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Abstract
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must sum to one. We show that this constraint is unnecessary in theory and has
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portfolio, and a worse performance than the risk-free asset for sufficiently risk-averse
investors. However, although wrong in theory, we demonstrate that the convexity
constraint acts as a bound constraint on combination coefficients and thus can
help improve performance when they are estimated. Our empirical analysis shows
that the Tu and Zhou rule performs well for investors with small risk aversion, but
quickly deteriorates as risk aversion increases. In contrast, our portfolio rules perform
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1 Introduction

The portfolio theory of Markowitz (1952) is often criticized because estimated optimal

mean-variance portfolios typically perform very poorly out of sample. This is because mean-

variance portfolios are highly sensitive to estimation errors in the sample mean and sample

covariance matrix of asset returns (Best and Grauer, 1991; DeMiguel, Garlappi, Nogales, and

Uppal, 2009; Barroso and Saxena, 2021). In a thought-provoking paper, DeMiguel, Garlappi,

and Uppal (2009) show that this problem is severe because none of the 13 robust extensions

to the sample mean-variance (SMV) model they consider is able to consistently outperform

the naive equally weighted (EW) portfolio. As Tu and Zhou (2011, p.205) put it, “these

findings raise a serious doubt on the usefulness of the investment theory.” However, in their

influential paper, Tu and Zhou (2011) reinstill hope in the value of portfolio optimization

because they show that by cleverly combining the SMV portfolio with the naive EW portfo-

lio, one can outperform both in most scenarios. This is made possible by balancing between

the two strategies according to the degree of estimation error, measured by the ratio N/T

where N is the number of assets and T is the sample size. In this paper, we raise some

concerns about Tu and Zhou’s methodology and explain how to alleviate them to further

improve out-of-sample performance for mean-variance investors.

Tu and Zhou (2011) exploit the analytical framework introduced by Kan and Zhou (2007)

and combine the SMV portfolio with the EW portfolio to optimize the expected out-of-sample

utility. The way they achieve this is by finding the two optimal combination coefficients

attached to each portfolio. Tu and Zhou optimize them subject to a convexity constraint:

the two combination coefficients must sum to one. This constraint is sensible when shrinking

covariance matrices as in Ledoit and Wolf (2004) or when combining portfolios that are fully

invested in risky assets as in Kan, Wang, and Zhou (2021). However, Tu and Zhou (2011)

consider the SMV portfolio that invests in the risk-free asset as well, and therefore we show

that the convexity constraint in unwarranted.

Our first contribution is to derive the optimal combination of the SMV and EW portfolios

that relaxes the convexity constraint and to demonstrate that relative to the optimal strategy,

the constrained strategy of Tu and Zhou (2011) presents five main weaknesses. Moreover,
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these weaknesses become more severe as estimation error increases, that is, the constrained

strategy fails most precisely when it is most needed.

The first weakness is that the constrained strategy does not provide the optimal exposure

to the three funds underlying the combination, that is, the sample tangent portfolio, the

EW portfolio, and the risk-free asset. In particular, we prove the striking result that the

constrained strategy always overinvests in the sample tangent portfolio, which is a portfolio

known to be problematic in practice. It also overinvests in the EW portfolio for most risk

aversion, and underinvests in the risk-free asset under mild conditions. These differences are

often substantial. For example, consider the case in which the mean and covariance matrix

of excess returns are calibrated to a dataset of N = 25 portfolios sorted on size and book-

to-market (25BSTM), the sample size is T = 120 months, and the risk-aversion coefficient is

five. Then, the constrained strategy allocates 23% to the tangent portfolio, 71% to the EW

portfolio, and 6% to the risk-free asset. In contrast, the optimal strategy invests less in the

tangent and EW portfolios (16% and 30%) and much more in the risk-free asset (54%).

Second, the constrained strategy does not provide the theoretically optimal expected

out-of-sample utility attained by the optimal strategy, except for one specific value of the

risk-aversion coefficient. Moreover, this utility loss can be large. For the case of the 25SBTM

dataset and a sample size of T = 120 months, the annualized utility loss can go up to 6%

approximately as the risk-aversion coefficient varies between 1 and 20.

Third, under mild conditions the constrained strategy underperforms the risk-free asset

once the risk-aversion coefficient is above a given threshold. This result can be explained

because due to the convexity constraint, the constrained strategy can only invest in the risk-

free asset via the SMV portfolio, which is subject to high estimation risk. The threshold is

not particularly large; it is equal to 5.4 for the 25SBTM dataset and T = 120 months. In

contrast, the optimal strategy always outperforms the risk-free asset.

Fourth, the constrained strategy does not fully profit from adding the EW portfolio

in the combination because we show that, beyond a risk-aversion coefficient threshold, it

underperforms the optimal two-fund portfolio of Kan and Zhou (2007) that only invests in

the sample tangent portfolio and the risk-free asset. The threshold is generally small; it is

equal to 3.8 for the 25SBTM dataset. This result means that many investors are better off
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relying on the optimal two-fund rule that does not invest in the EW portfolio rather than

adding the EW portfolio via the convexity constraint.

Fifth, the optimal strategy has another desirable property: it delivers less extreme weights

on the risky assets. Specifically, we show that under mild conditions the ℓ2-norm of portfolio

weights of the optimal strategy is smaller than that of the constrained strategy if the risk-

aversion coefficient belongs to a specific wide interval. This effect is particularly prominent

when the risk-aversion coefficient is large. For the 25SBTM dataset, T = 120 months, and a

risk aversion of 10, the ℓ2-norm of the constrained strategy is 0.72 while that of the optimal

strategy is only 0.26. This smaller ℓ2-norm has two main benefits. On the one hand, DeMiguel

et al. (2009) show that constraining portfolio norms helps improve performance. On the other

hand, we find empirically that the optimal strategy delivers lower turnover and transaction

costs than the constrained strategy due to its less extreme and thus less variable weights.

These five weaknesses of the constrained strategy relative to the optimal strategy all result

from the convexity constraint. Although intuitive at first sight, it is actually unnecessary and

renders the combination theoretically suboptimal by removing a degree of freedom.

Our second contribution is to treat the impact of estimation errors in combination co-

efficients, which is important because Kan and Wang (2021) and Lassance, Martín-Utrera,

and Simaan (2022) show that such errors have a non-negligible impact on out-of-sample

performance. In particular, we show analytically that, although wrong in theory, imposing

the convexity constraint can help, as in Jagannathan and Ma (2003). Indeed, this constraint

acts as a bound constraint because both constrained coefficients are between zero and one.

In contrast, the optimal coefficient on the EW portfolio is unbounded and thus much more

sensitive to estimation errors in mean returns. As a result, when the optimal strategy only

delivers a small theoretical gain relative to the constrained strategy, the latter may actually

outperform when combination coefficients are estimated. We formalize this insight by deriv-

ing the interval of risk-aversion coefficients for which the constrained strategy outperforms

the optimal strategy. The length of this interval is not negligible. For the 25SBTM dataset

and a sample size of T = 120 months, it is equal to [1.90 ± 1.65]. We then exploit this result

to propose a mixed strategy that invests in the constrained strategy when the risk aversion

belongs to the interval, and in the optimal strategy otherwise.
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The results on the usefulness of the convexity constraint are far-reaching. In Appendix

IA.2.1, we derive a similar mixed strategy for the three-fund combination considered by Kan

and Zhou (2007) that combines the SMV portfolio with the sample global-minimum-variance

(SGMV) portfolio. In Appendix IA.2.2, we show that the convexity constraint implies that

the optimal combination of the SMV and SGMV portfolios without a risk-free asset in Kan,

Wang, and Zhou (2021) actually outperforms the three-fund rule of Kan and Zhou (2007)

for some risk-aversion levels; that is, investing in the risk-free asset can hurt performance.

Our third contribution is to test empirically the out-of-sample performance of the two

main portfolio strategies we introduce: the optimal three-fund rule and the mixed strategy

that invests in either the optimal or the constrained three-fund rule. We compare the two

strategies to the constrained three-fund rule of Tu and Zhou (2011), the combination rules of

Kan and Zhou (2007) and Kan, Wang, and Zhou (2021), and the EW and SGMV portfolios.

We compare the strategies in terms of out-of-sample utility net of transaction costs, across

four datasets of characteristic- and industry-sorted portfolios, and for a range of risk aversion

similar to that in DeMiguel, Garlappi, and Uppal (2009) and Martellini and Ziemann (2010).

The main comparison concerns the three-fund rules that invest in the EW portfolio.

The empirical observations match our theoretical predictions detailed above. Specifically,

the constrained strategy of Tu and Zhou (2011) outperforms the optimal strategy for small

degrees of risk aversion but quickly deteriorates as risk aversion increases, in which case it

often delivers negative out-of-sample utilities and underperforms the two-fund rule of Kan

and Zhou (2007) that does not invest in the EW portfolio. In contrast, the optimal strategy

performs consistently well and always delivers positive utilities that are larger than those

of the two-fund rule. We also confirm that, due to its less extreme weights, the optimal

strategy yields less turnover and transaction costs than the constrained strategy. Finally, the

mixed strategy achieves its objective by relying mostly on the constrained strategy when risk

aversion is small, and mostly on the optimal strategy when risk aversion is high. Therefore,

the mixed strategy is safer than relying exclusively on the optimal or constrained strategy.

The comparison to the other benchmarks delivers two more insights. First, even though

the SGMV portfolio largely outperforms the EW portfolio in our datasets, we find that

combining the SMV portfolio with the EW portfolio as we consider can be preferable to
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combining with the SGMV portfolio as in Kan and Zhou (2007). In particular, combin-

ing with EW delivers better performance when the sample size is rather small (T = 120

months), and only a marginally worse performance when it increases to T = 240. We ex-

plain this puzzling result theoretically and empirically from a smaller correlation between

the out-of-sample return of the SMV portfolio and the EW portfolio, and thus larger out-of-

sample diversification gains.1 Second, combining the SMV portfolio with the EW portfolio

is useful only when EW is not, by chance, close to optimal. Indeed, for the three datasets of

characteristic-sorted portfolios we find that EW is largely inefficient, and consequently the

combination with SMV largely outperforms EW alone. However, the EW portfolio is much

closer to being efficient for industry-sorted portfolios (Kirby and Ostdiek, 2012). Therefore,

we find as in Tu and Zhou (2011) that combining the SMV and EW portfolios cannot out-

perform the EW portfolio alone for industry-sorted portfolios because the small potential

gain cannot compensate for the increased estimation risk.

Our work is related to three strands of the portfolio optimization literature. First, we

contribute to the literature on portfolio combinations. While many papers advocate using

the SGMV portfolio over any other SMV portfolio, Kan and Zhou (2007) show in their

pioneering work that it is possible to outperform both out of sample by optimally combin-

ing them. Following Kan and Zhou (2007), many scholars propose combination rules that

optimize out-of-sample performance; see, for instance, Frahm and Memmel (2010), Tu and

Zhou (2011), DeMiguel, Martín-Utrera, and Nogales (2013, 2015), Branger, Lučivjanská, and

Weissensteiner (2019), Kan, Wang, and Zhou (2021), Kan and Wang (2021), and Lassance,

Martín-Utrera, and Simaan (2022). In this paper, we follow the work of Tu and Zhou (2011)

who combine the SMV portfolio with the EW portfolio to optimize expected out-of-sample

utility under a convexity constraint on the combination coefficients. We derive the uncon-

strained combination and demonstrate several undesirable consequences of this constraint

relative to the optimal solution. We also bring new insights to the portfolio combination liter-

ature by showing analytically how and when the convexity constraint actually helps improve

1In Appendix IA.2.4, we also derive the optimal four-fund portfolio that invests in the SMV portfolio
and both the SGMV and EW portfolios. However, this optimal four-fund rule is generally outperformed by
the optimal three-fund rule that does not invest in SGMV, which can be explained because the theoretical
gain is small and thus is offset by the estimation risk coming from the additional combination coefficient.
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out-of-sample utility because of reduced estimation error in combination coefficients.

Second, our work is related to other papers that study the value of the naive EW port-

folio. Bloomfield, Leftwich, and Long (1977) show in an early study that SMV portfolios do

not outperform the EW portfolio. DeMiguel, Garlappi, and Uppal (2009) find that none of

the SMV portfolio and 13 robust extensions can outperform the EW portfolio consistently.

Pflug, Pichler, and Wozabal (2012) and Yan and Zhang (2017) explain that the EW portfolio

is not so naive, because it is nearly optimal under high model ambiguity and in the absence

of mispricing, respectively. Tu and Zhou (2011) propose a method to nearly consistently

outperform the EW portfolio by combining it with the SMV portfolio. Similarly, Frahm and

Memmel (2010), Simaan and Simaan (2019), and Bodnar, Okhrin, and Parolya (2021) com-

bine the EW portfolio with mean-variance or minimum-variance portfolios. In this paper,

we show how to combine the SMV portfolio with the EW portfolio optimally when investing

in the risk-free asset is allowed. Our results confirm the value of the EW portfolio because

we show theoretically and empirically that our optimal three-fund rule consistently outper-

forms the optimal two-fund rule of Kan and Zhou (2007) that does not invest in the EW

portfolio. We also demonstrate the larger out-of-sample diversification gains one can obtain

from combining the SMV portfolio with EW rather than SGMV.

Third, we contribute to a large literature on the role of constraints in portfolio selection.

Frost and Savarino (1988), Jagannathan and Ma (2003), and Behr, Guettler, and Miebs

(2013) show that imposing lower and upper bound constraints on portfolio weights helps im-

prove performance even when these constraints are wrong. Levy and Levy (2014) introduce

a class of differential variance-based constraints that significantly outperforms homogeneous

bound constraints. DeMiguel et al. (2009), Yen (2016), Ao, Li, and Zheng (2019), and Zhao,

Ledoit, and Jiang (2021) show the large benefits of norm constraints. Ban, El Karoui, and

Lim (2018) introduce performance-based constraints inspired from machine learning. A key

differentiating feature between our work and the aforementioned papers is that we show

the benefits of constraints for combining sample portfolios, instead of assets. In particular,

we show theoretically and empirically in several settings that constraining combination co-

efficients on sample portfolios to sum to one, although wrong in theory, acts as a bound

constraint and thus helps improve out-of-sample utility for some degrees of risk aversion.
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2 The portfolio combination problem

In Section 2.1, we introduce the setting and the assumptions we use throughout the paper. In

Section 2.2, we recall the notion of expected out-of-sample utility. In Section 2.3, we review

the methodology of Tu and Zhou (2011) to combine the SMV and EW portfolios.

2.1 Setting and assumptions

We consider the classical portfolio choice problem in which an investor allocates her wealth

among N ≥ 1 risky assets and a risk-free asset. We denote rt the N × 1 vector of asset

excess returns at time t, which has mean µ and positive-definite covariance matrix Σ. We

assume that asset returns are normally distributed, which is a common assumption made

for tractability (Kan and Zhou, 2007; Tu and Zhou, 2011; Ao, Li, and Zheng, 2019).

At time T , the investor collects a sample of T return observations, (r1, . . . , rT ), which

we assume independent and identically distributed. The investor then chooses her optimal

portfolio w = (w1, ..., wN)′, the weight on the risk-free asset being w0 = 1 − 1′w with 1 a

conformable vector of ones. We assume throughout the paper that N + 4 < T < ∞.

As in Markowitz (1952) and Tu and Zhou (2011), we assume that the investor has mean-

variance preferences and maximizes her utility. If the moments of asset returns are known,

this amounts to maximize

U(w) = w′µ − γ

2w′Σw, (1)

where γ > 0 is the investor’s risk-aversion coefficient. Note that utility is in excess of the

risk-free rate, and thus the risk-free asset has a utility of zero. It is well known that the

optimal mean-variance portfolio maximizing (1) is

w⋆ = 1
γ

Σ−1µ, (2)

which provides the maximum utility

U⋆ = U(w⋆) = θ2

2γ , (3)
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where θ =
√

µ′Σ−1µ is the maximum Sharpe ratio. For further reference, note that the

mean-variance portfolio can be decomposed as a linear combination of the fully invested

tangent portfolio wtan = Σ−1µ/(1′Σ−1µ) and the risk-free asset:

w⋆ = γtan

γ
wtan and w⋆

0 = 1 − γtan

γ
, (4)

where w⋆
0 = 1 − 1′w⋆ is the weight on the risk-free asset in the mean-variance strategy and

γtan = 1′Σ−1µ (5)

is the value of the risk-aversion coefficient γ for which wtan maximizes U(w).

2.2 Parameter uncertainty and expected out-of-sample utility

The mean-variance portfolio w⋆ in (2) and its maximum utility U⋆ in (3) are unfeasible in

practice because the moments of asset returns, µ and Σ, are unknown and must be estimated.

As in Kan and Zhou (2007), Tu and Zhou (2011), and Kan, Wang, and Zhou (2021), among

others, we rely on sample estimates of µ and Σ for tractability, which are given by

µ̂ = 1
T

T∑
t=1

rt and Σ̂ = 1
T −N − 2

T∑
t=1

(rt − µ̂)(rt − µ̂)′. (6)

The coefficient 1/(T −N − 2) ensures that the inverse sample covariance matrix is unbiased,

E[Σ̂−1] = Σ−1. Employing the sample covariance matrix is a conversative approach given

that more accurate estimators exist, such as shrinkage estimators (Ledoit and Wolf, 2004,

2017). We also consider shrinkage estimators of Σ in our empirical analysis of Section 5,

and our theoretical results in Sections 3 and 4 can easily be applied to the case where Σ is

known, as in Garlappi, Uppal, and Wang (2007), by letting c = 1 in (14).

The sample mean-variance (SMV) portfolio, which exploits µ̂ and Σ̂, is defined as

ŵ⋆ = 1
γ

Σ̂−1µ̂. (7)

Due to estimation errors, the SMV portfolio does not perform best in practice (Jobson
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and Korkie, 1980; Michaud, 1989; DeMiguel, Garlappi, and Uppal, 2009). To quantify the

impact of estimation errors on performance, we follow Kan and Zhou (2007) and measure

the performance of an estimated portfolio ŵ via its expected out-of-sample utility (EU):

EU(ŵ) = E[U(ŵ)] = E[ŵ′µ] − γ

2E[ŵ′Σŵ]. (8)

In this expression, the parameters µ and Σ come from (1) and are the population moments

of next-period excess returns, while ŵ is a random vector estimated from historical samples.

Kan and Zhou (2007), Tu and Zhou (2011), and Kan, Wang, and Zhou (2021), among

others, show how to exploit the EU criterion to optimally combine portfolios and improve

out-of-sample performance relative to the SMV portfolio. In the next section, we review how

Tu and Zhou (2011) exploit the EU criterion to combine the SMV and EW portfolios.

2.3 Constrained portfolio combination

Tu and Zhou (2011) consider the set of portfolios that combine the SMV portfolio ŵ⋆ and

the equally weighted (EW) portfolio wew = 1/N :

ŵ(κ) = κ1ŵ
⋆ + κ2wew, (9)

where κ = (κ1, κ2) is the vector of combination coefficients. We denote µew = w′
ewµ and

σ2
ew = w′

ewΣwew the mean excess return and variance of the EW portfolio, respectively.

Moreover, we define γew as2

γew = µew/σ
2
ew, (10)

and ψ2 as the difference between the maximum squared Sharpe ratio, θ2, and that of the

EW portfolio, θ2
ew = µ2

ew/σ
2
ew:

ψ2 = θ2 − θ2
ew ≥ 0. (11)

The methodology of Tu and Zhou (2011) consists in finding the combination coefficients κ

2The parameter γew has the following interpretation: an investor with risk aversion γ investing in the
EW portfolio and the risk-free asset fully allocates her wealth to the EW portfolio if and only if γ = γew.
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maximizing the EU in (8). They achieve this under the following convexity constraint:

κ1 + κ2 = 1. (12)

We review their results in the next proposition, which we present in a different form.

Proposition 1. The following holds concerning the combination of the sample mean-

variance and equally weighted portfolios in (9):

1. The expected out-of-sample utility is

EU(ŵ(κ)) = κ1

γ
θ2 + κ2µew − γ

2

(
κ2

1
γ2

(
θ2 + d

)
+ κ2

2σ
2
ew + 2κ1κ2

γ
µew

)
, (13)

where

d = cN/T + (c− 1)θ2 with c = (T −N − 2)(T − 2)
(T −N − 1)(T −N − 4) ≥ 1. (14)

2. The combination coefficients maximizing (13) under the constraint κ1 + κ2 = 1 are

κtz = (φ(γ), 1 − φ(γ)), (15)

where

φ(γ) = ψ2 + σ2
ew(γ − γew)2

ψ2 + σ2
ew(γ − γew)2 + d

∈ [0, 1]. (16)

Note that the EU of the SMV portfolio is EU(ŵ⋆) = (θ2 − d)/(2γ). Therefore, the

SMV portfolio delivers a negative EU and underperforms the risk-free asset if d > θ2, which

happens already for T < 325 for the 25SBTM dataset. This result shows the necessity of

regularizing the SMV portfolio to improve performance in the presence of estimation risk.

In the next section, we discuss why imposing the convexity constraint (12) is actually

unnecessary. Moreover, we derive the optimal unconstrained combination coefficients and

demonstrate that the optimal portfolio combination offers several important benefits relative

to the constrained portfolio combination of Tu and Zhou (2011). Finally, we show in Section 4

that the convexity constraint, although theoretically suboptimal, can actually help improve

the EU for some degrees of risk aversion γ when combination coefficients are estimated.
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3 Optimal versus constrained portfolio combination

Imposing the convexity constraint (12) is needed when considering combinations of fully

invested portfolios, w = κ1w
1 + κ2w

2 with 1′w1 = 1′w2 = 1.3 The reason is that con-

straint (12) is then equivalent to the full-investment constraint on the combined portfolio:

1′w = 1 ⇔ κ11′w1 + κ21′w2 = 1 ⇔ κ1 + κ2 = 1.

However, the situation is different when combining the SMV and EW portfolios because,

as we recall in Section 2.1, SMV is not fully invested: 1′ŵ⋆ = (1′Σ̂−1µ̂)/γ ̸= 1, in general.

In fact, combining the SMV and EW portfolios amounts to invest in three funds: the sample

tangent portfolio and the EW portfolio, which are fully invested in risky assets, and the

risk-free asset. The problem is that, under constraint (12), a single coefficient κ1 controls the

weight allocated to the three funds simultaneously, the second combination coefficient being

κ2 = 1 −κ1. In particular, there is no way to disentangle the weights allocated to the sample

tangent portfolio and the risk-free asset by playing with κ1.

To circumvent this issue, we propose to relax constraint (12) and use two different combi-

nation coefficients κ1 and κ2 while still respecting the full-investment constraint. We derive

the optimal unconstrained combination coefficients in the next proposition.4

Proposition 2. The optimal combination coefficients maximizing (13) are

κopt =
(
φ(γew), γew

γ
(1 − φ(γew))

)
=
(

ψ2

ψ2 + d
,
γew

γ

d

ψ2 + d

)
. (17)

In the sequel, we call the constrained strategy and the optimal strategy the portfolio

combinations (9) exploiting the constrained coefficients (15) and the optimal coefficients (17),

respectively. We denote them as ŵtz = ŵ(κtz) and ŵopt = ŵ(κopt).

3For example, Kan, Wang, and Zhou (2021) combine the fully invested SMV and SGMV portfolios and
impose this constraint; see Appendix IA.2.2. The convexity constraint is also sensible when shrinking the
sample covariance matrix to estimate the GMV portfolio (Ledoit and Wolf, 2004).

4Kan and Wang (2021, Section 4.2) use similar coefficients in a different context, that of combining a
benchmark factor model with a set of test assets. In Appendix IA.2.4, we also derive the optimal combination
of the SMV, SGMV, and EW portfolios.

11



We now proceed by showing that the optimal strategy delivers five key benefits relative

to the constrained strategy of Tu and Zhou (2011): 1) optimal exposure to the three funds,

2) outperformance in expected out-of-sample utility, 3) outperformance of the risk-free asset,

4) outperformance of the optimal two-fund rule, 5) less extreme weights on risky assets. Our

theory in this section assumes that we know the combination coefficients κ perfectly; we

study the impact of estimation errors in these coefficients in Section 4.

3.1 Optimal exposure to the three funds

We first compare the constrained and optimal combination coefficients, κtz in (15) and κopt

in (17). The two combination strategies are not always different: (i) they fully invest in the

SMV portfolio in the absence of estimation risk (N/T → 0), (ii) they fully invest in the

risk-free asset as γ → ∞, and (iii) they coincide when γ = γew.

Otherwise, the constrained strategy has a striking difference: it always overinvests in the

SMV portfolio. In comparison, the weight on the EW portfolio can be larger or smaller,

depending on µew and γ. We also study the average weight allocated to the risk-free asset,5

πopt
rf = 1 − πopt

tan − πopt
ew and πtz

rf = 1 − πtz
tan − πtz

ew, (18)

where

πtan = γtan

γ
κ1 and πew = κ2 (19)

are the average weight allocated to the sample tangent and EW portfolios, respectively, with

γtan defined in (5). We show that under mild conditions the constrained strategy underex-

ploits the risk-free asset. We summarize these results in the next proposition.

Proposition 3. The following holds regarding the constrained and optimal strategies:

1. The constrained strategy overinvests in the SMV portfolio:

0 ≤ κopt
1 ≤ κtz

1 ≤ 1, (20)

5We study the average weight because the weight depends on 1′Σ̂−1µ̂, which is sample-dependent.
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and κopt
1 = κtz

1 if and only if γ = γew.

2. The investment in the EW portfolio depends on its mean excess return µew:

• If µew = 0, the constrained strategy is long the EW portfolio and the optimal

strategy discards it: 0 = κopt
2 ≤ κtz

2 , with equality if and only if γ = ∞.

• If µew < 0, the constrained (optimal) strategy is long (short) the EW portfolio:

κopt
2 ≤ 0 ≤ κtz

2 .

• If µew > 0, both strategies invest are long the EW portfolio:

0 ≤ κopt
2 ≤ κtz

2 if γ ∈
[
γew,

θ2 + d

µew

]
and κopt

2 ≥ κtz
2 otherwise. (21)

3. Let 0 < γew < γtan < (θ2 + d)/µew.6 Then, the constrained strategy underexploits the

risk-free asset:

πopt
rf ≤ πtz

rf ≤ 0 if γ ≤ γew and πopt
rf ≥ πtz

rf otherwise. (22)

We illustrate Proposition 3 in Figure 1 by calibrating the moments of asset excess returns,

µ and Σ, to a dataset of N = 25 portfolios of firms sorted on size and book-to-market

spanning July 1926 to December 2021 (25SBTM dataset hereafter). The left panels use

T = 120, and the right panels use T = 60, 120, and 480.

The figure shows that the allocation to the three funds in the constrained strategy is

substantially different from that in the optimal strategy. Consider an investor with γ = 5,

which is larger than γew = 1.9. When T = 120, the constrained strategy commands a weight

of 23% on the tangent portfolio, 71% on the EW portfolio, and 6% on the risk-free asset. In

contrast, the optimal strategy invests much more in the risk-free asset (54%) and much less

in the tangent and EW portfolios (16% and 30%, respectively).

A remarkable result in Proposition 3 is that the constrained strategy overinvests in the

tangent portfolio and underexploits the risk-free asset. This result can be understood because,

due to the κ1 + κ2 = 1 constraint, the only way the investor can adjust her exposure to the
6This is a mild assumption for typical datasets. In particular, all datasets we use in the empirical analysis

of Section 5 fulfill this assumption.
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Figure 1: Weights of the three funds in the constrained and optimal strategies
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Notes. This figure compares the average weight allocated to the three funds by the constrained and optimal
combination strategies defined in (15) and (17), respectively. The three funds (weights) are the risk-free
asset (πrf ), the EW portfolio (πew), and the sample tangent portfolio (πtan). The formulas for the average
weights are given by (18)–(19). The figure is constructed by calibrating the population vector of means and
covariance matrix of excess asset returns from monthly returns on the 25 portfolios of firms sorted on size
and book-to-market spanning July 1926 to December 2021. The left panels depict the weight allocated to
the three funds as a function of γ when the sample size T = 120. The right panels depict the difference in
weights between the optimal and constrained strategies as a function of γ when T = 60, 120, and 480. The
figure illustrates the results in Proposition 3: (i) πopt

rf ≤ πtz
rf ≤ 0 if γ ≤ γew and πopt

rf ≥ πtz
rf otherwise, (ii)

πtz
tan ≥ πopt

tan, and (iii) πtz
ew ≥ πopt

ew for γ ∈ [γew, (θ2 + d)/µew] = [1.9, 42.4] when T = 120.
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risk-free asset is by investing in the SMV portfolio. However, the SMV portfolio is risky,

and thus being optimally exposed to the risk-free asset would deliver a too risky portfolio.

This forces the constrained strategy to reduce the exposure to the risk-free asset, but up to

a point where the exposure to the SMV portfolio is still larger than in the optimal strategy.

Figure 1 shows that this effect is substantial, particularly when γ is high. For instance, when

γ = 10 and T = 120, we have (πopt
rf , π

opt
tan) = (77%, 8%) and (πtz

rf , π
tz
tan) = (34%, 23%), that is,

the constrained weight on the risk-free asset is 56% smaller than the optimal one, and the

constrained weight on the tangent portfolio is 180% larger.

Proposition 3 also implies that for a wide range of risk-aversion coefficients the constrained

strategy overinvests in the EW portfolio, which is because the interval in (21) is wide.7

Therefore, while investing in the EW portfolio helps alleviate estimation errors and improve

performance, the convexity constraint (12) often forces the investor to be overexposed to

this portfolio. For example, when γ = 5 and T = 120, πopt
ew = 30% while πtz

ew = 71%.

Finally, the right panels of Figure 1 show that the overexposure to risky assets and the

underexposure to the risk-free asset in the constrained strategy is particularly pronounced

when T is rather small. That is, it is when combining portfolios is most needed because

estimation errors are large that the convexity constraint hurts the most.

3.2 Outperformance in expected out-of-sample utility

Just like there is no particular reason in theory to impose the convexity constraint on the

combination coefficients, there is no reason for the maximum EU found along the line κ1 +

κ2 = 1 to coincide with the global optimum, which we show in the next proposition.

Proposition 4. The optimal strategy delivers a larger expected out-of sample utility than

the constrained strategy:

EU(ŵopt) − EU(ŵtz) = d

2γ
(
κtz

1 − κopt
1

)
≥ 0, (23)

with equality if and only if γ = γew or γ = ∞. Moreover, the utility gain in (23) increases

7For the data used to construct Figure 1, we have γew = 1.90 and (θ2 + d)/µew = 42.4 when T = 120.
Other datasets yield similar values.
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with estimation risk N/T .

Figure 2: Expected out-of-sample utility of optimal and constrained strategy
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Notes. This figure depicts the gain in expected out-of-sample utility delivered by the optimal combination
strategy ŵopt relative to the constrained combination strategy ŵtz as a function of the risk-aversion coefficient
γ between 0.5 and 20 for N = 25 and T = 60 (red solid), T = 120 (blue dotted), and T = 480 (green dash-
dotted). The figure is constructed by calibrating the population vector of means and covariance matrix of
excess asset returns from monthly returns on the 25 portfolios of firms sorted on size and book-to-market
spanning July 1926 to December 2021. The gain in expected out-of-sample utility is given in Proposition 4.
Both strategies are equivalent when γ = γew = 1.90 or γ = ∞, and the gain is always positive.

Proposition 4 shows that it is never beneficial to choose the constrained strategy over

the optimal strategy in terms of EU.8 Moreover, the gain delivered by the optimal strategy

increases with estimation risk, N/T . This result can be explained by Proposition 3: the

constrained strategy overinvests in the SMV portfolio relative to the optimal strategy, which

is the only portfolio in the combination that is exposed to estimation risk. We illustrate

Proposition 4 in Figure 2 using the 25SBTM dataset as in Figure 1. The figure shows that the

EU gain allowed by the optimal strategy can be substantial when γ departs from γew = 1.9.

For example, when γ varies between 0.5 and 20 and T = 120, the EU gain in (23) goes up to

around 0.5-0.6%, that is, around 6-7% annually. Moreover, we find in the empirical analysis

of Section 5 that the higher exposure to the tangent portfolio in the constrained strategy
8In Appendix IA.2.6, we show similarly that the optimal strategy always delivers a theoretically larger

expected out-of sample Sharpe ratio than that of the constrained strategy.
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increases turnover, which makes the EU gain even more substantial net of transaction costs.

3.3 Outperformance relative to the risk-free asset

In the next proposition, we show another important deficiency of the constrained combination

of Tu and Zhou (2011): it can underperform the risk-free asset when there is sufficient

estimation risk N/T and risk aversion γ. In contrast, the optimal unconstrained strategy

always outperforms the risk-free asset. This result is well corroborated by the empirical

results presented in Section 5.

Proposition 5. The following holds in relation to the risk-free asset:

1. The constrained strategy ŵtz delivers a smaller expected out-of-sample utility than the

risk-free asset, EU(ŵtz) < 0, if and only if i) θ2 < d and ii)

γ > γew

1 +
√

1 + θ4/θ2
ew

d− θ2

 = γneg. (24)

Moreover, γneg decreases with estimation risk N/T .

2. The optimal strategy ŵopt always delivers a larger expected out-of-sample utility than

the risk-free asset, EU(ŵopt) ≥ 0, with equality if and only if γ = +∞.

Proposition 5 shows that because the constrained strategy lacks a degree of freedom to

optimally invest in the three funds, it might be less desirable than simply holding the risk-

free asset for investors who are sufficiently risk averse, γ > γneg. This is because, as explained

above, the only way to invest in the risk-free asset under the convexity constraint is via the

SMV portfolio. However, as estimation risk increases, the constrained strategy allocates more

weight to the EW strategy (κtz
2 increases) and, because of the convexity constraint, less weight

to the SMV strategy (κtz
1 decreases). By doing so, it does not sufficiently invest in the risk-free

asset, whose weight is proportional to κtz
1 , and thus may underperform. This problem does

not arise in the optimal strategy which, by using two unconstrained combination coefficients

κ1 and κ2, renders a full investment in the risk-free asset attainable by setting κ = 0.

This deficiency of the constrained portfolio combination is particularly notable because

the two conditions under which it is outperformed by the risk-free asset can easily be met. As
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Figure 3: Optimal and constrained strategy versus the risk-free asset
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Notes. This figure depicts the contours of expected out-of-sample utility (EU) as a function of the combina-
tion coefficients κ = (κ1, κ2). The figure is constructed by calibrating the population vector of means and
covariance matrix of excess asset returns from monthly returns on the 25 portfolios of firms sorted on size
and book-to-market spanning July 1926 to December 2021, and using a sample size T = 120. The black solid
and dotted contours represent positive and negative EU values, respectively. The red dash-dotted contour is
the set of κ delivering zero EU. The pair located at the origin, identified by a black marker, corresponds to
the risk-free asset. The blue dashed line represents the convexity constraint κ1 + κ2 = 1, on which is located
the constrained combination coefficients κtz in (15). The optimal coefficients κopt in (17) deliver the global
EU optimum. The two panels depict the contours for risk-aversion coefficients γ = 3 and 10. As shown in
Proposition 5, because θ2 = 0.092 < d = 0.29, κtz delivers a positive EU if γ ≤ γneg = 5.41 and a negative
EU otherwise. In contrast, the optimal coefficients κopt always deliver a positive EU.

discussed in Section 2.3, the condition θ2 < d is equivalent to the SMV portfolio ŵ⋆ having

a negative EU. For typical values of θ = 0.3 and T = 120, this condition is met as soon as

N > 8. Moreover, the lower bound γneg is typically not large. For example, γneg = 5.41 for

the 25SBTM dataset and T = 120.9

We illustrate Proposition 5 in Figure 3 for the 25SBTM dataset and T = 120, in which

case γneg = 5.41. We depict the EU contour lines in the (κ1, κ2) plane for two levels of risk

aversion: γ = 3 < γneg and γ = 10 > γneg. The figure shows that not only the κ1 + κ2 = 1

line does not pass by the global optimum κopt, but it also only passes by negative EU values

9In their experiments, Tu and Zhou (2011) only consider relatively small values of γ = 1 and 3. Already
for γ = 3, they find in Panel A of their Table 6 that some of the constrained combination strategies they
introduce can deliver negative utilities and thus underperform the risk-free asset.
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when γ > γneg, in which case the constrained strategy underperforms the risk-free asset. In

comparison, the optimal strategy always delivers positive utilities.

3.4 Outperformance relative to the optimal two-fund rule

In this section, we show that the constrained strategy does not fully profit from adding the

EW portfolio in the three-fund combination. Indeed, it does not systematically outperform

the optimal two-fund rule of Kan and Zhou (2007), which drops the EW portfolio from the

combination in (9). This optimal two-fund portfolio combination is

ŵ2f = κ2fŵ⋆ with κ2f = θ2

θ2 + d
. (25)

In the next proposition, we show that while the optimal three-fund rule ŵopt always outper-

forms the optimal two-fund rule ŵ2f , the constrained three-fund rule ŵtz only outperforms

if γ is small enough, that is, γ ≤ 2γew.

Proposition 6. The optimal three-fund strategy ŵopt always delivers a larger expected out-of-

sample utility than the optimal two-fund strategy ŵ2f . In contrast, the constrained three-fund

strategy ŵtz does so if and only if γ ≤ 2γew.

Considering that the value of γew is typically quite small, the result in Proposition 6 means

that many investors are better off relying on the optimal two-fund rule that does not invest

in the EW portfolio rather than adding the EW portfolio via the convexity constraint (12).

Moreover, we show in Appendix IA.2.3 that even though the additional combination

coefficient to estimate in the optimal three-fund rule, κopt
2 , is sensitive to estimation errors,

the required sample size for the estimated optimal three-fund rule to deliver a larger EU

than the perfectly estimated optimal two-fund rule is not large. For example, a sample size

T ≥ 75 is required for the 25SBTM dataset.

3.5 Less extreme portfolio weights

A final desirable property of the optimal strategy relative to the constrained one is that

the weights allocated to the risky assets are less extreme, in the sense of having a smaller
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norm. Large weights are undesirable in practice because they are less easily implementable

and often result in larger turnover and transaction costs, which we confirm in our empirical

analysis in Section 5. Moreover, DeMiguel et al. (2009) and Zhao, Ledoit, and Jiang (2021),

among others, show that constraining portfolio norms helps improve performance. We use

the ℓ2-norm of the vector of weights on the risky assets,

||w||2 =

√√√√ N∑
i=1

w2
i . (26)

In the next proposition, we show that for a large range of values of the risk-aversion coeffi-

cient γ, the optimal strategy has smaller ℓ2-norm than that of the constrained strategy.

Proposition 7. Let γtan ≥ 0, µew ≥ 0,10 and γ ∈ [γew, (θ2 + d)/µew]. Then, the ℓ2-norm of

the vector of weights on the risky assets in (26) is smaller for the optimal strategy than for

the constrained strategy,

||ŵopt||2 ≤ ||ŵtz||2. (27)

This result follows from Proposition 3, which shows that relative to the optimal strategy,

the constrained strategy always allocates more weight to the tangent portfolio, and also to

the EW portfolio when γ ∈ [γew, (θ2 + d)/µew]. This interval is wide in practice; it is equal

to [1.9, 42.4] for the data used in Figure 1 when T = 120. Moreover, it is only a sufficient

condition, and the optimal strategy may still deliver a smaller ℓ2-norm than the constrained

strategy when γ is outside of this interval, as we find in the following illustration.

We illustrate Proposition 7 in Figure 4 for the 25SBTM dataset and T = 120. We depict

the average portfolio weights on the 25 risky assets and the risk-free asset for γ = 3 and

10, and the difference in ℓ2-norm, ||ŵtz||2 − ||ŵopt||2, as a function of γ between 0.5 and 10.

When γ = 3, the optimal strategy allocates a positive weight to the risk-free asset, whereas

the constrained strategy leverages the risk-free asset with a negative weight. When γ = 10,

the difference between the optimal and constrained strategies is particularly striking: the

ℓ2-norm is much smaller with the optimal strategy, ||wopt||2 = 0.26 < ||wtz||2 = 0.72, and

consequently it allocates much more weight to the risk-free asset, πopt
rf = 0.77 > πtz

rf = 0.34.
10The two assumptions γtan ≥ 0 and µew ≥ 0 are met when the GMV portfolio and the EW portfolio

have a positive mean excess return, which is typically the case.
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Figure 4: Comparison of portfolio weights and norms
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Notes. The two upper panels depict the average portfolio weights allocated to the 25 risky assets and the risk-
free asset (πrf ), for risk-aversion coefficients of γ = 3 and γ = 10, respectively. The red solid bars represent
the weights in the optimal strategy while the blue striped bars represent the weights in the constrained
strategy. The bottom panel depicts the difference between the ℓ2-norm of the optimal and constrained
strategies as a function of γ. The figure is constructed by calibrating the population vector of means and
covariance matrix of excess asset returns from monthly returns on the 25 portfolios of firms sorted on size
and book-to-market spanning July 1926 to December 2021, and using a sample size T = 120. The figure
shows that the constrained strategy delivers a larger ℓ2-norm for all risk-aversion coefficients.

Finally, the figure shows that the constrained strategy delivers a larger ℓ2-norm for any γ.

4 When the convexity constraint can help

The theoretical results in Section 3 show the benefits of dropping the convexity con-

straint (12) to optimally combine the sample tangent portfolio, the EW portfolio, and the

risk-free asset. However, these results rely on the crucial assumption that the combination

coefficients are known. Because they depend on the population moments of asset returns,

µ and Σ, this assumption is not realistic: both κtz and κopt must be estimated from the

data. Therefore, they are themselves subject to estimation errors and, as Kan and Wang
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(2021) and Lassance, Martín-Utrera, and Simaan (2022) show, the impact of these errors

on out-of-sample performance can be substantial.

In this section, we show that although the optimal strategy outperforms the constrained

strategy in theory, it can underperform for a certain range of risk-aversion coefficients when

we account for estimation errors in combination coefficients. The reason is that, as Jagan-

nathan and Ma (2003) put it, imposing the wrong constraint can help. This effect is well

known for portfolio weights: imposing bound constraints (Frost and Savarino, 1988; Jagan-

nathan and Ma, 2003) or norm constraints (DeMiguel et al., 2009; Ao, Li, and Zheng, 2019) is

theoretically suboptimal but has a regularization effect by preventing the weights to explode,

which can help improve out-of-sample performance. A similar phenomenon happens when

imposing the convexity constraint on combination coefficients: the resulting constrained coef-

ficients in (15) are always between zero and one. In comparison, κopt
1 is also between zero and

one, but κopt
2 is unbounded because it is proportional to γew = µew/σ

2
ew. This suggests that

when γ is close to γew and the theoretical gain of the optimal strategy over the constrained

strategy is small, the constrained strategy might actually perform better out of sample.

This intuition is confirmed in Appendix IA.1. We simulate normally distributed asset

returns with parameters (µ,Σ) and repeatedly estimate the combination coefficients. We

find that κtz
1 = 1 − κtz

2 and κopt
1 are not very sensitive to estimation errors. In particular,

estimation errors in mean returns µ have a limited effect because they are partially offset in

the numerator and denominator of the coefficients. However, this result is no longer true for

κopt
2 that is much more impacted by estimation errors in µ, which is problematic because mean

returns are notoriously difficult to estimate (Merton, 1980). This behavior can be explained

because κopt
2 = 1

γ
µew

σ2
ew

(1 − κopt
1 ) and therefore is directly proportional to mean returns µ via

µew. This suggests that the additional impact of estimation errors in the optimal strategy

relative to the constrained strategy mainly results from µew in κopt
2 .

Therefore, in the next proposition, we account for the relative impact of estimation errors

in combination coefficients by deriving the EU of the optimal strategy when the parameter

µew is estimated in κopt
2 :

κ̂opt
2 = 1

γ

µ̂ew

σ2
ew

(1 − κopt
1 ), (28)
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where µ̂ew = w′
ewµ̂. Moreover, we show that the resulting estimated optimal strategy is

outperformed by the constrained strategy when γ belongs to an interval centered around γew.

Proposition 8. Let the combination coefficient κopt
2 be estimated by κ̂opt

2 in (28). Then,

1. The expected out-of-sample utility of the estimated optimal strategy is

EU
(
ŵ(κopt

1 , κ̂opt
2 )

)
= EU(ŵopt) − 1 − (κopt

1 )2

2γT , (29)

where EU(ŵopt) = U⋆ − d
2γ
κopt

1 is the utility when κopt
2 is known.

2. Let N ≥ 2.11 Then, the constrained strategy delivers a larger expected out-of-sample

utility than the estimated optimal strategy, EU(ŵtz) ≥ EU
(
ŵ(κopt

1 , κ̂opt
2 )

)
, if and only

if γ belongs to the following interval:

γ ∈

γew ± σ−1
ew

√√√√ (ψ2 + d)(2ψ2 + d)
dT (ψ2 + d) − (2ψ2 + d)

 =
[
γ

ew
, γew

]
. (30)

Moreover, the length of this interval decreases with N .12

Proposition 8 shows that when γ is sufficiently close to γew according to the interval (30),

and thus that the theoretical gain provided by the optimal strategy in (23) is not large

enough, the constrained strategy can deliver a larger EU due to the impact of estimation

errors in µew on κopt
2 . However, as the number of assets N increases and the constrained

strategy becomes more suboptimal in theory, the length of the interval (30) decreases. We

illustrate Proposition 8 in Figure 5, in which we compare the EU of the estimated optimal

strategy and that of the constrained strategy for the 25SBTM dataset and T = 120.

The length of this interval in (30) is not negligible. For the 25SBTM dataset example,

it is equal to γ ∈ [1.90 ± 1.65] when T = 120 and γ ∈ [1.90 ± 1.40] when T = 240.

Therefore, it is more desirable to rely on the constrained strategy than the optimal one for

most small values of γ, but the optimal strategy remains preferable when γ is medium or
11When N = 1, the quantity in the square root in the interval (30) turns negative if T is large enough, in

which case the estimated optimal strategy delivers a larger EU for all γ.
12As the sample size T → ∞, both the optimal and constrained strategy deliver the maximum EU, U⋆

in (3), and thus the interval of γ for which one does better than the other is ill-defined. This explains why
the interval in (30) does not vanish as T → ∞ but, instead, converges to γew ± σ−1

ew

√
2ψ2/(N − 2).
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Figure 5: Impact of estimation errors in combination coefficients on performance
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Notes. This figure depicts the expected out-of-sample utility (EU) as a function of the risk-aversion coefficient
γ for two different strategies: the estimated optimal strategy in (29) (solid red) and the constrained strategy
in (15) (dotted blue). The figure is constructed by calibrating the population vector of means and covariance
matrix of excess asset returns from monthly returns on the 25 portfolios of firms sorted on size and book-
to-market spanning July 1926 to December 2021, and using a sample size T = 120 and number of assets
N = 50. As shown in Proposition 8, the constrained strategy delivers a larger EU than the estimated optimal
strategy when γ ∈ [γ

ew
, γew] = [1.90 ± 1.45].

large. This is expected because it is particularly when γ gets large enough that the convexity

constraint (12) hurts performance by preventing enough investment in the risk-free asset, as

we discuss in Section 3.3.

In the empirical analysis of Section 5, we exploit Proposition 8 to implement a mixed

strategy that invests in either the optimal or constrained strategy according to γ:13

ŵmix =


ŵtz if γ ∈

[
γ

ew
, γew

]
,

ŵopt otherwise.
(31)

The usefulness of the convexity constraint we demonstrate in this section is not restricted

to the combination of the SMV and EW portfolios. In Appendix IA.2.1, we derive the con-

13Similarly, in Appendix IA.2.3 we exploit Proposition 8 to propose a mixed strategy that invests in the
optimal two-fund rule of Kan and Zhou (2007), the constrained strategy, or our estimated optimal strategy.
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strained portfolio combination for the three-fund rule of Kan and Zhou (2007) that combines

the SMV and SGMV portfolios, which we show outperforms the optimal combination for

some degrees of risk aversion. We exploit this result to construct a mixed strategy similar

to that in (31). In Appendix IA.2.2, we show that the optimal combination of the SMV and

SGMV portfolios without a risk-free asset in Kan, Wang, and Zhou (2021) actually outper-

forms the three-fund rule of Kan and Zhou (2007) for some risk-aversion levels due to the

convexity constraint; that is, investing in the risk-free asset can hurt performance.

5 Empirical analysis

In this section, we evaluate the out-of-sample performance of the portfolio strategies we

introduce in this paper. We discuss the datasets and portfolio strategies in Section 5.1, the

out-of-sample performance measure in Section 5.2, and the results in Section 5.3. We provide

additional empirical results in Appendix IA.3.

5.1 Datasets and portfolio strategies

We consider four commonly used datasets of monthly excess returns that we list in Table 1:

three datasets of characteristic-sorted portfolios and one of industry-sorted portfolios.

We evaluate the out-of-sample performance of eight portfolio strategies that we list in

Table 2 with their abbreviation. Among them, two are novel strategies we introduce in this

paper. First, the optimal three-fund combination strategy in Section 3 (OPT3F). Second,

the mixed combination strategy in Section 4 (MIX3F).14

The remaining six strategies are alternative portfolio combination rules. First and most

relevant to us, the constrained three-fund combination strategy of Tu and Zhou (2011) in

Section 2.3 (TZ3F). Second and third, the optimal two-fund and three-fund rules in Kan and

Zhou (2007) (KZ2F and KZ3F). Fourth, the optimal two-fund combination in Kan, Wang,

and Zhou (2021) without a risk-free asset (KWZ). Fifth and sixth, the optimal combination

14In theory, for a fixed risk-aversion coefficient γ, the mixed strategy is equal to either the optimal or the
constrained strategy, depending on whether γ ∈

[
γ

ew
, γew

]
in (30) or not. However, this interval is estimated

using rolling windows, and thus MIX3F switches between the two strategies over time, even for a fixed γ.
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of the EW or SGMV portfolio with the risk-free asset, which correspond to (γew/γ)wew and

(µg/(cγ))Σ̂−11, respectively (EWRF and GMVRF). The last two combinations generally

outperform their more traditional fully invested counterpart and are more consistent with

the other strategies that also invest in the risk-free asset, except for KWZ.

Although we use the sample covariance matrix (6) in our theory, we implement the port-

folio strategies both with the sample estimate and the linear shrinkage estimate of Ledoit and

Wolf (2004).15 This is because Kan, Wang, and Zhou (2021) and Lassance, Martín-Utrera,

and Simaan (2022) find that using both optimal combination coefficients and shrinkage es-

timates of the covariance matrix delivers better performance than using each in isolation.

We need to estimate several parameters to determine the optimal combination coefficients

in the eight strategies. We estimate the parameter ψ2 via the adjusted estimator in Kan and

Wang (2021) and the parameters θ2 and ψ2
g = θ2 −µ2

g/σ
2
g via the adjusted estimators in Kan

and Zhou (2007), where µg and σ2
g are the mean excess return and variance of the GMV

portfolio, respectively. Regarding µew, σ2
ew, µg, and σ2

g , we estimate them by plugging in the

sample estimates of µ and Σ, as in Kan and Zhou (2007) and Tu and Zhou (2011).

Finally, we consider a wide range of values for the risk-aversion coefficient γ to evaluate

how the portfolio strategies perform and compare for different types of investors. Specifically,

consistent with the values used by DeMiguel, Garlappi, and Uppal (2009) and Martellini and

Ziemann (2010), we consider γ = 3, 5, 10, and 15.

5.2 Out-of-sample performance measure

To measure the out-of-sample performance of the eight portfolio strategies in Section 5.1,

we implement a classical rebalancing methodology as in DeMiguel, Garlappi, and Uppal

(2009) and Tu and Zhou (2011). Specifically, at the end of month t we estimate the portfolio

strategy k using an estimation window composed of the T previous months, and we compute

its out-of-sample return using the return data in month t+ 1. We consider T = 120 and 240

months. This procedure is repeated iteratively until the end of the sample, which gives a

time series of τ − T out-of-sample gross returns rgross,k,t for each strategy k, where τ is the

15We also consider the nonlinear shrinkage estimate of Ledoit and Wolf (2020) and find the results are
similar to those obtained with linear shrinkage. Therefore, we do not report these results for conciseness.
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total number of months in the dataset. We then compute the net out-of-sample returns as

rnet,k,t = rgross,k,t if t = T + 1 and

rnet,k,t = (1 + rgross,k,t)(1 − p× turnoverk,t−1) − 1 if t = T + 2, . . . , τ, (32)

where p is the proportional cost required to rebalance the portfolio and

turnoverk,t =
N∑

i=1
|wi,k,t − wi,k,(t−1)+|, t = T + 1, . . . , τ, (33)

with wi,k,t the weight of asset i in month t and wi,k,(t−1)+ the prior-month weight before

rebalancing in month t. We set p = 10 basis points as in Ao, Li, and Zheng (2019), which

is in line with Engle, Ferstenberg, and Russell (2012) who find that the average cost level

for NYSE stocks is 8.8 basis points. Finally, we compare the different portfolio strategies in

terms of annualized out-of-sample utility net of transaction costs,

Uk = 12 ×
(
µ̂k − γ

2 σ̂
2
k

)
, (34)

where µ̂k and σ̂2
k are the sample mean and variance of rnet,k,t in (32). We consider the out-of-

sample utility because this is the criterion that the eight combination strategies we consider

are designed to optimize. In Appendix IA.3.1, we also report the out-of-sample Sharpe ratio.

5.3 Discussion of results

The out-of-sample performance of the portfolio strategies listed in Table 2 is reported in

Table 3 for the sample covariance matrix and Table 4 for the shrinkage covariance matrix.

We also report the average monthly turnover in Table 5, only when T = 120 for conciseness.

In the vast majority of cases, we find that exploiting the shrinkage covariance matrix

of Ledoit and Wolf (2004) to estimate the portfolio strategies in Table 4 delivers better

performance than exploiting the sample covariance matrix Σ̂, defined in (6), in Table 3.

Therefore, we recommend investors to rely on a shrinkage covariance matrix, even if the

sample one underlies the theory. However, the ranking of the different strategies remains

similar, and therefore the main conclusions we discuss below are applicable to both cases.
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The main comparison concerns the three-fund rules that combine the sample tangent

portfolio, the EW portfolio, and the risk-free asset. The results are consistent with our

theoretical predictions in Sections 3 and 4. Specifically, when γ is rather small and thus

close to the estimated values of γew, the constrained strategy TZ3F of Tu and Zhou (2011)

outperforms the optimal strategy OPT3F, in line with Proposition 8. This happens when

γ = 3 when using the sample covariance matrix, and γ = 3 and 5 when using the shrinkage

covariance matrix. This result shows that the convexity constraint can indeed help perfor-

mance in practice by alleviating the impact of estimation errors on combination coefficients.

Nonetheless, the utility loss with OPT3F is typically small.

Although TZ3F performs well when γ is small, it quickly deteriorates as γ increases, in

which case it is largely outperformed by OPT3F. Take, for instance, the sample covariance

matrix, T = 120, and γ = 10. Then, TZ3F delivers an annualized net utility of −0.12, 1.66,

−3.02, and −0.33 for the four datasets, versus 3.09, 2.61, 0.67, and 1.91 for OPT3F.

In line with Propositions 5 and 6 we also note that as γ increases TZ3F often delivers

negative utility values, meaning that it is outperformed by the risk-free asset, and it is often

outperformed by the optimal two-fund rule of Kan and Zhou (2007) (KZ2F). The out-of-

sample utility with OPT3F is on the contrary always positive and larger than that of KZ2F.

This means that the OPT3F strategy is consistently valuable to investors on a risk-adjusted

basis, and profits from adding the EW portfolio in the combination.

Moreover, we find in Table 5 that OPT3F delivers a smaller turnover than that of TZ3F.

This can be explained from Proposition 7, which shows that TZ3F delivers more extreme

weights for many degrees of risk aversion. This larger turnover hurts the performance net

of proportional transaction costs. Moreover, OPT3F delivers a lower turnover than KZ2F

thanks to the investment in the low-turnover EW portfolio.

The mixed strategy introduced in Section 4 (MIX3F) is designed to take the best out of

the OPT3F and TZ3F strategies, and our results show that this objective is accomplished.

Indeed, MIX3F is close to and generally better than OPT3F when γ is rather small (γ = 3

and 5), and still outperforms TZ3F when γ gets larger. This means that MIX3F is a safer

approach than relying exclusively on either OPT3F or TZ3F. However, because of estimation

error in the interval of γ that defines when TZ3F outperforms OPT3F,
[
γ

ew
, γew

]
in (30),
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Figure 6: Annualized net out-of-sample utility of three-fund strategies
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Notes. This figure depicts the annualized net out-of-sample utility as a function of the risk-aversion coefficient
γ for three different three-fund strategies described in Table 2: optimal strategy (OPT3F, solid red), mixed
strategy (MIX3F, dashed black), and constrained strategy (TZ3F, dotted blue). The figure is constructed
following the empirical methodology described in Section 5, for the 25SBTM dataset, a sample size T = 120,
and under the sample covariance matrix. The net out-of-sample utility is computed using proportional
transaction costs of 10 basis points as in Ao, Li, and Zheng (2019). The grey region depicts the first, second,
and third quartiles of the estimated parameter γew defined in (10).

MIX3F is not able to perfectly replicate the performance of the best-performing strategy

depending on γ. We illustrate the performance of the OPT3F, TZ3F, and MIX3F strategies

in Figure 6 for the 25SBTM dataset, T = 120, and the sample covariance matrix. The figure

shows that the performance of MIX3F switches from that of TZ3F to that of OPT3F for γ

around the middle of the first and third quartiles of estimated values of γew.

We turn next to the comparison with the optimal three-fund rule of Kan and Zhou

(2007) (KZ3F) and its fully invested counterpart in Kan, Wang, and Zhou (2021) (KWZ).

When the risk aversion γ is rather large (γ = 10 and 15), KZ3F nearly systematically

outperforms KWZ, because KWZ cannot invest in the risk-free asset. However, the contrary

often happens when γ = 3 and 5, and even systematically so when T = 240. We demonstrate

in Appendix IA.2.2 that this result can be explained with a similar reasoning to that in

Section 4. Specifically, Kan, Wang, and Zhou (2021) impose a convexity constraint on the

combination coefficients to ensure that KWZ is fully invested in risky assets, which alleviates
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the impact of estimation errors in combination coefficients relative to KZ3F. As a result,

KWZ can deliver better performance than KZ3F for some degrees of risk aversion.16

The comparison of the optimal combination of the SMV and EW portfolios (OPT3F) with

the optimal combination of the SMV and SGMV portfolios in Kan and Zhou (2007) (KZ3F)

delivers another surprising insight. When looking at the EWRF and GMVRF strategies, we

see that GMVRF performs largely better overall. Specifically, it outperforms for all datasets

when T = 240 and for all datasets except 30IND when T = 120. Therefore, one would

expect that KZ3F should also largely outperform OPT3F. However, this is not the case.

When T = 240, KZ3F does better but their performances are quite close. When T = 120,

OPT3F is actually even better than KZ3F. To give a concrete example, consider the shrinkage

covariance matrix, T = 120, γ = 3, and the 25SBTM dataset. Then, GMVRF delivers an

EU of 5.79 and EWRF only 3.29, but still, OPT3F delivers an EU of 13.25 while KZ3F

only delivers 12.13. Intuitively, this result should be explained by different diversification

properties that arise when combining SMV with EW or SGMV. To confirm this intuition,

we derive in Appendix IA.2.5 a closed-form expression for the correlation between the out-

of-sample return of the SMV portfolio and that of either the SGMV portfolio or the EW

portfolio. By calibrating this correlation to our four datasets, we find that the correlation

with the EW portfolio is systematically much smaller, which is in line with the empirically

observed correlations.17 Therefore, there are larger out-of-sample diversification gains from

combining the SMV and EW portfolios, which helps explain the puzzling results above.18

Finally, we compare our strategies with the two naive benchmarks, that is, the com-

bination of the EW and SGMV portfolios with the risk-free asset, EWRF and GMVRF,

respectively. For the three datasets of characteristic-sorted portfolios, these two strategies

are largely outperformed by the portfolios that also invest in the SMV portfolio. In particu-

16Specifically, KWZ outperforms KZ3F when γ belongs to an interval centered around T −N−1
T −2 γtan.

17For example, for the 25SBTM dataset, the empirical correlation between the out-of-sample returns of
the SMV and EW portfolios is 0.18 when T = 120 and 0.23 when T = 240. In contrast, the empirical
correlation between SMV and SGMV is twice larger: 0.37 for T = 120 and 0.46 for T = 240.

18One could hope to profit from both the EW and SGMV portfolios by combining them both with the
SMV portfolio. However, we derive such an optimal four-fund portfolio in Appendix IA.2.4 and find that it is
generally outperformed by our optimal three-fund rule that does not invest in SGMV. This can be explained
because the theoretical gain from adding SGMV is small and thus is offset by the estimation risk coming
from having to estimate an additional combination coefficient.
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lar, when using the shrinkage covariance matrix, our OPT3F strategy outperforms the two

naive benchmarks for all risk aversion γ and sample size T we consider, and in a substantial

manner. However, combining with SMV is generally detrimental to out-of-sample perfor-

mance for the 30IND dataset. The explanation for these results is that while the GMVRF

and EWRF portfolios are far from being efficient for the characteristic-sorted datasets, there

is only little cross-sectional variation in sample mean returns for industry-sorted portfolios

(Kirby and Ostdiek, 2012) and thus GMVRF and EWRF are close to being efficient for

the 30IND dataset. In that case, the small potential gain from combining with SMV cannot

compensate for the increased estimation risk. To elaborate on this explanation, we depict

in Figure 7 the time series of parameter ψ2, defined in (11) as the difference between the

maximum squared Sharpe ratio and that of the EW portfolio, which we estimate using the

adjusted estimator of Kan and Wang (2021).19 The figure shows that it is for the 30IND

dataset that ψ2 is smallest and thus EWRF most efficient. Similarly, we find in unreported

results that GMVRF is more efficient for the 30IND dataset than for the other three datasets.

6 Conclusion

The sample mean-variance (SMV) portfolio is notoriously deficient and typically underper-

forms the equally weighted (EW) portfolio out of sample. Nonetheless, Tu and Zhou (2011)

show that investors should not completely abandon the SMV portfolio because it is possible

to obtain consistently good performance by combining the SMV and EW portfolios together.

In this paper, we explore the consequences of a seemingly natural convexity constraint

that Tu and Zhou impose on the combination coefficients: they have to sum to one. We show

that this constraint is unnecessary because the risk-free asset is part of the investment set,

and it has several undesirable consequences relative to the optimal unconstrained portfolio

combination we derive. In particular, it leads to an overinvestment in the SMV portfolio,

a worse performance than the risk-free asset for sufficiently risk-averse investors, and more

extreme weights on the risky assets. Our empirical analysis corroborates these results.

19The parameter ψ2 is a sensible measure of inefficiency of the EWRF portfolio because one can show
that the expected out-of-sample utility loss of the EWRF portfolio, U⋆ −EU

(
γew

γ wew

)
, is equal to ψ2/(2γ).
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Figure 7: Estimated inefficiency of the equally weighted portfolio
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Notes. This figure depicts the time series of the estimated values of ψ2, defined in (11) as the difference
between the maximum squared Sharpe ratio and that of the equally weighted portfolio. This parameter
is estimated for each dataset listed in Table 1 using the adjusted estimator of Kan and Wang (2021). The
estimate for a given month is obtained from the previous T = 120 monthly returns. The dotted lines represent
the mean of the time series for each dataset.

However, the convexity constraint points to a new way of improving out-of-sample per-

formance when combination coefficients are estimated, in which case imposing the wrong

constraint can help. Indeed, the convexity constraint acts as a bound constraint on combina-

tion coefficients and thus the constrained coefficients are less sensitive to estimation errors,

which helps improve performance relative to the optimal combination of the SMV and EW

portfolios for some degrees of risk aversion. This novel insight is quite general. We show that it

can be used to improve performance when combining the SMV and global-minimum-variance

(GMV) portfolios, and to explain why investing in the risk-free asset hurts performance for

some investors. There is a large literature on the benefits of weight constraints for combining

assets and, given our results, an interesting avenue for future research is to exploit them to

combine estimated portfolios and alleviate estimation errors in combination coefficients.

Finally, the GMV portfolio is often preferred to the EW portfolio in the literature as a

naive investment choice because it is located on the sample efficient frontier and generally

performs better. However, we demonstrate theoretically and empirically that the correlation

between the out-of-sample return of the SMV portfolio and the EW portfolio is substantially
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smaller than that with the GMV portfolio. Therefore, the EW portfolio can be preferable

for portfolio combinations due to larger out-of-sample diversification gains.
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Tables

Table 1: List of datasets considered in the empirical analysis

Dataset N Time period Abbreviation
25 portfolios formed on size and book-to-market 25 07/1926 - 12/2021 25SBTM
10 momentum portfolios 10 01/1927 - 12/2021 10MOM
30 industry portfolios 30 07/1926 - 12/2021 30IND
25 portfolios formed on operating profitability
and investment 25 07/1963 - 12/2021 25OPINV

Notes. This table lists the datasets of monthly excess returns we use in the empirical analysis of Section 5.
All data are downloaded from Kenneth French’s website.

Table 2: List of portfolio strategies considered in the empirical analysis

Abbreviation Description
Portfolio strategies introduced in the paper
OPT3F: tan-ew-rf Optimal combination of the sample tangent portfolio, equally

weighted portfolio, and risk-free asset. See Proposition 2.
MIX3F: tan-ew-rf Mixed strategy combining the constrained and optimal three-fund

portfolio combinations. See Equation (31).
Benchmark portfolio strategies
TZ3F: tan-ew-rf Constrained combination of the sample tangent portfolio, equally

weighted portfolio, and risk-free asset in Tu and Zhou (2011).
KZ2F: tan-rf Optimal combination of the sample tangent portfolio and risk-free

asset in Kan and Zhou (2007).
KZ3F: tan-gmv-rf Optimal combination of the sample tangent portfolio, sample global-

minimum-variance portfolio, and risk-free asset in Kan and Zhou
(2007).

KWZ: tan-gmv Optimal combination of the sample tangent portfolio and sample
global-minimum-variance portfolio with no-risk free asset in Kan,
Wang, and Zhou (2021).

EWRF Optimal combination of the equally weighted portfolio and the risk-
free asset.

GMVRF Optimal combination of the sample global-minimum-variance portfo-
lio and the risk-free asset.

Notes. This table lists the portfolio strategies we use in the empirical analysis of Section 5. All strategies are
estimated with the sample covariance matrix in (6) or the shrinkage estimator of Ledoit and Wolf (2004).
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Table 3: Annualized net out-of-sample utility (sample covariance matrix)

Dataset T = 120 T = 240
25SBTM 10MOM 30IND 25OPINV 25SBTM 10MOM 30IND 25OPINV

Panel (a): γ = 3
Proposed portfolios
OPT3F: tan-ew-rf 10.37 8.71 2.25 6.38 8.29 9.30 0.27 8.54
MIX3F: tan-ew-rf 10.90 8.74 2.81 5.81 8.79 9.63 1.03 9.53
Benchmark portfolios
TZ3F: tan-ew-rf 11.36 8.99 3.25 8.47 9.22 10.71 2.43 8.57
KZ2F: tan-rf 9.13 8.02 0.03 5.35 7.48 9.00 −1.84 6.29
KZ3F: tan-gmv-rf 8.85 9.81 1.15 6.43 8.98 10.75 0.63 9.47
KWZ: tan-gmv 9.54 9.16 1.97 6.19 10.57 12.53 2.83 9.58
EWRF 3.29 2.71 3.78 2.09 2.34 1.30 1.78 2.45
GMVRF 5.80 4.53 2.18 7.74 6.59 3.33 2.08 9.26

Panel (b): γ = 5
Proposed portfolios
OPT3F: tan-ew-rf 6.20 5.22 1.34 3.82 4.94 5.58 0.16 5.12
MIX3F: tan-ew-rf 6.25 5.52 1.21 3.65 4.71 5.33 0.16 4.67
Benchmark portfolios
TZ3F: tan-ew-rf 5.71 5.16 1.08 4.71 5.16 6.61 0.88 4.86
KZ2F: tan-rf 5.45 4.80 0.02 3.20 4.45 5.40 −1.11 3.76
KZ3F: tan-gmv-rf 5.28 5.88 0.68 3.85 5.36 6.45 0.38 5.68
KWZ: tan-gmv 6.45 5.78 1.28 4.60 7.90 8.51 2.21 7.41
EWRF 1.97 1.62 2.27 1.25 1.41 0.78 1.07 1.47
GMVRF 3.47 2.72 1.31 4.64 3.95 2.00 1.24 5.55

Panel (c): γ = 10
Proposed portfolios
OPT3F: tan-ew-rf 3.09 2.61 0.67 1.91 2.45 2.79 0.08 2.56
MIX3F: tan-ew-rf 2.91 2.47 0.71 1.73 2.34 2.70 0.07 2.55
Benchmark portfolios
TZ3F: tan-ew-rf −0.12 1.66 −3.02 −0.33 1.06 2.74 −2.61 0.53
KZ2F: tan-rf 2.71 2.40 0.01 1.60 2.21 2.70 −0.55 1.88
KZ3F: tan-gmv-rf 2.63 2.94 0.34 1.92 2.67 3.22 0.19 2.84
KWZ: tan-gmv 0.64 −0.74 −1.97 −0.22 2.96 2.04 −0.70 2.38
EWRF 0.99 0.81 1.13 0.63 0.70 0.39 0.53 0.74
GMVRF 1.73 1.36 0.65 2.32 1.97 1.00 0.62 2.77

Panel (d): γ = 15
Proposed portfolios
OPT3F: tan-ew-rf 2.06 1.74 0.45 1.27 1.63 1.86 0.05 1.70
MIX3F: tan-ew-rf 2.05 1.67 0.38 1.27 1.63 1.86 0.05 1.70
Benchmark portfolios
TZ3F: tan-ew-rf −2.33 0.38 −5.13 −2.70 −0.45 1.41 −3.80 −1.10
KZ2F: tan-rf 1.81 1.60 0.00 1.06 1.47 1.80 −0.37 1.25
KZ3F: tan-gmv-rf 1.75 1.96 0.23 1.28 1.78 2.15 0.12 1.89
KWZ: tan-gmv −4.58 −6.70 −5.65 −5.26 −1.48 −3.42 −3.98 −2.52
EWRF 0.66 0.54 0.76 0.42 0.47 0.26 0.36 0.49
GMVRF 1.15 0.90 0.43 1.54 1.31 0.67 0.41 1.85

Notes. This table reports the annualized net out-of-sample utility in percentage points for the portfolio
strategies described in Table 2 when using the sample covariance matrix, according to the methodology in
Section 5. The net out-of-sample utility is computed using proportional transaction costs of 10 basis points
as in Ao, Li, and Zheng (2019). We consider two sample sizes, T = 120 and T = 240, and risk-aversion
coefficients γ = 3, 5, 10, and 15.
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Table 4: Annualized net out-of-sample utility (shrinkage covariance matrix)

Dataset T = 120 T = 240
25SBTM 10MOM 30IND 25OPINV 25SBTM 10MOM 30IND 25OPINV

Panel (a): γ = 3
Proposed portfolios
OPT3F: tan-ew-rf 13.25 11.72 1.74 9.28 12.40 11.00 0.01 9.09
MIX3F: tan-ew-rf 14.02 11.94 2.34 9.01 12.93 11.35 0.77 10.16
Benchmark portfolios
TZ3F: tan-ew-rf 15.23 12.78 3.05 12.07 13.64 12.42 2.22 9.31
KZ2F: tan-rf 13.33 11.60 0.12 9.90 12.20 10.94 −2.00 7.40
KZ3F: tan-gmv-rf 12.13 12.71 0.85 9.51 11.99 12.30 0.51 9.23
KWZ: tan-gmv 12.35 12.45 2.64 8.91 13.19 14.08 3.14 10.04
EWRF 3.29 2.71 3.78 2.09 2.34 1.30 1.78 2.45
GMVRF 5.79 4.25 2.15 8.66 5.27 3.20 2.18 8.44

Panel (b): γ = 5
Proposed portfolios
OPT3F: tan-ew-rf 7.94 7.03 1.04 5.56 7.43 6.60 0.01 5.45
MIX3F: tan-ew-rf 8.02 7.48 0.92 5.51 7.26 6.43 0.00 5.01
Benchmark portfolios
TZ3F: tan-ew-rf 8.61 7.67 1.10 6.66 8.05 7.70 0.79 5.16
KZ2F: tan-rf 8.00 6.96 0.07 5.93 7.31 6.56 −1.20 4.43
KZ3F: tan-gmv-rf 7.26 7.63 0.50 5.69 7.18 7.38 0.30 5.53
KWZ: tan-gmv 8.57 7.99 2.22 6.81 9.52 9.50 2.65 7.76
EWRF 1.97 1.62 2.27 1.25 1.41 0.78 1.07 1.47
GMVRF 3.46 2.55 1.29 5.19 3.15 1.92 1.31 5.06

Panel (c): γ = 10
Proposed portfolios
OPT3F: tan-ew-rf 3.97 3.51 0.52 2.78 3.71 3.30 0.00 2.72
MIX3F: tan-ew-rf 3.78 3.36 0.55 2.55 3.59 3.20 −0.01 2.72
Benchmark portfolios
TZ3F: tan-ew-rf 2.47 3.32 −2.81 0.69 3.07 3.48 −2.72 0.55
KZ2F: tan-rf 4.00 3.48 0.03 2.97 3.65 3.28 −0.60 2.21
KZ3F: tan-gmv-rf 3.63 3.81 0.24 2.84 3.59 3.69 0.15 2.76
KWZ: tan-gmv 2.72 0.92 −0.54 2.00 3.97 2.72 −0.02 2.78
EWRF 0.99 0.81 1.13 0.63 0.70 0.39 0.53 0.74
GMVRF 1.73 1.27 0.64 2.59 1.57 0.96 0.65 2.53

Panel (d): γ = 15
Proposed portfolios
OPT3F: tan-ew-rf 2.65 2.34 0.35 1.85 2.47 2.20 0.00 1.81
MIX3F: tan-ew-rf 2.64 2.27 0.26 1.85 2.47 2.20 0.00 1.81
Benchmark portfolios
TZ3F: tan-ew-rf 0.30 1.78 −5.02 −1.80 1.34 2.01 −3.97 −1.12
KZ2F: tan-rf 2.67 2.32 0.02 1.98 2.43 2.18 −0.40 1.47
KZ3F: tan-gmv-rf 2.42 2.54 0.16 1.89 2.39 2.46 0.10 1.84
KWZ: tan-gmv −2.07 −4.98 −3.77 −2.66 −0.55 −2.72 −3.10 −1.98
EWRF 0.66 0.54 0.76 0.42 0.47 0.26 0.36 0.49
GMVRF 1.15 0.85 0.43 1.73 1.05 0.64 0.43 1.68

Notes. This table reports the annualized net out-of-sample utility in percentage points for the portfolio
strategies described in Table 2 when using the shrinkage covariance matrix of Ledoit and Wolf (2004),
according to the methodology in Section 5. The net out-of-sample utility is computed using proportional
transaction costs of 10 basis points as in Ao, Li, and Zheng (2019). We consider two sample sizes, T = 120
and T = 240, and risk-aversion coefficients γ = 3, 5, 10, and 15.
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Table 5: Average monthly turnover (T = 120)

Dataset Sample Σ Linear shrinkage Σ
25SBTM 10MOM 30IND 25OPINV 25SBTM 10MOM 30IND 25OPINV

Panel (a): γ = 3
Proposed portfolios
OPT3F: tan-ew-rf 3.07 1.36 0.94 1.91 1.62 0.86 0.79 1.47
MIX3F: tan-ew-rf 3.12 1.40 0.96 1.96 1.65 0.89 0.82 1.50
Benchmark portfolios
TZ3F: tan-ew-rf 3.25 1.45 1.08 2.00 1.71 0.92 0.91 1.55
KZ2F: tan-rf 3.26 1.44 1.10 2.05 1.75 0.92 0.94 1.58
KZ3F: tan-gmv-rf 3.35 1.39 1.32 2.11 1.77 0.88 1.09 1.61
KWZ: tan-gmv 2.75 1.35 1.08 1.61 1.46 0.85 0.88 1.25
EWRF 0.06 0.06 0.07 0.07 0.06 0.06 0.07 0.07
GMVRF 2.00 0.55 0.89 1.41 1.06 0.37 0.71 1.05

Panel (b): γ = 5
Proposed portfolios
OPT3F: tan-ew-rf 1.84 0.82 0.56 1.15 0.97 0.52 0.48 0.88
MIX3F: tan-ew-rf 1.87 0.84 0.59 1.17 0.99 0.54 0.50 0.90
Benchmark portfolios
TZ3F: tan-ew-rf 2.07 0.91 0.71 1.25 1.06 0.57 0.58 0.97
KZ2F: tan-rf 1.96 0.86 0.66 1.23 1.05 0.55 0.56 0.95
KZ3F: tan-gmv-rf 2.01 0.84 0.79 1.26 1.06 0.53 0.65 0.96
KWZ: tan-gmv 1.79 0.85 0.76 1.08 0.94 0.53 0.59 0.81
EWRF 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04
GMVRF 1.20 0.33 0.53 0.85 0.64 0.22 0.42 0.63

Panel (c): γ = 10
Proposed portfolios
OPT3F: tan-ew-rf 0.92 0.41 0.28 0.57 0.49 0.26 0.24 0.44
MIX3F: tan-ew-rf 0.93 0.42 0.29 0.58 0.49 0.26 0.24 0.44
Benchmark portfolios
TZ3F: tan-ew-rf 1.31 0.53 0.55 0.79 0.65 0.33 0.42 0.62
KZ2F: tan-rf 0.98 0.43 0.33 0.62 0.52 0.28 0.28 0.47
KZ3F: tan-gmv-rf 1.00 0.42 0.40 0.63 0.53 0.26 0.33 0.48
KWZ: tan-gmv 1.15 0.51 0.55 0.74 0.58 0.31 0.39 0.52
EWRF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Panel (d): γ = 15
Proposed portfolios
OPT3F: tan-ew-rf 0.61 0.27 0.19 0.38 0.32 0.17 0.16 0.29
MIX3F: tan-ew-rf 0.62 0.27 0.19 0.38 0.32 0.17 0.16 0.29
Benchmark portfolios
TZ3F: tan-ew-rf 1.06 0.40 0.52 0.67 0.54 0.25 0.39 0.53
KZ2F: tan-rf 0.65 0.29 0.22 0.41 0.35 0.18 0.19 0.32
KZ3F: tan-gmv-rf 0.67 0.28 0.26 0.42 0.35 0.18 0.22 0.32
KWZ: tan-gmv 0.97 0.41 0.50 0.66 0.48 0.25 0.34 0.45
EWRF 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
GMVRF 0.40 0.11 0.18 0.28 0.21 0.07 0.14 0.21

Notes. This table reports the average monthly turnover for the portfolio strategies described in Table 2 when
using either the sample covariance matrix or the shrinkage covariance matrix of Ledoit and Wolf (2004),
according to the methodology in Section 5. The average turnover is computed as the average of the monthly
turnover values in (33). We consider a sample size T = 120 and risk-aversion coefficients γ = 3, 5, 10, and 15.
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Internet Appendix to

On the optimal combination of naive and

mean-variance portfolio strategies



This internet appendix is divided in four sections. In Section IA.1, we describe an experiment

to compare the impact of estimation errors on optimal and constrained combination coeffi-

cients. In Section IA.2, we provide additional theoretical results. In Section IA.3, we discuss

additional empirical results. Finally, in Section IA.4, we detail the proofs of all theoretical

results in the main body of the paper and in this appendix.

IA.1 Estimation errors in combination coefficients

To establish more precisely the effect of estimation errors in mean returns µ on combination

coefficients discussed in Section 4, consider the experiment in Figure 1(a). We calibrate

the mean µ and covariance matrix Σ to the 25SBTM dataset and simulate 100,000 times

T = 120 multivariate normal excess returns. For each simulation, we estimate the optimal and

constrained combination coefficients with a risk-aversion coefficient γ = 3, in two different

cases. In the first case, all parameters in the coefficients are estimated. We estimate the

parameters as in our empirical analysis; see Section 5.1. In the second case, we consider that

mean returns µ are known, and we only plug in the sample estimate of Σ.

We make two main observations from Figure 1(a). First, mostly errors in µ matter, as the

boxplots are much thinner when only Σ is estimated. Second, the boxplots are similar and

quite thin for κtz
1 = 1 − κtz

2 and κopt
1 , which is because they are both bounded between zero

and one and estimation errors compensate in their numerator and denominator. In contrast,

when µ is estimated, the boxplot for κopt
2 is substantially wider. Given the formula for

κopt
2 = 1

γ
µew

σ2
ew

(1 − κopt
1 ) and that κopt

1 is moderately sensitive to µ, this difference is explained

by the proportionality to µew = w′
ewµ. Indeed, in Figure 1(b) we depict scatterplots of

estimation errors in κopt
1 and κopt

2 as a function of estimation errors in µew and we find a near-

zero correlation (-6%) for κopt
1 versus a near-perfect correlation (96%) for κopt

2 . Moreover, the

best linear fit for estimation errors in κopt
2 is nearly identical to the derivative of κopt

2 with

respect to µew assuming that κopt
1 is independent of µew.

These results confirm that it is justified to focus on the impact of estimation errors in

µew on κopt
2 to capture the difference in estimation risk between optimal and constrained

combination coefficients.
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Figure IA.1: Estimation errors in optimal and constrained combination coefficients
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(a) Boxplots of estimation errors in all combination coefficients
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(b) Scatterplots of estimation errors in optimal combination coefficients

Notes. This figure depicts estimation errors in constrained combination coefficients, κtz
1 and κtz

2 in (15), and
optimal combination coefficients, κopt

1 and κopt
2 in (17), when the risk-aversion coefficient γ = 3. The results

are obtained by simulating 100,000 times T = 120 asset excess returns from a multivariate normal distribution
whose moments are calibrated from a dataset of 25 portfolios of firms sorted on size and book-to-market
spanning July 1926 to December 2021. In the boxplots of panel a), we consider two cases to estimate the
coefficients: 1) all parameters are estimated as in our empirical analysis (see Section 5.1), and 2) mean returns
µ are known and we only plug in the sample estimate of Σ. In panel b), we depict how estimation errors
in optimal combination coefficients depend on estimation errors in the parameter µew = w′

ewµ. The best
linear fit in each scatterplot is depicted in solid red. The dashed red line in the right plot of panel b) is the
derivative of κopt

2 with respect to µew assuming that κopt
1 is independent of µew.
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IA.2 Additional theoretical results

In this section, we provide theoretical results that complement those in the main body of

the paper. First, we provide a mixed strategy for the combination of the SMV and SGMV

portfolios. Second, we show that the convexity constraint helps explain why combining port-

folios with the risk-free asset can hurt performance relative to fully invested combinations.

Third, we introduce a mixed strategy that switches between two-fund and three-fund rules.

Fourth, we derive an optimal four-fund portfolio that combines the SMV portfolio with both

the SGMV and EW portfolios. Fifth, we compare the correlation between the out-of-sample

return of the SMV portfolio and that of the SGMV and EW portfolios. Sixth, we compare

the expected out-of-sample Sharpe ratio of the optimal and constrained strategies.

IA.2.1 Mixed strategy for three-fund rule of Kan and Zhou

In Section 4, we introduce a mixed strategy that switches between the optimal and con-

strained combination of the SMV and EW portfolios. In this section, we derive a similar

mixed strategy for the three-fund rule of Kan and Zhou (2007) that combines the SMV and

SGMV portfolios. Specifically, we consider the three-fund portfolio combination

ŵ(κ) = κ1ŵ
⋆ + κ2ŵg, (IA1)

where ŵg = Σ̂−11/(1′Σ̂−11) is the SGMV portfolio and ŵ⋆ is the SMV portfolio in (7). This

combination is comparable to that in Tu and Zhou (2011) because, just like wew, ŵg is fully

invested in risky assets. Kan and Zhou (2007) consider a similar portfolio combination but

with unnormalized weights for the SGMV portfolio.

We introduce the notation

µg = w′
gµ, σ2

g = w′
gΣwg, θg = µg/σg, and ψ2

g = θ2 − θ2
g ≥ 0. (IA2)

In the following proposition, we derive the EU of the portfolio combination in (IA1) as

well as that of the optimal and constrained combination coefficients.
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Proposition IA.1. The following holds concerning the three-fund portfolio combination

in (IA1):

1. The expected out-of-sample utility is

EU(ŵ(κ)) = κ1

γ
θ2 + κ2µg − γ

2

(
κ2

1
γ2 (θ2 + d) + c1κ

2
2σ

2
g + 2c1κ1κ2

γ
µg

)
, (IA3)

where

c1 = c
T −N − 4
T −N − 2 = T − 2

T −N − 1 ≥ 1. (IA4)

2. The combination coefficients maximizing (IA3) are

κopt
1 = 1

c

ψ2
g

ψ2
g +N/T + 2θ2

g

T −N−2

∈ [0, 1] and κopt
2 = γtan

γ
(1/c1 − κopt

1 ). (IA5)

3. The combination coefficients maximizing (IA3) under the constraint κ1 + κ2 = 1 are

κconst
1 =

ψ2
g + c1σ

2
g(γ − γtan)2 + (c1 − 1)µg(γ − γtan)

c
(
ψ2

g +N/T + 2θ2
g

T −N−2

)
+ c1σ2

g(γ − γtan)2
(IA6)

and κconst
2 = 1 − κconst

1 .

4. The expected out-of-sample utility delivered by the optimal and constrained combina-

tions coefficients is

EU(ŵ(κopt)) = U⋆ − d

2γκ
opt
1 − 1

2(c1 − 1)µgκ
opt
2 (IA7)

EU(ŵ(κconst)) = U⋆ − d

2γκ
const
1 − 1

2(c1 − 1)µgκ
const
2 . (IA8)

The constrained combination coefficients correspond to the optimal ones only when κopt
1 +

κopt
2 = 1, which happens when

γ = γtan
1/c1 − κopt

1

1 − κopt
1

< γtan. (IA9)

For the 25SBTM dataset and T = 120, we have γtan = 3.99 and γtan
1/c1−κopt

1
1−κopt

1
= 3.00.
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The EU of the optimal combination is always larger than that of the constrained combi-

nation when combination coefficients are known. However, similar to the combination with

the EW portfolio in Section 4, κopt
2 is unbounded and proportional to γtan, and therefore is

more sensitive to estimation errors in mean returns µ. Therefore, in the next proposition we

derive the EU of the optimal strategy when κopt
2 is estimated as

κ̂opt
2 = 1′Σ−1µ̂

γ
(1/c1 − κopt

1 ), (IA10)

and we identify the range of risk aversion γ for which the constrained strategy delivers a

larger EU than that of the estimated optimal strategy.

Proposition IA.2. Let the combination coefficient κopt
2 be estimated by κ̂opt

2 in (IA10). Then,

1. The expected out-of-sample utility of the estimated optimal strategy is

EU(ŵ(κopt
1 , κ̂opt

2 )) = EU(ŵ(κopt)) − c1

2γT (1/c2
1 − (κopt

1 )2), (IA11)

where EU(ŵ(κopt)) in (IA7) is the utility when κopt
2 is known.

2. The constrained strategy delivers a larger expected out-of-sample utility than the esti-

mated optimal strategy, EU(ŵ(κconst)) ≥ EU
(
ŵ(κopt

1 , κ̂opt
2 )

)
, if and only if γ belongs

to the following interval:

γ ∈

γmid ± 1
σg

√
γmid

γtan

√
µgγmid + θ2(a− d) + ad

d− c1a

 =
[
γ

mid
, γmid

]
, (IA12)

where

γmid = γtan
d− c1a

c1(d− a) − θ2
g(c1 − 1)2 , (IA13)

a = dκopt
1 + (c1 − 1)θ2

g(1/c1 − κopt
1 ) + c1

T
(1/c2

1 − (κopt
1 )2). (IA14)

We find empirically that the interval of γ in (IA12) is typically wider than that for the

combination with the EW portfolio in (30). For the 25SBTM dataset with T = 120, we

IA5



find that [γ
mid

, γmid] = [2.98 ± 2.01] while
[
γ

ew
, γew

]
= [1.90 ± 1.65]. Therefore, the mixed

strategy is theoretically preferable for a wider range of investors for this particular portfolio

combination. This can be explained because estimation errors in µ̂ are amplified by Σ−1

in (IA10). Indeed, the standard deviation of γ̂ew = w′
ewµ̂/σ2

ew is equal to 1/
√
σ2

ewT , which is

smaller than the standard deviation of γ̂tan = 1′Σ−1µ̂ that is equal to 1/
√
σ2

gT .

In Section IA.3, we investigate the empirical performance of the optimal, constrained,

and mixed strategies presented in this section.

IA.2.2 Investing in the risk-free asset can hurt performance

We observe in our empirical results in Tables 3 and 4 that the optimal combination of the

SMV and SGMV portfolios without a risk-free asset in Kan, Wang, and Zhou (2021) often

outperforms the combination with a risk-free asset in Kan and Zhou (2007) when the risk-

aversion coefficient γ is rather small (γ = 3 and 5). In this section, we show this can be

explained due to the convexity constraint, similar to the results in Sections 4 and IA.2.1.

Kan, Wang, and Zhou (2021) combine the fully invested SMV and SGMV portfolios,

which corresponds to the portfolio combination

ŵ(κ) = κ1ŵg + κ2(ŵg + ŵz), (IA15)

where ŵg = Σ̂−11/(1′Σ̂−11) is the SGMV portfolio and

ŵz = 1
γ

Σ̂−1(µ̂ − µ̂g1). (IA16)

is a zero-cost portfolio (1′ŵz = 0). To ensure that ŵ(κ) is fully invested in risky assets, the

authors impose the convexity constraint κ1 + κ2 = 1, so that the combination depends on a

single combination coefficient κ:

ŵ(κ) = ŵg + κŵz. (IA17)
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Kan, Wang, and Zhou (2021) show that the optimal combination coefficient κ is

κkwz = (T −N)(T −N − 3)
(T − 2)(T −N − 2)

ψ2
g

ψ2
g + (N − 1)/T . (IA18)

Relaxing the convexity constraint would amount to combine the SMV and SGMV port-

folios with the risk-free asset, which is what the three-fund rule of Kan and Zhou (2007) is

designed to do. Their optimal portfolio combination is

ŵ(κkz) = κkz
1
γ

Σ̂−1µ̂ + κkz
2
γ

Σ̂−11 (IA19)

with

κkz
1 = 1

c

ψ2
g

ψ2
g +N/T

and κkz
2 = µg(1/c− κkz

1 ). (IA20)

In the next proposition, we derive the EU of the optimal portfolio rules of Kan and Zhou

(2007) and Kan, Wang, and Zhou (2021).

Proposition IA.3. The expected out-of-sample utility of the optimal portfolio combinations

of Kan and Zhou (2007) and Kan, Wang, and Zhou (2021) are, respectively,

EU(ŵ(κkz)) = U⋆ − d

2γκ
kz
1 − c− 1

2γ γtanκ
kz
2 , (IA21)

EU(ŵ(κkwz)) = µg − γ

2 c1σ
2
g + T −N − 2

T −N − 1
ψ2

g

2γ κ
kwz, (IA22)

where c1 is defined in (IA4).

Similar to the combination with the EW portfolio in Section 4, κkz
2 in (IA20) is unbounded

and proportional to µg, and therefore is more sensitive to estimation errors in mean returns

µ relative to the other coefficients. Therefore, in the next proposition we derive the EU of

the Kan-Zhou three-fund strategy when κkz
2 is estimated as

κ̂kz
2 = µ̂g(1/c− κkz

1 ) = 1′Σ−1µ̂

1′Σ−11
(1/c− κkz

1 ). (IA23)

Moreover, we identify the range of risk aversion γ for which the Kan-Wang-Zhou fully invested
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rule delivers a larger EU than that of the estimated Kan-Zhou three-fund rule that also

invests in the risk-free asset.

Proposition IA.4. Let the combination coefficient κkz
2 be estimated by κ̂kz

2 in (IA23). Then,

1. The expected out-of-sample utility of the estimated optimal three-fund strategy of Kan

and Zhou (2007) is

EU(ŵ(κkz
1 , κ̂

kz
2 )) = EU(ŵ(κkz)) − c

2γT (1/c2 − (κkz
1 )2), (IA24)

where EU(ŵ(κkz)) in (IA21) is the utility when κkz
2 is known.

2. The fully invested strategy of Kan, Wang, and Zhou (2021) delivers a larger expected

out-of-sample utility than the estimated optimal three-fund strategy of Kan and Zhou

(2007), EU(ŵ(κkwz)) ≥ EU
(
ŵ(κkz

1 , κ̂
kz
2 )
)
, if and only if b ≥ 0 and γ belongs to the

following interval:

γ ∈
[
γtan

c1
±

√
b

c1σg

]
, (IA25)

where

b = θ2
g + c1

(
− θ2 + ψ2

g

T −N − 2
T −N − 1κ

kwz + dκkz
1 + (c− 1)γtanκ

kz
2 + c

T
(1/c2 − (κkz

1 )2)
)
.

(IA26)

For the 25SBTM dataset and T = 120, we find that the interval is γ ∈ [3.18 ± 1.73].

Those investors are better off not investing in the risk-free asset besides the fully invested

SMV and SGMV portfolios.

IA.2.3 Mixing two-fund and three-fund rules

Proposition 6 shows that it is always optimal to combine the sample tangent portfolio not

just with the risk-free asset as in Kan and Zhou (2007), but also with the EW portfolio,

because the optimal three-fund rule delivers a larger utility than the optimal two-fund rule,
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EU(ŵopt) ≥ EU(ŵ2f ). However, similar to the insight in Section 4, ŵ2f requires estimating

only one coefficient, κ2f in (25), that is bounded between zero and one, while ŵopt also

requires estimating κopt
2 that is unbounded because it is proportional to γew. As shown in

Proposition 8, when κopt
2 is estimated by κ̂opt

2 in (28), the EU of the optimal three-fund rule

is reduced, and thus can get smaller than that of the optimal two-fund rule. In the next

proposition, we identify the required sample size for the estimated optimal three-fund rule

to outperform the optimal two-fund rule.

Proposition IA.5. Let the combination coefficient κopt
2 be unknown and estimated by κ̂opt

2

in (28). Then, the estimated optimal three-fund combination strategy delivers a larger ex-

pected out-of-sample utility than that of the optimal two-fund strategy, EU(ŵ(κopt
1 , κ̂opt

2 )) ≥

EU(ŵ2f ), if the sample size is large enough:

(θ2T +N)(ψ4 − dTψ2(ψ2 + d)) + (ψ2 + d)2(θ2T (dT/c− 1) −N) ≥ 0. (IA27)

For the 25SBTM dataset the required sample size is not large, T ≥ 75, and similarly for

the other datasets. Armed with this result, as well as the result in Proposition 6 that the

constrained three-fund strategy ŵtz delivers a larger EU than ŵ2f if and only if γ ≤ 2γew, we

can optimally mix the two-fund rule ŵ2f with the mixed strategy ŵmix in (31) that combines

the optimal and constrained three-fund rules, ŵopt and ŵtz, respectively. Denoting T2f the

smallest value of the sample size T for which (IA27) holds, the mixed strategy is



ŵmix if T ≥ T2f ,

ŵtz if T ≤ T2f , γ ∈
[
γ

ew
, γew

]
and γ ≤ 2γew,

ŵ2f otherwise.

(IA28)

We evaluate the empirical performance of this mixed strategy in Section IA.3.

IA.2.4 The optimal four-fund combination rule

Kan and Zhou (2007) combine the SMV portfolio with the SGMV portfolio, while as in

Tu and Zhou (2011) we combine the SMV portfolio with the EW portfolio. As discussed in
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Section 5.3, we find empirically in Tables 3 and 4 that it is generally preferable to combine

with the EW portfolio when the sample size T = 120, and with the SGMV portfolio when

the sample size T = 240. In this section, we derive the optimal four-fund portfolio that

combines the SMV portfolio with both the SGMV and EW portfolios.

The resulting four-fund portfolio combination is

ŵ(κ) = κ1

γ
Σ̂−1µ̂ + κ2wew + κ3

γ
Σ̂−11. (IA29)

Tu and Zhou (2011) combine the optimal three-fund portfolio of Kan and Zhou (2007)

with the EW portfolio using the convexity constraint (12). In the next proposition instead,

we derive the EU of the four-fund portfolio in (IA29) as well as the optimal combination

coefficients. These are novel results in the literature.

Proposition IA.6. The following holds concerning the four-fund portfolio combination

in (IA29):

1. The expected out-of-sample utility is

EU(ŵ(κ)) = κ1

γ
θ2 + κ2µew + κ3

γ
γtan

− γ

2

(
c

(
κ2

1
γ2

(
θ2 + N

T

)
+ κ2

3
γ2

1
σ2

g

+ 2κ1κ3

γ2 γtan

)
+ κ2

2σ
2
ew + 2κ1κ2

γ
µew + 2κ2κ3

γ

)
. (IA30)

2. The combination coefficients maximizing (IA30) are

κopt
1 = 1

f

[
ψ2 − θ2

g − θ2

c

σ2
g

σ2
ew

+
(

1 + 1
c

)
µgγew

]
∈ [0, 1], (IA31)

κopt
2 = γew

γ

1
f

[
N

T

(
c− µg

µew

)
+ (c− 1)ψ2

g

]
, (IA32)

κopt
3 = µg

f

[
d

c

(
1 − γew

γtan

)
−
(

1 − 1
c

)
ψ2
]
, (IA33)

where

f = ψ2 − cθ2
g + d−

σ2
g

σ2
ew

(
θ2 + N

T

)
+ 2µgγew. (IA34)

IA10



Figure IA.2: Theoretical gain in expected out-of-sample utility
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Notes. This figure depicts the difference between the expected out-of-sample utility of: (i) the optimal three-
fund and two-fund rules (solid red), and (ii) the optimal four-fund and three-fund rules (dotted blue). The
two-fund rule is that in Kan and Zhou (2007) that combines the sample tangent portfolio with the risk-
free asset. The three-fund rule adds the equally weighted portfolio, and the four-fund rule adds the sample
global-minimum-variance portfolio. The figure is constructed by calibrating the population vector of means
and covariance matrix of stock excess returns from monthly returns on the 25 portfolios of stocks sorted
on size and book-to-market spanning July 1926 to December 2021, and using a sample size T = 120. The
differences are depicted as a function of the risk-aversion coefficient γ between 0.5 and 20.

3. The expected out-of-sample utility of the optimal four-fund portfolio is

EU(ŵ(κopt)) = U⋆ − d

2γκ
opt
1 − c− 1

2γ γtanκ
opt
3 . (IA35)

In Figure IA.2, we evaluate how much EU can be gained in theory by opting for the

optimal four-fund rule rather than the optimal three-fund rule we consider in the main

body of the paper. That is, how much can be gained by adding the SGMV portfolio in the

portfolio mix besides the SMV and EW portfolios. We depict this theoretical gain for the

25SBTM dataset and T = 120, and we compare it to the theoretical gain when going from

the optimal two-fund rule of Kan and Zhou (2007) to the optimal three-fund rule that also

invests in the EW portfolio. The figure shows that the incremental gain from adding the

SGMV portfolio and relying on the optimal four-fund portfolio is quite small relative to

the gain obtained when going from two-fund to three-fund. Combined with the additional
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coefficient to estimate in the four-fund rule relative to the three-fund rule, this means that

the optimal four-fund rule may not outperform in practical settings.

We evaluate the empirical performance of the optimal four-fund combination strategy in

Section IA.3.

IA.2.5 Out-of-sample return correlations

In Section 5.3, we discuss the puzzling result that even though in Tables 3 and 4 the GMVRF

portfolio largely outperforms the EWRF portfolio, combining the SMV portfolio with the

EW portfolio performs quite closely, and even better when T = 120, to the combination

of the SMV portfolio with the SGMV portfolio in Kan and Zhou (2007). We conjectured

that this result might be due to more favorable diversification properties that arise when

combining with the EW portfolio. To test this conjecture, in the next proposition we derive

the correlation between the out-of-sample return of the SMV portfolio and that of either the

SGMV portfolio or the EW portfolio.

Proposition IA.7. Let rT +1 ∼ N (µ,Σ) be the out-of-sample asset excess returns, ŵ⋆ =
1
γ
Σ̂−1µ̂ the sample mean-variance portfolio, wew = 1/N the equally weighted portfolio, and

ŵ⋆
g = 1

γ
Σ̂−11 the sample global-minimum-variance portfolio. Then,

Corr[(ŵ⋆)′rT +1,w
′
ewrT +1] = θew√

c
T

(θ2(T + 1) +N) + 2θ4

T −N−4

T →∞−→ θew

θ
, (IA36)

Corr[(ŵ⋆)′rT +1, ŵ
′
grT +1] = θg(c+ (c− 1)θ2)√(

c+ (c− 1)θ2
g

)(
c
T

(θ2(T + 1) +N) + 2θ4

T −N−4

) T →∞−→ θg

θ
.

(IA37)

Assuming that θew and θg are positive, it holds that Corr[(ŵ⋆)′rT +1,w
′
ewrT +1] is smaller

than Corr[(ŵ⋆)′rT +1, ŵ
′
grT +1] if

θew ≤ θg
c+ (c− 1)θ2√
c+ (c− 1)θ2

g

≈ θg

√
c. (IA38)

In Figure IA.3, we calibrate Equations (IA36)–(IA37) to the four datasets we use in
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our empirical analysis (see Table 1) and we depict the two correlations as a function of

the sample size. The figure shows as conjectured that, for all datasets and sample size, the

correlation is much smaller between the SMV portfolio and the EW portfolio than between

the SMV portfolio and the SGMV portfolio. Moreover, we also depict the empirical value

of the correlations obtained from our empirical analysis in Section 5 for T = 120 and 240

months, and we find that these empirical correlations are overall in line with the theoretical

ones. We depict the empirical correlations using net out-of-sample returns, which we find are

essentially the same as those obtained using gross returns.

IA.2.6 Expected out-of-sample Sharpe ratio

In Proposition 4, we show that the optimal strategy delivers, by design, a larger EU than the

constrained strategy. In this section, we show moreover that the optimal strategy delivers

the largest expected out-of-sample Sharpe ratio (ESR), and thus, a larger one than the

constrained strategy. However, this theoretical gain is relatively small and mostly disappears

when accounting for the fact that optimal combination coefficients are more sensitive to

estimation errors in mean returns, as discussed in Section 4.

Just like the maximum utility in (3) is unattainable in the presence of parameter un-

certainty, the maximum Sharpe ratio θ =
√

µ′Σ−1µ is also unattainable. To quantify the

impact of parameter uncertainty on the out-of-sample Sharpe ratio of an estimated portfolio

ŵ, we define the expected out-of-sample Sharpe ratio (ESR) as in DeMiguel, Martín-Utrera,

and Nogales (2013):

ESR(ŵ) = E[ŵ′µ]√
E[ŵ′Σŵ]

. (IA39)

From the proof of Proposition 1, we have that the ESR of the combination between the SMV

and EW portfolios in (9) is

ESR(ŵ(κ)) =
κ1
γ
θ2 + κ2µew√

κ2
1

γ2 (θ2 + d) + κ2
2σ

2
ew + 2κ1κ2

γ
µew

. (IA40)

In the following proposition we show that the optimal combination strategy ŵopt delivers

the maximum ESR, which is independent of the risk-aversion coefficient γ. In contrast, the
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Figure IA.3: Out-of-sample return correlations
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Notes. This figure depicts the correlation between the out-of-sample return of the sample mean-variance
(SMV) portfolio and that of the equally weighted (EW) portfolio (in blue) and sample global-minimum-
variance (SGMV) portfolio (in red). The correlation is depicted for the four datasets listed in Table 1 as a
function of the sample size T between 50 and 1,000 months. The solid lines depict the theoretical value of
the correlations obtained from Proposition IA.7. The dotted horizontal lines depict the value as the sample
size T goes to infinity. The crosses depict the empirical value of the correlations, which we obtain from the
time series of net out-of-sample portfolio returns in the empirical analysis of Section 5 for T = 120 and 240.
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constrained strategy ŵtz does not deliver the maximum ESR, except for two specific values

of γ, and generally performs worst in ESR as γ tends to zero and infinity.

Proposition IA.8. The following holds concerning the expected out-of-sample Sharpe ratio

(ESR):

1. The optimal combination strategy ŵopt achieves the maximum ESR of all combination

strategies, which is bounded by the Sharpe ratios of the EW and optimal mean-variance

portfolio:

θew ≤ max
κ

ESR(ŵ(κ)) = ESR(ŵopt) =
√
θ2

ew + (θ2 − θ2
ew)κopt

1 ≤ θ. (IA41)

2. The constrained combination strategy ŵtz delivers the maximum ESR if and only if

γ = γew or γ = θ2/µew. Moreover, if and only if d > θ2

θ2
ew

(θ − 3θew)(θ − θew), ŵtz

achieves its lowest ESR when γ = 0 or ∞:20

min
γ
ESR(ŵtz) = lim

γ→0
ESR(ŵtz) = lim

γ→∞
ESR(ŵtz) = θ2

√
θ2 + d

. (IA42)

The intuition behind part 1 of Proposition IA.8 is similar to the classical result from

portfolio theory that any portfolio maximizing utility in (2) also achieves the maximum

Sharpe ratio. Similarly, any portfolio combination maximizing the EU also achieves the

maximum ESR. However, it is no longer the case under the convexity constraint (12), apart

from two specific values of γ, and the loss in ESR is generally largest for investors with small

and large degrees of risk aversion.

We illustrate Proposition IA.8 in panel a) of Figure ?? for the 25SBTM dataset. We depict

the difference between the ESR of the optimal strategy κopt and that of the constrained

strategy κtz as a function of γ for different samples sizes: T = 60, 120 and 480. The figure

shows that the difference is typically not large, expect for small and large values of γ.

Nonetheless, it is always positive and gets larger as estimation risk N/T increases.

20Because d > 0, a sufficient condition for d > θ2

θ2
ew

(θ− 3θew)(θ− θew) to hold is θew > θ/3, which is often
the case.
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Figure IA.4: Expected out-of-sample Sharpe ratio of optimal and constrained strategies
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(a) Known combination coefficients
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Notes. This figure depicts the difference between the expected out-of-sample Sharpe ratio (ESR), in percent-
age points, of the optimal combination strategy ŵopt and that of the constrained combination strategy ŵtz

in two different settings. In panel (a), all combination coefficients are known without error. In panel (b), κopt
2

is estimated by κ̂opt
2 in (28). The figure is constructed by calibrating the population vector of means and

covariance matrix of stock excess returns from monthly returns on the 25 portfolios of stocks sorted on size
and book-to-market spanning July 1926 to December 2021. The ESR difference is depicted as a function of
the risk-aversion coefficient γ between 0.5 and 20 for a sample size T = 60 (red solid), T = 120 (blue dotted),
and T = 480 (green dash-dotted).
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The consistent outperformance in ESR delivered by the optimal strategy in Proposi-

tion IA.8 assumes however that combination coefficients are known. As discussed in Section 4,

the main difference in estimation errors between the optimal and constrained coefficients is

that while the constrained ones are bounded, κopt
2 is very sensitive to errors in mean returns

because it is unbounded and proportional to µew. When κopt
2 is estimated by κ̂opt

2 in (28),

we have from the proof of Proposition 8 that the ESR of the estimated optimal strategy

becomes

ESR(ŵ(κopt
1 , κ̂opt

2 )) = E[(ŵopt)′µ]√
E[(ŵopt)′Σŵopt] + 1−(κopt

1 )2

γ2T

, (IA43)

where

E[(ŵopt)′µ] = κopt
1
γ
θ2 + κopt

2 µew, (IA44)

E
[
(ŵopt)′Σŵopt

]
= (κopt

1 )2

γ2 (θ2 + d) + (κopt
2 )2σ2

ew + 2κopt
1 κopt

2
γ

µew (IA45)

are the expected out-of-sample mean return and variance of the optimal strategy when κopt
2

is known, respectively. In panel b) of Figure ??, we replicate panel a) but taking into account

the estimation error in κopt
2 . The figure shows that the theoretical gain in ESR completely

disappears due to the additional estimation risk in optimal combination coefficients.

In Section IA.3, we report the empirical out-of-sample Sharpe ratio of the different port-

folio strategies we consider in the main body of the paper.

IA.3 Additional empirical results

In this section, we report additional empirical results that are related to the additional

theoretical results we report in Section IA.2 of this internet appendix. First, we report the

out-of-sample Sharpe ratio. Second, we discuss the performance of the optimal, constrained,

and mixed strategies constructed for the Kan-Zhou three-fund rule. Third, we discuss the

performance of the mixed strategy that combines two-fund and three-fund rules. Fourth, we

document that the optimal four-fund rule is outperformed by the optimal three-fund rule.
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IA.3.1 Out-of-sample Sharpe ratio

In this section, we report and discuss the out-of-sample Sharpe ratio of the portfolio strategies

listed in Table 2. We follow the methodology of Section 5 and define the annualized out-of-

sample net Sharpe ratio of portfolio strategy k as

SRk =
√

12 × µ̂k

σ̂k

, (IA46)

where µ̂k and σ̂k are the sample mean and standard deviation of the out-of-sample portfolio

returns net of proportional transaction costs for strategy k.

Table IA.1 reports the annualized net out-of-sample Sharpe Ratio for all datasets listed

in Table 1 and portfolio strategies listed in Table 2. We only report the results when using

the sample covariance matrix for conciseness; the conclusions are consistent when using the

shrinkage covariance matrix of Ledoit and Wolf (2004). In line with the theoretical predictions

in Section IA.2.6, we observe that the constrained strategy of Tu and Zhou (2011) (TZ3F)

outperforms the optimal strategy (OPT3F) in most cases, although the difference is small.

The mixed strategy (MIX3F) approaches the Sharpe ratio of the constrained strategy, but

not quite due to estimation errors in the interval (30). Just like for the EU in Table 3,

the proposed OPT3F strategy consistently outperforms the optimal two-fund rule of Kan

and Zhou (2007) (KZ2F). The optimal combination of the SMV and SGMV portfolios in

Kan and Zhou (2007) (KZ3F) performs similarly to OPT3F when the sample size T =

120, but consistently outperforms for T = 240. This means that, in terms of Sharpe ratio,

combining SMV with SGMV is preferable to combining SMV with EW. Finally, the different

combination strategies largely outperform the two naive benchmarks, EWRF and GMVRF,

except for the 30IND dataset where EWRF achieves the best performance for T = 120 and

the second-best performance for T = 240.

IA.3.2 Performance of Kan-Zhou mixed strategy

In this section, we discuss the out-of-sample performance of the optimal, constrained, and

mixed strategies introduced in Section IA.2.1 for the three-fund combination of Kan and
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Table IA.1: Annualized net out-of-sample Sharpe Ratio

Dataset T = 120 T = 240
25SBTM 10MOM 30IND 25OPINV 25SBTM 10MOM 30IND 25OPINV

Panel (a): γ = 3
Proposed portfolios
OPT3F: tan-ew-rf 88.87 80.40 50.39 72.87 86.96 81.96 34.96 83.03
MIX3F: tan-ew-rf 89.67 80.60 51.85 71.10 88.35 83.10 38.40 84.89
Benchmark portfolios
TZ3F: tan-ew-rf 90.90 81.09 50.50 77.23 88.90 85.66 41.83 83.21
KZ2F: tan-rf 83.32 77.13 30.45 67.27 84.18 80.81 10.78 78.35
KZ3F: tan-gmv-rf 87.75 84.10 48.45 78.04 89.37 86.30 39.56 88.30
KWZ: tan-gmv 76.82 78.61 38.72 62.44 81.71 88.71 41.23 75.94
EWRF 47.99 44.16 51.12 45.85 42.08 34.11 40.41 44.65
GMVRF 70.87 57.47 48.26 75.34 71.30 50.61 44.07 83.15

Panel (b): γ = 5
Proposed portfolios
OPT3F: tan-ew-rf 88.85 80.39 50.39 72.87 86.93 81.96 34.95 83.03
MIX3F: tan-ew-rf 89.34 81.98 50.23 72.23 87.00 81.73 36.17 82.11
Benchmark portfolios
TZ3F: tan-ew-rf 90.60 82.35 52.05 78.75 90.52 87.87 44.99 84.20
KZ2F: tan-rf 83.30 77.12 30.45 67.27 84.14 80.80 10.78 78.35
KZ3F: tan-gmv-rf 87.74 84.10 48.45 78.05 89.34 86.29 39.55 88.30
KWZ: tan-gmv 83.44 84.09 45.89 71.90 91.39 95.59 49.09 86.20
EWRF 47.99 44.16 51.12 45.85 42.08 34.10 40.41 44.65
GMVRF 70.85 57.47 48.27 75.35 71.29 50.60 44.07 83.14

Panel (c): γ = 10
Proposed portfolios
OPT3F: tan-ew-rf 88.83 80.39 50.39 72.87 86.90 81.95 34.95 83.03
MIX3F: tan-ew-rf 88.13 80.29 51.75 72.61 86.29 81.67 36.13 82.98
Benchmark portfolios
TZ3F: tan-ew-rf 87.58 83.71 48.51 76.25 91.93 88.40 41.41 82.94
KZ2F: tan-rf 83.28 77.12 30.46 67.27 84.12 80.79 10.77 78.34
KZ3F: tan-gmv-rf 87.73 84.09 48.46 78.05 89.31 86.28 39.54 88.30
KWZ: tan-gmv 84.46 83.64 49.71 77.25 97.95 96.90 53.86 91.39
EWRF 47.99 44.16 51.12 45.85 42.08 34.10 40.41 44.65
GMVRF 70.84 57.46 48.27 75.35 71.28 50.60 44.06 83.14

Panel (d): γ = 15
Proposed portfolios
OPT3F: tan-ew-rf 88.82 80.38 50.38 72.87 86.89 81.95 34.95 83.03
MIX3F: tan-ew-rf 88.77 79.81 50.06 72.87 86.89 81.95 34.95 83.03
Benchmark portfolios
TZ3F: tan-ew-rf 86.81 83.92 45.34 74.62 91.84 87.70 36.74 82.18
KZ2F: tan-rf 83.28 77.12 30.46 67.27 84.11 80.79 10.77 78.34
KZ3F: tan-gmv-rf 87.72 84.09 48.46 78.05 89.31 86.28 39.54 88.30
KWZ: tan-gmv 81.45 79.56 49.95 77.28 96.77 92.80 54.96 91.15
EWRF 47.99 44.16 51.12 45.85 42.08 34.10 40.41 44.65
GMVRF 70.84 57.46 48.27 75.35 71.28 50.60 44.06 83.14

Notes. This table reports the annualized net out-of-sample Sharpe ratio in percentage points for the portfolio
strategies described in Table 2 when using the sample covariance matrix, according to the methodology in
Sections 5 and IA.3.1. The net out-of-sample Sharpe ratio is computed using proportional transaction costs
of 10 basis points as in Ao, Li, and Zheng (2019). We consider two sample sizes, T = 120 and T = 240, and
risk-aversion coefficients γ = 3, 5, 10, and 15.
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Table IA.2: Annualized net out-of-sample utility of Kan-Zhou mixed strategy

Dataset T = 120 T = 240
25SBTM 10MOM 30IND 25OPINV 25SBTM 10MOM 30IND 25OPINV

Panel (a): γ = 3
OPT3F 4.92 9.51 −2.35 2.76 8.23 10.75 −0.27 7.82
CONST3F 10.16 10.39 1.50 7.08 9.77 11.41 1.62 8.92
MIX3F 3.28 9.14 −1.47 5.68 8.11 10.72 0.79 7.36

Panel (b): γ = 5
OPT3F 2.90 5.70 −1.43 1.63 4.91 6.45 −0.17 4.68
CONST3F 6.04 6.31 0.75 4.26 6.28 7.48 1.53 6.13
MIX3F 3.51 5.90 −0.42 2.96 5.07 6.91 0.96 5.38

Panel (c): γ = 10
OPT3F 1.43 2.85 −0.72 0.81 2.44 3.22 −0.08 2.34
CONST3F 1.88 2.35 −1.79 0.10 2.76 3.20 −0.84 2.24
MIX3F 2.93 2.98 −0.82 1.02 2.72 2.98 −0.68 2.69

Panel (d): γ = 15
OPT3F 0.95 1.90 −0.48 0.54 1.62 2.15 −0.06 1.56
CONST3F −0.47 0.62 −3.80 −2.69 0.85 1.47 −2.69 −0.44
MIX3F 0.74 1.74 −0.65 −0.27 1.32 2.06 −0.59 1.29

Notes. This table reports the annualized net out-of-sample utility in percentage points for three portfolio
strategies derived in Section IA.2.1 when using the sample covariance matrix, according to the methodology
in Section 5. The first strategy (OPT3F) is the optimal combination of the sample tangent portfolio, the fully
invested sample global-minimum-variance portfolio, and the risk-free asset. The second strategy (CONST3F)
is the combination of these three funds under the convexity constraint (12). The third strategy (MIX3F)
is a mixed strategy that combines the optimal and constrained strategies. The net out-of-sample utility is
computed using proportional transaction costs of 10 basis points as in Ao, Li, and Zheng (2019). We consider
two sample sizes, T = 120 and T = 240, and risk-aversion coefficients γ = 3, 5, 10, and 15.

Zhou (2007), that is, the combination of the sample tangent portfolio, the fully invested

SGMV portfolio, and the risk-free asset. We report the net out-of-sample utility of the three

strategies in Table IA.2.

We observe that for rather small values of γ = 3 and 5, the performance gain obtained

by relying on the constrained strategy rather than the optimal strategy is substantial. This

result confirms the observations in the main body of the paper that imposing the convex-

ity constraint can help performance. Moreover, the performance gain is larger than that

obtained for the combination of the SMV and EW portfolios in Table 3. As explained in

Section IA.2.1, this is because κopt
2 is proportional to γtan instead of γew, and the estimated

γtan has a larger standard deviation than that of the estimated γew. However, as γ increases

to 10 and 15, the convexity constraint hurts performance by preventing enough investment

in the risk-free asset, and thus the optimal strategy outperforms the constrained strategy.
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Table IA.3: Annualized net out-of-sample utility of mix of two-fund and three-fund rules

Dataset T = 120 T = 240
25SBTM 10MOM 30IND 25OPINV 25SBTM 10MOM 30IND 25OPINV

Panel (a): γ = 3
MIX3F 10.90 8.74 2.81 5.81 8.79 9.63 1.03 9.53
MIX2F3F 10.72 9.52 2.79 5.51 8.58 8.94 0.68 9.42

Panel (b): γ = 5
MIX3F 6.25 5.52 1.21 3.65 4.71 5.33 0.16 4.67
MIX2F3F 5.73 5.21 0.31 3.86 4.04 5.29 −1.01 4.07

Panel (c): γ = 10
MIX3F 2.91 2.47 0.71 1.73 2.34 2.70 0.07 2.55
MIX2F3F 2.50 2.23 0.19 1.82 2.00 2.51 −0.51 2.31

Panel (d): γ = 15
MIX3F 2.05 1.67 0.38 1.27 1.63 1.86 0.05 1.70
MIX2F3F 1.78 1.40 0.03 1.33 1.41 1.73 −0.34 1.54

Notes. This table reports the annualized net out-of-sample utility in percentage points for two portfolio
strategies when using the sample covariance matrix, according to the methodology in Section 5. The first
strategy (MIX3F) is the mixed strategy in Section 4 that combines the optimal and constrained three-fund
rules. The second strategy (MIX2F3F) introduced in Section IA.2.3 adds the optimal two-fund rule. The net
out-of-sample utility is computed using proportional transaction costs of 10 basis points as in Ao, Li, and
Zheng (2019). We consider two sample sizes, T = 120 and T = 240, and risk-aversion coefficients γ = 3, 5, 10,
and 15.

Finally, as expected, the mixed strategy trades off between the performance of the optimal

and constrained strategies, and therefore can be a safer approach because it is not known

beforehand for a fixed value of γ which of the optimal or constrained strategy is preferable.

IA.3.3 Performance of mix of two-fund and three-fund rules

In this section, we discuss the out-of-sample performance of the mixed strategy introduced

in Section IA.2.3 that combines the optimal two-fund rule with the optimal and constrained

three-fund rules. In Table IA.3, we compare the performance of this strategy with that of the

mixed strategy introduced in Section 4 that does not invest in the optimal two-fund rule.

The table shows that adding the two-fund rule does not deliver any gain in performance.

This can be explained because we use sample sizes that are large enough for the optimal

three-fund rule to consistently outperform the optimal two-fund rule, as we find in Table 3

in the main body of the paper.
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Table IA.4: Annualized net out-of-sample utility of optimal three-fund and four-fund rules

Dataset T = 120 T = 240
25SBTM 10MOM 30IND 25OPINV 25SBTM 10MOM 30IND 25OPINV

Panel (a): γ = 3
OPT3F: tan-ew-rf 10.37 8.71 2.25 6.38 8.29 9.30 0.27 8.54
OPT4F: tan-ew-gmv-rf 8.57 8.33 −0.23 3.86 9.00 10.08 −0.76 7.10

Panel (b): γ = 5
OPT3F: tan-ew-rf 6.20 5.22 1.34 3.82 4.94 5.58 0.16 5.12
OPT4F: tan-ew-gmv-rf 5.10 4.99 −0.15 2.30 5.36 6.04 −0.46 4.25

Panel (c): γ = 10
OPT3F: tan-ew-rf 3.09 2.61 0.67 1.91 2.45 2.79 0.08 2.56
OPT4F: tan-ew-gmv-rf 2.54 2.49 −0.08 1.14 2.67 3.02 −0.23 2.12

Panel (d): γ = 15
OPT3F: tan-ew-rf 2.06 1.74 0.45 1.27 1.63 1.86 0.05 1.70
OPT4F: tan-ew-gmv-rf 1.69 1.66 −0.05 0.76 1.78 2.01 −0.16 1.41

Notes. This table reports the annualized net out-of-sample utility in percentage points for two portfolio
strategies when using the sample covariance matrix, according to the methodology in Section 5. The first
strategy is the optimal three-fund rule in the main body of the paper, which combines the sample tangent
portfolio, the equally weighted portfolio, and the risk-free asset. The second strategy is the optimal four-
fund rule in Section IA.2.4, which adds the sample global-minimum-variance portfolio. The net out-of-sample
utility is computed using proportional transaction costs of 10 basis points as in Ao, Li, and Zheng (2019).
We consider two sample sizes, T = 120 and T = 240, and risk-aversion coefficients γ = 3, 5, 10, and 15.

IA.3.4 Performance of optimal four-fund rule

In this section, we compare the out-of-sample performance of the optimal four-fund rule

introduced in Section IA.2.4 with that of the optimal three-fund rule in the main body of

the paper that does not invest in the SGMV portfolio. We report the net out-of-sample

utility of the two strategies in Table IA.4.

The table shows that the three-fund rule outperforms the four-fund rule, with the ex-

ception of the 25SBTM and 10MOM datasets when T = 240, in which case the four-fund

portfolio does slightly better. This result is consistent with Section IA.2.4, in which we show

that the theoretical gain from adding the SGMV portfolio is small and thus may disappear

in practical settings due to estimation errors in the additional combination coefficient to

estimate.
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IA.4 Proofs of all results

We make extensive use of three properties throughout the proofs. First, because returns

are assumed iid normal, the sample mean is distributed as µ̂ ∼ N (µ,Σ/T ), the sample

covariance matrix is distributed as (T −N−2)Σ̂ ∼ WN(T −1,Σ), and they are independent

of each other. Second, the inverse sample covariance matrix is unbiased because of the 1/(T−

N − 2) coefficient in (6), E[Σ̂−1] = Σ−1. Third, the expectation of a quadratic form in the

random variable x is

E[x′Ax] = E[x]′AE[x] + Trace(AV[x]), (IA47)

where A is a constant matrix (Rencher and Schaalje, 2008).

Proof of Proposition 1

Part 1. Because the inverse sample covariance matrix is unbiased, the SMV portfolio w⋆ is

unbiased as well, and the expected out-of-sample mean return of the portfolio combination

ŵ(κ) in (9) is

E[ŵ(κ)′µ] = κ1

γ
θ2 + κ2µew. (IA48)

We can then obtain the expected out-of-sample variance, E[ŵ(κ)′Σŵ(κ)], from Equa-

tion (IA47). This requires knowing the covariance matrix of the SMV portfolio ŵ⋆, which

from Javed, Mazur, and Ngailo (2021, Corollary 2.2) is given by

V[ŵ⋆] = (T −N − 2)(θ2 + (T − 2)/T )Σ−1 + (T −N)Σ−1µµ′Σ−1

γ2(T −N − 1)(T −N − 4) . (IA49)

Using E[ŵ(κ)] = w(κ) and V[ŵ(κ)] = κ2
1V[ŵ⋆], we find from (IA47) that the expected

out-of-sample variance of ŵ(κ) is

E[ŵ(κ)′Σŵ(κ)] = κ2
1
γ2 (θ2 + d) + κ2

2σ
2
ew + 2κ1κ2

γ
µew. (IA50)
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Combining (IA48) and (IA50) results in the EU formula in (13), which completes the proof.

Part 2. We obtain the combination coefficients maximizing the EU under the convexity

constraint (12) by setting the derivative of (13) with respect to κ1 equal to zero, taking into

account that κ2 = 1 − κ1.

Proof of Proposition 2

The optimal combination coefficients are found by setting the derivative of (13) with respect

to κ1 and κ2 equal to zero and solving the resulting linear system of two equations with two

unknowns.

Proof of Proposition 3

Part 1. The proof is direct by inspecting the formula for κtz
1 in (15) and κopt

1 in (17).

Part 2. It is clear from the formula for κtz
2 in (15) and κopt

2 in (17) that κtz
2 ∈ [0, 1] and the

sign of κopt
2 is equal to that of µew. This proves the first two statements. Regarding the third

statement when µew > 0, we can show that the inequality κopt
2 ≥ κtz

2 is equivalent to

(γ − γew)
(
γ − θ2 + d

µew

)
≥ 0. (IA51)

Since (θ2 + d)/µew ≥ γew for µew > 0, it directly follows that 0 ≤ κopt
2 ≤ κtz

2 if γ ∈
[
γew,

θ2+d
µew

]
and κopt

2 ≥ κtz
2 otherwise, which completes the proof.

Part 3. After some developments, the inequality πopt
rf ≥ πtz

rf is equivalent to

γ2
[
σ2

ew(γtan − γew)
]

+ γ
[
2µew(γew − γtan) + ψ2 + d

]
+
[
γtanθ

2
ew − γew(θ2 + d)

]
≥ 0. (IA52)

Because we assume γtan > γew, this polynomial has two roots:

γ = γew and γ = γtan − (θ2 + d)/µew

γtan/γew − 1 . (IA53)
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Let 0 < γew < γtan, we can then write the following about inequality (IA52):

πopt
rf ≤ πtz

rf if γ ∈
[
γtan − (θ2 + d)/µew

γtan/γew − 1 , γew

]
and πopt

rf ≥ πtz
rf otherwise. (IA54)

The lower bound of the interval is negative under the assumption γtan < (θ2 + d)/µew.

Therefore, under this assumption the inequality πopt
rf ≤ πtz

rf holds for γ ≤ γew because any

risk-aversion coefficient γ > 0. Finally, when γ ≤ γew, we have that πtz
rf ≤ 0 because πtz

rf =
1
γ
κtz

1 (γ − γtan) and γtan > γew by assumption, which completes the proof.

Proof of Proposition 4

The EU of the optimal and constrained strategies is found by replacing the combination

coefficients (κ1, κ2) by (17) for the optimal strategy and (15) for the constrained strategy in

the EU formula (13). After some developments, we find that

EU(ŵopt) = U⋆ − d

2γκ
opt
1 , (IA55)

EU(ŵtz) = U⋆ − d

2γκ
tz
1 . (IA56)

Therefore, the EU gain of the optimal strategy relative to the constrained strategy is

EU(ŵopt) − EU(ŵtz) = d

2γ
(
κtz

1 − κopt
1

)
≥ 0, (IA57)

which is positive because κtz
1 ≥ κopt

1 as shown in Proposition 2. Inequality (IA57) holds with

equality if and only if γ = ∞ or γew, because in the latter case we have κtz
1 = κopt

1 . Finally,

because d increases with N/T we can show that the EU gain in (IA57) increases with N/T

if d(κtz
1 − κopt

1 ) increases with d. This is the case because

d
(
κtz

1 − κopt
1

)
= σ2

ew(γ − γew)2

(ψ2/d+ 1)((ψ2 + σ2
ew(γ − γew)2)/d+ 1) (IA58)

is an increasing function of d, which completes the proof.
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Proof of Proposition 5

Part 1. Using Equation (IA56), the constrained strategy ŵtz delivers a negative EU when

U⋆ − d

2γκ
tz
1 < 0. (IA59)

After some developments, we find that inequality (IA59) is equivalent to

γ2[σ2
ew(d− θ2)] + γ[2µew(θ2 − d)] − θ4 > 0. (IA60)

The discriminant of this second-degree polynomial is

∆ = 4σ2
ew(d− θ2)(θ2

ewd+ θ2ψ2). (IA61)

It follows from (IA61) that ∆ ≥ 0 and real roots to the polynomial exist if and only if θ2 < d.

In that case, (IA60) holds if and only if γ is not between the two roots:

γ /∈

γew

1 ±
√

1 + θ4/θ2
ew

d− θ2

. (IA62)

The negative sign gives a negative root, which we can ignore because any risk-aversion

coefficient γ > 0. Therefore, the constrained strategy delivers a negative EU if and only

if (5) holds. The threshold γneg decreases with N/T because d increases with N/T and γneg

decreases with d, which completes the proof.

Part 2. The optimal strategy necessarily delivers a positive EU because κ = 0, which

delivers zero EU, is part of the search space.

Proof of Proposition 6

The optimal three-fund strategy always delivers a larger EU than that of the optimal two-

fund strategy by construction because it adds one more fund, the EW portfolio, to the port-

folio combination. To determine when the constrained three-fund strategy outperforms the

optimal two-fund one, we need to determine the EU of the optimal two-fund rule. Plugging
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κ1 = κ2f = θ2/(θ2 + d) and κ2 = 0 in Equation (13), this EU is

EU(ŵ2f ) = U⋆ − d

2γκ
2f . (IA63)

Therefore, given the formula for the EU of the constrained three-fund strategy in (IA56),

the constrained three-fund strategy delivers a larger EU than that of the optimal two-fund

strategy when κtz
1 ≤ κ2f , which is equivalent to γ ≤ 2γew and thus completes the proof.

Proof of Proposition 7

We want to find when the ℓ2-norm of the optimal strategy is smaller than that of the

constrained strategy, which is equivalent to showing the same result for the squared ℓ2-

norm because the ℓ2-norm is positive. We define f(γ) the function of γ corresponding to the

difference between the squared ℓ2-norms:

f(γ) = g(κtz) − g(κopt), (IA64)

where

g(κ) = ||κ1w
⋆ + κ2wew||22 = κ2

1
γ2 ∥Σ−1µ∥2

2 + κ2
2
N

+ 2κ1κ2

Nγ
γtan. (IA65)

We want to find the values of γ for which f(γ) ≥ 0 holds, which can be rewritten as

f(γ) = (κtz
1 )2 − (κopt

1 )2

γ2 ∥Σ−1µ∥2
2 + (κtz

2 )2 − (κopt
1 )2

N
+ 2γtan

Nγ

(
κtz

1 κ
tz
2 − κopt

1 κopt
2

)
≥ 0. (IA66)

Proposition 3 shows that κtz
1 ≥ κopt

1 ≥ 0, and ∥Σ−1µ∥2
2 ≥ 0 by definition. Therefore, under

the assumption γtan ≥ 0, a sufficient condition for (IA66) to hold is:

(κtz
2 )2 − (κopt

2 )2 + 2γtan

γ

(
κtz

1 κ
tz
2 − κopt

1 κopt
2

)
≥ 0. (IA67)
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Inequality (IA67) holds for all values of γtan if the following two inequalities hold:

(κtz
2 )2 ≥ (κopt

2 )2 and κtz
1 κ

tz
2 ≥ κopt

1 κopt
2 . (IA68)

Both inequalities hold whenever 0 ≤ κopt
2 ≤ κtz

2 which, from Proposition 3, holds when

µew ≥ 0 and γ ∈
[
γew,

θ2+d
µew

]
. Therefore, f(γ) ≥ 0 in (IA64) if γtan ≥ 0, µew ≥ 0, and

γ ∈ [γew, (θ2 + d)/µew], which completes the proof.

Proof of Proposition 8

Part 1. The two combination coefficients are κopt
1 in (17) and κ̂opt

2 in (28). Because µ̂ew

is unbiased, κ̂opt
2 is unbiased as well, and the expected out-of-sample mean return of the

estimated optimal strategy is the same as that when κopt
2 is known:

E
[
ŵ(κopt

1 , κ̂opt
2 )′µ

]
= κopt

1
γ
θ2 + κopt

2 µew. (IA69)

In comparison, the expected out-of-sample variance is larger than that when κopt
2 is known.

Specifically,

E
[
ŵ(κopt

1 , κ̂opt
2 )′Σŵ(κopt

1 , κ̂opt
2 )

]
= E

(κopt
1
γ

µ̂′Σ̂−1Σ + κ̂opt
2 w′

ewΣ
)′(

κopt
1
γ

Σ̂−1µ̂ + κ̂opt
2 wew

)
= (κopt

1 )2

γ2 (θ2 + d) + E
[
(κ̂opt

2 )2
]
σ2

ew + 2κopt
1
γ

E
[
κ̂opt

2 µ̂′Σ̂−1Σwew

]
.

(IA70)

From the definition of κ̂opt
2 in (28) and the identity E[µ̂2

ew] = µ2
ew + σ2

ew/T , we find that

σ2
ewE

[
(κ̂opt

2 )2
]

= (κopt
2 )2σ2

ew + (1 − κopt
1 )2

γ2T
(IA71)

and

2κopt
1
γ

E
[
κ̂opt

2 µ̂′Σ̂−1Σwew

]
= 2κopt

1 κopt
2

γ
µew + 2κopt

1 (1 − κopt
1 )

γ2T
. (IA72)

IA28



Therefore, the expected out-of-sample variance is

E
[
ŵ(κopt

1 , κ̂opt
2 )′Σŵ(κopt

1 , κ̂opt
2 )

]
= E

[
(ŵopt)′Σŵopt

]
+ 1 − (κopt

1 )2

γ2T
, (IA73)

where E[(ŵopt)′Σŵopt] = (κopt
1 )2

γ2 (θ2 + d) + (κopt
2 )2σ2

ew + 2κopt
1 κopt

2
γ

µew is the expected out-of-

sample variance when κopt
2 is known. Finally, using Equation (IA55), the EU loss relative to

ŵopt when κopt
2 is estimated by κ̂opt

2 is given by (29), which completes the proof.

Part 2. Using Equation (IA55), the constrained strategy delivers a larger EU than that of

the estimated optimal strategy, EU(ŵtz) ≥ EU
(
ŵ(κopt

1 , κ̂opt
2 )

)
, when

U⋆ − d

2γκ
tz
1 ≥ U⋆ − d

2γκ
opt
1 − 1 − (κopt

1 )2

2γT . (IA74)

After some developments, we find that inequality (IA74) is equivalent to

γ2[−σ2
ew] + γ[2µew] + k ≥ 0, (IA75)

where

k = (ψ2 + d)(2ψ2 + d)
dT (ψ2 + d) − (2ψ2 + d) − θ2

ew. (IA76)

The discriminant of the second-degree polynomial in (IA75) is ∆ = 4σ2
ew(k + θ2

ew), which is

positive because we assume N ≥ 2. Therefore, inequality (IA75) holds when the risk-aversion

coefficient γ belongs to the following interval:

γ ∈

γew ± σ−1
ew

√√√√ (ψ2 + d)(2ψ2 + d)
dT (ψ2 + d) − (2ψ2 + d)

, (IA77)

which proves the result in Equation (30). Finally, because d is increasing in N , we can prove

that the length of the interval (IA77) decreases with N if

∂

∂d

[
(ψ2 + d)(2ψ2 + d)

dT (ψ2 + d) − (2ψ2 + d)

]
≤ 0 ⇐⇒ 2ψ6T + 4ψ4(dT + 1) + 2ψ2d(dT + 2) + d2

(dT (ψ2 + d) − (2ψ2 + d))2 ≥ 0,

(IA78)
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which always holds and thus completes the proof.

Proof of Proposition IA.1

Part 1. The SMV portfolio ŵ⋆ is unbiased, and the SGMV portfolio ŵg too (Okhrin and

Schmid, 2006). Therefore, the expected out-of-sample mean return of the portfolio combina-

tion (IA1) is

E[ŵ(κ)] = κ1

γ
θ2 + κ2µg. (IA79)

The expected out-of-sample variance decomposes as

E[ŵ(κ)′Σŵ(κ)] = κ2
1
γ2 (θ2 + d) + κ2

2E
[
ŵ′

gΣŵg

]
+ 2κ1κ2

γ
E
[
µ̂′Σ̂−1Σŵg

]
. (IA80)

Fom Kan, Wang, and Zhou (2021, Lemma 1), it holds that

E
[
ŵ′

gΣŵg

]
= c1σ

2
g , (IA81)

where the constant c1 is defined in (IA4). Therefore, it remains to evaluate the expectation

E
[
µ̂′Σ̂−1Σŵg

]
= E

[
µ̂′Σ̂−1ΣΣ̂−11

1′Σ̂−11

]
. (IA82)

In the following lemma, we prove that this expectation is equal to c1µg.

Lemma 1. E
[

µ̂′Σ̂−1ΣΣ̂−11
1′Σ̂−11

]
= c1µg, where c1 is defined in (IA4).

We prove this lemma in the next subsection.21 Combining Equations (IA80)–(IA81) and

Lemma 1, the expected out-of-sample variance is

E[ŵ(κ)′Σŵ(κ)] = κ2
1
γ2 (θ2 + d) + c1κ

2
2σ

2
g + 2c1κ1κ2

γ
µg, (IA83)

which results in the EU formula in (IA3) as desired.

21We thank Raymond Kan for his help on proving this lemma.
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Part 2. The optimal combination coefficients are found by setting the derivative of (IA3)

with respect to κ1 and κ2 equal to zero and solving the resulting linear system of two

equations with two unknowns.

Part 3. We obtain the combination coefficients maximizing the EU under the convexity

constraint (12) by setting the derivative of (IA3) with respect to κ1 equal to zero, taking

into account that κ2 = 1 − κ1.

Part 4. The EU of the optimal and constrained strategies are found by replacing the com-

bination coefficients (κ1, κ2) by (IA5) for the optimal strategy and (IA6) for the constrained

strategy in the EU formula (IA3).

Proof of Lemma 1

Proving the lemma amounts to show that

E
[

µ̂′Σ̂−1
mlΣΣ̂−1

ml1
1′Σ̂−1

ml1

]
= T (T − 2)µg

(T −N − 1)(T −N − 2) , (IA84)

where Σ̂ml = T −N−2
T

Σ̂ is the maximum-likelihood estimator of Σ.

Let P be an N ×N orthonormal matrix with the first two columns being

ν = σgΣ− 1
2 1, (IA85)

η = Σ− 1
2 (µ − µg1)
ψg

, (IA86)

where ψg is defined in (IA2). Let

z =
√
TP ′Σ− 1

2 µ̂ ∼ N (µz, IN), (IA87)

W = TP ′Σ− 1
2 Σ̂mlΣ− 1

2 P ∼ WN(T − 1, IN), (IA88)

and they are independent of each other. We can show that

µz =
√
TP ′Σ− 1

2 µ =
√
Tθge1 +

√
Tψe2, (IA89)
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where ei is the ith column of the identity matrix IN . Using W and z, we can write

1′Σ̂−1
mlΣΣ̂−1

ml µ̂ = T
3
2

σg

e′
1W

−2z, (IA90)

1′Σ̂−1
ml1 = Te′

1W
−1e1

σ2
g

. (IA91)

It follows that
µ̂′Σ̂−1

mlΣΣ̂−1
ml1

1′Σ̂−1
ml1

=
√
Tσge′

1W
−2z

e′
1W

−1e1
=: q. (IA92)

We are interested in obtaining the exact mean of q, which is equal to

E[q] = TµgE
[

e′
1W

−2e1

e′
1W

−1e1

]
+ TσgψgE

[
e′

1W
−2e2

e′
1W

−1e1

]
. (IA93)

Partition W into four blocks such that W11 is its (1,1)th element. Using Muirhead (1982,

Theorem 3.2.10), we can show that

x := (e′
1W

−1e1)−1 = W11 − W12W
−1
22 W21 ∼ χ2

T −N , (IA94)

y := −W
− 1

2
22 W21 ∼ N (0N−1, IN−1), (IA95)

W22 ∼ WN−1(T − 1, IN−1), (IA96)

and they are independent of each other. Let Q = [e2, . . . , eN ]. From the partition matrix

inverse formula, we can verify that

Q′W −1e1 = W
− 1

2
22 y

x
, (IA97)

Q′W −1Q = W −1
22 + W

− 1
2

22 yy′W
− 1

2
22

x
, (IA98)

so we have

e′
2W

−1e1 = [1, 0′
N−2]W

− 1
2

22 y

x
. (IA99)

It follows that

e′
1W

−2e1 = e′
1W

−1[e1, Q][e1, Q]′W −1e1
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= (e′
1W

−1e1)2 + e′
1W

−1QQ′W −1e1

= 1 + y′W −1
22 y

x2 , (IA100)

e′
1W

−2e2 = e′
1W

−1[e1, Q][e1, Q]′W −1e2

= (e′
1W

−1e1)(e′
1W

−1e2) + e′
1W

−1QQ′W −1e2

= [1, 0′
N−2]W

− 1
2

22 y

x2 + y′W
− 1

2
22
x

W −1
22 + W

− 1
2

22 yy′W
− 1

2
22

x


 1

0N−2

. (IA101)

Using the above expressions, we obtain

E
[

e′
1W

−2e1

e′
1W

−1e1

]
= E

[
1 + y′W −1

22 y

x

]

= E[1 + y′W −1
22 y]E[x−1]

=
1 + N−1

T −N−1
T −N − 2

= T − 2
(T −N − 1)(T −N − 2) , (IA102)

E

[
e′

1W
−2e2

e′
1W

−1e1

]
= 0, (IA103)

and therefore we have from (IA93) that

E[q] = T (T − 2)µg

(T −N − 1)(T −N − 2) , (IA104)

which completes the proof.

Proof of Proposition IA.2

The two combination coefficients are κopt
1 in (IA5) and κ̂opt

2 in (IA10). Because 1′Σ−1µ̂

is unbiased, κ̂opt
2 is unbiased as well, and the expected out-of-sample mean return of the

estimated optimal strategy is the same as that when κopt
2 is known:

E
[
ŵ(κopt

1 , κ̂opt
2 )′µ

]
= κopt

1
γ
θ2 + κopt

2 µg. (IA105)
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In comparison, the expected out-of-sample variance is larger than that when κopt
2 is known.

Specifically,

E
[
ŵ(κopt

1 , κ̂opt
2 )′Σŵ(κopt

1 , κ̂opt
2 )

]
= (κopt

1 )2

γ2 (θ2 + d) + E
[
(κ̂opt

2 )2ŵ′
gΣŵg

]
+ 2κopt

1
γ

E
[
κ̂opt

2 µ̂′Σ̂−1Σŵg

]
. (IA106)

Applying (IA47), E
[
ŵ′

gΣŵg

]
= c1σ

2
g in (IA81), and Lemma 1, we have that

E
[
(κ̂opt

2 )2ŵ′
gΣŵg

]
= (1/c1 − κopt

1 )2

γ2 E
[

µ̂′Σ−111′Σ̂−1ΣΣ̂−111′Σ−1µ̂

(1′Σ̂−11)2

]

= c1σ
2
g(κopt

2 )2 + c1(1/c1 − κopt
1 )2

γ2T
(IA107)

and

2κopt
1
γ

E
[
κ̂opt

2 µ̂′Σ̂−1Σŵg

]
= 2κopt

1 (1/c1 − κopt
1 )

γ2 E
[

µ̂′Σ−111′Σ̂−1ΣΣ̂−1µ̂

1′Σ̂−11

]

= 2c1κ
opt
1 κopt

2
γ

µg + 2c1κ
opt
1 (1/c1 − κopt

1 )
Tγ2 . (IA108)

Therefore, the expected out-of-sample variance is

E
[
ŵ(κopt

1 , κ̂opt
2 )′Σŵ(κopt

1 , κ̂opt
2 )

]
= E

[
ŵ(κopt)′Σŵ(κopt)

]
+ c1(1/c2

1 − (κopt
1 )2)

γ2T
, (IA109)

where E[ŵ(κopt)′Σŵ(κopt)] = (κopt
1 )2

γ2 (θ2 + d) + c1σ
2
g(κopt

2 )2 + 2c1κopt
1 κopt

2
γ

µg is the expected out-

of-sample variance when κopt
2 is known. Finally, the loss in EU relative to ŵ(κopt) when κopt

2

is estimated by κ̂opt
2 is given by (IA11), which completes the proof.

Part 2. Using Equations (IA8) and (IA11), the constrained strategy delivers a larger EU

than that of the estimated optimal strategy, EU(ŵ(κconst)) ≥ EU
(
ŵ(κopt

1 , κ̂opt
2 )

)
, when

U⋆ − d

2γκ
const
1 − 1

2(c1 − 1)µgκ
const
2 ≥ U⋆ − d

2γκ
opt
1 − 1

2(c1 − 1)µgκ
opt
2 − c1(1/c2

1 − (κopt
1 )2)

2γT .

(IA110)
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After some developments, we find that inequality (IA110) is equivalent to

γ2
[
σ2

g((c1 − 1)2θ2
g + c1a)

]
+ γ[µg((1 − c1)d− 2c1a)] + d(a− 1) + aθ2 ≥ 0, (IA111)

where a is defined in (IA14). The discriminant of this second-degree polynomial is

∆ = 4σ2
g

(
θ2

g(d(1 − c1) − 2c1a)2 + 4(d(1 − a) − aθ2)((c1 − 1)2θ2
g + c1a)

)
, (IA112)

and therefore after some developments we can show that the two roots of the polyno-

mial (IA111) are
[
γ

mid
, γmid

]
in (IA12), which completes the proof.

Proof of Proposition IA.3

The EU of the combination of the SMV and SGMV portfolios,

ŵ(κ) = κ1

γ
Σ̂−1µ + κ2

γ
Σ̂−11, (IA113)

is obtained by plugging κ2 = 0 in (IA30), which gives

EU(ŵ(κ)) = κ1

γ
θ2 + κ2

γ
γtan − cγ

2

(
κ2

1
γ2

(
θ2 + N

T

)
+ κ2

2
γ2

1
σ2

g

+ 2κ1κ2

γ2 γtan

)
. (IA114)

The EU of the optimal portfolio combination of Kan and Zhou (2007) in (IA21) is then

obtained by plugging κkz
1 and κkz

2 given by (IA20) in the EU formula (IA114).

Concerning the fully invested combination of the SMV and SGMV portfolios, ŵ(κ)

in (IA17), we have from Kan, Wang, and Zhou (2021) that the EU depends on κ as

EU(ŵ(κ)) = µg − γ

2 c1σ
2
g + 1

γ

T −N − 2
T −N − 1

(
κψ2

g − κ2

2

(
ψ2

g + N − 1
T

) (T − 2)(T −N − 2)
(T −N)(T −N − 3)

)
.

(IA115)

The EU of the optimal portfolio combination is then obtained by plugging κkwz given

by (IA18) in the EU formula (IA115), which completes the proof.
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Proof of Proposition IA.4

Part 1. The two combination coefficients are κkz
1 in (IA20) and κ̂kz

2 in (IA23). Because µ̂g

is unbiased, κ̂kz
2 is unbiased as well, and the expected out-of-sample mean return of the

estimated optimal strategy is the same as that when κkz
2 is known in (IA114):

E
[
ŵ(κkz

1 , κ̂
kz
2 )′µ

]
= κkz

1
γ
θ2 + κkz

2 γtan. (IA116)

In comparison, the expected out-of-sample variance is larger than that when κkz
2 is known.

Specifically,

E
[
ŵ(κkz

1 , κ̂
kz
2 )′Σŵ(κkz

1 , κ̂
kz
2 )
]

= (κkz
1 )2

γ2 (θ2 + d) + 1
γ2E

[
(κ̂kz

2 )21′Σ̂−1ΣΣ̂−11
]

+ 2κkz
1
γ2 E

[
κ̂kz

2 1′Σ̂−1ΣΣ̂−1µ̂
]
. (IA117)

Applying (IA47) and E
[
Σ̂−1ΣΣ̂−1

]
= cΣ−1, we have that

1
γ2E

[
(κ̂kz

2 )21′Σ̂−1ΣΣ̂−11
]

= (1/c− κkz
1 )2

γ2 E
[

µ̂′Σ−111′Σ̂−1ΣΣ̂−111′Σ−1µ̂

(1′Σ−11)2

]

= c(κkz
2 )2

γ2σ2
g

+ c(1/c− κkz
1 )2

γ2T
(IA118)

and

2κkz
1
γ2 E

[
κ̂kz

2 1′Σ̂−1ΣΣ̂−1µ̂
]

= 2κkz
1 (1/c− κkz

1 )
γ2 E

[
µ̂′Σ−111′Σ̂−1ΣΣ̂−1µ̂

1′Σ−11

]

= 2cκkz
1 κ

kz
2

γ2 γtan + 2cκkz
1 (1/c− κkz

1 )
γ2T

. (IA119)

Therefore, the expected out-of-sample variance is

E
[
ŵ(κkz

1 , κ̂
kz
2 )′Σŵ(κkz

1 , κ̂
kz
2 )
]

= E
[
ŵ(κkz)′Σŵ(κkz)

]
+ c(1/c2 − (κkz

1 )2)
γ2T

, (IA120)

where E
[
ŵ(κkz)′Σŵ(κkz)

]
= c

(
(κkz

1 )2

γ2 (θ2 + N
T

) + (κkz
2 )2

γ2
1

σ2
g

+ 2κkz
1 κkz

2
γ2 γtan

)
is the expected out-

of-sample variance when κkz
2 is known. Finally, the loss in EU relative to ŵ(κkz) when κkz

2
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is estimated by κ̂kz
2 is given by (IA24), which completes the proof.

Part 2. Using Equations (IA22) and (IA24), the fully invested strategy of Kan, Wang, and

Zhou (2021) delivers a larger EU than the estimated optimal three-fund strategy of Kan and

Zhou (2007), EU(ŵ(κkwz)) ≥ EU
(
ŵ(κkz

1 , κ̂
kz
2 )
)
, when

µg − γ

2 c1σ
2
g + T −N − 2

T −N − 1
ψ2

g

2γ κ
kwz ≥ U⋆ − d

2γκ
kz
1 − c− 1

2γ γtanκ
kz
2 − c(1/c2 − (κkz

1 )2)
2γT .

(IA121)

After some developments, we find that inequality (IA121) is equivalent to

γ2[−c1σ
2
g ] + γ[2µg] +

b− θ2
g

c1
≥ 0, (IA122)

where b is defined in (IA26). The discriminant of this second-degree polynomial is

∆ = 4σ2
gb. (IA123)

If b < 0, the polynomial (IA122) has no real roots and the Kan-Zhou three-fund strategy

outperforms for any γ. Otherwise, the two real roots of the polynomial (IA122) are those in

in (IA25), which completes the proof.

Proof of Proposition IA.5

From Equation (IA63), the EU of the optimal two-fund rule is EU(ŵ2f ) = U⋆ − d
2γ
κ2f , where

κ2f = θ2/(θ2 + d). Therefore, the EU of the estimated three-fund portfolio in (29) is larger

than that of the optimal two-fund portfolio if

U⋆ − d

2γκ
opt
1 − 1 − (κopt

1 )2

2γT ≥ U⋆ − d

2γκ
2f , (IA124)

which after some developments simplifies to inequality (IA27). Whether inequality (IA27)

holds is independent of γ, and thus, only depends on whether the quantity (1 − (κopt
1 )2)/T

in (IA124) is small enough. That is, because this quantity decreases with the sample size T ,

inequality (IA27) holds if the sample size T is large enough, which completes the proof.
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Proof of Proposition IA.6

Part 1. Because the four-fund portfolio combination in (IA29) is unbiased, the out-of-sample

mean return is unbiased as well,

E[ŵ(κ)′µ] = κ1

γ
θ2 + κ2µew + κ3

γ
γtan. (IA125)

To find the expected out-of-sample variance in (IA47), we need the covariance matrix of

ŵ(κ). Using the result in Javed, Mazur, and Ngailo (2021, Corollary 2.2), it is given by

V[ŵ(κ)] = c
κ2

1
γ2

(
θ2

T − 2 + 1
T

)
Σ−1 (IA126)

+ c2

(
κ2

1
γ2 Σ−1µµ′Σ−1 + κ2

3
γ2 Σ−111′Σ−1 + κ1κ3

γ2 Σ−1(µ1′ + 1µ′)Σ−1
)
, (IA127)

where

c2 = c(T −N)
(T − 2)(T −N − 2) = T −N

(T −N − 1)(T −N − 4) . (IA128)

The expected out-of-sample variance is then given by (IA47), where

E[ŵ(κ)]′ΣE[ŵ(κ)] = κ2
1
γ2 θ

2 + κ2
2σ

2
ew + κ2

3
γ2

1
σ2

g

+ 2κ1κ2

γ
µew + 2κ1κ3

γ2 γtan + 2κ2κ3

γ
, (IA129)

Trace(ΣV[ŵ(κ)]) = c
κ2

1
γ2
N

T
+
(
c2 + cN

T − 2

)(
κ2

1
γ2 θ

2 + κ2
3
γ2

1
σ2

g

+ 2κ1κ3

γ2 γtan

)
. (IA130)

Noticing that 1 + c2 + cN
T −2 = c, the expected out-of-sample variance is

E[ŵ(κ)′Σŵ(κ)] = c

(
κ2

1
γ2

(
θ2 + N

T

)
+ κ2

3
γ2

1
σ2

g

+ 2κ1κ3

γ2 γtan

)
+ κ2

2σ
2
ew + 2κ1κ2

γ
µew + 2κ2κ3

γ
,

(IA131)

and thus the EU is given by (IA30), which completes the proof.
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Part 2. The EU of the four-fund portfolio in (IA30) can be rewritten in matrix format as

EU(ŵ(κ)) = κ′η − γ

2κ′Sκ, (IA132)

where

η =


θ2/γ

µew

γtan/γ

 and S =


c

γ2

(
θ2 + N

T

)
µew

γ
cγtan

γ2

µew

γ
σ2

ew
1
γ

cγtan

γ2
1
γ

c
γ2σ2

g

. (IA133)

The matrix S is positive definite and thus invertible. This is because the covariance matrix Σ

is assumed positive definite, and thus any expected out-of-sample variance is strictly positive,

κ′Sκ > 0 for any κ ̸= 0. As a result, the combination coefficients κ maximizing the EU

in (IA30) are

κopt = arg max
κ

κ′η − γ

2κ′Sκ = 1
γ

S−1η, (IA134)

which from (IA133) simplify to (IA31)–(IA33), thus completing the proof.

Part 3. Just like the utility of the optimal mean-variance portfolio w⋆ is U⋆ = θ2/(2γ) =

µ′Σ−1µ/(2γ), the EU achieved by the optimal four-fund portfolio combination ŵ(κopt) ob-

tained from the combination coefficients (IA134) is

EU(ŵ(κopt)) = η′S−1η

2γ , (IA135)

where η and S are defined in (IA133). After some developments, we can show that (IA135)

corresponds to (IA35).
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Proof of Proposition IA.7

Let us begin with the correlation between the out-of-sample return of the SMV and EW

portfolios, which is given by

Corr[(ŵ⋆)′rT +1,w
′
ewrT +1] = Cov[(ŵ⋆)′rT +1,w

′
ewrT +1]√

Var[(ŵ⋆)′rT +1]Var[w′
ewrT +1]

. (IA136)

We must evaluate the three terms appearing in (IA136). It is clear that Var[w′
ewRT +1] = σ2

ew.

Moreover, applying (IA47),

Cov[(ŵ⋆)′rT +1,w
′
ewrT +1] = E[r′

T +1wewµ̂′Σ̂−1rT +1] − E[(ŵ⋆)′rT +1]E[w′
ewrT +1] = µew/γ.

(IA137)

Finally, from the law of total variance,

Var[(ŵ⋆)′rT +1] = E[(ŵ⋆)′Σŵ⋆] + µ′Var[ŵ⋆]µ, (IA138)

where E[(ŵ⋆)′Σŵ⋆] = θ2+d
γ2 from the proof of Proposition 1 and Var[ŵ⋆] is given by (IA49).

This gives

Var[(ŵ⋆)′rT +1] = 1
γ2

(
c

T
(θ2(T + 1) +N) + 2θ4

T −N − 4

)
. (IA139)

Plugging Cov[(ŵ⋆)′rT +1,w
′
ewrT +1], Var[w′

ewRT +1], and Var[(ŵ⋆)′rT +1] into (IA136) results

in (IA36). It is straightforward to check that this correlation tends to θew/θ as T → ∞.

Let us now consider the correlation between the out-of-sample return of the SMV and

SGMV portfolios, which is given by

Corr[(ŵ⋆)′rT +1, ŵ
′
grT +1] =

Cov[(ŵ⋆)′rT +1, ŵ
′
grT +1]√

Var[(ŵ⋆)′rT +1]Var[ŵ′
grT +1]

. (IA140)

Applying (IA47) and E[Σ̂−1AΣ̂−1] = cΣ−1AΣ−1 with A a constant matrix, we have that

Cov[(ŵ⋆)′rT +1, ŵ
′
grT +1] = E[r′

T +1ŵgµ̂′Σ̂−1rT +1] − E[(ŵ⋆)′rT +1]E[ŵ′
grT +1]
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= γtan

γ2 (c+ (c− 1)θ2). (IA141)

Similarly, we can show that

Var[ŵ′
grT +1] = 1

γ2

(
E[r′

T +1Σ̂−111′Σ̂−1rT +1] − γ2
tan

)
= 1
γ2

(
c/σ2

g + (c− 1)γ2
tan

)
. (IA142)

Finally, plugging Cov[(ŵ⋆)′rT +1, ŵ
′
grT +1], Var[ŵ′

grT +1], and Var[(ŵ⋆)′rT +1] into (IA140)

results in (IA37). It is straightforward to check that this correlation tends to θg/θ as T → ∞,

which completes the proof.

Proof of Proposition IA.8

Part 1. Given Equation (13), the ESR of the three-fund portfolio in (9) can be rewritten in

matrix format as

ESR(ŵ(κ)) = κ′η√
κ′Sκ

, (IA143)

where

η =

θ2/γ

µew

 and S =

 c
γ2

(
θ2 + N

T

)
µew

γ

µew

γ
σ2

ew

. (IA144)

The matrix S is positive definite and thus invertible. This is because the covariance matrix

Σ is assumed positive definite, and thus any expected out-of-sample variance is strictly

positive, κ′Sκ > 0 for any κ ̸= 0. As a result, just like any maximum-utility portfolio
1
γ
Σ−1µ provides the maximum Sharpe ratio

√
µ′Σ−1µ, any vector of optimal combination

coefficients κopt = 1
γ
S−1η provides the maximum ESR:

max
κ

ESR(ŵ(κ)) = ESR(ŵ(κopt)) =
√

η′S−1η. (IA145)

After some developments, we find that

√
η′S−1η =

√
θ2

ew + (θ2 − θ2
ew)κopt

1 , (IA146)
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which is in between θ2
ew and θ2 because κopt

1 ∈ [0, 1], and thus completes the proof.

Part 2. The combination coefficients maximizing the ESR in (IA40) under the convexity

constraint (12), are

κ = arg max
κ′1=1

κ′η√
κ′Sκ

= S−1η

1′S−1η
=
 ψ2

ψ2 + γew

γ
d
,

γew

γ
d

ψ2 + γew

γ
d

, (IA147)

and they correspond to the constrained combination coefficients in (15) for two values of γ:

γ = γew and γ = θ2/µew. Therefore, the constrained strategy delivers the maximum ESR for

these two values of γ.

To find when the ESR of the constrained strategy ŵtz is minimized, we first simplify its

ESR by plugging (15) in (IA40), which gives

ESR(ŵtz) = dµewγ + θ2(ψ2 + σ2
ew(γ − γew)2)√

(ψ2 + σ2
ew(γ − γew)2 + d)(dσ2

ewγ
2 + θ2(ψ2 + σ2

ew(γ − γew)2)
. (IA148)

From (IA148), it is easy to check that

lim
γ→0

ESR(ŵtz) = lim
γ→∞

ESR(ŵtz) = θ2
√
θ2 + d

. (IA149)

To see under which condition no value of γ between 0 and ∞ can give a smaller ESR

than (IA149), we differentiate ESR(ŵtz) with respect to γ, which gives

∂

∂γ
ESR(ŵtz) = d2(θ2 − µewγ)(µew − σ2

ewγ)(θ2 − σ2
ewγ

2)(
(ψ2 + σ2

ew(γ − γew)2 + d)(dσ2
ewγ

2 + θ2(ψ2 + σ2
ew(γ − γew)2))

)3/2 .

(IA150)

This derivative is equal to zero when γ = γew and γ = θ2/µew, which correspond to the two

maxima identified above, and when γ = θ/σew, which corresponds to a local minimum. To

conclude the proof, we must thus find when the value of ESR(ŵtz) with γ = θ/σew is larger

than θ2/
√
θ2 + d in (IA149). By plugging γ = θ/σew in (IA148), we find that

ESR(ŵtz) = θ
θewd+ 2θ2(θ − θew)
θd+ 2θ2(θ − θew) when γ = θ/σew, (IA151)
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and after some developments this value is larger than θ2/
√
θ2 + d when

d >
θ2

θ2
ew

(θ − 3θew)(θ − θew), (IA152)

which corresponds to the desired condition and thus completes the proof.
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