User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Denitration of 2,4,6-trinitrotoluene by Pseudomonas aeruginosa ESA-5 in the presence of ferrihydrite.

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
  2. Amman RI, Stromley J, Devereux R, Key R, Stahl DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58:614–623
  3. Carlson CA, Ingraham JL (1983) Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol 45:1247–1253
  4. Coby AJ, Picardal FW (2005) Inhibition of NO3- and NO2- reduction by microbial Fe(III) reduction: evidence of a reaction between NO2- and cell surface bound Fe2+. Appl Environ Microbiol 71:5267–5274
  5. Cooper DC, Picardal FW, Schimmelmann A, Coby AJ (2003) Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200. Appl Environ Microbiol 69:3517–3525
  6. Cox CD (1986) Role of pyocyanin in the acquisition of iron from transferrin. Infect Immun 52:263–270
  7. Degiorgi CF, Fernandez RO, Pizarro RA (1996) Ultraviolet-B lethal damage on Pseudomonas aeruginosa. Curr Microbiol 33:141–146
  8. Duque E, Haidour A, Godoy F, Ramos JL (1993) Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacteriol 175:2278–2283
  9. Esteve-Nunez A, Ramos JL (1998) Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ Sci Technol 32:3802–3808
  10. Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352
  11. Eyers L, Agathos SN, El Fantroussi S (2004a) Denaturing gradient gel electrophoresis as a fingerprinting tool for analyzing communities in contaminated environments. In: Spencer JF, Ragout de Spencer AL (eds) Environmental microbiology: methods and protocols. Humana, Totowa
  12. Eyers L, Stenuit B, El Fantroussi S, Agathos SN (2004b) Microbial characterization of TNT-contaminated soils and anaerobic TNT degradation: high and unusual denitration activity. In: Verstraete W (ed) Proceedings of the European symposium on environmental biotechnology. Taylor & Francis, London, pp 51–54
  13. Fiorella PD, Spain JC (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63:2007–2015
  14. Fry NK, Frederickson JK, Fishbain S, Wagner M, Stahl DA (1997) Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl Environ Microbiol 63:1498–1504
  15. George S.E., Huggins-Clark G., Brooks L.R., Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations, 10.1016/s1383-5718(00)00150-9
  16. George I, Eyers L, Stenuit B, Agathos SN (2008) Effect of 2,4,6-trinitrotoluene (TNT) on soil bacterial communities. J Ind Microb Biotechnol DOI 10.1007/s10295-007-0289-2 , published online on 29 January 2008
  17. Haïdour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370
  18. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986
  19. Hofstetter TB, Heijman CG, Haderlein SB, Holliger C, Schwarzenbach RP (1999) Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions. Environ Sci Technol 33:1479–1487
  20. Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54
  21. Kane MD, Poulsen LK, Stahl DA (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59:682–686
  22. Kim HY, Bennett GN, Song HG (2002) Degradation of 2,4,6-trinitrotoluene by Klebsiella sp. isolated from activated sludge. Biotechnol Lett 24:2023–2028
  23. Lovley DR (1987) Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol J 5:375–399
  24. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
  25. Martin JL, Comfort SD, Shea PJ, Kokjohn TA, Drijber RA (1997) Denitration of 2,4,6-trinitrotoluene by Pseudomonas savastanoi. Can J Microbiol 43:447–455
  26. Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43
  27. Nishino SF, Paoli GC, Spain JC (2000) Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66:2139–2147
  28. Oh BT, Shea PJ, Drijber RA, Vasilyeva GK, Sarath G (2003) TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodegradation 14:309–319
  29. Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750
  30. Stenuit B, Eyers L, El Fantroussi S, Agathos SN (2005) Promising strategies for the mineralisation of 2,4,6-trinitrotoluene. Rev Environ Science Bio/Technol 4:39–60
  31. Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan JL, Agathos SN (2006) Aerobic growth of Escherichia coli with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source and evidence of TNT denitration with whole cells and cell-free extracts. Appl Environ Microbiol 72:7945–7948
  32. Straub KL, Kappler A, Schink B (2005) Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria. Meth Enzymol 397:58–77
  33. Tront JM, Hughes JB (2005) Oxidative microbial degradation of 2,4,6-trinitrotoluene via 3-methyl-4,6-dinitrocatechol. Environ Sci Technol 39:4540–4549
  34. Van Aken B, Agathos SN (2002) Implication of manganese (III), oxalate, and oxygen in the degradation of nitroaromatic compounds by manganese peroxidase (MnP). Appl Microbiol Biotechnol 58:345–351
  35. Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss HJ (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252
  36. Williams DR, Rowe JJ, Romero P, Eagon RG (1978) Denitrifying Pseudomonas aeruginosa: some parameters of growth and active transport. Appl Environ Microbiol 36:257–263
Bibliographic reference Eyers, Laurent ; Stenuit, Benoît ; Agathos, Spiros N.. Denitration of 2,4,6-trinitrotoluene by Pseudomonas aeruginosa ESA-5 in the presence of ferrihydrite.. In: Applied Microbiology and Biotechnology, Vol. 79, no. 3, p. 489-497 (2008)
Permanent URL http://hdl.handle.net/2078.1/23077