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Abstract: This work explains the development of a viscous damping model using the 

condensed tangent stiffness of the structure. It eliminates the spurious damping forces and 

avoids the high levels of damping presented by the condensed damping model defined with 

the initial properties. Additionally, this article elucidates some of the problems of the existing 

condensed models and compares them with Rayleigh or total initial stiffness proportional 

damping. The proposed damping model and the existing models are compared using a 

reinforced concrete frame subjected to a ground motion, where the main arguments to justify 

the newly proposed damping model are highlighted.  
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 Introduction 

Nonlinear analyses are commonly used in research and specialized structural engineering 

practice due to the community's growing interest in performance-based design, the use 

of seismic control systems, and the assessment of existing structures (Golesorkhi et al. 

2017). The system of equations expressing dynamic equilibrium for a viscous damped 

nonlinear multi-degree-of-freedom (MDoF) planar system subjected to earthquake and 

gravity (or static) loading is given in the next equation. It is noted that a viscous damping 

model is employed, which is commonly the case, which models the energy dissipation 

mechanisms that are independent of the material hysteretic rules (Chrisp 1980; Bernal 

1994). 
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where M and C are the mass and damping matrices, respectively, and {𝒇(𝑼(𝑡))} 

represents the nonlinear relation between resisting forces and displacements. The 

subscripts t and 0 refer to the degrees of freedoms (DoFs) with and without mass, which 

is an essential separation for inertial loadings. The vectors 𝑼 , �̇�, and �̈� are the vectors of 

relative displacement, velocity, and acceleration of the DoFs. The right side of the 

equation contains two loading vectors corresponding to a time-varying component and a 

constant term. The former represents the effective earthquake forces in the x-direction, 

where 𝑱𝑥  is the influence vector and �̈�𝑔𝑥(𝑡) is the corresponding component of the 

ground motion acceleration record. The gravity or static forces {
𝑷𝑔𝑡

𝑷𝑔0
} can be applied in 

all the DoFs of the structure.  
 

The damping matrix C is often defined with the viscous damping model proposed by 

Lord Rayleigh (Rayleigh 1877). This model is defined by equation (2) using the mass 

matrix and, originally, the initial stiffness matrix as proportionality matrices. The latter 
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are multiplied by two damping parameters found with equation (3) based on two selected 

frequencies (ωi, ωj) and a damping ratio ascribed to each frequency (𝜁𝑖, 𝜁𝑗). 

 

 
[
𝑪𝑡𝑡 𝑪𝑡0

𝑪0𝑡 𝑪00
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Since the assigned damping ratios are small for common civil engineering structures 

analysed as linear elastic systems, the damping forces are also limited and consequently 

the inconsistencies of Rayleigh damping (RD) do not significantly affect the structural 

response. For instance, in a linear single-degree-of-freedom (SDoF) where a damping 

ratio of 5% is defined, the damping force may reach approximately 10% of the inertial or 

elastic forces of the structure (Carr 2007). With this argument, Wilson and Clough (1962) 

mentioned that it was justifiable to use this model for step-by-step linear dynamic 

analyses of MDoF systems, recognizing that the exact form of damping in most structures 

is unknown.   

 

The above rationale for using this model in nonlinear analyses is no longer valid. The 

damping forces for an inelastic SDoF defined with 5% of critical damping may reach 

20% of the inertial or material resisting forces (Carr 2007). During incursions in the 

inelastic range, the stiffness proportional term of RD triggers significant damping 

moments in the rotational massless DoFs reaching important magnitudes (Bernal 1994) 

and leads to an overall change in the effective damping ratio of the system during the 

analysis (Charney 2008), which has no physical justification and leads to unconservative 

analyses (Medina and Krawinkler 2003). For instance, underestimation of peak 

displacement demands, overestimation of peak strength demands. Despite the advantages 

of the mass proportional term (Correia et al. 2013), it has also been criticized because it 

can lead to high damping forces (Erduran 2012). In base isolated systems, Ryan and 

Polanco (2008) mentioned that the mass-proportional component of RD can generate 

unconservative analyses.  
 

Almost since the implementation of RD in nonlinear dynamic analysis, commercial and 

research FE software also allowed to define the damping matrix proportional to the 

tangent stiffness matrix (Kanaan and Powell 1973; Powell 1973; Sharpe 1974; Mondkar 

and Powell 1975). Recent studies, e.g. by Petrini et al. (2008),  Jehel et al. (2014), and 

Chambreuil et al. (2021),  recommend the use of this method because spurious damping 

forces are significantly reduced and overall better match with experimental results. Leger 

and Dussault (1992) and Charney (2008) proposed to update the coefficients ao and a1, 

at each step of the analysis, using the tangent stiffness matrix to find the frequencies of 

the structure and recalculate the coefficients using eq. (3). According to those authors, 

this methodology preserves a constant damping ratio throughout the analysis and 

artificial damping is eliminated. However, updating the damping parameters has in 

general an important computational cost. 
 

Specific issues arising by the use of a tangent damping matrix were described early in 

ANSI-I (Mondkar and Powell 1975) and DRAIN2D (Kanaan and Powell 1973). They 

include low damping forces when the structure yields and possible equilibrium 

unbalances that need to be accounted for, caused by the fact that the stiffness matrix of 

the previously converged step is normally used to define the damping matrix for the next 
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step. More recently, Chopra and Mckenna (2016) argued that the model has several 

conceptual limitations, including damping force-velocity relations exhibiting hysteresis 

due to the reformulation of the damping matrix at each step, and negative damping at 

large deformations. The former issue may be avoided as discussed by Correia et al. 

(2013). Other investigations (Bernal 1994; Carr 2007; Chopra and Mckenna 2016) have 

proposed to define non-null entries of the viscous damping matrix just for the entries 

connecting two DOFs with mass, the so-called condensed damping models, which 

implies that the damping forces and moments are completely eliminated in the massless 

DoF.  
 

The present paper aims at proposing a damping model proportional to the condensed 

stiffness matrix – in opposition to the total stiffness matrix – using the tangent stiffness 

matrix, which has not yet been explored in the literature. The motivation is introduced in 

the next section. The paper compares the behaviour of existing total and condensed 

damping models using a reinforced concrete (RC) frame subjected to a ground-motion 

loading, where numerical deficiencies of existing condensed damping models are 

highlighted. These numerical deficiencies are the main arguments justifying the proposed 

damping model, which is introduced following a review of existing condensed damping 

models. Section 3 compares a set of existing damping models for the study case referred 

above. Finally, the last section sums up the main conclusions.   

 Condensed-tangent-stiffness-proportional damping model  

2.1. Motivation  

Condensed damping models are those defined only in the degrees of freedom with mass 

and include: mass proportional damping (MPD), condensed initial-stiffness proportional 

damping (CISPD) as proposed by Bernal (1994), and the modal damping (MD) proposed 

by Wilson and Penzien (1972) for elastic response and later implemented for inelastic 

analyses by Carr (2007) and Chopra and Mckenna (2016). The main advantages of 

condensed damping models are the complete elimination of spurious damping forces and 

the fact that the damping matrix must be calculated only in one step of the analysis, which 

is preferable from a computational cost point of view.  

Even if spurious damping forces are eliminated with condensed models, they can cause 

an overdamped response in the structure due to the stiffness decay, implying levels of 

energy dissipation similar to the total initial stiffness proportional damping model 

(TISPD) or RD with ISPD, which are generally considered as inappropriate by the 

engineering community, see section 3. Additionally, except for MPD, all the other 

condensed damping models imply the occurrence of dashpots between the DoFs that are 

not physically connected by a structural element, which is regularly criticized (Hall 2016; 

Charney et al. 2017). Finally, Lanzi and Luco (2018) highlighted that the massless DoFs 

present significant oscillations on their velocity when step-by-step integration procedures 

are used, e.g. for nonlinear dynamic analysis of real structures. The mentioned issues are 

the motivation to study these models further and explore a new proposal. 

2.2. Existing condensed damping models  

 Mass proportional damping model  

The mass-proportional damping model is a particular case of the RD model presented in 

eq. (2) where just the first term is considered; the damping parameter is found as: 

 

 𝑎0 = 2𝜁𝑖𝜔𝑖 (4) 
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 Condensed initial stiffness proportional damping model  

Bernal (1994) proposed a condensed-initial-stiffness-proportional (CISPD) damping 

model to eliminate the spurious damping forces in the massless DoFs. The author 

recognized that an MPD model also solves this pathology. However, the study mentioned 

that condensed stiffness preserves the potential to use the stiffness matrix without being 

affected by spurious damping forces. This model can be expressed as: 

 

 [
𝑪𝑡𝑡 𝑪𝑡0

𝑪0𝑡 𝑪00
] = [

𝑪𝑡𝑡 0
0 0

] = 𝑎1 [�̂�𝑡𝑡 0
0 0

] (5) 

 

where �̂�𝑡𝑡 is the condensed stiffness matrix given by the next equation in terms of 

submatrices of the total initial stiffness matrix. 

 

 �̂�𝑡𝑡 = 𝑲𝑡𝑡 − 𝑲0𝑡
𝑡 𝑲00

−1𝑲0𝑡 (6) 

 

 Caughey damping model 

Caughey damping model is a generalization of Rayleigh damping where is possible to 

assign N distinct damping ratios. This model is expressed by eq. (7): 

 

 𝑪 = 𝑴 ∑ 𝑎𝑖[𝑴−1𝑲]𝑖

𝑁−1

𝑖=0

 (7) 

 

where the damping parameters 𝑎𝑖 are defined solving the next system of equations: 

 𝜁𝑛 =
1

2
 ∑ 𝑎𝑖𝜔𝑛

2𝑖−1

𝑁−1

𝑖=0

 (8) 

 

Caughey damping presents some numerical difficulties explained by (Chopra (2015) for 

linear analysis. For example, the expression (8) used to find the damping parameters is 

often numerically ill-conditioned due to the difference between the order of magnitude 

of the frequencies. Additionally, when more than two terms are considered in equation 

(7), the damping matrix becomes fully populated in systems without massless DOFs. 

In common systems with massless DOFs, the total mass and stiffness matrix cannot be 

used because the total mass matrix does not have inverse. Thus, the model must be 

defined using the mass matrix (Mtt) and the initial condensed stiffness matrix (�̂�𝑡𝑡), 

according to Eq. (9). 

 

 𝑪 = 𝑴𝑡𝑡 ∑ 𝑎𝑖[𝑴𝑡𝑡
−1�̂�𝑡𝑡]

𝑖
𝑁−1

𝑖=0

 

 

(9) 

 

 Modal damping (MD) 

Wilson and Penzien (1972) proposed a direct and efficient procedure to define a damping 

matrix that overcomes the difficulties of the Caughey series for linear analysis. Similarly 

to Caughey damping, this model allows to define a specific damping ratio for more than 

two frequencies, eliminating the important levels of damping in higher modes of 

vibration that RD imposes. Recently, Chopra and Mckenna (2016) proposed to use this 

model in nonlinear dynamic analysis and demonstrated that the definition of damping for 
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all the modes is not required to get an accurate response of the system. The study did not 

propose a criterion on how many modal frequencies should be considered. 

 

 𝑪 = 𝑴𝑡𝑡 (∑ (
2𝜁𝑛𝜔𝑛

𝑴𝑔
)  𝜱𝑛𝜱𝑛

𝑡

𝑁

𝑛=1

) 𝑴𝑡𝑡 (10) 

2.3. Formulation and implementation of a condensed-tangent-stiffness damping  

As discussed above, Bernal (1994) proposed a damping model proportional to the 

condensed initial stiffness matrix to eliminate spurious damping forces. This model 

imposes zero damping between the massless degrees of freedom, which solves the 

problem of high damping forces or moments in these DoFs during incursions in the 

inelastic range. However, as shown in the next section, this model and MD can depict 

high levels of energy dissipation. The following section shows that the energy dissipation 

in these models is very similar to TISPD or RD (defined with the initial stiffness matrix), 

which are usually considered inappropriate for nonlinear dynamic analysis.  

Until now, from the extensive literature review, the damping model that appears to better 

fit experimental test results, on average, is the total tangent stiffness proportional 

damping model, which however does not eliminate spurious damping moments. The 

model explored in the present investigation seeks to combine the above desirable feature 

of tangent-stiffness proportionality with the main advantage of condensed models, i.e. 

the elimination of spurious damping moments. Therefore, the proposed model can be 

expressed by the following expression: 
 

 
𝑪𝑇𝑎𝑛  =  𝑎0,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙ [

𝑴𝑡𝑡 0
0 0

] + 𝑎1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 [�̂�𝑡𝑡
𝑇𝑎𝑛 0
0 0

] (11) 

 

where �̂�tt
Tan is the condensed tangent stiffness matrix found with eq. (6). 
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 Numerical case study  

Figure 1 presents the structure used to compare a series of different viscous damping 

models. The RC structure is modelled using force-based elements, which consider 

distributed plasticity using four integration points (Calabrese et al. 2010). For simplicity, 

cross-section “Section 1” is used for all the columns, while cross-section “Section 2” is 

assigned to all the beams. The material rules considered are shown in Table 1. The model 

by Menegotto and Pinto (1973) was used to simulate the behaviour of all the steel fibres. 

The concrete fibres were simulated using the model by Mander et al. (1988), but with 

different input parameters to consider the different degrees of confinement. The tensile 

strength of the concrete was neglected. 

 
Fig. 1 - RC frame using distributed plasticity elements with section discretization on the right. 

 

A corotational formulation was employed to account for the nonlinear geometric effects, 

and rigid length offsets at the nodes were defined according to the dimensions of the 

structural members. All the masses are lumped at the nodes in the horizontal and vertical 

directions. Masses of 8.92 ton and 17.86 ton are considered at the central and edge nodes, 

respectively. One horizontal acceleration ground motion record of the Morgan Hills 

earthquake is applied to the structure. The dynamic analysis is performed with the 

authors' software (SAGRES) using the Newmark integration method (β = 1/4 and γ = ½) 

and a Newton-Raphson scheme.  

 
Table 1 Parameters of the material models assigned to the section fibres 

Steel Fibres fy (MPa) Eo (GPa) b R0 A1 A2 A3 A4 

Steel bars 515 210 0.00 20.00 19.25 0.15 0.00 1.00 

Concrete Fibres  fc (MPa) Eo (GPa) εcu ft (MPa) εt beta   

Concrete cover 39.0 29.4 0.004 0 0 0.1   
Column's concrete 

core 52.7 39.6 0.018 0 0 0.1   

Beam's concrete core  46.0 34.6 0.014 0 0 0.1   

 

The damping models are described in Table 2, which includes a classification according 

to the positions in which the damping matrix is non-null: all DoFs or only DoFs with 

mass. The damping parameters are calculated using the initial frequencies of the structure 

and modal damping uses the initial modal shapes. All damping models are defined with 

a damping ratio of 3%.  
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Table 2 Damping models presented  

Complete name Nomenclature 

Non-null values in 

the damping 

matrix defined at: 

Total initial stiffness proportional damping TISPD all DoFs 

Condensed initial stiffness proportional damping CISPD DoFs with mass 

Total initial Rayleigh damping RD all DoFs 

Modal damping (all modes included) MD DoFs with mass 

Total tangent stiffness proportional damping TTSPD all DoFs 

Condensed tangent stiffness proportional damping CTSPD DoFs with mass 

 

The analysis of the structural response starts with the energy balance analysis presented 

in Fig. 2, where the total energy input (EI), the cumulative energy dissipated by the 

damping model (ED), and the energy dissipated by the material hysteretic rules (EM) are 

shown. 

Fig. 2(a) shows that the input energy is higher in those models proportional to the initial 

stiffness matrix (i.e., TISPD, CISPD, MD, and RD), while the damping models based on 

the tangent stiffness matrix present smaller energy input levels (i.e., TTSPD and 

CTSPD). The EI is dissipated by the damping model or by the hysteretic rules of the 

material. The latter can be used to determine the structural performance and the damage 

on the structural elements through damage index models.  

The damping models that dissipate more energy are those based on the initial properties 

of the system (TISPD, CISPD, MD, and RD, in descending order) and those that dissipate 

less energy are those proportional to the tangent stiffness matrix (TTSPD and CTSPD). 

Fig. 2(b) indicates that the energy dissipated by TISPD and CISPD are very similar, 

which is a direct consequence of defining the CISPD using the initial properties. RD and 

MD present similar levels of energy dissipation as well, even if RD defines a 3% damping 

ratio for the first and third mode, while MD imposes 3% damping ratio to all the modes 

of the structure. Finally, the curves of energy dissipated by the TTSPD and CTSPD have 

an equivalent response for this particular case study. 

The subtraction of the energy input and the energy dissipated by the damping model gives 

the cumulative energy dissipated by the hysteretic rules of the materials. When TISPD 

and CISPD are used, the energy dissipated through the hysteretic rules present a similar 

level of energy dissipation and the total energy is less than 80% of the energy dissipated 

when TTSPD or CTSPD are used. Additionally, when RD and MD are used, the energy 

dissipated by the materials presents also a similar response, which is only slightly less 

than the models proportional to the tangent stiffness matrix. The different levels of energy 

dissipation through the hysteretic rules of the materials mean that the elements with 

higher demands are in the structure with tangent stiffness proportional damping, where 

the effective damping ratio will decrease due to the stiffness decay in the structure, which 

is usually accepted as physically meaningful.  

As explained in Section 1, TISPD and RD (using the total initial stiffness) are considered 

to be inappropriate in nonlinear dynamic analysis. For this specific case, the 

comparatively high levels of energy dissipation of MD and CISPD may suggest that these 

models are physically less justifiable than the models proportional to the tangent stiffness 

matrix.  
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Fig. 2 - (a) Input energy, (b) cumulative energy dissipated by the damping model, and (c) cumulative 

energy dissipated by the hysteretic rules of the materials. 

 

Figure 1(a-c) shows the damping moments in the rotational DoF of the top left node for 

the various damping models. As discussed in Section 1, the stiffness proportional term 

of Rayleigh damping causes spurious damping forces and moments in the massless DoFs 

when the structure undergoes incursions into the inelastic range. One aspect to note with 

TISPD is that the spurious damping moments do not disappear even when the structure 

returns to a response in the elastic range. The latter is explained by the permanent loss of 

orthogonality in the system due to decay of stiffness in the concrete fibers during the 

earthquake loading. Oppositely, the TTSPD presents peaks of smaller absolute value 

during incursions in the inelastic range, and during unloading and reloading in the elastic 

range the spurious damping moments disappear because the system recovers its 

orthogonality due to the use of the tangent stiffness to define the damping matrix.  

The damping matrix is defined with zeros in the massless DoFs when condensed damping 

models are used, effectively implying that the spurious damping moments are eliminated: 

this has been the main argument to justify the use of condensed damping models. 

Nevertheless, the energy analysis presented in this paper shows that the condensed 

damping models proportional to the initial properties can cause an overdamped response 

of the structure, which will imply unconservative analyses, especially in RC structures 

where there can be important levels of stiffness decay. The TTSPD is the model that has 

to date better predicted experimental results (Petrini et al. 2008; Chambreuil et al. 2021), 

but this model still presents important spurious damping moment as can be seen in the 

figure below. The model that completely eliminates the spurious damping moments and 

does not present high levels of energy dissipation, preserving a physically consistent 

interpretation, is the CTSPD herein proposed. 
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Figure 1 Damping moments at the top left node of the RC frame for the various damping models (note 

the different vertical scales). 

 Conclusions  

This paper investigates the response of a proposed viscous damping model based on a 

tangent condensed stiffness proportional matrix. The latter is shown to eliminate spurious 

damping forces and avoids the high levels of damping presented by the condensed 

damping model defined with the initial properties. This approach also preserves a solid 

physical meaningfulness related to a reduction of the damping energy when hysteretic 

material response is activated. Through a case study, it was also seen that the condensed-

initial-stiffness-proportional damping and modal damping can have similar levels of 

energy dissipation than the total initial stiffness proportional damping and Rayleigh 

damping models. These are generally considered as inappropriate for nonlinear analysis 

due to spurious damping forces and increments on the effective damping ratio due to the 

stiffness decay. Such high levels of energy dissipation can affect considerably the total 

energy absorbed by the nonlinear hysteretic rules of the materials. 
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