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Abstract

The Amihud illiquidity measure has proven to be very popular in the empirical literature for mea-

suring the illiquidity process of stocks and indices. Many econometric models in discrete time have

then been proposed for this Amihud measure. Such models are however not adapted for reproduc-

ing peaks of illiquidity with long-memory, for risk management and for pricing liquidity-related

derivatives. This paper therefore proposes a new paradigm for modeling illiquidity via a continuous-

time process with jumps exhibiting long-range dependence. More precisely, we first introduce a

new fractional Hawkes process in which the intensity process is ruled by a modified Mittag-Leffler

excitation function. Working with a mean-reverting jump model for the (log-)Amihud measure

where jumps follow this modified fractional Hawkes process then allows to easily reproduce the

observed peaks of illiquidity in financial markets while introducing long-range dependence and

tractability in the model. Indeed, thanks to this modified Mittag-Leffler kernel, we show that our

model for the (log)-Amihud measure admits a characteristic function in semi-closed form while

having a long-memory of past events, which is not achievable with the existing Hawkes processes.

We can therefore use this model to perform risk management on illiquidity as well as to introduce

and price illiquidity derivatives on the Amihud measure. We hence provide with this paper new

tools for a better understanding and management of the illiquidity risk in financial markets.

Keywords: Illiquidity modeling, Amihud measure, Hawkes process, Mittag-Leffler function, Illiquidity

derivatives, Risk management

1. Introduction

Hawkes processes appear as good candidates for modeling the arrival of financial random events

exhibiting a self-exciting behavior. They have been heavily used in finance for modeling e.g. the

occurrence of trades at high frequency (see Bacry and Muzy (2014), Bacry et al. (2015), Hardiman

et al. (2013), Lee and Seo (2017)), the firm defaults in a credit risk portfolio (see Da Fonseca and

Zaatour (2014), Errais et al. (2010)) or the jumps of asset prices in financial markets (see Aı̈t-

Sahalia et al. (2015), Branger et al. (2014), Hawkes (2022)). The self-exciting behavior of Hawkes

processes is characterized by the so-called excitation kernel, which is a decreasing function that pro-

vides the contribution of past jumps to the instantaneous probability of future jumps’ occurrence.

Several functions have been proposed in the literature as excitation kernel. The most common one

is the exponential kernel which allows for a tractable and analytical treatment of Hawkes processes

with explicit formulae for the moments, autocorrelation function and characteristic function of

the number of jumps, see Aı̈t-Sahalia et al. (2015), Da Fonseca and Zaatour (2014), Errais et al.
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(2010). However, this exponential kernel cannot take into account the long-range dependence of

past events on the number of jumps, which is typical in many financial applications (cfr Hainaut

(2022) for a review and Bacry et al. (2015) in the context of high-frequency trading). Therefore,

another widely-used excitation kernel proposed in the literature is the power-law one since it al-

lows for a slower decay than the exponential kernel and can thus better reproduce the observed

long-term effects in the number of jumps. This power-law kernel has also been extensively used

in high-frequency modeling where the order flow is known to exhibit long-range dependence, as

investigated in Bacry et al. (2012, 2015), Hardiman et al. (2013). However, unlike the exponen-

tial kernel, the Hawkes process with power-law excitation function does not admit an analytical

characteristic function of the number of jumps and thus lacks of tractability for many financial ap-

plications : valuation and risk management of portfolio credit derivatives as in Errais et al. (2010),

option pricing in rough volatility models as in El Euch and Rosenbaum (2019), option pricing

for self-exciting jump diffusion models as in Hawkes (2022) or bond pricing under a self-exciting

Hawkes dynamic for the short rate process as in Hainaut (2016b), etc. Hence, several authors have

tried to fill this gap by introducing Hawkes models based on fractional dynamics. Hainaut (2020)

proposes a fractional Hawkes process defined by a subdiffusive dynamic for the intensity process

while Njike Leunga (2022) and Chen et al. (2021) consider respectively the Mittag-Leffler function

and the derivative of the Mittag-Leffler function as excitation kernel. In the first part of this work,

we hence review these fractional Hawkes processes and show that none of them are fully satisfying

for the modeling of financial events. We then introduce a new fractional Hawkes process based

on a modified Mittag-Leffler kernel that yields a tractable characteristic function while exhibiting

long-memory. We study its properties and show that this new fractional Hawkes process is best

suited for financial applications with long-range dependence, especially when the characteristic

function for the number of jumps is required. Indeed, following Bäuerle and Desmettre (2020),

we show that we can rewrite our fractional Hawkes process with modified Mittag-Leffler kernel

as a superposition of an infinite number of Markov processes. Discretizing the obtained represen-

tation, a semi-closed form solution is derived for the conditional transform of the number of jumps.

From the theoretical results developed in the first part of the paper, we provide a practical applica-

tion of this modified fractional Hawkes model in the context of illiquidity modeling and shows that

it outperforms existing self-exciting models. Several econometric indicators have been proposed for

measuring the illiquidity process of stocks and indices using daily (or weekly) frequency data, see

Goyenko et al. (2009) for a review. We here focus on the Amihud illiquidity measure as introduced

in Amihud (2002). The Amihud measure has proven to be very popular in the empirical literature

and to influence the cross-sectional asset returns through the so-called illiquidity premium, see

the review of Amihud and Mendelson (2015). This illiquidity premium comes from the fact that

investors care about illiquidity costs and price them in the expected returns. Numerous econo-

metric models in discrete time have then been proposed for modeling this Amihud measure, cfr

Amihud and Mendelson (2015), Brennan et al. (2013) or more recently Hafner et al. (2022). In

this work, we shift of paradigm and consider a continuous-time process instead. More precisely,

we model the (log-)Amihud measure as a mean-reverting jump diffusion process where the jumps

follow a fractional Hawkes model with the modified Mittag-Leffler excitation function, as intro-

duced in the first part of the paper. This continuous-time approach simplifies many calculations

and helps us to obtain the characteristic function satisfied by the Amihud measure. Therefore, this
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model allows to easily perform risk management on illiquidity as well as to introduce and price

financial instruments related to the Amihud measure. This way, we provide market participants

with new tools to better manage and assess their risk of liquidity, to reduce their exposition to

this risk and to express views on future liquidity conditions. Moreover, adding fractional Hawkes

jumps in the model allows to reproduce the observed peaks of illiquidity in financial markets and

to show that these peaks effectively exhibit long-memory. Finally, by considering a multivariate

setting for our fractional Hawkes process, we can study the contagion between the up and down

shocks of this Amihud measure. We can also adapt this multivariate setting such as to simultane-

ously model the illiquidity process of multiple indices in financial markets as well as their contagion.

The goal of this paper is therefore fivefold. We first introduce a new fractional Hawkes process

with a modified Mittag-Leffler kernel and show that it exhibits better properties for the modeling

of financial events with long-range dependence, compared with existing Hawkes models. We then

propose a new paradigm based on continuous-time processes for studying the illiquidity of finan-

cial assets via the Amihud illiquidity measure. Working with a mean-reverting jump model for

the (log-)Amihud measure where jumps follow this modified fractional Hawkes process allows to

easily reproduce the observed peaks of illiquidity in financial markets while introducing long-range

dependence and tractability in the model. In a third step, we show via a Peaks Over Treshold

procedure with likelihood maximization how to estimate the parameters of our mean-reverting

fractional Hawkes model. By proposing a change of measure and deriving the characteristic func-

tion satisfied by the Amihud measure in this model, we can then introduce and price new financial

instruments related to the illiquidity process of stocks and indices. Finally, we show in the last

section of this paper how to perform risk management on illiquidity by providing an efficient way

to compute the distribution, moments and risk measures of the Amihud measure so as to help

market participants to better assess and manage their risk of liquidity. We hence provide with

this paper new tools for a better understanding and assessment of the liquidity risk in financial

markets.

2. Hawkes processes

The Hawkes process is a mathematical model for self-exciting processes. More precisely, it is a

counting process that models a sequence of arrivals of some type over time such as earthquakes,

gang violence, trade orders, price jumps or firm defaults. Each arrival excites the process in the

sense that the chance of a subsequent arrival is increased for some time period after the initial

event. As such, it is a non-Markov extension of the Poisson process.

Consider a sequence of stopping times 0 < τ1 < τ2 < ... corresponding to the arrivals of jumps

which represent some market events such as peaks of illiquidity, defaults in a portfolio of firms

or the occurrence of a trade. These stopping times are defined on a complete probability space

(Ω,F , P ) with right-continuous and complete information filtration F = (F)t≥0. The size of the

jump at τj is given by a random variable Oj ∈ Fτj . The sequence (τj , Oj) generates a nonexplosive

counting process N given by Nt =
∑

j≥1 1{τj≤t} and a jump point process L defined by

Lt =
∑
j≥1

Oj 1{τj≤t}. (2.1)
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We propose to specify the processes N and L directly through a conditional arrival rate or intensity

λ and a distribution ν on (0,∞) for the loss size Oj (assumed to be strictly positive in this paper).

We suppose that the jump transform
∫∞
0 eξo dν(o) exists, is finite for complex ξ and admits a finite

derivative
∫∞
0 o eξo dν(o). The intensity follows a strictly positive stochastic process that describes

the conditional mean arrival rate such that

λt | Ft = lim
h→0

E[Nt+h|Ft]−Nt

h
= λ0(t) + η

∫ t

0
f(t− u) dLu (2.2)

= λ0(t) + η
∑

j : τj<t

f(t− τj)Oj

where η > 0 and where λ0(t) > 0 is the background intensity function, describing the arrival

of events triggered by a deterministic exogenous source. The function f : R → R+, called the

self-excitation kernel of the process, is a decreasing function that provides the contribution to the

intensity λ of a jump that occurred at a previous time u < t. Hence, each event increases the

intensity by η limh→0 f(h)O, which then decays according to the excitation function ϕ := ηf until

the next event occurs to push it up again. This excitation kernel ϕ is decreasing so that more

recent events have higher influence on the current intensity compared to events having occurred

further away in the past. From Bacry et al. (2015), we have that the two-dimensional process

J = (L,N)⊤ is a Hawkes process provided that the excitation kernel ϕ is

1. Positive : ϕ(t) ≥ 0 ∀t.

2. Causal : ϕ(t) = 0 for t < 0.

3. L1-integrable :
∫∞
0 ϕ(s) ds <∞.

From equation (2.2), we clearly have that the higher the jump size Oj , the higher the effect of

the default on the intensity. Moreover, the intensity λ governs the common event time of N and

L. However, while the jumps of the counting process N are unit-sized, the jumps of the point

process L are drawn from the distribution ν. Finally, it can be shown that N −
∫ ·
0 λs ds is a local

martingale relative to F and P , cfr Errais et al. (2010).

A nice interpretation of Hawkes processes is given in terms of a population process where mi-

grants arrive according to an inhomogeneous Poisson process with rate λ0(t). Then, each migrant

gives birth to children according to another inhomogeneous Poisson process with intensity function

ϕ, these children also giving birth to children according to the same inhomogeneous Poisson pro-

cess. In our financial context, migrants can be seen as exogenous financial events whereas children

are viewed as the events triggered by other previous events (defaults, jumps or trades). Hence,

as explained in Bacry et al. (2015), the L1 norm of ϕ (denoted ||ϕ||1 :=
∫∞
0 ϕ(t) dt = η ||f ||1)

can be interpreted as a branching ratio, i.e., the number of events generated by any parent event.

Moreover, ||ϕ||1 provides a direct measure of the fraction of endogenously triggered events within

the whole population of events and is thus a measure of market reflexivity. Finally, even though

the process defined by equation (2.2) is well-defined for any choice of kernel ϕ satisfying the three

conditions stated above, a stationary Hawkes process can be characterized as follows. The counting

process N has asymptotically stationary increments and the intensity λ is asymptotically station-

ary if the kernel ϕ satisfies ||ϕ||1 < 1. In the multivariate extension of the Hawkes process that

will be introduced in Section 3.4, the L1 norm required for this stationary condition is replaced by



5

the spectral radius, as explained in Bacry et al. (2015).

This setting is largely used in the financial literature (see Bacry et al. (2015)) to model the arrival

of trade orders at high-frequency as the counting process N and the associated microstructure

price as the loss process L (where Oj then denotes the order size of the jth trade). Similarly, firm

defaults in a portfolio of credit risk can be modeled by the counting process N and the loss-given

default by the random variable Oj , as in Errais et al. (2010) or Da Fonseca and Zaatour (2014).

Finally, jumps in asset prices can also be studied based on these Hawkes processes, cfr Aı̈t-Sahalia

et al. (2015) or Hawkes (2022).

In a first step, we review the two most frequent choices of the decay function f in the literature.

- Exponential kernel :

f(t) = e−αt, t > 0 , α > 0 (2.3)

where α > 0 is the rate at which the impact of an event decays over time and where the L1 norm

of ϕ, ||ϕ||1, is equal to η/α. More precisely, a widely-used intensity process is given by

λt = λ∞ + e−αt(λ0 − λ∞) + η

∫ t

0
e−α(t−u) dLu (2.4)

= λ0 +

∫ t

0
f(t− u)α (λ∞ − λ0) du+ η

∫ t

0
f(t− u) dLu , (2.5)

which can be rewritten by differentiating the previous equation as

dλt = α (λ∞ − λt) dt+ η dLt . (2.6)

The process does not blow up because the drift becomes negative whenever the intensity is above

λ∞ > 0 and prevents any explosion. The point process J = (L,N) is not Markov since it depends

upon λ but the pair X = (λ, J)⊤ is well Markov in the state space D = R+× (R+ × N). Therefore,
the infinitesimal generator ofX, denoted L, is the operator acting on a sufficiently regular1 function

f : D → R such that (changer f en g car confusion avec decay function f above)

Lf(x) = lim
h→0

Et[f(Xt+h)]− f(x)

h
,

where Et = E[ . | Ft] and Xt = x = (λt, (Lt, Nt))
⊤. In the case of the Hawkes process (2.4), we can

write

Lf(x) = α(λ∞ − λ)
∂f

∂λ
(x) + λE [f (λ+ ηO, L+O, N + 1)− f(x)]

= α(λ∞ − λ)
∂f

∂λ
(x) + λ

∫ ∞

0
(f (λ+ ηo, L+ o, N + 1)− f(x)) ν(do) .

Hence, Da Fonseca and Zaatour (2014) obtain the following Dynkin formula for this Hawkes process

Es [f(Xt)] = f(Xs) + Es

[∫ t

s
Lf(Xu) du

]
. (2.7)

1with continuous partial derivative ∂f/∂λ.
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Furthermore, since the process X = (λ, J)⊤ is an affine Markov process, we can express for

u = (uλ, uL, uN ) ∈ C3 and t ≤ T its conditional transform Et

[
eu·XT

]
as f(t, T,Xt), where f is a

complex-valued function f on [0, T ]×D. Since f must satisfy the PIDE

0 =
∂f

∂t
(t, T, x) + Lf(t, T, x) , (2.8)

with boundary condition f(T, T,XT ) = eu·XT = euλλT+uLLT+uNNT , we have from Errais et al.

(2010) that the conditional transform of the point process X = (λ, J)⊤ = (λ, (L,N))⊤ is given by

Et

[
eu·XT

]
= exp

(
a(t, T ) + b(t, T )λt + u′ · Jt

)
,

where u′ = (uL, uN ) ∈ C2 and the coefficient functions a(t, T ) := a(u′, t, T ) and b(t, T ) := b(u′, t, T )

satisfy the following ODEs

∂tb(t, T ) = α b(t, T ) + 1− θ
(
η b(t, T ) + u′ · (1, 0)⊤

)
eu

′·(0,1)⊤ ,

∂ta(t, T ) = −αλ∞b(t, T ) ,

with boundary conditions a(T, T ) = 0, b(T, T ) = uλ and where θ(.) is the jump transform

θ(ξ) =

∫ ∞

0
eξo dν(o), ξ ∈ C .

This exponential kernel is used e.g. in Errais et al. (2010) in the context of portfolio credit risk,

where the correlation of firm defaults is the main concern. Such specification of the Hawkes process

allows to valuate derivatives on debt portfolio in a highly tractable way thanks to the existence

of closed-form formulae for its moments and characteristic function. However, in this framework

of exponential excitation kernel, the autocovariance of the intensity decays exponentially with

time. This feature is not necessary adapted for modeling real phenomena that exhibit a long-term

memory of past events such as trade occurrence, default events or illiquidity peaks (as we will see

in Section 4). For example, it has been shown empirically in Hardiman et al. (2013) and in Bacry

et al. (2012) that the exponential kernel is not the best suited for reproducing the occurrence of

trades at high-frequency. Hence, other excitation functions need to be considered in order to better

reproduce this long-memory property (such as the following power-law kernel).

- Power-law kernel :

f(t) =
α

(1 + αt)1+γ
, α > 0, t > 0. (2.9)

The L1 norm ||ϕ||1 of the power-law kernel is now equal to η/γ. This kernel makes the Hawkes

process non-Markov and we hence cannot rely on the above theory of infinitesimal generators to

write the characteristic function of (λ, J). In the case of portfolio credit derivatives, this prevents

from valuating efficiently these derivative contracts as done in Errais et al. (2010) with the expo-

nential kernel (2.3) above. Similarly for illiquidity modeling, this characteristic function is required

for efficient risk management and option pricing as we will see in Section 4. Other applications

requiring this characteristic function includes the pricing of options for self-exciting jump diffu-

sion model as in Aı̈t-Sahalia et al. (2015) or the pricing of bonds under a Hawkes dynamic for

the short rate process as in Hainaut (2016b). Nevertheless, the main benefit of this power-law

kernel is to allow for a slower form of decay than the exponential kernel so that it can be used
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for better modeling long-term effects. This long-term power-law decay is for example observed at

high-frequency with γ ≈ 0 (and thus with a power-law exponent close to 1 + γ ≈ 1) as described

in Hardiman et al. (2013), which hence allows to better model the long-range nature of offer and

demand. We therefore want to build a kernel exhibiting such long-range dependence while having a

characteristic function available in (semi-)closed form so that we can better manage the illiquidity

risk and write options on liquidity-related instruments. Fractional Hawkes processes offer ways to

achieve this.

2.1. Fractional Hawkes processes

Several alternatives based on fractional kernels and fractional dynamics have been proposed in the

literature to enhance the two previous models. However, none of them fully satisfies the empirical

properties observed in financial markets. We first review them and then propose an alternative

specification based on a modified Mittag-Leffler kernel allowing to exhibit long-term memory in

the intensity process while having a characteristic function available in semi-closed form.

- Mittag-Leffler kernel :

fγ(t) = Eγ(−tγ) , t > 0, γ ∈ (0, 1]. (2.10)

where Eγ(z) :=
∑∞

n=0
zn

Γ(nγ+1) is the one-parameter Mittag-Leffler (ML) function with γ ∈ (0, 1].

If computed on z = −tγ for t ≥ 0, the one-parameter ML function Eγ(−tγ) has the meaning

of survival function for a positive random variable T with infinite mean. This function in fact

interpolates between a stretched exponential for small times and a power-law with index γ ∈ (0, 1]

for large times as we can see with the following expansion. The choice of this kernel is motivated in

a more general setting in Njike Leunga (2022) by the behavior of the ML function at short and long

term. Indeed, it is commonly known that Eγ(−tγ) matches for t→ 0 with a stretched exponential

with infinite negative derivative, whereas it matches as t → ∞ with a negative power-law, cfr

Mainardi (2020) :

Eγ(−tγ) ∼


exp

[
− tγ

Γ(1+γ)

]
, t→ 0,

t−γ

Γ(1−γ) =
sin(γπ)

π
Γ(γ)
tγ , t→ ∞.

(2.11)

As a consequence of the long-term power-law asymptotic, the process turns to be no longer Markov

but of long-memory type. However, the L1 norm is infinite which prevents from using this excita-

tion function for modeling the arrival of financial random events. Indeed, using the probabilistic

interpretation of the ML function as survival random variable T , we find

||fγ(t)||1 =
∫ ∞

0
Eγ(−uγ) du =

∫ ∞

0
P (T ≥ u) du = E[T ] = ∞

since from Theorem 3 (ii) in Lin (1998), the expected value of the the ML distribution T is infinite.

In this case, each exogenous event generates infinitely many endogenous events and the average

intensity explodes at large time scales, making the choice of the ML kernel not conceivable for

modeling financial events. Indeed, this excitation function does not even define a Hawkes process

since the third condition of Definition (2.2) is not satisfied.

- Mittag-Leffler’s derivative kernel :
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fγ(t) = −dEγ(−tγ)
dt

= tγ−1Eγ,γ(−tγ) , t > 0, γ ∈ (0, 1]. (2.12)

where Eγ,δ(z) :=
∑∞

n=0
zn

Γ(nγ+δ) is the two-parameter Mittag-Leffler function. This kernel (2.12)

is in fact the sign-changed first derivative of the ML kernel (2.10) and hence, it is now the pdf of

the survival random variable T introduced above. This kernel was first considered in Chen et al.

(2021) for defining a so-called fractional Hawkes process, which is a non-Markov Hawkes process

with long-memory. This kernel is thus again positive and causal. One can prove easily that the L1

norm of this kernel ||f ||1 is equal to 1 (since it is the pdf of the survival random variable T ) and

also that it decays for large times as K t−γ−1, with K a positive constant. Indeed, we have from

Mainardi (2020) that

tγ−1Eγ,γ(−tγ) ∼


+∞ t→ 0+,

−t−γ−1

Γ(−γ) = sin(γπ)
π

Γ(γ+1)
tγ+1 , t→ ∞.

(2.13)

The three conditions of Definition (2.2) are therefore satisfied and the Hawkes process defined

by the ML’s derivative kernel (2.12) is thus well defined. However, we directly see in equation

(2.12) with γ < 1 and in (2.13) that this kernel tends to infinity when t → 0+ and hence cannot

capture the right behavior of the Hawkes process right after its jumps (given by η limt→0+ fγ(t)O).

Moreover, the developments we will make for deriving the characteristic function of (λ, J) in Section

3.3 will not apply to this kernel (2.12)2. As this characteristic function is required to price options

and perform risk management on illiquidity (cfr Section 4), this prevents from using the ML’s

derivative kernel.

- Subordinated kernel with inverse α-stable process :

Another fractional Hawkes process is introduced in Hainaut (2020) by subordinating the intensity

process (2.6) with the inverse of a α-stable Lévy process, i.e.

dλSt = α(λ∞ − λSt) + η dLSt

where St = inf{τ > 0 : Uτ ≥ t} and Ut is an α-stable process with transform E[e−ξUt ] = e−tξα . Such

Hawkes process ruled by an intensity which exhibits periods of constant values is again non-Markov.

Moreover, this process also allows to take into account long-memory in a financial context thanks

to a sub-exponential autocovariance function for its intensity λSt , cfr Hainaut (2020). However,

this constant piecewize intensity function is not justified empirically for modeling such financial

effects since no market events could explain the freeze at some random value of the instantaneous

probability λSt . Furthermore, the generalization to a multivariate Hawkes process (which will

be required in Section 3.4) has not been investigated yet in the literature due to the difficulty

to define a multivariate inverse subordinated process. Similarly, dependence between illiquidity

shocks (or between firms default) cannot be modeled in this framework due to the need to work with

multiple correlated inverse subordinated processes. Finally, even though this kernel allows for a

sub-exponential decay of the autocovariance function and hence long-memory, it cannot reproduce

the empirical power-law decay observed in many financial applications, cfr Bacry et al. (2015),

Hardiman et al. (2013). We now introduce the modified ML kernel and show that its properties

are best suited for modeling such financial events with long memory.

2see Section 3.3, in this case the equation (B.2) explodes and becomes limn→∞
∑n

ω=1 m
(n)
ω = +∞.
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3. A modified Mittag-Leffler fractional Hawkes process

3.1. Properties

We now introduce a new fractional Hawkes process based on the following excitation kernel, defined

as the difference of a ML kernel and its derivative, namely

fγ(t) = Eγ(t
γ)− tγ−1Eγ,γ(t

γ) , γ ∈ [1, 2], t > 0, (3.1)

which we call the modified Mittag-Leffler (mML) kernel. It is important to note that we now

impose γ ∈ [1, 2], whereas for kernels (2.10) and (2.12), this parameter was restricted to γ ∈ (0, 1].

Moreover, the ML functions in (3.1) are now evaluated at tγ and not −tγ anymore. We can directly

expand the continuity of (3.1) in zero and hence obtain the right limit limt→0+ fγ(t) = fγ(0+) = 1,

ensuring a non-explosion and reasonable behavior of the Hawkes process at the occurrence of a

jump. From the expansion 18.1(22) in Bateman (1953), we can also easily derive the following

asymptotics for our mML kernel

fγ(t) ∼


1− tγ−1

Γ(γ) ∼ exp
[
− tγ−1

Γ(γ)

]
t→ 0+,

− t−γ

Γ(1−γ) t→ ∞.

(3.2)

Hence, we see that it behaves as a stretched exponential for short time, exactly as the ML kernel

(2.10). Indeed, we obtain the same short-time asymptotic (2.11) as the ML kernel given that now

γ ∈ [1, 2], whereas γ ∈ (0, 1] in the excitation function (2.10). Secondly, we observe that at large

times this mML kernel behaves exactly as the ML’s derivative kernel (2.12) since we again have

from the condition γ ∈ [1, 2] the same long-term asymptotic (2.13), for which γ ∈ (0, 1]. Therefore,

we have that our newly introduced mML kernel interpolates between a stretched exponential for

small times and a power-law with index γ ∈ (1, 2] for large times as we can see with the previous

expansions. This kernel thus handles in an unified way the properties of the exponential kernel

and the power law kernel, which will lead to a better modeling and fine tuning of the short and

long-term properties of the Hawkes process. We now show that the L1 norm of the excitation

kernel ϕγ := ηfγ is equal to η and does not explode anymore as in the classical ML kernel. The

parameter η hence controls the clustering property of the mML fractional Hawkes process.

Proposition 3.1. The L1 norm of the modified Mittag-Leffler kernel (3.1) is given by

||fγ ||1 =
∫ ∞

0
fγ(t) dt =

∫ ∞

0

(
Eγ(t

γ)− tγ−1Eγ,γ(t
γ)
)
dt = 1 , (3.3)

which thus leads to the L1 norm ||ϕγ ||1 = η||fγ ||1 = η < ∞. Since ϕγ is also positive and causal,

the three conditions of Definition 2.2 are verified and the mML fractional Hawkes process ruled by

the excitation function (3.1) is thus well-defined.

Proof. To derive this norm, we first recall some probabilistic results derived from Kyprianou

(2006) (page 216 and Theorem 6.16). Let us first define an α-stable process without negative jumps

with parameter α ∈ (1, 2] denoted U and we then denote Ũ = −U , an α-stable process without

positive jumps. We can now define the supremum U t := sup{Us, s ≤ t} = − inf{Ũs, s ≤ t} and e1

an exponential random variable with parameter 1, independent from U . Therefore, we have from

Kyprianou (2006) that the Wiener-Hopf factorization leads for λ ≥ 0 to

E[e−λUe1 ] =
λ− 1

λα − 1
, (3.4)
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and hence, integrating by parts, to∫ ∞

0
e−λtP

(
Ue1 ≥ t

)
dt =

λα−1

λα − 1
− 1

λα − 1
.

Moreover, it is well-known from Mainardi (2020) that the function Eγ(t
γ) has the following explicit

Laplace transform

L [Eγ(t
γ)] (λ) =

∫ ∞

0
e−λtEγ(t

γ) dt =
λγ−1

λγ − 1
,

and integrating by parts, it comes for the modified Mittag-Leffler kernel (3.1) :

L [fγ(t)] (λ) =

∫ ∞

0
e−λt

(
Eγ(t

γ)− tγ−1Eγ,γ(t
γ)
)
dt =

λγ−1

λγ − 1
− 1

λγ − 1
=

∫ ∞

0
e−λtP

(
Ue1 ≥ t

)
dt ,

(3.5)

when identifying γ and α. Hence, we finally find by inverting the Laplace transform (3.5) :

P
(
Ue1 ≥ t

)
= Eγ(t

γ)− tγ−1Eγ,γ(t
γ) .

We therefore find the following L1 norm for the modified Mittag-Leffler kernel

||fγ ||1 =
∫ ∞

0
P
(
Ue1 ≥ t

)
dt = E

[
Ue1

]
= 1.

The expectation is obtained by differentiating the moment generating function (mgf) (3.4) with

respect to λ and evaluating the derivative at λ = 0. □

Finally, the following proposition will help us to derive an expression for the conditional transform

of (λ, J) in the mML fractional Hawkes model, which is fundamental for the sequel of this paper.

From now on, we will hence rely heavily on the following Proposition 3.2.

Proposition 3.2. The modified Mittag-Leffler kernel (3.1) is completely monotone3 if and only if

γ ∈ [1, 2]. This is equivalent to the existence of a representation of the kernel (3.1) in terms of a

Laplace-Stieltjes integral with non-decreasing density and non-negative measure given by

fγ(t) =

∫ ∞

0
e−ωtµ(dω) (3.6)

where

µ(dω) =
− sin(γπ)ωγ−1(1 + ω)

π (ω2γ − 2ωγ cos(γπ) + 1)
dω (3.7)

Proof. This proof is direct from Titchmarsh formula for inversion of Laplace transforms, see Gross

(1950). We first have that the Laplace transform of the kernel (3.1) is given by equation (3.5) :

Lfγ (λ) =

∫ ∞

0
e−λtfγ(t)dt =

λγ−1 − 1

λγ − 1
. (3.8)

We have that this function is analytic such that Lfγ (λ) → 0 as |λ| → ∞ and Lfγ (λ) = o(|λ|−1) as

|λ| → 0 uniformly in every sector |argλ| < π, and that for r > 0 and θ ∈ (−π, π) :

ℜ
(
eiθ/2Lfγ (re

iθ) + e−iθ/2Lfγ (re
−iθ)

)
= 2

cos(θ/2)(λ2γ−1 + 1)− cos(θα)(λγ−1 + λγ)

λ2γ − 2λγ cos(θγ) + 1
≥ 0 ,

3A function f : (0,+∞) → R is completely monotone if it is C∞ and if (−1)nf (n)(x) ≥ 0 , ∀n ∈ N.
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with α = γ − 1/2 ∈ [1/2, 3/2]. Therefore, the assumptions of Hirschman and Widder (2012) are

satisfied and we then have the following ”restoring pair property”. Under these assumptions, the

knowledge of Lfγ (λ) enables one to find the inverse transform µ(ω) of fγ(t), that is

fγ(t) =

∫ ∞

0
e−ωtµ(ω) dω . (3.9)

Following Gross (1950), we have from (3.8) and (3.9) that

Lfγ (λ) =

∫ ∞

0

µ(ω)dω

ω + λ
. (3.10)

This is a Stieltjes equation, which is inverted by

µ(ω) =
1

π
Im
[
Lfγ (ωe

−iπ)
]
=
ω2γ−1 sin(−π(γ − 1) + πγ)− ωγ−1 sin(−πγ + π) + ωγ sin(−πγ)

π (ω2γ − 2ωγ cos(γπ) + 1)

=
− sin(γπ)ωγ−1(1 + ω)

π (ω2γ − 2ωγ cos(γπ) + 1)
. (3.11)

□

3.2. Final model and spectral representation

Our final model is obtained by extending the exponential intensity model (2.5) with the mML

kernel (3.1) in the following way

λt = λ0 +

∫ t

0
fγ(t− u)α (λ∞ − λu) du+

∫ t

0
fγ(t− u) η dLu

= λ0 +

∫ t

0
fγ(t− u) (α (λ∞ − λu) du+ η dLu) . (3.12)

This form is in fact inspired by the affine Volterra structure of Abi Jaber et al. (2019) with an

Ornstein-Uhlenbeck (OU) drift coefficient. Such mML kernel with affine Volterra structure for the

intensity process will allow us to obtain in the sequel a semi-closed form solution for the conditional

transform of N and L. Moreover, from the spectral representation (3.6) and using Fubini theorem,

we can rewrite the intensity (3.12) as

λt = λ0 +

∫ t

0

(∫ ∞

0
e−ω(t−u)µ(dω)

)
(α (λ∞ − λu) du+ η dLu)

= λ0 +

∫ ∞

0

(∫ t

0
e−ω(t−u) (α (λ∞ − λu) du+ η dLu)

)
µ(dω)

= λ0 +

∫ ∞

0
Y

(ω)
t µ(dω) . (3.13)

In the last line, we denote by Y
(ω)
t a Markov process satisfying ∀ω ∈ R+ the SDE

dY
(ω)
t =

(
−ωY (ω)

t + α (λ∞ − λt)
)
dt+ η OdNt , Y

(ω)
0 = 0 , (3.14)

with solution

Y
(ω)
t =

∫ t

0
e−ω(t−u) (α(λ∞ − λu) du+ η dLu) . (3.15)

From (3.13), we have that the intensity at time t is the sum of a background rate λ0 and the

expectation of arrival rates
(
Y

(ω)
t

)
ω∈R+

with respect to a measure µ(dω). We see this way that
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the fractional Hawkes process defined by the mML kernel (3.1) can be written as a superposition

of infinitely many Markov factors
(
Y

(ω)
t

)
ω∈R+

mean reverting at different speeds ω. Hence, the

mML fractional Hawkes process can be represented as an infinite-dimensional Markov process(
λt,
(
Y

(ω)
t

)
ω∈R+

, Nt

)
t≥0

which allows to use the standard tools of stochastic calculus to define

its conditional transform using the affine property of equation (3.14). Note that a similar spectral

representation has been derived in the context of rough volatility models by Abi Jaber (2019).

3.3. Discretization and conditional transform

Following Bäuerle and Desmettre (2020), we now approximate the measure µ(dω) derived in (3.7)

as a discrete measure with a finite number of atoms, allowing to move from an infinitely dimensional

Markov process to a framework with finite dimensional Markovianity. For this purpose, we consider

a partition E(n) :=
{
0 < ξ

(n)
0 < ξ

(n)
1 < . . . < ξ

(n)
n <∞

}
. The barycenter of µ on each interval

(ξ
(n)
i , ξ

(n)
i+1) for i = 0, . . . , n− 1 is given by

b
(n)
i+1 =

∫ ξ
(n)
i+1

ξ
(n)
i

ω µ(dω)∫ ξ
(n)
i+1

ξ
(n)
i

µ(dω)

. (3.16)

Moreover, for i = 0, . . . , n− 1, on each interval
(
ξ
(n)
i , ξ

(n)
i+1

)
, the mass of any atom is

m
(n)
i+1 =

∫ ξ
(n)
i+1

ξ
(n)
i

µ(dω) =

∫ ξ
(n)
i+1

ξ
(n)
i

− sin(γπ)ωγ−1(1 + ω)

π (ω2γ − 2ωγ cos(γπ) + 1)
dω .

We cannot obtain an analytical expression for m
(n)
i+1 and b

(n)
i+1. However, since

− sin(γπ)

π

∫
ωγ−1

ω2γ − 2ωγ cos(γπ) + 1
dω = − 1

γπ
arctan

(
ωγ − cos(γπ)

sin(γπ)

)
.

and using integration by parts in which the integral− sin(γπ)π−1
∫
ωγ
(
ω2γ − 2ωγ cos(γπ) + 1

)−1
dω

is approached with the trapezoidal method, we obtain the approximation

m
(n)
i+1 ≈ − 1

γπ
arctan


(
ξ
(n)
i+1

)γ
− cos(γπ)

sin(γπ)

+
1

γπ
arctan


(
ξ
(n)
i

)γ
− cos(γπ)

sin(γπ)


−

(
ξ
(n)
i+1 + ξ

(n)
i

2γπ

)arctan

(
ξ
(n)
i+1

)γ
− cos(γπ)

sin(γπ)

− arctan


(
ξ
(n)
i

)γ
− cos(γπ)

sin(γπ)


≈

− 1

γπ
arctan


(
ξ
(n)
i+1

)γ
− cos(γπ)

sin(γπ)

+
1

γπ
arctan


(
ξ
(n)
i

)γ
− cos(γπ)

sin(γπ)

(1 + ξ
(n)
i+1 + ξ

(n)
i

2

)
.

A similar approximation can be obtained for the barycenter b
(n)
i+1, i = 0, . . . , n − 1. Anyway, the

exact expressions for b
(n)
i and m

(n)
i are not useful in what follows. The discrete measure for a

partition of size n is then defined as follows

µ(n)(ω) :=

n∑
i=1

m
(n)
i δ

b
(n)
i

(ω) , (3.17)

where δ
b
(n)
i

(ω) is the Dirac measure located at point ω such that limn→∞ µ(n)(ω) = µ(ω). We

consider that the following assumption holds for the partition E(n) :
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- ξ
(n)
0 → 0 and ξ

(n)
n → ∞ when n→ ∞.

- max
∣∣∣ξ(n)i+1 − ξ

(n)
i

∣∣∣→ 0 when n→ ∞.

- E(n) ⊂ E(n+1).

Considering the previous discretization setting, for any integrable function f ∈ L1(µ) bounded on

compact intervals, we have

lim
n→∞

∫ ∞

0
f(ω)µ(n)(dω) =

∫ ∞

0
f(ω)µ(dω) . (3.18)

Detailed convergence results in this setting can be found in Lemma 3.1. and Theorem 3.2. of

Bäuerle and Desmettre (2020). We choose n and adopt the following notation

Y
(ω)
t := Y

(
b
(n)
ω

)
t , ω = 1, . . . , n.

From equation (3.13), the discretized intensity based on a partition of size n is given by

λ
(n)
t = λ0 +

n∑
ω=1

m(n)
ω Y

(ω)
t ,

with N
(n)
t a counting process of intensity λ

(n)
t and

dY
(ω)
t =

(
α
(
λ∞ − λ

(n)
t

)
− b(n)ω Y

(ω)
t

)
+ η O dN

(n)
t .

From Bäuerle and Desmettre (2020), we indeed have that λ
(n)
t → λt almost surely for n → ∞.

Finally, we obtain

dλ
(n)
t =

n∑
ω=1

m(n)
ω dY

(ω)
t =

n∑
ω=1

m(n)
ω

(
α
(
λ∞ − λ

(n)
t

)
− b(n)ω Y

(ω)
t

)
+ η O

n∑
ω=1

m(n)
ω dN

(n)
t .

Now that we have decomposed the mML fractional Hawkes process into a finite number of related

Markov processes, we are able to study its conditional transform.

Proposition 3.3. The transform of X
(n)
t =

(
λ
(n)
t , J

(n)
t

)⊤
=
(
λ
(n)
t ,
(
L
(n)
t , N

(n)
t

))⊤
conditionally

to the information at time t ≤ T with u = (uλ, uL, uN ) ∈ C3 is given by

Et

[
eu·X

(n)
T

]
= Et

[
euλλ

(n)
T +uLL

(n)
T +uNN

(n)
T

]
= exp

(
a(t, T ) + b(t, T )λ

(n)
t + u′ · ⊤J (n)

t +

n∑
ω=1

cω(t, T, b
(n)
ω )Y

(ω)
t

)
, (3.19)

where u′ = (uL, uN ) ∈ C2 and where the coefficients a(t, T ) := a(u′, t, T ), b(t, T ) := b(u′, t, T ) and

cω(t, T, b
(n)
ω ) := cω(u

′, t, T, b
(n)
ω ) satisfy the following system of equations

a(t, T ) = αλ∞

n∑
ω=1

m(n)
ω

(∫ T

t
e−b

(n)
ω (v−t)b(v, T )dv

)
,

∂b(t, T )

∂t
= α

(
n∑

ω=1

m(n)
ω b(t, T ) +

n∑
ω=1

cω(t, T, b
(n)
ω )

)

− θ

(
b(t, T ) η

n∑
ω=1

m(n)
ω + u′ · (1, 0)⊤ +

n∑
ω=1

cω(t, T, b
(n)
ω ) η

)
eu

′·(0,1)⊤ + 1 ,

cω(t, T, b
(n)
ω ) = −b(n)ω m(n)

ω

∫ T

t
e−b

(n)
ω (v−t) b(v, T ) dv , ∀ω = 1, . . . n.
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with boundary condition b(T, T ) = uλ and where θ(ξ) =
∫
eξo dν(o), ξ ∈ C is the transform of the

jump distribution.

The proof of this proposition is given in Appendix B.1. Passing to the limit leads to the following

corollary.

Corollary 3.4. The conditional transform of Xt = (λt, Jt)
⊤ = (λt, (Lt, Nt))

⊤ conditionally to the

information at time t ≤ T with u = (uλ, uL, uN ) ∈ C3 is given by

Et

[
eu·XT

]
= Et

[
euλλT+uLLT+uNNT

]
= (3.20)

exp

(
αλ∞

∫ T

t

fγ(v − t) b(v, T ) dv + b(t, T )λt + u′ · J⊤
t −

∫ ∞

0

(∫ T

t

e−ω(v−t)b(v, T ) dv

)
ω Y

(ω)
t µ(dω)

)
,

where u′ = (uL, uN ) ∈ C2 and where the coefficient function b(t, T ) satisfies the following integro-

differential equation

∂b(t, T )

∂t
= −α ∂

∂t

∫ T

t

fγ(v − t) b(v, T ) dv − θ

(
u′ · (1, 0)⊤− η

∂

∂t

∫ T

t

fγ(v − t) b(v, T ) dv

)
eu

′·(0,1)⊤ + 1 ,

with boundary condition b(T, T ) = uλ.

The proof of this corollary is again relegated in Appendix B.2. Based on the conditional transform

(3.20), we can now obtain the moments of the process X = (λ, J)⊤ given in the following corollary.

Corollary 3.5. The conditional expectation of XT at time T ≥ t is given by

Et [w ·XT ] = αλ∞

∫ T

t
fγ(v − t) b′(0, v, T ) dv + b′(0, t, T )λt + w′ · Jt (3.21)

−
∫ ∞

0

(∫ T

t
e−ω(v−t)b′(0, v, T ) dv

)
ω Y

(ω)
t µ(dω) ,

for w ∈ R3. We denote w′ = (wL, wN ) ∈ R2 and χ =
∫∞
0 o ν(do). The coefficient function

b′(0, t, T ) := ∂b(u′, t,T )
∂u′

∣∣∣
u′=(0, 0)

satisfies

b′(0, t, T ) = wλ + (χη − α)

∫ T

t
fγ(v − t) b′(0, v, T ) dv + (T − t)w′ · (χ, 1)⊤.

See Appendix B.3 for the proof of this corollary. Similarly, higher order moments and autocovari-

ance function can be obtained by successive conditioning and differentiating.

3.4. A multivariate extension

We now want to extend the previous univariate setting by considering a multivariate mML frac-

tional Hawkes process where the intensity λ
(i)
t of each component process i = 1, . . . , d may also

depend on several of the other components of this Hawkes process. Moreover, we now let each com-

ponent λ
(i)
t to be influenced by exogenous risk factors represented by a diffusive stochastic process.

This is important for empirical applications, in which the intensity model is estimated from a time

series of market prices or market measure (such as the Amihud measure studied in Section 4). In

these applications, the model must replicate the diffusive fluctuation of market prices, requiring the

presence of such diffusive risk factor. We hence consider the Rd-valued counting process N defined

on a state space DN = Nd × R+ and the point process L defined on a state space DL = Rd
+ × R+
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where the conditional mean λ
(i)
t of the ith loss component L

(i)
t :=

∑
j≥1O

(i)
j 1{τ (i)j ≤t} is given by

the affine structure

λ
(i)
t = λ

(i)
0 +

∫ t

0
fγ(i)(t− u)

(
α(i)(λ(i)∞ − λ(i)u ) du+ η(i) · dL⊤

u + σ(i)
√
λ
(i)
u dW (i)

u

)
(3.22)

where4 η(i) = (η(i,1), η(i,2) . . . , η(i,d)) and where W
(i)
t is a one-dimensional standard Brownian mo-

tion independent from the jump processes L
(i)
t (i = 1, . . . , d) and from the other Brownian motions

W
(j)
t ,∀ j ̸= i. The loss size O(i) of the ith component L

(i)
t follows a distribution ν(i) on (0,∞).

This specification enables the jump occurrence of one component process to have an impact on the

intensities of other component processes, which facilitates the modeling of cross-excitation phe-

nomena. For example, each component process L
(i)
t can model the default process of a particular

firm, where each default also has an impact on the default intensity of other firms. The setting

(3.22) also allows to model peaks of (il)liquidity through the Amihud measure, as we will see in the

next section. Finally, this multivariate extension is required at high-frequency in order to model

both up and down mid changes in prices as well as the arrival of buy and sell orders, cfr Bacry

and Muzy (2014) and Bacry et al. (2015).

As in Section 3.3, we can rewrite the conditional intensity (3.22) as

λ
(i)
t = λ

(i)
0 +

∫ ∞

0
Y

(i,ω)
t µ(i)(dω) , (3.23)

where

µ(i)(dω) =
− sin(γ(i)π)ωγ(i)−1(1 + ω)

π
(
ω2γ − 2ωγ(i)

cos(γ(i)π) + 1
) dω ,

and

dY
(i,ω)
t =

(
−ωY (i,ω)

t + α(i)
(
λ(i)∞ − λ

(i)
t

))
dt+ η(i) · dL⊤

t + σ(i)
√
λ
(i)
t dW

(i)
t , Y

(i,ω)
0 = 0 . (3.24)

From the affine structure of equation (3.22) and the representation of each conditional intensity in

terms of infinitely many factors Y
(i,ω)
t , we can apply directly the same reasoning as in the univariate

case (3.20). The conditional transform of the process Z = (λ, J)⊤ = (λ, (L,N))⊤ defined on a

state space D ⊆ R3d × R+ is then defined with uλ, uL, uN ∈ Cd and u = (uλ, uL, uN ) ∈ C3d by

Et

[
eu·ZT

]
:= Et

[
euλ·λ⊤

T +uL·L⊤
T +uN ·N⊤

T

]
,

and can be obtained as above via discretization and thanks to the infinitesimal generator of Z.

Proposition 3.6. The transform of Zt = (λt, (Lt, Nt))
⊤ conditionally to the information at time

t ≤ T with u = (uλ, uL, uN ) ∈ C3d is given by

Et

[
eu·ZT

]
= Et

[
euλ·λ⊤

T +uL·L⊤
T +uN ·N⊤

T

]
= exp

[
β(t, T ) · λ⊤t + uL · L⊤

t + uN ·N⊤
t (3.25)

+
d∑

i=1

(
α(i)λ(i)∞

∫ T

t
fγ(i)(v − t)β(i)(v, T ) dv −

∫ ∞

0

(∫ T

t
e−ω(v−t)β(i)(v, T ) dv

)
ω Y

(i,ω)
t µi(dω)

)]

4Note that we can only select m ≤ d components by setting η(i,j) = 0 for some j.
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where the boundary condition β(T, T ) = uλ and where each component β(i)(t, T ), i = 1, . . . , d, of

the vector of coefficient functions β(t, T ) satisfies the following integro-differential equation

∂β(i)(t, T )

∂t
=− α(i) ∂

∂t

∫ T

t
fγ(i)(v − t)β(i)(v, T ) dv − 1

2
σ(i)

2
(
∂

∂t

∫ T

t
fγ(i)(v − t)β(i)(v, T ) dv

)2

− θ(i)

uL,i − d∑
j=1

η(j,i)
∂

∂t

∫ T

t
fγ(j)(v − t)β(j)(v, T ) dv

 euN,i + 1 , (3.26)

where θ(i)(ξ) =
∫∞
0 eξo dν(i)(o), ξ ∈ C is the transform of the loss size distribution of component i.

The proof of this proposition is relegated in Appendix B.4.

4. Illiquidity modeling

4.1. Amihud measure

Liquidity is a fundamental property of a well-functioning market and lack of liquidity is generally

at the heart of many financial crises and disasters. Common ways of measuring liquidity using high

frequency data include bid-ask spreads, effective spreads, realized spreads, depth and transaction

volume. There is a big literature that uses such measures to compare market quality across time,

sectors and before and after interventions of various sorts. Moreover, understanding and incor-

porating the behavior of liquidity in asset management and investment decision making is crucial

for fund managers since their performance are strongly affected by the liquidity condition of their

fund. It is indeed shown in Cao et al. (2013) that fund managers have the ability to time market

liquidity and hence to adjust their portfolios’ market exposure based on their insight of future

liquidity conditions so as to bring substantially more return and performance to their fund. As

proxy for illiquidity, we decide to focus on the Amihud illiquidity measure as proposed in Amihud

(2002). This measure has proven to be very popular in the empirical literature. It is easy to

implement and by all accounts relatively robust. It has been shown to influence the cross-sectional

asset returns through the so-called illiquidity premium, see the review of Amihud and Mendelson

(2015). This illiquidity premium indeed comes from the fact that investors care about illiquidity

costs and therefore price them in the expected returns.

Many econometric models in discrete time have been studied in the literature for modeling illiq-

uidity via the Amihud measure, cfr Amihud and Mendelson (2015), Brennan et al. (2013), Lou

and Shu (2017) or more recently Hafner et al. (2022). We propose in this work a new approach

by introducing instead a continuous-time process for modeling the log-Amihud measure. More

precisely, we decide to model this log-Amihud measure as a mean-reverting jump diffusion process

where the jumps follow a fractional Hawkes process driven by a mML intensity with the multidi-

mensional affine structure (3.22). This way, we want to show that peaks of illiquidity in financial

markets effectively exhibit long-memory and that there is contagion between the up and down

jumps of the log-Amihud measure. This model also allows to study simultaneously the illiquidity

process of multiple stocks and indices in financial markets. We will finally show that using such

continuous-time process allows to easily perform risk management on illiquidity and to introduce

and price financial instruments related to this Amihud measure.
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The Amihud illiquidity measure At of a stock at time t is defined as

At =
1

nt

nt∑
j=1

ltj , ltj =
|Rtj |
Vtj

(4.1)

where Rt is the stock return and Vt is the trading volume (in dollar) at time t. We therefore see that

the Amihud measure captures the fact that a stock is less liquid if a given trading volume generates

a larger move in its price. The measure is typically computed over periods ranging from a day to

a year by averaging the daily illiquidity ratio ltj over the corresponding period nt. We consider for

the remaining of this work a daily sampling period with nt = 1 and ∆t = tj − tj−1 = 1/251 , ∀j =
1, . . . , n with tn = T and t0 = 0. Due to the very small order of magnitude of the Amihud measure

(∼ 10−16 − 10−12 for the most popular indices), it is customary to work with the logarithm of the

Amihud measure instead which allows to standardize its values, cfr Amihud (2002), Brennan et al.

(2013), Lou and Shu (2017). We then denote at := logAt in the sequel of the paper. Typical sample

paths of the log-Amihud measure atj and of ∆atj = atj − atj−1 (j = 1, . . . , n) are pictured for the

FTSE 100 on Figure A.1 in Appendix A with n = 3266 daily observations over a total period T of

13 years. These plots show that ∆at, the log-Amihud measure in difference, randomly fluctuates

around zero and displays some clustering with serial dependence5. We also observe during these

periods some shocks that do not display any clear trend: negative abrupt movements followed by

abrupt movements of either sign. Finally, the Histogram A.2 of the log-Amihud increments ∆at

for the FTSE 100 shows that they are close to Gaussian. These observations justify to model

the Amihud difference ∆at as a mean-reverting Ornstein-Uhlenbeck (OU) process with two jump

components (for up and down jumps) and to link the frequency of jumps to their size. Moreover, it

is shown in Lou and Shu (2017) that the Amihud illiquidity measure is mainly driven by variations

in the trading volume component. Since virtually all empirical studies show a significant predictive

power of traded volume in explaining volatility/market activity (Ané and Geman (2000), Gallant

et al. (1992), Karpoff (1987)), it confirms that it is judicious to model the log-Amihud measure

in the same way as log-volatility, which is typically described by a mean-reverting OU process,

see e.g. Andersen et al. (2001) or Gatheral et al. (2018). Adding jumps with a mML intensity

finally allows to reproduce the observed illiquidity shocks as well as the long-memory behavior of

the trading volume component, as highlighted in Lobato and Velasco (2000). We therefore here

consider the following modified Mittag-Leffler Ornstein-Uhlenbeck (mML OU) process defined by

the following dynamic of the infinitesimal increments of the log-Amihud measure at = logAt :

dat = θ1 (θ2 − at) dt+ θ3 dW
(a)
t + dL

(1)
t − dL

(2)
t

= θ1 (θ2 − at) dt+ θ3 dW
(a)
t +O(1)dN

(1)
t −O(2)dN

(2)
t , (4.2)

where L
(1)
t and L

(2)
t are the loss processes defined by equation (2.1) of the up jump and down jump

components, respectively. The conditional intensity of the jumps N
(1)
t , N

(2)
t is given by equation

(3.22) and W
(a)
t is a standard Brownian motion, independent from the two jump components and

from W
(i)
t (i = 1, 2). Recall that the variable O(i) representing the jump size of each type is

5The fact that a OU process captures the same serial dependence as the log-Amihud measure at of the FTSE

100 index can be easily confirmed with ACF plots which exhibit the exact same pattern of autocorrelation (plots

available upon request).
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strictly positive with distribution ν(i)(.) and support (0,∞). Note first that modeling the log-

Amihud measure as a mML OU model does guarantee the positivity of the Amihud measure and

allows an efficient pricing of liquidity-related instruments by providing semi-closed form formula for

its conditional transform, as we will see in Section 4. Another feasible alternative would have been

to model directly the Amihud measure At as a Cox-Ingersoll-Ross process with mML fractional

Hawkes jumps but considering this time only up jumps in order to ensure the positivity of At.

Indeed, what matters the most in practice is to manage the illiquidity peaks and hence, modeling

only up-jumps would be satisfying enough. However, considering the log-Amihud measure provides

a more general setting and gives more stable results since we avoid working with extremely small

values. Secondly, this model (4.2) allows to study the peaks of (il)liquidity of various assets while

having a dependence and contagion between up and down shocks of the log-Amihud measure.

Finally, as already mentioned, our mML kernel (3.1) allows to capture the long-range dependence

in these (il)liquidity shocks while ensuring good properties of the intensity process.

We now model the log-Amihud dynamic of the FTSE 100 index thanks to equation (4.2). Without

loss of generality, we do not consider the Brownian components in the intensities λ
(1)
t and λ

(2)
t of

the up and down jump processes N
(1)
t and N

(2)
t driving the log-Amihud measure. This leads to

λ
(i)
t = λ

(i)
0 +

∫ t

0
fγ(i)(t− u)

(
α(i)(λ(i)∞ − λ(i)u ) du+ η(i,1)dL(1)

u + η(i,2)dL(2)
u

)
, i = 1, 2. (4.3)

Note that since dL
(2)
t = O(2) dN

(2)
t is strictly positive, we have indeed that a down jump increases

the probability of a subsequent up jump (as well as the probability of another down jump). The

largest the size of this down jump, the more likely is the occurrence of the following jump. For

estimating this mML OU process, we use a modified Peaks Over Threshold (POT) procedure, as

described in Hainaut and Moraux (2018). This method is divided into three steps. In the first step,

from the time series of daily log-Amihud measures atj (j = 1, . . . , n) of the FTSE 100 index, we

estimate a OU process (i.e. the parameters θ1, θ2, θ3) via maximum likelihood without considering

the jump size components L
(1)
t and L

(2)
t . The second step consists in detecting jumps given that

jumps occur when the log-Amihud measure is above (for up jumps) or below (for down jumps)

some thresholds. These two thresholds Tr
(1)
j and Tr

(2)
j are given for each observation j = 1, ..., n

by

Tr
(1)
j = atj + θ1

(
θ2 − atj

)
∆t+ θ3 ϕ

−1(α1)
√
∆t , (4.4)

Tr
(2)
j = atj + θ1

(
θ2 − atj

)
∆t+ θ3 ϕ

−1(α2)
√
∆t , (4.5)

where ϕ−1 (α1) and ϕ−1 (α2) are Normal quantiles at levels α1 and α2. The levels α1 and α2

are chosen such that the sample without jumps
{
atj
∣∣ atj ∈ [Tr(1)j , Tr

(2)
j

]}
has a skewness and a

kurtosis as closed as possible to the theoretical skewness and kurtosis of a OU process, which are

respectively equal to 0 and 3 since the log-Amihud measure is Gaussian in this model :

α1, α2 = argmin

((
Skew

{
atj
∣∣ atj ∈

[
Tr

(1)
j , Tr

(2)
j

]})2
+
(
Kurt

{
atj
∣∣ atj ∈

[
Tr

(1)
j , Tr

(2)
j

]}
− 3
)2)

.

The set of the n
(1)
T up jumps is then given by

{
τ
(1)
1 , . . . , τ

(1)

n
(1)
T

}
=
{
tj | atj > Tr

(1)
j

}
and the set

of the n
(2)
T down jumps by

{
τ
(2)
1 , . . . , τ

(2)

n
(2)
T

}
=
{
tj | atj < Tr

(2)
j

}
. In the case of the FTSE 100,
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we find the following Figure 4.1 where we have in black the sample of log-Amihud differences ∆at

with jumps and in red the sample without jumps (with α1 = 0.9695 and α2 = 0.0191).

Figure 4.1: Daily log-Amihud measure in difference ∆atj (j = 1, . . . , 3266) for the FTSE 100 index over a period T

of 13 years. In red, sample path without jumps and in black, sample path with jumps.

Considering these thresholds, we re-estimate the parameter θ3 such that the sample without jumps

follows a OU process, i.e. ∆atj = θ̂1

(
θ̂2 − atj

)
∆t+ θ3W∆ for all atj ∈

[
Tr

(1)
j , T r

(2)
j

]
with θ̂1 and

θ̂2 the estimators found at the previous calibration step. We now let

{
τ
(i)
1 , . . . , τ

(i)

n
(i)
T

}
the set of

the n
(i)
T observed up jumps if i = 1 and down jumps if i = 2 over the interval [0, T ]. When a jump

is detected at time τ
(i)
j , the jump size ∆L

(i)

τ
(i)
j

is equal to the absolute value of the variation of the

log-Amihud measure, i.e.

∆L
(i)

τ
(i)
j

=

∣∣∣∣∆aτ (i)j

− θ1

(
θ2 − a

τ
(i)
j −1

)
∆t

∣∣∣∣ .
We also assume that the jump sizes of up and down jumps are independent and identically dis-

tributed exponential random variables with density ν(i)(z) on R+, i = 1, 2 :

ν(i)(z) = ρ(i) exp
(
−ρ(i)z

)
, (4.6)

with ρ(i) ≥ 0. The jump parameter ρ(i) is then estimated by log-likelihood maximization

ρ(i) = argmax

n
(i)
T∑

l=1

ln ν
(
a
τ
(i)
l

− a
τ
(i)
l −1

− θ1

(
θ2 − a

τ
(i)
l −1

)
∆t
∣∣∣ ρ(i)) . (4.7)

Based on the jump times

{
τ
(i)
1 , . . . , τ

(i)

n
(i)
T

}
of each type i, we can obtain via Embrechts et al. (2011)

the log-likelihood of the mML fractional Hawkes process with intensity (4.3), which is given by

logL

 d∑
i=1

n
(i)
T∑

l=1

τ
(i)
l

∣∣∣∣∣∣∣ θ
 = −

d∑
i=1

∫ T

0
λ(i)s ds+

d∑
i=1

n
(i)
T∑

l=1

log

(
λ
(i)

τ
(i)
l

)
, (4.8)
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where θ =
(
γ(1), α(1), λ

(1)
∞ , λ

(1)
0 , γ(2), α(2), λ

(2)
∞ , λ

(2)
0 , η(1,1), η(1,2), η(2,1), η(2,2)

)
. For the exponential

kernel (2.3), the expression (4.8) can be drastically simplified as in Errais et al. (2010), which speeds

up computation. However, knowing the up and down jumps

{
τ
(i)
1 , . . . , τ

(i)

n
(i)
T

}
i=1,2

, as well as their

jump size ∆L
(i)

τ
(i)
j

allows us to use the spectral representation (3.23) and (3.24) in order to compute

efficiently their conditional intensity λ
(i)
t and hence obtain the log-likelihood (4.8). Indeed, we can

discretize for i = 1, 2 the integral (3.23) with a sum of M + 1 factors ω = 0,∆ω, 2∆ω, . . . ,M∆ω :

λ
(i)
tj

= λ
(i)
0 +

M∑
k=0

Y
(i, k∆ω)
tj

µ(i)(∆ω) , (4.9)

where Y
(i,k∆ω)
0 = 0 and for j = 0, . . . , n− 1 :

Y
(i, k∆ω)
tj+1

= Y
(i, k∆ω)
tj

+
(
−k∆ω Y (i, k∆ω)

tj
+ α(i)

(
λ(i)∞ − λ

(i)
tj

))
∆t+ η(i,1)∆L

(1)
tj

+ η(i,2)∆L
(2)
tj
. (4.10)

Taking M = 50 000 with ∆ω = 0.001 gives very accurate results and allows to drastically decrease

the computing time. A similar application of such technique with detailed convergence results

can be found in Abi Jaber (2019). Note that since this discretized representation (4.9) cannot be

written for the power-law kernel (2.9), the computation of the log-likelihood (4.8) is much more

slow in this case. Finally, the estimated parameters of the mML intensity are then such that

θ = argmax logL

 d∑
i=1

n
(i)
T∑

l=1

τ
(i)
l

∣∣∣∣∣∣∣ θ


The full calibration procedure is summarized with the following table.

OU Std. Error mML OU Std. Error

θ1 27.789 2.187 27.789 2.187

θ2 -34.290 1.701 -34.290 1.701

θ3 4.196 0.054 4.313 0.055

Log-likelihood -117.678 -197.832

ρ(1) 1.545 0.177

ρ(2) 1.464 0.165

Log-likelihood -91.85

γ(1) 1.045 0.064

λ
(1)
0 1.611 0.68

γ(2) 1.028 0.021

λ
(2)
0 1.719 0.64

η(1,1) 14.229 5.063

η(1,2) 0.168 0.221

η(2,1) 2.265 1.012

η(2,2) 19.799 7.762

Log-likelihood 136.188

Table 4.1: Comparison of the parameter estimates and standard errors of the mML OU model with the classical OU

model for the log-Amihud measure. This table is obtained via a POT procedure for the FTSE 100 index based on

a 13-year period.
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The first striking observation is that the mean-reverting parameters α(i) and λ
(i)
∞ (i = 1, 2) of the

intensity process are absent from the table above both for up and down jumps. This is due to

the fact that the AIC criterion of the mML fractional Hawkes process is equal to −256.02 when

considering the mean-reverting parameters α(i) and λ
(i)
∞ (i = 1, 2) and equal to −256.38 without

these parameters. We hence only consider here the simplified model without α(i) and λ
(i)
∞ (but

these parameters could be relevant for other indices than the FTSE 100). We also see that the pa-

rameters γ(1), γ(2) capturing the long-memory of the (il)liquidity peaks in the log-Amihud measure

are both very close to 1. Hence, this confirms the strong long-memory property of these illiquidity

peaks. Moreover, based on equation (3.2), we have at large time scales the exact same power-law

nature with exponent close to 1 for these illiquidity jumps as the one observed in Hardiman et al.

(2013) or in Bacry and Muzy (2014) for mid-price changes and trade arrivals at high frequency

based on the power-law kernel (2.9) with γ ≈ 0 (and hence also with a power-law exponent close

to γ + 1 ≈ 1). Concerning the self-exciting parameters η(1,1) and η(2,2), we see that they are

positive which confirms the presence of clustering effects in the intensity of jumps. Moreover,

these parameters are higher than the cross-excitation parameters η(1,2) and η(2,1) (which are also

positive) leading to a predominant effect of the self-excitation. Testing for stationarity in our

bivariate setting (cfr Section 2), we obtain that the spectral radius ||.|| of the matrix
(
η(i,j)

)
i,j=1,2

is equal to ||ϕ|| = 19.87 > 1. The stationary condition is therefore not satisfied based on our data.

Finally, we see that we obtain high values of the speed of mean-reversion θ2 and of the volatility

θ3. Computing the log-Amihud measure based on a weekly or monthly time window would allow

us to obtain less extreme values. Another alternative frequently used in the literature consists in

averaging this measure between different stocks/indices, as done in Amihud and Mendelson (2015).

The large standard errors of the self and cross-exciting parameters in Table 4.1 are explained by

the limited number of up and down jumps (rare events) used for estimating the model, which thus

leads to numerical instability.

Our multidimensional mML fractional Hawkes model also allows to study simultaneously the illiq-

uidity process of multiple stocks and indices in financial markets as well as their contagion. For

each index i ∈ {1, . . . , d}, the infinitesimal increments of the log-Amihud measure can be extended

in the following way

da
(i)
t = θ

(i)
1

(
θ
(i)
2 − a

(i)
t

)
dt+ θ

(i)
3 dW

(a,i)
t + dL

(i,up)
t − dL

(i,down)
t ,

where
{
W

(a,i)
t

}
i=1,...,d

are independent standard Brownian motions (as well as independent from

the jump components) and where the conditional intensity of the jump component L
(i,k)
t of stock

i = 1, . . . , d and type k = {up, down} is given by

λ
(i,k)
t = λ

(i,k)
0 +

∫ t

0
fγ(i,k)(t− u)

(
α(i,k)(λ(i,k)∞ − λ(i,k)u ) du+ η(i,up) · dL(up)

u + η(i,down) · dL(down)
u

)
,

where η(i,k) = (η(i,1,k), . . . , η(i,d,k)) and L(k) ∈ Rd. Therefore, in this model, the dependence

between the log-Amihud measure of different stocks lies in the peaks of their illiquidity process

and not from their diffusive factor which can be considered as independent. A shock in the log-

Amihud measure of one index has an impact on the intensity of the (up and down) jump component

of the log-Amihud measure of the other indices. We can then apply the same POT procedure as

above with the two thresholds (4.4) and (4.5) defined for each index i.
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4.2. Option pricing

We now introduce and price two different types of European options on the Amihud measure so

as to provide market participants with a way to reduce their exposition to the illiquidity risk of an

index or a stock. These so-called illiquidity options also allow market operators to directly express

views on illiquidity and hedge themselves again this risk. We first define a European call and put

directly on the Amihud measure AT at maturity T with the following payoff function

g(aT ) = (eaT − ek)+ = (AT −K)+ or g(aT ) = (ek − eaT )+ = (K −AT )+ , (4.11)

where K is the liquidity strike and k := logK. The valuation of an illiquidity call C(.) is then

classically given by the following formula under an equivalent risk neutral measure Q :

C(t, T, k) = EQ
[
e−r(T−t) (AT −K)+

∣∣∣Ft

]
(4.12)

= EQ

[
e−r(T−t)

(
eaT − ek

)
+

∣∣∣∣Ft

]
. (4.13)

A class of equivalent measures Q will be introduced in Propositions 4.1 and 4.2 below such as to

compute this expectation under the risk-neutral measure Q. Based on the characteristic function

of at which will be derived below in Corollary 4.3 with equation (4.27), we can use standard Fourier

techniques to compute this European call, cfr Carr and Madan (1999) or Lian et al. (2014). Indeed,

the discounted risk-neutral expectation of a contingent with general payoff g(XT ) can be computed

with α > 0 as

EQ
[
e−r(T−t)g(XT )

∣∣∣Ft

]
=
e−r(T−t)

π

∫ ∞

0
Re
[
G(α+ iu)EQ

[
e(α+iu)XT | Ft

]]
du , (4.14)

where EQ[eξXT | Ft] (ξ = α+ iu ∈ C) is the conditional characteristic function under Q of the log-

Amihud random variable XT = aT , which will be denoted by φ(t, T, ξ) in the sequel (cfr equation

(4.27)). Moreover, G(ξ) is the generalized Fourier transform of g(XT ) and is defined for the payoff

(4.11) above by the following equation with α > 1 :

G(ξ) :=

∫ ∞

−∞
e−ξx g(x) dx =

∫ ∞

k
e−ξx (ex − ek) dx = − e(1−ξ)k

(1− ξ)ξ
= − e(1−α−iu)k

(1− α− iu)(α+ iu)
.

By setting α′ = α − 1 with α′ > 0, we find the classical Carr-Madan formula for the call price

(4.12) :

C(t, T, k) =
e−r(T−t) e−α′k

π

∫ ∞

0
Re

[
e−iuk φ(t, T, α′ + 1 + iu)

(α′)2 + α′ − u2 + i(2α′ + 1)u

]
du . (4.15)

In a similar way as for variance swaps, we now introduce a second type of illiquidity derivative

based on a new measure called the realized Amihud measure. From the definition of the realized

variance, it appears natural to define the realized Amihud measure as the following arithmetic

average

RA(n) =
AF

n

n∑
j=1

Atj , (4.16)

where AF is the annualization factor. The squared log-returns approximating the variability of

the asset are indeed here replaced by the Amihud measure as proxy for illiquidity. The sampling

frequency being every day trading, we have AF = 251 since there are 251 trading days for the

FTSE 100 index. The number of observations n is again equal to 3266, which is consistent with
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a time horizon T of 13 years. We assume equally-spaced discrete observations over the contract

life [0, T ] so that the annualized factor is equal to AF = n/T . When n→ ∞, we have then in the

continuous case

RA(∞) = lim
n→∞

RA(n) =
1

T

∫ T

0
As ds .

However, the valuation of a European option based on this payoff requires the characteristic func-

tion of 1
T

∫ T
0 As ds =

1
T

∫ T
0 easds, which does not admit a semi-closed form expression since we lose

the affine structure of at due to the exponential function in this integral. We hence rather consider

the following Asian payoff written on At based on a geometric average

RA(∞) = exp

(
1

T

∫ T

0
log(As) ds

)
= exp

(
1

T

∫ T

0
as ds

)
.

We can then consider European-type options with the following payoff g for an illiquidity call (and

respectively an illiquidity put) :

g(XT ) =
(
eXT −KA

)
+
=
(
eXT − ekA

)
+

or g(XT ) =
(
KA − eXT

)
+
=
(
ekA − eXT

)
+
,

and where XT = 1
T

∫ T
0 as ds, where KA is the liquidity strike and where kA = logKA. The

valuation of an illiquidity call CA(.) is then classically given by the following formula under an

equivalent risk-neutral measure Q :

CA(t, T, kA) = EQ

[
e−r(T−t)

(
exp

(
1

T

∫ T

0
as ds

)
− ekA

)
+

∣∣∣∣Ft

]
. (4.17)

Similarly, the formula for a European illiquidity put follows directly from (4.17).

We again use formula (4.14) to valuate this option with XT = 1
T

∫ T
0 as ds, which keeps an affine

structure such that it is possible to compute its characteristic function. Hence, we have that

φA(t, T, ξ) now represents the characteristic function of the continuous arithmetic mean XT of the

log-Amihud measure (which will be also derived below in Corollary 4.3 with equation (4.25)). We

then again have the classical Carr-Madan formula for the call price (4.17) with α′ > 0 :

CA(t, T, kA) =
e−r(T−t) e−α′kA

π

∫ ∞

0
Re

[
e−iukA φA(t, T, α

′ + 1 + iu)

(α′)2 + α′ − u2 + i(2α′ + 1)u

]
du . (4.18)

4.3. Change of measure

Before computing the exact expressions for the characteristic functions φ(t, T, ξ) and φA(t, T, ξ),

we need to define an equivalent risk-neutral measure that can be used by investors. We consider

in this work the family of exponential affine changes of measure and we show that the dynamic

of the Amihud measure is preserved under this class of measure for the mML fractional Hawkes

process defined by the intensities λ
(i)
t (i = 1, ..., d) of equation (4.3). Note that without loss of

generality, the Brownian components

√
λ
(i)
t W

(i)
t in each intensity process (3.22) are again omitted

in the sequel (cfr Zhang et al. (2009) for a detailed change of measure including them). These

equivalent measures are induced by an exponential martingale of the form

M
(n)
t (ε, ψ) := exp

(
d∑

i=1

(
h(i)(ε(i))

∫ t

0

λ(i,n)s ds+ ε(i)L
(i,n)
t

)
− 1

2

∫ t

0

ψ(s)2 ds−
∫ t

0

ψ(s) dWs

)
, (4.19)
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where ψ(.) and h(i)(.) are suitable functions that will be defined later and ε =
(
ε(1), . . . , ε(d)

)
. It

is shown in Zhang et al. (2009) and in Hainaut (2016a) that
(
M

(n)
t (ε, ψ)

)
t≥0

is a local martingale

provided that h(i)(ε(i)) = 1−θ(i)(ε(i)) for any parameter ε(i) and for i = 1, ..., d (where θ(i)(.) is again

the transform of the loss size distribution of component i). When M
(n)
t is actually a martingale

(cfr Zhang et al. (2009)), we may define an equivalent (non-unique) probability measure Q by

dQ

dP

∣∣∣∣
Ft

=
M

(n)
t (ε, ψ)

M
(n)
0 (ε, ψ)

. (4.20)

We now want to identify the dynamic of the intensities λ
Q,(i)
t and of the log-Amihud measure at

under Q. We will show that under the change of measure (4.20) their dynamic is preserved (i.e a

multivariate mML fractional Hawkes process for λ
Q,(i)
t and a mML OU process for at).

Proposition 4.1. Let N
Q,(i)
t , i = 1, ..., d be counting processes with respective intensities defined

under the equivalent measure Q by

λ
Q,(i)
t := θ(i)(ε(i))λ

(i)
t . (4.21)

We then also denote λ
Q,(i)
∞ := θ(i)(ε(i))λ

(i)
∞ , λ

Q,(i)
0 := θ(i)(ε(i))λ

(i)
0 and ηQ,(j,i) := θ(j)(ε(j)) η(j,i).

On the other hand, if OQ,(i) denote the loss size of component i defined by the following jump

transform

θQ,(i)(ξ) = E
(
eξ O

Q,(i)
)
:=

θ(i)
(
ξ + ε(i)

)
θ(i)
(
ε(i)
) , (4.22)

and if L
Q,(i)
t , i = 1, ..., d are defined by the jump processes

L
Q,(i)
t :=

N
Q,(i)
t∑
k=1

O
Q,(i)
k ,

then, the intensities λ
Q,(i)
t are driven by the following SDE under Q :

dλQ,(i) =
n∑

ω=1

m(i,n)
ω dY

Q(i,ω)
t ,

where

dY
Q,(i,ω)
t =

(
−ωY Q,(i,ω)

t + α(i)
(
λQ,(i)
∞ − λ

Q,(i)
t

))
dt+

d∑
j=1

ηQ,(i,j)OQ,(j)dN
Q,(j)
t . (4.23)

The proof of this proposition is given in Appendix B.5. We are now interested in the dynamic

of the log-Amihud measure at under the measure Q. We again show that the OU dynamic is

preserved provided a special form of the function ψ(.).

Proposition 4.2. If the market price of illiquidity risk is of the form ψ(t) = λ, for λ ∈ R, then
the dynamic of the log-Amihud measure under Q is given by

dat = θ1

(
θ̃2 − at

)
dt+ θ3 dW

(a,Q)
t + dL

Q,(1)
t − dL

Q,(2)
t , (4.24)

where θ̃2 = θ2 − λθ3
θ1

.

See Appendix B.6 for the proof of this proposition.
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4.4. Characteristic function of the log-Amihud measure

We finally have to derive the characteristic function φ(t, T, ξ) and φA(t, T, ξ) of the random vari-

ables aT and 1
T

∫ T
0 as ds under Q, which are defined respectively by φ(t, T, ξ) := EQ [exp (ξ aT ) | Ft]

and φA(t, T, ξ) := EQ
[
exp

(
ξ
T

∫ T
0 as ds

) ∣∣∣Ft

]
. We consider here the dynamic (4.2) proposed in the

previous section where i = 1 for up jumps and i = 2 for down jumps. We can then apply exactly

the same technique as for Proposition 3.6 and we therefore obtain the following corollary.

Corollary 4.3. The characteristic function under Q of the random variable XT = 1
T

∫ T
0 as ds

conditionally to the information at time t ≤ T with ξ ∈ C is given by

φA(t, T, ω) = EQ

[
exp

(
ξ

T

∫ T

0
as ds

) ∣∣∣∣Ft

]
= exp

(
ξ

T

∫ t

0
as ds

)
× exp

[
A(t, T ) +B(t, T ) · ⊤λQt +D(t, T ) at (4.25)

+
2∑

i=1

(
α(i)λQ,(i)

∞

∫ T

t
fγ(i)(v − t)B(i)(v, T ) dv −

∫ ∞

0

(∫ T

t
e−ω(v−t)B(i)(v, T ) dv

)
ω Y

Q,(i,ω)
t µi(dω)

)]
,

where the dynamic of Y
Q,(i,ω)
t is given by equation (4.23). The boundary conditions are given by

A(T, T ) = 0, D(T, T ) = 0 and B(T, T ) = (0, 0). Each component B(i)(t, T ) of the vector coefficient

function B(t, T ) satisfies the following integro-differential equation

∂B(i)(t, T )

∂t
=− α(i) ∂

∂t

∫ T

t
fγ(i)(v − t)B(i)(v, T ) dv (4.26)

− θ(i)

−
2∑

j=1

ηQ,(j,i) ∂

∂t

∫ T

t
fγ(j)(v − t)B(j)(v, T ) dv + (−1)i−1D(t, T )

+ 1 , i = 1, 2.

The coefficient D(t, T ) is equal to

D(t, T ) = −
ξ
(
eθ1(t−T ) − 1

)
Tθ1

.

Finally, the coefficient A(t, T ) satisfies

A(t, T ) =

∫ T

t

(
θ1θ̃2D(v, T ) +

θ23
2
D(v, T )2

)
dv

=
θ̃2 ξ

Tθ1

(
eθ1(t−T ) − 1

)
+
ξ θ̃2
T

(T − t) +
θ23 ξ

2

2T 2θ21

[
1

2θ1

(
1− e2θ1(t−T )

)
− 2

θ1

(
1− eθ1(t−T )

)
+ (T − t)

]
.

Similarly, the characteristic function of aT at time T ≥ t under Q is defined by φ(t, T, ξ) :=

EQ[eξ aT | Ft] with ξ ∈ C and has the same form as equation (4.25) :

φ(t, T, ξ) = exp

[
A(t, T ) +B(t, T ) · ⊤λQt +D(t, T ) at (4.27)

+

2∑
i=1

(
α(i)λQ,(i)

∞

∫ T

t
fγ(i)(v − t)B(i)(v, T ) dv −

∫ ∞

0

(∫ T

t
e−ω(v−t)B(i)(v, T ) dv

)
ω Y

Q,(i,ω)
t µi(dω)

)]
.

The coefficient vector B(t, T ) also satisfies equation (4.26) with B(T, T ) = (0, 0). However, the

coefficient D(t, T ) now satisfies

D(t, T ) = ξ eθ1(t−T ) ,
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and hence the function A(t, T ) =
∫ T
t

(
θ1θ̃2D(v, T ) +

θ23
2 D(v, T )2

)
dv is equal to

A(t, T ) = ξ θ̃2

[
1− eθ1(t−T )

]
+
θ23 ξ

2

4 θ1

[
1− e2θ1(t−T )

]
.

Proof. This proposition is directly derived from the proof of Proposition 3.6 and from the PIDE

(2.8). The infinitesimal generator of the discretized process
(
λQ,(n), ξ

T

∫ T
· a

(n)
s ds

)
under Q is now

given by

Lf(z) =
2∑

i=1

{
∂f

∂λQ,(i,n)
(z)

n∑
ω=1

m(i,n)
ω

(
α(i)

(
λQ,(i)
∞ − λQ,(i,n)

)
− b(n)ω Y Q,(i,ω)

)
+

n∑
ω=1

∂f

∂Y Q,(i,ω)
(z)
[
α(i)

(
λQ,(i)
∞ − λQ,(i,n)

)
− b(n)ω Y Q,(i,ω)

]
+ λQ,(i,n)

∫ ∞

0

[
f

({
λQ,(j,n) + ηQ,(j,i) o

n∑
ω=1

m(j,n)
ω

}
j=1,2

,
{
Y Q,(j,ω) + ηQ,(j,i)o

}
j=1,2

ω=1,...,n

, a(n) + (−1)i−1o

)
− f(z)

]
ν(i)(do)

}
+

∂f

∂a(n)
(z) θ1(θ̃2 − a) +

1

2

∂2f

∂(a(n))2
(z) θ23

(4.28)

where z =
(
λ
Q,(n)
t , ξ

T

∫ T
t a

(n)
s ds

)
and where da

(n)
t = θ1

(
θ̃2 − a

(n)
t

)
dt + θ3 dW

(a,Q)
t + dL

Q,(1,n)
t −

dL
Q,(2,n)
t . As in Proposition 3.6, L

Q,(1,n)
t and L

Q,(2,n)
t are the discretized jump. The rest of the

proof follows closely this proposition 3.6. The same justification is also used for the characteristic

function of aT . □

5. Results and discussion

5.1. Option pricing

From the theoretical results above, we are now ready to price options related to the illiquidity

process of the FTSE 100 index via its Amihud illiquidity measure. More precisely, we focus here

on European calls written on the realized Amihud measure RA(n), defined by equation (4.16),

since we are interested in the average behavior of the illiquidity process over some period of time

(in a similar way as variance swaps). The results of this section can of course be easily extended

to calls and puts directly on the Amihud measure AT with formulae (4.12) and (4.15), instead.

Based on Propositions 4.1 and 4.2, we need to evaluate the parameters ε(i) (i = 1, 2) and λ

in order to obtain an equivalent risk-neutral measure Q under which we can price our illiquidity

options. These parameters should be calibrated based on observed illiquidity calls and puts. In-

deed, we want to find the parameters ε(1), ε(2) and λ such that the model prices CA(0, T, kA) match

as best as possible to the observed market prices of these options (conditionally to the parameter

estimates of Table 4.1 obtained from the econometric estimation under P ). However, since these

liquidity derivatives do not exist in financial markets, there is no risk-neutral measure available

and we hence consider in this work a minimal change of measure by setting ε(i) = 0 for i = 1, 2

and λ = 0, which amounts to use the estimated parameters of Table 4.1.

Moreover, in order to evaluate the illiquidity call on the realized Amihud measure via formula

(4.18), we need to obtain the characteristic function φA(0, T, ξ) given by the expression (4.25).

This requires to solve the integro-differential equation (4.26) satisfied by the coefficients B(i)(0, T ).

This equation is solved numerically using a finite difference scheme, which appears to give stable
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results for the FTSE 100 index. Since the order of magnitude of the Amihud measure is very small

(∼ 10−15 for the FTSE 100), we standardize the obtained call prices by multiplying them with a

constant equal to e−a0 = 3.7× 1014 for a better readability. This leads to the following figures of

illiquid call prices on the realized Amihud measure for different maturities and strike prices.

Figure 5.1: Left plot : Illiquid option prices CA(0, T,KA) in function of strike prices KA at maturity T = 1/12 (one

month). Right plot : ATM illiquid option prices CA(0, T, e
a0) in function of the maturity T . Call prices in both

figures are multiplied by the constant e−a0 and are given for the classical OU model (black line) as well as for the

mML OU model (red line).

We clearly see that the difference in illiquid option prices between the two models is increased for

ATM options (around KA = ea0 = 2.7×10−15) and for short-maturity options. Indeed, due to the

high speed of mean-reversion θ1, the effect of jumps quickly vanishes when the maturity increases.

5.2. Risk Management

We first use Proposition 4.3 with the obtained transform (4.27) to compute the moments of the

Amihud measure AT at time T for the FTSE 100 as well as several risk measures. Such measures

can indeed help various financial institutions to better manage and assess their risk of liquidity.

They can also help fund managers to determine which stock/index to buy as well as the optimal

timing to do so. The different centered moments can be obtained easily thanks to the conditional

transform φ(t, T, k) = Et

[
ekaT

]
= Et

[
Ak

T

]
with k ∈ R. The transform φ(t, T, ξ) is obtained thanks

to equation (4.27) by replacing the risk-neutral parameters (θ̃2, λ
(i,Q)
∞ , ηQ,(i,j), λ

Q,(i)
0 ) with their

real-world counterpart from Table 4.1.

Different risk measures for the Amihud measure AT can also be computed via the probability

density function (pdf) of aT , which can be obtained efficiently via its Fourier representation. By

setting ξ = iz, z ∈ R and by inverting the characteristic function

Et

[
eizaT

]
=

∫ ∞

0
eiza1 p(T, a1 | t, a2) da1 ,

it is indeed possible to determine the conditional probability density p(T, a1 | t, a2) of aT , which is

defined by

p(T, a1 | t, a2) :=
∂

∂a1
P (aT ≤ a1 | at = a2) .
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We can then compute numerically the Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR). The

VaR at level ε ∈ (0, 1) is defined as the shortfall value q such that P (AT ≤ q) = ε. We can rewrite

it in function of the pdf of aT by ∫ log q

−∞
p(T, a1 | 0, a2) da1 = ε

We now use the following definition for the TVaR of the Amihud measure at level ε, tv :=

E [AT |AT > q], where q is the VaR at level ε. It can be rewritten in the following way

tv =
1

1− ε

∫ +∞

log q
ea1 p(T, a1 | 0, a2) da1

The inversion of the Fourier transform is usually performed accurately and fast using a Discrete

Fast Fourier Transform (DFFT) algorithm. Interested readers may refer to Dupret and Hainaut

(2021) or Albanese et al. (2004) for a review. With the model parameters estimated from the

POT procedure above in Table 4.1, we obtain in Table 5.1 the moments and risk measures of the

Amihud measure AT for T = 1 year. A comparison with the classical OU model based on the

same parameters (θ1, θ2, θ3) of Table 4.1 is also performed and the density of the Amihud and

log-Amihud measures is depicted for each model in Figure 5.2 below.

Expectation Variance Skewness Kurtosis VaR TVaR

OU 1.52× 10−15 9.14× 10−31 2.14 12.12 5.69× 10−15 6.81× 10−15

mML OU 1.58× 10−15 1.82× 10−30 6.38 91.53 7.86× 10−15 1.24× 10−14

Table 5.1: The first columns of the table give the first four central moments of the Amihud measure AT under the

classical OU model and the mML OU model. The two last columns give the Value-at-Risk and Tail Value-at-Risk

at level ε = 99.5%.

Figure 5.2: Density of the log-Amihud measure aT (left) and of the Amihud measure AT (right) for T = 1 year

under the classical OU model (black line) and the mML OU model (red line).

We clearly see from Table 5.1 and Figure 5.2 that the mML OU model leads to a higher variability,

a higher skewness and a higher kurtosis compared with the classical OU model. Since the intensity
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and size between up and down jumps are very close, the effect of the mML OU model is relatively

small on the skewness of the obtained distributions. However, the presence of these jumps leads to

a strong effect on the kurtosis, the VaR and the TVaR, making this mML OU model more risky.

6. Conclusion

This paper proposes a new procedure for modeling illiquidity in financial markets. More pre-

cisely, we introduce a new fractional Hawkes process in which the intensity process is ruled by a

modified Mittag-Leffler excitation function. The nice properties of the mML kernel in terms of

short and long-term asymptotics and in terms of L1 norm makes this fractional Hawkes process

better suited for the modeling of financial events with long-range dependence, compared with the

existing self-exciting models (exponential, power-law, ML or ML’s derivative Hawkes processes).

Moreover, thanks to its spectral representation which admits a useful discretization in terms of a

finite number of Markov processes, the mML kernel offers sufficient tractability to our fractional

Hawkes process so as to have a characteristic function available in semi-closed form. Finally, a

multivariate extension of the mML fractional Hawkes process can also be derived easily so as to

study the contagion between the components of this Hawkes process. Therefore, this modified

fractional Hawkes setting is perfectly suited in the context of illiquidity modeling.

More precisely, we consider in this work the Amihud illiquidity measure, one of the most widely

used proxy in illiquidity modeling, which is known to influence the asset returns through a liquid-

ity premium that compensates for price impact. We hence provide a new paradigm for illiquidity

modeling based on a mean-reverting (OU) jump process for the log-Amihud measure where the

jumps follow a mML fractional Hawkes process. This so-called mML OU model allows to simplify

many computations and to develop new tools for managing and reducing the illiquidity risk, while

reproducing the observed peaks of illiquidity in financial markets and their long-memory prop-

erty. In particular, after having specified a suited change of measure preserving the dynamics of

our mML OU model, we managed to introduce new illiquidity derivatives based on the Amihud

measure and on the realized Amihud measure. Such illiquidity options allow market participants

to express views on illiquidity and to better hedge against this risk. Moreover, having the char-

acteristic function of this model in semi-closed form makes it also extremely convenient for risk

management on illiquidity so as to better assess and manage this risk. Finally, after having esti-

mated our mML OU model via a POT procedure on FTSE 100’s historical data, we show how this

model leads to a more risky distribution of the Amihud measure and how it impacts the price of

illiquid option prices, compared with the classical OU model.

In further research, we need to verify and generalize these results for a larger number of assets

and indices while including a diffusive factor in their intensity process. We could also apply and

test this new fractional Hawkes process in the context of credit risk portfolio, for option pricing in

jump diffusion models and for the modeling of trade orders at high-frequency.

Appendix A. Figures
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Figure A.1: Daily log-Amihud measure in level atj (left) and in difference ∆atj (right) with j = 1, . . . , 3266 for the

FTSE 100 index over a period T of 13 years.

Figure A.2: Histogram of the daily log-Amihud increments ∆atj (j = 1, . . . , 3266) for the FTSE 100 index based on

a 13-year period with the Gaussian fit on these data superimposed in red.

Appendix B. Proofs

Appendix B.1. Proof of Proposition 3.3.

We first express the conditional transform Et

[
eu·X

(n)
T

]
= Et

[
euλλ

(n)
T +uLL

(n)
T +uNN

(n)
T

]
as

f

(
t, T,X

(n)
t ,

(
Y

(ω)
t

)
ω=1,...,n

)
. Moreover, the infinitesimal generator of X(n) is given by

Lf(x) = ∂f

∂λ(n)
(x)

n∑
ω=1

m(n)
ω

(
α
(
λ∞ − λ(n)

)
− b(n)ω Y (ω)

)
+

n∑
ω=1

∂f

∂Y (ω)
(x)
(
α
(
λ∞ − λ(n)

)
− b(n)ω Y (ω)

)
+ λ(n)

∫ ∞

0

(
f

(
λ(n) + η o

n∑
ω=1

m(n)
ω , L(n) + o, N (n) + 1,

(
Y (ω) + ηo

)
ω=1,...,n

)
− f(x)

)
ν(do) , (B.1)

where X
(n)
t = x = (λ

(n)
t , (L

(n)
t , N

(n)
t ))⊤. Since f must again satisfy the PIDE (2.8) with boundary

condition f(T, T,X
(n)
T ) = eu·X

(n)
T = euλλ

(n)
T +uLL

(n)
T +uNN

(n)
T , we have that the conditional transform
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of the point process X
(n)
t is given by the exponential function

f

(
t, T,X

(n)
t ,

(
Y

(ω)
t

)
ω=1,...,n

)
= exp

(
a(t, T ) + b(t, T )λ

(n)
t + u′ · ⊤J (n)

t +

n∑
ω=1

cω(t, T, b
(n)
ω )Y

(ω)
t

)
,

where u′ = (uL, uN ). The coefficient functions a(t, T ) := a(u′, t, T ) and b(t, T ) := b(u′, t, T )

are time dependent functions with boundary conditions a(T, T ) = 0 and b(T, T ) = uλ. The

function cω(t, T, b
(n)
ω ) := cω(u

′, t, T, b
(n)
ω ) is a function that depends again on time but also on

the position ω = 1, . . . , n, within the partition E(n), and which satisfies the boundary condition

cω(T, T, b
(n)
ω ) = 0, ∀ω ∈ 1, . . . , n. Differentiating f with respect to t, λ(n) and Y (ω) leads to

∂f

∂t
= f

(
∂a(t, T )

∂t
+
∂b(t, T )

∂t
λ(n) +

n∑
ω=1

∂cω(t, T, b
(n)
ω )

∂t
Y (ω)

)
,

∂f

∂λ(n)
= f b(t, T ) ,

∂f

∂Y (ω)
= f cω(t, T, b

(n)
ω ) ∀ω = 1, . . . , n,

and the variation of f due to the occurrence of a jump of size o is given by

f
(
eb(t,T ) η o

∑n
ω=1 m

(n)
ω +u′·(1,0)⊤o+u′·(0,1)⊤+

∑n
ω=1 cω(t,T,b

(n)
ω ) η o − 1

)
.

Injecting these equations in (B.1) and in the PIDE (2.8), we have

0 =
∂a(t, T )

∂t
+
∂b(t, T )

∂t
λ(n) +

n∑
ω=1

∂cω(t, T, b
(n)
ω )

∂t
Y (ω) + b(t, T )

n∑
ω=1

m(n)
ω

(
α
(
λ∞ − λ(n)

)
− b(n)ω Y (ω)

)
+

n∑
ω=1

cω(t, T, b
(n)
ω )

(
α
(
λ∞ − λ(n)

)
− b(n)ω Y (ω)

)
+ λ(n)

[(∫
eb(t,T ) η o

∑n
ω=1 m

(n)
ω +u′·(1,0)⊤o+

∑n
ω=1 cω(t,T,b

(n)
ω ) η o ν(do)

)
eu

′·(0,1)⊤ − 1

]
.

From which we find the following system of PDE

∂a(t, T )

∂t
= −b(t, T )

n∑
ω=1

m(n)
ω αλ∞ −

n∑
ω=1

cω(t, T, b
(n)
ω )αλ∞ ,

∂b(t, T )

∂t
= b(t, T )

n∑
ω=1

m(n)
ω α+

n∑
ω=1

cω(t, T, b
(n)
ω )α

− θ

(
b(t, T ) η

n∑
ω=1

m(n)
ω + u′ · (1, 0)⊤ +

n∑
ω=1

cω(t, T, b
(n)
ω ) η

)
eu

′·(0,1)⊤ + 1 ,

∂cω(t, T, b
(n)
ω )

∂t
= b(t, T )m(n)

ω b(n)ω + cω(t, T, b
(n)
ω ) b(n)ω , ∀ω = 1, . . . n,

where θ(.) is again the transform of the jump distribution. The previous system of equation finally

gives with a(T, T ) = 0 and cω(T, T, b
(n)
ω ) = 0 :

a(t, T ) = αλ∞

∫ T

t

(
n∑

ω=1

m(n)
ω b(v, T ) +

n∑
ω=1

cω(v, T, b
(n)
ω )

)
dv ,

∂b(t, T )

∂t
= α

(
n∑

ω=1

m(n)
ω b(t, T ) +

n∑
ω=1

cω(t, T, b
(n)
ω )

)

− θ

(
b(t, T ) η

n∑
ω=1

m(n)
ω + u′ · (1, 0)⊤ +

n∑
ω=1

cω(t, T, b
(n)
ω ) η

)
eu

′·(0,1)⊤ + 1 ,

cω(t, T, b
(n)
ω ) = −b(n)ω m(n)

ω

∫ T

t
e−b

(n)
ω (v−t) b(v, T ) dv , ∀ω = 1, . . . n,
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and a(t, T ) can be rewritten

a(t, T ) = αλ∞

n∑
ω=1

m(n)
ω

(∫ T

t
b(v, T ) dv − b(n)ω

∫ T

t

∫ T

v
e−b

(n)
ω (s−v) b(s, T ) ds dv

)

= αλ∞

n∑
ω=1

m(n)
ω

(∫ T

t
b(v, T )dv − b(n)ω

∫ T

t

1

b
(n)
ω

(
1− e−b

(n)
ω (s−t)

)
b(s, T ) ds

)

= αλ∞

n∑
ω=1

m(n)
ω

(∫ T

t
e−b

(n)
ω (v−t)b(v, T ) dv

)
.

□

Appendix B.2. Proof of Corollary 3.4.

The conditional transform (3.20) is a direct consequence of the approximations (3.17) and (3.18).

For deriving the coefficient function b(t, T ), we first note from equation (3.6) that

lim
n→∞

n∑
ω=1

m(n)
ω =

∫ ∞

0
µ(dω) = fγ(0+) = 1 . (B.2)

Hence, we find almost surely in the limit n→ ∞ :

∂b(t, T )

∂t
= α

(
b(t, T )−

∫ ∞

0

(∫ T

t
e−ω(v−t)b(v, T ) dv

)
ω µ(dω)

)
− θ

(
b(t, T ) η + u′ · (1, 0)⊤ − η

∫ ∞

0

(∫ T

t
e−ω(v−t)b(v, T ) dv

)
ω µ(dω)

)
eu

′·(0,1)⊤ + 1 .

Then, from equation (3.6), we have

∂b(t, T )

∂t
= α

(
b(t, T )−

∫ T

t

∂fγ(v − t)

∂t
b(v, T ) dv

)
− θ

(
b(t, T ) η + u′ · (1, 0)⊤ − η

∫ T

t

∂fγ(v − t)

∂t
b(v, T ) dv

)
eu

′·(0,1)⊤ + 1 ,

and finally from Leibniz integral rule to

∂b(t, T )

∂t
= −α ∂

∂t

∫ T

t
fγ(v − t) b(v, T ) dv − θ

(
u′ · (1, 0)⊤− η

∂

∂t

∫ T

t
fγ(v − t)b(v, T ) dv

)
eu

′·(0,1)⊤+ 1 .

□

Appendix B.3. Proof of Corollary 3.5.

By differentiating the conditional transform (3.20) with respect to u and evaluating the derivative

at u = 0, we find the following conditional expectation

Et [w ·XT ] = αλ∞

∫ T

t
fγ(v − t) b′(0, v, T ) dv + b′(0, t, T )λt + w′ · Jt

−
∫ ∞

0

(∫ T

t
e−ω(v−t)b′(0, v, T ) dv

)
ω Y

(ω)
t µ(dω) ,

where b′(0, t, T ) is the derivative of the coefficient function b(u′, t, T ) evaluated at (0, 0) and which

satisfies

∂b′(0, t, T )

∂t
= −α ∂

∂t

∫ T

t
fγ(v − t) b′(0, v, T ) dv − θ

(
−η ∂

∂t

∫ T

t
fγ(v − t) b(0, v, T ) dv

)
w′ · (0, 1)⊤

− θ′
(
−η ∂

∂t

∫ T

t
fγ(v − t) b(0, v, T ) dv

)(
w′ · (1, 0)⊤ − η

∂

∂t

∫ T

t
fγ(v − t) b′(0, v, T ) dv

)
,
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with boundary condition b′(0, T, T ) = wλ and where θ′(ξ) =
∫
o eξodν(o) is the derivative of the

jump transform. Since u = 0, we can choose b(0, t, T ) = 0, a(0, t, T ) = 0 and cω(0, t, T, b
(n)
ω ) = 0

thanks to equation (3.19) and hence, the previous equation simplifies to

∂b′(0, t, T )

∂t
= −α ∂

∂t

∫ T

t
fγ(v − t) b′(0, v, T ) dv − θ(0)w′ · (0, 1)⊤

− θ′(0)

(
w′ · (1, 0)⊤ − η

∂

∂t

∫ T

t
fγ(v − t) b′(0, v, T ) dv

)
.

We then have

∂b′(0, t, T )

∂t
= −α ∂

∂t

∫ T

t
fγ(v − t) b′(0, v, T ) dv + χη

∂

∂t

∫ T

t
fγ(v − t) b′(0, v, T ) dv − w′ · (χ, 1)⊤

= (χη − α)
∂

∂t

∫ T

t
fγ(v − t) b′(0, v, T ) dv − w′ · (χ, 1)⊤, (B.3)

where χ =
∫
o dν(o), which finally leads to

b′(0, t, T ) = wλ + (χη − α)

∫ T

t
fγ(v − t) b′(0, v, T ) dv + (T − t)w′ · (χ, 1)⊤.

□

Appendix B.4. Proof of Proposition 3.6.

As for Proposition 3.3, we start by studying the discretized version of the conditional intensity

(3.23) and hence, we have the following dynamics

dY
(i,ω)
t =

(
−b(n)ω Y

(i,ω)
t + α(i)

(
λ(i)∞ − λ

(i,n)
t

))
dt+

d∑
j=1

η(i,j)O(j)dN
(j,n)
t + σ(i)

√
λ
(i,n)
t dW

(i)
t ,

and

dλ
(i,n)
t =

n∑
ω=1

m(i,n)
ω dY

(i,ω)
t .

The infinitesimal generator of Z(n) =
(
λ(n), J (n)

)⊤
is given by

Lf(z) =
d∑

i=1

{
∂f

∂λ(i,n)
(z)

n∑
ω=1

m(i,n)
ω

(
α(i)

(
λ(i)∞ − λ(i,n)

)
− b(n)ω Y (i,ω)

)
+

n∑
ω=1

∂f

∂Y (i,ω)
(z)
[
α(i)

(
λ(i)∞ − λ(i,n)

)

− b(n)ω Y (i,ω)
]
+

1

2
λ(i,n)σ(i)2

(
n∑

ω=1

m(i,n)
ω

)2
∂2f

∂λ(i,n)2
(z) +

1

2
λ(i,n)σ(i)2

n∑
ω1=1,ω2=1

∂2f

∂Y (i,ω1)∂Y (i,ω2)
(z)

+ λ(i,n)
∫ ∞

0

[
f

{λ(j,n) + η(j,i) o

n∑
ω=1

m(j,n)
ω

}
j=1,...,d

,
{
Y (j,ω) + η(j,i)o

}
j=1,...,d
ω=1,...,n

, L(i,n) + o,N (i,n) + 1


− f(z)

]
ν(i)(do) + λ(i,n)σ(i)2

(
n∑

ω=1

m(i,n)
ω

)
n∑

ω=1

∂2f

∂λ(i,n)∂Y (i,ω)
(z)

}
, (B.4)

with Z
(n)
t = z = (λ

(n)
t , J

(n)
t )⊤ and for f a function with continuous partial derivatives in the domain

of the infinitesimal generator of Z(n). We then express the conditional transform as

f

(
t, T, Z

(n)
t ,

{
Y (i,ω)

}
i=1,...,d
ω=1,...,n

)
:= Et

[
eu·Z

(n)
T

]
= Et

[
euλ·⊤λ

(n)
T +uL·⊤L

(n)
T +uN ·⊤N(n)

T

]
.
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Since f must satisfy the PIDE (2.8) with boundary condition f(T, T, Z
(n)
T ) = euλ·⊤λ

(n)
T +uL·⊤L

(n)
T +uN ·⊤N(n)

T ,

we have that the transform of Z(n) is given by :

f

(
t, T, Z

(n)
t ,

{
Y (i,ω)

}
i=1,...,d
ω=1,...,n

)

= exp

(
α(t, T ) + β(t, T ) · ⊤λ(n)t + uL · ⊤L(n)

t + uN · ⊤N (n)
t +

d∑
i=1

n∑
ω=1

c(i)ω (t, T, b(n)ω )Y
(i,ω)
t

)
,

with boundary conditions α(T, T ) = 0, β(T, T ) = uλ and c
(i)
ω (T, T, b

(n)
ω ) = 0 , ∀i ∈ 1, . . . d, ∀ω ∈

1, . . . n. We hence find

0 =
∂α(t, T )

∂t
+

d∑
i=1

{
∂β(i)(t, T )

∂t
λ(i,n) +

n∑
ω=1

∂c
(i)
ω (t, T, b

(n)
ω )

∂t
Y (i,ω)

+ β(i)(t, T )

n∑
ω=1

m(i,n)
ω

(
α(i)

(
λ(i)∞ − λ(i,n)

)
− b(n)ω Y (i,ω)

)
+

n∑
ω=1

c(i)ω (t, T, b(n)ω )
(
α(i)

(
λ(i)∞ − λ(i,n)

)
− b(n)ω Y (i,ω)

)

+ λ(i,n)

∫ exp

 d∑
j=1

β(j)(t, T ) η(j,i)o

n∑
ω=1

m(j,n)
ω + uL,i o+

d∑
j=1

n∑
ω=1

c(j)ω (t, T, b(n)ω ) η(j,i)o

 ν(i)(do)

 euN,i − 1


+

1

2
λ(i,n)σ(i)2

(
n∑

ω=1

(
m(i,n)

ω β(i)(t, T ) + c(i)ω (t, T, b(n)ω )
))2 }

.

From the previous equation, we can obtain the following system of equations

∂α(t, T )

∂t
= −

d∑
i=1

(
α(i)λ(i)∞

n∑
ω=1

(
β(i)(t, T )m(i,n)

ω + c(i)ω (t, T, b(n)ω )
))

,

∂c
(i)
ω

(
t, T, b

(n)
ω

)
∂t

= β(i)(t, T )m(i,n)
ω b(n)ω + c(i)ω (t, T, b(n)ω ) b(n)ω , ∀i = 1, . . . , d , ∀ω = 1, . . . , n,

∂β(i)(t, T )

∂t
= α(i)

n∑
ω=1

(
m(i,n)

ω β(i)(t, T ) + c(i)ω (t, T, b(n)ω )
)
− 1

2
σ(i)

2

(
n∑

ω=1

(
m(i,n)

ω β(i)(t, T ) + c(i)ω (t, T, b(n)ω )
))2

− θ(i)

 d∑
j=1

η(j,i)
n∑

ω=1

(
β(j)(t, T )m(j,n)

ω + c(j)ω (t, T, b(n)ω )
)
+ uL,i

 euN,i + 1 , ∀i = 1, . . . , d.

This finally leads for the coefficients β(i)(.) and c
(i)
ω (.) to

c(i)ω (t, T, b(n)ω ) = −b(n)ω m(i,n)
ω

∫ T

t
e−b

(n)
ω (v−t) β(i)(v, T ) dv , ∀i = 1, . . . , d, ∀ω = 1, . . . , n,

and

α(t, T ) =

d∑
i=1

(
α(i)λ(i)∞

n∑
ω=1

m(i,n)
ω

(∫ T

t
β(i)(v, T ) dv − b(n)ω

∫ T

t

∫ T

v
e−b

(n)
ω (s−v) β(i)(s, T ) ds dv

))

=

d∑
i=1

(
α(i)λ(i)∞

n∑
ω=1

m(i,n)
ω

(∫ T

t
e−b

(n)
ω (v−t)β(i)(v, T ) dv

))
.

From Corollary 3.4, passing to the limit n → ∞ leads to the announced result. In particular, we

have almost surely that

lim
n→∞

n∑
ω=1

(
m(i,n)

ω β(i)(t, T ) + c(i)ω (t, T, b(n)ω )
)
= − ∂

∂t

∫ T

t
fγ(i)(v − t)β(i)(v, T ) dv , ∀i ∈ 1, . . . , d.

□
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Appendix B.5. Proof of Proposition 4.1.

We start by studying the discretized version of the above processes (indexed by n). The conditional

transform of λ
Q,(i,n)
t under Q induced by the affine martingale M

(n)
t is

EQ

(
exp

(
d∑

i=1

ξi λ
Q,(i,n)
T

)∣∣∣∣∣Ft

)
= e−U

(n)
t E

(
exp

(
U

(n)
T +

d∑
i=1

ξi θ
(i)
(
ε(i)
)
λ
(i,n)
T

)∣∣∣∣∣Ft

)
,

where M
(n)
t = eU

(n)
t , dU

(n)
t =

∑d
i=1

(
h(i)(ε(i))λ

(i,n)
t dt+ ε(i)dL

(i,n)
t

)
− 1

2ψ(t)
2 dt − ψ(t) dWt and

ξi ∈ C. We then write with λ
(n)
t :=

{
λ
(i,n)
t

}
i=1,...,d

and Y
(ω)
t :=

{
Y

(i,ω)
t

}
i=1,...,d

:

f

(
t, T, U

(n)
t , λ

(n)
t ,
{
Y

(ω)
t

}
ω=1,...,n

)
:= E

(
exp

(
U

(n)
T +

d∑
i=1

ξi θ
(i)
(
ε(i)
)
λ
(i,n)
T

)∣∣∣∣∣Ft

)
,

and as in Proposition 3.6, we assume an affine structure for f :

f

(
t, T, U

(n)
t , λ

(n)
t ,
{
Y

(ω)
t

}
ω=1,...,n

)
= exp

(
A(t, T ) +

d∑
i=1

θ(i)(ε(i))B(i)(t, T )λ
(i,n)
t +

d∑
i=1

n∑
ω=1

c(i)ω (t, T, b(n)ω )Y
(i,ω)
t +D(t, T )U

(n)
t

)
,

where A(T, T ) = 0, B(i)(T, T ) = ξi, c
(i)
ω (T, T, b

(n)
ω ) = 0 and D(T, T ) = 1. The infinitesimal

generator of
(
λ(n), U (n)

)
for a sufficiently regular function f is given by

Lf(x) =
d∑

i=1

{
∂f

∂λ(i,n)
(x)

n∑
ω=1

m(i,n)
ω

(
α(i)

(
λ(i)∞ − λ(i,n)

)
− b(n)ω Y (i,ω)

)
+

n∑
ω=1

∂f

∂Y (i,ω)
(x)
[
α(i)

(
λ(i)∞ − λ(i,n)

)

− b(n)ω Y (i,ω)
]
+ λ(i,n)

∫ ∞

0

[
f

{λ(j,n) + η(j,i) o

n∑
ω=1

m(j,n)
ω

}
j=1,...,d

,
{
Y (j,ω) + η(j,i)o

}
j=1,...,d
ω=1,...,n

, U (n) + ε(i)o


− f(x)

]
ν(i)(do) +

∂f

∂U (n)
(x)h(i)

(
ε(i)
)
λ(i,n)

}
− ∂f

∂U (n)
(x)

1

2
ψ(t)2 +

1

2

∂2f

∂U (n)2
(x)ψ(t)2 ,

with x =
(
λ
(n)
t , U

(n)
t

)
. Using the PIDE (2.8) and computing the corresponding partial derivatives,

we find

0 =
∂A(t, T )

∂t
+
∂D(t, T )

∂t
U (n) +

d∑
i=1

{
θ(i)(ε(i))

∂B(i)(t, T )

∂t
λ(i,n) +

n∑
ω=1

∂c
(i)
ω (t, T, b

(n)
ω )

∂t
Y (i,ω)

+ θ(i)(ε(i))B(i)(t, T )

n∑
ω=1

m(i,n)
ω

(
α(i)

(
λ(i)∞ − λ(i,n)

)
− b(n)ω Y (i,ω)

)
+

n∑
ω=1

c(i)ω (t, T, b(n)ω )
(
α(i)

(
λ(i)∞ − λ(i,n)

)
− b(n)ω Y (i,ω)

)

+ λ(i,n)

θ(i)
 d∑

j=1

θ(j)(ε(j))B(j)(t, T ) η(j,i)
n∑

ω=1

m(j,n)
ω +

d∑
j=1

n∑
ω=1

c(j)ω (t, T, b(n)ω ) η(j,i) +D(t, T ) ε(i)

− 1


+D(t, T )h(i)(ε(i))λ(i,n)

}
+

1

2
ψ(t)2

(
−D(t, T ) +D(t, T )2

)
.
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From the previous equation, we can obtain the following system

∂A(t, T )

∂t
= −

d∑
i=1

(
α(i)λ(i)∞

n∑
ω=1

(
θ(i)(ε(i))B(i)(t, T )m(i,n)

ω + c(i)ω (t, T, b(n)ω )
))

+
1

2
ψ(t)2

(
D(t, T )−D(t, T )2

)
,

∂c
(i)
ω

(
t, T, b

(n)
ω

)
∂t

= θ(i)(ε(i))B(i)(t, T )m(i,n)
ω b(n)ω + c(i)ω (t, T, b(n)ω ) b(n)ω , ∀i = 1, . . . , d , ∀ω = 1, . . . , n.

θ(i)(ε(i))
∂B(i)(t, T )

∂t
= α(i)

n∑
ω=1

(
m(i,n)

ω θ(i)(ε(i))B(i)(t, T ) + c(i)ω (t, T, b(n)ω )
)
−D(t, T )h(i)(ε(i))

− θ(i)

 d∑
j=1

η(j,i)
n∑

ω=1

(
θ(j)(ε(j))B(j)(t, T )m(j,n)

ω + c(j)ω (t, T, b(n)ω )
)
+D(t, T ) ε(i)

+ 1 , ∀i = 1, . . . , d.

∂D(t, T )

∂t
= 0 . (B.5)

Since D(T, T ) = 1, D(t, T ) = 1 solves the last PDE. For the coefficients c
(i)
ω (.), we have

c(i)ω (t, T, b(n)ω ) = −b(n)ω m(i,n)
ω θ(i)(ε(i))

∫ T

t
e−b

(n)
ω (v−t)B(i)(v, T ) dv , ∀i = 1, . . . , d, ∀ω = 1, . . . n.

and for the coefficient A(t, T ) :

A(t, T ) =

d∑
i=1

(
α(i)λ(i)∞ θ(i)(ε(i))

n∑
ω=1

m(i,n)
ω

(∫ T

t

B(i)(v, T ) dv − b(n)ω

∫ T

t

∫ T

v

e−b(n)
ω (s−v)B(i)(s, T ) ds dv

))

=

d∑
i=1

(
α(i)λQ,(i)

∞

n∑
ω=1

m(i,n)
ω

(∫ T

t

e−b(n)
ω (v−t)B(i)(v, T ) dv

))
.

The PDE satisfied by the coefficients B(i)(t, T ), i = 1, ..., d can be rewritten thanks to the martin-

gale condition h(i)(ε(i)) = 1− θ(i)(ε) :

θ(i)(ε(i))
∂B(i)(t, T )

∂t
= θ(i)(ε(i))α(i)

n∑
ω=1

(
m(i,n)

ω B(i)(t, T )− b(n)ω m(i,n)
ω

∫ T

t

e−b(n)
ω (v−t)B(i)(v, T ) dv

)

− θ(i)

 d∑
j=1

η(j,i)θ(j)(ε(j))

n∑
ω=1

(
B(j)(t, T )m(j,n)

ω − b(n)ω m(j,n)
ω

∫ T

t

e−b(n)
ω (v−t)B(j)(v, T ) dv

)
+ ε(i)

+ θ(i)(ε(i)) .

Using equation (4.22), we have with ηQ,(j,i) := θ(j)(ε(j)) η(j,i),

∂B(i)(t, T )

∂t
= α(i)

n∑
ω=1

(
m(i,n)

ω B(i)(t, T )− b(n)ω m(i,n)
ω

∫ T

t
e−b

(n)
ω (v−t)B(i)(v, T ) dv

)

− θQ,(i)

 d∑
j=1

ηQ,(j,i)
n∑

ω=1

(
B(j)(t, T )m(j,n)

ω − b(n)ω m(j,n)
ω

∫ T

t
e−b

(n)
ω (v−t)B(j)(v, T ) dv

)+ 1 .

Passing to the limit n→ ∞, we have almost surely that

EQ

(
exp

(
d∑

i=1

ξi λ
Q,(i)
T

)∣∣∣∣∣Ft

)
= exp

[
d∑

i=1

(
α(i) λQ,(i)

∞

∫ T

t
fγ(i)(v − t)B(i)(v, T )dv +B(i)(t, T )λ

Q,(i)
t

−
∫ ∞

0

(∫ T

t
e−ω(v−t)B(i)(v, T )dv

)
ω Y

Q(i,ω)
t µ(i)dω

)]
, (B.6)
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where λ
Q,(i)
t := θ(i)(ε(i))λ

(i)
t , Y

Q,(i,ω)
t := θ(i)(ε(i))Y

(i,ω)
t and where the coefficients B(i)(t, T ) satisfy

for i = 1, . . . , d :

∂B(i)(t, T )

∂t
=− α(i) ∂

∂t

∫ T

t
fγ(i)(v − t)B(i)(v, T ) dv

− θQ,(i)

 d∑
j=1

ηQ,(j,i) ∂

∂t

∫ T

t
fγ(j)(v − t)B(j)(v, T ) dv

+ 1 . (B.7)

This conditional transform has the exact same form as the one of Proposition 3.6 but with param-

eters ηQ,(j,i), λ
Q,(i)
∞ and transform θQ,(i)(.). Hence, we have that the processes Y

Q,(i,ω)
t satisfy

Y
Q,(i,ω)
t =

∫ t

0
e−ω(t−u)

α(λQ,(i)
∞ − λQ,(i)

u ) du+
d∑

j=1

ηQ,(i,j) dL
Q,(j)
t

 ,∀i = 1, . . . , d, ∀ω = 1, . . . , n,

which is indeed equal to θ(i)(ε(i))Y
(i,ω)
t and which satisfies as stated in Proposition 4.1,

dY
Q,(i,ω)
t =

(
−ω Y Q,(i,ω)

t + α
(
λQ,(i)
∞ − λ

Q,(i)
t

))
dt+

d∑
j=1

ηQ,(i,j) dL
Q,(j)
t , Y

Q(i,ω)
0 = 0 . (B.8)

The dynamic of the conditional intensities λ
Q,(i)
t is therefore well preserved under the equivalent

measure Q. □

Appendix B.6. Proof of Proposition 4.2.

We first show that under the measure Q defined by (4.20), the process

W
(a,Q)
t =W

(a)
t +

∫ t

0
ψ(s) ds

is a Brownian motion. We indeed have

EQ
[
eξW

(a,Q)
t

∣∣∣F0

]
= E

[
M

(n)
t exp

(
ξ W

(a)
t +

∫ t

0
ξ ψ(s) ds

)∣∣∣∣F0

]
,

= E

[
exp

(
d∑

i=1

h(i)(ε(i))

∫ t

0
λ(i,n)s ds+ ε(i)L

(i,n)
t

)]

× eξ
2t/2 E

[
exp

(
−1

2

∫ t

0
(ψ(s)− ξ)2ds−

∫ t

0
(ψ(s)− ξ) ds

)]
.

Since h(i)(ε(i)) = 1− θ(i)(ε(i)), we know from above that the first expectation is a martingale. The

second expectation is a Doleans-Dade exponential, which is a martingale. We hence obtain

EQ
[
eξW

(a,Q)
t

∣∣∣F0

]
= eξ

2 t/2 ,

and we recognize the characteristic function of a Brownian motion. Finally, if ψ(t) = λ (constant

price of illiquidity risk), we directly have with θ̃2 = θ2 − λ θ3
θ1

:

dat = θ1 (θ2 − at) dt+ θ3

(
dW

(a,Q)
t − λ dt

)
+ dL

Q,(1)
t − dL

Q,(2)
t

= θ1

(
θ̃2 − at

)
dt+ θ3 dW

(a,Q)
t + dL

Q,(1)
t − dL

Q,(2)
t .

□
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