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Abstract

The severity of multivariate extreme events is driven by the dependence between the
largest marginal observations. The Hüsler–Reiss distribution is a versatile model for this
extremal dependence, and it is usually parameterized by a variogram matrix. In order
to represent conditional independence relations and obtain sparse parameterizations,
we introduce the novel Hüsler–Reiss precision matrix. Similarly to the Gaussian case,
this matrix appears naturally in density representations of the Hüsler–Reiss Pareto
distribution and encodes the extremal graphical structure through its zero pattern.
For a given, arbitrary graph we prove the existence and uniqueness of the completion
of a partially specified Hüsler–Reiss variogram matrix so that its precision matrix
has zeros on non-edges in the graph. Using suitable estimators for the parameters
on the edges, our theory provides the first consistent estimator of graph structured
Hüsler–Reiss distributions. If the graph is unknown, our method can be combined with
recent structure learning algorithms to jointly infer the graph and the corresponding
parameter matrix. Based on our methodology, we propose new tools for statistical
inference of sparse Hüsler–Reiss models and illustrate them on large flight delay data
in the U.S.

Keywords: extreme value analysis; multivariate generalized Pareto distribution; sparsity;
variogram
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1 Introduction

In statistical modelling, conditional independence and graphical models are well-
established concepts for analyzing structural relationships in data (Lauritzen, 1996;
Wainwright and Jordan, 2008). Particularly important are Gaussian graphical models,
also known as Gaussian Markov random fields (Rue and Held, 2005). The graphical
structure of a multivariate normal distribution with positive definite covariance matrix
Σ can be read off from the zeros of its precision matrix Σ−1.

For risk assessment in fields such as climate science, hydrology, or finance, the
primary interest is in extreme observations, with attention to both the marginal tails
and the dependence between multiple risk factors. Multivariate extreme value theory
provides asymptotically motivated models and statistical tools for extreme events.
In view of the growing complexity and dimensionality of modern data sets, sparsity
and graphical models are becoming crucial notions for the analysis of extremes (e.g.,
Engelke and Ivanovs, 2021).

There are two different ways of defining graphical models for extreme value
distributions. The first is based on max-linear models (Gissibl and Klüppelberg,
2018) and the second one studies multivariate Pareto distributions (Engelke and
Hitz, 2020). We follow the second approach since their new notions of conditional
independence and extremal graphical models link naturally to an extremal version of
the well-known Hammersley–Clifford theorem for density factorizations. Moreover, in
the case of tree graphs, Segers (2020) shows that the extremes of regularly varying
Markov trees converge to these extremal tree models. Lee and Joe (2018) propose
parsimonious models for extreme value copulas; the link with extremal graphical
models is made in Asenova et al. (2021).

The class of extremal graphical models with Hüsler–Reiss Pareto distributions is
of particular interest. In d dimensions, the parameter of this family is a variogram
matrix Γ ∈ Rd×d. Because of their flexibility and stochastic properties, Hüsler–Reiss
distributions can be seen as the counterpart of the Gaussian family for multivariate
extremes. In combination with extremal graphical models, the Hüsler–Reiss family
constitutes a powerful tool for sparse extreme value modelling, with many open
questions still to explore.

For a connected, undirected graph G = (V,E) with nodes V = {1, . . . , d} and
edges E, Engelke and Hitz (2020) show that such a distribution’s graphical structure
can be read off from a set of precision matrices Θ(k) ∈ R(d−1)×(d−1), for k ∈ V . The
latter are defined as the inverses of the matrices obtained by the covariance mappings
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(Farris et al., 1970)

Σ
(k)
ij = 1

2
(Γik + Γjk − Γij), i, j 6= k.

While zeros in Θ(k) correspond to extremal conditional independence of nodes i, j 6= k,
the information on edges involving the kth node is encoded only indirectly through
the row sums of this matrix. A natural question, appearing also in the discussion of
Engelke and Hitz (2020), is if there exists a symmetric approach involving a single
d× d precision matrix.

Statistical inference for Hüsler–Reiss graphical models is limited so far to the
simple structures of trees and block graphs (Engelke and Volgushev, 2020; Asenova
and Segers, 2021). The parameter matrix Γ is then additive on the graph and the
maximum likelihood estimator is an explicit combination of the bivariate estimators
on the edges. Since block graphs lack flexibility for general applications, several
discussion contributions of Engelke and Hitz (2020) have emphasized the need for
estimators suitable for more general graphs.

In this paper, we obtain new theoretical results on Hüsler–Reiss distributions that
answer the two open questions above and enable statistical inference on extremal
graphical models on decomposable and non-decomposable graphs. We first introduce
the Hüsler–Reiss precision matrix Θ ∈ Rd×d as Θij = Θ

(k)
ij for some k 6= i, j, a

definition which—surprisingly—is independent of the particular choice of k ∈ V . This
positive semi-definite matrix indeed reflects the sparsity of the extremal graph by
zero off-diagonal entries. We give several characterizations of this matrix, one of them
as the Moore–Penrose inverse of a projection of the parameter matrix Γ.

For a given, general graph G = (V,E), the new Hüsler–Reiss precision matrix
allows us to represent the maximum (surrogate-)likelihood estimate of Γ on the graph
G as the maximizer of the constrained optimization problem

log |Θ|+ + 1
2

tr(Γ̂Θ), s.t. Θij = 0 if (i, j) /∈ E,

where Γ̂ is the empirical variogram (Engelke and Volgushev, 2020) and | · |+ denotes
the pseudo-determinant. We prove that the solution to this optimization problem is
given by the solution of a matrix completion problem. The aim of this completion is
to find a conditionally negative definite variogram matrix Γ that has specified values
in the entries corresponding to the edges E and zeros in the remaining entries of its
precision matrix, i.e., Θij = 0 for (i, j) /∈ E. For the case of decomposable graphs G,
our completion algorithm is exact and has finitely many steps. For non-decomposable
graphs, the solution is the limit of a converging sequence of variogram matrices. These
results can be seen as a semi-definite extension of matrix completion problems for
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the covariance matrix of Gaussian distributions studied in Speed and Kiiveri (1986)
and Bakonyi and Woerdeman (2011).

Section 2 provides some preliminaries on extremal graphical models. The Hüsler–
Reiss family is studied in Section 3, with a focus on the precision matrix Θ. Estimation
of the Hüsler–Reiss variogram matrix of an extremal graphical model leads to matrix
completion problems that are analyzed in Section 4. Statistical inference is treated
in Section 5 while Section 6 reports on a case study involving data on delays in the
domestic U.S. air travel network. The supplementary material contains mathematical
details and proofs.

2 Extremal graphical models

2.1 Multivariate generalized Pareto distributions

Multivariate extreme value theory studies the tail behavior of a random vector
X = (X1, . . . , Xd). A first summary of the extremal dependence structure of the
bivariate margins for i, j ∈ {1, . . . , d} is the extremal correlation χij ∈ [0, 1], defined
as

χij := lim
p→0

χij(p) := lim
p→0

P(Fi(Xi) > 1− p | Fj(Xj) > 1− p), (2.1)

whenever the limit exists and where Fi is the distribution function of Xi. When
χij > 0 we say that Xi and Xj are asymptotically dependent, and when χij = 0 we
speak of asymptotic independence. In the former case, there are two different, but
closely related approaches for modelling extremal dependence: through component-
wise maxima of independent copies of X leading to max-stable distributions (de Haan
and Resnick, 1977); and through threshold exceedances of X resulting in multivariate
generalized Pareto distributions (Rootzén and Tajvidi, 2006). Here, we concentrate
on the threshold exceedance approach since it is well-suited for graphical modelling
(Engelke and Hitz, 2020; Segers, 2020). For statistical models for asymptotic indepen-
dence, we refer to Heffernan and Tawn (2004), for instance, and to Papastathopoulos
et al. (2017) in the context of extremes of Markov chains.

To make abstraction of the univariate marginal distributions and concentrate on
the extremal dependence, it is usually assumed that all variables Xi follow a given
continuous distribution. Throughout, we use standard exponential margins, that is,
P(Xi ≤ x) = 1 − exp(−x) for x ≥ 0 and i = 1, . . . , d; we discuss this choice at the
end of this section.

Let 0, 1, and ∞ denote the d-vectors with all elements equal to 0, 1, and ∞
respectively. A random vector Y = (Y1, . . . , Yd) is said to follow a multivariate
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generalized Pareto distribution (Rootzén and Tajvidi, 2006) if for any z ∈ L ={
x ∈ Rd : x 6≤ 0

}
, we have

P(Y ≤ z) := lim
u→∞

P(X − u1 ≤ z | X 6≤ u) =
Λ(z ∧ 0)− Λ(z)

Λ(0)
, (2.2)

for some vector X, which is then said to be in the domain of attraction of Y . The
so-called exponent measure Λ is a measure on [−∞,∞)d \ {−∞} that is finite on
sets bounded away from −∞, and Λ(z) := Λ

(
[−∞,∞)d \ [−∞, z]

)
. Multivariate

generalized Pareto distribution are the only possible distributions that can arise as
limits of threshold exceedances as in (2.2). We assume Λ to be absolutely continuous
with respect to the d-dimensional Lebesgue measure and let λ denote its Radon–
Nikodym derivative. The set of valid exponent measure densities λ is characterized
by the following two properties:

λ(y + t1) = exp(−t)λ(y), ∀t ∈ R, y ∈ Rd,∫

yi>0

λ(y) dy = 1, ∀i ∈ {1, . . . , d}.

Since the distribution of Y can be seen as the restriction of Λ to L, its density f then
also exists and is proportional to the exponent measure density λ as f(y) = λ(y)/Λ(0)
for all y ∈ L. For a non-empty subset I ⊆ {1, . . . , d}, we define, with some abuse of
terminology, the I-th marginal YI of Y as the distributional limit that arises in (2.2)
when X is replaced by the sub-vector XI = (Xi)i∈I , also in the conditioning event.
We have fI(yI) = λI(yI)/ΛI(0) for all y ∈ LI =

{
x ∈ R|I| : x 6≤ 0

}
, where the objects

fI , λI , and ΛI are defined analogously as for I = {1, . . . , d}. It is important to note
that YI is not the actual marginal distribution of Y , since the latter would have
support on the space [−∞,∞)|I| \ {∞}. Instead, with the definition above, YI is the
marginal of Y that is conditioned to lie in the space LI . For further properties of
multivariate generalized Pareto distributions, we refer to Rootzén et al. (2018) and
Kiriliouk et al. (2018).

Remark 2.1. We consider multivariate generalized Pareto distributions Y with stan-
dard exponential marginals supported on LY = {x ∈ Rd : x 6≤ 0} and exponent
measure ΛY . Another common choice is the standard Pareto marginal distribution
(e.g., Engelke and Hitz, 2020), in which case the multivariate Pareto distribution
is that of Z = exp(Y ), supported on LZ = {x ∈ [0,∞)d : x 6≤ 1} with exponent
measure ΛZ(x) = ΛY (log x) and density

λZ(x) =

(
d∏

i=1

x−1
i

)
λY (log x), x ∈ LZ .
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All results in this paper are still applicable with these (or other) marginals since they
only concern the dependence structure.

2.2 Extremal conditional independence

In classical statistics, graphical models are defined through conditional independence
relations between components of a random vector. Since the support L of a mul-
tivariate generalized Pareto distribution is not a product space, this definition is
impractical in this case. Instead, Engelke and Hitz (2020) introduce a novel notion

of extremal conditional independence in terms of the vectors Y (k) = (Y
(k)

1 , . . . , Y
(k)
d )

for k ∈ V := {1, . . . , d}, defined as the multivariate generalized Pareto vector Y
conditioned on the event {Yk > 0}, and conveniently supported on the product spaces
L(k) = {x ∈ L : xk > 0}. The extremal version of conditional independence between
sub-vectors YA and YB given YC , for non-empty, disjoint sets A ∪B ∪ C = V , is then
defined as

∀k ∈ V : Y
(k)
A ⊥⊥ Y

(k)
B | Y (k)

C , (2.3)

and it is denoted by YA ⊥e YB | YC ; here, for I ⊆ V , we let Y
(k)
I = (Y

(k)
i )i∈I denote

the I-th marginal of Y (k) in the usual sense.
We consider the index set V as a set of nodes and let E ⊆ E(V ) be the set of

undirected edges of a connected graph G = (V,E), where E(V ) denotes the set of all
possible edges. Figure 1 shows four different graph structures in increasing generality;
see Section S.2 for definitions of the related terms. We say that Y follows an extremal
graphical model on G if for i, j ∈ V with i 6= j we have

(i, j) /∈ E =⇒ Yi ⊥e Yj | YV \{i,j}.
Engelke and Hitz (2020) show that the existence of a positive and continuous exponent
measure density λ of Y implies the equivalence of (2.3) to the factorization

λ(y)λC(yC) = λA∪C(yA∪C)λB∪C(yB∪C), y ∈ L.
Moreover, if Y is an extremal graphical model on a decomposable graph G, then the
density of Y factorizes on the graph into lower-dimensional marginal densities.

3 Hüsler–Reiss distributions

3.1 Definition

A popular class of multivariate generalized Pareto distributions are the Hüsler–Reiss
distributions, which are parametrized by symmetric conditionally negative definite
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Figure 1: Different undirected, connected graphs on four nodes: (a) is a tree, (b) is a
block graph, (c) is decomposable, (d) is non-decomposable.

matrices, here denoted by Γ (Hüsler and Reiss, 1989; Kabluchko et al., 2009). The
set of these so-called variogram matrices is defined as

Dd =
{

Γ ∈ Rd×d : Γ = Γ>, diag(Γ) = 0, v>Γv < 0 ∀0 6= v ⊥ 1
}
. (3.1)

Variogram matrices are closely related to covariance matrices and can be constructed
from a centered random vector W with covariance matrix Σ as

Γij = E(Wi −Wj)
2 = Σii + Σjj − 2Σij, ∀i, j ∈ V.

Notably, this so-called covariance transform (Farris et al., 1970) is not injective and
can be written for the entire matrix as

γ : Σ 7−→ Γ = 1 diag(Σ)>+ diag(Σ)1>− 2Σ; (3.2)

see Definition S.5.9 and Lemma S.5.10 for details.

Definition 3.1. Let Γ ∈ Dd be a variogram matrix, k ∈ V , and

Σ(k) = ϕk(Γ) := 1
2
(Γik + Γjk − Γij)i,j 6=k ∈ R(d−1)×(d−1),

µ(k) =
(
−1

2
Γik
)
i 6=k ∈ Rd−1.

A multivariate generalized Pareto random vector Y = (Y1, . . . , Yd) is Hüsler–Reiss
Pareto distributed with parameter matrix Γ if its exponent measure density λ satisfies

λ(y; Γ) =
exp(−yk)√

(2π)d−1 |Σ(k)|
exp
(
−1

2

∥∥yV \{k} − 1yk − µ(k)
∥∥2

Θ(k)

)
, y ∈ Rd,

with Θ(k) =
(
Σ(k)

)−1
and using the notation ‖v‖2

M = v>Mv.

Notably, this expression does not depend on the choice of k (e.g., Engelke et al.,
2015, Theorem 3.3).
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3.2 Hüsler–Reiss precision matrix

An important property of Gaussian graphical models is that the conditional indepen-
dence structure of a distribution with covariance matrix Σ can be read off from the
zeros in the (Gaussian) precision matrix Σ−1. Hüsler–Reiss graphical models satisfy a
similar property. Indeed, let Y be a Hüsler–Reiss Pareto vector with parameter matrix
Γ ∈ Dd that is an extremal graphical model on the undirected graph G = (V,E).
Engelke and Hitz (2020) show that the graph G is necessarily connected and that the
graphical structure can be read off from the precision matrices Θ(k) = (Σ(k))−1 for
any k ∈ V ; in the following we index these (d− 1)× (d− 1) matrices by V \ {k} for
the sake of simpler notation. Two distinct nodes i, j 6= k are extremal conditionally
independent in the sense that Yi ⊥e Yj | YV \{i,j} if and only if the corresponding

entry Θ
(k)
ij is zero. If one of the nodes, say j, is equal to k, extremal conditional

independence is equivalent to the row sum
∑

l 6=k Θ
(k)
il being zero.

From this result it follows that each Θ(k) contains all information on conditional
independence of Y . A natural question, which was also raised in the discussion of
Engelke and Hitz (2020), is whether there is a single d × d precision matrix that
contains this information and is independent of a choice of k. In fact, such a matrix
can be defined in the following way.

Definition 3.2. Let Γ ∈ Dd be a variogram matrix. For d ≥ 3 define Θ ∈ Rd×d by

Θij = Θ
(k)
ij , for some k ∈ V \ {i, j},

with Θ(k) as above. In the case d = 2, set Θ11 = Θ22 = −Θ12 = −Θ21 = 1/Γ12.

Lemma 1 and Proposition 3 in Engelke and Hitz (2020) imply that the matrix Θ
is well-defined and represents extremal conditional independence of nodes i, j ∈ V in
the corresponding Hüsler–Reiss model by

Θij = 0 ⇐⇒ Yi ⊥e Yj | YV \{i,j}. (3.3)

While Definition 3.2 is a natural way to jointly represent the information contained
in the Θ(k) matrices, it remains to be shown that the matrix Θ allows for useful
mathematical representations. In order to give a first such representation, let ( · )+

denote the Moore–Penrose inverse (see Section S.1.1 for details), let Id be the d× d
identity matrix, write ed = d−11, and let Π = Id − 1e>d be the d× d centering matrix,
i.e., the projection matrix onto the orthogonal complement of 1. Recall γ from (3.2).

8



Proposition 3.3. Let Γ ∈ Dd and S ∈ Rd×d satisfying γ(S) = Γ. Then

ΠSΠ = Π
(
−1

2
Γ
)
Π. (3.4)

Furthermore, the matrix Θ from Definition 3.2 satisfies

Θ = (ΠSΠ)+ (3.5)

= lim
t→∞

(
t11>+ S

)−1
. (3.6)

Since the mapping γ preserves (a)symmetry and Γ is symmetric, the condition
γ(S) = Γ requires S to be a symmetric matrix, as well. It turns out that, restricted
to symmetric matrices, (3.4) is in fact equivalent to γ(S) = Γ; see Lemma S.5.8 for
details.

In practice, the matrix S is usually a (definite or semi-definite) covariance matrix,
so it is natural to only consider symmetric matrices here. For the sake of completeness
we show in the proof of Proposition 3.3 that (3.4) is a sufficient and necessary condition
for (3.5), also allowing asymmetric matrices S. Lemma S.5.7 shows that (3.4) is
further equivalent to S being a generalized inverse of Θ in the sense ΘSΘ = Θ.

In light of (3.4), an obvious choice of S for a given Γ is setting S = −1
2
Γ, while other

interesting choices for S are the matrices Σ̃(k) constructed in Engelke and Hitz (2020)
by adding a kth row and column containing only zeros to the matrix Σ(k). Furthermore,
these matrices relate to Π

(
−1

2
Γ
)
Π by Π

(
−1

2
Γ
)
Π = d−1

∑d
k=1 Σ̃(k) − t(Γ)11>where

t(Γ) = 1
2
d−21>Γ1 is the largest scalar such that d−1

∑d
k=1 Σ̃(k) − t11> is positive

semi-definite.
To better understand representation (3.5), let P1

d ⊂ Rd×d denote the set of
symmetric positive semi-definite matrices with kernel equal to span({1}). Further,
let σ and θ be the mappings from a variogram Γ to the corresponding matrices Σ
and Θ:

σ : Γ 7−→ Σ := Π
(
−1

2
Γ
)
Π,

θ : Γ 7−→ Θ := Σ+ = σ(Γ)+ =
(
Π
(
−1

2
Γ
)
Π
)+
.

(3.7)

Proposition 3.4. The mappings σ and θ are homeomorphisms between Dd and P1
d

with inverses

σ−1(Σ) = γ(Σ), θ−1(Θ)= γ
(
Θ+
)
,

respectively, where γ denotes the covariance mapping defined in (3.2).

9



From this proposition it follows that the matrix Θ from Definition 3.2 is always
positive semi-definite with kernel equal to span({1}). Furthermore, the class of Hüsler–
Reiss distributions, parametrized by the collection Dd of conditionally negative definite
matrices, can just as well be parametrized by the set P1

d , interpreted either in the
role of Θ or Σ. As we will show in Corollary 3.7, the matrix Σ is the degenerate
covariance matrix of a particular transformation of the Hüsler–Reiss Pareto vector
Y . Similarly to the Gaussian case, the precision matrix Θ can be obtained from this
covariance matrix as Θ = Σ+, using the Moore–Penrose inverse due to its singularity.

Representation (3.6) builds a bridge to the original work by Hüsler and Reiss
(1989). They studied the asymptotic distribution of component-wise maxima of a
Gaussian triangular array where each row is an independent random sample from a
Gaussian distribution with d× d correlation matrix ρ[n] such that the limit

L := lim
n→∞

log(n)(11>− ρ[n]) (3.8)

exists. These component-wise maxima then converge to a max-stable Hüsler–Reiss
distributions, parametrized by the conditionally negative definite matrix Γ = 4L; see
(3.1) in Hüsler and Reiss (1989). If S ∈ Rd×d is a matrix satisfying γ(S) = Γ for a
given Γ ∈ Dd, and if ρ[n] is the correlation matrix associated to the covariance matrix

Σ[n] = an11>+ S, n ∈ N,

for a scalar sequence an → ∞, then a straightforward calculation yields an(11>−
ρ[n]) → γ(S)/2 = Γ/2 as n → ∞; see Lemma S.5.8 for the latter identity. Hence,
choosing an = 2 log(n) yields (3.8) with L = Γ/4, as required. At the same time,
Proposition 3.3 implies that the covariance matrices Σ[n] are eventually invertible and
that the corresponding Gaussian precision matrices Θ[n] = (Σ[n])−1 converge to the
Hüsler–Reiss precision matrix Θ = θ(Γ) as n→∞.

Remark 3.5. The Hüsler–Reiss precision matrix Θ is motivated by its connection
to extremal conditional independence in (3.3). It turns out that this matrix is also
useful to describe other stochastic properties of the Hüsler–Reiss distributions. Based
on the results of the present paper, Röttger et al. (2021) show that multivariate total
positivity of order two, a notion of positive dependence, can be encoded as Θij ≤ 0
for all i 6= j, and Engelke et al. (2022b) suggest that the precision matrix can be used
to estimate extremal graphical structures by penalizing its L1 norm ‖Θ‖1. Compared
to the Gaussian case, a difficulty of dealing with Θ in mathematical derivations and
statistical implementations is that it is positive semi-definite and not invertible.
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3.3 Hüsler–Reiss exponent measure density

For a given Γ, the characterizations in Proposition 3.3 give a straightforward way
to compute Θ in Definition 3.2 as Θ = θ(Γ) =

(
Π(−1

2
Γ)Π

)+
and thus retrieve the

conditional independence structure of the corresponding extremal graphical model.
In a Gaussian model, another property of the precision matrix is that it can be used
to express its probability density function in a concise way. The following result
shows that similar expressions are also possible for Hüsler–Reiss distributions. Recall
the notation ed = d−11 and ‖v‖M =

√
v>Mv for v ∈ Rd and positive semi-definite

M ∈ Rd×d.

Proposition 3.6. Let Γ ∈ Dd and Θ = θ(Γ). Then the exponent measure density
λ( · ; Γ) from Definition 3.1 can be expressed as

λ(y; Θ) = cΘ · exp
(
−1

2
y>Θy − y>(ed − rΘ)

)
, y ∈ Rd, (3.9)

with rΘ = Θ
(
−1

2
Γ
)
ed. Furthermore, let v ∈ Rd be such that v>1 = 1 and let

µv = Θ+(rΘ + v) = Π
(
−1

2
Γ
)
v. Then λ can also be written as

λ(y; Θ) = cΘ,v · exp
(
−v>y

)
· exp

(
−1

2
‖y − µv‖2

Θ

)
. (3.10)

The constants cΘ and cΘ,v are such that
∫
yi>0

λ(y) dy = 1 for all i ∈ V , and are stated
explicitly in the proof.

Note that the value of the right-hand side in (3.10) does not depend on v ∈ Rd,
as long as v>1 = 1, which is why v is omitted on the left-hand side. In line with the
stochastic representation given in expression (28) of Engelke and Hitz (2020), consider
the following construction. For Θ ∈ P1

d and for 0 ≤ v ∈ Rd satisfying v>1 = 1, let µv
be as in Proposition 3.6, define Πv = Id − 1v>, and let Wv ∼ N (Πvµv,ΠvΘ

+Π>v), be
a d-dimensional random vector with degenerate normal distribution on {v}⊥. For a
standard exponential random variable R ∼ Exp(1) put

Yv = Wv +R · 1. (3.11)

Figure 2 illustrates this construction in R2; for a more detailed explanation see the
proof of Corollary 3.7. Comparing the density of Yv to (3.10) yields the following result.
Note that the condition that v ≥ 0 implies that

{
y ∈ Rd : v>y > 0

}
is contained in{

y ∈ Rd : y 6≤ 0
}

, the support of a multivariate generalized Pareto distribution.

Corollary 3.7. Let Θ, v, and Yv be as above. Let Y be a Hüsler–Reiss Pareto random
vector with variogram matrix Γ = θ−1(Θ) = γ(Θ+). Then Y conditioned on the event{
v>Y > 0

}
is equal in distribution to Yv.
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v 1

Wv

R · 1

Yv

R

R

Figure 2: Geometric illustration of the stochastic representation of the conditioned
Hüsler–Reiss distribution Yv in Corollary 3.7. The random vector Yv is decomposed
into Wv on the hyperplane {v}⊥ (dashed line) and radial part R·1, which is orthogonal
to the hyperplane {1}⊥ (dotted line).

The results presented so far show that our definition of the Hüsler–Reiss precision
matrix is in fact a very natural one. Similar to the Gaussian precision matrix it
encodes the conditional independence structure of the corresponding graphical model,
and the corresponding exponent measure density can be represented using Θ in a
similar fashion to the Gaussian density. Corollary 3.7 shows that this similarity is
due to the fact that a Hüsler–Reiss Pareto random vector can be decomposed into a
linear transformation of a degenerate normal part with covariance matrix Σ = Θ+

and an exponentially distributed part which is identical for all possible Hüsler–Reiss
Pareto distributions.

Using the general representation in (3.10), we recover different forms of the Hüsler–
Reiss density from the literature. Setting v = ek to the kth unit vector for some
k ∈ V , yields the density representation in Definition 3.1. The corresponding random
vectors Y (k) = Yek play a crucial role in statistical inference (Engelke et al., 2015)
and exact simulation (Dombry et al., 2016). A careful look at other characterizations
such as in Wadsworth and Tawn (2014), or the slightly more general definitions of the
Hüsler–Reiss exponent measure density in Ho and Dombry (2019) and Kiriliouk et al.
(2018), shows that our precision matrix Θ appears naturally in these parameterizations.
Section S.3 makes these connections precise.
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4 Matrix completion problems

A well-studied problem related to Gaussian graphical models is the task of constructing
a model with a given graphical structure and specified marginal distributions on the
fully connected subsets of vertices, or equivalently, to complete a partially defined
covariance matrix such that its precision matrix has zeros where there are no edges
in the specified graph (see Speed and Kiiveri, 1986; Bakonyi and Woerdeman, 2011).
For extremal Hüsler–Reiss models, the same problem can be posed, and expressed as
a matrix completion problem on the variogram and precision matrix.

To formalize the notion of a partially specified matrix, we define the set R̊ :=
R∪{“?”}, consisting of the real numbers and the placeholder “?” for unspecified values
(see e.g., Bakonyi and Woerdeman, 2011, for this use of “?”). For an undirected graph
G = (V,E), a matrix is said to be “specified on G” if it is specified on the diagonal
and the entries corresponding to the edges of G. A matrix is said to be “partially
conditionally negative definite” if it is symmetric, its diagonal is fully specified, and
all fully specified principal submatrices are conditionally negative definite (here, a
principal submatrix is any submatrix obtained by removing the same index set from
both the columns and rows of the matrix). In computations involving partially
specified matrices, an entry in the result is “?” as soon as any of the entries used to
compute it is itself “?”.

Definition 4.1. Let G = (V,E) be an undirected graph and let Γ̊ ∈ R̊d×d be a
partially conditionally negative definite matrix, specified on G. The corresponding
matrix completion problem is to find a conditionally negative definite matrix Γ ∈ Dd
and Θ = θ(Γ) such that

Γij = Γ̊ij ∀(i, j) ∈ E,
Θij = 0 ∀(i, j) /∈ E,

(4.1)

where E denotes the edge set E augmented by the diagonal entries {(i, i) : i ∈ V }.
An example for such a matrix completion problem on the graph in Figure 1b is

given by

Γ̊ =




0 3 ? 1
3 0 10 2
? 10 0 ?
1 2 ? 0


, Θ =




? ? 0 ?
? ? ? ?
0 ? ? 0
? ? 0 ?


. (4.2)

In the Gaussian case, a similar problem can be posed with the covariance matrix Σ
instead of Γ and with Θ = Σ−1. To this positive definite completion problem, an
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explicit solution for decomposable graphs and a convergent algorithm for general
graphs is given in Speed and Kiiveri (1986). In this section we discuss semi-definite
matrix completion problems for Hüsler–Reiss models as in Definition 4.1, starting
from simple graph structures such as trees and finishing with general graphs. We
assume throughout that the graph G is connected since only those can be associated
to non-degenerate Hüsler–Reiss models; see Section 3.2.

4.1 Trees and block graphs

Block graphs are simple graph structures where the separator sets contain only single
nodes. Trees are a special case of this class where all cliques consist of exactly
two nodes. The particular structure of block graphs makes them appealing for the
construction of parametric models and for statistical inference (Engelke and Hitz,
2020; Asenova et al., 2021). In fact, this structure also yields a simple explicit solution
to the matrix completion problem in Definition 4.1. If Γ̊ is a partially specified matrix
on the connected block graph G = (V,E), then a unique completion exists (Engelke
and Hitz, 2020, Prop. 4) and can be expressed as

Γij =
∑

(s,t)∈path(i,j)

Γ̊st, (4.3)

where path(i, j) is the unique shortest path between i and j in G; see also Engelke
and Volgushev (2020) and Asenova and Segers (2021). Using this result, the missing
entries in (4.2) can be computed to be Γ13 = Γ31 = 13 and Γ34 = Γ43 = 12.

4.2 Decomposable graphs

In this section, a solution to the matrix completion problem will be given for connected,
decomposable graphs. First, consider the simplest (non-trivial) example from this
class of graphs, a graph consisting of exactly two cliques. Recall the definitions of γ
from (3.2) and ϕk from Definition 3.1, and observe that its inverse can be expressed
as ϕ−1

k (Σ(k)) = γ(Σ̃(k)), where Σ̃(k) is identical to Σ(k), with an additional kth row
and column of zeros.

Lemma 4.2. Let G = (V,E) be a connected decomposable graph consisting of two
cliques C1, C2, separated by D2 = C1 ∩ C2 6= ∅. Let Γ̊ be a partially conditionally
negative definite matrix, specified on G. For some k ∈ D2, let Σ̊(k) = ϕk (̊Γ) and let
Σ(k) be its unique positive definite completion with graphical structure G

∣∣
V \{k}. Then

Γ := ϕ−1
k (Σ(k)) = γ(Σ̃(k)),
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is the unique solution of the matrix completion problem 4.1 for Γ̊ and graph G.

Using this result, a completion for a general decomposable graph can be constructed
by ordering its cliques C1, . . . , Cm according to the running intersection property
(see Section S.2) and iteratively applying Lemma 4.2 to the graphs Gi = (Vi, Ei),
i = 2, . . . ,m, with Vi = C1∪ . . .∪Ci, and edge sets Ei = (Ci × Ci)∪ (C ′ × C ′), where
C ′ = C1 ∪ . . . ∪ Ci−1.

Proposition 4.3. Let G = (V,E) be a connected, decomposable graph and Γ̊ a
partially conditionally negative definite matrix, specified on G. Then there exists a
unique solution to the matrix completion problem 4.1 with Γ̊ and G. This solution
can be computed explicitly as described above.

The class of decomposable graphs is a significant extension of the class of block
graphs. For instance, most graphs can be approximated in a non-trivial fashion by
using their so-called decomposable completion. In contrast, the only block graph
completion of a biconnected graph (i.e., a graph that remains connected after removal
of any one vertex) is already the complete graph, since the only biconnected block
graph is the complete graph, and adding edges to a graph preserves connectivity.

Example 4.4. Figure 3 shows an example of the matrix completion algorithm from
Proposition 4.3. Starting with the clique {1, 2, 3}, the missing values are computed
clique by clique. Edges whose corresponding matrix entries were already computed,
are considered as part of the graph in subsequent steps, such that each computation
is a direct application of Lemma 4.2. Thanks to the running intersection property,
the required conditional independence structure is preserved.

4.3 General graphs

The class of general connected graphs is much larger than the class of decomposable
ones; see Figure 1d for an example. In applications, when the graph is estimated from
data without restrictions, non-decomposable structures often arise. The following
results provide a more general but slightly weaker solution to the matrix completion
problem in Definition 4.1, where, as before, E is equal to E ∪ {(i, i) : i ∈ V }.

Proposition 4.5. Let G = (V,E) be a connected graph and let Γ̊ ∈ R̊d×d be specified
on G, such that there exists a fully specified conditionally negative definite matrix
that agrees with Γ̊ on the entries (i, j) ∈ E. Then there exists a unique conditionally
negative definite matrix Γ that solves the matrix completion problem (4.1) for Γ̊ and
G.
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0 0.08 0.19 0.21 ?
0.08 0 0.19 ? ?
0.19 0.19 0 0.09 ?
0.21 ? 0.09 0 0.81

? ? ? 0.81 0



7→




0 0.08 0.19 0.21 ?
0.08 0 0.19 0.22 ?
0.19 0.19 0 0.09 ?
0.21 0.22 0.09 0 0.81

? ? ? 0.81 0



7→




0 0.08 0.19 0.21 1.02
0.08 0 0.19 0.22 1.03
0.19 0.19 0 0.09 0.90
0.21 0.22 0.09 0 0.81
1.02 1.03 0.90 0.81 0




Figure 3: Illustration of Example 4.4. On the left-hand side is the initial partial matrix
Γ̊ and the corresponding decomposable graph. In each of the following steps, dashed
edges (top) correspond to newly computed matrix entries (underlined, bottom).

This result provides the same theoretical existence of a unique solution as Propo-
sition 4.3 and allows the definition of the following mapping. We use the notation
Γ
∣∣
G
∈ R̊d×d to denote the restriction of a fully specified matrix Γ to the entries

corresponding to a graph G = (V,E), in the sense

(
Γ
∣∣
G

)
ij

=

{
Γij (i, j) ∈ E,
“?” (i, j) /∈ E. (4.4)

Definition 4.6. For a connected graph G = (V,E) let D̊G =
{(

Γ′
∣∣
G

)
: Γ′ ∈ Dd

}
be

the restriction of conditionally negative definite matrices to G. The function

CG : D̊G−→ Dd, Γ̊ 7−→ Γ,

maps a partial matrix Γ̊ ∈ D̊G to its unique completion Γ satisfying the matrix
completion problem in Definition 4.1 with respect to G.

Notably, the existence of any conditionally negative definite completion of Γ̊ is
sufficient for the existence of a graphical completion. In the decomposable case,
this can be guaranteed by verifying the definiteness of all fully specified principal
submatrices, but in the general case this criterion does not work, as the following
counter-example shows.

Example 4.7. For d ≥ 4, let Γ̊ ∈ R̊d×d be a partial matrix on the d-dimensional ring
graph with entries Γ̊ij = 1 if |i− j| = 1, Γ̊1d = Γ̊d1 = (2d)2, zeros on the diagonal, and
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“?” elsewhere. Then all fully specified principal submatrices of this Γ̊ are conditionally
negative definite, but there exists no conditionally negative definite completion of the
entire matrix (see Section S.5.4.3 for details).

In general, computing the completion is less straightforward than in the decom-
posable case, but the following algorithm follows from the proof of Proposition 4.5.

Corollary 4.8. Let G and Γ̊ be as in Proposition 4.5, and let Γ0 ∈ D be such that
(Γ0)

∣∣
G

= Γ̊. For some fixed m ∈ N, let Gi = (V,Ei), i = 1, . . . ,m, be a set of
decomposable graphs, such that

⋂
iEi = E and define (Γn)n≥1 recursively by

Γn = CGt

(
(Γn−1)

∣∣
Gt

)
,

with t = tn ≡ n mod m and where CGt is computed as in Proposition 4.3. Then Γn
converges to the unique completion CG(̊Γ) as n→∞.

Remark 4.9. An easy way to construct a suitable set {G1, . . . , Gm} is to set {e1, . . . , em} =
E(V ) \ E and use Ei = E(V ) \ {ei}, where E(V ) denotes the set of all possible edges,
see Section S.2. However, in practice this choice leads to a very slow convergence
since each iteration only updates one entry in Γ and a (d− 3)× (d− 3)-dimensional
matrix needs to be inverted to do so. Better performance can be achieved by choosing
the Gi to be decomposable completions of G, with separator sets being as small as
possible; see Baz et al. (2022) for details and further optimizations.

In order to apply Corollary 4.8, an initial (non-graphical) completion of Γ̊, to be
used as Γ0, is required. The problem of finding such a matrix is also known as the
Euclidean distance matrix completion problem, with solution algorithms for example
in Bakonyi and Johnson (1995) and Fang and O’Leary (2012).

Example 4.10. To illustrate the algorithm from Corollary 4.8, consider the matrix
Γ0 below, which does not have any non-trivial graphical structure, and its “completion”
Γ, whose conditional independence structure is described by the graph in Figure 4.

Γ0 =




0 0.23 0.08 0.09 0.21
0.23 0 0.14 0.23 0.19
0.08 0.14 0 0.11 0.20
0.09 0.23 0.11 0 0.16
0.21 0.19 0.20 0.16 0



7→ Γ =




0 0.23 0.17 0.09 0.21
0.23 0 0.14 0.20 0.35
0.17 0.14 0 0.11 0.26
0.09 0.20 0.11 0 0.16
0.21 0.35 0.26 0.16 0




These two matrices differ only in the highlighted entries, corresponding to non-edges
in G. During the computation of Γ, the entries of Γ0 that correspond to edges in G
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Figure 4: Illustration of Proposition 4.5 in Example 4.10. A non-decomposable graph
G = (V,E) (right), and the convergence of Θij to zero for (i, j) /∈ E as the graphical
completion of Γ is computed (left). In each iteration, the graph defined by edge set
E1 = E ∪ {(1, 3)} or E2 = E ∪ {(2, 4)} is completed using Proposition 4.3.

do not change, and the convergence of the remaining entries in Θ to zero is plotted in
Figure 4. It can be seen that the entries corresponding to edges (2, 5) and (3, 5) stay
at zero (up to numerical precision of magnitude 10−15) after the first few iterations,
whereas the maximum of entries (2, 4) and (1, 3) converges to zero at a slower rate.
This observation is in line with the fact that vertices {1, 2, 3, 4} induce the chordless
cycle that makes the graph non-decomposable.

5 Statistical inference

Estimation of a Hüsler–Reiss parameter matrix Γ that is an extremal graphical model
on a given, known graph G = (V,E) is currently restricted to the simple structures
of trees (Engelke and Volgushev, 2020; Hu et al., 2022), latent trees (Asenova et al.,
2021) and block graphs (Engelke and Hitz, 2020; Asenova and Segers, 2021). Since
many data sets require more general graph structures, this has been pointed out as
an important drawback for statistical modelling in the discussion of Engelke and Hitz
(2020).

In this section we solve this issue by applying our results on matrix completions for
variograms. In particular, we show how any consistent estimator Γ̂ can be transformed
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into a consistent estimator Γ̂G with desired extremal graph structure. When the
graph is unknown, structure learning methods Ĝ exist that recover the underlying
graph consistently. Our completion then produces the first estimator Γ̂Ĝ that jointly
estimates the graph structure and the parameter matrix for general graphs G in a
consistent way.

5.1 Matrix completion as likelihood optimization

For a more statistical perspective on the matrix completions considered in the previous
section, we first characterize them as constrained maximum likelihood estimators; see
Uhler (2017) for the Gaussian case. For a variogram matrix Γ ∈ Dd and a connected
graph G = (V,E), we will show that the maximizer of the positive semi-definite
Gaussian log-likelihood

log |Θ|+ + 1
2
tr
(
ΓΘ
)
, (5.1)

under suitable graph constraints, is equal to our completion operator CG from
Definition 4.6 applied to Γ

∣∣
G

. The connection to likelihood estimation for Hüsler–

Reiss distributions arises by choosing for Γ the empirical variogram Γ̂ (Engelke
and Volgushev, 2020). In this case, (5.1) is the (surrogate) log-likelihood of the
Hüsler–Reiss model parameterized in terms of the precision matrix Θ (Röttger et al.,
2021, Section 5.1). Section S.4.1 provides a simple derivation of this. Recall the
notation E = E ∪ {(i, i) : i ∈ V } for E ⊆ E(V ) as well as the map θ and its inverse
in Proposition 3.4.

Proposition 5.1. Let Γ ∈ Dd be a variogram matrix and G = (V,E) a connected
graph. Then CG(Γ

∣∣
G

) = θ−1(ΘG) where ΘG is the unique maximizer of (5.1) over all
Hüsler–Reiss precision matrices Θ ∈ P1

d under the constraint

Θij = 0, ∀(i, j) /∈ E.

We note that the result holds for any variogram matrix Γ, but only for the
empirical variogram Γ̂ there is an interpretation in terms of maximum (surrogate)
likelihood estimation. In practice, solving this optimization provides an alternative
to Corollary 4.8 to compute the graphical completion of a matrix. We leave this
approach for future research.

5.2 Consistency

In order to show consistency results, a useful property of the completion CG is that it
is a continuous mapping from the space D̊G of partially specified variogram matrices
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to the space of variogram matrices D.

Lemma 5.2. The mapping CG from Definition 4.6 is continuous.

This continuity implies that a consistent estimator on the edges of a Hüsler–Reiss
graphical model can be extended to a consistent estimator of the whole parameter
matrix.

Theorem 5.3. Consider a Hüsler–Reiss graphical model with graphical structure

G = (V,E) and variogram matrix Γ. Let
̂̊
Γ be an estimator for Γ

∣∣
G

, which satisfies

diag(
̂̊
Γ) ≡ 0, is symmetric, and is consistent in the sense that for all ε > 0, we have

P
(

max
(i,j)∈E

∣∣∣̂̊Γij − Γij

∣∣∣ < ε

)
→ 1, n→∞. (5.2)

Then with probability tending to one there exists a completion of
̂̊
Γ, that is, P(

̂̊
Γ ∈

D̊G) → 1 as n → ∞. Let Γ̂G = CG(
̂̊
Γ) denote this completion and Θ̂G the corre-

sponding precision matrix (and set both matrices to the zero matrix if the completion

does not yet exist). Then Γ̂G is a consistent estimator for Γ with the correct graph
structure, that is, for all ε > 0,

P
(

max
(i,j)∈V×V

∣∣∣Γ̂Gij − Γij

∣∣∣ < ε

)
→ 1, n→∞,

and Θ̂G
ij = 0 if (i, j) /∈ E.

This result provides the first consistent method to estimate the parameters of a
Hüsler–Reiss distribution on a general graph G = (V,E). Indeed, the only ingredient
that is needed is a consistent estimator of Γ on the edge set E. There are many different
possibilities for such estimators in the literature. A natural and computationally
efficient estimator is the empirical variogram (Engelke et al., 2015; Engelke and
Volgushev, 2020), which for the Hüsler–Reiss distributions is the empirical version of
the parameter matrix Γ. Other proposals include M-estimators (Einmahl et al., 2012,
2016; Lalancette et al., 2021), proper scoring rules (de Fondeville and Davison, 2018)
and likelihood methods. The latter have the advantage that they can incorporate
censoring of components of the data that are not extreme (Ledford and Tawn, 1996;
Wadsworth and Tawn, 2014). Pairwise likelihood methods (Padoan et al., 2010)
reduce the high computational cost of censoring.
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In order to guarantee that even for a fixed sample size n there exists a completion,
it can be advantageous to start with a consistent estimator Γ̂ ∈ D of the entire
parameter matrix Γ. Since Γ̂

∣∣
G
∈ D̊G by definition, Proposition 4.5 ensures that

Γ̂G = CG

(
Γ̂
∣∣
G

)
(5.3)

exists and is a consistent estimator with graph structure G. In larger dimensions
d = |V |, estimating all entries of Γ is often infeasible for any estimator that involves
costly optimization or censoring, and the only option is then the empirical variogram or
estimators based on simple summary statistics such as extremal coefficients (Einmahl
et al., 2018). If the graph G is sparse, then there is an efficient alternative to
estimating every entry of Γ, which requires only estimation on all cliques separately;
see Section S.4.2.

The graph G is in practice often unknown and has to be estimated from the data.
Consistent structure estimation methods for extremal graphs exist for trees (Engelke
and Volgushev, 2020; Hu et al., 2022), and for general graphs based on lasso-type L1

penalization (Engelke et al., 2022b). The latter paper proposes the EGlearn method
and shows, under certain conditions, its sparsistency even in the high-dimensional
case where the dimension may grow with the sample size. More precisely, if G is the
graph implied by the zero entries in the true Θ, and Ĝ = (V, Ê) is the estimated
graph from EGlearn then

P(Ĝ = G)→ 1, n→∞. (5.4)

While they consistently recover a general graph structure, they do not obtain an
estimate of the Γ matrix on the estimated graph structure.

Our theory complements the structure estimation in Engelke et al. (2022b).
In combination, we are now able to estimate jointly any graph structure and the
corresponding Hüsler–Reiss parameter matrix consistently.

Corollary 5.4. Consider a Hüsler–Reiss graphical model with graphical structure
G = (V,E) and variogram matrix Γ. Let Γ̂ be a consistent estimator for Γ and

Ĝ = (V, Ê) a sparsistent estimator of G as in (5.4). If Γ̂Ĝ = CĜ(Γ̂
∣∣
Ĝ

) is the

completion on Ĝ and Θ̂Ĝ its precision matrix, then Γ̂Ĝ is a consistent and sparsistent
estimator for Γ, that is, for all ε > 0,

P
(

max
(i,j)∈V×V

∣∣∣Γ̂Ĝij − Γij

∣∣∣ < ε, Θ̂Ĝ
ij = 0 ∀ (i, j) /∈ E

)
→ 1, n→∞.
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The first statement in the above probability expression guarantees that Γ̂Ĝ is a
consistent estimator of Γ. The second statement guarantees that, with probability
going to one, the estimator Γ̂Ĝ is a graphical model with respect to the true graphical
structure G.

6 Application

Extreme value analysis is often used to evaluate the risk of climate extremes such
as heatwaves (e.g., Reich et al., 2014) or floods (e.g., Asadi et al., 2015; Cooley and
Thibaud, 2019), and our methods are perfectly suitable for such data. In order to
extend the range of possible applications, we illustrate our methodology on a different
type of data, namely large flight delays in the U.S. flight network. Excessive delays
have a variety of negative effects, ranging from inconveniences for passengers and
congestion of critical airport infrastructure to financial losses for involved parties.

6.1 Data

The United States Bureau of Transportation Statistics1 provides records of domestic
flights in the U.S. that are operated by major carriers (at least 1% market share) at
airports accounting for at least 1% of domestic enplanements. We use this data from
2005 to 2020, and filter it by selecting only airports from the contiguous U.S. with a
minimum of 1000 flights per year. For each airport, we compute the accumulated
(positive) flight delays (in minutes) on a given day. Considering that there are a
few days for which no data are available, this results in a data set with n = 5601
observations x1, . . . , xn ∈ Rd of daily accumulated flight delays for the 16 years
at d = 170 airports. This pre-processed data set is available in the R-package
graphicalExtremes (Engelke et al., 2022a).

6.2 Exploratory analysis

The models studied in this paper are suitable for variables where the largest observa-
tions are asymptotically dependent. For our data set, such dependence between the
largest daily accumulated flight delays at different airports may result from several
factors. For instance, if there are large delays at a hub in the network, this may induce
delays at other airports that have frequent connections to that hub. On the other

1https://www.bts.dot.gov/browse-statistical-products-and-data/bts-publications/

airline-service-quality-performance-234-time
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hand, independently of flight connections, meteorological events such as severe storms
or heavy snowfall can cause simultaneous delays at airports in the same geographical
area.

In order to find groups of airports that have a risk of simultaneous large delays, we
first run a k-medoids clustering (Kaufman and Rousseeuw, 2009), where similarities
are defined in terms of the strength of extremal dependence. Clustering is frequently
used in the extreme value literature to identify regions that are homogeneous in terms
of dependence properties (e.g., Bernard et al., 2013; Saunders et al., 2020; Vignotto
et al., 2021). We follow these approaches but use a different dissimilarity measure,
namely the empirical version χ̂ij(p) of the extremal correlation (2.1) at probability
level p = 0.85. The clusters and subsequent results are stable with respect to the exact
probability level in a range of about p ∈ (0.8, 0.95), guaranteeing both a sufficiently
high threshold and enough exceedances.

The resulting clusters are shown in Figure 5, for an ad-hoc choice of six clusters.
Even though no information on the locations of the airports is used, the resulting
groups of airports exhibit strong geographical characteristics. This confirms our
initial intuition on the importance of flight connectivity and meteorological influences.
Figure S.2 shows that the extremal dependence of large delays is much stronger within
the identified clusters than between different clusters. In the following we focus on the
cluster in the South around Texas; similar analyses can be conducted for the other
clusters. The existence of a (regular) flight connection between two airports defines a
natural graph, which we denote by Gflight and show in the left panel of Figure 6.

6.3 Graphical modeling

The flight graph Gflight is based on domain knowledge and is certainly a good first
candidate for statistical modeling. It is however not necessarily the best graph in
terms of conditional independence properties. We therefore also consider extremal
graph structures estimated in a data-driven way. In order to evaluate the fitted models
out-of-sample, all rows containing missing values were removed, and the data set was
split into a training set with 1974 observations (2005-01-01 to 2010-12-31) used for
estimation, and a validation set with 2508 observations (2011-01-01 to 2020-12-31)
used for selection of tuning parameters and model comparisons. As a base estimator,
we use in the following the empirical extremal variogram Γ̂ computed at probability
threshold p = 0.85 on the training data set.

The first, sparse graph is obtained as the minimum spanning tree with weight
matrix Γ̂ as proposed in Engelke and Volgushev (2020); this tree is denoted by T̂ and
is shown in the center of Figure 6. Alternatively, the empirical extremal correlation
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Figure 5: Clusters of airports in the contiguous U.S., using k-medoids clustering with
empirical extremal correlation as dissimilarity measure. Two airports in a cluster
are connected by edges if they are connected by (regular) flights. The smallest three
clusters are shown together in the bottom-right panel, with airports in the same
cluster represented by the same geometric shape. The size of an airport is proportional
to the average number of daily flights at the location.
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Figure 6: The flight graph Gflight (left), the estimated tree graph T̂ (center), and the
graph estimated using EGlearn, Gρ, for ρ∗ = 0.1 (right).

χ̂ as weight matrix can also recover an underlying tree (Engelke and Volgushev, 2020;
Hu et al., 2022).

As a second family of estimated extremal graph structures Ĝρ we apply the
EGlearn algorithm (Engelke et al., 2022b) to the flights data set with different
regularization parameters ρ ≥ 0. The latter governs the amount of sparsity in
the estimated graph, where larger ρ values correspond to sparser graphs. EGlearn

produces a whole sequence of estimated graphical models, but without estimates of
the corresponding parameter matrices.

We apply our methodology to fit a multivariate generalized Pareto distribution
with Hüsler–Reiss distribution and extremal graphical structure given by different
graphs G. As in the structure estimation, we focus on the empirical variogram Γ̂ as
base estimator. Applying the completion operator CG to the restriction of Γ̂ to a
graph G as in (5.3), we obtain graph structured estimators Γ̂Gflight , Γ̂T̂ and Γ̂Ĝρ for the
flight graph, the extremal tree and the ρ-regularized general graph, respectively. We
note that previously, only parameter estimation on the tree was possible through the
tree metric property (4.3), but not on the more general graphs. Our theory therefore
produces a full statistical model that can be used for model assessment, simulation
and interpretation.

A first benefit of our approach is that it complements structure learning approaches
such as EGlearn by allowing for a data-driven selection of the optimal amount of
sparsity. This can be done comparing the Hüsler–Reiss log-likelihood values of
the different parameter matrices Γ̂Ĝρ , for instance using AIC or BIC if applied
to the training data set. Instead, we directly compare the log-likelihood values
on the validation set and plot them against the tuning parameter ρ in Figure 7.
The likelihood is computed based on the Hüsler–Reiss Pareto density and since we
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Figure 7: Left: Log-likelihood based on the validation data set for different regular-
ization parameters ρ. Horizontal lines indicate the log-likelihoods of the complete
graph (465 edges, dashed line) and the flight graph (151 edges, dotted line). The
log-likelihood of the tree graph (30 edges) is −48681 and not shown. Right: Evolution

of Θ̂Ĝρ entries. Only entries that vanish at ρ = 0.5 are shown. Both plots show the
number of edges in the corresponding graph on top.

are mainly interested in the dependencies between different airports, the univariate
marginals were normalized to the standard Pareto scale using the empirical distribution
functions; Figure S.3 shows the univariate shape parameters before normalizing. The
best fitting model on the independent validation data set comes from EGlearn at
ρ∗ = 0.1, and the corresponding graph with 139 edges is shown on the right-hand
side of Figure 6. The flight graph performs significantly worse, and the tree seems
to be too sparse. The Hüsler–Reiss precision matrix defined in Section 3.2 can be
used to track how sparsity is induced in the EGlearn algorithm. Figure 7 shows the
entries of the precision matrices Θ̂Ĝρ as a function of the tuning parameter ρ. Similar
to a usual lasso, we observe that they tend to zero in a possibly non-monotone way.

In terms of model assessment, we can use the completed variogram matrices to
evaluate the goodness of fit. Figure 8 compares the values of the empirical extremal
variogram Γ̂ to the variogram estimates implied by the fitted graphical model Γ̂G for
graph G being the flight graph, the extremal minimum spanning tree and the optimal
EGlearn graph, respectively. Here we use the corresponding extremal correlations
obtained as χ = 2− 2Φ(

√
Γ/2) for a Hüsler–Reiss distribution with variogram matrix
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Figure 8: Extremal correlations based on the empirical and fitted extremal variogram
for the flight graph Gflight (left), the estimated tree graph T̂ (center), and the graph
estimated using EGlearn, Gρ, for ρ∗ = 0.1 (right).

Γ, where Φ is the standard normal distribution function and all functions are applied
componentwise. The results confirm the likelihood considerations and, in particular,
a tree model is clearly not flexible enough to model all extremal dependencies in this
data set.
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Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: Between
independence and complete dependence. Statist. Prob. Letters, 7(4):283–286.

Kabluchko, Z., Schlather, M., and de Haan, L. (2009). Stationary max-stable fields
associated to negative definite functions. Ann. Probab., 37(5):2042 – 2065.

Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups in data: an introduction
to cluster analysis, volume 344. John Wiley & Sons.

Kiriliouk, A., Rootzén, H., Segers, J., and Wadsworth, J. L. (2018). Peaks over thresh-
olds modeling with multivariate generalized Pareto distributions. Technometrics,
61:123–135.

Knill, O. (2013). Cauchy–Binet for pseudo-determinants. Linear Algebra Appl., 459.
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SUPPLEMENTARY MATERIAL

S.1 Moore–Penrose inverse and pseudo-determinant

S.1.1 Moore–Penrose inverse

Definition S.1.1. As shown for example in Penrose (1955, Theorem 1), for any
matrix A ∈ Rn×m there exists a unique matrix B ∈ Rm×n satisfying the equations

ABA = A, (AB)>= AB,

BAB = B, (BA)>= BA.

This solution is called the Moore–Penrose inverse or simply “pseudo-inverse” of A
and is denoted by A+ := B.

Remark S.1.2. The pseudo-inverse is defined in a similar way for matrices with
complex-valued entries, using the conjugate transpose in place of the transpose.

Lemma S.1.3. The pseudo-inverse has the following properties.

(1) (A+)
+

= A

(2)
(
AA>

)+
= (A+)

>
A+ (note that in general (AB)+ 6= B+A+).

(3) AA+ is the orthogonal projection onto the image of A.

(4) Using the singular value decomposition A = UΣV >, the pseudo-inverse can be
computed as A+ = V Σ+U>, with

Σ+ = diag
(
Σ−1

11 , . . . ,Σ
−1
rr , 0, ...0

)
, r = rank(A).

Proof. The first statement follows from the interchangeability of A and B in Defini-
tion S.1.1. The second statement can be proven by substituting the left- and right-hand
side in the defining equations from Definition S.1.1. The last two statements are from
Golub and Van Loan (1996, Section 5.5.4).

Lemma S.1.4. Let A and B be two symmetric matrices of equal size and let PA
denote the orthogonal projection matrix onto the image of A. Then the following two
conditions are sufficient and necessary for A = B+:

32



• ImB ⊆ ImA (or equivalently kerA ⊆ kerB);

• AB = PA.

Proof. In the first bullet point, the equivalence of ImB ⊆ ImA and kerA ⊆ kerB
follows from the identity (kerM)⊥ = ImM for symmetric matrices M .

For A = B+, the two conditions follow directly from Lemma S.1.3; note that by
the lemma and by symmetry of A and B, we have AB = (AB)>= B>A>= BA.

Conversely, using the fact that the projection matrix PA is symmetric, the defining
equations from Definition S.1.1 follow from the two conditions as follows:

AB = PA = (PA)>= (AB)>,

BA = B>A>= (AB)>= AB = A>B>= (BA)>,

ABA = PAA = A,

BAB = (AB)B = PAB = B,

where we used ImB ⊆ ImA in the last step.

S.1.2 Pseudo-determinant

Definition S.1.5 and Lemma S.1.6 are from Knill (2013, Section 2) and only adapted
in scope and notation for their use here.

Definition S.1.5. Let A be a square matrix with eigenvalues {λi}. Then its pseudo-
determinant, denoted by |A|+, is defined as the product of its non-zero eigenvalues:

|A|+ =
∏

λi 6=0

λi.

If all eigenvalues are zero, |A|+ = 1.

Lemma S.1.6. Let A,B ∈ Rd×d.

(1) If A is similar to B, then |A|+ = |B|+.

(2) If A is invertible then |A|+ = |A|.

(3)
∣∣A>
∣∣
+

= |A|+.

(4) For a normal matrix A, it holds that |A+|+ = 1/ |A|+.

(5)
∣∣A>B

∣∣
+

=
∣∣AB>

∣∣
+

=
∣∣BA>

∣∣
+

.
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(6) |A|+ 6= 0.

(7) If A is block diagonal, i.e., if A = Diag(A1, . . . , Ak), then |A|+ =
∏

i |Ai|+.

Lemma S.1.7. Let V be a linear subspace of Rd and put

QV =
{
A ∈ Rd×d : A = A>, kerA = V

}
.

Then for any A1, A2 ∈ QV ,

|A1A2|+ = |A1|+ · |A2|+ .

Furthermore, for a sequence Ai ∈ QV , i ∈ N, with limi→∞Ai = A0 ∈ QV ,

lim
i→∞
|Ai|+ = |A0|+ .

Proof. Let k = dimV , l = d − k, and let {b1, . . . , bd} be a basis of Rd with V =
span(b1, . . . , bk). Let M denote the corresponding basis change matrix and Bi =
M−1AiM for i ≥ 0. By construction, Bi is of the form

(
0k×k 0k×l
0l×k B′i

)

with B′i ∈ Rl×l invertible and 0a×b ∈ Ra×b equal to zero in all entries. Using the
properties from Lemma S.1.6 it follows that

|Ai|+ = |Bi|+ = |0k×k|+ · |B′i|+ = |B′i| .

Since M is chosen independently of i,

|A1|+ · |A2|+ = |B′1| · |B′2|
= |B′1B′2|
= |B1B2|+
=
∣∣MB1M

−1MB2M
−1
∣∣
+

= |A1A2|+ .

Furthermore, continuity of matrix multiplication implies that B0 = limi→∞Bi and
hence limi→∞B′i = B′0. Using the continuity of the regular determinant, it follows
that

lim
i→∞
|Ai|+ = lim

i→∞
|B′i| = |B′0| = |A0|+ .
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S.2 Graph theory

All graphs considered in this paper are undirected, simple graphs without loops. A
graph G = (V,E) is defined by a set of vertices V = {1, . . . , d} and a set of edges
E ⊆ V × V . Since we only consider undirected graphs without loops, the set of all
possible edges is E(V ) := (V × V ) \ {(i, i) : i ∈ V }, and it must always hold that
(i, j) ∈ E ⇒ (j, i) ∈ E. The set of loops from each node to itself is denoted as
DV = {(i, i) : i ∈ V }. These loops are no edges in the sense defined above, but can
be useful when identifying edges and subgraphs with matrix entries and submatrices,
respectively. For a set of edges E ⊆ E(V ), the inclusion of the loops from each node
to itself is denoted as E = E ∪DV .

A graph is called complete if E = E(V ). A subgraph G′ = (V ′, E ′) of G is a graph
consisting of a subset of vertices V ′ ⊆ V and a subset of E such that all endpoints
lie in V ′, i.e., E ′ ⊆ E ∩ E(V ′). If E ′ is maximal (i.e., the latter set inclusion is an
equality), G′ is called the subgraph induced by V ′. A subset of vertices C ⊆ V is
called complete if its induced subgraph is a complete graph. A subset of vertices is
called a clique if it is complete and not a strict subset of another complete subset.

The neighborhood of a vertex i is defined as δ(i) = {j ∈ V : (i, j) ∈ E}. The
neighborhood of a vertex including the vertex itself is denoted as δ̄(i) := δ(i) ∪ {i}.
A path of length m between vertices i and j is a sequence of m+ 1 distinct vertices
p0, p1, . . . , pm such that p0 = i, pm = j, and (pi−1, pi) ∈ E for all i = 1, . . . ,m. If
there exists a path between two vertices, they are said to be connected. A graph is
connected if any two of its vertices are connected. A cycle of length m is a sequence
of m distinct vertices p1, . . . , pm such that (pm, p1) ∈ E and (pi−1, pi) ∈ E for all
i = 2, . . . ,m. A chord is an edge between two vertices of a cycle that is not itself part
of the cycle.

Definition S.2.1 (Decomposable Graph). A decomposable graph is a graph in which
all cycles of four or more vertices have a chord.

A useful property of decomposable graphs is the following running intersection
property (see e.g., Lauritzen, 1996).

Lemma S.2.2 (Running intersection property). For a decomposable graph G, the
set of cliques C = {C1, . . . , CN} can be ordered such that the running intersection
property is fulfilled, that is, for all i = 2, . . . , N there exists k(i) ∈ {1, . . . , i− 1} such
that

Di := Ci ∩ (C1 ∪ . . . ∪ Ci−1) ⊆ Ck(i).

The multiset D = {D2, . . . , DN} is independent of the chosen ordering of C and its
elements are called separators. For connected graphs, all separators are non-empty.
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Definition S.2.3 (Block graph). A block graph is a decomposable graph in which all
non-empty separators consist of single vertices:

|D| ∈ {0, 1} ∀D ∈ D.

Definition S.2.4 (Tree Graph). A tree graph or a tree is a connected graph that does
not contain any cycle.

Remark S.2.5. For d ≥ 2, the set of trees is identical to the set of connected block
graphs in which all cliques consist of exactly two vertices.

Definition S.2.6 (Graph Laplacian). For an undirected graph G = (V,E) the graph
Laplacian matrix L ∈ Rd×d is defined by

Lij =





deg(i) i = j,
− 1 (i, j) ∈ E,
0 otherwise,

where the degree deg(i) of a vertex i is defined as |δ(i)|.

S.3 The Hüsler–Reiss exponent measure density

Using the general representation in (3.10), we recover different forms of the Hüsler–
Reiss density from the literature. Canonical unit vectors are a natural choice for
the vector v. Setting v = ek for some k ∈ V , yields the density representation in
Definition 3.1. The corresponding stochastic representation (3.11) results in

Y (k) = W (k) +R · 1,

where Y (k) is the random vector used in Section 2.2 and W (k) = Wek is called the
kth extremal function (Dombry et al., 2013). This stochastic representation coincides
with Expression (28) of Engelke and Hitz (2020). The random vector W (k) is used for
various purposes including statistical inference (Engelke et al., 2015), exact simulation
(Dombry et al., 2016), and the definition of extremal positive dependence (Röttger
et al., 2021).

Another characterization of the Hüsler–Reiss density is given in Wadsworth and
Tawn (2014), parametrized by a positive definite matrix Σ with a constant diagonal,
as

λ(y; Σ) = cΣ · exp
(
−1

2
y>Ay − y>q

(
1>q
)−1
)
, y ∈ Rd,
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with q = Σ−11 and A = Σ−1 − qq>
(
1>q
)−1

. Notably, it can be verified (e.g., using

Lemma S.1.4) that A = (ΠΣΠ)+ = θ ◦ γ(Σ), i.e., A is equal to our precision matrix
Θ for the positive semi-definite covariance matrix ΠΣΠ ∈ P1

d .
Likewise, a slightly more general definition of the Hüsler–Reiss exponent measure

density is given by Ho and Dombry (2019, Definition 3.1) as

λ(y; a,Q, l) = ca,Q,l · exp
(
−1

2
y>Qy + l>y

)
,

with some a ∈ (0,∞)d, Q ∈ P1
d , and l>1 < 0, defined for y ∈ Rd, and the correspond-

ing multivariate generalized Pareto distribution supported on
{
y ∈ Rd : exp(y) 6≤ a

}
.

Using this definition, the authors show an exponential family property of the Hüsler–
Reiss Pareto model. Restricting the parameters to a = 1 and l = −(rΘ + ed) yields
an equivalent parameter space to the one spanned by the set of conditionally negative
definite matrices in Definition 3.1. The matrix Q is identical to the precision matrix
Θ, possibly allowing for an easier interpretation of the exponential family results in
the framework of extremal graphical models. Kiriliouk et al. (2018, Section 7.2) give
a definition that is equivalent to the one above, restricted to a = 1 and l>1 = −1.

To allow for a comparison of the parametrizations in (3.9) and (3.10) with the
general definition in Ho and Dombry (2019), we suggest the following parametrization
of their (general) Hüsler–Reiss exponent measure density.

Definition S.3.1. Let Θ ∈ P1
d , α > 0, and r ∈ {1}⊥. For y ∈ Rd define the general

Hüsler–Reiss exponent measure density as

λ(y; Θ, α, r) ∝ exp
(
−1

2
y>Θy − αy>ed + y>r

)
,

or equivalently

λ(y; Θ, α, r) ∝ exp
(
−αy>v

)
· exp

(
−1

2
‖y − µv‖2

Θ

)
,

with v ∈ Rd, satisfying v>1 = 1, and µv = Θ+(r + αv).

S.4 Details on matrix completion

S.4.1 Matrix completion as likelihood optimization

For a Hüsler–Reiss distribution Y with parameter matrix Γ, the random vectors Y (k),
k ∈ V , defined in Section 2.2 satisfy

(Y
(k)
i − Y (k)

k )i 6=k ∼ N
(
−1

2
diag(Σ(k)),Σ(k)

)
; (S.4.1)
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this follows from representation (3.11) and Corollary 3.7 with v = ek (see also Engelke
et al., 2015). For an independent sample of size n from Y , one can obtain samples
from this (d− 1)-dimensional normal distribution by selecting only data with Yk > 1
and following (S.4.1). We denote the corresponding empirical covariance matrix by

Σ̂(k), augmented by a kth row and column of zeros to make a d× d matrix. Ignoring
the information on the parameter matrix Γ in the mean vector, the (surrogate)
log-likelihood of this model can be written in terms of our Hüsler–Reiss precision
matrix Θ as

L(Θ; Σ̂(k)) ∝ log |Θ|+ − tr
(

Σ̂(k)Θ
)
, (S.4.2)

where | · |+ is the pseudo-determinant. Setting Γ̂(k) = γ(Σ̂(k)) gives a nonparametric

estimator of Γ. By Proposition 3.3 it holds that Σ̂(k) = Π(−1
2
Γ̂(k))Π and therefore

the cyclic permutation property of the trace operator together with the fact that
ΘΠ = ΠΘ = Θ for any Θ ∈ P1

d shows that the right-hand side of (S.4.2) is equal to

log |Θ|+ + 1
2
tr
(
ΓΘ
)
,

with Γ = Γ̂(k). In order to use all data in the sample, we can consider this likelihood
with Γ equal to a combined version of the variogram estimators over all k, defined
as Γ̂ := d−1

∑d
k=1 Γ̂(k) and called the empirical variogram (Engelke and Volgushev,

2020).
A natural way to obtain a graphical model is therefore to maximize this surrogate

Hüsler–Reiss likelihood over Θ ∈ P1
d under the constraint of a graph-structured

precision matrix. As shown in Proposition 5.1, solving this optimization problem
corresponds to our completion operator CG from Definition 4.6.

S.4.2 Estimation strategy for sparse graphs

Let C be the collection of all cliques C ⊆ V of the graph G = (V,E) and suppose

that for every C ∈ C, Γ̂C is a consistent estimator of the entries Γij for i, j ∈ C.

Note that Γ̂C can be computed using information only from the components in C,
which reduces the computational cost drastically if the cliques are small, especially if
censoring is used. Since the cliques are overlapping on the separator sets, we need

to combine different estimators to obtain a partial variogram matrix
̂̊
Γ ∈ R̊d×d on

the whole graph. We do this by averaging the estimators on the intersections. Let
C(i,j) = {C ∈ C : i, j ∈ C} denote the set of all cliques containing the edge (i, j) ∈ E
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and put

̂̊
Γij =





“?” (i, j) /∈ E,
1∣∣C(i,j)

∣∣
∑

C∈C(i,j)

(
Γ̂C

)
ij

(i, j) ∈ E.

This partial variogram estimator is clearly consistent for Γ
∣∣
G

as in (5.2), since it is

an average of consistent estimators. The completion Γ̂G = CG(
̂̊
Γ) from Corollary 5.4

is then a consistent estimator of Γ with correct graph structure G. For fixed sample

size n, the estimator
̂̊
Γ is not guaranteed to be a valid (partial) variogram matrix;

this is the price to pay for the more efficient estimation using only information within

each clique, and by Theorem 5.3, the probability of
̂̊
Γ being invalid converges to zero

for n→∞.
A natural question is whether it is possible to replace the arithmetic mean by

another function that guarantees a valid partial variogram. The following example
shows that this is not possible, as long as entries that belong to only a single clique
are not altered, as well.

Example S.4.1. Let

Γ̊ =




0 1 16 ?
1 0 x 1
16 x 0 1
? 1 1 0


 .

Then there are x1, x2 ∈ R such that with x = x1 the principal submatrix Γ̊
∣∣
{1,2,3} is

conditionally negative definite, and with x = x2 the principal submatrix Γ̊
∣∣
{2,3,4} is

conditionally negative definite, but there exists no x such that both submatrices are
conditionally negative definite at the same time.

Proof. Gower (1982) shows that Γ can be interpreted as a Euclidean distance matrix
with Γij = d2

ij, where dij, for i, j ∈ {1, . . . , d}, is the pairwise distance between the
points generating Γ (see also Section S.5.4.3). The triangle inequality then requires
9 ≤ x1 ≤ 25 and 0 ≤ x2 ≤ 4, which can be satisfied for each submatrix but not
simultaneously for a single value of x.
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S.5 Proofs

S.5.1 Proof of Proposition 3.3

Before proving the Proposition we establish some auxiliary results. In the following,
for a given Γ ∈ Dd we write Σ = Π

(
−1

2
Γ
)
Π. We assume that the matrix S ∈ Rd×d

satisfies ΠSΠ = Σ, the matrix S not necessarily being symmetric. Lemma S.5.8
shows that this is in fact a slightly weaker assumption than γ(S) = Γ, which is used
in the Proposition. Furthermore, for any t ∈ R we introduce the abbreviation

Σ[t] = t11>+ S.

Lemma S.5.1. The matrix Σ is symmetric and positive semi-definite, and its kernel
is span({1}).

Proof. Since Π = Id − d−111> is the projection matrix onto the subspace orthogonal
to 1, it follows that Σ1 = Π

(
−1

2
Γ
)
(Π1) = 0. Hence, span({1}) ⊆ ker Σ. Next,

consider any v /∈ span({1}), and let w := Πv. This w satisfies w 6= 0 and w ⊥ 1,
hence

v>Σv = v>
(
Π
(
−1

2
Γ
)
Π
)
v

= −1
2
w>Γw

> 0,

because of the conditional negative definiteness in the definition of a variogram matrix
in (3.1). Symmetry follows from the symmetry of Γ and Π.

Lemma S.5.2. There exists t0 ∈ R such that Σ[t] is invertible for all t 6= t0. Specifi-
cally, t0 = −(1>S−11)−1 if S is invertible and t0 = 0 otherwise.

Proof. To prove the invertibility of Σ[t] for t 6= t0 consider the following two cases.
Case 1: S is invertible. Let v0 = S−11. Then 1>v0 6= 0, because otherwise, if

1>v0 = 0, then v0 would be orthogonal to the kernel of Σ, and we would have Πv0 = v0,
and therefore

0 6= Σv0 = ΠSΠv0 = ΠSv0 = Π1 = 0,

a contradiction. Next, let t0 = −(1>v0)
−1. Consider t 6= t0 and suppose that Σ[t] is
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singular, i.e., there exists v ∈ Rd \ {0} such that 0>= v>
(
t11>+ S

)
. Then

0 = v>
(
t11>+ S

)
v0

= tv>11>v0 + v>Sv0

= t
(
v>1
)(

1>v0

)
+
(
v>1
)

=
(
v>1
)(
−t · t−1

0 + 1
)
.

For t 6= t0, the second factor cannot be zero, so it must hold that 1>v = 0. However,
this leads to the contradiction

0 =
(
t11>+ S

)
v = Sv 6= 0.

Furthermore, it holds that

Σ[t0]v0 =

(
S − 11>

1>S−11

)
S−11 = 1− 1 = 0.

Case 2: S is singular. Then S must be of rank d−1, since the rank of Σ = ΠSΠ is
d− 1 by Lemma S.5.1. Let v0 6= 0 be such that kerS = span({v0}). Then, v0 /∈ {1}⊥,
because otherwise

0 6= Σv0 = ΠSΠv0 = ΠSv0 = 0.

Furthermore, 1 /∈ ImS, because otherwise there must be a vector u /∈ span({v0}),
such that Su = 1. Then, (ΠS)v0 = (ΠS)u = 0, implying that the rank of ΠSΠ is at
most d− 2, which is a contradiction.

Setting t0 := 0, and using ImS = SRd = S({1}⊥ ⊕ v0R) = S{1}⊥, the image of
Σ[t] for t 6= t0 can then be checked to be

Im Σ[t] = Σ[t]Rd

= Σ[t]
(
{1}⊥ ⊕ v0R

)

=
(

Σ[t]{1}⊥
)
⊕
(
Σ[t]v0R

)

=
(
S{1}⊥

)
⊕
(
t11>v0R

)

= ImS ⊕ 1R
= Rd,

implying that Σ[t] is invertible. Again, it holds that Σ[t0]v0 = Sv0 = 0.

41



Lemma S.5.3. Σ[t] is positive definite (not necessarily symmetric) for all t > t0.

Proof. A matrix A ∈ Rd×d is positive (semi-)definite if and only if its symmetric part
Ǎ = 1

2
(A+A>) is so; indeed, x>Ax = x>A>x = x>Ǎx for any x ∈ Rd. The symmetric

part of Σ[t] is Σ̌[t] = 1
2
(Σ[t] + (Σ[t])>) = t11>+ Š where Š = 1

2
(S+S>) is the symmetric

part of S. Further, since Σ = Π(−1
2
Γ)Π is symmetric, the matrix S ∈ Rd×d satisfies

ΠSΠ = Σ if and only if ΠS>Π = Σ and thus if and only if ΠŠΠ = Σ. Hence, to show
that Σ[t] is positive definite for t > t0, we can without loss of generality assume S is
symmetric (or more precisely, replace S by its symmetric part).

So assume S is symmetric and let v0 be the vector from the proof of Lemma S.5.2.
First, we show that Σ[t0] is positive semi-definite; to do so, it is sufficient to show that
its non-zero eigenvalues are positive. To this end, recall that Σ[t0]v0 = 0 and consider
an eigenvector v1 6∈ span({v0}) of Σ[t0] with eigenvalue α1 6= 0. The vector

u =
(
1>v0

)
v1 −

(
1>v1

)
v0

satisfies u ⊥ 1 and thus Πu = u. Moreover, since 1>v0 6= 0, it follows that u 6= 0.
Hence, since Γ is conditionally negative definite and since v0 and v1 are orthogonal
(as eigenvectors of the symmetric matrix Σ[t0] associated to distinct eigenvalues), we
have

0 < u>
(
−1

2
Γ
)
u = u>Π

(
−1

2
Γ
)
Πu = u>Su = u>Σ[t0]u

=
(
1>v0

)2‖v1‖2α1

implying α1 > 0, as required. A similar argument shows that Σ[t0] has rank d − 1:
otherwise, we could find an eigenvector v1 6∈ span({v0}) of Σ[t0] orthogonal to v0 with
eigenvalue 0 as well, and this would lead to a contradiction by the same calculation
as above. For t > t0, the matrix Σ[t] is invertible by Lemma S.5.2, and since it is the
sum of the two positive semi-definite matrices Σ[t0] and (t− t0)11>, it is also positive
semi-definite and hence positive definite.

Lemma S.5.4. The limit limt→∞(Σ[t])−1 exists, is symmetric, and its kernel contains
1.

Proof. To prove the existence and claimed properties of limt→∞(Σ[t])−1, let {v1, . . . , vd−1}
be a basis of {1}⊥ in Rd. Recall from the proof of Lemma S.5.3 that Σ[t0] has rank
d− 1, and let ṽ0 be its left null vector, i.e., ṽ>0Σ[t0] = 0>. Repeating the arguments
in the proof of Lemma S.5.2 for S̃ = S> shows that ṽ>01 6= 0. Define the matrices
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W, W̃ ∈ Rd×d and V ∈ Rd×(d−1) by

V = (v1, . . . , vd−1)

W = (v0, v1, . . . , vd−1)

W̃ = (ṽ0, v1, . . . , vd−1)

Note that ΠV = V . Then

W̃>11>W =

(
c 0>

0 00>

)
,

W̃>Σ[t0]W =

(
0 0>

0 C

)
,

for some constant c 6= 0 and C ∈ R(d−1)×(d−1) satisfying

C = V >Σ[t0]V

= V >ΠΣ[t0]ΠV

= V >ΣV,

which is symmetric positive definite, since Σ is symmetric positive semi-definite with
kernel span({1}). Hence, using Σ[t] = (t− t0)11>+ Σ[t0], we have

Σ[t] = (W̃>)−1

(
c(t− t0) 0>

0 C

)
W−1,

=⇒
(
Σ[t]
)−1

= W

(
c−1(t− t0)−1 0>

0 C−1

)
W̃>,

=⇒ lim
t→∞

(
Σ[t]
)−1

= W

(
0 0>

0 C−1

)
W̃>.

The latter matrix is symmetric since W and W̃ differ only in the first column, and
since vj ⊥ 1 for all j = 1, . . . , d− 1, its kernel contains 1.

Lemma S.5.5. For t > t0, let Θ[t] := (Σ[t])−1. Then

Σ+ = lim
t→∞

Θ[t].

Proof. We will check the two criteria in Lemma S.1.4. Since Π = Id − d−111> and
since the vector 1 belongs to the kernel of the symmetric matrix limt→∞Θ[t], we have
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Π limt→∞Θ[t] = limt→∞Θ[t] and thus

Σ lim
t→∞

Θ[t] = ΠSΠ lim
t→∞

Θ[t]

= Π lim
t→∞

SΘ[t]

= Π lim
t→∞

(
S + 11>t− 11>t

)(
S + 11>t

)−1

= Π − lim
t→∞

Π11>t
(
S + 11>t

)−1

= Π.

Since Σ = ΠSΠ, it follows that Im Π = Im Σ and thus that Π is the projection matrix
onto the image of Σ. Further, the results from Lemma S.5.1 and Lemma S.5.4 yield

ker Σ = span({1}) ⊆ ker lim
t→∞

Θ[t].

Hence, the claimed equality follows from Lemma S.1.4 with A = Σ and B =
limt→∞Θ[t].

Lemma S.5.6. For Θ from Definition 3.2 it holds that

lim
t→∞

(
t11>− 1

2
Γ
)−1

= Θ.

Proof. For d = 2, all valid variogram matrices are of the form Γ11 = Γ22 = 0 and
Γ12 = Γ21 =: η > 0, and the expressions can directly be checked to be equal: we have
Σ(1) = Σ(2) = γ and

(
t11>− 1

2
Γ
)−1

=

[
t t− 1

2
η

t− 1
2
η t

]−1

=
1

t2 − (t− 1
2
η)2

[
t −t+ 1

2
η

−t+ 1
2
η t

]

=
1

1
2
η(2t− 1

2
η)

[
t −t+ 1

2
η

−t+ 1
2
η t

]

→ 1
1
2
η

[
1
2
−1

2

−1
2

1
2

]
=

[
1/η −1/η
−1/η 1/η

]
= Θ, t→∞.

For d ≥ 3, write V = {1, . . . , d}, consider Σ[t] = t11>− 1
2
Γ (which is positive

definite for large enough t), let Y [t] ∼ N (0,Σ[t]), and let Y [t,k] be the random vector Y [t]

conditioned on the event {Y [t]
k = yk} for some yk ∈ R. Then the (d− 1)-dimensional

44



random vector Y
[t,k]
V \{k} = (Y

[t,k]
i )i∈V \{k} is multivariate normal with covariance matrix

Σ[t,k] given by

Σ[t,k] = Σ
[t]
\k − Σ

[t]
·,k

(
Σ

[t]
k,k

)−1

Σ
[t]
k,·

=
(
11>t− 1

2
Γ\k
)
−
(
1t− 1

2
Γ·,k
)1

t

(
1>t− 1

2
Γk,·
)

= 11>t− 1
2
Γ\k − 11>t+ 1

2
1Γk,· +

1
2
Γ·,k1

>+
1

4t
Γ·,kΓk,·

= 1
2

(
1Γk,· + Γ·,k1

>− Γ\k
)

+ o(1)

= Σ(k) + o(1), t→∞,

with Σ(k) as in Definition 3.1. Since Σ(k) is positive definite, so is Σ[t,k] for sufficiently
large t, and the respective precision matrices satisfy

Θ[t,k] := (Σ[t,k])−1 −→ (Σ(k))−1 =: Θ(k), t→∞.

Recall Θ[t] = (Σ[t])−1. Classical properties of the Schur complement of a block matrix
(see, e.g. Rue and Held, 2005, Theorem 2.5) imply

Θ[t,k] = (Θ[t])(V \{k})×(V \{k})

and hence

Θ
[t]
ij → Θ

(k)
ij , i, j 6= k, t→∞.

Since Θ is defined by Θij = Θ
(k)
ij , this implies

lim
t→∞

(
t11>− 1

2
Γ
)−1

= Θ.

Proof of Proposition 3.3. Combining the results above yields

Θ = lim
t→∞

(
t11>− 1

2
Γ
)−1

(Lemma S.5.6)

=
(
Π
(
−1

2
Γ
)
Π
)+

(Lemma S.5.5)

= (ΠSΠ)+ (Lemma S.5.8)

= lim
t→∞

(
t11>+ S

)−1
. (Lemma S.5.5)

Using the invertibility of the map that sends a matrix to its Moore–Penrose inverse,
the equality Θ =

(
Π
(
−1

2
Γ
)
Π
)+

immediately implies that ΠSΠ = Π
(
−1

2
Γ
)
Π is a

necessary condition for (ΠSΠ)+ = Θ.
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Lemma S.5.7. Let Γ ∈ Dd, Σ = Π(−1
2
Γ)Π, and Θ = Σ+. For S ∈ Rd×d, we have

ΠSΠ = Σ if and only if

ΘSΘ = Θ. (S.5.1)

Proof. First, suppose ΠSΠ = Σ = Θ+. Since Π is the projection matrix onto the
image of Σ and thus also onto the image of Θ = Σ+ (see proof of Lemma S.5.5),

ΘSΘ = ΘΠSΠΘ = ΘΘ+Θ = Θ.

Second, let (S.5.1) be satisfied. Since Θ+Θ = ΘΘ+ is the projection matrix onto
the image of Θ and thus equal to Π, we find

ΠSΠ = Θ+ΘSΘΘ+ = Θ+ΘΘ+ = Θ+ = Σ.

Lemma S.5.8. Let Γ ∈ Dd and Σ = Π(−1
2
Γ)Π and recall the map γ in (3.2). For

symmetric S ∈ Rd×d, the identity ΠSΠ = Σ is equivalent to

γ(S) = Γ.

Since all Γ ∈ Dd are symmetric and γ(·) preserves (a)symmetry, this Lemma also
shows the following implication:

γ(S) = Γ =⇒ S = S> ∧ ΠSΠ = Π
(
−1

2
Γ
)
Π.

Proof. Recall that

γ(S) = 1 diag(S)>+ diag(S)1>− 2S.

On the one hand, if γ(S) = Γ, then, since Π1 = 0, we get

Σ = Π
(
−1

2
Γ
)
Π = Π

(
−1

2
γ(S)

)
Π = ΠSΠ.

On the other hand, for symmetric S and writing v := Sed with ed = d−11, we have,
by Π = Id − ed1

>= Id − 1e>d and the linearity of γ,

γ(ΠSΠ) = γ
(
Π
(
S − v1>

))

= γ
(
S − 1v>− v1>+ 1e>dv1

>)

= γ(S)− γ
(
1v>+ v1>

)
+ γ
(
1e>dv1

>)

= γ(S),

as diag(1v>) = a = diag(v1>) and thus γ(1v>+ v1>) = 00>∈ Rd×d. It follows that
ΠSΠ = Σ = Π

(
−1

2
Γ
)
Π implies

γ(S) = γ(ΠSΠ) = γ
(
Π
(
−1

2
Γ
)
Π
)

= γ
(
−1

2
Γ
)

= Γ,

since diag(Γ) = 0.
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S.5.2 Proof of Proposition 3.4

Definition S.5.9. The covariance transform γ is defined for arbitrary square matrices
as

γ : Rd×d −→ Rd×d

S 7−→ 1 diag(S)>+ diag(S)1>− 2S.

This definition does not require S to have any special properties but also does not
guarantee many useful properties of γ(S). A more useful mapping can be obtained
by restricting the domain as follows.

Lemma S.5.10. Recall Dd from (3.1). Then γ(R) ⊆ Dd for any R satisfying

R ⊆
{

Σ ∈ Rd×d : Σ = Σ>, Σ p.s.d., ker Σ ∩ {1}⊥ = {0}
}
.

Proof. Let Γ = γ(Σ) for some Σ ∈ R. Then clearly Γ = Γ> and diag(Γ) = 0.
Moreover, for 0 6= v ∈ {1}⊥, we have

v>Γv = v>γ(Σ)v = v>(1 diag(Σ)>+ diag(Σ)1>− 2Σ)v = −2v>Σv < 0,

implying that Γ ∈ Dd.
Proof of Proposition 3.4. Lemmas S.5.1 and S.5.10 show that σ and γ do indeed map
between Dd and P1

d . Since both maps consist only of elementary matrix operations
and the continuous map diag(·), they are also continuous. Using the intermediate
results from the proof of Lemma S.5.8, it can be seen that

γ(σ(Γ)) = γ
(
Π
(
−1

2
Γ
)
Π
)

= Γ, ∀Γ ∈ Dd,
σ(γ(Σ)) = Π

(
−1

2
γ(Σ)

)
Π = Σ, ∀Σ ∈ P1

d ,

implying that σ is bijective between Dd and Pd with continuous inverse σ−1 = γ.
By Lemma S.1.3, Item (4), the Moore–Penrose inverse of a symmetric positive

semi-definite matrix is again symmetric positive semi-definite. Hence, θ also maps
Dd into P1

d and can be written as the composition ϕ ◦ σ, with

ϕ : P1
d −→ P1

d

Σ 7−→ Σ+.

As shown in Rakočević (1997), the map ϕ is continuous, and hence is a continuous,
idempotent bijection; note that it is surjective since every Σ ∈ P1

d can be written as
Σ = ϕ(ϕ(Σ)). Therefore, θ is also continuous with continuous inverse θ−1 = γ ◦ ϕ.
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S.5.3 Proofs of density expressions

Proof of Proposition 3.6. For k ∈ {1, . . . , d}, let λ(k) denote the density expression
from Definition 3.1 with that specific choice of k. Extending the notation used there,
let

µ̃(k) =
(
−1

2
Γik
)
i=1,...,d

∈ Rd.

Note that

(y − 1yk − µ̃(k))k = 0,

and hence λ(k) can be rewritten as

λ(k)(y; Γ) =
exp(−yk)√

(2π)d−1 |Σ(k)|
exp
(
−1

2
‖y − 1yk − µ̃(k)‖2

Θ

)
.

From Röttger et al. (2021, Lemma 4.4) it follows that the value of the normalizing
constant is independent of the choice of k. Using Θ1 = 0 and applying logarithms,
the above equation becomes

log λ(k)(y; Γ) = c1 − yk − 1
2
‖y − µ̃(k)‖2

Θ, where

c1 = −1
2

log
(

(2π)d−1|Σ(1)|
)
.

Next, let v ∈ Rd be such that 1>v = 1. Then, since the value of λ(k) is the same for
all k ∈ {1, . . . , d}, we find

log λ(y; Γ) =
d∑

k=1

vk log λ(k)(y; Γ)

=
d∑

k=1

vk
(
c1 − yk − 1

2
‖y − µ̃(k)‖2

Θ

)

= c1 − v>y − 1
2

d∑

k=1

vk‖y − µ̃(k)‖2
Θ. (S.5.2)

The last sum can be rewritten as
d∑

k=1

vk‖y − µ̃(k)‖2
Θ = ‖y‖2

Θ +
d∑

k=1

vk〈y,Γ·k〉Θ +
d∑

k=1

vk
∥∥1

2
Γ·k
∥∥2

Θ

= ‖y‖2
Θ + 〈y,Γv〉Θ +

∥∥1
2
Γv
∥∥2

Θ
+ cv

=
∥∥y + 1

2
Γv
∥∥2

Θ
+ cv, (S.5.3)
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with

cv =

(
d∑

k=1

vk
∥∥1

2
Γ·k
∥∥2

Θ

)
−
∥∥1

2
Γv
∥∥2

Θ
.

Moreover, Π
(
−1

2
Γ
)
Π = Σ = Θ+. As Id = Π +ed1

> and 1>v = 1, we have v = Πv+ed
and thus

Π
(
−1

2
Γ
)
v = Π

(
−1

2
Γ
)
(Πv + ed)

= Π
(
−1

2
Γ
)
Πv + Π

(
−1

2
Γ
)
ed

= Θ+v + Θ+Θ
(
−1

2
Γ
)
ed

= Θ+
(
v + Θ

(
−1

2
Γ
)
ed
)

= Θ+(v + rΘ)

yielding
µv = Π

(
−1

2
Γ
)
v. (S.5.4)

Since ΠΘ = ΘΠ = ΘΘ+Θ = Θ, it follows from (S.5.4) that

‖y − µv‖2
Θ =

∥∥y − Π
(
−1

2
Γ
)
v
∥∥2

Θ

=
∥∥y + 1

2
ΠΓv

∥∥2

Θ

=
∥∥y + 1

2
Γv
∥∥2

Θ
. (S.5.5)

Plugging the identities (S.5.3) and (S.5.5) back into the expression for log λ(y; Γ) in
(S.5.2) yields (3.10):

λ(y; Θ) = cΘ,v · exp
(
−y>v

)
· exp

(
−1

2
‖y − µv‖2

Θ

)
,

with
cΘ,v = exp

(
c1 − 1

2
cv
)
.

To prove (3.9) let v = ed and rearrange (3.10) as follows:

λ(y; Θ) = cΘ,ed · exp
(
−y>ed

)
· exp

(
−1

2
‖y − µed‖2

Θ

)

= cΘ,ed · exp
(
−y>ed − 1

2

∥∥y + 1
2
Γed
∥∥2

Θ

)

= cΘ,ed · exp
(
−1

2
y>Θy − y>

(
ed + 1

2
ΘΓed

)
− 1

2

∥∥1
2
Γed
∥∥2

Θ

)

= cΘ · exp
(
−1

2
y>Θy − y>(ed − rΘ)

)
,
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with
cΘ = exp

(
c1 − 1

2
ced − 1

8
‖Γed‖2

Θ

)
.

The expressions for cΘ and cΘ,v can be simplified further. First, since Θ(1) =(
Σ(1)

)−1
,

exp(c1) = (2π)−(d−1)/2|Σ(1)|−1/2 = (2π)−(d−1)/2|Θ(1)|1/2.
By Lemma S.5.11, the diagonal element

∥∥1
2
Γ·k
∥∥2

Θ
=
((
−1

2
Γ
)
Θ
(
−1

2
Γ
))
kk

does not

depend on k ∈ V and is equal to c(Γ) =
∥∥−1

2
Γed
∥∥2

Θ
− e>d

(
−1

2
Γ
)
ed. It follows that

ced = −e>d
(
−1

2
Γ
)
ed.

But then

cΘ = (2π)−(d−1)/2|Θ(1)|1/2 exp
(

1
2
e>d
(
−1

2
Γ
)
ed − 1

2

∥∥−1
2
Γed
∥∥2

Θ

)

= (2π)−(d−1)/2|Θ(1)|1/2 exp
(
−1

2
c(Γ)

)
.

Second, for cΘ,v, note that, again by Lemma S.5.11,

cv = c(Γ)−
∥∥−1

2
Γv
∥∥2

Θ

and thus, since ΘΠ = ΠΘ = Θ,

cΘ,v = (2π)−(d−1)/2|Θ(1)|1/2 exp
(
−1

2
c(Γ) + 1

2

∥∥−1
2
Γv
∥∥2

Θ

)

= cΘ · exp
(

1
2

∥∥−1
2
Γv
∥∥2

Θ

)

= cΘ · exp
(

1
2
‖µv‖2

Θ

)
.

The latter identity can also be found by comparing (3.9) with (3.10): the terms not
depending on y must be equal.

Lemma S.5.11. Let Γ ∈ Dd and let Θ =
(
Π
(
−1

2
Γ
)
Π
)+

. Then

(
−1

2
Γ
)
Θ
(
−1

2
Γ
)

= −1
2
Γ + c(Γ)11> where

c(Γ) = e>d
(
−1

2
Γ
)
Θ
(
−1

2
Γ
)
ed − e>d

(
−1

2
Γ
)
ed.

Since Γ has a zero diagonal, this implies that ΓΘΓ has a constant diagonal.
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Proof. Obviously, it is sufficient to show that the matrix
(
−1

2
Γ
)
Θ
(
−1

2
Γ
)

has constant
diagonal. Recall the definitions Σ = Π

(
−1

2
Γ
)
Π, ed = d−11 and Π = Id − 1e>d =

Id − ed1
>. Since ΠΘ = ΘΠ = Θ, we have

(
−1

2
Γ
)
Θ
(
−1

2
Γ
)

=
(
Π + 1e>d

)(
−1

2
Γ
)
ΠΘ
(
−1

2
Γ
)

= Π
(
−1

2
Γ
)
ΠΘ
(
−1

2
Γ
)

+ 1e>d
(
−1

2
Γ
)
ΠΘ
(
−1

2
Γ
)

= Π
(
−1

2
Γ
)

+ 1e>d
(
−1

2
Γ
)
Θ
(
−1

2
Γ
)

= −1
2
Γ− 1e>d

(
−1

2
Γ
)

+ 1e>d
(
−1

2
Γ
)
Θ
(
−1

2
Γ
)
.

Since ΘΠ
(
−1

2
Γ
)
Π = ΘΣ = Π, we have

1e>d
(
−1

2
Γ
)
Θ
(
−1

2
Γ
)

= 1e>d
(
−1

2
Γ
)
ΘΠ
(
−1

2
Γ
)(

Π + ed1
>)

= 1e>d
(
−1

2
Γ
)
ΘΠ
(
−1

2
Γ
)
Π + 1e>d

(
−1

2
Γ
)
Θ
(
−1

2
Γ
)
ed1

>

= 1e>d
(
−1

2
Γ
)
Π +

(
e>d
(
−1

2
Γ
)
Θ
(
−1

2
Γ
)
ed
)

︸ ︷︷ ︸
scalar

11>

with

1e>d
(
−1

2
Γ
)
Π = 1e>d

(
−1

2
Γ
)
− 1e>d

(
−1

2
Γ
)
ed1

>

= 1e>d
(
−1

2
Γ
)
−
(
e>d
(
−1

2
Γ
)
ed
)

︸ ︷︷ ︸
scalar

11>.

Adding up, we get the stated identity.

Proof of Corollary 3.7. A direct computation shows that Πv is the inverse of Π when
the latter is seen as a linear map from {v}⊥ to {1}⊥; specifically, Π(Πvx) = x for
x ∈ {1}⊥ and Πv(Πy) = y for y ∈ {v}⊥. We have Wv = ΠvXv where the random
vector Xv ∼ N (µv,Θ

+) is concentrated on {1}⊥. The distribution of Wv can thus be
interpreted as the one resulting from the invertible linear transformation Πv from
{1}⊥ onto {v}⊥ applied to a normal random vector Xv on {1}⊥ with mean µv and
covariance matrix Θ+. The matrix Πv is a kind of oblique projection onto {v}⊥,
since the image of Πv is {v}⊥ and since Πvy = y for y ∈ {v}⊥. In the special case
v = ed = d−11, we have {v}⊥ = {1}⊥ and Πv = Π, so that Wv = Xv

The density of Xv ∼ N (µv,Θ
+) with respect to the (d− 1)-dimensional Lebesgue

measure on {1}⊥ can be expressed as (e.g., Rao, 2002)

fXv(w) ∝ exp
(
−1

2
‖w − µv‖2

Θ

)
, w ∈ {1}⊥.
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We have Wv = ΠvXv where Πv is a linear bijection from {1}⊥ onto {v}⊥ with inverse
Π. As a consequence, the density of Wv with respect to the (d − 1)-dimensional
Lebesgue measure on {v}⊥ satisfies, for w ∈ {v}⊥,

fWv(w) ∝ fXv(Πw)

∝ exp
(
−1

2
‖Πw − µv‖2

Θ

)

= exp
(
−1

2
‖w − µv‖2

Θ

)
,

as ΠΘ = ΘΠ = Θ. Furthermore, the density of R ∼ Exp(1) is fR(r) = exp(−r),
r > 0. Observe that the mapping (w, r) 7→ y = w + r1 is a linear bijection from
{v}⊥ × R to Rd with inverse y 7→ (Πvy, v

>y) from Rd to {v}⊥ × R: indeed, we have
(w, r) = (Πv(w + r1), (w + r1)>v) for (w, r) ∈ {v}⊥ × R and y = Πvy + 1v>y for
y ∈ Rd. Hence, the probability density function of Yv = Wv +R1 is proportional to
the product of the densities of Wv and R: For y ∈ Rd, we have

fYv(y) ∝ fR(v>y) · fWv(Πvy)

∝ exp
(
−v>y

)
· exp

(
−1

2
‖Πvy − µv‖2

Θ

)

∝ exp
(
−v>y

)
· exp

(
−1

2
‖y − µv‖2

Θ

)
,

the last step following from ΘΠv = Θ − Θ1v>= Θ and similarly Π>vΘ = Θ, since
Θ1 = 0 by assumption. The density of Yv is proportional to the one in (3.10),
and, since v ≥ 0, the support of Yv is the same as the one of Y from Corollary 3.7,
conditioned on the event {v>Y > 0}. Hence, the two random vectors are equal in
distribution.
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S.5.4 Proofs of matrix completion results

S.5.4.1 Decomposable graphs

Lemma S.5.12 (Bakonyi and Woerdeman (2011), Theorem 2.2.3). The positive
definite block matrix completion problem

Σ =




ΣAA ΣAB ??
ΣBA ΣBB ΣBC

?? ΣCB ΣCC


,

(
Σ−1

)
AC

= 0 (S.5.6)

has the unique solution ΣAC = ΣABΣ−1
BBΣBC, and ΣAC = 0 in the case of an empty

separator B = ∅. Here, “??” denotes a matrix of adequate size with all entries “?”.

Lemma S.5.13. Let G = (V,E), for V = {1, . . . , d}, be an undirected graph, with
some node k ∈ V being connected to all other nodes. Let Γ̊ be a matrix specified on G
that is conditionally negative definite on all fully specified principal submatrices. Let
Σ̊(k) = ϕk (̊Γ) for ϕk in Definition 3.1, for ease of notation indexed by V \ {k}.

Then Σ̊(k) is positive definite on all fully specified principal submatrices and
preserves specified entries in the sense that

Γ̊ij 6= “?” ⇐⇒ Σ̊
(k)
ij 6= “?”, ∀i, j 6= k.

Proof. To show that specified entries are preserved, recall that

Σ̊
(k)
ij = 1

2

(
Γ̊ik + Γ̊jk − Γ̊ij

)
, i, j 6= k.

Since k is connected to all other nodes in G, Γ̊ik is specified for all i ∈ V \ {k},
yielding the claimed equivalence.

To show positive definiteness of fully specified submatrices, let M be the index
set of such a submatrix and observe

Σ̊
(k)
M,M =

(
ϕk (̊Γ)

)
M,M

= ϕk

(
Γ̊M∪{k},M∪{k}

)
,

which is positive definite.

Proof of Lemma 4.2. First, note that ϕk is in fact bijective with inverse

ϕ−1
k : Σ(k) 7→

(
Σ̃

(k)
ii + Σ̃

(k)
jj − 2Σ̃

(k)
ij

)
i,j=1,...,d

,
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where Σ̃ ∈ Rd×d is defined as Σ(k) with a zero-valued kth row and column added.
Upon a permutation of the indices, the (d − 1) × (d − 1) matrix Σ̊(k) takes the
form (S.5.6) with blocks of indices A = C1 \ {k}, B = D2 \ {k} (possibly empty),
and C = C2 \ {k}. Lemma S.5.12 permits to find the unique positive semi-definite
completion of Σ̊(k), say Σ(k). The matrix Γ := ϕ−1

k (Σ(k)) is thus well-defined.
Since ϕk and ϕ−1

k preserve specified entries, the condition

Γij = Γ̊ij, ∀ (i, j) ∈ E,
is satisfied by construction. Furthermore, from Definition 3.2 and Lemma S.5.12 it
follows that

Θij = Θ
(k)
ij = 0, ∀ (i, j) /∈ E.

The uniqueness of this completion follows from Corollary S.5.20 below.

Lemma S.5.14. Let Y be a random variable following a multivariate generalized
Pareto distribution with positive, continuous exponent measure density λ. Let G =
(V,E) be a connected, decomposable graph G = (V,E), consisting of two cliques C1,
C2 separated by D2 = C1 ∩ C2. Let G′ = (V ′, E ′) be a connected, decomposable graph
with V ′ = C1 and E ′ ⊇ E

∣∣
D2

. Suppose Y satisfies the (extremal) pairwise Markov
property relative to G, and the marginal YC1 conditionally on maxi∈C1 Yi > 0 satisfies
the (extremal) pairwise Markov property relative to G′.

Then Y satisfies the (extremal) pairwise Markov property relative to the graph
G′′ = (V,E ′′) with E ′′ = E

∣∣
C2
∪ E ′.

Remark S.5.15. Since the pairwise Markov property only requires

(i, j) /∈ E =⇒ Yi ⊥e Yj | Y\{i,j},
but not vice versa, a distribution can satisfy this for a number of distinct graphs. In
particular, adding edges to a graph strictly weakens the condition above.

Proof. Since all graphs involved in the lemma are connected and decomposable,
Theorem 1 from Engelke and Hitz (2020) can be used to show

λ(y) =
λC1(yC1)λC2(yC2)

λD2(yD2)

=
λC2(yC2)

λD2(yD2)

∏
C∈C′ λC(yC)∏
D∈D′ λD(yD)

=

∏
C∈C′′ λC(yC)∏
D∈D′′ λD(yD)

,
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with C ′′,D′′ being the cliques and separators of G′′, and C ′,D′ those of G′. Here, the
function λI , for non-empty I ⊂ V , is the exponent measure density corresponding
to the I-th marginal YI conditionally on maxi∈I Yi > 0. By the same theorem, the
above decomposition of λ(y) implies that Y satisfies the pairwise Markov property
relative to G′′.

Proof of Proposition 4.3. In order to formalize the procedure described in the Proposi-
tion, let G = (V,E) be a connected decomposable graph and Γ̊ a partially conditionally
negative definite matrix specified on G. Let C = {C1, . . . , CN} be the cliques of G,
ordered according to the running intersection property (Section S.2), and w.l.o.g.
assume that the vertices in V are ordered accordingly, in the sense i < j for all i ∈ Ck
and j ∈ Cl with k < l.

Let Γ1 = Γ̊
∣∣
C1

, Jn = C1 ∪ . . . ∪ Cn, and Kn = Jn × Jn. Further, for n = 2, . . . , N ,
iteratively define

Γ̊n ∈ R̊|Jn|×|Jn|, with entries

(̊Γn)ij =





(Γn−1)ij (i, j) ∈ K̄n−1,

Γ̊ij (i, j) ∈ En\K̄n−1,
“?” otherwise,

Γn = C(̊Γn) ∈ R|Jn|×|Jn|,

where C denotes the completion from Lemma 4.2. Setting Γ = ΓN , the condition
Γij = Γ̊ij for all (i, j) ∈ E is satisfied by construction. The condition Θij = 0 for
all (i, j) /∈ E is satisfied too, since Lemma S.5.14 can be applied in each step. The
uniqueness of this completion follows from Corollary S.5.20.

S.5.4.2 General graphs

The proofs shown here closely follow the proofs in Speed and Kiiveri (1986) and
are adjusted where necessary to hold for conditionally negative definite variogram
matrices instead of positive definite covariance matrices. Recall the map σ( · ) in
(3.7).

Definition S.5.16. Let Γ1,Γ2 ∈ Dd and Σ1 = σ(Γ1), Σ2 = σ(Γ2). Let P1, P2 denote
the probability measures of two degenerate normally distributed random vectors with
mean 0 and covariance matrices Σ1,Σ2 ∈ P1

d , and let p1, p2 be the corresponding

densities on {1}⊥ with respect to the (d − 1)-dimensional Lebesgue measure. The
Kullback–Leibler divergence I of these matrices is defined as

I(Γ1|Γ2) := I(Σ1|Σ2) := I(P1|P2) = EP1(log p1(x)− log p2(x)).
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Lemma S.5.17. With Γi, Σi, i = 1, 2 as above, and | · |+ denoting the pseudo-
determinant (see Section S.1.2), we have

I(Γ1|Γ2) = −1
2

(
log
∣∣Σ+

2 Σ1

∣∣
+

+ d− 1− tr
(
Σ+

2 Σ1

))
.

Proof. Since EP1(xx
>) = Σ1 and since pi(x) ∝ |Σi|−1/2

+ exp(−1
2
x>Σ+

i x) with propor-
tionality constant not depending on i ∈ {1, 2}, we have

I(P1|P2) = EP1(log p1(x)− log p2(x))

= 1
2
EP1

(
− log |Σ1|+ − x>Σ+

1 x+ log |Σ2|+ + x>Σ+
2 x
)

= 1
2

log
|Σ2|+
|Σ1|+

+ 1
2
EP1

(
−x>Σ+

1 x+ x>Σ+
2 x
)

= −1
2

log
∣∣Σ+

2 Σ1

∣∣
+

+ 1
2
EP1

(
−tr
(
Σ+

1 xx
>)+ tr

(
Σ+

2 xx
>))

= −1
2

log
∣∣Σ+

2 Σ1

∣∣
+
− 1

2
tr
(
Σ+

1 Σ1

)
+ 1

2
tr
(
Σ+

2 Σ1

)
.

The statement then follows since Σ+
1 Σ1 is equal to the projection matrix Π onto {1}⊥

and the trace of a projection matrix is equal to its rank.

Lemma S.5.18. Consider a fixed Γ2 ∈ Dd. Then the function I( · |Γ2) is convex on
Dd.

Proof. Since tr(·) and σ(·) are linear maps, it remains to be shown that, for a fixed
Σ2 ∈ P1

d , the map A 7→ log
∣∣Σ+

2 A
∣∣
+

is concave on P1
d . Since Σ+

2 and A are symmetric
with the same kernel, Lemma S.1.7 shows that

log
∣∣Σ+

2 A
∣∣
+

= log
∣∣Σ+

2

∣∣
+

+ log |A|+ ,

which is a concave function in A if and only if A 7→ log |A|+ is concave.
To show this, recall the notation from Lemma S.1.7 with V = span({1}), and let

s ∈ [0, 1], and A1, A2 ∈ QV positive semi-definite. Then indeed

log |sA1 + (1− s)A2|+ = log |sB′1 + (1− s)B′2|
≥ s log |B′1|+ (1− s) log |B′2|
= s log |A1|+ + (1− s) log |A2|+ ,

where the inequality follows from the log-concavity of the determinant for positive
definite matrices (see e.g. Boyd and Vandenberghe, 2004, p. 73f).
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In the following results, let S ⊆ V × V be such that (i, j) ∈ S implies (j, i) ∈ S,
i.e., S corresponds to the edges of an undirected graph on V , optionally extended by
some pairs (i, i), for i ∈ V .

Lemma S.5.19. For Γi,Γ
′
i ∈ Dd, Σi = σ(Γi), Θi = θ(Γi), with i ∈ N, the divergence

I( · | · ) has the following properties.

(1) I(Γ1|Γ2) ≥ 0, with equality if and only if Γ1 = Γ2.

(2) Given Γ1,Γ3 ∈ Dd, if there exists a Γ2 ∈ Dd such that

(a) (Γ2)ij = (Γ1)ij, for (i, j) ∈ S, and

(b) (Θ2)ij = (Θ3)ij, for (i, j) /∈ S,

then

I(Γ1|Γ3) = I(Γ1|Γ2) + I(Γ2|Γ3).

If such a Γ2 exists, it is unique.

(3) If {Γn} and {Γ′n} are sequences contained in compact subsets of Dd, then
I(Γn|Γ′n)→ 0 implies Γn − Γ′n → 0 as n→∞.

Proof. Statement (1) is a well-known property of the Kullback–Leibler divergence,
which can be applied since σ is injective (see Proposition 3.4), and each Σ ∈ P1

d

characterizes a different distribution.
To show statement (2), use the multiplicative property of the pseudo-determinant

on P1
d to compute

− 2(I(Γ1|Γ2) + I(Γ2|Γ3))

= log
∣∣Σ+

2 Σ1

∣∣
+

+ tr
(
Σ+

1 Σ1

)
− tr

(
Σ+

2 Σ1

)
+ log

∣∣Σ+
3 Σ2

∣∣
+

+ tr
(
Σ+

2 Σ2

)
− tr

(
Σ+

3 Σ2

)

= log
∣∣Σ+

3 Σ2Σ+
2 Σ1

∣∣
+

+ tr
(
Σ+

1 Σ1 − Σ+
2 Σ1 + Σ+

2 Σ2 − Σ+
3 Σ2

)

= log
∣∣Σ+

3 Σ1

∣∣
+

+ tr
((

Σ+
2 − Σ+

3

)
(Σ2 − Σ1)− Σ+

3 Σ1 + Σ+
1 Σ1

)

= −2I(Γ1|Γ3) + tr
((

Σ+
2 − Σ+

3

)
(Σ2 − Σ1)

)
.

Since Σi = Π(−1
2
Γi)Π and since ΠΘi = ΘiΠ = Θi, the invariance of the trace operator

under cyclic permutations permits writing

tr
((

Σ+
2 − Σ+

3

)
(Σ2 − Σ1)

)
= −1

2
tr((Θ2 −Θ3)Π(Γ2 − Γ1)Π)

= −1
2
tr((Θ2 −Θ3)(Γ2 − Γ1))

= −1
2

∑

(i,j)∈V×V
(Θ2 −Θ3)ij(Γ2 − Γ1)ij.
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Each term in the sum is zero by (2)a and (2)b.
Uniqueness can be shown as in the positive definite case by considering Γ2,Γ

′
2 that

satisfy (2)a and (2)b. If Γ2,Γ
′
2 both satisfy the said properties with respect to Γ1 and

Γ3, then they obviously also satisfy those properties with respect to Γ′1 = Γ′3 = Γ2.
But then, property (1) and the first part of property (2) yield

0 = I(Γ2|Γ2) = I(Γ2|Γ′2) + I(Γ′2|Γ2)

=⇒ I(Γ2|Γ′2) = I(Γ′2|Γ2) = 0

=⇒ Γ2 = Γ′2.

Lastly, suppose {Γn} and {Γ′n} are as in statement (3), but Γn − Γ′n 6→ 0. Then
there are convergent subsequences Γni → Γ∗ and Γ′ni → Γ∗

′
with Γ∗ 6= Γ∗

′
. By

continuity of I, I(Γni | Γ′ni)→ I(Γ∗ | Γ∗′) 6= 0, which is a contradiction.

Corollary S.5.20. Let G = (V,E) be a connected graph, Γ̊ a partially conditionally
negative definite matrix on G, and Γ a graphical completion of Γ̊, in the sense of
Definition 4.1. Then Lemma S.5.19, Item (2), with Γ1 = Γ3 = Γ and S = E shows
the uniqueness of the completion from Lemma 4.2 and Propositions 4.3 and 4.5.

Recall S ⊆ V × V as introduced prior to Lemma S.5.19.

Lemma S.5.21. Let S1, . . . , Sm ⊆ S be such that their union is S. Let Γ ∈ Dd,
Θ ∈ P1

d (not necessarily Θ = θ(Γ)), and Γn ∈ Dd, Θn = θ(Γn), for n ∈ N0, with
Γ0 = Γ.

If each Γn, n ≥ 1, satisfies

(Θn)ij = Θij if (i, j) ∈ St,
(Γn−1)ij = (Γn)ij if (i, j) /∈ St,

with t ≡ n mod m, then the sequence (Γn)n converges to the unique ΓS ∈ Dd that,
writing ΘS = θ(ΓS), satisfies

ΘS
ij = Θij if (i, j) ∈ S, (S.5.7)

ΓSij = Γij if (i, j) /∈ S. (S.5.8)

Proof. Using Lemma S.5.19, Item (2), decompose the Kullback–Leibler divergence
I(Γ0|γ(Θ+)) as follows:

I
(
Γn−1|γ

(
Θ+
))

= I(Γn−1|Γn) + I
(
Γn|γ

(
Θ+
))

=⇒ I
(
Γ0|γ

(
Θ+
))

= I
(
Γn|γ

(
Θ+
))

+
n∑

k=1

I(Γk−1|Γk).
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From here it follows that
∑∞

k=1 I(Γk−1|Γk) is a convergent series so that I(Γk−1|Γk)→
0 for k →∞, and also that

{Γk}k ⊆
{

Γ′ ∈ Dd : I
(
Γ′|γ

(
Θ+
))
≤ I

(
Γ0|γ

(
Θ+
))}

=: A,

which is a compact set due to the convexity of I(Γ|γ(Θ+)) as a function of Γ (see
Lemma S.5.18) and the facts that Dd is a convex cone and Γ 7→ I(Γ|γ(Θ+)) attains
its minimum uniquely at Γ = γ(Θ+).

Hence, the sequence vs := (Γsm+1, . . . ,Γsm+m), s ∈ N, has a convergent subse-
quence indexed by s ∈ N∗ ⊆ N with limit (Γ∗1, . . . ,Γ

∗
m). For any 2 ≤ t ≤ m, the

entries of this limit satisfy

(Γ∗t − Γ∗t−1) = (Γ∗t − Γsm+t) + (Γsm+t − Γsm+t−1) + (Γsm+t−1 − Γ∗t−1).

For s ∈ N∗ →∞, the first and last term in this sum converge to zero by the definition
of Γ∗t , and the second term converges to zero by Lemma S.5.19, Item (3). Hence,
Γ∗t = Γ∗t−1 =: Γ∗ for all 2 ≤ t ≤ m. Since the elements of the sequence Γsm+t, s ∈ N∗,
t = 1, . . . ,m, satisfy (S.5.8) (always), and (S.5.7) infinitely often, the limit Γ∗ satisfies
both conditions, as well.

The above argument can be repeated for all other convergent subsequences of
(vs)s∈N\N∗ and Lemma S.5.19, Item (2), then shows that the limits of all these
subsequences must be identical, hence (Γk)k∈N converges to the unique ΓS satisfying
Eqs. (S.5.7) and (S.5.8).

Proof of Proposition 4.5. The result follows from Lemma S.5.21 with Si = Ec
i and Θ

being the Laplacian matrix of the graph G (see Definition S.2.6). Uniqueness follows
from Corollary S.5.20.

S.5.4.3 Example of non-completable graph

Proof of Example 4.7. A useful property of variogram matrices is the fact that they
can equivalently be interpreted as Euclidean distance matrices. For instance, Gower
(1982) shows that a matrix is (strictly) conditionally negative definite if and only if it
is the d× d matrix consisting of the squared distances ‖pi − pj‖2 of a set of points
p1, . . . , pd ∈ Rd−1 that do not lie in a lower dimensional affine hyper-plane.

If there was a completion of the matrix Γ̊ from the Example, then the above
interpretation as a (partial) Euclidean distance matrix would imply the existence
of a set of points p1, . . . , pd, with distances ‖pi − pi+1‖ = 1 for i = 1, . . . , d− 1, and
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‖p1 − pd‖ = 2d. However, by the triangle inequality this leads to the contradiction

2d = ‖p1 − pd‖ ≤
d−1∑

i=1

‖pi − pi+1‖ = d.

Bakonyi and Johnson (1995) show that such a counter-example can be constructed
for any non-decomposable graph.

S.5.4.4 Matrix completion as likelihood optimization

Proof of Proposition 5.1. Let U : Rd×d → Rd(d−1)/2 denote the mapping that maps a
matrix to the vector containing the entries in its upper triangular part (excluding the
diagonal). Note that the restriction U

∣∣
Pd is invertible, since the lower triangular part

of Θ ∈ Pd is defined by symmetry and the diagonal is such that the row sums are
zero. In the computations below, we consider P ∈ U(Pd) and write Θ :≡ Θ(P ) for
notational convenience.

Consider the function f(P ) = log |Θ|+ + 1
2
tr(ΓΘ). Röttger et al. (2021, Proposi-

tion A.5) show that

∇P log |Θ|+ = U(−γ
(
Θ+
)
).

Furthermore, by symmetry of the matrices Θ and Γ,

∇P tr
(
ΘΓ
)

= ∇P

∑

i,j∈1,...,d

ΘijΓij = ∇P

∑

i,j∈1,...,d
i<j

2ΘijΓij = U(2Γ),

and hence

∇Pf(Θ) = U(Γ− γ(Θ)).

The map Θ 7→ tr(ΓΘ) is linear and the proof of Lemma S.5.18 shows that the map
Θ 7→ log |Θ|+ is concave. Hence, the maximizer of f under the constraint Θij = 0 for

(i, j) /∈ E satisfies

γ(Θ)ij = Γij, ∀(i, j) ∈ E.

Proposition 4.5 shows that the unique solution satisfying this condition and the
constraint is θ

(
CG(Γ)

)
.
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S.5.4.5 Matrix completion is continuous

Proof of Lemma 5.2. Enumerate the edges as E = {e1, . . . , em} with m = |E| the
cardinality of E. Let θ denote the mapping sending a variogram matrix Γ to its
precision matrix Θ = θ(Γ) as constructed in Proposition 3.3. Let πG be the restriction
map

πG : Rd×d −→ Rm

M 7−→ v

where v has entries vk for k = 1, . . . ,m, with

vk = Mij for ek = (i, j), i < j.

In words, πG extracts from a matrix M the m elements Mij corresponding to the
edges (i, j) ∈ E and stacks them in a vector.

Let QG be the set of symmetric d× d matrices with zero row sums and with zeros
in off-diagonal positions corresponding to non-edges of G:

QG :=
{
M ∈ Rd×d : M = M>, M1 = 0, Mij = 0 ∀(i, j) 6∈ E

}
.

Clearly, M ∈ QG is determined by its elements Mij for (i, j) ∈ E such that i < j,
i.e., by πG(M). Indeed, the elements of M below the diagonal are determined by the
symmetry constraint M = M> and its diagonal elements are determined by the zero
row-sum constraint M1 = 0. Since all restrictions imposed on M are linear, QG is a
linear subspace of Rd×d of dimension m. The space QG is thus isomorphic with Rm:
identify M ∈ QG with the elements Mij for index pairs (i, j) ∈ E such that i < j.
Furthermore, the map πG above, when restricted to QG, is a linear isomorphism
between QG and Rm; in particular, it is continuous.

The set of precision matrices Θ ∈ P1
d with Θij = 0 for (i, j) 6∈ E, i.e., those that

figure in the matrix completion problem in Definition 4.1, is equal to

PG := {M ∈ QG : kerM = span({1}), M positive semi-definite}.
Let λ1(S) ≥ . . . ≥ λd(S) be the d real eigenvalues of a symmetric matrix S ∈ Rd×d,
counted with multiplicities and ordered decreasingly. We have

PG = {M ∈ QG : λd−1(M) > 0}.
The functions λj are well-known to be Lipschitz on

{
S ∈ Rd×d : S = S>

}
. It follows

that PG is open in QG. Upon the above identification of QG with Rm via πG, we can
thus view PG as an open subset of Rm. Formally, this subset is denoted as

P̊G := πG(PG) ⊂ Rm.
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Let f1 denote the inverse of the restriction of πG to PG, that is,

f1 : P̊G −→ PG
v 7−→M = π−1

G (v)

Since πG was continuously invertible on the set QG that contains PG, the function f1

is a continuous bijection too.
The set of variogram matrices Γ corresponding to precision matrices M in PG is

DG := θ−1(PG) = {Γ ∈ Dd : θ(Γ) ∈ PG} =
{
θ−1(M) : M ∈ PG

}
.

By definition, these are exactly the variogram matrices Γ ∈ Dd of which the associated
precision matrices M = θ(Γ) have zero elements Mij = 0 for (i, j) 6∈ E. In other
words, DG corresponds to all possible solutions of the matrix completion problem in
Definition 4.1 with respect to G.

By Proposition 4.5, a variogram matrix Γ in DG is uniquely determined by the
values of Γij for (i, j) ∈ E. Since Γ has zero diagonal, this means that Γ ∈ DG is
uniquely determined by πG(Γ) = (Γij : (i, j) ∈ E, i < j). Another way to say the
same thing is that the map πG restricted to DG is injective. For clarity, let

D̊G := πG(DG) ⊂ Rm

denote the image of DG under πG and let f2 denote the restriction of πG to Dg:

f2 : DG −→ D̊G
Γ 7−→ πG(Γ).

The inverse mapping of f2 is the completion map CG in Definition 4.6.2 Knowing
that f2 is continuous (since πG is continuous), we need to show that CG is continuous
as well.

To do this, consider the mapping

f : P̊G −→ D̊G
v 7−→

(
f2 ◦ θ−1 ◦ f1

)
(v).

The map f is represented schematically in Figure S.1. It sends the restriction v =
πG(M) ∈ P̊G ⊂ Rm of a precision matrix M ∈ PG to the restriction πG(Γ) ∈ D̊G ⊂ Rm

2Actually, this comes with some abuse of notation: in Definition 4.6, the set D̊G and the
completion map CG are defined with the placeholder “?” for pairs (i, j) 6∈ E, whereas in this proof,
these unknown elements are omitted altogether.
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P̊G PG DG D̊G

f1 θ−1 f2

f

Figure S.1: Illustration of the definition of f

of the associated variogram matrix Γ = θ−1(M); indeed, we have M = f1(v) and
thus f(v) = πG(θ−1(M)). The map f is a composition of three continuous bijections
and thus a continuous bijection as well. The domain of f is P̊G, which was shown
to be an open subset of Rm. The image of f is D̊G, a subset of Rm as well. By the
Brouwer Invariance of Domain Theorem (see e.g. Kulpa, 1998), D̊d is open and f is a
homeomorphism. But since

CG = f−1
2 = θ−1 ◦ f1 ◦ f−1,

it follows that CG is continuous too, as required.

Proof of Theorem 5.3. First, we show that with probability tending to one
̂̊
Γ allows

a completion. To this end, recall the definition of the set of conditionally negative
definite matrices from (3.1),

Dd =
{
M ∈ Rd×d : M = M> ∧ diag(M) = 0 ∧ v>Mv < 0∀0 6= v ⊥ 1

}
, (S.5.9)

and let K =
{
v ∈ Rd : v ⊥ 1, ‖v‖∞ = 1

}
. The set K is compact and, hence, the value

∆M = maxv∈K v>Mv exists. Since for v 6= 0 we have

v>Mv = ‖v‖2
∞ ·
(
v‖v‖−1

∞
)>
M
(
v‖v‖−1

∞
)
,

with
(
v‖v‖−1

∞
)
∈ K, the inequality condition in (S.5.9) is equivalent to ∆M < 0.

Next, let G, Γ, and
̂̊
Γ be as in the Theorem. Let ε = −∆Γ/(2d

2) > 0, and consider
the ball Bε =

{
M ∈ Rd×d : ‖M − Γ‖∞ ≤ ε

}
, where ‖M‖∞ denotes the infinity norm
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applied to M interpreted as a d2-dimensional vector. Then any M ∈ Bε satisfies

max
v∈K

v>Mv = max
v∈K

∑

i

∑

j

Mijvivj

≤ max
v∈K

∑

i

∑

j

Γijvivj + ε |vivj|

≤ max
v∈K

v>Γv −∆Γ/2

= ∆Γ/2

< 0.

Let Rd =
{
M ∈ Rd×d : M = M> ∧ diag(M) = 0

}
and observe that Rd ∩ Bε ⊆ Dd.

For a set of matrices S ⊆ Rd×d denote S
∣∣
G

=
{
M
∣∣
G

: M ∈ S
}

, with ·
∣∣
G

as in (4.4),
and observe that

Rd

∣∣
G
∩Bε

∣∣
G
⊆ Dd

∣∣
G

= D̊d.

By assumption, any realization of
̂̊
Γ is always in Rd

∣∣
G

and hence

P
(̂̊

Γ ∈ D̊d
)

= P
(̂̊

Γ ∈ Bε

∣∣
G

)
= P

(
max

(i,j)∈E

∣∣∣̂̊Γij − Γij

∣∣∣ ≤ ε

)
−→ 1.

Together with the continuity from Lemma 5.2 this completes the proof.

S.6 Additional figures
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Figure S.2: Histogram of empirical χ̂(p) for p = 0.85. Based on all pairs of airports.
Values corresponding to two airports within the same cluster are shown in white, and
values corresponding to two airports in two distinct clusters in gray.
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Figure S.3: Airports in the dataset. Color indicates the shape parameter of univariate
generalized Pareto distributions, fitted for each airport using maximum likelihood
estimation to the observations above the p = 0.85 quantile (black at zero, shade
of cyan for negative, and orange for positive values). The size of each circle is
proportional to the average number of daily flights at that airport.
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