses Ascon-p12 while the Ascon inner sponge part uses only Ascon-p6. When
considering CIML2, both should however withstand the same attacks.

Overall, these results backup our suggestion that from a side-channel security
viewpoint, the finalists of the NIST’s Lightweight Crypto competition differ more
by their qualitative features than by their quantitative performances.
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Schläffer. Ascon v1.2: Lightweight authenticated encryption and hashing.
J. Cryptol., 34(3):33, 2021.

DM19. Christoph Dobraunig and Bart Mennink. Leakage resilience of the duplex
construction. In ASIACRYPT (3), volume 11923 of Lecture Notes in Com-
puter Science, pages 225–255. Springer, 2019.

DM21. Christoph Dobraunig and Bart Mennink. Leakage resilient value compari-
son with application to message authentication. In EUROCRYPT (2), vol-
ume 12697 of Lecture Notes in Computer Science, pages 377–407. Springer,
2021.

GPPS19. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Authenticated encryption with nonce misuse and physical leakage: Defini-
tions, separation results and first construction - (extended abstract). In
LATINCRYPT, volume 11774 of Lecture Notes in Computer Science, pages
150–172. Springer, 2019.

GPPS20. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Towards low-energy leakage-resistant authenticated encryption from the
duplex sponge construction. IACR Trans. Symmetric Cryptol., 2020(1):6–
42, 2020.

GWDE15. Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph
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